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Abstract

Recently, we have observed a significant increase in the importance of machine learning (ML)
and computer vision (CV) methods in more areas of fundamental research and application
problems. Considering sustainable development and human well-being, agriculture is one
of the essential fields for applying ML/CV methods. The analysis of insect biosystems,
thematically associated with agriculture, is an important research area for ML/CV methods
both in terms of research gaps and high application potential. The task of ML/CV methods in
the context of biosystems is to phenotype them, i.e. to calculate highly informative indicators
that characterize a given biosystem. This dissertation focuses on the honeybee and mealworm
biosystems.
There are numerous papers in the literature solving successive application problems for

precision insect farming. However, we still can find research gaps at the level of developing
efficient and robust ML methods. The problems of weakly represented datasets [RG1] and
dense scenes [RG2] are common in developingMLmethods for phenotyping insect biosystems
and involve the difficulty of obtaining a representative dataset with reasonable time spent on
labelling. In most papers, researchers focused only on training and evaluating ML models
under the assumption of having a representative dataset, omitting the critical step of efficiently
developing a representative dataset. The articles also did not consider methods for supervising
the performance of models and their adaptation during production [RG3], which, in the
context of the occurring changeability of biosystems over time, is a significant issue. It
should also be noted that a considerable number of solutions in the area of phenotyping insect
biosystems are based on off-the-shelf models, so still a reasonable area of research is dedicated
methods to the problems of phenotyping insect biosystems, including the issue of taking into
account domain knowledge [RG4]. Near-real-time inference requirements for the problems
under consideration favour low-complexity solutions. Methods for reducing complexity and
inference time [RG5] are another important research issue. Most work in the literature is
based on phenotyping insect biosystems at the population level without considering the
characteristics of individuals. Phenotyping at the individual level [RG6] represents another
research gap.
At the same time, universal machine learning methods can also be found in the literature,

which can be useful in developing dedicated solutions for phenotyping insect biosystems.
Generated synthetic images, which are a special type of augmentation, make it possible to
reduce the time spent on annotation. Semi-supervised learning allows unlabeled samples to
be included in model training or adaptation, increasing the final model efficiency. Knowledge
transfer techniques provide a basis for training a newmodel based on the prediction of another
model or method, reducing the final complexity of the solution. End-to-end architectures
provide condensed solutions under specific application problems. Significant advances in

vii



re-identification are seen for more types of objects, including animals.
Taking into account the research gaps and state-of-the-art discussed, the following re-

search hypothesis was formulated: ’Machine learning methods using synthetic images, semi-
supervised learning, knowledge transfer and end-to-end architectures enable the development
of dedicated models for phenotyping insect biosystems that are more efficient, easier to
develop and maintain and characterized by shorter inference times than currently used ma-
chine learning methods’ and research objectives: [O1] development of method enabling faster
development of ML methods for phenotyping insect biosystems, involving synthetic image
generation and semi-supervised learning (pseudo-labeling), [O2] development of method
enabling more efficient maintenance during the production of ML methods for phenotyping
insect biosystems, involving detecting domain shift (or concept drift) effect and adaptation
technique, [O3] development of method enabling reduction of complexity (inference time) of
MLmethods for phenotyping insect biosystems, involving knowledge transfer and end-to-end
model, [O4] development of method enabling the incorporation of domain knowledge (a
priori) in the development, maintenance, and inference of ML methods for phenotyping insect
biosystems, and [O5] development of method enabling phenotyping insect biosystems at
the level of individuals (rather than population), involving re-identification and detection of
behavioural patterns.
The doctoral dissertation is in the form of a collection of six thematically related scientific

articles published in scientific journals or in peer-reviewed proceedings of international
conferences, and one article that is currently under review. The articles included in the
dissertation address the common problem of phenotyping insect biosystems.
The article [A1] (Multipurpose monitoring system for edible insect breeding based on machine

learning) proposed a 3-module system for monitoring the rearing of the mealworm. The first
module was based on the Mask-CNN model and was used for instance segmentation of the
growth stages of the mealworm (live larva, pupa, beetle) and anomalies (dead larva, pest). The
second module was based on the U-Net model and was related to the semantic segmentation
of chitinous moults and feed. The third module was responsible for calculating size indices of
larvae (length, volume) at the level of individuals and the entire population. Synthetic images
with automatically generated labels were used to train the ML models, significantly reducing
the labelling time [O1] of images representing dense scenes [RG2].
In the article [A2] (Prediction of the remaining time of the foraging activity of honey bees using

spatio-temporal correction and periodic model re-fitting), a model was developed to predict the
remaining time of the daily foraging activity of bees based on the current and past activity at
the entrance of the hive (understood as the number of registered bees on consecutive frames),
the time until sunset and environmental factors (temperature, humidity). To maintain the
high accuracy of the prediction model [RG3], a method of periodic re-fitting of the model
based on automatically generated target values was proposed [O2]. In determining the
target values, domain knowledge [RG4] was taken into account through the spatio-temporal
correction method [O4], which significantly reduced the error progression during periodic
model re-fitting. The article confirms the possibility of maintaining high accuracy of the
prediction model, when concept drift occurs, throughout the beekeeping season.
The article [A3] (Monitoring the growth of insect larvae using a regression convolutional neural
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network and knowledge transfer) focused on developing a method for phenotyping larvae with
reduced complexity and inference time [RG5], compared to the method proposed in [A1]. The
developed solution was a multioutput regression convolutional neural network trained using
knowledge transfer [O3]. To train the model, the size indices of the larvae obtained in the
multistage phenotyping procedure using classical CV methods and the larvae segmentation
model (trained on synthetic images) were used while automating the labelling process [O1] of
images representing dense scenes [RG2]. For calibration purposes, only a few labelled samples
were used.
The article [A4] (Mixing Augmentation and Knowledge-Based Techniques in Unsupervised

Domain Adaptation for Segmentation of Edible Insect States) addressed the task of domain adap-
tation [RG3] for insect biosystem phenotyping problems using the example of segmentation
of selected states of the mealworm (live larva, dead larva, pupa). A 2-stage domain adaptation
method was proposed [O2], where after each stage model training was carried out on a new
set of prepared samples. The first stage of the developed method was based on generating
synthetic images using a pool of objects from the source domain extended with augmented
objects. In the second stage, a pool of objects from the target domain was proposed using
the model prediction from stage one. The objects from the target pool were filtered based on
domain knowledge [RG4] and then used to generate synthetic images [O4].
The article [A5] (Improved Pest Detection in Insect Larvae Rearing with Pseudo-Labelling and

Spatio-Temporal Masking) focused on the problem of weakly represented datasets [RG1] in
the context of pest detection. The paper proposed a method for developing a pest detection
model assuming a small initial set of labelled samples [O1]. The developed method was
based on generating pseudo-labels based on the prediction of a previously trained model. A
spatio-temporal masking method [O4] based on domain knowledge [RG4] was responsible for
reducing errors in pseudo-label generation. The proposed solution also included identifying
positive samples (images with pests) for further labelling from many samples acquired daily.
The article [A6] (End-to-end Solution for Tenebrio Molitor Rearing Monitoring with Uncer-

tainty Estimation and Domain Shift Detection) focused on the development of a condensed
end-to-end architecture [RG5] for phenotyping the mealworm biosystem incorporating the
functionalities of the separate modules proposed in [A1]. The proposed solution extended
the YOLOv8 architecture with additional heads (branches) related to the corresponding tasks
(estimation of image coverage coefficients of feed and chitinousmoults, phenotyping of larvae)
[O3]. The paper also proposed a method for estimating prediction uncertainty with the
detection of the domain shift phenomenon [RG3], using model ensemble and bootstrapping
[O2]. Training of successive branches of the model was performed using separate datasets
prepared for a specific problem [O1], effectively reducing the time needed to label images
representing dense scenes [RG2].
The article [A7] (Phenotyping with dynamic characteristics determination for Tenebrio Molitor

beetles in selective breeding using re-identification) addressed the problem of phenotypingmeal-
worm beetles at the level of individuals [RG6]. The paper proposed a procedure for developing
beetle re-identification models that did not require manual labelling of samples based on
obtaining samples of individuals during the training stage when the beetles were isolated from
each other in stations [O1]. Using the re-identification model in the testing stage, the dynamic
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characteristics of individuals were determined, including the detection of mating behaviour
pattern [O5]. The paper also proposed a method for the initial selection of individuals for
phenotyping based on the designed hybrid metric. A domain adaptation [RG3] method based
on supplementing the training set with samples from the target domain with automatically
determined pseudo-labels was developed to reduce the domain shift phenomenon occurring
between the training and testing stages [O2].
In summary, the research carried out, as part of the dissertation, confirmed the formulated

research hypothesis, i.e. machine learning methods using synthetic images, semi-supervised
learning, knowledge transfer and end-to-end architectures enable the development of dedi-
cated models for phenotyping insect biosystems that are more efficient, easier to develop and
maintain and characterized by shorter inference times than currently used machine learning
methods. Furthermore, the proposed techniques for the introduction of domain knowledge
and re-identification strengthened the statement that dedicated methods could be developed
for phenotyping insect biosystems. All set research objectives (O1-O5) were met and defined
research gaps (RG1 - RG6) were filled.
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Streszczenie

W ostatnim czasie obserwujemy znaczący wzrost znaczenia metod uczenia maszynowego
(UM) i widzenia komputerowego (WK) w coraz większej liczbie obszarów badań podsta-
wowych i problemów aplikacyjnych. Biorąc pod uwagę zrównoważony rozwój i dobrostan
ludzi, rolnictwo jest jednym z kluczowych obszarów zastosowania metod UM/WK. Analiza
biosystemów owadów, tematycznie związana z rolnictwem, jest ważnym obszarem badawc-
zym dla metod UM/WK zarówno pod względem luk badawczych, jak i wysokiego potencjału
aplikacyjnego. Zadaniem metod UM/WK w kontekście biosystemów jest ich fenotypowanie,
czyli obliczanie wysokoinformatywnych współczynników charakteryzujących dany biosys-
tem. W pracy doktorskiej skupiono się na biosystemach pszczoły miodnej i mącznika młynar-
ka.
W literaturze możemy odnaleźć znaczącą liczbę prac rozwiązujących kolejne problemy

aplikacyjne dla precyzyjnej hodowli owadów. Jednakże na poziomie opracowywania efek-
tywnych i odpornych metod UM nadal odnajdziemy luki badawcze. Problem słabo repre-
zentowanych zbiorów danych [RG1] oraz gęstych scen [RG2] jest często spotykany przy
rozwijaniu metod UM dla fenotypowania biosystemów owadów i wiąże się z trudnością
uzyskania reprezentatywnego zbioru danych przy racjonalnym czasie spędzonym na ety-
kietowanie. W większości prac badacze skupiali się tylko na procesie treningu i ewaluacji
modeli UM przy założeniu posiadania reprezentatywnego zbioru danych, omijając bardzo
istotny etap efektywnego opracowywania reprezentatywnego zbioru danych. Artykuły rów-
nież nie uwzględniały metod nadzorowania działania modeli i ich adaptacji w czasie produkcji
[RG3], co w kontekście występującej zmienności biosystemów w czasie jest zagadnieniem
znaczącym. Należy również zwrócić uwagę na to, że spora liczba rozwiązań z obszaru fe-
notypowania biosystemów owadów opiera się na gotowych modelach i nadal zasadnym
obszarem badań są metody dedykowane problemom fenotypowania biosystemów owadów
łącznie z zagadnieniem uwzględniania wiedzy dziedzinowej [RG4]. Wymagania odnośnie
czasu wnioskowania bliskiego rzeczywistego dla rozważanych problemów faworyzują ro-
związania o małej złożoności. Metody redukcji złożoności i czasu wnioskowania [RG5] są
kolejnymważnym zagadnieniemwymagającym badań.W literaturze przeważająca liczba prac
opiera się na fenotypowaniu biosystemów owadów na poziomie populacji bez uwzględniania
indywidualnej charakterystyki osobników. Fenotypowanie na poziomie osobników [RG6]
stanowi kolejną lukę badawczą.
Jednocześnie w literaturze odnajdziemy również uniwersalne metody uczenia maszynowe-

go, które mogą okazać się pomocne przy rozwijaniu dedykowanych rozwiązań dla fenoty-
powania biosystemów owadów. Generowane obrazy syntetyczne, stanowiące specjalny rod-
zaj augmentacji, umożliwiają skrócenie czasu spędzonego na adnotację. Uczenie częściowo-
nadzorowane pozwala uwzględnić próbki nieetykietowane w treningu lub adaptacji modelu,
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zwiększając ostateczną efektywność modelu. Technika transferu wiedzy daje podstawę do
treningu nowego modelu na bazie predykcji innego modelu lub metody, redukując ostateczną
złożoność rozwiązania. Architektury end-to-end stanowią skondensowane rozwiązania pod
konkretne problemy aplikacyjne. Znaczne postępy w re-identyfikacji są zauważalne dla kole-
jnych rodzajów obiektów, również zwierząt.
Biorąc pod uwagę omówione luki badawcze oraz stan wiedzy, sformułowano następującą

hipotezę badawczą: ’Metody uczenia maszynowegowykorzystujące obrazy syntetyczne, ucze-
nie częściowo-nadzorowane, transfer wiedzy oraz architektury end-to-end umożliwiają opra-
cowywanie modeli dedykowanych dla fenotypowania biosystemów owadów, które są bardziej
efektywne, łatwiejsze w rozwijaniu i utrzymaniu oraz charakteryzują się krótszym czasem
wnioskowania w porównaniu do aktualnie wykorzystywanych metod uczenia maszynowego’
oraz cele badań: [O1] opracowanie metody umożliwiającej szybsze rozwijanie metod UM do
fenotypowania biosystemów owadów, włączając w to generowanie obrazów syntetycznych
oraz uczenie częściowo nadzorowane, [O2] opracowanie metody umożliwiającej bardziej
efektywne utrzymanie modeli UM w czasie produkcji dla fenotypowania biosystemów owa-
dów, włączając w to metody detekcji efektu przesunięcia domeny (lub dryftu koncepcji)
oraz metody adaptacji, [O3] opracowanie metody umożliwiającej redukcję złożoności (czasu
wnioskowania) metod UM do fenotypowania biosystemów owadów, włączając w to transfer
wiedzy oraz modele end-to-end, [O4] opracowanie metody umożliwiającej wprowadzanie
wiedzy dziedzinowej (a priori) w proces opracowania, utrzymania oraz wnioskowania metod
UM do fenotypowania biosystemów owadów oraz [O5] opracowanie metody umożliwiającej
fenotypowanie biosystemów owadów na poziomie osobników (w przeciwieństwie do popu-
lacji), włączając w to re-identyfikację oraz wykrywanie wzorców zachowania.
Dysertacja doktorska jest w formie cyklu sześciu powiązanych tematycznie artykułów

naukowych opublikowanychw czasopismach naukowych lubw recenzowanychmateriałach z
konferencji międzynarodowych oraz jednego artykułu, który aktualnie jest w trakcie recenzji.
Zawarte artykuły w dysertacji obejmują wspólną problematykę fenotypowania biosystemów
owadów.
Artykuł [A1] (Multipurpose monitoring system for edible insect breeding based on machine

learning) zaproponował 3-modułowy system do monitoringu hodowli mącznika młynarka.
Pierwszy moduł był oparty o model Mask-CNN i służył do segmentacji instancyjnej stadiów
rozwojowych mącznika młynarka (larwa żywa, poczwarka, chrząszcz) oraz anomalii (larwa
martwa, szkodnik). Drugi moduł był oparty o model U-Net i był związany z segmentacją
semantyczną wylinki chitynowej oraz paszy. Trzeci moduł odpowiadał za obliczanie wskaź-
ników wielkościowych larw (długość, objętość) na poziomie osobników oraz całej populacji.
Do treningu modeli UM wykorzystano obrazy syntetyczne z automatycznie generowanymi
etykietami, co znacznie zmniejszyło czas etykietowania [O1] obrazów reprezentujących gęste
sceny [RG2].
W artykule [A2] (Prediction of the remaining time of the foraging activity of honey bees

using spatio-temporal correction and periodic model re-fitting) opracowano model predykcji
czasu pozostałego do końca dziennego oblotu pszczół na podstawie aktualnej i minionej
aktywności na wejściu do ula (rozumianej jako ilość zarejestrowanych pszczół na kolejnych
klatkach), czasu do zachodu słońca oraz parametrów środowiskowych (temperatura, wilgot-
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ność). Dla utrzymania wysokiej dokładności modelu predykcji [RG3] zaproponowano metodę
okresowego dopasowywania modelu na podstawie automatycznie generowanych wartości
docelowych [O2]. Przy wyznaczaniu wartości docelowych uwzględniono wiedzę dziedzinową
[RG4] poprzezmetodę korekcji przestrzenno-czasowej [O4], co znacznie ograniczało progresję
błędu podczas okresowego dopasowywania modelu. W artykule potwierdzono możliwość
utrzymania wysokiej dokładności modelu predykcji, podczas występowania zjawiska dryftu
koncepcji, przez cały sezon pszczelarski.
Artykuł [A3] (Monitoring the growth of insect larvae using a regression convolutional neural

network and knowledge transfer) skupia się na opracowaniu metody fenotypowania larw
o zmniejszonej złożoności i czasie wnioskowania [RG5], w porównaniu do metody zapro-
ponowanej w [A1]. Opracowane rozwiązanie to regresyjna wielowyjściowa sieć konwolu-
cyjna trenowana z wykorzystaniem transferu wiedzy [O3]. Do treningu modelu wykorzy-
stano wskaźniki wielkościowe larw uzyskane w procesie wieloetapowego fenotypowania z
wykorzystaniem klasycznych metod WK oraz modelu segmentacji larw (trenowanego na
obrazach syntetycznych), jednocześnie automatyzując proces etykietowania [O1] obrazów
reprezentujących gęste sceny [RG2]. Dla celów kalibracyjnych wykorzystano jedynie parę
etykietowanych próbek.
Artykuł [A4] (Mixing Augmentation and Knowledge-Based Techniques in Unsupervised Do-

main Adaptation for Segmentation of Edible Insect States) podejmuje problem adaptacji dome-
ny [RG3] dla problemów fenotypowania biosystemów owadów na przykładzie segmentacji
wybranych stanów mącznika młynarka (larwa żywa, larwa martwa, poczwarka). Zapropono-
wano 2-etapową metodę adaptacji domeny [O2], gdzie po każdym z etapów przeprowadza-
no trening modelu na nowym zbiorze przygotowanych próbek. Pierwszy etap opracowanej
metody bazował na generowaniu obrazów syntetycznych z wykorzystaniem puli obiektów
z domeny źródłowej rozszerzonej o augmentowane obiekty. W drugim etapie, korzystając z
predykcji modelu z etapu pierwszego, zaproponowano pulę obiektów pochodzących z domeny
docelowej. Obiekty z puli docelowej poddano filtracji opartej na wiedzy dziedzinowej [RG4]
a następnie wykorzystano do generowania obrazów syntetycznych [O4].
Artykuł [A5] (Improved Pest Detection in Insect Larvae Rearing with Pseudo-Labelling and

Spatio-Temporal Masking) skupia się na problemie słabo reprezentowanych zbiorów danych
[RG1] w kontekście detekcji szkodników. W artykule zaproponowano metodę rozwijania
modelu detekcji szkodników przy założeniu małego początkowego zbioru etykietowanych
próbek [O1]. Opracowana metoda bazowała na generowaniu pseudoetykiet na podstawie
predykcji uprzednio wytrenowanego modelu. Za zmniejszenie błędów przy generowaniu
pseudoetykiet odpowiadała metoda maskowania przestrzenno-czasowego [O4] bazująca na
wiedzy dziedzinowej [RG4]. Zaproponowane rozwiązanie obejmowało również identyfikację
pozytywnych próbek (obrazów z pasożytem) do dalszego etykietowania spośród dużej ilości
próbek pozyskiwanych dziennie.
Artykuł [A6] (End-to-end Solution for Tenebrio Molitor Rearing Monitoring with Uncertainty

Estimation and Domain Shift Detection) skupiał się na opracowaniu skondensowanej archi-
tektury end-to-end [RG5] do fenotypowania biosystemu mącznika młynarka, obejmującej
funkcjonalności oddzielnych modułów zaproponowanych w [A1]. Zaproponowane rozwiąza-
nie polegało na rozszerzeniu architektury YOLOv8 o dodatkowe głowy (gałęzie) związane
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z odpowiednimi zadaniami (estymacja współczynników pokrycia obrazu paszą i wylinką
chitynową, fenotypowanie larw) [O3]. W artykule zaproponowano również metodę estymacji
niepewności predykcji wraz z detekcją zjawiska przesunięcia domeny [RG3], wykorzystując
zespół modeli oraz bootstrapping [O2]. Trening kolejnych gałęzi modelu wykonywano z
wykorzystaniem osobnych zbiorów danych przygotowanych pod konkretny problem [O1],
skutecznie redukując czas potrzebny na etykietowanie obrazów reprezentujących gęste sceny
[RG2].
Artykuł [A7] (Phenotyping with dynamic characteristics determination for Tenebrio Mo-

litor beetles in selective breeding using re-identification) podejmował problem fenotypowa-
nia chrząszczy mącznika młynarka na poziomie pojedynczych osobników [RG6]. W pracy
zaproponowano procedurę opracowania modeli re-identyfikacji chrząszczy niewymagającą
ręcznego etykietowania próbek opartą o pozyskiwanie próbek osobników w fazie treningo-
wej, gdy chrząszcze były odizolowane od siebie w stanowiskach [O1]. Wykorzystując model
re-identyfikacji w fazie testowej wyznaczano dynamiczne charakterystyki osobników, w tym
wykrywano wzorce zachowania w postaci krycia [O5]. W artykule zaproponowano również
metodę wstępnego wyboru osobników do fenotypowania na podstawie opracowanej hybry-
dowej metryki. Dla redukcji zjawiska przesunięcia domeny [RG3], występującej pomiędzy
etapem treningowym i testowym, opracowano metodę adaptacji domeny bazującą na uzupeł-
nianiu zbioru treningowego o próbki z domeny docelowej z automatycznie wyznaczanymi
pseudoetykietami [O2].
Podsumowując, przeprowadzone badania, w ramach w pracy doktorskiej, potwierdziły

postawioną hipotezę badawczą, czyli metody uczenia maszynowego wykorzystujące obrazy
syntetyczne, uczenie częściowo-nadzorowane, transfer wiedzy oraz architektury end-to-end
umożliwiają opracowywanie modeli dedykowanych dla fenotypowania biosystemów owa-
dów, które są bardziej efektywne, łatwiejsze w rozwijaniu i utrzymaniu oraz charakteryzują
się krótszym czasem wnioskowania w porównaniu do aktualnie wykorzystywanych metod
uczenia maszynowego. Ponadto zaproponowane techniki wprowadzania wiedzy dziedzinowej
oraz re-identyfikacji utwierdziły stwierdzenie o możliwości opracowywania dedykowanych
metod do fenotypowania biosystemów owadów.Wszystkie postawione cele badawcze (O1-O5)
zostały zrealizowane a zdefiniowane luki badawcze (RG1 - RG6) uzupełnione.
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CHAPTER 1
Introduction

1.1 Background
Recently, we have observed a significant increase in the importance of machine learning (ML)
and computer vision (CV) methods in more areas of fundamental research and application
problems. The sharp rise in ML and CV in recent years can be attributed to several key factors:
(1) growth in computing power (GPU, TPU, cloud computing), (2) large datasets (Big Data),
(3) progress in algorithms and models (deep learning[48], convolutional neural networks[43],
transfer learning, transformers[97], generative models[32]), and (4) frameworks and open-
source libraries (TensorFlow, PyTorch, Scikit-Learn, OpenCV). Among the most popular ap-
plication areas for ML/CV methods can be mentioned: manufacturing[71], healthcare[28],
finance[2], transportation[112], marketing[64], entertainment[12], and agriculture[90].
Considering sustainable development and human well-being, agriculture is one of the

essential fields for applying ML/CV methods. The growing global human population is ne-
cessitating an increase in food production. Simultaneously, consumer demands for the quality
of produced food are also increasing, especially in the context of residues of harmful chemicals
(e.g. pesticides, antibiotics) in the final product. Many consumers prefer ecological products.
Attention is also being paid to environmental costs in food production, i.e. greenhouse gas
emissions and water consumption.
Precision agriculture (PA) and precision livestock farming (PLF) respond to the problems

mentioned. Through the use of the latest data analysis methods, attempts are made to monitor
and control the process of crop and livestock farming to achieve a high quantity and quality of
product at the lowest possible environmental and financial cost. The nomenclature separates
the terms ’precision agriculture ’and ’precision livestock farming’ [29] due to the different
characteristics of the objects observed and dedicated methods for analysis. In the case of
livestock, observing current behaviour and dynamic patterns plays a significant role, while in
the case of plants, recording long-term changes is often sufficient. Precision insect farming
(PIF), including precision beekeeping (PB), is another important area. Calling farmed insects
(bees) as ’livestock’ is not wrong, but the term is more likely to be associated with cattle,
pigs and poultry in the literature. Undoubtedly, we can also find characteristic features
of PIF at the level of data analysis methods. In contrast to ’livestock’, the analyzed insect

1



Chapter 1: Introduction

population is most often characterized by tens of thousands of individuals, which tends to
favour analyzing at the population level. However, there are exceptions to this rule, and
individualized analysis of insects is reasonable in special cases such as selective breeding
studies. The unifying term for PA, PLF, and PIF/PB can be biosystem phenotyping, which
is based on the determination of highly informative features (phenotyping) that enable the
description of the studied biosystems. Figure 1.1 shows the presented classification for
biosystem phenotyping problems.

Figure 1.1: Application areas for biosystem phenotyping problems.

The potential to increase food production is also seen in new food sources. Novel food
includes edible insects that can be used as food or for high-protein feed. Among the most
important insect species farmed for food and feed are Tenebrio molitor (also known as
mealworm) and Hermetia illucens.
Phenotyping of biosystems requires appropriate sensors (including cameras) to record the

important signals. RGB imaging and acoustic signal[19, 18] registration are most widely used
for phenotyping biosystems due to the relatively low cost of these solutions. Due to the
need to process data in near-real time and share the results with farmers, solutions are often
based on IoT systems[36, 87]. Researchers also used wearable sensors[56, 95], depth images
(RGB + depth dimension)[113], IR/NIR images[52, 9], and multi-/hyperspectral images[34] for
biosystem phenotyping problems.

1.2 Related Work
Recent advances in machine learning (ML) and computer vision (CV) have resulted in frequent
use of these approaches for biosystem phenotyping problems as well. We find numerous
examples of ML/CV methods for PA, PLF and PIF in the literature.
In the case of PA, ML methods have been used for (a) early detection of plant diseases[99,

103] and pests detection[111] (for precision spraying), (b) detection of weeds (for precision
weeding)[51], (c) estimation of chlorophyll content[34] and water content (moisture)[120] in
the plant (for precision irrigation and fertilization), (d) detection, sizing and determination
of fruit maturity (for automated fruit harvesting)[21], (e) plant row position estimation[115,
68] (for in-field navigation and gaps detection), (f) yield prediction and plant growth stage
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determination (for logistics planning)[110, 81], and (g) reconstruction of trees with fruit[109,
59] (for optimal cutting point determination and automated fruit harvesting).
For PLF, the following application areas of ML/CV methods should be distinguished: (a)

recognition of basic activities (lying, eating)[56, 101] and behavioural patterns detection (e.g.,
playing [46], pawing[22]), (b) disease detection (e.g. lameness[114, 63, 119]), (c) animal welfare
determination [45] with stress detection (e.g., heat stress[93]), (d) estimation of size parameters
and biomass[113, 15], and (e) estimation of respiration rate (for anomaly detection)[94, 102].
The dissertation addressed PIF issues in the context of two insect species: the honeybee

(Apis mellifera) and the mealworm (Tenebrio molitor). For these biosystems, it was decided to
present a detailed state-of-the-art with particular attention to ML/CV methods used in each
article. The objects of analysis on which the dissertation focused are shown in Figure 1.2.

Figure 1.2: Insect species considered in the dissertation: (a) the honeybee (Apis mellifera), and
(b) the mealworm (Tenebrio molitor).

The papers related to the use of ML/CV methods for phenotyping honeybee and mealworm
biosystems are summarized in Table 1.1. It was decided to list only studies based on images as
a source of information since computer vision methods were the subject of the dissertation.

Table 1.1: Articles that used ML/CV methods to phenotype honeybee (HB) and mealworm
(MW) biosystems.

article insect task ML/CV methods
(Stojnić et al., 2018)[85] HB (1) detection of honey bees

bearing pollen
(1) colour space conversion, and K-
Means for segmentation bee/back-
ground, (2) PCA to decorrelate RGB
channels, (3) SIFT[54], VLAD[39], and
SVM[23] for image (ROI) classification

(Bozek et al., 2018)[13],
(Bozek et al. 2021)[14]

HB (1) bee detection and clas-
sification, (2) brood cell de-
tection, (3) bee tracking (re-
search especially aimed for
dense scenes)

(1) multioutputmodified U-Net[80], (2)
orientation represented by continuous
values in ground truth for semantic
segmentation
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(Rodriguez et al., 2018a)[78],
(Rodríguez et al., 2018)[76],
(Rodriguez et al., 2018b)[79],
(Rodriguez et al., 2022)[77],

HB (1) bee body parts detec-
tion, (2) pollen loads detec-
tion, (3) pose estimation, (4)
tracking, (5) detection of en-
trance and exit events,

(1) Part Affinity Fields[16] method
with VGG-19[82] as a feature extractor
for pose estimation, (2) shallow CNN
for pollen loads detection, and (3) Hun-
garian algorithm[44] for tracking

(Marstaller et al., 2019)[57] HB (1) insect species classifica-
tion (bee, wasp, bumblebee,
hornet), (2) bee classifica-
tion (normal, with pollen,
drone, dead), (3) pose esti-
mation, (4) pollen localiza-
tion

(1) multi-task architecture with shared
encoder, (2) additional decoder for
semi-supervised learning (train on un-
labeled images)

(Ngo et al., 2019)[67] HB (1) counting bees entering
and leaving the hive, (2)
tracking bees

(1) Hungarian algorithm[44] and
Kalman filter for tracking[84]

(Bjerge et al., 2019)[9] HB (1) Varroa destructor mite
detection

(1) customized CNN model with infer-
ence on R-NIR-B images

(Westwańska and Respondek,
2019)[106]

HB (1) bee counting (1) U-Net, (2) ground truth generated
based on point annotations (as circles)

(Alves et al., 2020)[3] HB (1) detection and classifica-
tion of cells in the bee frame

(1) Circle Hough Transform[27] for
cells detection, (2) MobileNet[37] for
cells classification

(Dembski and Szymański,
2020)[25]

HB (1) bee detection (1) weighted clustering of bounding
box proposals

(Tausch et al., 2020)[88],
(Borlinghaus et al. 2023)[11]

HB (1) re-identification (1) triplet loss for training re-ID model
based on embeddings extracted from
ResNet-18[35] model

(Ngo et al., 2021a)[65] HB (1) bee detection and clas-
sification (into pollen and
non-pollen)

(1) YOLOv3 model[75]

(Ngo et al., 2021b)[66] HB (1) bee colony daily loss rate
forecasting, (2) anomaly de-
tection for early warning

(1) temporal CNN[47] for forecasting,
(2) Isolation Forest[53] algorithm for
anomaly detection

(Ratnayake et al., 2021a)[73],
(Ratnayake et al., 2021b)[74],
(Ratnayake et al., 2023)[72]

HB (1) bee detection and track-
ing for pollination assess-
ment, (2) bee-flower inter-
action detection

(1) hybrid approach with background
subtraction (foreground/background
segmentation) and YOLOv4[10] for
bee detection, (2) proposed Polytrack
algorithm based on multistage
processing
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(Chan et al., 2022)[20] HB (1) re-identification (1) triplet loss for training re-ID model
based on embeddings extracted from a
customized model with ResNet units,
(2) self-supervised training of re-ID
model with automatically annotated
images using tracking

(Tausch et al., 2023)[89] HB (1) bee detection, (2) pollen
loads detection, (3) pollen
colour clustering

(1) U-Net for bee detection and pollen
loads detection, (2) HDBSCAN[58] al-
gorithm for pollen colour clustering
based on images converted to LAB
colour space

(Sledević and Plonis, 2023)[83] HB (1) bee detection, (2) bee
tracking, (3) occurrence
density maps estimation

(1) YOLOv8[40] for bee detection, (2)
ByteTrack[116] for tracking, (3) maps
calculated based on bee tracks

(Baur et al., 2022)[5] MW (1) segmentation, classifica-
tion and sizing of larvae seg-
ments

(1) watershed algorithm for larvae seg-
ments segmentation, (2) MLP for seg-
ments classification

(Papadopoulos et al., 2024)[69] MW (1) larvae detection (1) YOLO-NAS[1] and YOLOv8

The articles collected in Table 1.1 for PIF and listed in the previous paragraph (for PA and
PLF) confirm that researchers have often applied ML/CV methods in the area of PIF, PA, and
PLF. Selected phenotyping problems for insect biosystems are shown in Figure 1.3.
Concentrating on the methodological part and the efficiency of the whole pipeline of devel-

opingML/CVmethods for biosystem phenotyping (from developing the dataset tomaintaining
the model during production), we can find research gaps. First of all, it should be emphasised
that the works listed involve only a selected part of the ML/CV method development pipeline,
focusing on proposing a suitable method and its evaluation under the assumption of having
a representative dataset. Researchers have omitted the problems of efficient acquisition
strategy, sample selection, labelling and maintaining high model accuracy during production.
Especially in the case of insect biosystems, these pipeline elements are particularly important.
The images acquired represent dense scenes, which results in significant sample labelling time
and longer image processing times during inference. Insect biosystems are also time-varying,
which favours a reduction in model accuracy during production caused by domain shift and
concept drift effects. In the case of the honeybee, researchers have already developed dedicated
analysis methods for selected problems, but this can not be said for the mealworm, which
is a challenging object of analysis and requires different approaches due to dense scenes.
The referenced works mainly involved phenotyping at the population level, i.e. without
focusing on the characteristics of individual specimens. The communicated research gaps
are highlighted and described in more detail in the next chapter.
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Figure 1.3: Selected phenotyping problems of insect biosystems from the literature for the
honey bee: (a) bee detection and tracking, (b) pose estimation, (c) detection of the
Varroa mite, (d) re-identification, (e) pollen loads detection and the mealworm: (f)
larval segment separation and classification.

1.3 Research Gaps
In this chapter, research gaps are pointed out and discussed.

Research Gaps:

[RG1] Methods for developing representative datasets for problems characterized
by the difficulty of obtaining valuable samples or the long time required to annotate
samples

[RG2]Methods dedicated to processing images representing dense scenes

[RG3]Methods for supervision and adaptation of machine learning models during
production
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[RG4] Methods specifically dedicated to biosystem phenotyping problems, also
taking into account domain knowledge (as opposed to off-the-shelf solutions)

[RG5]Methods to reduce solution complexity and inference time

[RG6] Phenotyping methods at the individual level

In the following paragraphs, further observed research gaps are discussed alongwith related
works.
[RG1]The problem ofweakly represented datasets is referred towhen the available samples

are not sufficient to satisfactorily reflect the variance of all potential samples for the problem
posed and thus training accurate and robust machine learning model on such a dataset is
difficult. The opposite of a weakly represented dataset is a representative dataset, which
contains a sufficient number of samples with adequate variation. In the case of phenotyping of
biosystems the problem of weakly represented datasets can be well illustrated by the example
of problems of anomaly detection or pest detection. Obtaining positive samples (samples
with an anomaly or images with a pest) for such problems is difficult. For some problems,
the frequency of occurrence of positive samples can be less than one percent. Under such
conditions, manual inspection of all samples obtained is not possible. Researchers often omit
the description of the method of developing representative datasets in articles, although this
is a crucial element for the success of the entire study. Among the partially satisfactory
solutions, one can mention the special preparation of samples with anomalies that form the
basis for the dataset. This approachwas used in [9], where bee colonies with increased parasite
infestation rates were prepared. With the described approach, the researchers make the risky
assumption that a representative dataset can be obtained using only samples obtained in the
absence of parasites and with high parasite infestation. However, it seems reasonable to
assume that the nature of the data acquired under conditions between these extremes (low
and medium infestation) may differ. It should be considered that with the described approach,
the representativeness of the final dataset is at least questionable.
An alternative approach is to rely on a small set of labelled samples and further expand

this dataset using augmentation techniques and semi-supervised methods. Augmentation
involves generating new samples based on available real samples. Semi-supervised learning
relies on the inclusion of unlabelled samples in subsequent stages of machine learning model
development, including training and maintenance using adaptation.
In the literature, in addition to standard augmentation methods related to simple image

transformations, i.e. geometric transformations (translations, rotations), change of brightness,
contrast and colour, we can also find more advanced methods, namely style transfer[70],
image generation using GAN[55] and patch-based augmentation (mosaic augmentation)[24].
The rationale for using style transfer depends on the problem. In the case of GAN, the
significant computational cost coupled with the lack of certainty of significant performance
improvement (compared to standard augmentation approaches) limits the rationality of using
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this approach for augmentation[8]. Patch-based augmentation is a valuable technique, readily
used in publicly available Python libraries such as YOLOv8[40]. In its original form, it involves
creating an orthomosaic composed of rectangular slices from the original image. In the
literature, we also find a further development of the patch-based augmentation method in the
form of generating new images based on the objects extracted from the images for instance
segmentation problems[92]. Another approach to augmentation is to simulate real scenes
and generate synthetic images based on them [4]. Based on domain knowledge, researchers
attempt to reproduce real objects, and the quality of this reproduction determines the model’s
effectiveness in real-world conditions. A limitation of simulation-based methods should
be given the high time consumption in the preparation of simulations and the problem of
domain shift between images derived from simulations and real images[60]. The augmentation
methods described are shown in Figure 1.4
Improvements in model performance using augmentation techniques are limited because

they are based on an initial set of samples and may not be sufficient in the case of a weakly
represented initial dataset. In that case, further performance improvement should be sought
in the inclusion of unlabeled image pools and semi-supervised methods in training.

Figure 1.4: Selected augmentation methods: (a) original RGB image, (b) contrast and bright-
ness modification, (c) style transfer, (d) patch-based augmentation (mosaic), (e)
generated synthetic images based on extracted objects, and (f) simulation-based.

The pseudo-label-based self-training approach[38] is one example of a semi-supervised
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approach that can be useful in the development stage of machine learning models. The
method involves determining a pseudo-label (also referred to in the literature as a noisy label
or pseudo-ground truth) as a prediction of a previously trained (so-called weak model) on
a labelled set of samples. An appropriate confidence score threshold is selected to obtain
the labels (ground truths) from the predictions associated with the confidence score. In the
literature, we also find expansions of the pseudo-labelling method mainly based on additional
methods for refinement of pseudo-labels[42]. Pseudo-labels can also be corrected using
domain knowledge. Figure 1.5 shows an idea scheme for pseudo-label-based self-training
with incorporating domain knowledge. In the context of including unlabeled samples for
model fine-tuning, the approach presented in the article [57] is also worth noting, where
an architecture with a shared backbone as an encoder and a separate branch for handling
unlabeled data was used. An additional branch was the decoder, and the multi-scale structural
similarity (MS-SSIM) proposed in [105] was used to train it.

Figure 1.5: Idea of pseudo-label-based self-training with incorporating domain knowledge.

[RG2] The problem of dense scenes occurs when there are many objects in the image,
causing significant overlapping of objects and difficulty in counting them. Dense scenes are
another problem in developing representative datasets, mainly due to the long time spent
on labelling. The pseudo-labelling method, described in the previous paragraph, can speed
up labelling. It can also be supported by manual inspection to avoid including incorrectly
determined pseudo-labels in training and further propagation of the error. In the context of
dense scenes, it is worth noting that approaches based on simplified labels, such as replacing
polygons or bounding boxes with point annotation or skeleton, significantly reduce the
annotation time investment. In [106], point annotation was used to train a U-Net model for
bee detection. We can also see a similar approach in other application areas [96, 33]. However,
it should be noted here that point annotation also has limitations. This approach is not optimal
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when it is impossible to propose a central point for an object (elongated objects such as larvae)
and when objects are frequently overlapping, as the central point may be covered. Another
issue is the problem of the adopted labelling strategy in dense scenes when there is a problem
of overlapping. The standard approach is based on labelling only the visible parts of objects.
However, for some problems, it may be required to reconstruct the area of invisible parts of
the object, which is handled by amodal segmentation[49].
[RG3] Insect biosystems are dynamic and changeable, so it must be assumed that domain

shift and concept drift effects occur during production time for the developedmachine learning
models. The domain shift effect refers to the difference in sample characteristics between the
source domain on which the model was trained and the target domain in which the model
is to operate and is being evaluated. In the case of concept drift, we refer to a continuous
change in the distribution of samples over time. The domain shift effect for the mealworm
biosystem phenotyping problem is presented in Figure 1.6. In Figure 1.6 representing the
TSNE results on the extracted deep features, we can see the separation of the grouped samples
representing different domains. The majority of work for this problem in literature is related
to domain adaptation methods (e.g. self-supervision-based[117], adversarial-based[118]). A
typical scenario is to try to adapt the model to a new dataset whose samples come from
an acquisition using a different vision system. Of course, we can also find such problems
for PIF when the model needs to be implemented in new farming conditions. This should
be treated as a one-time activity. More important from an application point of view is
the maintenance of the model during production with the detection of changes in the na-
ture of the data and the estimation of prediction uncertainty. Semi-supervised approaches,
especially self-training[42], are worth considering in the context of maintaining machine
learning models for monitoring insect biosystems. The advantage of this approach is that it is
relatively easy to incorporate domain knowledge into the adaptation procedure by proposing
a suitable pseudo-label correction method. The problem of estimating prediction uncertainty
can be solved by using model ensemble and bootstrapping, which is possible for models with
relatively low inference time. The problem of reducing model complexity was addressed in
[RG5].
[RG4] Before the widespread use of CNNs (representing automatic feature extractors)[43]

approaches based on feature engineering and classical machine learning models, i.e. SVM[23],
random forest, played a significant role in computer vision. The undoubted advantage of such
approaches was the relatively easy explainability of inference since the proposed features
were based on prior knowledge. Among the classical approaches, it is worth noting the
methods based on ontology[86]. Of course, CNNs tend to perform better than classical
approaches, assuming the development of a representative (with a sufficiently large number of
samples) dataset for model training, but automatic extractors should not be considered capable
of learning all problem-relevant patterns. Hybrid approaches, combining state-of-the-art
methods from the ML area with prior knowledge, make it possible to increase the accuracy of
the solutions being developed while increasing the explainability. The described approaches
to computer vision problems are summarised in Figure 1.7. In the literature, we find a couple
of solutions based on hybrid approaches[98, 108], but this is a much smaller number of articles
than the number of papers using off-the-shelf models in either standard form or improved[50,
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Figure 1.6: Visualization of the domain shift effect with TSNE analysis using features extracted
from the ResNet model.

91]. An important direction is problem-oriented architectures, often multi-purpose in the
form of end-to-end solutions[57, 77]. They tend to outperform benchmark approaches (e.g.,
vanilla YOLO orMask R-CNN)with reduced inference time due to not having to apply complex
architectures to specific problems.
[RG5] The preference for low-complexity solutions is related to the need to provide near

real-time inference. Recently, one can also see an increase in researchers’ interest in the
energy consumption of solutions and environmental costs[41]. The first step to reduce
complexity is to choose model architectures with as low complexity as possible, providing
acceptable performance. Popular Python libraries, i.e. YOLOv8[40] give users a choice of
architectures of varying complexity. Another approach is the knowledge transfer between
a more complex solution and a simplified one. The knowledge transfer method can take
many forms. A frequently used approach is knowledge distillation[100] e.g. teacher-student
learning[7] based on training a smaller architecture (named as a student) on the outputs
of a larger architecture (named as a teacher). We also find approaches where training of
the target architecture is performed on samples whose labels were obtained using mul-
tistage processing using classical computer vision methods[6] or automatic segmentation
methods[17] or clustering[26]. Another group of approaches are end-to-end architectures that
provide a multi-task solution within a multi-output architecture. In the context of end-to-end
architectures, three issues are worth noting, namely (a) multi-output regression models[113],
(b) extended base architectures using additional heads (branches)[15, 107], and (c) multi-task
learning[104]. For some problems, the output is a certain number of numerical indicators. Due
to the homogeneity of the outputs for these types of problems, multi-output regression models
trained using standard MSE metrics can be used. The minimized training loss then takes into
account the subsequent MSE metrics associated with the subsequent problems taken. In the
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Figure 1.7: Selected approaches to computer vision problems: (1) feature engineering and
classical machine learning models, (2) feature extractors (e.g., CNN-based), and (3)
hybrid approaches (feature extractors and incorporation of domain knowledge).

case of multi-task learning, the output is heterogeneous, so for example, we need to determine
a numerical indicator (regression task), bounding boxes (object detection task) and a mask
(semantic segmentation task). The challenge with multi-task learning is to propose a suitable
loss for training combining the defined tasks. A very important and useful approach is to
extend standard architectures, i.e. Faster R-CNN[15] or YOLO[107] with new heads (branches)
for new tasks. The new heads can then be trained separately or in multi-task learning mode.
The types of end-to-end architectures discussed are presented in Figure 1.8
[RG6] For insect biosystem phenotyping problems, the dominant approach is to calculate

indices that characterize the entire population, which in most cases is a reasonable approach,
considering dense scenes. An example of population-level phenotyping is counting all bees
entering and exiting the hive at the entrance to the hive[65]. In the case of individualized
phenotyping, we would analyze the entrances and exits of specific bees with IDs from the
hive. In the case described, individualized phenotyping based on images is very difficult
to implement due to the high similarity between individuals and the tens of thousands of
individuals in the colony. Similar studies are carried out using RFID tags[31]. Another example
with a comparison of phenotyping at the individual and population level on the example of
the mealworm is shown in Figure 1.9.
We can also find problems for which phenotyping at the level of individuals is crucial, e.g.

selective breeding studies[61], where the usefulness of individuals for further reproduction
is assessed. For long-term phenotyping, re-identification of individuals is needed, which
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Figure 1.8: Types of end-to-end architectures: (a) multi-output regressionmodels, (b) extended
base architectures using additional heads, and (c) multi-task architecture.

Figure 1.9: Comparison of phenotyping at the level of: (1) population, and (2) individuals for
the mealworm beetles.

makes it possible to identify the same individuals on different frames and link relevant
dynamic behavioural patterns to them. In the literature, we find the first works related to
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the re-identification of insects[62, 11, 20]. However, they should be considered as preliminary
studies since (1) they are not set in the context of specific application problems and (2) for the
selected works[62], the chosen methods of validation under partially laboratory conditions
are not sufficient to conclude that re-identification under real conditions will be effective.
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1.4 Research Hypothesis and Objectives
Considering the state of current knowledge alongwith the identified research gaps, we defined
the following research hypothesis and objectives.

Research Hypothesis:

Machine learning methods using synthetic images, semi-supervised learning,
knowledge transfer and end-to-end architectures enable the development of ded-
icated models for phenotyping insect biosystems that are more efficient, easier to
develop and maintain and characterized by shorter inference times than currently
used machine learning methods.

Research Objectives:

[O1] Development of method enabling faster development of machine learning
methods for phenotyping insect biosystems, involving synthetic image generation
and semi-supervised learning (pseudo-labeling)

[O2] Development of method enabling more efficient maintenance during the pro-
duction of machine learning methods for phenotyping insect biosystems, involving
detecting domain shift (or concept drift) effect and adaptation technique

[O3] Development of method enabling reduction of complexity (inference time)
of machine learning methods for phenotyping insect biosystems, involving knowl-
edge transfer and end-to-end model

[O4] Development of method enabling the incorporation of domain knowledge
(a priori) in the development, maintenance, and inference of machine learning
methods for phenotyping insect biosystems

[O5] Development of method enabling phenotyping insect biosystems at the level
of individuals (rather than population), involving re-identification and detection of
behavioural patterns
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CHAPTER 2
Results Summary

This chapter presents a summary of the most important achievements for the dissertation,
i.e. a list of publications, listed other important achievements, and providing justifications for
achieving the set research objectives.

2.1 Publications
The doctoral dissertation consists of the following seven articles (six published or accepted for
publication and one under review):

[A1] Majewski, P., Zapotoczny, P., Lampa, P., Burduk, R., & Reiner, J. (2022).
Multipurpose monitoring system for edible insect breeding based on machine
learning. Scientific Reports, 12(1), 7892.

DOI: 10.1038/s41598-022-11794-5
Publication status: published

[A2] Majewski, P., Lampa, P., Burduk, R., & Reiner, J. (2023). Prediction of
the remaining time of the foraging activity of honey bees using spatio-temporal
correction and periodic model re-fitting. Computers and Electronics in Agriculture,
205, 107596.

DOI: 10.1016/j.compag.2022.107596
Publication status: published
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[A3] Majewski, P., Mrzygłód, M., Lampa, P., Burduk, R., & Reiner, J. (2024).
Monitoring the growth of insect larvae using a regression convolutional
neural network and knowledge transfer. Engineering Applications of Artificial
Intelligence, 127, 107358.

DOI: 10.1016/j.engappai.2023.107358
Publication status: published

[A4] Majewski., P., Lampa., P., Burduk., R., & Reiner., J. (2023). Mixing
Augmentation and Knowledge-Based Techniques in Unsupervised Domain
Adaptation for Segmentation of Edible Insect States. Proceedings of the 18th
International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP,
380–387.

DOI: 10.5220/0011603500003417
Publication status: published

[A5] Majewski, P., Lampa, P., Burduk, R., & Reiner, J. (2024). Improved Pest
Detection in Insect Larvae Rearing with Pseudo-Labelling and Spatio-Temporal
Masking. Proceedings of the 19th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications - Volume 2:
VISAPP, 349–356.

DOI: 10.5220/0012311300003660
Publication status: published

[A6] Majewski, P., Lampa, P., Burduk, R., & Reiner, J. (2024). End-to-end Solution
for Tenebrio Molitor Rearing Monitoring with Uncertainty Estimation and Domain
Shift Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 5498-5507).

Publication status: accepted for publication as CVPR (Conference on Computer
Vision and Pattern Recognition) 2024 workshop paper

[A7]Majewski, P., Lampa, P., Burduk, R., Reiner, J., & Lin, T.T. (2024). Phenotyping
with dynamic characteristics determination for TenebrioMolitor beetles in selective
breeding using re-identification.
Publication status: submitted to Engineering Applications of Artificial Intelligence

Other details regarding the listed publications were presented in Chapter 4.
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2.2 Other Important Achievements
In this chapter, I also wanted to list other articles that I did not include directly in the
dissertation:

[A8.supp] Majewski., P., & Reiner., J. (2022). Hybrid Method for Rapid Development
of Efficient and Robust Models for In-row Crop Segmentation. Proceedings of the 17th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP, 274–281.

DOI: 10.5220/0010775400003124
Publication status: published

[A9.supp] Marciniak., K., Majewski., P., & Reiner., J. (2024). Estimation of the Inference
Quality of Machine Learning Models for Cutting Tools Inspection. Proceedings of
the 19th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 3: VISAPP, 359–366.

DOI: 10.5220/0012321900003660
Publication status: published

During the realization of my PhD, I also had other achievements that I would like to mention
to characterize my multifaceted scientific activity:

(1) research internship at the Biophotonics and Bioimaging Laboratory at the National
Taiwan University under the supervision of Professor Ta-Te Lin (four months, 08.2023 -
11.2023),

(2) research leader in the project ’Automatic mealworm breeding system with the devel-
opment of feeding technology’ (NCBiR, grant POIR.01.01.01-00-0903/20, 01.04.2021 -
31.05.2023),

(3) cooperation with Tenebria (Lubawa, Poland) company within the project ’Automatic
rearing system Tenebrio molitor with the development of feeding technology’,

(4) patent application ’Method of monitoring the rearing of edible insects’ (20% contribu-
tion, submitted 08.2023),

(5) machine learning and computer vision specialist in four R&D projects carried out at the
Wrocław University of Science and Technology,

(6) preparation of project proposals for national (NCN Preludium, NCBiR) and European
(Horizon) contests,

(7) one oral and four poster presentations at international conferences (CVPR, VISIGRAPP,
ECPA),

(8) five oral and one poster presentations at national conferences,
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(9) scholarship of the president of Wroclaw for multidisciplinary research (12.2023),

(10) reviewer for the journals: Insects (ISSN 2075-4450), Remote Sensing (ISSN 2072-4292).
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2.3 Achieving Research Objectives
The purpose of this chapter is to confirm the achievement of the research objectives in the
context of the publications on which the dissertation is based. For each research objective,
relevant publications are identified and the contribution of the publications to the research
objective is described.

[O1]Development ofmethod enabling faster development ofmachine learningmethods
for phenotyping insect biosystems, involving synthetic image generation and semi-
supervised learning (pseudo-labeling)

Relevant publications: A1, A3, A4, A5, A6, A7
Description:
In article [A1] I proposed a method for generating synthetic images based on pools of

objects from different classes. The method developed consisted of placing successive ob-
jects on the background image and determining the ground truth at the end of the image
generation process for instance segmentation (Mask R-CNN) and semantic segmentation
(U-Net) tasks. Object pools could be completed by extracting objects from images based on
manual annotations (this approach was used in [A1] and [A3]) or automatically (specially
prepared samples with separated individuals and classical image processing methods for
background removal, and filtering). It was confirmed that using only synthetic images
during training of instance segmentation and semantic segmentation models makes it possible
to obtain models with satisfactory accuracy, meeting the requirements of the monitoring
system of mealworm rearing. Using synthetic images enabled significantly reduce model
development time by avoiding the need for full labelling of images representing dense scenes.
The annotator could select only the most important objects to annotate in the image. The
proposed method of generating synthetic images allows to control of the density of objects in
the image and their degree of coverage, resulting in the ability to simulate real dense scenes
and reduce the problem of imbalance in the number of objects from certain classes. The
described pool-based 2D synthetic image generation method is presented in Figure 2.1. As
a distinctive characteristic (novelty) of our method of generating synthetic images from other
works[92, 30], the assumption of multi-class (eight classes in the version shown in Figure 2.1)
and multi-task (instance segmentation and semantic segmentation) should be emphasized.
The article [A4], in an additional experiment, checked the loss of accuracy when training

an instance segmentation model (classes live larva, dead larva, pupa) only on synthetic images
in comparison to training the model only on real images and on a mix of synthetic and
real images. The analysis was performed for in-domain and out-domain inference (after
applying the proposed domain adaptation method). A significant difference was observed in
the accuracy of the models, especially for in-domain inference, comparing different strategies
for developing the training set. The main conclusion of this experiment was the need to
consider using a model training strategy on a mix of synthetic and real images when time
is available for labelling real images representing dense scenes. The strategy of training the
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Figure 2.1: The pool-based 2D synthetic image generation method [A1].

model on a mix of synthetic and real images made it possible to increase the AP50 for object
detection from 73.9 to 85.2 (for in-domain inference) and from 67.4 to 71.8 (for out-domain
inference), comparedwith the results for the strategy of training themodel on synthetic images
only.
In article [A3] I proposed a 3-stage approach for developing an instance segmentation

model for larvae. The developed method used the generated synthetic images to train an
instance segmentation model for mealworm larvae in the first and second stages of the
proposed method for developing an instance segmentation model. In the third stage, it
was proposed to train the model on a set of samples consisting of synthetic images (with
automatically generated ground truth) and real images (ground truth were pseudo-labels, i.e.
inference results of the previously trained instance segmentationmodel at a certain confidence
score threshold). The proposed three-stage method of developing the instance segmentation
model made it possible to increase the AP50 from 75.0 (after stage one, training on synthetic
images only) to 79.2 (after stage three, training on a mix of synthetic and real images). The
developed method addressed the problem in the article [A4], where the problem of noticeably
lower segmentation/detection performance was observed when labelled real images were not
included in the training set. With the proposed method, a compromise was reached - real
samples are included in the training set but labelled automatically based on the prediction
of the model trained on the set of synthetic images. The described approach to developing
instance segmentation models is illustrated in Figure 2.2. The originality of the proposed
approach lies in combining the concept of generating synthetic images with pseudo-labelling
in the successive stages of developing the instance segmentation model. The main advantage
of this approach is the possibility of avoiding manual labelling entirely when the prepared
samples (containing separated objects) allow the initial pool of objects to be automatically
filled in.
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Figure 2.2: The 3-stage approach for developing an instance segmentation model for larvae
[A3].

In article [A5] I proposed an improved method for developing a model for object detection
(specifically for pest detection) with the problem of weakly represented datasets. The problem
assumed having a small set of labelled images at the beginning (less than 100 labelled pests) and
a much larger set of unlabeled images. Due to the low probability of pests in an image, even
typing images for manual labelling was problematic. The proposed method first developed
a small set of labelled samples using images of specially prepared rearing boxes (boxes with
the pest without a pest control strategy). An initial pest detection model was then trained
on the small set of labelled samples. The training was then repeated on a set consisting of
images with true labels (the initial small set) and with pseudo-labels (the inference results
of the initial detection model at a specified confidence score threshold). Pseudo-labels were
determined for images from a set of unlabeled samples. The model obtained in this way was
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used to type infected rearing boxes for further labelling and expand the set of labelled samples.
It was confirmed that pseudo-labelling positively affected detection performance at different
sizes of the initial set of labelled samples (more significant effect at smaller sizes). In the
end, a representative set of samples for pest detection was obtained, and the possibility of
using the described semi-supervised techniques to significantly accelerate the development
of representative training sets of samples was confirmed. The final developed models were
characterized by an F1-score of 68.6 (for inference at low/moderate pest infestation) and 82.6
(for inference at high pest infestation), with the following F1-scores for the initial detection
models: 45.2 (low/moderate pest infestation) and 63.3 (high pest infestation), which is a
significant improvement in detection performance. The improved method for developing an
object detection model with weakly represented datasets is described in Algorithm 1.

Algorithm 1
Improved method for developing object detection model with weakly represented datasets
Input: set of labelled images S ∈ {s1,s2, ...,sn}
set of unlabelled images U ∈ {u1,u2, ...,um}
confidence score threshold csthresh
number of detected objects threshold nthresh
Output: object detection model trained on extended labelled dataset

1: train model on S
2: predict bounding boxes for images from U
3: filter out bounding boxes with cs < csthresh
4: filter out bounding boxes with domain knowledge-based rules (optional)
5: re-train model on S and U∗ (with pseudo-labels)
6: repeat steps 2-4 with re-trained model
7: count number of detected objects nu for images from U
8: select images from U for which nu > nthresh
9: label selected images from U
10: re-train model on S and U∗∗ (with true labels)

The main advantage of the proposed procedure in Algorithm 1 is the possibility to obtain
relevant samples from a large amount of acquired data (e.g. from data streams), assuming a
relatively low probability of a positive sample in the image.
In the article [A6], using the advantages of the proposed end-to-end architecture, I proposed

a labelling strategy based on small sets of labelled samples developed for each of the defined
tasks separately, e.g., a separate dataset was developed for the determination of the image
coverage coefficient of the chitin, where only the chitin moults were annotated. With this
approach, the most valuable images from the point of view of the problem being undertaken
were selected, ensuring image diversity. The proposed approach eliminated the need to
perform a complete annotation of the images (taking into account all tasks), thus reducing
the overall time required for labelling.
In the article [A7] I proposed methods to efficiently develop a re-identification model of
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mealworm beetles for individual phenotyping. Training sets of samples for re-identification
were completed automatically (without manual labelling) by proposing a training stage in
which individuals were isolated in stations while allowed to move around. During the training
stage, images representing different views of the same beetle were collected. The presented
acquisition procedure for the re-identification model is shown in Figure 2.3. The novelty of
the proposed solution lies in providing high-quality input data (varied with true labels) for
training the re-identification model by proposing an optimal sample acquisition strategy. The
proposed approach offers the possibility of obtaining a much more diverse training dataset
than augmentation-based dataset expansion methods.

Figure 2.3: The data acquisition procedure for the re-identification model development: (a)
division into training and testing stages, and (b) image processing pipeline [A7].

When individuals were highly mobile, the efficiency of the data acquisition procedure was
higher. To increase the efficiency of phenotyping in the testing stage, a method for the initial
selection of individuals for the testing stage was also proposed, favouring those individuals
for which re-identification in the testing stage was expected to be easier. A custom metric was
used to rank individuals, considering the ease of re-identification on the validation set and the
variety of acquired views during the training stage. The effectiveness of the proposed method
of initial selection of individuals was quantitatively confirmed. The method for calculating
hybridmetrics to rank individuals for re-identification is described inAlgorithm 2. The novelty
in the proposed procedure in Algorithm 2 is the inclusion of sample variation in the training set
in calculating the metric. To calculate the variation of samples in the training set, I proposed
an original method based on SSIM coefficients.
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For the mating pattern detection problem, a method of expanding the training set with
additional synthetic images was also proposed, achieving an improvement in AP50 detection
accuracy from 77.4 to 83.5.

Algorithm 2
Method for calculating hybrid metric to rank individuals for re-identification
Input: sequence of acquired images for chosen individual S = {s1,s2, ...,sn}
k - number of folds in cross-validation
α - coefficient determining the influence of cross-validation results on the rank score
β - coefficient determining the influence of sample variety on the rank score
SSIMthresh - threshold value of SSIM to consider a change as relevant
mthresh

ReID - parameter normalising the selected metric for re-identification
a - parameter normalising the number of relevant samples
Output: rank score for each chosen individual

1: divide S into k equal-sized parts ▷ part related to cross-validation
2: metric_values=[], j=1
3: while j <= k do
4: train model on parts with ids ̸= j
5: test model on j-th part and calculate metric
6: metric_values += metric
7: j+=1
8: end while
9: coe f f1 = (mean(metric_values) - mthresh

ReID ) / (1 - mthresh
ReID )

10:
11: nrelevant = 0 ▷ part related to sample variety determination
12: i=1
13: while i < n do ▷ analyse all neighbouring pairs
14: if SSIM(si,si+1) < SSIMthresh then
15: nrelevant+=1
16: end if
17: i+=1
18: end while
19: coe f f2 = (1− exp(−nrelevant/a))
20:
21: rank_score=coe f f1

αcoe f f β
2

26



2.3 Achieving Research Objectives

[O2] Development of method enabling more efficient maintenance during the pro-
duction of machine learning methods for phenotyping insect biosystems, involving
detecting domain shift (or concept drift) effect and adaptation technique

Relevant publications: A2, A4, A6, A7
Description:
In article [A2] I addressed the problem of adapting a regression model to changes in the

nature of the data during the beekeeping season. The task posed was to predict the time
remaining to the end of the bees’ daily foraging activity based on changes in the number of
bees at the entrance to the hive and other indicators (time to sunset, environmental indicators).
The approach was to periodically (once a day) re-fit the regression model using automatically
pre-determined pseudo-target values. A spatio-temporal correction method based on domain
knowledge (described in more detail in the description for the research objective [O5]) was
used to increase the accuracy of determining pseudo-target values. The proposed periodic
model re-fitting with the spatio-temporal correction method enabled a significant reduction
in the RMSE prediction error compared to the reference method in the two beekeeping seasons
considered (reduction from 52.5 min to 23.1 min in the 2021 season and from 71.2 min to 26.5
min in the 2022 season). The results obtained were also not significantly different from the
upper baseline, that is, the results with periodic re-fitting of the model using the true target
values (RMSE values of 18.5 min for the 2021 season and 27.0 min for the 2022 season). The
proposed solution for predicting the time remaining to the end of the bees’ daily foraging
activity is shown in Figure 2.4.
In article [A4] I proposed a two-stage method for adapting an instance segmentation model

(live larva, dead larva, pupa) to a new domain. The domain in the research conducted was
related to a different vision system (different camera, lighting). The first stage of the proposed
method was based on performing augmentation of objects in the pool, generating synthetic
images and training the model on a set containing the generated synthetic images and real
images from the source domain. The second stage was based on developing the object pool
for the target domain and repeating the synthetic data generation and training procedure. The
initial completion of the object pool for the second stage was based on the model predictions
from the first stage. This was followed by knowledge-based filtering of the objects in the pool
(this approach is described in more detail in the description for the research objective [04]).
Model training in stage two was carried out on a set consisting of generated synthetic images
based on objects from the source domain, generated synthetic images based on objects from
the target domain and real images from the source domain. The proposed two-stage domain
adaptation method allowed an increase in the accuracy of the model from AP50 58.4 (without
adaptation for out-domain inference) to 62.9 (after the first stage) and to 71.8 (after the second
stage). The procedure for developing a two-stage domain adaptation method is additionally
presented in Algorithm 3. The novelty of the proposed domain adaptation method is that it
is based on the generation of synthetic images using developed pools of objects that can be
easily modified using domain knowledge.
In paper [A6], with the proposed condensed end-to-end model architecture and limited

inference time, I proposed to perform inference in model ensemble mode. Bootstrapping
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Figure 2.4: The proposed solution for predicting the time remaining to the end of the bees’
daily foraging activity [A2].

was used to determine the training sets for the single models in the ensemble. Based on the
standard deviation of the prediction in the model ensemble, the uncertainty of the prediction
was determined, whichwas used in further steps to detect the domain shift effect. The domains
proposed in the article [A4] were used for the study. Finally, the proposedmethod for detecting
the domain shift effect based on averaged values of prediction uncertainty (from 10 samples)
was characterized by an accuracy of F1-score > 0.94.
In article [A7] I addressed the domain adaptation problem in the context of the re-identification

of mealworm beetles. The observed domain shift effect was related to the change in the
character of the recorded images between the training and testing stages of the proposed phe-
notyping procedure. The proposed method involved re-training the re-identification model
on a set containing samples from the training stage (with true labels) and samples from the
testing stage (with pseudo labels determined by the prediction of the initial re-identification
model and the confidence score threshold). The proposed domain adaptation method for the
re-identification model made it possible to increase precision-1 from 0.807 to 0.853.
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Algorithm 3
Method for adapting instance segmentation model to new domain with synthetic images
Input: set of labeled real images from source domain Sreal = {s1,s2, ...,sn}
set of unlabeled real images from target domain Treal = {t1, t2, ..., tm}
confidence score threshold csthresh
Output: instance segmentation model after 2. stage

▷ 1. stage of domain adaptation procedure
extract objects from images in Sreal determining pool of objects from source-domain Psource
augment objects from Psource determining P∗

source (object pool with augmented objects)
generate synthetic images using P∗

source determining set of synthetic images Ssyn
train model on Sreal and Ssyn

▷ 2. stage of domain adaptation procedure
predict labels (masks) for images from Treal using model from stage 1. and csthresh
extract objects from images in Treal using predicted masks determining pool of objects from
target-domain Ptarget
filter out objects from Ptarget using knowledge-based rules obtaining P∗

target
augment objects from P∗

target determining P∗∗
target (object pool with augmented objects)

generate synthetic images using P∗∗
target determining set of synthetic images Tsyn

train model on Sreal , Ssyn and Tsyn

[O3] Development of method enabling reduction of complexity (inference time) of
machine learning methods for phenotyping insect biosystems, involving knowledge
transfer and end-to-end model

Relevant publications: A3, A6
Description:
In article [A3] I proposed a method for determining size indices of mealworm larvae (lower

quartile, median, upper quartile of larval width) using a regression convolutional neural
network (RegCNN). The developed solution addressed the problem of a time-consuming
reference approach based on multistage processing using classical computer vision methods.
The proposed approach made it possible to reduce the inference time per breeding box from
10.9 s to 0.3 s while maintaining a relatively small error in determining the size indices of
larvae (R2 = 0.870). In developing RegCNN, the standard procedure of manual labelling
of samples was omitted through synthetic data generation (described in more detail for the
research objective [O1]) and knowledge transfer. The knowledge transfer consisted of training
RegCNN using the outputs obtained from the multistage processing using classical computer
vision methods. It was confirmed that during knowledge transfer, the loss of accuracy was
relatively small and acceptable from the point of view of the considered problem (the reference
value of R2 was 0.927). The knowledge transfer method with the proposed pseudo-targets
correction is shown in Figure 2.5. In the approach presented in Figure 2.5, the pseudo-targets
correction method should be indicated as the main novelty. The correction was motivated
by the different proportions of correct detections for objects of different sizes in images
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representing dense scenes.

Figure 2.5: The knowledge transfer method: (a) correction factor determination for width
quartiles calculation, (b) multistage phenotyping for selected samples, and (c)
training of a regression convolutional neural network using knowledge transfer
[A3].

In article [A6] I developed an end-to-end model for calculating multiple indices that char-
acterize the current state of mealworm rearing (counts of specific growth stages, anomalies,
image coverage coefficients of chitinous moults and feed, and size indices). The proposed
solution made it possible to replace multiple modules related to a specific task and a separate
model (the approach used in the article [A1]) with a single condensed architecture, which
significantly reduced the complexity of the solution and, at the same time, the inference time
and ease of maintaining the model during production. Each head, based on embeddings
extracted from a specific layer of the YOLOv8n model, predicted the value of the chosen
indicator using a previously trained classical regression machine learning model (such as
linear regression, and gradient boosting regression). The described multi-task end-to-end
model is shown in Figure 2.6. The distinguishing characteristic (novelty) of the proposed
end-to-end architecture is its versatility and ease of extension, as it can be applied to any
problem that can be reduced to a finite number of object detection and regression problems.
Another highlight is that the proposed architecture allows separate training of individual
heads on problem-oriented datasets, as described in more detail in the description to the
research objective [O1].
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Figure 2.6: The end-to-end architecture with proposed additional heads: feed coverage esti-
mation head, chitin coverage estimation head, and phenotyping head [A6].

[O4] Development of method enabling the incorporation of domain knowledge (a
priori) in the development, maintenance, and inference of machine learning methods
for phenotyping insect biosystems

Relevant publications: A2, A4, A5
Description:
The issue of incorporating domain knowledge in the articles [A2, A4, A5] was addressed

in the context of various problems, namely improving the development, maintenance and
inference of machine learning models.
In paper [A5] I used domain knowledge to improve the inference accuracy of pest detection

models. With the knowledge of the pest’s higher mobility compared to the mealworm, a
spatio-temporal masking method was proposed. Spatio-temporal masking was based on
isolating an area in the image where the probability of finding the pest was highest. The
determined activity maps after thresholding were used to determine the mask. The activity
maps were calculated using the Gunnar Farneback optical flow algorithm. It was shown
that under conditions of low/moderate pest infestation in the rearing box (the most common
conditions), the proposed approach increased the accuracy of pest detection F1-score from 61.7
to 66.6 (with the number of samples in the training/validation set of 631). The improvement
was also observed with fewer samples in the training/validation set.
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In article [A4], I used domain knowledge in the second stage of the proposed method for
domain adaptation for the detection model of three states of the mealworm: live larva, dead
larva and pupa. Using assumptions based on domain knowledge, filtering objects in the object
pool for generating synthetic images was done. The following assumptions were used: (1) the
live larva is the majority class (the number of objects from the live larva class in the images
is the highest), (2) objects from the live larva and dead larva classes are longer than objects
from the pupa class (length is defined here as the length of the longer side of the bounding
box), (3) objects from the pupa class have the highest averaged pixel intensity among the
considered classes, and (4) objects from the dead larva class have the lowest averaged pixel
intensity among the considered classes. The proposed filtering strategy made it possible to
remove many falsely classified objects from the target domain from the pool of objects for
generating synthetic images. The second stage of themethod for domain adaptation (including
knowledge-based filtering) made it possible to increase the accuracy of the detection model
from AP50 62.9 to 71.8 (results for inference in the target domain).
In article [A2] I used domain knowledge in a spatio-temporal correction method to more

accurately determine pseudo-targets for periodic model re-fitting. The observed behavioural
patterns of bees (ventilating the hive, cleaning the hive by detecting immobile dead individu-
als) at the entrance to the hivemade it very difficult to determine the time of the end of the bees’
daily flight. The correction introduced was based on assigning smaller weights to bees whose
position did not change between recorded frames (this pattern was related to the described
behavioural patterns) when counting. In the description for the research objective [O2],
quantitative improvement in model performance was shown when using spatio-temporal
correction and periodic model re-fitting methods.

[O5] Development of method enabling phenotyping insect biosystems at the level
of individuals (rather than population), involving re-identification and detection of
behavioural patterns

Relevant publications: A7
Description:
In paper [A7] I proposed a method for the re-identification of Tenebrio molitor beetles

based on fine-tuned feature extractors pre-trained on ImageNet and metric learning. The
pattern of mating behaviour was detected using the YOLOv8 object detection model. The
article [A7] confirmed that re-identification of Tenebrio molitor beetles is possible with high
accuracy based only on the appearance of the beetles’ abdomen (without additional markers).
Precision-1 metric values of 0.853 (after applying domain adaptation) were achieved with 80
analyzed individuals. The hard validationwas based on physical markers placed on the beetles’
heads, which ensured the experiment’s reliability. After ablation studies, it was shown that
features related to colour mainly enabled re-identification. Texture and shape features were
not sufficient to perform re-identification with high accuracy. The paper [A7] also showed
that detecting behavioural patterns, i.e., mating is possible with relatively high accuracy with
a small set of labelled samples. AP50 values for detection of 0.835 were achieved (after
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2.3 Achieving Research Objectives

using additional synthetic images) with a total number of labelled samples in the dataset of
173. Other relevant parts related to developing models for the re-identification of individuals
described in the article [A7] are included in the research objectives O1 and O2 descriptions.
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CHAPTER 3
Conclusion and Future Work

The dissertation proposed many methods for rapid development, efficient maintenance, adap-
tation, and reducing the complexity of machine learning models for phenotyping insect
biosystems. Moreover, the proposed techniques for integrating domain knowledge and re-
identification underscored the feasibility of developing dedicated models for phenotyping
insect biosystems. The generated synthetic images confirmed their usefulness for rapid model
development and were also used in the original domain adaptation method. Methods based on
semi-supervised learning enabled the effective use of unlabelled samples in model training and
maintenance through pseudo-label-based self-training. The importance of semi-supervised
learning was particularly significant in the problem of weakly represented datasets. Knowl-
edge transfer, enabling end-to-end model training on the predictions of methods based on
multistage image processing, was very useful in reducing the complexity and inference time
of the developed solutions. The developed re-identification techniques and the individual
phenotyping procedure provide new insights into the problem of insect biosystem analysis,
opening up a wide area for research.
In summary, the research carried out, as part of the dissertation, confirmed the research

hypothesis set out, i.e. machine learning methods using synthetic images, semi-supervised
learning, knowledge transfer and end-to-end architectures enable the development of dedi-
cated models for phenotyping insect biosystems that are more efficient, easier to develop and
maintain and characterized by shorter inference times than currently used machine learning
methods. All set research objectives (O1-O5) were met and defined research gaps (RG1 - RG6)
were filled.
The most interesting direction for future work is to focus on individualized phenotyping

with the detection of insect behavioural patterns based on interactions. Approaches based
on graph neural networks may allow the description of complex interactions between indi-
viduals and their behaviour in the studied biosystems, making it possible to determine their
welfare. Also, the problem of extracting knowledge about insect (animal) biosystems from
large amounts of unlabeled data with the development of semi-supervised and unsupervised
methods is still open.
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CHAPTER 4
Publications

This chapter presents the articles that were included in the dissertation. Six articles were
published or accepted for publication. One article is under review. The PhD candidate’s
contribution to each article was characterized in detail.

4.1 Multipurpose monitoring system for edible insect
breeding based on machine learning

Authors: Paweł Majewski, Piotr Zapotoczny, Piotr Lampa, Robert Burduk, and Jacek Reiner
Publication status: published

Type of publication: journal paper
Journal/Conference: Scientific Reports (IF=4.6)
MEiN points: 140

Lead Author: Yes
Corresponding Author: Yes
Percentage contribution: 60%
CRediT: Conceptualisation, Methodology, Sofware, Validation, Formal analysis, Investiga-
tion, Data curation, Visualization, Writing–original draft preparation, Writing–review and
editing
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Multipurpose monitoring system 
for edible insect breeding based 
on machine learning
Paweł Majewski1*, Piotr Zapotoczny2, Piotr Lampa3, Robert Burduk1 & Jacek Reiner3

The Tenebrio molitor has become the first insect added to the catalogue of novel foods by the 
European Food Safety Authority due to its rich nutritional value and the low carbon footprint produced 
during its breeding. The large scale of Tenebrio molitor breeding makes automation of the process, 
which is supported by a monitoring system, essential. Present research involves the development of a 
3-module system for monitoring Tenebrio molitor breeding. The instance segmentation module (ISM) 
detected individual growth stages (larvae, pupae, beetles) of Tenebrio molitor, and also identified 
anomalies: dead larvae and pests. The semantic segmentation module (SSM) extracted feed, chitin, 
and frass from the obtained image. The larvae phenotyping module (LPM) calculated features for 
both individual larvae (length, curvature, mass, division into segments, and their classification) and 
the whole population (length distribution). The modules were developed using machine learning 
models (Mask R-CNN, U-Net, LDA), and were validated on different samples of real data. Synthetic 
image generation using a collection of labelled objects was used, which significantly reduced the 
development time of the models and reduced the problems of dense scenes and the imbalance of the 
considered classes. The obtained results (average F1 > 0.88 for ISM and average F1 > 0.95 for SSM) 
confirm the great potential of the proposed system.

The current problems of feeding an ever-increasing human population involve meeting the demand for animal 
protein without the environmental costs associated with animal husbandry. Preference is given to livestock 
systems that use less water, minimise space and reduce greenhouse gas emissions. The United Nations (UN) 
predicts that human protein consumption will reach 39 grams per day in 2030, and 57 grams in 20501. The solu-
tion to this problem may be industrial insect breeding with minimised human labour and high stocking rates 
per unit building area. This is important, because in recent years, according to the recommendations of good 
husbandry practices, there has been an aim to reduce the stocking density per 1 m2 of building area of the main 
livestock species such as cattle, pigs and poultry. Moreover, we have also observed huge problems with African 
swine fever (ASF) and Avian influenza (AI), causing many livestock buildings to close with no idea of how to then 
use them. One alternative for their reuse could be intensive breeding of insects for food and feed2. According to 
the International Platform of Insects for Food and Feed (IPIFF), within the next 10 years the insect sector will 
become an integral part of the European agri-food chain. It is forecast that 1 in 10 fish consumed in the European 
Union (EU) will come from fish farms that use insect protein in their feed, 1 in 4 eggs consumed in Europe will 
come from insect-fed laying hens, 1 in 5 servings of chicken meat will come from insect-fed broilers, and 1 in 
100 servings of pork will come from insect-fed pigs.

Insects are the most numerous group of known animal species, and they are the most important element of 
the ecosystem2. They are a valuable source of protein for many animal species and for people living in Africa, Asia 
or South America. Of the millions of insect species, more than 2000 are recognised as being edible. In Europe, 
there is no tradition of eating insects as a protein substitute. For now, most are bred only as protein and fat sup-
plements to feed other animals. This is possible because the EU has approved insect protein for the production 
of feed for fish, poultry and pigs. Additionally, in 2021, after many studies, the European Food Safety Authority 
showed that Tenebrio molitor larvae are a rich source of protein, fat and fiber, and included it in the catalogue 
of novel foods. Thus, whole or powdered dried larvae can be an ingredient in pasta, cookies, and other food 
products. However, for such breeding to be profitable, industrial production technologies for selected insect 
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species, such as Tenebrio molitor, must be developed in order to provide a standardised and cost-competitive 
product to the market.

Tenebrio molitor is a beetle from the Darkling beetles (Tenebrionidae) family. Adults have an elongated body 
measuring 12–18 mm in length. In the life cycle of Tenebrio molitor, the following can be distinguished: eggs, 
larvae, pupae and beetles. The larvae transform into a pupae in 45–60 days after 7–9 moult cycles, and the pupae 
transform into beetles after 5 next days3.

Industrial livestock production technology involves fully automating almost all animal handling operations 
through robots supervised by vision systems and a set of sensors associated with a production management 
module. If industrial breeding of Tenebrio molitor is to be profitable, individual breeding processes should also 
be automated. Its breeding systems currently involve keeping a certain number of larvae in boxes that are stacked 
on racks at several or more levels. Most of the work performed is manual and labour intensive. Today, with the 
exception of a few very large operators that are capable of producing several thousand tons of insects, the vast 
majority of insect farms are startups and small or medium-sized companies with little or no automation in their 
production systems. Keeping in mind the recommendation for breeding4, the activities in the production of 
Tenebrio molitor are: (i) feeding, (ii) wetting of larvae, (iii) sorting of larvae into size classes, (iv) harvesting of 
chitinous moult, (v) final harvesting of larvae and the separation of them from impurities. In order to control 
the ongoing effects of breeding, it is necessary to measure: (1) biomass gains, (2) the amount of chitinous moult, 
(3) the amount of dead larvae, (4) the amount of consumed feed, (5) the amount of possible pests (Alphitobius 
diaperinus), and (6) the number of individuals after transformation to pupae or beetles. In view of the require-
ments, fully automating production is not something that is easy. The basis of farm automation can be a vision 
system based on RGB cameras, or cameras outside the visible range (UV, IR). However, the problem is not with 
the hardware, but with the software. While the availability of cameras is very high, there is a lack of information 
in literature on the algorithms that can identify even the basic parameters of Tenebrio molitor breeding. This 
problem is difficult to solve because the objects to be identified overlap, and the colour or texture of each instance 
is very similar to each other.

Image analysis methods have more and more applications in precision agriculture. They are commonly used 
to assess the quality of raw materials and food products5. There is also research using vision systems and soil 
worms to assess drug effects. Digital fluorescence images of Caenorhabditis elegans worms were captured with a 
CCD camera, and the lymph flow through the worms’ bodies was determined based on the developed algorithms 
(Migliozzi et al., 2019)6. Tao et al.7 presented the results of identifying the sex of silkworm pupae using vision 
systems based on hyperspectral cameras. They used the successive projections algorithm (SPA) for variable 
selection8, gray-level co-occurrence matrix (GLCM)9analysis, and support vector machines (SVM)10 and radial 
basis function neural network (RBF-NN) models to achieve more than 98% accuracy in identifying the sex of 
silkworm pupae. Similar results were obtained by Sumriddetchkajorn et al.11 except that they obtained images 
of silkworm pupae by illuminating the cocoons with light from diodes and then capturing the images with a 
CCD camera. A combination of near-infrared hyperspectral imaging, convolutional neural networks (CNN), 
and a capsule network12 allowed for the identification of the storage pest (khapra beetle, Trogoderma granarium 
Everts) with over 90 percent accuracy (Agarwal et al.)13. A study on determining the developmental stage of 
pupals using vision systems was conducted by Sasha et al.14 for two species of blowfly (Diptera: Calliphoridae).

Unfortunately, there are only a few articles on the use of image analysis to automate Tenebrio molitor produc-
tion. Companies with solutions, such as Dilepix, offer off-the-shelf systems, but do not provide details of their 
solutions. Kröncke et al.15 presented a system for automating the production of Tenebrio molitor. They developed 
a pneumatic system for separating larvae from impurities. They also proposed a method to evaluate the health 
and developmental status of larvae using a vision system. For this purpose, they classified image fragments into 
three classes: good segments, bad segments, and artifacts with the use of a multi-layer perceptron neural network 
(MLP-NN), which achieved an accuracy of 95.4%.

Due to a lack of sufficient knowledge on the development of complex systems for the automatic production 
and industrial control of Tenebrio molitor, the authors undertook to develop such a system. Its key element is a 
vision system, the tasks of which include the automatic identification of individual instances and the calculation 
of production parameters, which are the basis for the control of the entire farm. The main achievements of our 
research are: (1) a multipurpose monitoring system for edible insect breeding based on machine learning, (2) 
a novel non-invasive method for calculating the mass of Tenebrio molitor larvae based on images, (3) a novel 
method for estimating the size distribution of objects in dense scenes, (4) an original method for developing 
models for multiclass instance and semantic segmentation based on synthetic image generation and a partially 
automated labelling process.

Methods
This chapter describes the successive steps of the iterative development of machine learning models, from defin-
ing problems and system concept to the evaluation of the proposed methods.

Problem definition and system concept.  We divided the addressed problems into 3 groups: those 
requiring instance segmentation, those requiring semantic segmentation, or those related to larvae phenotyping. 
The first group involved the detection and segmentation of the growth stages of Tenebrio molitor (live larvae, 
pupae, beetles), and also anomalies in the form of dead larvae and pests (Alphitobius diaperinus). The instance 
segmentation module (ISM) determined the number of objects belonging to each class, their location, and an 
extracted binary mask for further phenotyping of individual instances. The second semantic segmentation mod-
ule (SSM) extracted areas that represent the densities of the feed, chitin and frass from the image, and then 
calculated the percentage of these areas in the whole image. The third module was related to larvae phenotyping 
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(LPM) at the level of both individual larvae (calculation of length, curvature, mass, division into segments, and 
their classification) and the whole population (determination of length distribution). The defined object classes 
used in the study (a) and the concept of the proposed 3-module DeepTenebrio system (b) are shown in Fig. 1.

Figure 1 also shows the next steps in developing the machine learning models for the proposed modules (c), 
which are characterised in the following sections.

Data acquisition.  The place for breeding Tenebrio molitor were boxes placed on the shelves of racks. 
Selected boxes with Tenebrio molitor were taken off the shelves and put into the data acquisition station. Its 
schematic diagram, with a real photo, is shown in Fig. 2.

The station allowed high-resolution RGB images in manual and automatic modes to be collected. The Phoe-
nix PHX120S-CC camera (LUCID Vision Labs, Canada) with a resolution of 4096 x 3000 pixels was selected 
for image acquisition. The boxes with Tenebrio molitor were illuminated with a neutral white light (colour 
temperature 4000K) that was scattered in a diffuse tunnel. To reduce insect stress, the illuminators were only 
triggered for a short time for the duration of camera exposure. The covers isolated the image acquisition area 
from external factors. In total, 120 raw images of boxes with Tenebrio Molitor under breeding conditions were 
collected as a basis for labeling and developing the proposed modules. The selected populations in boxes differed 

Figure 1.   Presentation of the addressed problem: (a) the defined object classes used in the study, (b) the 
concept of the proposed 3-module DeepTenebrio system, (c) the next steps in developing the machine learning 
models for the proposed modules.

Figure 2.   Data acquisition station.
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in the growth stage of individuals, presence of anomalies, amount of uneaten food and chitin. Data were collected 
at Tenebria (Lubawa, Poland).

Labelling.  Labelling is an integral part of developing machine learning models, and allows the transfer of 
annotator knowledge to the model through its supervised training. This section describes the adopted data label-
ling strategy for training the models for the following modules: ISM, SSM, and LPM, as shown in Fig. 1.

First stage of labelling.  The first stage of labelling consisted of manual annotation of the images. For each pro-
posed module: ISM, SSM, and LPM, the forms of annotation were different, and are shown in Fig. 3.

In the case of the ISM (a in Fig. 3), the labelling consisted of delineating the boundaries of consecutive objects 
with a polygon-type label in order to obtain an object mask, to extract the object from the image, and then to add 
it to the object pool. For the SSM (b in Fig. 3), areas representing only one class, e.g. chitin, were marked, and a 
polygon-type label was also obtained. These areas were then divided into smaller fragments using the Watershed 
algorithm, which were then added to the pools associated with the classes for semantic segmentation. Samples for 
larval segment classification for the LPM (c in Fig. 3) were obtained as follows. On an extracted live larva mask, 
two point labels were placed at the two ends in order to denote the head and abdomen end. The end segments 
were assigned to the head or abdomen end class depending on the annotator label, and the rest of the segments 
obtained the “normal” label (normal abdomen segments). The algorithm for dividing the larvae into segments 
was unsupervised, and is described in "Larvae Phenotyping" section.

Second stage of labelling.  Obtaining an efficient and robust machine learning model requires iterative model 
development. This is not only related to retraining the models on enlarged datasets, but also to using previous 
models (so-called weak models) in order to achieve improved labelling. This makes it possible to quickly find 
the most difficult samples for inference, as well as to annotate them manually, which is the assumption of active 
learning16. Labelling samples for the instance segmentation model was very time-consuming. For this reason, 
an improved labelling process based on LabelTenebrioApp (d in Fig. 3) was proposed. At first, the annotator 
selected an image, together with previously obtained predictions, using the model with the best results so far. 
The annotation process itself involves a quick evaluation of the received predictions in terms of mask quality, 
and then predicted object class using a point-click technique. Objects with masks of good/acceptable quality 
and a true class label were added to the object pools without the need, as is the case with classical labelling, to 
draw a polygon. The most difficult cases that were not identified by the model were then manually labelled by 
the annotator.

Figure 3.   Methods and tools used for the labelling: (a) object labelling for the ISM, (b) area labelling for the 
SSM, (c) larva segment labelling for the LPM, (d) LabelTenebrioApp for improving the instance labelling 
process.
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Pool‑based 2D synthetic image generation.  Developing machine learning models in the classical way, 
i.e., based on the completely manual annotation of random samples, is inefficient. This is especially noticeable for 
segmentation problems, when the label is a pixel annotation that requires a lot of effort from the annotator. For 
the undertaken issues, another problem is the high density of objects, their overlap, and their similarity, which 
increases uncertainty during labelling.

Considering these limitations, a semi-automatic method for generating 2D synthetic samples was proposed, 
which significantly reduced labelling time and uncertainty, and increased flexibility for iterative model develop-
ment. The method is based on randomly placing elements in the form of images from the pools on the back-
ground image17. The extraction of items for the pools is described in "Labelling" section. In order to obtain a 
high similarity between the synthetic and real data, the elements were placed in a specific order. The first were 
fragments of feed, chitin, and frass, which are often found at the bottom of the box. Next, images of objects such 
as live larvae, pupae, beetles, dead larvae, and pests were placed in the image. Feed and chitin fragments were 
placed in the foreground, which is due to the fact that there could be possible feed residues after feeding, as well 
as moulting during larval growth. After the item placement procedure, a label was automatically generated in 
order to train the instance and semantic segmentation models without additional user supervision. A diagram 
of the proposed pool-based synthetic data generation method is shown in Fig. 4.

Dataset.  The labelling strategy described in "Labelling" section  was applied to create the training datasets. A 
summary of the number of samples collected in this way is shown in Table 1.

The numbers shown in Table 1 represent the number of objects for the ISM, the number of polygons for the 
SSM, and the number of segments for the LPM, respectively. The test datasets were prepared completely inde-
pendently. In this case, the samples were labelled manually by an expert on varied images of boxes with Tenebrio 
molitor. The labelling process was performed similarly to the first labelling stage described in "Labelling" section 
except that the steps of preparing and adding items to the group of objects were omitted, e.g. areas were not 
divided into smaller fragments in the case of semantic segmentation. A summary of the number of test samples 
is given in Table 1. The numbers have analogous meanings to the training datasets.

Instance segmentation with mask R‑CNN.  The Mask R-CNN18 model was used for the instance seg-
mentation of objects from the classes: live larvae, pupae, beetles, dead larvae, pests. The Mask R-CNN comple-
ments the Faster R-CNN19, and has a part that is responsible for generating a mask for each detected object. The 
functioning of both the Mask R-CNN and Faster R-CNN is based on the determination of the region of interest 

Figure 4.   Pool-based 2D synthetic image generation method.

Table 1.   Number of objects in the training and test datasets.

Dataset type

No. of objects (ISM) No. of polygons (SSM) No. of segments (LPM)

Live larvae Pupae Beetles Dead larvae Pests Feed Chitin Frass Head Normal Abdomen end

Training 1026 1550 242 809 133 22 6 11 222 1879 225

Test 346 199 68 140 61 42 85 13 36 287 36
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by the Region Proposal Network (RPN) that is based on the feature map, which is the output of the convolu-
tional neural network with the selected architecture. Once the region of interest sizes are unified, classification 
and boundary box regression using Fully Connected Layers is performed. The Mask R-CNN model additionally 
makes a mask prediction at this point. The loss minimised during training takes into account the accuracy of the 
described three model predictions, namely classification, bounding box regression, and mask extraction. In this 
study, ResNet-10120 was used as the feature map extractor, which is a common choice of researchers for similar 
problems21. The following hyperparameters were adopted for Mask-RCNN training: optimizer SGD, learning 
rate 2.5 ∗ 10−4 , iterations 10,000, weights mask_rcnn_R_101_FPN_3x. The research used the Mask R-CNN 
implementation from the Python library detectron222.

Semantic segmentation with U‑net.  The U-Net model23 was used for the semantic segmentation of 
the feed, chitin and frass areas from the images. U-Net has an autoencoder structure that consists of three main 
parts: an encoder, and a decoder with an identical structure and a bottleneck. The autoencoders encode informa-
tion in the bottleneck and then decode it, resulting in the extraction of only the most important patterns from 
the data, as well as the reduction of noise. The dice loss minimised during training the model is based on com-
paring the model output with the ground truth. The values in the model output are scaled to the probabilities 
for the given classes using the softmax activation function. The final performance of the model is influenced by 
the choice of encoder and decoder architecture. For the issues undertaken, the EfficientNet-B024 backbone pre-
trained on ImageNet25 was chosen due to its efficiency and relatively small size. The following hyperparameters 
were adopted for U-Net training: optimizer Adam, learning rate 10−4 , epochs 40. The study used the U-Net 
implementation from the Python library segmentation_models26.

Larvae phenotyping.  The LPM allows the determination of the basic characteristics of individual larvae 
(length, curvature, mass, division into segments, and their classification ), and also the distribution of larval 
length for the whole population. This section describes the methods used in the LPM. The phenotyping scheme 
for single larvae is shown in Fig. 5.

Length calculation.  Determining the length of larvae is not an obvious task due to the need to strictly define this 
dimension. In this research, the larval length was assumed to be the length of a curve going through the center 
of the larva along their largest dimension. To determine the described curve, the skeletonisation algorithm27 was 
used, along with a correction for boundary conditions, which involved drawing additional pixels at the ends of 
the curve while taking into account the local orientation of the skeleton and mask boundaries. The skeleton for 
an example larva is shown in image b in Fig. 5. By having the skeleton coordinates, the length was calculated 
from the following formula:

Figure 5.   Larvae phenotyping schema: (a) raw image of the larva, (b) skeleton of the larva after skeletonisation, 
(c) orthogonal sections to the skeleton for calculating the volume of the larva, (d) segment boundary points 
marked on the skeleton, (e) segment classification.
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where l(Si+1, Si) - the Euclidean distance between consecutive points of the skeleton Si+1(xi+1, yi+1) and Si(xi , yi) , 
k - the constant enabling the conversion from pixels to millimetres, n - the number of points in the skeleton.

Volume and mass calculation.  When calculating the volume of larvae, it was assumed that it can be approxi-
mated by the total volume of a finite number of cylinders, the height li of which is equal to the length of the 
defined skeleton section, and the diameter di is equal to the length of the orthogonal section to the defined skel-
eton section that is contained within the binary mask, as shown in image c in Fig. 5. Once these quantities are 
determined, the value of the larvae volume can be calculated from the formula:

where li - the Euclidean distance between consecutive points of the skeleton, di - the length of the section orthogo-
nal to the considered section on the skeleton, k - the constant enabling the conversion from pixels to millimetres, 
n - the number of points in skeleton, c - the correction coefficient.

The use of correction factor c in the estimation of larval volume is due to the differences occurring between 
the real shape of the larvae and the ideal shape assumed in the study, which is especially affected by the flattening 
of the thorax near the head, and the lack of volume at the joints of the larval segments. Empirically, the value of 
the correction factor was determined to be c = 0.58 . The value of the constant k should always be determined 
individually during calibration using the length calibration standard (the value of the constant k depends on 
the resolution of the camera and the dimensions of the area of interest, e.g. box). A constant k equal to 0.153 
[mm/pixel] was used in this study. For larvae mass calculations, the empirically determined density of mature 
Tenebrio molitor larvae equal to ρ = 1.31 ± 0.25

g

cm3 was used. The density was measured using a HumiPyc gas 
pycnometer.

Curvature calculation.  Another calculated parameter was curvature. By knowing the coordinates of the skel-
eton, the value of curvature at a certain point S(x, y) can be calculated from the formula:

where x and y are coordinates of the skeleton points S(x, y), and x′, y′, x′′, y′′ are 1. and 2. order derivatives for 
a given coordinate.

The curvature of the larvae was calculated for the averaged coordinates of the skeleton points in the defined 
intervals with specific lengths. The final referenced curvature value is equal to the average curvature value at 
the specified points.

Division into segments and their classification.  The larvae of Tenebrio molitor were composed of segments. The 
segments contained in the middle were similar and were characterised by a segment ending in the form of a dark 
band orthogonal to the skeleton. This pattern was used in the unsupervised division of the larva into segments.

First, the larvae images were converted from RGB to Lab colour space in order to use the L (lightness) chan-
nel. Afterwards, for each skeleton point, the average pixel intensity value was determined from the L-channel 
based on the closest larvae-forming points and a 255-L pixel intensity chart was generated along the determined 
skeleton. Peaks representing the boundary points of the segments were looked for in the prepared chart. Exam-
ples of boundary points representing peaks in the chart are shown in image d in Fig. 5. Based on the boundary 
points, segments were extracted and classified into head/normal/abdomen end.

To characterise the segments, 25 features were proposed: 12 intensity-related features (mean, skewness, 
kurtosis, entropy for each histogram R, G, B), 6 texture features (Haralick features9: contrast, dissimilarity, 
homogeneity. energy, correlation, ASM) and 7 shape features (Hu moments28). The synthetic minority over-
sampling technique (SMOTE)29 was applied before classification due to unbalanced training data. Selection of 
the classification model was done by k-fold cross-validation using a training dataset. Finally, the best model was 
evaluated on an independent test dataset.

A summary of the number of samples in the training and test datasets for the segment classification problem is 
shown in Table 1. The models examined were logistic regression (LogReg), linear discriminant analysis (LDA)30, 
k nearest neighbours (KNN)31, and support vector machines (SVM)10. For the KNN and SVM models, hyperpa-
rameter optimisation was also performed by checking the number of neighbours for the KNN, and the type of 
kernel for the SVM. An example of segment classification is shown in image e in Fig. 5. For feature calculation 
and segment classification, the following Python libraries were used: Scipy32(intensity-related features), scikit-
image33(Haralick features), OpenCV34(Hu moments) and scikit-learn35(ML models).

Length distribution estimation.  The overlapping of larvae in the box results in the fact that only parts of some 
larvae can be seen in the image. If a larva is occluded, it should not be used to estimate the larval length distribu-
tion. To obtain a reliable histogram of larvae length in the box, only whole larvae from their head to abdomen 
end should be extracted from the image. For this purpose, the results of the segment classification described in 

(1)L = k

n−1∑

i=1

l(Si+1, Si) = k

n−1∑

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2

(2)V = k3c

n−1
∑

i=1

π

4
d2i li

(3)κ =
|x′y′′ − y′x′′|

[(x′)2 + (y′)2]
3

2
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"Larvae Phenotyping" section were used. A larva was accepted as proper if the last segments along its skeleton 
represented the head and abdomen end, respectively. Classification of the last segments as “normal” indicated 
overlapping.

Evaluation.  Evaluation was performed for the different tasks included in the monitoring system, namely: 
object detection (live larvae, pupae, beetles, dead larvae, pests), semantic segmentation (uneaten feed, chitin, 
frass), the estimation of larval length distribution, and the estimation of larval mass.

Object detection model evaluation.  For object detection, the predictions and ground truths are in the form of 
rectangles called bounding boxes, which are described by 4 corner coordinates. Each prediction is also described 
by a confidence score value, which indicates the percentage of confidence in the prediction. Let us assume that 
for a given inference, a set of predictions P = {P1, P2, ..., Pn} with confidence score values C = {C1,C2, ...,Cn} 
were obtained and that the corresponding set of ground truths is G = {G1,G2, ...,Gm} . Moreover, each element 
from set P and G has the same label depending on the class under consideration. For each bounding box Gi , let 
us assign one bounding box Pj for which: (1) the intersection over union IoU

(

Pj ,Gi

)

>= 0.5 , and (2) Pj has the 
highest Cj among the predictions, which satisfies the 1st condition. The number of assignments between G and 
P is the number of True Positive (TP) predictions. Let us call the number of unassigned predictions from set P 
as False Positive (FP), and the number of unassigned ground truths from set G as False Negative (FN). From the 
determined TP, FP, and FN values, the precision and recall metrics can be calculated. Precision PPV (positive 
predictive value) defines the probability that a given prediction is correct, while recall TPR (true positive rate) 
defines the probability that a given ground truth object is detected. The formulas for precision and recall are as 
follows:

In order to characterise a model by a single value, a metric F1 is often used, which is the harmonic mean of 
precision and recall. The F1 metric can be calculated using the formula:

Since most of the predictions with a low confidence score are the source of FP errors, some of them that have a 
value below a certain threshold value Cthresh are removed. On the other hand, too high a value of Cthresh results 
in more FN errors. The optimal value of Ctresh in such a case may be the value that maximises F1. The value of 
F1opt , based on the optimal operating point (threshold value Copt ), and the related metrics PPVopt , TPRopt were 
used to evaluate object detection by the proposed models ( F1obj , PPVobj , TPRobj ). To compare object detection 
models, it is also good practice to use metrics independent of Cthresh . The most commonly used metric that meets 
the threshold independence condition is average precision AP. AP is defined as the area under curve (AUC) 
precision x recall, as represented by the following formula36:

where pinterp(ri+1) = max p(r̃) , and r̃ : r̃ >= ri+1 , and n - the number of predictions.
The precision-recall chart is formed by the precision and recall values at different values of Cthresh . Before 

calculating the AUC, interpolation of the precision values for the chart points is performed, due to the lack of 
monotonicity (zigzag shape), with the raw precision x recall chart. For each recall value, the interpolated preci-
sion value must be greater than or equal to the precision value for the points with the greater recall value (all 
points to the right of the considered point), as described in the condition under formula 7. Due to the fact that a 
bounding box overlap threshold of 50% ( IoU = 50% ) was assumed, the average precision for detecting objects 
will be designated as AP50.

Semantic segmentation model evaluation.  Semantic segmentation is based on determining a label value for 
each pixel. Similar to object detection, the metrics F1opt , PPVopt , TPRopt for the optimal operating point can be 
used. The only difference is that individual pixels ( F1pix , PPVpix , TPRpix ) are considered instead of objects. These 
three metrics were used in the study to evaluate the semantic segmentation models.

Larval segment classification model evaluation.  The classification of larval segments was based on the predic-
tion of the head/normal/abdomen end class for each detected segment. Similar to object detection and semantic 
segmentation, the metrics F1seg , PPVseg , TPRseg were used, with each incorrect or correct prediction being asso-
ciated with one segment.

Larval length distribution estimation method evaluation.  To validate the methods for estimating larval length 
distribution, independent test datasets were developed for three populations. Approximately 100 live larvae were 

(4)precision = PPV =
TP

TP + FP

(5)recall = TPR =
TP

TP + FN

(6)F1 =
2 ∗ PPV ∗ TPR

PPV + TPR

(7)AP =

n−1
∑

i=1

(ri+1 − ri)pinterp(ri+1)
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selected from each population, and their images were registered. The length of the larvae was determined based 
on the collected images. A normalised histogram htrue was then determined using the true larval lengths. The 
estimated normalised histogram hest was determined from the calculated larval lengths according to the method 
described in "Larvae Phenotyping" section and by using the filtering of occluded larvae, which was described 
in "Larvae Phenotyping" section The formula for the intersection of the histograms was used to determine the 
similarity of the histograms:

where D(htrue , hest) - the intersection between two normalised histograms htrue and hest ( 
∑

htruei = 1 and 
∑

hesti = 1 ), and n - the number of bins.
Additionally, the means ( xtrue , xest ) and standard deviations ( σtrue , σest ) of the obtained distributions were 

compared.

Mass estimation method evaluation.  Evaluation of the method for mass estimation consisted of comparing the 
true and estimated mass of the larvae in the box. For this purpose, the following experiment was conducted for 
three different populations. 10 grams of live larvae were added to the box. The total mass of the larvae in the box 
then ranged from 0 to 100 grams. After each procedure of putting larvae into the box, an image was registered. 
Each such image was then input to the developed model for instance segmentation to determine the masks for 
the live larvae. The mass of all the larvae in the box was estimated based on the procedure described in “Volume 
and mass calculation” section.

The squared Pearson correlation coefficient R2 between the true mass mtrue values and the estimated mass 
mest values was used as a quantitative indicator of the estimation quality:

where σmtrue , σmest - standard deviations of mtrue and mest , and cov(mtrue ,mest) - the covariance of mtrue and mest.
Due to significant overlapping of larvae when there are high numbers of larvae in the box, the R2 ratio was 

determined for the initial values of the true larval mass in the box (from 0 to 40 grams). The slope of the line 
a0−40 in the considered interval was used as an additional parameter of the quality of the mass estimation.

Results and discussion
This section contains the evaluation results of the different machine learning models, and also the methods 
used in the proposed modules: ISM, SSM and LPM. The evaluation was performed on test datasets that are 
independent of the training datasets. Samples for the test datasets were labelled on real images of the boxes with 
Tenebrio molitor. A summary of the number of samples in the training and test datasets is presented in Table 1. 
An explanation of the metrics used can be found in "Evaluation" section.

The detection results of the Tenebrio molitor growth stages (live larvae, pupae, beetles) and anomalies (dead 
larvae, pests) for the Mask R-CNN model with the ResNet-101 backbone are presented in Table 2 and in Fig. 6.

The proposed instance segmentation model detected growth stages ( F1obj > 0.89 ) and anomalies 
( F1obj > 0.83 ) very efficiently. The density of objects, and their overlapping with each other, did not destruc-
tively affect the model’s performance—both whole objects and their fragments were detected well (samples 2–4 
in Fig. 6 for a high density of live larvae, dead larvae, and pupae, respectively). The robustness of the model to 
dense scenes is due to the proposed 2D synthetic data generation method described in "Pool-based 2D synthetic 
image generation" section, where dense scenes with different types of objects that overlap with accurate pixel 
annotation were simulated. Based on the values of the metrics in Table 2, it can be seen that PPVobj > TPRobj for 
all the considered classes. This results in a fewer number of committed FP errors, which comes at the expense of 
more undetected objects. This choice of operating point is appropriate for anomaly detection, as it reduces the 
number of possible interventions by the farmer. However, anomalies will mostly be detected anyway due to the 
presence of more than one object from the anomaly class in the box (samples 3 and 5 in Fig. 6 for dead larvae 
and pests). Some problems, due to the high cost of non-detection, e.g., detecting the first beetle in the context 
of breeding interruption, require the operating point to be moved to higher recall values. The few errors made 

(8)D(htrue , hest) =

n
∑

i=1

min(htruei , hesti )

(9)R2 = r2mtrue ,mest
=

cov2(mtrue ,mest)

σ 2
mtrue

σ 2
mest

Table 2.   Results of the detection growth stages of Tenebrio molitor (live larvae, pupae, beetles) and anomalies 
(dead larvae, pests) for the Mask R-CNN with the ResNet-101 backbone.

Type AP50 F1obj PPVobj TPRobj

Live larvae (Tenebrio molitor)

Growth-stage

0.915 0.905 0.927 0.884

Pupae (Tenebrio molitor) 0.900 0.893 0.929 0.859

Beetles (Tenebrio molitor) 0.934 0.930 0.984 0.882

Dead larvae (Tenebrio molitor)
Anomaly

0.814 0.858 0.898 0.821

Pests (Alphitobius diaperinus) 0.777 0.835 0.889 0.787
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during inference were mainly: (1) misclassification of object fragments between the live larvae and pupae classes 
(samples 2–3 in Fig. 6), (2) misclassification of object fragments between the dead larvae and beetles classes (sam-
ple 4 in Fig. 6), and (3) undetected object fragments in dense scenes (samples 2–4 in Fig. 6 for the live larvae, dead 
larvae, and pupae classes, respectively). However, these errors do not affect the usefulness of the proposed ISM.

Mask R-CNN, as a representative of an instance segmentation model for detecting different Tenebrio molitor 
growth stages and anomalies, was chosen for this study due to: (1) the ability to further phenotype the detected 
objects based on their binary masks, (2) the need to extract the instances pixel-wise in order to add them to the 
object pool (described in "Pool-based 2D synthetic image generation" section), and (3) the simplicity to analyse 
the prediction and to draw conclusions to further improve the models. Although Mask R-CNN works well in 
the model development stage, the rationale for its use in the final model should be considered by taking into 
account the required functionality of the system. If only counting objects from defined classes is required, an 
object detection model such as YOLO37 (with significantly less inference time than Mask R-CNN) may be a bet-
ter solution. As part of the study, the Mask R-CNN with the backbone ResNet-101 model and the YOLOv5x38 
model were also compared in terms of AP50 and inference time for the tile, as shown in Table 3. The GeForce 
RTX 2060 SUPER 8GB (GPU) and AMD Ryzen 7 1700 3GHz (CPU) were used to measure the inference time 
for the Mask R-CNN and YOLO models.

The AP50 values in Table 3 for all the considered classes (except the dead larvae), when comparing the Mask 
R-CNN (ResNet-101) and YOLOv5x models, decreased slightly. Moreover, the inference time decreased about 
three times. Taking into account that the RGB image of the whole box (example shown in Fig. 1) was split into 

Figure 6.   Results of the instance segmentation for live larvae, pupae, beetles, dead larvae, and pests for the 
sample data.

Table 3.   Comparison of object detection AP50 and inference time for the Mask R-CNN and YOLO models.

Model

AP50

Inference time/tileLive larvae Pupae Beetles Dead larvae Pests

Mask R-CNN (ResNet-101) 0.915 0.900 0.934 0.814 0.777 120 ms

YOLOv5x 0.894 0.893 0.921 0.700 0.738 40 ms
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192 standard size tiles before inference, and the fact that the total inference time is notable, use of the YOLOv5x 
model in the final monitoring system can be seen to be appropriate.

The semantic segmentation results for the U-Net model with the EfficientNet-B0 backbone are presented in 
Table 4 and in Fig. 7.

In the case of the semantic segmentation, the achieved values of F1pix > 0.94 for the feed, chitin and frass 
classes demonstrate the ability of the model to efficiently segment the regions that represent the defined classes. 
The SSM was able to cope with both the segmentation of the larger regions of a class, as well as smaller regions, 
e.g., one feed flake, one chitin moult, as can be observed on samples 1–5 in Fig. 7. The most common inference 
errors for the SSM were: (1) mistakes between the feed and frass classes (samples 1 and 5 in Fig. 7) for areas 
without cereal grains, (2) chitin segmentation at the end segments (head, abdomen end) of the live larvae (sample 
5 in Fig. 7), and (3) mistakes in the small areas between objects e.g. larvae (samples 3 and 4 in Fig. 7). For the 
SSM, it is important to note the very fast development process of the model. The proposed labelling method 

Table 4.   Results of the semantic segmentation for the feed, chitin and frass for the U-Net with the 
EfficientNet-B0 backbone.

F1pix PPVpix TPRpix

Feed 0.971 0.969 0.973

Chitin 0.947 0.918 0.977

Frass 0.953 0.963 0.943

Figure 7.   Results of the semantic segmentation of the feed, chitin and frass for the sample data.
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described in "Labelling" section (splitting a larger annotated area into smaller ones and adding them to a pool), 
together with the generation of synthetic samples described in "Pool-based 2D synthetic image generation" 
section, enabled a significant reduction in the model’s development time. Moreover, the model maintained a 
comparable diversity of the samples and an increase in label veracity when compared to the classical labelling of 
the samples for the semantic segmentation.

The classification of larval segments was one of the components of the LPM. Evaluation results on the test 
dataset for larval segment classification for the top three models (LDA, SVM, LogReg) were shown in Table 5. In 
Fig. 8, selected errors made by the classifiers can be analysed. Most of the incorrect predictions are related to the 
classification of segments located before the end segments. By analyzing the characteristics of these mistakes, it is 
easy to eliminate them by treating duplicate head or abdomen end predictions of neighbouring segments as one 
prediction. In Table 5, it can be seen that the proposed prediction processing method taking segment location 
into account significantly increased the examined metrics for all shown models. Considering the averaged metrics 

Table 5.   Results of the classification of the segments of the live larvae into head, normal and abdomen end.

Segment type Model

TPRseg PPVseg F1seg

Raw predictions
Processed 
predictions Raw predictions

Processed 
predictions Raw predictions

Processed 
predictions

Normal

LDA 0.895 0.983 0.988 0.989 0.939 0.986

LogReg 0.930 0.990 0.996 0.996 0.962 0.993

SVM 0.920 0.986 1.000 1.000 0.958 0.993

Head

LDA 0.833 0.833 0.600 0.769 0.698 0.800

LogReg 0.750 0.750 0.692 0.794 0.720 0.771

SVM 0.750 0.750 0.692 0.794 0.720 0.771

Abdomen end

LDA 0.750 0.750 0.551 0.771 0.635 0.760

LogReg 0.806 0.806 0.558 0.725 0.659 0.763

SVM 0.833 0.833 0.536 0.714 0.652 0.769

All (average 
metrics)

LDA 0.826 0.855 0.713 0.843 0.757 0.849

LogReg 0.829 0.849 0.749 0.838 0.780 0.842

SVM 0.834 0.856 0.743 0.836 0.777 0.844

Figure 8.   Charts related to larval phenotyping: (a) comparison of true and estimated larval length distribution 
for a selected population, (b) estimation of larvae mass based on averaged samples, (c) chart of the normalised 
intersection of histograms as a function of the number of non-overlapping larvae used to estimate the larval 
length distribution, (d) segment classification for example larvae using the best proposed model, (e) examples of 
larvae for specific ranges of curvature values, (f) comparison of curvature for live and dead larvae.
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after prediction processing, the best model for segment classification was LDA, which was characterized by 
F1score > 0.75 for each considered class: head/normal/abdomen end. Its usefulness in filtering whole larvae from 
fragments was confirmed by the high intersection values of the larval length histograms ( D(htrue , hest) > 0.8).

The results obtained for the estimation of the larvae length distribution (Table 6 and Chart a in Fig. 8) prove 
that the developed method for determining these quantities is efficient. The high histogram similarity values 
obtained ( D(htrue , hest) > 0.8 ) exceed the requirements for a monitoring system. Taking into account that the 
number of visible larvae in a box can reach 1000, it is necessary to consider the validity of phenotyping all visible 
larvae, which is computationally expensive. To this purpose, a chart was prepared of the normalised intersec-
tion of histograms (relative to the maximum intersection value obtained when using all larvae for estimation) 
as a function of the number of non-overlapping larvae used to estimate the larval length distribution, which is 
shown in Chart c in Fig. 8. This chart shows that adding more larvae (above 45 individuals) to the estimation 
no longer contributes significantly to the histogram intersection, while 45 individuals allows a value of about 
0.9 of the maximum histogram intersection to be achieved, which is definitely an acceptable compromise. From 
Chart a in Fig. 8, it can be observed that histogram mismatches occur mainly in the tails of the distributions: 
(1) the underestimation of the number of longer larvae (right tail) results from the higher probability of such 
larvae being occluded under breeding conditions, while (2) the overestimation of the number of shorter larvae 
(left tail) results from the few errors during segment classification and the fact that occluded larvae are taken for 
estimation. The occurrence of the mentioned problems does not negate the usefulness of the proposed method 
for estimating the larval length distribution for larval growth monitoring during breeding.

The results for the larvae mass estimation problem in Table 6, and Chart b in Fig. 8, confirm that the pro-
posed method for estimating the volume and mass of larvae is appropriate, as indicated by the values of the 
metrics for the range from 0 to 40 grams ( R2

0−40 > 0.99 and |1 − a0−40| < 6% ). However, its applicability under 
breeding conditions with high larval overlap is limited. This method can mainly be seen to have potential in 
experiments with relatively small numbers of larvae, e.g. testing new types of feed in laboratory breeding studies, 
when it allows for the non-invasive determination of larval weight gains. A solution for an effective vision-based 
determination of larval weight in the box under real breeding conditions may be a hybrid approach. Using the 
knowledge of the larval length distribution, larval growth stage, and approximate number of individuals per box 
(at the beginning of breeding it is similar for all boxes), a model can be developed to also estimate the mass of 
unseen larvae. Verification of this idea is the next direction of our research.

The proposed curvature parameter may be one of the indicators of larvae health, so it was included in the 
LPM. Images of larvae with different curvature values are shown in Chart e in Fig. 8. The stiffening phenomenon 
(reduction in the value of the curvature parameter) was observed when the larvae die, as shown in Box chart f 
in Fig. 8, which compares the curvature distribution for live and dead larvae. The stiffening phenomenon could 
also be observed in the case of larvae/pupae transformation. Preliminary studies show the potential of the cur-
vature parameter for larval phenotyping, but investigating its usefulness is a topic for further studies based on 
long-term observations.

The obtained evaluation results of the developed modules give attitudes to believe that the proposed system 
can be used in a real scenario. The study proposed four versions of the system usage depending on the needs of 
the user (researcher or breeder), as shown in Table 7. The first (full version) of the system assumes accurate image 
analysis of the entire box (192 tiles in total, which includes additional tiles for reducing edge effect related to the 
difficulty of detecting objects on the edges of a tile) using Mask-RCNN for ISM and U-Net for SSM. Phenotyping 
in the first version includes computation of all proposed features for selected 50 larvae from the box. The second 
version of the system includes the analysis of 25 percent of the box area (without reducing edge effects) using the 
same models as in the first version. Phenotyping in the second version includes computation of the proposed 
geometric features, i.e. length, volume, and curvature, without division into segments, and their classification. The 

Table 6.   Results of estimating the larval length distribution and mass for the three study populations.

Population id xest [mm] σest [mm] xtrue[mm] σtrue[mm] D(htrue , hest ) R2
0−40 a0−40

1 27.4 3.1 27.8 3.3 0.806 0.998 1.02

2 24.6 3.3 25.5 2.6 0.842 0.999 0.95

3 26.5 2.3 26.2 1.9 0.874 0.999 1.04

Table 7.   Computational burden analysis for four versions of the proposed system.

x % of box area

ISM SSM LPM

Total time per box No. of boxes per dayModel Time per box Model Time per box Parameters Time per box

1 100 (192 tiles) Mask R-CNN 30.6 s U-Net 8.7 s Proposed all 186.4 s 225.7 s 380

2 25 (12 tiles) Mask R-CNN 2.0 s U-Net 0.5 s Proposed geometric (length, 
volume, curvature) 52.4 s 54.9 s 1570

3 25 (12 tiles) Mask R-CNN 2.0 s U-Net 0.5 s Basic (area of binary mask) 0.4 s 2.9 s 30,000

4 25 (12 tiles) YOLOv5x 1.1 s U-Net 0.5 s – – 1.6 s 54,000
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third version limits the phenotyping of larvae only to the basic parameter of the binary mask area and the rest of 
the assumptions are the same as in the second version. In the fourth version, larval phenotyping is dispensed with, 
allowing the model to be changed from Mask R-CNN to YOLOv5x in the ISM module. The presented versions 
of the system represent a trade-off between the amount of population information obtained and the inference 
time (the number of boxes that can be analyzed per day) and the rationale of their use depends on the needs of 
the user. Undoubtedly, options 3 and 4 can be considered for use in monitoring large-scale edible insect breeding 
(30,000 and 54,000 analyzed boxes per day). The use of options 1 and 2 should be seen in monitoring smaller 
farms and for laboratory breeding studies. It should also be noted that larval phenotyping is the bottleneck of 
the whole system and future work should focus on increasing the efficiency of the LPM module.

The application of our system in a breeding environment requires the preparation of appropriate hardware 
and software architecture. Potential users of the system should pay attention to the following recommendations: 
(1) computer with GPU (or external server with GPU) enabling fast prediction by proposed ML models, (2) 
periodic automated boxes inspection (frequency depending on requirements, initially once every day or two 
days may be assumed), (3) database containing calculated features for each analyzed box, (4) identification of 
individual boxes with edible insects (e.g. RFID), (5) application (Web, mobile) for the farmer, including reporting 
of anomalies and with the possibility to view historical data (changes of characteristics over time for a specific 
box), (6) additional system to control and optimize the breeding process based on current data.

Conclusions
The developed multipurpose monitoring system for the breeding of Tenebrio molitor based on three modules 
(ISM, SSM and LPM) has great potential for the observation of edible insects in both laboratory breeding studies 
and real breeding conditions. The proposed method for developing multiclass instance and semantic segmenta-
tion models based on synthetic image generation and object pools significantly reduced the time of the iterative 
improvement of machine learning models, while also increasing the robustness of the models to problems such 
as dense scenes and the detection of minority class objects. The described method for estimating the length dis-
tribution of larvae in a box enables effective supervision of larval growth during breeding, even when most larvae 
are invisible. The developed larval mass estimation methods can be successfully applied to feeding experiments 
for the non-invasive assessment of mass gains. Future work will include: (1) the improvement of the synthetic 
image generation process and the quality of generated images, (2) the improvement in efficiency (inference time 
reduction) for the larvae phenotyping module, (3) the extension of the larvae phenotyping module to include 
more features for the growth stages of Tenebrio molitor (also for pupae and beetles), (4) the development of a 
module to determine larval activity using temporal data based on optical flow, (5) the long-term observation of 
Tenebrio molitor in order to characterise the change in states (live larvae to dead larvae, live larvae to pupae) 
and behavioural patterns, (6) the association of larval features with symptoms of disease or poor condition, and 
(7) re-identification for individual larvae and beetles.

Data availability
The samples used to develop the ISM, SSM and LPM modules and the generated sample synthetic data are avail-
able from the corresponding author on reasonable request.
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A B S T R A C T

The problem of bee poisoning causes significant losses to the beekeeping sector every year. One cause of bee
poisoning is spraying before the end of the foraging activity of bees. Information about the estimated end of
this foraging activity can significantly help a farmer plan his spraying. The aim of our research was to develop
a method based on machine learning models to predict the remaining time of the foraging activity, taking
into account bee activity, weather conditions, and the amount of time to sunset. Data were collected using
an IoT system from 3 hives in the 2021 and 2022 beekeeping seasons. The proposed method addresses the
challenge of the changing nature of data during the beekeeping season by using periodic model re-fitting with
automatically generated semi-true target values. The veracity of semi-true target values was also improved
by a spatio-temporal correction mechanism based on the position and orientation of the bees, which made it
possible to distinguish foraging from other patterns of bee behavior (dead bees, hive ventilation by bees). The
results of the RMSE prediction error of 23.1 min (season 2021) and 26.5 min (season 2022) prove the high
potential of the proposed method to predict the remaining time of the foraging activity of bees, as well the
lack of need for expert annotation of data during the season. The used approach, based on density occurrence
maps in spatio-temporal correction, can also be used in the future to detect and study bee behavior patterns.

1. Introduction

The need to increase food production for an ever-growing human
population means that the intensification of agriculture is unavoidable.
Plant protection products are undoubtedly necessary for the effective
control of pests and weeds, and also for the prevention of diseases, but
their improper use can lead to environmental degradation.

In the age of agricultural intensification, bee poisoning is not un-
common. According to a report by the Apiculture Division in Puławy
(Poland), more than 25,000 bee colony poisonings were reported in
Poland in 2020 (Semkiw, 2020), the main cause of which was the
spraying of rapeseed (especially spraying against the rapeseed pollen
beetle, Brassicogethes aeneus at the wrong time, including during the
flowering of crops or associated weeds, and also when the bees had not
finished foraging. Losses caused by bee poisoning are mainly connected
with: (1) the lack, or reduction, in the amount of obtained bee prod-
ucts (honey, bee pollen, wax, propolis, royal jelly); (2) the collapse,
weakening, or inhibition of the development of bee colonies; and
(3) the failure of bees to pollinate crops (Skubida, 2007). The reasons
for the occurrence of bee poisoning include: (I) poor communication
between the beekeeper and the farmer; (II) the lack of a uniform system

∗ Corresponding author.
E-mail address: pawel.majewski@pwr.edu.pl (P. Majewski).

that supports the farmer’s decision on the possibility of spraying; and
(III) unclear legal regulations. A comprehensive advisory system with a
platform for information exchange between the farmer and beekeeper
could help in terms of making win-win decisions. The operation of the
system would be based on the registration of spraying that is planned
(carried out) by the farmer, and would take into account the location
of the farmer’s field, the type of crop, and the type of used pesticide.
The system would also have information about: (1) legal regulations;
(2) expert knowledge and good agricultural practices; (3) the location
of apiaries in the region; and (4) the current state of apiaries in terms
of ongoing bee foraging activity. Taking into account the input data,
the system would suggest the optimal time for the farmer to carry out
the spraying. An important part of such a system would be a model
for the prediction of the time remaining to the end of bee foraging
activity, which would in turn allow the farmer to schedule spraying
in advance and maximize the time between spraying and the start of
bee activity for the following day. The prediction model would use
processed raw data from the IoT system (e.g. images, weather data).
With up-to-date information from the apiary, the problem of poisoning
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caused by spraying too early, when the bees have not yet finished their
foraging activity, would also be eliminated.

Researchers have often addressed the use of computer vision and
machine learning methods to monitor bees. The first such studies
concerned the detection of bees at the entrance to the hive. For bee de-
tection, both classical computer vision methods (Campbell et al., 2008),
and newer models for object detection based on deep convolutional
networks (Ryu et al., 2021; Dembski and Szymański, 2020) were used.
In the literature, studies dedicated to issues such as detecting bee pollen
loads (Rodriguez et al., 2018; Stojnić et al., 2018), the cell classification
of bee frames (Alves et al., 2020), the detection of Varroa destructor
parasites on bees (Bjerge et al., 2019), the tracking of bees (Bozek et al.,
2021; Ngo et al., 2019; Bozek et al., 2018), and the re-identification of
bees (Chan. et al., 2022) can also be found. It is also worth noting that
there are papers on the development of IoT systems for apiaries, which
enable their monitoring in real-time (Ngo et al., 2021a; Marstaller et al.,
2019; Tashakkori et al., 2021).

A much smaller number of papers concern the analysis of long-
term bee activity and the prediction of bee behavior. Gomes et al.
(2020) predicted bee foraging activity using recurrent neural networks
based on a time series of activity level, temperature, solar radiation,
and barometric pressure within a time window of a specified length.
The researchers used RFID tagging of bees to record their activity.
The activity level was calculated for each hour, and the optimal time
window size was 24 h. A significant limitation of the method proposed
in this paper is the recording of bee activity through RFID tagging.
This cannot be applied to noninvasive IoT systems, which should be
the basis of apiary monitoring. Ngo et al. (2021b) predicted daily
bee losses using temporal convolutional networks (Lea et al., 2016)
based on bee activity (represented by the number of bees entering and
leaving the hive), temperature, humidity, and wind and rainfall-related
features. Clarke and Robert (2018) modeled the foraging activity of
bees (the bee egress rate) based on temperature, solar radiation, atmo-
spheric pressure, humidity, rainfall, wind direction, and speed using
the ordinary-least-squares model. The authors reported that 78% of
the observed variation in bee activity was explained by variations in
temperature and solar radiation. Andrijević et al. (2022) modeled the
hourly activity of bees entering and exiting the hive using multidomain
characteristics collected inside and outside the hive. The researchers
used ARIMA (Box et al., 2015), Prophet (Taylor and Letham, 2018), and
LSTM (Hochreiter and Schmidhuber, 1997) models in order to develop
prediction models. A bee counting sensor array mounted at the entrance
to the hive was used to record activity. Undoubtedly, the approach
presented in this paper, with the monitoring of multiple environmental
factors, can be seen to be reasonable from a research perspective.
However, when designing systems to support the beekeeper’s decision,
one must consider the trade-off between the cost and invasiveness of
sensors and the quality of information obtained by the beekeeper.

Although the work described above has demonstrated the possibility
and potential of using computer vision and machine learning to address
issues of long-term bee monitoring and prediction, the researchers
did not explicitly explore the problem of maintaining high model
performance during the entire beekeeping season. Considering the dy-
namic nature of bee colony development, as well as changing weather
conditions, it is expected that the character of the input data for the
models will change significantly, with the development of adaptation
mechanisms being crucial in the context of the developed solutions. The
described phenomenon of changing the distribution of data over time
is called concept drift, and methods related to responding to concept
drift for streaming data are a current research topic, also in the field
of insect observations (Rustia et al., 2021; de Souza et al., 2013). In
the literature, studies related to the direct prediction of the end time of
bee foraging activity, which is important information from the point of
view of a farmer who wants to spray, were not found. It should also be
noted that a significant limitation of some of the proposed solutions are
IoT systems that significantly interfere with the design of a particular

hive, or with the daily functioning of the bees. Minimizing the impact
of an IoT system on these two aspects should be a key consideration
when developing monitoring systems for an apiary.

The aim of our work was to develop an efficient and robust method
for predicting the time remaining to the end of the daily foraging
activity of bees. The method takes into account the varying nature of
the input data, which is based on data acquired from an IoT system. The
main achievements of our work are: (1) the development of a model for
predicting the remaining time of the foraging activity of bees, which
takes into account bee activity, weather conditions, and the amount of
time to sunset; (2) the development of a mechanism to maintain the
quality of the models for long-term observation (the duration of the
beekeeping season), using periodic model re-fitting with automatically
generated semi-true target values; (3) the proposed method for spatio-
temporal correction taking into account the location and orientation of
bees that reduces the error of semi-true target values determination;
(4) a modular, non-invasive and versatile IoT system enabling real-
time data collection and analysis; and (5) multi-faceted validation and
parameter fine-tuning of the proposed methods based on data from the
2021 and 2022 beekeeping seasons.

2. Materials and methods

This section addresses the following topics successively: (1) the
definition of the problem and the scheme of the proposed solution; (2)
the development of the data acquisition station; (3) the characteristics
of the collected data; (4) methods of detecting bees and determining
their orientation; (5) regression models for predicting the remaining
time of the foraging activity of bees; (6) the initial model fitting and
periodic model re-fitting strategy; (7) the spatio-temporal correction of
the registered number of bees; (8) fine-tuning of the parameters for the
proposed methods; and (9) the types of metrics used in the evaluation
of the proposed methods.

2.1. Definition of the problem

The considered problem is the prediction of the time remaining to
the end of the daily foraging activity of bees, and takes into account
the following features:

1. the time remaining until sunset 𝛥𝑡𝑠𝑢𝑛𝑠𝑒𝑡 (the sunset time is known
for each calendar day),

2. the daily bee activity [𝑎1, 𝑎2,… , 𝑎𝑛] in a time window of length
𝑡𝑐ℎ𝑢𝑛𝑘,

3. weather characteristics (temperature [𝑇1, 𝑇2,… , 𝑇𝑛], humidity
[𝜙1, 𝜙2,… , 𝜙𝑛], and barometric pressure [𝑃1, 𝑃2,… , 𝑃𝑛]) in a time
window of length 𝑡𝑐ℎ𝑢𝑛𝑘.

The scheme of the proposed solution is shown in Fig. 1. The next
steps of developing the method are described in the following sections.

2.2. Data acquisition station

The designed acquisition station (Fig. 2) enabled images from the
hive entrance to be captured, and also the weather conditions (tem-
perature, humidity, barometric pressure) at a given sampling period
to be recorded. The image acquisition modules were mounted on 3
hives, and the weather sensor was placed near them in a radiation
shield at a height of approximately 1.5 m. Images with a resolution
of 1920 × 1080 pixels were collected using Raspberry Pi Cameras V2,
which are controlled by SBCs (Single Board Computers) and Raspberry
Pi 4B. The SBCs were connected to a local WiFi network, which was
in turn connected to the Internet. For the described study, data were
collected every 1 min from 3 hive-mounted stations from sunrise to
sunset with an offset of 1 h. The collected data were uploaded to a cloud
database once a day. The hardware part of the IoT system was non-
invasive (both to the bees’ functioning and to the hives’ construction)
and modular (ease of replicating the station for more hives).
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Fig. 1. Scheme for the proposed solution.

Fig. 2. Data acquisition station.

2.3. Data

The data used in the study were collected in the 2021 and 2022
beekeeping seasons. The end of the foraging activity of the bees was
analyzed from 26 April to 29 June in the 2021 season, and from 12
April to 5 June in the 2022 season. For each day and for each hive
monitored, an expert determined the end of the bee foraging activity
using a sequence of images collected on that day. Samples collected
during rainy days were not used for annotation due to the fact that
there is no bee foraging and the farmer is not able to spray. A summary
of the end times of the bee foraging activity for the 2021 and 2022
seasons is presented in Fig. 3.

The raw data collected from each station was divided into chunks,
which were then used by the proposed machine learning models for
training and prediction. Each chunk was characterized by a specific
length 𝑡𝑐ℎ𝑢𝑛𝑘, which determines what historical data should be included
in the chunk. To eliminate noise and to reduce dimensionality, instead
of using raw feature values (number of bees, weather indicators),
averaged values in bins of a specific length 𝑡𝑏𝑖𝑛 were used, where
𝑡𝑏𝑖𝑛 < 𝑡𝑐ℎ𝑢𝑛𝑘. In this study, chunks were used in which the youngest

observation was recorded no earlier than 6 h before sunset. An explana-
tion of the pre-processing and the parameters 𝑡𝑐ℎ𝑢𝑛𝑘, 𝑡𝑏𝑖𝑛 is also provided
in Fig. 1.

2.4. Bee detection and orientation determination

Bee detection was performed using the Mask R-CNN (He et al.,
2017) model, which was trained on samples of real images. Images
differing in acquisition time (e.g. early morning, evening), bee density,
the presence of overexposure, and the bee growth stage were selected
for the training set. Labeling involved manually drawing polygons for
subsequent instances using labelme software (Wada, 2018). In total,
143 images containing 1047 labeled bee instances were used for the
training. The bee detection model was validated on a test set that con-
tained 37 images (211 labeled bee instances). Samples from different
days were selected for the training and test sets in order to ensure
independence between these sets. ResNet50 (He et al., 2016) was used
as the backbone for the Mask R-CNN. The obtained binary masks after
Mask R-CNN inference allowed for the determination of the midpoint
and orientation for the detected bees. The orientation was determined
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Fig. 3. Visualization of the end times of the bee foraging activity for the 2021 and 2022 beekeeping seasons.

from the skeleton coordinates obtained after skeletonization (Zhang
and Suen, 1984) of the binary mask using linear regression. The study
used the Mask R-CNN implementation from the detectron2 (Wu et al.,
2019) library and the skeletonization algorithm implementation from
the scikit-image (van der Walt et al., 2014) library.

2.5. Initial fitting and re-fitting of the regression model

Regression analysis techniques were used to predict the time re-
maining until the end of the foraging activity of the bees. The op-
timality of using a specific model depends on the character of the
data, and for this reason we checked different regression models, and
selected the best one based on the lowest prediction error (RMSE). The
following models from the scikit-learn (Pedregosa et al., 2011) Python
library were evaluated: GradientBoostingRegressor (GBR), LinearRegres-
sion (LR), HuberRegressor (HR), BayesianRidge (BR), KernelRidge (KR),
MLPRegressor (MLP). The default parameter values for these models
were used.

In addition, the ‘FixedThresholdBaseline’ (FTB) model was defined
as the baseline. It is based on determining such an offset to the time
to sunset that has the lowest prediction error. For the ‘FixedThreshold-
Baseline’ model, features related to bee activity and weather conditions
are not included.

2.6. Regression model initial fitting and re-fitting

An important step in the development of regression models is their
initial fitting and eventual re-fitting. In our study, two types of fitting
were considered.

The initial model fitting consisted of fitting the model on an initial
training set that contains samples from days within a time window of
length 𝑡𝑡𝑟𝑎𝑖𝑛.

Maintaining high accuracy of the model when the nature of the
input data changes requires periodic model re-fitting. The problem
under consideration is characterized by the ability to retrieve true (or
semi-true) target values (represented by the remaining bee foraging
activity time (RBFAT) values) with a delay, i.e., at the earliest time after
the bees have finished their daily foraging activity. Annotation by an
expert (type true target values) for each day and each hive involves the
expert determining the time of the end of bee foraging activity based

on the analyzed image sequence. After receiving the time of the end of
the bee foraging activity, chunks are sequentially annotated with the
corresponding RBFAT value and added to the training set. The study
also proposed methods for automatic determination of the end of the
bee foraging activity (type semi_true target values). The most intuitive
method to determine the end of daily bee foraging activity is the time
of observing the last bee located at the entrance of the hive (type
semi_true_raw_last target values).

After each day, the model is re-fitted on the current training set.
The study considered the following options for modifying the training
set:

• fixed - only initial fitting is performed, the training set is not
modified, no model re-fitting occurs,

• landmark - initial fitting and re-fitting of the model is performed,
the training set is continuously increased, no removal of older
samples occurs,

• sliding - initial fitting and re-fitting of the model is performed,
the training set remains similar in size and contains samples from
days within a time window of length 𝑡𝑡𝑟𝑎𝑖𝑛, removal of samples
outside the time window occurs.

In order to protect the model from semi-true target values that are
determined with high error, a regularization mechanism characterized
by the parameter 𝜆 is proposed. The regularization involves that the
final RBFAT value 𝑌𝑛𝑒𝑤 consists of two components: 𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒 - represent-
ing the determined semi-true RBFAT value, and 𝑌𝑝𝑟𝑒𝑑 - representing the
predicted RBFAT value using the old model. Finally, the final RBFAT
value is calculated using the formula:

𝑌𝑛𝑒𝑤 = 𝜆𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒 + (1 − 𝜆)𝑌𝑝𝑟𝑒𝑑 (1)

For the initial training, only component 𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒 is used. The 𝜆
parameter can take values from 0 to 1, and specifies the percentage
importance of the 𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒 component in the formation of 𝑌𝑛𝑒𝑤. By
using a linear combination of 𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒 and 𝑌𝑝𝑟𝑒𝑑 in the formula for
𝑌𝑛𝑒𝑤 and a range of ⟨0; 1⟩ for the 𝜆 parameter, 𝑌𝑛𝑒𝑤 is always within
the interval ⟨𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥⟩, where 𝑌𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑} and 𝑌𝑚𝑎𝑥 =
𝑚𝑎𝑥{𝑌𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑}
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Fig. 4. The spatio-temporal correction: (1) subsequent samples taken for the calculation occurrence density map, (2) diagram of the calculation occurrence density map, (3)
diagram of the calculation of the corrected number of bees.

2.7. Spatio-temporal correction

The presence of bees at the entrance of the hive is not synonymous
with foraging activity. It is also possible to observe: (1) dead bees,
(2) bees ventilating the hive, and (3) bees performing cleaning tasks,
e.g. removing dead bees from the hive. These patterns can be detected
by analyzing similarities in the location of bees in successively captured
images.

In the context of the conducted research, the described phenomena
make it difficult to correctly determine the end of the daily foraging
activity of bees, because their occurrence can be incorrectly perceived
as ongoing bee foraging. This problem is significant, especially when
determining the automatic time of the end of bee foraging activity. The
use of the naive semi-true target values determination strategy of treat-
ing the last detected bee as the end of bee foraging (semi_true_raw_last)
causes the automatically determined end time of bee foraging to be
later than the true time (when other behavior patterns are present).

In order to reduce the error of the automatically determined time of
the end of bee foraging activity, a spatio-temporal correction algorithm
was proposed. It excludes or reduces the weight of bees, which are
characterized by a similar location and orientation with respect to bees
from previously captured images.

For each time step associated with the acquisition of a new im-
age after prediction by the Mask R-CNN, a binary mask for each
detected bee is obtained. For each binary mask, we compute the
midpoint 𝑀𝑖(𝑥𝑖, 𝑦𝑖) and the orientation 𝜃𝑖, thus obtaining the set of
bee locations [(𝑥1, 𝑦𝑖), (𝑥2, 𝑦2), ...., (𝑥𝑛, 𝑦𝑛)] and the set of bee orientations
[𝜃1, 𝜃2,… , 𝜃𝑛], where 𝑛 is the number of detected bees. The location of
each bee is compared to the actual occurrence density map 𝐷, which
is calculated based on the location of the detected bees in the previous
image. If the location of a bee (𝑥𝑖, 𝑦𝑖) indicates a point with a higher
probability of occurrence (𝐷(𝑥𝑖, 𝑦𝑖) > 𝑇𝑙𝑜𝑐), its weight is reduced relative
to the bees located in an area with a lower probability of occurrence.
The contribution of a correlated bee to the total number of bees in the
image is 𝑇𝑙𝑜𝑐

𝐷(𝑥𝑖 ,𝑦𝑖)
, while an uncorrelated bee – 1. The orientation of the

correlated bee 𝜃𝑖 is then compared to the orientation of the nearest
bee 𝜃𝑛𝑒𝑎𝑟 in the previous image. If |𝜃𝑖 − 𝜃𝑛𝑒𝑎𝑟| < 𝑇𝑜𝑟𝑖𝑒𝑛𝑡, the detected
bee should be considered as dead and is not taken into account when
counting all the bees. Additionally, the nearest bee from the previous
image, to be considered as dead, should be at a distance less than
𝑟𝑜𝑟𝑖𝑒𝑛𝑡. The bee counting with spatio-temporal correction is summarized
in Fig. 4.

After calculating the corrected number of bees for a given times-
tamp, the occurrence density map 𝐷 is updated. The most relevant
(having the highest weight) for the calculation of 𝐷 are the locations of
bees detected in recently captured images. The weights were calculated
by taking into account the differences between the recording time of
the current image and the recording time of the previous image 𝑡𝑑𝑖𝑓𝑓
using the following formula:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑒−𝑡𝑑𝑖𝑓𝑓 ∕𝑎 (2)

The weights decrease exponentially as 𝑡𝑑𝑖𝑓𝑓 increases. A threshold of
weights was set at 𝑤𝑡ℎ𝑟𝑒𝑠ℎ in order to eliminate insignificant instances
concerning map estimation. After obtaining the raw form of the oc-
currence density map, a Gaussian blur of the map, characterized by
the standard deviation for the Gaussian kernel 𝜎𝑙𝑜𝑐 , was applied. The
calculation of the occurrence density map is summarized in Fig. 4.

In this study, 𝑇𝑜𝑟𝑖𝑒𝑛𝑡 = 10◦, 𝑟𝑜𝑟𝑖𝑒𝑛𝑡 = 20 pixel, and 𝑤𝑡ℎ𝑟𝑒𝑠ℎ = 0.01 were
assumed, and the parameter values 𝑎, 𝜎𝑙𝑜𝑐 , 𝑇𝑙𝑜𝑐 were fine-tuned. The
parameter values used for the fine-tuning are listed in Table 1.

Two types of semi-true target values, determined after spatio-
temporal correction, were defined. The 𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒_𝑆𝑇𝐶_𝑙𝑎𝑠𝑡 approach is
connected with the last bee that is observed after removing the bees
with a high location and orientation similarity (most probably dead
bees), and the 𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒_𝑆𝑇𝐶_𝑛𝑜_𝑐𝑜𝑟𝑟 approach is connected with the
last bee for which 𝐷(𝑥𝑖, 𝑦𝑖) < 𝑇𝑙𝑜𝑐 , allowing bees with a high location
similarity (e.g., bees that ventilate the hive) to be excluded.

2.8. Fine-tuning of the methods’ parameters

A summary of the parameters for the proposed methods is shown
in Table 1. These parameters were fine-tuned in successive stages. In
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Table 1
Parameters for the proposed method.

Stage Parameter Description Values

I 𝑚𝑜𝑑𝑒𝑙 Machine learning model used for prediction [‘GradientBoostingRegressor’ (GBR), ‘LinearRegression’
(LR), ‘HuberRegressor’ (HR), ‘BayesianRidge’ (BR),
‘KernelRidge’ (BR), ‘MLPRegressor’ (MLP),
‘FixedThresholdBaseline’ (FTB)]

II 𝑡𝑐ℎ𝑢𝑛𝑘 Size of time window used for prediction [30, 60, 90, 150, 240] min
𝑡𝑏𝑖𝑛 Size of bin used for features accumulation [1, 2, 5, 10, 30] min

III 𝑢𝑠𝑒𝑡𝑒𝑚𝑝
𝑢𝑠𝑒ℎ𝑢𝑚
𝑢𝑠𝑒𝑝𝑟𝑒𝑠𝑠

Flags indicating the use of temperature, humidity, pressure values
during inference

[000, 100, 110, 101, 111]

IV 𝑡𝑡𝑟𝑎𝑖𝑛 Size of time window used to re-fit model [3, 5, 7, 10, 14] days
𝑤𝑡𝑦𝑝𝑒 Type of window used to re-fit model [‘fixed’, ‘landmark’, ‘sliding’]

V 𝑎 Constant used for calculating weights for samples [5, 10, 30, 60]
𝜎𝑙𝑜𝑐 Standard deviation for Gaussian kernel used in blurring of

occurrence density map
[50, 100, 400] pixels

𝑇𝑙𝑜𝑐 Threshold to assess whether bee location similarity is significant [0, 1, 2]

VI 𝑡𝑎𝑟𝑔𝑒𝑡_
𝑣𝑎𝑙𝑢𝑒𝑠_
𝑡𝑦𝑝𝑒

Type of target values used to re-fit model [‘true’, ‘semi_true_raw_last, ‘semi_true_STC_last’,
‘semi_true_STC_no_corr’]

VII 𝜆 Regularization coefficient that determines contribution of
determined semi-true RBFAT value to new RBFAT value

[0, 0.1, . . . , 0.9, 1.0]

Table 2
Settings of subsequent parameter fine-tuning stages for the proposed methods.

Stage 𝑚𝑜𝑑𝑒𝑙 𝑡𝑐ℎ𝑢𝑛𝑘 𝑡𝑏𝑖𝑛 𝑢𝑠𝑒𝑡𝑒𝑚𝑝 𝑢𝑠𝑒ℎ𝑢𝑚 𝑢𝑠𝑒𝑝𝑟𝑒𝑠𝑠 𝑡𝑡𝑟𝑎𝑖𝑛 𝑤𝑡𝑦𝑝𝑒 𝑆𝑇𝐶 𝑎 𝜎𝑙𝑜𝑐 𝑇𝑙𝑜𝑐 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝜆

I var 240 10 1 1 1 7 slid. no – – – true 1
II opt var var 1 1 1 7 slid. no – – – true 1
III opt opt opt var var var 7 slid. no – – – true 1
IV opt opt opt opt opt opt var var no – – – true 1
V opt opt opt opt opt opt opt opt yes var var var semi-true 1
VI opt opt opt opt opt opt opt opt yes opt opt opt var 1
VII opt opt opt opt opt opt opt opt yes opt opt opt opt var

each stage, some of the parameters were fixed (suboptimal), while some
were variable, taking the values given in Table 1. The settings for the
subsequent fine-tuning stages are shown in Table 2. Only data from the
2021 season were used for fine-tuning of the parameters. The selected
optimal parameters were used for validating the method based on data
from the 2022 season.

2.9. Evaluation

The evaluation consisted of comparing the true time remaining until
the end of bee foraging activity 𝛥𝑡𝑡𝑟𝑢𝑒 with the predicted time 𝛥𝑡𝑝𝑟𝑒𝑑 .
The RMSE metric was used to determine the prediction error and was
calculated according to the formula:

𝑅𝑀𝑆𝐸 =

√√√√ 𝑛∑
𝑖=1

(𝛥𝑡𝑖𝑡𝑟𝑢𝑒 − 𝛥𝑡𝑖𝑝𝑟𝑒𝑑 )2

𝑛
(3)

where 𝛥𝑡𝑖𝑡𝑟𝑢𝑒, 𝛥𝑡
𝑖
𝑝𝑟𝑒𝑑 denote the true and predicted time remaining until

the end of bee foraging activity for the ith chunk, and n is the number
of chunks.

The referenced RMSE values for individual days considered data
from 3 three stations, while the RMSE values for the entire 2021 and
2022 seasons considered data from all considered days in the particular
season.

The second measure used to evaluate the models was the coefficient
of determination 𝑅2, which measures how well the model fits the data.
We calculate the coefficient of determination 𝑅2 using the formula:

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇𝑆𝑆

= 1 −

∑𝑛
𝑖=1 (𝛥𝑡

𝑖
𝑡𝑟𝑢𝑒 − 𝛥𝑡𝑖𝑝𝑟𝑒𝑑 )

2

∑𝑛
𝑖=1 (𝛥𝑡

𝑖
𝑡𝑟𝑢𝑒 − 𝛥𝑡𝑡𝑟𝑢𝑒)2

(4)

where RSS, TSS denote the residual and total sum of squares, and 𝛥𝑡𝑡𝑟𝑢𝑒
- the average of the true time remaining until the end of bee foraging
activity.

3. Results and discussion

This section addresses the following topics successively: (1) bee
detection and segmentation using Mask R-CNN; (2) parameter fine-
tuning of the proposed methods; (3) prediction results for consecutive
days of the 2021 and 2022 beekeeping seasons (as averaged RMSE val-
ues over hives for the compared approaches); (4) intra-day prediction
results for selected days (as absolute values of predicted time); (5) the
calculation of occurrence density maps and their use for behavioral
pattern detection; (6) a strategy to combine predictions from different
hives; and (7) the adaptability of the proposed methods for stream
processing.

The first step in implementing the proposed methods was to train
the Mask R-CNN instance segmentation model using labeled data from
the 2021 season. The obtained average precision value 𝐴𝑃50 = 94.5
on an independent test set for bee detection is satisfactory from the
point of view of the addressed problem. The large diversity of the
samples in the training set enabled the model to be robust to varying
bee appearance and size, dense scenes, and overexposure. Exemplary
results for inference by the Mask R-CNN model are presented in Fig. 5,
which also shows the result of determining midpoints and orientations
for the considered samples.

After the determination of the considered features (weather indices,
number of bees for the corresponding times), parameter fine-tuning was
carried out for the proposed method of predicting the time remaining
to the end of the daily bee foraging activity. A summary of the results
from selected stages is shown in Fig. 6. The bar heights in the figure
represent the RMSE prediction error averaged over the hives and the
days during the 2021 beekeeping season.

In stage I, which is related to selecting the regression model for
prediction, it was noted that the machine learning models generally
performed better than the FTB reference model. The GBR (Gradi-
entBoostingRegressor) model achieved the best results and was used
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Fig. 5. Mask R-CNN inference and determination of midpoints (read points) and bee orientations (angle of inclination of the green sections), e.g. samples captured at: (1) 10 a.m.,
(2) 3 p.m..

Fig. 6. Results of the subsequent parameter fine-tuning stages that are related to the selection of: (1) the regression model, (2) the size of the chunk and bin, (3) weather
characteristics (temperature, humidity, pressure), (4) the settings for model re-fitting (type and length of the time window), (5) the type of target values used for re-fitting (with
information about making a correction), (6) the regularization parameter with regards to the calculation of new target values.

in the subsequent fine-tuning stages. In stage II, the optimal chunk
and bin size for pre-processing the time-series data was checked. No
improvement in inference was observed when increasing the chunk
size. Bee activity collected from the last 60 min was sufficient to obtain
optimal results. The parameter values 𝑡𝑐ℎ𝑢𝑛𝑘 = 60 and 𝑡𝑏𝑖𝑛 = 2 were
used for the next stages. The analyses carried out in stage III, which are
related to weather conditions, showed that temperature was the only
important characteristic to use in the prediction. In stage IV, different
settings were checked for the model’s re-fitting. The best results were
obtained with the ‘‘sliding’’ strategy, together with a training window
size of 𝑡𝑡𝑟𝑎𝑖𝑛 = 10. These results are significantly better than when no
re-fitting is applied (‘‘fixed’’ strategy), which proves that re-fitting the
model during the season is necessary to maintain high model quality.
The results also show that older samples included in the ‘‘landmark’’
strategy can be omitted when re-fitting without reducing model ac-
curacy. After choosing the optimal parameters for the spatio-temporal
correction in step V, the prediction error for different approaches for
determining semi-true target values was compared in step VI. The
use of spatio-temporal correction reduced the error by about 23 min
when compared to the results for the 𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒_𝑆𝑇𝐶_𝑛𝑜_𝑐𝑜𝑟𝑟 and the
naive 𝑠𝑒𝑚𝑖_𝑡𝑟𝑢𝑒_𝑟𝑎𝑤_𝑙𝑎𝑠𝑡 approaches. This error was further reduced by

about 6 min (𝑅𝑀𝑆𝐸 = 23.1 min) after applying the regularization
mechanism and when fine-tuning the 𝜆 parameter. Finally, the differ-
ence between the method based on true target values (𝑅𝑀𝑆𝐸 = 18.5
min) and the method based on semi-true target values after the fine-
tuning (𝑅𝑀𝑆𝐸 = 23.1 min) was only about 5 min. This demonstrates
the lack of rationale for expert annotation during the season, and
the possibility of relying on automatically generated semi-true target
values. A summary of the determined optimal values during fine-tuning
can be found in Table 3.

The obtained optimal parameters of the proposed methods were
used for inference in the 2022 season. A summary of the results for the
2021 and 2022 seasons, showing the prediction error for consecutive
observation days and different approaches, is presented in Fig. 7. The
results for the most important approaches are also summarized in
Table 4. The RMSE prediction error values for consecutive days (in

Fig. 7) are the averaged RMSE values taken for each hive, whereas
the RMSE prediction error values for the entire beekeeping season (in
Table 4) are the averaged RMSE values taken for each hive and day of

observation.
In the RMSE charts for the 2021 and 2022 seasons (Fig. 7), it

can be seen that the semi_true_STC_no_corr approach (associated with
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Table 3
Optimal method parameters obtained after parameter fine-tuning.
𝑚𝑜𝑑𝑒𝑙 𝑡𝑐ℎ𝑢𝑛𝑘 𝑡𝑏𝑖𝑛 𝑢𝑠𝑒𝑡𝑒𝑚𝑝 𝑢𝑠𝑒ℎ𝑢𝑚 𝑢𝑠𝑒𝑝𝑟𝑒𝑠𝑠 𝑡𝑡𝑟𝑎𝑖𝑛 𝑤𝑡𝑦𝑝𝑒 𝑆𝑇𝐶 𝑎 𝜎𝑙𝑜𝑐 𝑇𝑙𝑜𝑐 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝜆

GBR 60 2 1 0 0 10 slid. yes 60 100 0 semi_true (STC_no_corr) 0.5

Fig. 7. Summary results for the 2021 and 2022 beekeeping seasons, showing the prediction error RMSE (averaged over hives) for consecutive days of observation and selected
approaches.

Fig. 8. Comparison of the absolute prediction values of the time to the end of bee foraging activity with the true values (ground truth) for the intra-day prediction on selected
days.

Table 4
Comparison of results for selected approaches after parameter fine-tuning for the 2021
and 2022 beekeeping seasons.

Season 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 RMSE [min] 𝑅2

true 18.5 0.958
2021 semi_true_raw_last 52.5 0.800

semi_true_STC_no_corr (our) 23.1 0.930

true 27.0 0.899
2022 semi_true_raw_last 71.2 0.660

semi_true_STC_no_corr (our) 26.5 0.906

automatically generated semi-true target values) is able to maintain a
similar RMSE error level as the true approach (associated with expert-
determined target values throughout the beekeeping season under con-
sideration). In order to better understand the prediction of the model,
it is also useful to analyze the change in prediction as a function
of the true time remaining until the end of bee foraging activity,
as shown in Fig. 8. The figure shows the absolute values of the pre-
dicted time in comparison to the real time (ground truth).

In charts 1–3 in Fig. 8, a significant increase in the RMSE error (rep-
resented as the distance to the ground truth line) cannot be seen with an
increasing true time remaining until the end of bee foraging activity.
The reason for keeping the RMSE constant for large times is due to
the use of the time-to-sunset feature 𝛥𝑡𝑠𝑢𝑛𝑠𝑒𝑡, which has regularization
properties for predictions. Based on data from previous days, the model
is able to initially estimate the end of bee foraging activity, which
manifests itself by keeping the RMSE for large times approximately
constant. The observation of reduced bee foraging activity at the end of
the day results in a reduction of the RMSE error, which can be observed
in the 0–60 min range for charts 1 and 2, and in the 0–120 range for
chart 3.

The occurrence density maps used in this study not only made it
possible to increase the veracity of the semi-true target values, but
also allowed different patterns of bee behavior to be observed at the
entrance to the hive. Selected bee behavior patterns are shown in Fig. 9.

Dead bees were observed on the occurrence density map as areas of
a small area, and had a high probability of occurrence (2b in Fig. 9).
Ventilation of the hive by bees could be observed as areas of a larger
area, and had an increased probability close to the hive entrance (1b
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Fig. 9. Bee behavior patterns (1a, 2a) and corresponding occurrence density maps (1b, 2b): (1) hive ventilation by bees, (2) a dead bee.

in Fig. 9). Density maps provide much more information than the raw
number of bees found at the hive entrance. They allow spatio-temporal
information to be compressed and stored as a single 2D matrix, which
enables it to be used successfully in stream data processing.

In our study, prediction was performed for each hive separately.
In general, apiaries may consist of many hives, and it is necessary to
consider in the final system how to combine predictions from many
hives. The most intuitive strategy is the least favorable case, which is
the hive for which the predicted remaining time is the longest.

The methods proposed in this work provide opportunities for their
easy adaptation to stream processing. The most computationally ex-
pensive step in the presented approach is bee segmentation using
Mask R-CNN. In order to increase the frequency of prediction, YOLO
(Redmon et al., 2016; Jocher et al., 2020) models that are adapted
for real-time prediction can be considered in the future for object
detection. The ‘sliding’ approach will allow the accumulation of only
the most recent data, and the occurrence density maps will compress
the information about changes in the position of the bees in subsequent
images.

4. Conclusions

In our study, a method to predict the remaining time of bee foraging
activity, taking into account bee activity, weather conditions, and time
to sunset, was proposed.

Multistage parameter tuning of the proposed method enabled the
optimal settings for minimizing prediction errors to be selected. GBR
(Gradient Boosting Regressor) turned out to be the best regression
model. Taking into account changes in temperature resulted in a de-
crease in the prediction error, with no effect on prediction errors being
observed when humidity and pressure values were considered. The
‘sliding’ strategy was found to be the most appropriate when updating
the training set.

The observation of significant changes in the nature of the data
during the beekeeping season necessitated the proposal of mechanisms
to maintain the quality of the model. The proposed mechanism of
spatio-temporal correction, periodic model re-fitting, and regulariza-
tion enabled significant error reduction for the methods based on

automatically generated semi-true target values, and also meant that it
was reasonable to replace the true target values with semi-true target
values. The evaluation results (RMSE = 23.1 min for 2021 and RMSE
= 26.5 min for 2022) show that the proposed method of predicting the
remaining time of honey bee foraging activity has great potential for
application in a real-world scenario. The study also proves that it is
possible to maintain high model quality throughout the season without
the need for additional time-consuming annotation by an expert.

The proposed method to predict the remaining time of bee foraging
can be a valuable component of a comprehensive advisory system for
the planning of spraying and for exchanging information between farm-
ers and beekeepers. The developed solution can help in the planning of
advance spraying and transparently assess the end of bee foraging on
a given day.

Future work should include: (1) analysis of in-field bee flight activ-
ity and the checking of the relationship of this activity to hive entry
activity; (2) analysis of bee behavior patterns at the hive entrance
using occurrence density maps or new feature representations; (3)
the expanding of the dataset with more samples, especially data for
different bee species and synthetic images; and (4) the development of
a multifaceted system to prevent bee poisoning that is integrated with
the methods proposed in this article.
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A B S T R A C T

Recently, there has been an increase in the popularity of breeding insect larvae (Tenebrio Molitor and Hermetia
Illucens). Dimensioning larvae and observing their growth over time is a key component of monitoring insect
larvae breeding. Due to the high number of larvae in the analysed images (dense scenes) and their overlap,
determining the size distribution of larvae in real-time is a research challenge. In this work, we proposed an
efficient method for determining the size distribution of larvae based on a regression convolutional neural
network (RegCNN) and knowledge transfer. Larval width was chosen as the main measured larval parameter
due to its ease of registration in dense scenes. The larval length L and its volume V were determined indirectly
using determined regression models L(width) and V(width). RegCNN training was performed using knowledge
transfer to omit the time-consuming labelling of multiple images containing larvae at different growth stages.
Training used quartiles (lower quartile, median, upper quartile) of larval widths determined using improved
multistage larvae phenotyping based on classical computer vision methods and larvae segmentation model.
Finally, our approach required labelling only a few images for calibration purposes. The study evaluated
different RegCNN architectures: pre-trained on ImageNet (ResNet, EfficientNet) and custom with a reduced
number of model parameters. The proposed method was validated for the distribution of larvae characterised
by width quartiles taking values from 1.7 mm to 3.1 mm, corresponding to an average larval length of 16 mm
to 28 mm. For the best evaluated model (ResNet18) in larval width estimation, we obtained RMSE = 0.131 mm
(average RMSE = 1.12 mm for larval length estimation) and 𝑅2 = 0.870 (coefficient of determination) with an
average inference time of 0.30 s/box. The best proposed custom architecture (TenebrioRegCNN_v3) achieved
slightly lower accuracy (RMSE = 0.134 mm, 𝑅2 = 0.864) with about five times lower inference time per
image than ResNet18. The quantitative results confirmed the proposed method’s potential to be applied in
real breeding conditions.

1. Introduction

The breeding of insect larvae (mainly Tenebrio Molitor [TM] and
Hermetia Illucens [HI]) is becoming an increasingly important part of
the agri-food sector in Europe (Grau et al., 2017). The products ob-
tained after breeding can be used for the production of protein feed (lar-
vae) (Grau et al., 2017), bio-packaging (chitinous moult) (Priyadarshi
and Rhim, 2020) and bio-fertilisers (frass) (Houben et al., 2020). Due
to a decision by the European Commission in May 2021, mealworm
larvae (Tenebrio Molitor) have also been authorised as a novel food,
allowing them to be consumed by humans (EFSA Panel on Nutrition
et al., 2021).

TM and HI insect breeding is characterised by large-scale pro-
duction, which necessitates automation ( Kröncke et al. (2020)). An

∗ Corresponding author.
E-mail address: pawel.majewski@pwr.edu.pl (P. Majewski).

important element supporting the breeding of insect larvae is mon-
itoring breeding to detect anomalies, which can be static (e.g. dead
larvae, pests) or temporal (e.g. inconsistency of larval growth with the
reference model of larval growth). Majewski et al. (2022) proposed a 3-
module multipurpose system for monitoring Tenebrio Molitor breeding.
The instance segmentation module (ISM) was responsible for the detec-
tion of the growth stages of the Tenebrio Molitor (larva, pupa, beetle)
and anomalies in the form of dead larvae and the pest Alphitobius
diaperinus. The semantic segmentation module (SSM) allowed the deter-
mination of the percentage coverage of the breeding box by chitinous
moults, feed and frass. The larval phenotyping module (LPM) allowed
the estimation of larval size parameters (length, volume) for individual
larvae and the whole population. The authors emphasised that the LPM
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module was the bottleneck of the entire system due to the relatively
long inference time, which mainly consisted of: (1) segmentation of
larvae using Mask R-CNN (He et al., 2017), (2) skeletonisation of
larvae, (3) division of larvae into segments, (4) calculation of features
for segments, and (5) classification of determined segments. LPM in the
proposed form could not be applied under large-scale breeding condi-
tions for real-time prediction. Adapting the larval phenotyping module
to large-scale breeding conditions by significantly reducing inference
time while maintaining adequate model accuracy was one of the main
motivations for conducting the research described in this publication.
Baur et al. (2022) proposed an indirect method of monitoring the
growth of the Tenebrio Molitor larvae by recording changes in the size
of larva segments. The solution included grayscale image thresholding,
segmentation of the larvae using the watershed algorithm, classification
of the extracted segments into four classes (good segments, medium
segments, bad segments, and artefacts) using an artificial neural net-
work, and dimensioning of the good segments. The solution developed
may have problems at the early stages of the Tenebrio Molitor growth,
when segments may not be well visible. Through the multistage nature
of the solution discussed, it will also be difficult to adapt it to new data
— an end-to-end solution would be better.

Apart from these two cited papers, to the best of our knowledge,
researchers have not addressed the problem of monitoring the growth
of insect larvae using computer vision and machine learning methods.
However, the problem of size parameter estimation, weight estimation
and animal growth monitoring has been addressed in the literature
in the context of cattle (Wang et al., 2023), pigs (Bhoj et al., 2022),
poultry (Nyalala et al., 2021) and fish (Li et al., 2020). One can find
methods based on both classical computer vision methods (Weber et al.,
2020; Pezzuolo et al., 2018) and newer approaches based on deep
neural networks (Zhang et al., 2021; Gjergji et al., 2020; Cang et al.,
2019). Classical methods are based on multistage image processing that
incorporates algorithms based on specific domain knowledge — often
in the form of a set of rules. The advantage of these methods is that
they are transparent and easy to interpret the results obtained. On
the other hand, these methods are difficult to adapt quickly when the
nature of the data changes. Regression convolutional neural networks
(RegCNN) are a very promising approach to the problems in question
for estimating geometric quantities and weights, providing an end-to-
end solution. The adaptation of RegCNN models to new data is based
on repeated training for a new set of annotated data.

Konovalov et al. (2019) proposed an automatic method for estimat-
ing fish weights from 2D images. The first approach was based on (1)
segmentation of fish from images using the LinkNet-34 model (Chaura-
sia and Culurciello, 2017) and (2) calculation of fish weights using a
determined linear regression model for the relationship between weight
and area of a binary mask. In the second approach, the segmentation
part was omitted, and the weight was estimated directly from the image
of the segmented fish using regression CNNs (LinkNet-34 adapted to
the regression problem). Cang et al. (2019) developed a method for
estimating pig weights from depth images of the back of pigs in top
view. An extension of the Faster R-CNN model (Ren et al. (2015))
was proposed with a regression branch for determining the estimated
pig weight. Training simultaneously minimised the loss associated
with the recognition, localisation and weight estimation. Zhang et al.
(2021) proposed a multiple output regression convolutional neural
network (RegCNN) for estimating various size parameters and weight
for pigs from depth images. The minimised mean squared error (MSE)
loss during training considered body weight and five size parameters:
shoulder width, shoulder height, hip width, hip height, and body
length. RegCNN was developed by adapting pre-trained (on ImageNet)
backbones to the regression task. DenseNet201 (Huang et al., 2017),
ResNet152V2 (Yu et al., 2018), Xception (Chollet, 2017), and Mo-
bileNet V2 (Sandler et al., 2018) were used. In Gjergji et al. (2020),
the weight of beef cattle was estimated from 2D images. The method
assumed a combination of recurrent attention model (Mnih et al., 2014)

with a convolutional neural network based on the EfficientNet-B1 (Tan
and Le, 2019) backbone. The use of an attention mechanism was argued
to be more attentive to shape than texture.

From the work mentioned, it can be seen that there are significant
differences between the phenotyping of insect larvae and that of other
animals. In particular, it should be noted that the breeding of the meal-
worm takes place in boxes with a high density of individuals, resulting
in dense scenes in the collected images. In the works cited, the strategy
of one individual per image (e.g. one cattle in a sow stall) was used.
Dense scenes result, on the one hand, in the difficulty of extracting
uncovered individuals from the image and, on the other hand, in a sig-
nificant number of individuals to be analysed. Performing the labelling
of images containing dense scenes is extremely time-consuming. For
this reason, when developing methods for the phenotyping of insect
larvae, special attention should be paid to improving the development
process of the methods (in particular reducing the time spent on the
manual labelling of samples). It was not observed that this problem
was addressed in the described works.

The problems of data augmentation and speeding up the annotation
process are present in the literature in the context of other application
problems. The topic of generating synthetic images using a simulation
approach is worth noting. In Dolata et al. (2021), generated images
representing dense scenes of potatoes were used to train a regression
model for potato size distribution estimation, reducing the impact of
object overlaps and perspective distortion on the results. Articles Abbas
et al. (2021), Lu et al. (2019), on the other hand, have shown that the
use of additional images generated using GAN (Generative Adversarial
Network) (Goodfellow et al., 2014) in training deep convolutional
neural network classifiers can contribute to the performance of the
developed models. A rather interesting research direction in accelerat-
ing data annotation is pseudo-label-based self-training, which involves
using the prediction of a weak model (trained on a relatively small
number of manually labelled samples) as labels to train a subsequent
model. Weak model inference is performed on large sets of unlabelled
samples. This approach was used in Chaitanya et al. (2023) for the
problem of semantic segmentation of medical images and in Shin et al.
(2020) in the context of the domain adaptation problem for semantic
urban scene understanding. The knowledge transfer mechanism has
been used successfully to reduce the dimensionality of neural networks
through teacher–student training (Sharma et al., 2018; Bergmann et al.,
2020). In the context of the problem of analysing images of mealworms
representing dense scenes addressed in this paper, it is important to
consider the possibility of using an analogous mechanism to share
knowledge between knowledge-based solutions (e.g. multistage pheno-
typing using computer vision) and end-to-end solutions, which could
be provided by a regression convolutional neural network.

Considering the above, our proposed solution is a regression convo-
lutional neural network (RegCNN) trained using a knowledge transfer
mechanism between the RegCNN and an improved multistage lar-
vae phenotyping method (based mostly on classical computer vision).
Thanks to this approach and the use of automatically generated syn-
thetic images at the step of developing an instance segmentation model
of larvae in multistage phenotyping, it is possible to limit the labelling
to only a few samples for calibration purposes. A machine vision sys-
tem specifically designed for monitoring the breeding of insect larvae
should also be recognised as an important element of the presented
research.

2. Materials and methods

2.1. Definition of the problem

The problem under consideration is to propose an efficient method
for phenotyping populations of insect larvae characterised primarily
by (1) a small estimation error of size parameters (quartiles of width,
length and volume of larvae), (2) a short processing time independent
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Fig. 1. Scheme for the proposed solution: (a) determination of the linear regression models length(width) and volume(width), extraction of single larvae images, and generation
of synthetic images, (b) development of a larvae segmentation model for multistage phenotyping, (c) correction factor determination for width quartiles calculation, (d) multistage
phenotyping for selected samples, (e) training of a regression convolutional neural network using knowledge transfer, (f) prediction using a developed regression convolutional
neural network.

of the number of larvae in the breeding box, and (3) ease of imple-
mentation in new breeding or adaptation to new breeding conditions.
One larvae population is associated with one breeding box, where the
larvae are located during breeding. The idea of the solution is presented
in Fig. 1, and the steps of the proposed solution are discussed in detail
in the following sections.

2.2. Data acquisition

Acquisition of images of the breeding boxes with insects was carried
out in the conditions of industrial breeding, using a machine vision
system placed on an automatic robot servicing the breeding. A real
photo of the developed machine vision system is shown in Fig. 2.
Images were acquired using the colour camera GOX-12401C (JAI,
Denmark) with a resolution of 4096 𝑥 3000 pixels and a lens of 12 mm

focal length. The camera was placed at a distance allowing for imaging
of its entire surface. The camera’s distance from the box’s bottom
surface was 487.5 mm. Those imaging conditions resulted in resolution
of 0.143 mm/pixel. The acquisition area was illuminated with cool
white LED strips that were triggered only for a short time of camera
exposure to minimise the influence on the insects. The optical path was
isolated by black covers to eliminate unwanted reflections. All optical
elements were placed behind a glass sheet and enclosed in a housing
to protect against dust occurring in breeding conditions.

The obtained raw images, before further processing, were subjected
to the processes of compensation of shading resulting from insufficient
lighting of the breeding box and removal of distortion produced by the
lens used. Shading was compensated by means of a map of underex-
posed areas of the image, determined using a grey pattern. Distortion
was removed using a chessboard pattern (Tsai, 1987).
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Table 1
Description of the defined datasets.

Dataset Description

D1 10 images of size 4096 × 3000 containing isolated larvae at different growth stages. Some of the larvae in these
images were manually annotated with a polygon annotation, resulting in 266 labelled larvae. Examples of images from
the D1 dataset can be found in Fig. 1a.

D2 12 images of size 512 × 512 (extracted tiles from the whole images of size 4096 × 3000) containing larvae under real
breeding conditions at different growth stages. Three subsets of samples of 4 images, each representing different
growth stages of larvae characterised by the median length of the larvae, were extracted, namely: (18–23 mm),
(23–27 mm), (27–32 mm). All larvae in the images in this dataset were manually annotated with polygon annotation
type, resulting in a total of 1021 annotations. Examples of images from dataset D2 are in Fig. 1c.

D3 739 images of size 1024 × 1024 (extracted tiles from the whole images of size 4096 × 3000) containing larvae under
real breeding conditions at different growth stages and with different larval densities. From this dataset, 489 images
were selected for the training set (D3.TRAIN), 206 images for the first test set (D3.TEST.1) and 44 images for the
second test set (D3.TEST.2). The D3.TEST.1 collection was used to validate the knowledge transfer between the
multistage phenotyping method and the CNN regressor. The D3.TEST.2 collection was used to validate the accuracy of
phenotyping with the CNN regressor. The target values in set D3.TEST.1 were the quartiles obtained during multistage
phenotyping. The target values in set D3.TEST.2 were quartiles calculated from manually marked larvae in the images.
The total number of annotations in the D3.TEST.2 set was 1977. Examples of images from the D3 dataset can be
found in Fig. 1d and 1e, and in Fig. 3.

Fig. 2. The real photo of the developed machine vision system.

2.3. Data

To allow the development of the proposed models and their eval-
uation, three datasets were defined: (D1) a dataset containing the
images used to determine the linear regression models length(width)
and volume(width) and to extract images of individual larvae to gener-
ate synthetic images (Fig. 1a), (D2) a dataset containing the images
used to determine the correction factor values and to evaluate the
larvae segmentation model (Fig. 1c), (D3) a dataset containing the
images used to train the regression convolutional neural network using
knowledge transfer and to validate this model (Fig. 1d and Fig. 1e).
Table 1 presents a detailed description of the defined datasets.

The images in datasets D2 and D3 represented square tiles with
sizes of 512 × 512 for D2 and 1024 × 1024 for D3, respectively.
Researchers commonly use the 512 × 512 tile size for solving instance
segmentation problems with Mask R-CNN (He et al., 2022; Shermeyer
et al., 2021; Wu et al., 2020). In the case of the system proposed in this
publication, this size was a compromise between longer computation
time (large number of small-sized tiles) with probability of errors on
the edges of the tiles and the ability to detect objects in dense scenes
(limited number of proposals). For the phenotyping task with the CNN
regressor, it was decided to increase the size to 1024 × 1024 to increase
the probability of finding the minimum number of larvae (𝑛𝑚𝑖𝑛) in a
given area. The parameter 𝑛𝑚𝑖𝑛 was introduced to avoid the borderline
situation where phenotyping was done for an image containing no
larvae or too few larvae for good-quality statistics. The value of the

parameter 𝑛𝑚𝑖𝑛 was set to 10. The process of evaluating tile relevancy
and the phenotyping procedure when the number of larvae is less than
𝑛𝑚𝑖𝑛 were explained in more detail in the following sections of the
publication.

The images from the D3 dataset were extracted at random locations
from the raw images of mealworm boxes. These images were also
manually checked for the presence of at least 𝑛𝑚𝑖𝑛 larvae to ensure their
relevancy. The D3.TRAIN and D3.TEST.1/D3.TEST.2 subsets were com-
pletely independent of each other. Independence was ensured at the
level of the different breeding boxes. For the training set (D3.TRAIN),
16 boxes were selected, while 8 boxes were selected for the test set
(D3.TEST.1 and D3.TEST.2). Examples of extracted tiles from the D3
dataset are shown in Fig. 3.

The images from datasets D2 and D3 were from a long-term feed-
ing experiment conducted in October-November 2022. The growth of
mealworm larvae in selected breeding boxes was monitored during this
experiment.

2.4. Improved multistage phenotyping of larvae

A distinctive characteristic of the improved multistage phenotyping
method described in this chapter is that it is mostly based on classical
computer vision methods. Phenotyping according to this approach was
used to (1) determine pseudo target values for training a CNN regressor
using knowledge transfer (Fig. 1d) and (2) to determine the linear
regression models length(width) and volume(width) (Fig. 1a). The term
’pseudo target values’ refers to the values obtained using the improved
multistage phenotyping method. The accuracy of larvae segmentation
influenced the accuracy of ’pseudo target values’. The term ’true target
values’ will be used later in this publication to define the case where
larvae were manually marked on the images.

Phenotyping can be carried out for a population of larvae (under-
stood as all larvae contained in a single breeding box) or for individual
larvae. Phenotyping a population of larvae involved determining the
quantities that characterise the distribution of size parameters of larvae,
i.e. the lower quartile (Q1), median (Q2) and upper quartile (Q3) for
width, length and volume. To obtain size parameters for individual lar-
vae, the first step was to extract individual larvae from the image using
the instance segmentation model. In the next step, size parameters were
determined for each larva using classical computer vision methods.

The basis for phenotyping individual larvae was a binary mask
obtained after the segmentation of larvae, which precisely defines
(pixel-wise) the area in the image where the selected larva was located.
For further consideration, let us define two sets of pixels: the set of
pixels included in the binary mask and the set of pixels contained in the
contour of the binary mask. Phenotyping of individual larvae consisted
of a couple of steps, which will be described in the next paragraphs. The
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Fig. 3. Example images with corresponding quartiles of larvae width: lower quartile Q1, median Q2 and upper quartile Q3.

next steps of improved multistage phenotyping of individual larvae are
shown in Fig. 4.

In the proposed improved multistage method for phenotyping single
larvae, a customised method for determining the larval skeleton was
used to remove the observed problems occurring with determining
the skeleton using the built-in skeletonisation method from the scikit-
learn library (Zhang and Suen, 1984; Pedregosa et al., 2011), as used
in Majewski et al. (2022). The aforementioned standard skeletonisation
method (Zhang and Suen, 1984) was based on sequentially removing
contour pixels. This approach to skeletonisation resulted in a shorter
skeleton, i.e. its ends were not at the points of the original contour.
On the other hand, the method was sensitive to local noise, and the
delineated skeleton was not smooth. For some samples, it was also
possible to observe a problem with a significant change in orientation
at the ends of the skeleton and a skeleton looping phenomenon.

The first step in phenotyping individual larvae was to select a
random point inside the binary mask at a certain distance from the
contour. This distance was defined as 𝑑𝑐𝑜𝑛𝑡𝑜𝑢𝑟, and the selected point
as the initial point. Then, we run a straight line through the initial
point with such a slope that the line passed through as many pixels
of the binary mask as possible (let us call such a line an auxiliary
line). In the next step, we determined a straight line perpendicular to
the auxiliary line and simultaneously passing through the initial point.
Let us call the slope thus determined the initial slope of the straight
line perpendicular to the skeleton. The points of intersection of the
straight line perpendicular to the skeleton and the contour determined
the section perpendicular to the skeleton. The midpoint of this section
specified the skeleton point. The first skeleton point obtained was called
the initial skeleton point. The determination of the initial point, the line
perpendicular to the skeleton of the initial slope, and the initial point
of the skeleton are shown in Fig. 4b.

Further skeleton points could be obtained by shifting the straight
line perpendicular to the skeleton along the skeleton by 𝑑, which re-
sulted in a change in the intercept value in the straight line equation by
𝛥𝑏 = 𝑑∕|𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛(𝑎𝑠𝑘𝑒𝑙))|. Including in the formula the local orientation
of the skeleton, expressed as the slope of 𝑎𝑠𝑘𝑒𝑙, made it possible to obtain
skeleton points approximately equidistant from each other by a value
equal to the constant 𝑑. Moving a straight line perpendicular to the
skeleton was done until the new line no longer had common points with
the binary mask. In subsequent iterations of the proposed algorithm,
the local orientation of the skeleton characterised by the slope 𝑎𝑠𝑘𝑒𝑙
was updated. A selected number of previously determined skeleton
points 𝑛𝑠𝑘𝑒𝑙 was used to calculate 𝑎𝑠𝑘𝑒𝑙. Determination of consecutive
skeleton points by moving a line locally perpendicular to the skeleton
is presented in Fig. 4c.

Obtaining all skeleton points required repeating the procedure for
the two directions. The first direction was determined by shifting a
straight line perpendicular to the skeleton by +𝛥𝑏, while the second

direction was determined by −𝛥𝑏. The determination of the skeleton
points for both directions is shown in Fig. 4c and 4d. After obtaining
the set of points composing the skeleton 𝑆 ∈ (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) we can
calculate the length of the larva as the sum of the lengths of the sections
between consecutive points of the skeleton from the formula:

𝐿 = 𝑘
𝑛−1∑
𝑖=1

𝑙(𝑠𝑖+1, 𝑠𝑖) = 𝑘
𝑛−1∑
𝑖=1

√
(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 (1)

The coefficient 𝑘 is a constant that converts pixels to millimetres.
The width of the larva was calculated as the median of the lengths

of the sections perpendicular to the skeleton contained in the area
of the binary mask. The corresponding points of the contour deter-
mined the sections’ boundaries defining the larva’s width. The sections
determining the local width of the larva are highlighted in red in
Fig. 4e.

The volume of the larva was determined from the formula proposed
in Majewski et al. (2022), where it was assumed that the volume of the
larva could be approximated by the sum of the volumes of cylinders of
height 𝑙𝑖 and diameter 𝑑𝑖, where 𝑙𝑖 is the length of the selected section
of the skeleton and 𝑑𝑖 is the width of the larva at the chosen point of
the skeleton. A correction factor 𝑐 was also introduced in the formula,
the value of which was determined experimentally. The formula for the
volume of a single larva is as follows:

𝑉 = 𝑘3𝑐
𝑛−1∑
𝑖=1

𝜋
4
𝑑2𝑖 𝑙𝑖 (2)

The following values of constants were assumed in the study:
𝑑𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 5 pix, 𝑑 = 5 pix, 𝑛𝑠𝑘𝑒𝑙 = 5, 𝑘 = 0.143 mm∕pix, and
𝑐 = 0.58. With the chosen value of 𝑑𝑐𝑜𝑛𝑡𝑜𝑢𝑟, there were no undesirable
boundary phenomena and the determined initial points allowed the
correct determination of the initial skeleton points. By increasing the 𝑑
parameter, the skeleton determination time can be reduced; however,
with too large values, information on the local orientation of the
skeleton can be lost, forcing a compromise to be found for the value
of this parameter. The parameter 𝑛𝑠𝑘𝑒𝑙 is responsible for the smoothing
mechanism of the skeleton. With 𝑛𝑠𝑘𝑒𝑙 = 1, smoothing does not occur,
and the method is sensitive to local noise. As with the 𝑑 parameter,
care must be taken with increasing the value of the 𝑛𝑠𝑘𝑒𝑙 parameter
too much so that the effect of local orientation on the determined
skeleton is appropriate. The parameter 𝑘 is related to the developed
machine vision system and was determined experimentally using a
calibration standard of known dimensions. The value of the parameter
𝑐 was determined experimentally in the article Majewski et al. (2022).

2.5. Determination of the linear regression models length (width) and
volume (width)

The width of the larvae was chosen as the main and directly mea-
sured parameter of the larvae because of the ease of registration of this
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Fig. 4. Scheme for multistage phenotyping of single larvae: (a) image of a larva extracted from an image using a binary mask obtained after instance segmentation, (b) determination
of the initial point, the line perpendicular to the skeleton with the initial slope and the initial point of the skeleton, (c) determination of successive skeleton points by moving a
line locally perpendicular to the skeleton for the first part of the larvae, (d) determination of successive skeleton points for the second part of the larvae, (e) determination of the
skeleton of the larva to calculate the length of the larva and a set of sections locally perpendicular to the skeleton to calculate the width of the larva.

dimension in dense scenes. However, from the breeder’s point of view,
the length parameter is easier to perceive. On the other hand, when
determining the volumetric (or mass) gains of larvae during growth,
larval volume is a more appropriate parameter. To allow indirect
calculation of length and volume based on the measured width of

larvae, the linear regression models length (width) and volume (width)
were determined.

Linear regression models length (width) and volume (width) were
determined using larvae extracted from images from the D1 dataset,
resulting in 266 points for the linear regression models determination.
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Fig. 5. The next steps in the development of the larvae segmentation model for multistage phenotyping: (a) training the model on generated synthetic images with object masks
based on objects extracted from images from dataset D1, (b) training the model on generated synthetic images with object masks based on objects extracted from images from
dataset D3, and (c) training the model on real images with object masks (pseudo labels) based on images from dataset D3.

The larvae were sized using the method described in Section 2.4. Based
on the previously obtained points, a linear regression model was de-
termined for the length(width) relationship and a degree-3 polynomial
regression model for the volume (width) relationship. In determining
the parameters of the regression model, it was assumed that the coef-
ficients should have positive values. The scheme for determining the
linear regression models length (width) and volume(width) is shown
in Fig. 1a.

2.6. Extraction of single larvae images and generation of synthetic images

The basic element of multistage phenotyping of larvae is their
segmentation using the Mask R-CNN instance segmentation model. The
development of such a model for the problem under consideration
requires a set of labelled images. Labelling real images is very time-
consuming due to the dense scenes. The solution to this problem is
synthetic images with automatically generated labels. The synthetic
image generation method uses previously prepared pools containing
individual larvae images and involves randomly placing selected in-
stances from the pool on the background image. The generation process
is parameterised by the possible degree of coverage of neighbouring

instances and the number of instances to be placed in the image.
The synthetic data generation approach for training the instance seg-
mentation model was described in more detail in Majewski et al.
(2022).

In the described study, the pool of instances consisted of larvae
extracted from images from the D1 dataset — a total of 266 instances.
Fig. 1a shows examples of synthetic images and automatically gen-
erated labels. The synthetic images were the basis for training the
initial larvae segmentation model, which was improved in subsequent
stages. The approach for developing the larvae segmentation model is
described in the next Section 2.7.

2.7. Development of a larvae segmentation model for multistage phenotyp-
ing

To accelerate the process of developing the larvae segmentation
model, a original solution was proposed that required only a little user
effort for labelling. The solution described in this chapter consists of
three steps in which the efficiency of the larvae segmentation model
was sequentially increased. The steps are shown in Fig. 5.

The basis of our solution was a pool of larvae instances extracted
from images from the D1 dataset (266 instances in total). The larvae
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images from the pool were used to generate synthetic data, as described
in Section 2.6. The instance segmentation model obtained in step one
(Fig. 5a) was trained on 200 generated synthetic images. The object
pool used in step one consisted of 266 instances.

In step two (Fig. 5b), the inference was performed on the D3.TRAIN
dataset using the model trained in step one, obtaining larval mask
proposals for 489 images. Assuming a confidence score threshold of
50% and basic assumptions about the desired instance size, object
pools were supplemented with new relevant larvae instances. The
synthetic data generation process was repeated for the updated object
pool, which consisted of about 65,000 larvae instances at this stage.
The 1,000 generated synthetic images were used to train the instance
segmentation model.

In step three (Fig. 5c), the inference was again performed on the
D3.TRAIN dataset using the model trained in step two. This time, the
extraction of individual larvae from the images was abandoned. The
predictions of the previous model were treated as real labels, and the
automatically labelled real images were used to train the model. In step
three, the synthetic images from step two were also used to train the
larvae segmentation model. The training set of samples contained both
real and synthetic images.

The research used the Mask R-CNN (He et al., 2017) model with
the ResNet101 backbone (He et al., 2016) developed for the instance
segmentation problem. The Mask R-CNN implementation from the
detectron2 library (Wu et al., 2019) was used. In each step, training
was performed for 1600 epochs.

The number of synthetic images for the described experiment was
chosen considering the number of objects in the object pool, i.e. each
object had to appear at least once in the generated synthetic image,
and the possibility of simulating different levels of larval density in
the image. The selected number of epochs was sufficient to achieve
adequate accuracy of the models, i.e. increasing the number of epochs
did not noticeably contribute to improving the results on the validation
set.

2.8. Correction factor determination for width quartiles calculation

The problem of detecting small objects by deep learning object
detection (instance segmentation) models is often highlighted in the
literature (Liu et al., 2021). In the context of our study, the possible dif-
ferent accuracy of the larvae segmentation model depending on the size
of the instance can have a significant impact on the results obtained.
To prevent the described problem, the calculation of a correction factor
representing the values of the weights when calculating the larval width
quartiles was proposed. The purpose of the correction factor was to
determine the influence of a larva of a certain width on the value of
the calculated quartile. It is expected that the values of the correction
factor will decrease as the width increases. A diagram summarising the
method for determining the correction factor as a function of larval
width is shown in Fig. 1c.

The basis for calculating the correction factor was the D2 dataset de-
scribed further in Table 1. The D2 dataset contained manually labelled
larvae instances, allowing the calculation of the larval width histogram
for ground truth. The dimensioning was carried out according to the
method described in Section 2.4. On the other hand, a histogram
was also determined for the predictions obtained after inference using
the larvae segmentation model (Mask R-CNN model). The inference
was performed for RGB images from the D2 dataset. Each bar in the
determined histograms represented the number of larvae characterised
by a width whose value is within a certain range. Let us denote ℎ𝑖𝐺𝑇
as the 𝑖th histogram bar for ground truth and similarly ℎ𝑖𝑃 as the 𝑖th
histogram bar for prediction. We define the correction factor for the 𝑖th
width interval (bar) as 𝑐𝑖 = ℎ𝑖𝐺𝑇 ∕ℎ

𝑖
𝑃 . For the border case ℎ𝑖𝑃 = 0, ℎ𝑖𝑃 = 1

should be taken. The correction factor outside the considered width
range assumes boundary values — the values of the correction factor
for the first and last width range. Note that in the case ℎ𝑖𝐺𝑇 = 𝑐𝑜𝑛𝑠𝑡
decreasing ℎ𝑖𝑃 results in increasing 𝑐𝑖, which can be analysed as a higher
weight when calculating width quartiles.

2.9. Multistage phenotyping for selected samples

The main aspect addressed in our publication is the knowledge
transfer between improved multistage larvae phenotyping based on
classical computer vision methods (described in Section 2.4) and a
regression convolutional neural network (RegCNN). The knowledge
transfer implied training RegCNN on values obtained from multistage
phenotyping of larvae for samples from the D3.TRAIN dataset. For
this purpose, the values of the lower quartile (Q1), median (Q2) and
upper quartile (Q3) of larval width were determined for each sample
from the D3.TRAIN dataset. When determining the quartiles values,
the observations from the Section 2.8 section were considered, and
correction weights were introduced when calculating the quartiles. This
part of the proposed solution can be found in Fig. 1d.

2.10. Development and training of a regression convolutional neural net-
work using knowledge transfer

The regression convolutional neural network (RegCNN) proposed
in this study allowed the direct determination of values of larval
width quartiles (Q1, median, Q3) without analysing individual larvae
separately. The input to RegCNN was a 800 × 800 RGB image. The
output from RegCNN was the values of three quartiles of the larvae
width. A scheme of this step of the proposed solution can be found in
Fig. 1e.

During RegCNN training, the loss represented by the MSE (mean
squared error) was minimised. For training RegCNN, images from the
D3.TRAIN dataset were used. Before training, their size was reduced
from 1024 × 1024 to 800 × 800. Deep convolutional neural net-
work architectures pre-trained on ImageNet (Krizhevsky et al., 2017)
were evaluated: ResNet18, ResNet50, ResNet101 (He et al., 2016),
EfficientNet-b0, EfficientNet-b4 (Tan and Le, 2019), MobileNetv2 (San-
dler et al., 2018). Customised CNN architectures with reduced complex-
ity have also been proposed.

For pre-trained models, fine-tuning was performed for all model
weights (for both CNN and FC parts). In addition to the input layer in
the FC, where the number of neurons depends on the type of backbone
used, and an output layer containing three neurons (three quartiles of
the larval width), three hidden layers were proposed. Depending on
the number of neurons in the input layer, the numbers of neurons in
the hidden layers were: for 512: [256, 128, 64], for 1024/1280: [512,
256, 128], for 1792/2048/4096: [1024, 512, 128]. A ReLU activation
function was applied between successive layers in the FC. A scheme for
the RegCNN with a pre-trained backbone structure used for the problem
posed is shown in Fig. 6a.

For the custom RegCNN architecture, the model consisted of convo-
lutional blocks and an FC block. The convolutional block consisted of
a convolutional layer with a defined number and size of convolutional
filters, ReLU activation and an average pooling layer with kernel_size=2
and stride=2. The FC block was defined similarly to the pre-trained
case: (1) 3 hidden layers with an input and output layer, (2) the number
of neurons in the hidden layers depending on the number of neurons in
the input layer and (3) the ReLU activation function between successive
layers in the FC block. A schematic of the custom RegCNN architecture
used for the problem posed is shown in Fig. 6b. Additionally, in Table 2,
the structure of the evaluated architectures is described.

RegCNN training was performed with the following parameter set-
tings: learning_rate = 0.001, num_epochs = 200, loss = ’MSELoss’,
optimizer = ’Adam’. Before training, pixel intensity values in the R, G, B
channels were standardised according to each channel’s recommended
values (based on ImageNet). The ’batch size’ parameter for training was
set separately for each model, considering the capabilities of the GPU
hardware used. Training regressors above a chosen number of epochs
no longer contributed considerably to improving the value of metrics
on the validation set.
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Fig. 6. Schematic structure of a regression convolutional neural network (RegCNN) based on: (a) pre-trained backbone on ImageNet, (b) custom architecture.

Table 2
CNN-based regressor structure for pre-trained backbones and evaluated custom architectures.

Model name Model type Params No. CNN filters Kernel FC block structure

ResNet18 pretrained 11.3M – – [512, 256, 128, 64, 3]
ResNet50 pretrained 26.2M – – [2048, 1024, 512, 128, 3]
ResNet101 pretrained 45.2M – – [2048, 1024, 512, 128, 3]
MobileNetV2 pretrained 3.0M – – [1280, 512, 256, 128, 3]
EfficientNetB0 pretrained 4.8M – – [1280, 512, 256, 128, 3]
EfficientNetB4 pretrained 20.0M – – [1792, 1024, 512, 128, 3]
TenebrioRegCNN_v1 own archit. 5.2M [16, 16, 32, 32, 64, 128, 256] 3 [4096, 1024, 512, 128, 3]
TenebrioRegCNN_v2 own archit. 1.8M [16, 16, 32, 32, 64, 128, 256] 5 [1024, 512, 256, 128, 3]
TenebrioRegCNN_v3 own archit. 5.4M [16, 32, 64, 64, 128, 128, 256] 3 [4096, 1024, 512, 128, 3]
TenebrioRegCNN_v4 own archit. 2.3M [16, 32, 64, 64, 128, 128, 256] 5 [1024, 512, 256, 128, 3]
TenebrioRegCNN_v5 own archit. 2.8M [16, 16, 32, 32, 64, 64, 128] 3 [2048, 1024, 512, 128, 3]
TenebrioRegCNN_v6 own archit. 0.6M [16, 16, 32, 32, 64, 64, 128] 5 [512, 256, 128, 64, 3]

2.11. Prediction using a developed regression convolutional neural network

The breeding of the mealworm takes place in breeding boxes. The
image of the entire breeding box was 4096 × 3000. The RegCNN
described in Section 2.10 was based on 1024 × 1024 tiles. To perform
phenotyping for the entire breeding box, relevant regions of inter-
est (ROIs) must be proposed in the image, where phenotyping with
RegCNN will then be performed. The idea of prediction using RegCNN
is presented in Fig. 1f.

Subsequent proposed ROIs were obtained using a sliding window
approach with a sliding step of 1024, resulting in 12 candidates for
relevant ROIs. ROIs were considered suitable for phenotyping if a
minimum number of larvae 𝑛𝑚𝑖𝑛 were present. The ROIs’ relevance was
assessed by a previously trained YOLOv5m (Jocher et al., 2020) object
detection model characterised by fast inference time. The training of
the YOLOv5m model was performed on the same samples as the Mask
R-CNN model, changing only the form of the labels from polygons
to bounding boxes. ROI relevance assessment was introduced into the
prediction to avoid erroneous phenotyping results when a very small
number of larvae are visible, which happens quite often in the early
stages of breeding when larvae hide in the substrate. 𝑛𝑚𝑖𝑛 = 10 and

a confidence score threshold of 80% (for larvae detection) in the ROI
relevance assessment was assumed, effectively eliminating cases of
phenotyping with RegCNN for ROIs without larvae. If problems with
false-positive errors in larvae detection occur when analysing images
from new sources, consideration should be given to increasing the
values of these parameters and re-training with objects falsely detected
as larvae.

After phenotyping for the relevant ROIs, larval width quartile val-
ues were obtained for each ROI. Using the determined larval width
quartile values and the linear regression models length(width) and vol-
ume(width), the quartile values for length and volume were determined
indirectly. The final component of the prediction for the entire breeding
box was aggregating the results obtained from the relevant ROIs. The
quartile values for the whole breeding box were obtained by calculating
the median of the quartile values determined for the individual ROIs.

2.12. Evaluation

The research evaluated the proposed methods using standard met-
rics.
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2.12.1. Evaluation of larvae segmentation models
For larvae segmentation models, AP50 metric values were deter-

mined for three defined size distributions in the D2 dataset. The AP50
metric is the average precision at the intersection over union (IoU)
50%. The value of the AP50 metric was calculated as the area under
the precision–recall curve after appropriate interpolation of the curve
points. A more detailed metric explanation can be found in Padilla et al.
(2021). In addition, the F1-score metric for the optimal working point
was also determined.

The process of 3-step development of larvae segmentation models
was repeated 5 times. At each of these three stages, the model from the
best epoch was selected based on the calculated metrics on the valida-
tion set. The referenced results in the paper were the metrics calculated
on the test set. The validation set and test set for this experiment
consisted of randomly selected samples from the D2 dataset: 3 images
represented the validation set, and 9 images the test set. Independence
between the validation set and the test set was maintained. Results in
the publication were referenced as averaged AP50 and F1-score values
over repeats, given with standard deviation.

2.12.2. Evaluation of regression convolutional neural networks
The following metrics were used to evaluate methods for determin-

ing larval width quartiles: RMSE (root mean squared error), coefficient
of determination 𝑅2, and Pearson correlation coefficient 𝑟. Let us
assume that for the 𝑖th image (one sample), the true values of the
quartiles are: 𝑔𝑖1, 𝑔𝑖3, 𝑔𝑖3 and the predicted values of the quartiles: 𝑝𝑖1,
𝑝𝑖2, 𝑝

𝑖
3 respectively. In this situation, we calculate the RMSE from the

formula:

𝑅𝑀𝑆𝐸 =

√√√√√ 1
3𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑠𝑎𝑚𝑝𝑙𝑒∑
𝑖=1

3∑
𝑗=1

(𝑔𝑖𝑗 − 𝑝𝑖𝑗 )2 (3)

where 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 is the number of samples.
We calculate the coefficient of determination (𝑅2) from the formula:

𝑅2 = 1 −
∑𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1
∑3

𝑗=1(𝑔
𝑖
𝑗 − 𝑝𝑖𝑗 )

2

∑𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

∑3
𝑗=1(𝑔

𝑖
𝑗 − 𝑔)2

(4)

where 𝑔 - average true quartile value (value averaged over all samples
and over all 3 types of quartiles).

We calculate the Pearson correlation coefficient (r) from the for-
mula:

𝑟 =
∑𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1
∑3

𝑗=1(𝑔
𝑖
𝑗 − 𝑔)(𝑝𝑖𝑗 − 𝑝)

√∑𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

∑3
𝑗=1(𝑔

𝑖
𝑗 − 𝑔)2

√∑𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

∑3
𝑗=1(𝑝

𝑖
𝑗 − 𝑝)2

(5)

where 𝑝 - average predicted quartile value.
For the evaluation of methods to determine larval width quartiles,

datasets D3.TEST.1 and D3.TEST.2 were used. Dataset D3.TEST.1 con-
tained pseudo target values for regression (obtained after multistage
phenotyping) and was used to validate knowledge transfer between the
multistage phenotyping method and the RegCNN. Dataset D3.TEST.2
contained true target values for the regression (obtained from manual
annotations) and was used to validate phenotyping accuracy with the
RegCNN.

For each evaluated architecture of the regression convolutional
neural network, k-fold cross-validation was performed at k=5. The
D3.TRAIN training set was divided into 5 approximately equal parts. In
each of the five iterations, training was performed on 4 different parts
(each part exactly once acting as a validation set). The results reported
in the publication for sets D3.TEST.1 and D3.TEST.2 were the averaged
values of RMSE, 𝑅2 and 𝑟 metrics over five iterations.

2.12.3. Determination of processing time
For the processing time determination, hardware with the following

specifications was used: GeForce RTX 2060 SUPER 8 GB (GPU) and
AMD Ryzen 7 1700 3 GHz (CPU).

The study determined processing times for inference for individual
images (inference time per image and throughput metrics) and for the
whole pipeline (inference time per box metric). The term ‘image’ in the
case of the ’inference time per image’ metric refers to inference for a
single tile of size 1024 × 1024 (800 × 800 after resizing). The whole
pipeline analysis determined the total time to analyse 4096 × 3000
box images, which are divided into 1024 × 1024 tiles. When analysing
time for the whole pipeline, the total time also included image pre-
processing time, larvae segmentation time with Mask R-CNN or ROI
relevance assessment time with YOLOv5m, larvae phenotyping time
(using RegCNN or multistage phenotyping) and post-processing time.

To calculate the ’inference time per image’ metric, the prediction
was repeated 1000 times on a single tile. The results were averaged
and were referenced in the article with the standard deviation. For
the calculation of the throughput (images per second) metric, infer-
ence was performed in batch mode, first determining the maximum
possible batch size for a specific model, taking into account hardware
limitations. Prediction for a specific batch was repeated 100 times in
5 iterations. Throughput values were averaged and were given in the
article with standard deviation.

To calculate the total processing time when analysing the whole
pipeline, 30 box images characterised by different sizes and densities of
larvae were chosen. The prediction for each box image was repeated 5
times. As a result of this analysis, the paper reported the averaged infer-
ence time (𝑡𝑚𝑒𝑎𝑛) with standard deviation (𝑡𝑠𝑡𝑑) and the minimum and
maximum inference times (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥). The best architecture obtained
according to the RMSE metric was selected for prediction using the
CNN regressor.

3. Results and discussion

The results obtained were reported in the following order: (1)
phenotyping results for individual larvae using the improved multi-
stage larvae phenotyping method, (2) obtained linear regression models
length(width) and volume(width), (3) evaluation of larvae segmenta-
tion models for different size sets of larvae, (4) dependence of the
correction factor on larval width and justification of the validity of the
correction, (5) evaluation and parameter fine-tuning for a regression
convolutional neural network (RegCNN) (custom architecture and pre-
trained architecture), (6) inference time analysis of the whole pipeline
in the proposed solution, and (7) change of larvae size parameters in
an example feeding experiment.

3.1. Phenotyping results for individual larvae using the improved multistage
larvae phenotyping method

Phenotyping results for chosen images of individual larvae using the
improved multistage larvae phenotyping method are shown in Fig. 7.
Larvae characterised by different sizes and curvature were selected for
validation. Samples a-j show larvae visible in full, while samples k-o
show larvae partially occluded (fragments of larvae).

The determined values of length (L) and volume (V) for the k - o
samples were intentionally placed in brackets, as in the final solution,
these parameters were determined indirectly using the determined lin-
ear regression models length(width) and volume(width), as described
in the next section. In Fig. 7, we can observe the high performance of
the phenotyping method and its robustness when phenotyping small
larvae and larvae with high curvature. With the proposed skeletonisa-
tion method, it was possible to obtain smoothed skeletons ending at
the contour of the larvae and to avoid the problems indicated with
the Zhang and Suen (1984) method, i.e. sudden changes in skeleton
orientation at the ends and the looping phenomenon. Shorter red
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Fig. 7. Phenotyping results for individual larvae using improved multistage larvae phenotyping method for chosen objects extracted from images from dataset D1.

sections perpendicular to the skeleton can be seen at the ends of the
larvae. It should be emphasised here that the definition of larval width
as the median of the lengths of all red sections reduced the influence
of shorter end sections on the final determined larval width. The use of
width as the main measured parameter (instead of length and volume)
enabled us to base only on segmented larval fragments without needing
a complete mask. An interesting direction for further research is amodal
segmentation models that estimate the predicted mask for invisible
fragments.

3.2. Linear regression models length (width) and volume (width)

Characterised larvae extracted from images from the D1 dataset
were used to determine length(width) and volume(width) linear regres-
sion models, presented in Fig. 8. Both relationships were characterised
by a high coefficient of determination 𝑅2 > 0.9, confirming the rational-
ity of determining length and volume indirectly. At larger width values

(for width > 2.7), a greater spread of values of the dependent variable
(length or volume) can be observed.

3.3. Evaluation of larvae segmentation models for different size sets of
larvae

The results of the evaluation of the larvae segmentation model
for multistage larvae phenotyping are presented in Table 3. In Ta-
ble 3 we can see that successive improvement steps of the larvae
segmentation model enabled an increase in AP50 averaged from 75.0
to 79.2 (𝛥𝐴𝑃50 = 4.2). The greatest improvement was observed for the
subset of samples containing images of larvae with the shortest length
(18-23 mm) - the AP50 increased from 61.7 to 72.1 (𝛥𝐴𝑃 50 = 10.4). For
the subset of samples with images of the largest larvae (27–35 mm),
the model was already characterised by a high AP50 (AP50 = 86.2)
after the first step, and no significant improvement in the accuracy of
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Fig. 8. Charts of the relationship (a) between length and width of larvae, and (b) between volume and width of larvae.

Table 3
Evaluation results of the larvae segmentation model for multistage phenotyping of larvae after successive development steps: (a) training
the model on synthetic images (based on images from the D1 dataset), (b) training the model on synthetic images (based on images from
the D3 dataset), (c) training the model on a mixed dataset (real and synthetic images based on the D3 dataset).
Approach type Median of larvae length interval AP50 F1-score

1. stage (only synthetic) 18–23 mm 61.7± 1.0 0.700± 0.004
1. stage (only synthetic) 23–27 mm 77.0± 1.1 0.793± 0.007
1. stage (only synthetic) 27–35 mm 86.2± 1.0 0.841± 0.006
1. stage (only synthetic) average 75.0± 1.0 0.778± 0.006

2. stage (only synthetic) 18–23 mm 65.3± 2.3 0.732± 0.009
2. stage (only synthetic) 23–27 mm 77.0± 0.8 0.812± 0.010
2. stage (only synthetic) 27–35 mm 85.2± 1.0 0.843± 0.004
2. stage (only synthetic) average 75.8± 1.4 0.796± 0.008

3. stage (real + synthetic) 18–23 mm 72.1± 1.2 0.780± 0.005
3. stage (real + synthetic) 23–27 mm 79.4± 0.6 0.834± 0.006
3. stage (real + synthetic) 27–35 mm 86.0± 0.8 0.859± 0.005
3. stage (real + synthetic) average 79.2± 0.8 0.824± 0.005

this model was observed in further stages of improvement. In the con-
text of using the developed larvae segmentation model for multistage
phenotyping, it is important to note the significant difference in AP50
for the subset (18–23 mm) - AP50 = 72.1 and the subset (27–35 mm) -
AP50 = 86.0. Based on these results, it can be concluded that the larvae
segmentation model performed better in detecting larger larvae, which
necessitated an appropriate correction when calculating quartiles for
larval width. The achieved values of AP50 > 72 and F1-score > 0.77
for the larvae segmentation models were sufficient to carry out the
described multistage phenotyping. The non-detection of selected larvae
in dense scenes was of little relevance in the context of the problem
addressed, as the number of detected instances was sufficient for the
estimation of size parameters for the larvae population.

3.4. Dependence of the correction factor on larval width and justification
of the validity of the correction

The determined calibration curve for calculating weighted quartiles
is shown in Fig. 9c. In Fig. 9a and Fig. 9b, the effect of applying the
correction on reducing the difference between the true larval width
quartile values and those obtained after multistage phenotyping is
also shown. According to preliminary assumptions, the quartile values
determined during multistage phenotyping without the application of
correction tended to be larger than the true quartile values (see Fig. 9a).
The introduction of correction factors as weights in calculating larval
width quartiles increased the 𝑅2 coefficient of determination from
0.843 to 0.927. Reducing errors in determined pseudo target values
was crucial for the final accuracy of the CNN-based regressor, as

pseudo target values were used during training. In Fig. 9c, in line with
initial assumptions, we observe a decreasing relationship between the
correction factor and larval width. The model had particular problems
for larvae characterised by width below 2.0 mm. The relatively high
value of the correction factor for larval widths below 2.0 mm was
because a notable proportion of small larvae were undetected by the
instance segmentation model. The identified problem also influenced
the overestimation of larval width quartile values in the indicated range
in Fig. 9b. For the last determined point for the calibration curve,
a correction factor < 1 was obtained, which may be surprising. This
means that the number of objects detected with this size was greater
than the true number of these objects. The reason for this situation was
FP (false positive) errors, which were often in the form of 2–3 larvae
detected as one in addition to the detected background elements. When
analysing the determined characteristics, it should be remembered that
the determined calibration curve considered both TN errors (more
numerous for smaller larvae) and FP errors.

3.5. Evaluation and parameter fine-tuning for a regression convolutional
neural network (regcnn) (custom architecture and pre-trained architecture)

The results of the evaluation of the CNN regressors are presented in
Table 4 for regressors based on ImageNet pre-trained backbones and in
Table 5 for regressors based on custom proposed architectures. Table 6
also shows a comparison of inference times and throughput for the
different evaluated CNN-based regressor architectures.

Based on the results of the evaluation on dataset D3.TEST.1 sum-
marised in Table 4 and in Table 5, it can be concluded that knowledge
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Fig. 9. Charts related to the proposed correction method: relationships between true values of quartiles of larval width and those obtained after multistage phenotyping (a) without
correction, (b) with correction, and (c) correction factor as a function of larval width.

Table 4
Evaluation results of the CNN-based regressor for pre-trained backbones on test sets D3.TEST.1 and D3.TEST.2.

Backbone name D3.TEST.1 D3.TEST.2

𝑅𝑀𝑆𝐸[mm] 𝑅2 𝑟 𝑅𝑀𝑆𝐸[mm] 𝑅2 𝑟

ResNet18 0.090± 0.004 0.934± 0.007 0.967± 0.004 0.131± 0.006 0.870± 0.013 0.937± 0.007
ResNet50 0.093± 0.002 0.929± 0.003 0.965± 0.002 0.132± 0.002 0.867± 0.004 0.934± 0.003
ResNet101 0.125± 0.010 0.872± 0.020 0.935± 0.011 0.161± 0.011 0.802± 0.026 0.904± 0.011
MobileNetV2 0.090± 0.003 0.933± 0.005 0.967± 0.003 0.135± 0.008 0.861± 0.017 0.932± 0.009
EfficientNetB0 0.089± 0.014 0.934± 0.023 0.968± 0.012 0.135± 0.019 0.861± 0.042 0.931± 0.022
EfficientNetB4 0.101± 0.006 0.916± 0.009 0.958± 0.005 0.140± 0.005 0.850± 0.011 0.924± 0.007

Table 5
Evaluation results of the CNN-based regressor for evaluated custom architectures on test sets D3.TEST.1 and D3.TEST.2.

Model name D3.TEST.1 D3.TEST.2

𝑅𝑀𝑆𝐸[mm] 𝑅2 𝑟 𝑅𝑀𝑆𝐸[mm] 𝑅2 𝑟

TenebrioRegCNN_v1 0.098± 0.003 0.921± 0.004 0.961± 0.003 0.137± 0.005 0.856± 0.011 0.928± 0.005
TenebrioRegCNN_v2 0.098± 0.003 0.921± 0.005 0.960± 0.002 0.136± 0.004 0.859± 0.008 0.928± 0.006
TenebrioRegCNN_v3 0.092± 0.003 0.930± 0.005 0.965± 0.002 0.134± 0.008 0.864± 0.018 0.930± 0.007
TenebrioRegCNN_v4 0.101± 0.005 0.916± 0.008 0.959± 0.004 0.140± 0.003 0.850± 0.006 0.924± 0.003
TenebrioRegCNN_v5 0.098± 0.003 0.921± 0.005 0.960± 0.002 0.141± 0.004 0.849± 0.008 0.924± 0.005
TenebrioRegCNN_v6 0.101± 0.004 0.917± 0.007 0.958± 0.004 0.139± 0.005 0.851± 0.010 0.924± 0.005

transfer between multistage phenotyping and CNN-based regressors
was reasonable. The coefficient of determination 𝑅2 on the D3.TEST.1
dataset was > 0.91 for most of the evaluated architectures (only for
ResNet101 the value of this metric was lower). The evaluation results
on dataset D3.TEST.2 allowed to assess the quality of the proposed end-
to-end solution. Based on the evaluation results on dataset D3.TEST.2
summarised in Table 4 and in Table 5, we can observe that the best
tested architecture was ResNet18, for which the following metrics were
obtained: RMSE = 0.131 mm, 𝑅2 = 0.870, r=0.937, which was slightly

better than for the best custom architecture (TenebrioRegCNN_v3):
RMSE = 0.134 mm, 𝑅2 = 0.864, 𝑟 = 0.930. However, it should be
noted that the TenebrioRegCNN_v3 architecture had approximately
4.9x lower inference time per image and approximately 3.6x higher
throughput (based on results in Table 6) than the ResNet18 archi-
tecture. It is reasonable to consider using custom architectures when
developing low-cost solutions. The evaluation results for the ResNet18
regressor are also shown in Fig. 10, where each point in the chart
represented one calculated quartile (lower quartile, median or upper
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Table 6
Comparison of inference time and throughput for the different evaluated CNN-based regressor architectures.
Model name Inference time per image [ms] Throughput [images per second]

ResNet18 11.3± 0.2 134± 1
ResNet50 35.1± 0.7 41± 1
ResNet101 56.6± 1.2 26± 1
MobileNetV2 15.1± 0.1 126± 1
EfficientNetB0 22.1± 0.1 72± 1
EfficientNetB4 55.1± 0.2 26± 1
TenebrioRegCNN_v1 1.7± 0.1 668± 3
TenebrioRegCNN_v2 4.0± 0.1 495± 3
TenebrioRegCNN_v3 2.3± 0.1 483± 1
TenebrioRegCNN_v4 5.8± 0.1 373± 1
TenebrioRegCNN_v5 1.7± 0.1 656± 1
TenebrioRegCNN_v6 3.8± 0.1 495± 1

Fig. 10. Relationships between: (a) pseudo target values (output of multistage phenotyping) and CNN regressor predictions (evaluation on dataset D3.TEST.1), (b) true target
values and CNN regressor predictions (evaluation on dataset D3.TEST.2) for the best obtained ResNet18 architecture, when analysing larval width.

Fig. 11. Change in larval length quartiles for a chosen breeding box in a long-term breeding experiment when phenotype using: (a) regression convolutional neural network, (b)
improved multistage method based on classical computer vision (standard version in Table 7).

quartile). The number of points in the charts in Fig. 10 was three
times larger (due to the three quartiles determined) than the number
of samples in datasets D3.TEST.1 and D3.TEST.2. The results shown in
Fig. 10 refer to one particular split in the cross-validation.

By comparing the values of the coefficient of determination 𝑅2 from
Fig. 9b (𝑅2 = 0.927) and Fig. 10b (𝑅2 = 0.887), we can estimate
the level of accuracy lost in the knowledge transfer process, which
should be assessed as acceptable in the context of the problem being
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Table 7
Comparison of the inference time of the whole pipeline in the proposed solution (CNN-based regressor) with a multistage approach and reference method.

Approach name No. larvae for analysis Individual larvae
extraction method

Analysed area of box 𝑡𝑚𝑒𝑎𝑛 𝑡𝑠𝑡𝑑 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥

(a) CNN regressor all not needed
(YOLOv5m for ROI
assessment)

100% 0.30 s 0.01 s 0.28 s 0.33 s

(b) improved multistage phenotyping
(standard)

all (≈ 1300 larvae) Mask R-CNN 100% 10.93 s 1.85 s 6.02 s 13.61 s

(c) improved multistage phenotyping
(limited number of analysed larvae
and analysed area of box)

50 Mask R-CNN 25% 2.10 s 0.26 s 1.43 s 2.65 s

(d) reference method - multistage
phenotyping (described in Majewski
et al. (2022))

50 Mask R-CNN 100% 217 s – – –

addressed. Despite using pseudo target values (output from multistage
phenotyping) when training the CNN-based regressor, the obtained
value of the coefficient of determination 𝑅2 = 0.887 was high enough
that it was reasonable to replace the true target values (resulting
from manual annotations) with pseudo target values when training
the CNN-based regressor. Manual polygon-type annotations on images
representing dense scenes are very time-consuming, and the need for
labelling may occur many times when the nature of the data changes.
Using pseudo target values drastically reduces the effort in developing
and adapting models (re-training) to new data. The accuracy obtained,
assuming the use of pseudo target values, enabled the main objective
to be met, i.e. to record the size gains of the larvae in the breeding box,
as confirmed by the recorded larval growth pattern in Fig. 11.

Fig. 10b confirmed the observations from the previously discussed
Fig. 9b and Fig. 9c regarding the overestimation of width quartile
values for larvae with widths below 2.0 mm. This limitation should be
considered when analysing the developed method output.

The evaluation results on the D3.TEST.2 set, due to manual annota-
tion, considered both the accuracy lost related to knowledge transfer
and to the segmentation of the larvae. It is worth noting that the
segmentation problems did not significantly reduce the performance of
our solution. In addition to the dependence of segmentation accuracy
on larvae size observed and extensively described in the publication,
the dependence of segmentation accuracy on the density of larvae is an
interesting topic for further research. In dense scenes, a single bounding
box may contain many larvae, which may cause some larvae to be
removed in post-processing by the Non-maximum suppression (NMS)
algorithm (Neubeck and Van Gool, 2006).

3.6. Inference time analysis of the whole pipeline in the proposed solution

The results of inference time analysis of the whole pipeline in the
proposed solution are presented in Table 7.

Based on the results in Table 7, it can be concluded that both
improved multistage phenotyping and phenotyping based on a regres-
sion convolutional neural network had significantly shorter inference
times than the reference method. Two versions of improved multistage
phenotyping were identified. The first standard version considered the
phenotyping of all larvae (about 1,300 per box) extracted from the en-
tire box area. This approach had the best accuracy but a relatively long
inference time (about 11 s/box). Within this publication, it was used
to determine pseudo target values for training a CNN-based regressor.
It can also be used when a small number of boxes (< 1000) need to
be analysed in laboratory breeding studies. In the second version of
multistage phenotyping, the number of larvae analysed was limited to
50 and the area of the analysed boxes to 25%, adapting this method
for potential use in large-scale breeding. The CNN-based regressor had
the shortest inference time (0.30 s/box), favouring it for use in large-
scale breeding (number of boxes > 10,000), where inference time
will be particularly important. The calculated inference time included
the extraction of single larvae from images using Mask R-CNN for
the multistage method and the assessment of ROI relevancy using

YOLOv5m for the CNN regressor. The percentage of total inference
time spent extracting individual larvae or accessing ROIs relevance for
the approaches considered is as follows: 33% for CNN regressor with
ROI relevance assessment with YOLOv5m model, 63% for improved
multistage phenotyping (standard) with instance segmentation with
Mask R-CNN, and 85% for improved multistage phenotyping (limited
number of analysed larvae and analysed area of box) with instance
segmentation with Mask R-CNN. It is worth noting that for multistage
phenotyping, Mask R-CNN inference time was the bottleneck of the
approach, and improvements should be carried out in this part in the
future. One option for speeding up processing times is to replace the
Mask R-CNN model with a YOLOv8 (Jocher et al., 2023) model adapted
for instance segmentation (this allows obtaining binary object masks
already at the tile relevance assessment stage).

In a future comprehensive solution, it would be worth considering
introducing an inference case for tiles with a small number of larvae
(less than the proposed parameter 𝑛𝑚𝑖𝑛). For such a case, it seems
reasonable to carry out improved multistage phenotyping, especially
as we see the potential to speed up image processing time with this ap-
proach. In view of the described possibilities to improve the multistage
phenotyping approach, an increase in the value of the 𝑛𝑚𝑖𝑛 parameter
(above used in this study 𝑛𝑚𝑖𝑛=10) may even be considered in the
future.

3.7. Change of larvae size parameters in an example feeding experiment

The methods developed within this publication were used to moni-
tor larvae growth in the breeding experiment. Charts of the change in
quartiles of larvae length over time for the selected breeding box are
shown in Fig. 11. In Fig. 11, results for phenotyping using a regression
convolutional neural network and improved multistage phenotyping
(standard version in Table 7) are shown for comparison.

In Fig. 11, we can observe smaller deviations from the trend line in
the case of multistage phenotyping. In the case of CNNs, despite a larger
variance for the measurement points, the correct growth trend line
reconstruction is possible, which is most relevant for the experiment’s
performance. It is important to highlight the fact that the proposed
CNN-based method was a compromise between accuracy and inference
time. In the case of the standard version of multistage phenotyping, its
use in large-scale breeding may not be reasonable due to the relatively
long inference time.

4. Conclusions

The study proposed an efficient method to determine size param-
eters (width, length, volume) of insect larvae based on a regression
convolutional neural network. The long manual annotation time of
the images (due to dense scenes) was significantly reduced through
knowledge transfer between improved multistage phenotyping and a
CNN-based regressor. In addition, during the development of the larvae
segmentation model for multistage phenotyping, generated synthetic
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images and a 3-step model improvement approach were proposed.
Ultimately, the solution required only a few manually annotated images
for calibration. The quantitative metrics obtained for the best model
(RMSE = 0.131 mm, 𝑅2 = 0.870 in larval width determination) con-
firmed the effectiveness of the proposed CNN-based regressor and the
rationale for training the model on automatically determined pseudo
target values as output from the improved multistage phenotyping.
The inference time of the CNN-based regressor: 0.30 s/box meets the
requirements of large-scale breeding concerning the speed of analysis
allowing real-time operation.

Based on the results, we conclude that the proposed method can be
successfully applied in monitoring systems for large-scale breeding of
insect larvae and as a support in laboratory breeding experiments.

We consider the following as the most important directions for
future work: (1) the development of models specifically adapted for
inference at very low larval densities, (2) further reduction in computa-
tion time for improved multistage phenotyping, allowing this approach
to be included in hybrid methods for phenotyping, (3) the development
of methods for segmentation of larvae obtaining similar accuracy at
different larval sizes, (4) amodal segmentation of larvae, (5) the de-
velopment of reference models for the growth of insect larvae under
fixed feeding, (6) the development of methods for anomaly detection
based on reference models of the growth of larvae, and (7) methods
for maintenance and adaptation of the proposed methods under the
assumption that the nature of the data can change (domain shift).
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Abstract: Models for detecting edible insect states (live larvae, dead larvae, pupae) are a crucial component of large-scale
edible insect monitoring systems. The problem of changing the nature of the data (domain shift) that occurs
when implementing the system to new conditions results in a reduction in the effectiveness of previously
developed models. Proposing methods for the unsupervised adaptation of models is necessary to reduce the
adaptation time of the entire system to new breeding conditions. The study acquired images from three data
sources characterized by different types of cameras and illumination and checked the inference quality of
the model trained in the source domain on samples from the target domain. A hybrid approach based on
mixing augmentation and knowledge-based techniques was proposed to adapt the model. The first stage of the
proposed method based on object augmentation and synthetic image generation enabled an increase in average
AP50 from 58.4 to 62.9. The second stage of the proposed method, based on knowledge-based filtering of target
domain objects and synthetic image generation, enabled a further increase in average AP50 from 62.9 to 71.8.
The strategy of mixing objects from the source domain and the target domain (AP50=71.8) when generating
synthetic images proved to be much better than the strategy of using only objects from the target domain
(AP50=65.5). The results show the great importance of augmentation and a priori knowledge when adapting
models to a new domain.

1 INTRODUCTION

Edible insects are one of the most promising alterna-
tive sources of novel food. The number of large-scale
edible insect farms is increasing yearly due to the pos-
sibility of obtaining a high-protein product at a rela-
tively low-cost (Dobermann et al., 2017). Edible in-
sect breeding is a good solution for utilizing unused
areas of livestock buildings where animal diseases
such as ASF (African swine fever) previously oc-
curred (Thrastardottir et al., 2021). The need to mea-
sure breeding parameters and detect anomalies, com-
bined with the large-scale nature of breeding, necessi-
tates using a dedicated automated monitoring system.

There have recently been few works regarding
monitoring edible insect breeding related to the Tene-
brio Molitor. (Majewski et al., 2022) proposed a
multi-purpose 3-module system, enabling the detec-

a https://orcid.org/0000-0001-5076-9107
b https://orcid.org/0000-0001-8009-6628
c https://orcid.org/0000-0002-3506-6611
d https://orcid.org/0000-0003-1662-9762

tion of edible insect growth stages and anomalies
(dead larvae, pests), semantic segmentation of feed,
chitin, and frass, and larvae phenotyping. The authors
used synthetic images generated from a pool of ob-
jects, significantly reducing model development time.
Other works were based on solutions dedicated to sin-
gle issues, e.g. classification of larvae segments (Baur
et al., 2022), and classification of the gender of pupae
(Sumriddetchkajorn et al., 2015). Undoubtedly, the
results presented in this works demonstrate the fea-
sibility of using methods based on machine learning
and computer vision to inspect edible insect breeding
effectively. However, adapting the developed meth-
ods to new breeding conditions is still an open prob-
lem.

In the literature, we can find a significant num-
ber of unsupervised model adaptation methods for
the problems of image classification (Madadi et al.,
2020), semantic segmentation (Toldo et al., 2020), or
object detection (Oza et al., 2021); however, there
are fewer works in the area of instance segmenta-
tion. Among the most important domain adapta-
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tion methods are discrepancy-based (Csurka et al.,
2017; Saito et al., 2018), adversarial-based (includ-
ing generative-based) (Yoo et al., 2016; Murez et al.,
2018), reconstruction-based (including graph-based)
(Cai et al., 2019) and self-supervision-based (Khod-
abandeh et al., 2019; Shin et al., 2020). A rela-
tively simple and intuitive approach to domain adap-
tation is pseudo-label-based self-training, which in-
volves training the model for the target domain based
on samples with pseudo-labels representing a predic-
tion of the model trained on labelled samples from
the source domain. An important element in this ap-
proach is prediction filtering.

The pseudo-label-based self-training approach
seems suitable for instance segmentation and even
easier to apply than in object detection. Namely, hav-
ing masks for objects, it is possible to extract them
from images, add them to appropriate object pools
and use them further to generate synthetic images. It
is also easier to perform filtering at the object level, as
it is possible to calculate features for a specific object.

This work proposed a two-stage hybrid method for
domain adaptation based on using pseudo-labels for
self-training. In 1st stage, it was proposed to expand
the training set of samples through augmentation at
the image and object levels to reduce the overfitting
of the model on the source domain. In 2nd stage, fil-
tering of the obtained predictions was carried out us-
ing domain knowledge. An essential contribution of
this work is the study of the importance of creating
the training set in the 1st and 2nd stages, especially
the concept of mixing real and synthetic samples and
mixing samples from the source domain (with real
labels) and the target domain (with pseudo-labels).
In addition, the consequences of using only synthetic
data (no real labelled samples in the training set) on
the model’s performance in cases of inference in and
out of the domain were also examined.

2 MATERIAL AND METHODS

2.1 Problem Definition

The problem addressed is detection and segmentation
from images of three states of edible insects, namely
(1) live larvae, (2) dead larvae, and (3) pupae. The
samples are in the form of 512x512 images and come
from three sources associated with different types of
recording cameras and lighting, namely (1) CA, (2)
LU, and (3) JA. Examples of samples from the consid-
ered sources, along with the type of objects detected,
are shown in Figure 1.

Figure 1: Examples of samples from the considered
sources: (a) RGB images, (b) types of detected objects.

The main objective of the research was to pro-
pose a suitable domain adaptation method to train the
model on one data source (source domain) with la-
belled samples and make inference on another (target
domain) with unlabelled samples with relatively low
error. The proposed method is expected to reduce the
destructive effect of domain shift on the accuracy of
target domain prediction.

2.2 Data Sources

The samples were acquired using three image acqui-
sition systems, differing in the cameras and lighting
used. The first one (CA) was an experimental sta-
tion with a EOS 50D camera (Canon, Tokyo, Japan)
with a resolution of 5184 x 3456 pixels and a zoom
lens. Diffuse white fluorescence lighting was used.
The second (LU) was a data acquisition station pur-
posely built for imaging insects in breeding boxes. It
used a Phoenix PHX120S-CC (LUCID Vision Labs,
Richmond, Canada) camera with a resolution of 4096
x 3000 pixels and a 12 mm focal length lens. Samples
were illuminated with neutral white LEDs in a diffu-
sion tunnel. The third (JA) was a machine vision sys-
tem prepared for industrial implementation for Tene-
brio Molitor breeding. A GOX-12401C-PGE (JAI,
Copenhagen, Denmark) camera was used, with a res-
olution of 4096 x 3000 pixels and a 12 mm lens. In
this case, due to size limitations, LED strips providing
cold white light were used for direct illumination.

2.3 Dataset

A dataset was prepared for the study, containing sam-
ples from various defined sources along with marked
object masks from the defined classes. A total of 15
samples from CA, 29 samples from LU and 36 sam-
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ples from JA were labelled. A summary of the la-
belled number of objects can be found in Table 1.

Table 1: The number of objects from defined classes in the
considered image sources.

source type object type no. of objects

CA
live larvae 656
dead larvae 250

pupae 124

LU
live larvae 163
dead larvae 55

pupae 83

JA
live larvae 1247
dead larvae 148

pupae 187

2.4 Data Exploration

For initial data exploration and qualitative evaluation
of domain shift, PCA and visualization of selected
components were performed. The FID (Frechet In-
ception Distance) metric (Heusel et al., 2017) was
also calculated as a measure of the similarity of fea-
tures extracted from images belonging to different
sources. Lower values of the FID metric mean higher
similarity of sample distributions. FID and PCA were
based on a feature vector of length 2048 extracted
from the last pooling layer of the deep convolutional
neural network Inceptionv3 (Szegedy et al., 2015).
Masked images of objects (without surrounding back-
ground) were used for feature extraction.

2.5 Domain Adaptation with Mixing
Augmentation and
Knowledge-Based Techniques

The proposed adaptation method consists of two
stages described in detail in the following sections.
The first stage is based on the augmentation of source
domain objects and the generation of synthetic im-
ages. The second stage considers filtering target ob-
jects based on domain knowledge and re-generating
synthetic images using new target domain objects.
The idea scheme of the proposed solution is shown
in Figure 2.

The method for generating synthetic images in-
volved randomly placing objects on the background
image and allowing the simulation of object overlap
in dense scenes. Each generated synthetic image was
associated with an automatically generated label. The
method of generating synthetic images is described
in more detail in (Majewski et al., 2022; Toda et al.,
2020).

Figure 2: Idea scheme of the proposed solution detailing
two stages.

2.5.1 First Stage of Approach with Objects
Augmentation

The basis for training models is a set of real labelled
samples from the source domain. Evaluation results
for a model trained only on a set of real samples (the
only_real method) were used as a reference for the
following proposed approaches.

Object-level augmentation and synthetic image
generation were proposed to extend the source do-
main samples distribution. First, individual objects
were extracted from real images. Then, these objects
were augmented, modifying colour, contrast, sharp-
ness and brightness. The generated objects were then
placed on the background image, obtaining automati-
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cally labelled synthetic images. Examples of the aug-
mented objects and the generated synthetic images are
shown in Figure 2.

Three possibilities for constructing the training
set for 1st stage were identified. The only_real
method assumes training only on real data, the
real_synthetic method - on real and synthetic data,
and the only_synthetic method - only on synthetic
data. For each setting, the Mask-RCNN (He et al.,
2017) with backbone ResNet-50 (He et al., 2016)
model was trained with default training parameters.
An implementation of the Mask R-CNN model from
the detectron2 (Wu et al., 2019) library was used in
the study. The part related to the 1st stage in Figure 2
shows the real_synthetic approach for creating the
training set.

2.5.2 Second Stage of Approach with
Knowledge-Based Filtering

The first component of 2nd stage of the proposed so-
lution is an inference using the model trained in 1st
stage on unlabelled target domain samples. The re-
sulting predictions were treated as pseudo-labels that
needed to be filtered to remove false positive predic-
tions. For filtering, it was used a priori domain invari-
ant knowledge, namely: (1) live larvae are the major-
ity class (see in Table 1), (2) objects from the classes
live larvae and dead larvae are the longest (have the
largest dimension of the longer side of the bound-
ing box), (3) objects from the dead larvae class have
the lowest pixel intensity, (4) objects from the pupae
class have the highest pixel intensity. The proposed
knowledge-based filtering assumes successively:
1. selection of objects with a minimum length of the

longer side of the bounding box dmin, with a pre-
dicted class live larvae,

2. removal of outliers including mean intensity, size,
and length of the longer side of the bounding box
among the objects extracted in 1st step, obtaining
a distribution of samples representing live larvae,

3. calculation of intensity limits xmin, xmax for sam-
ples representing live larvae,

4. selection of objects with intensity values greater
than xmax, with predicted class pupae,

5. selection of objects with intensity values less than
xmin, with predicted class larvae dead.

6. removal of outliers among the objects extracted in
the 4th and 5th steps, obtaining a distribution of
samples representing pupae and dead larvae.
The obtained new samples in the form of target

domain objects and new generated objects after aug-
mentation are then used to generate synthetic data.

In 2nd stage, we have available the following sam-
ple distributions: (1) real from the source domain,
(2) synthetic from the source domain, (3) synthetic
from the target domain. The study investigated the
following training strategies: the "only target domain
samples" strategy assumes training the model only
on synthetic data from the target domain, and the
"mixed source/target domain samples" strategy as-
sumes mixing samples from the source domain and
target domain in the training set. Considering the
"mixed source/target domain samples" strategy, in
all the approaches identified in 1st stage (only_real,
real_synthetic, only_synthetic), the training set de-
fined in 1st stage is extended with synthetic sam-
ples from the target domain. Figure 2 shows the
"mixed source/target domain samples" strategy with
the real_synthetic variant.

2.6 Evaluation

The proposed methods were evaluated using the av-
erage precision AP50 metric, a standard metric for the
evaluation in object detection tasks. The value of the
AP50 metric represents the area under the precision-
recall curve after appropriately interpolating the chart
fragments. The AP50 metric assumes a threshold value
of intersection over union (IoU) 50% between the true
and predicted bounding box to consider the prediction
significant. Details regarding the calculation of the
AP50 metric can be found in (Majewski et al., 2022;
Padilla et al., 2020).

For the study, 6 possible cases of out-domain
crossing (source domain → target domain) were
selected, namely CA → LU, CA → JA, LU → CA,
LU → JA, JA → CA, JA → LU. Evaluation for the
out-domain inference cases was carried out for all
samples from the target domain. The AP50 values for
in-domain inference were also determined as a refer-
ence. For the in-domain case, the entire dataset was
divided into training data (80% of samples) and test
data. Evaluation was performed on the test set.

3 RESULTS AND DISCUSSION

As part of the data exploration, PCA was performed,
and FID metrics were calculated between sample dis-
tributions. A visualization of the selected components
for samples from all data sources and defined classes
can be found in Figure 3. The calculated FID values
can be found in Table 2.

Based on the results from Figure 3 and Table 2,
it can be seen that objects from the live larvae class
are most similar to each other between distributions.
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Figure 3: Selected principal components for domain shift
exploration based on deep features (Inceptionv3).

Table 2: Comparison of calculated FID metrics between
sources based on real samples.

sources object type FID

CA and LU

live larvae 124
dead larvae 166

pupae 144
all (average) 145

CA and JA

live larvae 69
dead larvae 110

pupae 113
all (average) 97

LU and JA

live larvae 97
dead larvae 120

pupae 115
all (average) 111

The FID distances between (CA and JA) and (LU and
JA) distributions are smaller than the distance be-
tween (CA and LU) distributions, which is also con-
firmed by Figure 3. For the selected components
(PC3 and PC4), samples from JA (blue markers) are
between samples from CA (red) and LU (green).

A comparison of different domain adaptation
methods can be found in Table 3 for the "mixed
source/target domain samples" strategy and in Table 4
for the "only target domain samples" strategy. As
reference values for assessing the quality of domain
adaptation are the results obtained by the models
trained and tested in-domain presented in Table 5.

The results obtained for 1st stage of model adap-
tation (Table 3) prove that the real_synthetic method
(average AP50 = 62.9), which assumes the use of both

real and synthetic samples for training, is the most
suitable for use in the problem under consideration.
The use of only synthetic samples (only_synthetic
method, average AP50 = 54.4) or only real samples
(only_real method, average AP50 = 58.4) may be bet-
ter in special cases (only_synthetic for LU → CA,
only_real for LU → JA, CA → JA), but in gen-
eral (averaged), these approaches achieve smaller
AP values than the real_synthetic method. For
the special cases mentioned above, the differ-
ence between the best-obtained result and the AP
value for the real_synthetic method did not exceed
∆AP50 = 4.0. On the other hand, for the LU → CA,
the difference between the AP values for only_real
and real_synthetic was ∆AP50 = 14.0, and for the
JA → CA was ∆AP50 = 9.4, which is a significant dif-
ference in the effectiveness of the models.

Using only synthetic data for model training can
significantly speed up the process of developing mod-
els (Majewski et al., 2022); however, based on the
results obtained in this research, we can observe that
this is associated with the risk of losing model accu-
racy. This observation is confirmed by the results af-
ter the 1st and 2nd stages of domain adaptation for
inference out-domain in Table 3 (the only_synthetic
approach was characterized by ∆AP50 = 8.5 lower
AP50 than the real_synthetic approach in the 1st stage
and by ∆AP50 = 4.4 lower AP50 in the 2nd second).
The lack of real data in the training set mostly af-
fects the results for in-domain inference in Table 5
(∆AP50 = 11.3 difference between only_synthetic and
real_synthetic approaches).

When considering the results separately for each
of the defined classes, it should be noted that objects
of the live larvae class are the easiest to detect (av-
erage AP50 after 2nd stage – 81.8) after a domain
change, while objects of the pupae class – the most
difficult (average AP50 after 2nd stage – 66.6). This
is consistent with initial conclusions from data explo-
ration based on FID values in Table 2.

Quantitative indicators confirm the importance of
augmentation in 1st stage for the real_synthetic ap-
proach. Additional samples complement the relevant
places in the feature space and can expand the distri-
bution of features for a given class.

Analyzing the results from 2nd stage for the
two proposed strategies in Table 3 for "mixed
source/target samples" strategy and in Table 4 for
"only target samples" strategy, we can conclude that
the "mixed source/target samples" strategy is the most
suitable for creating a training set, which is confirmed
by obtaining an increased AP50 from 65.5 to 71.8
compared to the "only target samples" strategy.

A summary of the most important results ob-
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Table 3: Comparison of proposed domain adaptation methods for mixed source/target domain samples strategy.

case type method
AP50

stage 1. stage 2. (mixing strategy)
live l. dead l. pup. avg. live l. dead l. pup. avg.

CA → LU
only_real 64.9 58.9 74.7 66.2 79.9 59.7 75.4 71.7

real_synthetic 70.7 61.0 78.0 69.9 82.8 61.7 78.1 74.2
only_synthetic 63.3 54.0 65.5 60.9 82.1 62.0 77.4 73.8

CA → JA
only_real 69.7 50.4 29.2 49.8 75.3 55.1 36.7 55.7

real_synthetic 72.2 38.5 27.6 46.1 76.0 55.0 36.5 55.8
only_synthetic 59.3 28.6 18.6 35.5 77.3 40.8 31.7 49.9

LU → CA
only_real 41.3 58.5 39.5 46.4 79.7 78.1 69.4 75.7

real_synthetic 65.1 68.8 47.2 60.4 80.2 76.4 69.6 75.4
only_synthetic 64.3 69.3 49.9 61.2 79.8 76.7 70.6 75.7

LU → JA
only_real 73.8 53.8 28.7 52.1 83.3 66.9 56.2 68.8

real_synthetic 74.1 45.9 26.2 48.7 84.9 62.3 62.9 70.0
only_synthetic 59.3 31.6 14.7 35.2 83.2 50.5 55.2 63.0

JA → CA
only_real 76.8 67.1 47.8 63.9 84.6 76.4 66.8 75.9

real_synthetic 78.8 73.3 67.7 73.3 82.9 76.3 69.5 76.2
only_synthetic 71.4 73.6 61.1 68.7 78.5 72.8 59.8 70.4

JA → LU
only_real 75.2 68.3 71.5 71.7 83.2 74.3 84.2 80.6

real_synthetic 82.9 71.5 82.7 79.0 84.2 70.6 82.8 79.2
only_synthetic 74.2 60.3 60.3 64.9 79.6 61.9 73.3 71.6

all (summary)
only_real 67.0 59.5 48.6 58.4 81.0 68.4 64.8 71.4

real_synthetic 74.0 59.8 54.9 62.9 81.8 67.1 66.6 71.8
only_synthetic 65.3 52.9 45.0 54.4 80.1 60.8 61.3 67.4

Table 4: Results for the only target samples strategy for the 2nd stage of domain adaptation.

case type method
AP50

stage 2. (only target samples strategy)
live larvae dead larvae} pupae average

all (summary)
only_real 76.6 60.9 55.8 64.5

real_synthetic 78.5 59.1 59.0 65.5
only_synthetic 77.5 54.7 54.2 62.2

Table 5: Reference values for domain adaptation as AP50 values for in-domain inference.

source type method AP50
live larvae dead larvae pupae average

all (summary)
only_real 86.6 78.8 84.4 83.3

real_synthetic 88.4 81.8 85.2 85.2
only_synthetic 80.0 71.6 70.3 73.9

tained in the study is presented on the radar plot
in Figure 4. In Figure 4 it can be seen that for the
crossings JA → CA, JA → LU, CA → LU, already
1st stage of the proposed method based on augmen-
tation achieves reasonable AP results when using the
real_synthetic approach. The 2nd stage caused a sig-
nificant increase in AP for the crossings LU → JA and
LU → CA. After the two stages of the proposed solu-
tion, the final value of the obtained AP values strongly
depended on the target domain. For crossings where
the target domain was JA, the final AP values were
the lowest (AP50 =55.8, AP50 =70). In summary, the

best variation of the proposed method made it pos-
sible to increase the average AP50 from 58.4 to 62.9
after 1st stage and to 71.8 after the 2nd stage. To ob-
tain as high AP50 values as in-domain trained mod-
els (AP50 = 85.2), additional labelling should be per-
formed, especially of objects undetected by models
after the 2nd stage of adaptation. The obtained AP50
level between 70 and 80.6 for 5 out of 6 ( except for
CA → JA) types of crossings between domains makes
it possible to improve additional labelling by label
proposals that are predictions of the model obtained
after the 2nd stage.
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Figure 4: Comparison of proposed domain adaptation meth-
ods for different cases.

To confirm the good quality of predictions after
domain adaptation, Figure 5 compares the predictions
by the in-domain trained model with the predictions
of the model after domain adaptation for three se-
lected samples from different target domains. For
clarity, Figure 5 shows the predictions only for the
dead larvae and pupae classes.

Figure 5: Comparison of predictions with ground truth for
in-domain and out-domain inference cases.

4 CONCLUSIONS

The proposed two-stage method for domain adapta-
tion made it possible to significantly increase the effi-
ciency of object detection (AP50 increased from 58.4
to 71.8) when changing the domain without additional
user supervision. The best results were obtained when
the final training set consisted of real samples from
the source domain, synthetic samples from the source
domain and synthetic samples from the target domain
(associated with filtered objects from the target do-
main). It confirms the validity of mixing real and syn-
thetic samples in the training set and mixing objects
from the source and target domains. It can also be
concluded from the results that using only synthetic
data when training models can significantly reduce
the efficiency of the models for both in-domain and
out-domain inference. The study showed the impor-
tance of augmentation techniques and consideration
of a priori knowledge for domain adaptation.

The proposed method is flexible and can be ex-
tended to other classes of objects representing states
of edible insects, e.g., beetles. The method’s exten-
sion would include adding new rules when filtering
the prediction based on a priori knowledge. The de-
veloped solutions will undoubtedly help rapidly adapt
monitoring systems for breeding the Tenebrio Molitor
to new breeding conditions.

Future research should focus on increasing the
quality of synthetic data. An interesting research di-
rection is to develop synthetic images based only on a
priori knowledge independently of a specific domain.
This approach could obtain a basic model not overfit-
ted on a particular domain.
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Abstract: Pest detection is an important application problem as it enables early reaction by the farmer in situations of
unacceptable pest infestation. Developing an effective pest detection model is challenging due to the problem
of creating a representative dataset, as episodes of pest occurrence under real rearing conditions are rare.
Detecting the pest Alphitobius diaperinus Panzer in mealworm (Tenebrio molitor) rearing, addressed in this
work, is particularly difficult due to the relatively small size of detection objects, the high similarity between
detection objects and background elements, and the dense scenes. Considering the problems described, an
original method for developing pest detection models was proposed. The first step was to develop a basic
model by training it on a small subset of manually labelled samples. In the next step, the basic model identified
low/moderate pest-infected rearing boxes from many boxes inspected daily. Pseudo-labelling was carried
out for these boxes, significantly reducing labelling time, and re-training was performed. A spatio-temporal
masking method based on activity maps calculated using the Gunnar-Farneback optical flow technique was
also proposed to reduce the numerous false-positive errors. The quantitative results confirmed the positive
effect of pseudo-labelling and spatio-temporal masking on the accuracy of pest detection and the ability to
recognise episodes of unacceptable pest infestation.

1 INTRODUCTION

Insect pests cause significant losses in the agricul-
tural sector every year (Oerke, 2006). Recently, an
increasing consumer demand for food greenness can
also be observed that favours smart solutions to con-
trol pest numbers and use chemicals, known as smart
pest management (Rustia et al., 2022).

Significant advances in machine learning make re-
searchers eager to pursue the topic of pest detection,
mainly for crop pests (Li et al., 2021) and storage
pests (Zhu et al., 2022). Due to the difficulty of reg-
istering pests under real-world conditions, solutions
typically involved trapping pests through (1) sticky
paper traps (Rustia et al., 2021), (2) pheromone-based
traps (Sun et al., 2018), and (3) light traps (Bjerge
et al., 2021). The machine vision system, placed at
the appropriate location, enabled easy detection of

a https://orcid.org/0000-0001-5076-9107
b https://orcid.org/0000-0001-8009-6628
c https://orcid.org/0000-0002-3506-6611
d https://orcid.org/0000-0003-1662-9762

trapped pests. At the level of models/algorithms, re-
searchers proposed different solutions, where mainly
to be noted are: (1) models based on deep convo-
lutional networks (Jiao et al., 2020; Turkoglu et al.,
2022), (2) models based on transformers (Zhang et al.,
2021; Wang et al., 2023) and (3) classical image pro-
cessing methods (Nagar and Sharma, 2020). Among
the major current challenges identified by researchers
in pest detection are: (1) the difficulty of developing
large datasets with issues of data augmentation and
semi-supervised methods, (2) early detection of low
pest infestation and indirect symptoms, (3) detection
of pests when occlusion occurs, and (4) development
of specific solutions, model architectures for pest de-
tection problem as opposed to using off-the-shelf so-
lutions (Li et al., 2021; Ngugi et al., 2021).

Despite the considerable amount of work in the
area of detection of crop and storage pests, we do not
find much research in the area of detection of pests in
insect farming, e.g. honeybee or mealworm (Tenebrio
molitor) (Siemianowska et al., 2013). Research has
already been undertaken on detecting the mite Varroa
destructor (Rosenkranz et al., 2010) on the bee us-
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ing computer vision. (Bjerge et al., 2019) proposed
an Infestation Level Estimator (ILE) to determine the
level of infestation by the mite Varroa destructor. De-
spite obtaining a relatively high F1-score=0.91 for the
detection of varroa mites and confirming the ability
to recognise the presence of this mite on bees, the
following problems of the proposed solution can be
noted: (1) the significant modification of the hive to
install the machine vision system, which may affect
the daily functioning of the bees, (2) performing the
dataset development and validation process for bee
populations with relatively high infestation levels (5-
10%), assuming an infestation level of 2% as an ac-
ceptable (Sajid et al., 2020). An effective pest detec-
tion solution should: (1) be designed to operate under
the real conditions of farming with as little interfer-
ence with insect functioning as possible, (2) be devel-
oped and evaluated for samples associated with differ-
ent degrees of pest infestation in the population - the
most difficult is to detect pests at low levels of infes-
tation with an adequate level of precision (this is the
situation most often found under professional farm-
ing conditions.). To the best of our knowledge, there
is no work on pest detection in mealworm (Tenebrio
molitor) rearing.

Considering the indicated research gaps at the
methodological and application levels, we addressed
the detection of the Alphitobius diaperinus Panzer
pest in mealworm (Tenebrio monitor) rearing. To re-
flect the real rearing conditions fairly, the model de-
velopment process used low/moderate pest-infested
boxes with mealworms occurring under large-scale
rearing conditions. As the main highlights of the re-
search carried out, we identify (1) an efficient method
for developing pest detection models under the as-
sumption of low pest infestation of the population and
no specially prepared samples with a high infestation,
(2) a pseudo-labelling method for iteratively develop-
ing pest detection models and increasing model accu-
racy with relatively small manually labelled datasets,
(3) a spatio-temporal masking method for increasing
model precision under low pest infestation conditions,
and (4) fair model evaluation under different degrees
of pest infestation.

2 MATERIAL AND METHODS

2.1 Problem Definition

The problem addressed in this paper is the detection
of the pest (Alphitobius diaperinus Panzer) in images
of rearing boxes with mealworm (Tenebrio Molitor)
larvae. The solution should include the detection of

the pest in both larva and beetle forms. The problem
is challenging for the following reasons: (1) the rel-
atively small size of the objects to be detected (the
length of the mature larva is about 7 - 11 mm, and
the size of the beetle is about 6 mm) (Dunford and
Kaufman, 2006), (2) the high similarity between the
objects to be detected and the background elements
(possible false-positive errors in the case of small
mealworm larvae, dead larvae), (3) dense scenes caus-
ing the objects to be detected to be often partially
occluded, (4) the difficulty of developing a represen-
tative dataset containing examples of the pest under
real-world conditions of mealworm rearing (breeders
want to keep the pest infestation low, so the pest oc-
curs infrequently and sparsely in rearing boxes), and
(5) the labour-intensive manual labelling of images,
which is directly related to the difficulties described
in (1), (2) and (3). Examples of detection objects in
the form of larvae (L1-L4) and beetles (B1-B3) in se-
lected image tiles are shown in Figure 1.

Figure 1: Examples of detection objects from the classes
pest larvae and pest beetle.

2.2 Dataset

The basis of the developed dataset was the raw
4096 x 3000 pixels images, from which were ex-
tracted smaller square tiles with size 512. The
livestock-adapted machine vision system acquired
raw images. The imaging conditions allowed the
registration of images with a resolution of 0.143
mm/pixel. Each such image also had a correspond-
ing image taken 1 s later, allowing further calculation
of activity maps. From the raw images, 512 x 512
pixels tiles were extracted (presented in Figure 1) us-
ing the sliding window method with a shift unit of
128 pixels. For labelling, 200 rearing boxes charac-
terised by low/moderate pest infestation levels were
selected, which represented approximately 5% of all
boxes being automatically inspected in a given period.
A weak model (trained on a few manually labelled
samples) for pest detection was used to identify boxes
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with a noticeable pest infestation to avoid manual in-
spection. All 200 raw images were labelled manually
to enable the determination of an upper baseline for
the accuracy of the pest detection model, yielding the
number of labelled objects: 1626 for the pest larvae
class and 1004 for the pest beetle class. The average
number of pests in the selected boxes, characterised
by low/moderate pest infestation levels, was approx-
imately 13. At the given level of infestation, there
are more than 100 mealworm larvae per pest, which
does not yet require intervention from the farmer. The
dataset included 107941 tiles: 16995 tiles with at least
one pest and 90946 tiles without a pest.

2.3 Proposed Method

Considering the difficulties described in section 2.1,
an original method for developing a pest detection
model is proposed. The idea scheme of the proposed
solution is presented in Figure 2.

Three main elements of the proposed method are
identified: (1) basic training (Figure 2a), (2) pseudo-
labelling and re-training (Figure 2b), and (3) spatio-
temporal masking in prediction time (Figure 2c),
which will be described in the following subsec-
tions. Pseudo-labelling addressed the need to speed
up (enable) the labelling of the many unlabelled im-
ages acquired during the daily inspection of the rear-
ing boxes. Spatio-temporal masking was proposed
to reduce false-positive errors, the amount of which
was significant in relation to correct predictions for
low/moderate pest infestations.

2.3.1 Basic Training

The basic training consisted of training the model on
a small subset of manually labelled samples. The size
of the subset was defined by the parameter train size,
which determined approximately the proportion of all
labelled objects in the training set (for example, train
size equals 0.16 means that about 16% of all man-
ually labelled objects representing pests were in the
training set). Stratified sampling was used to maintain
the proportion of objects from the pest larvae and pest
beetle classes in the determined subsets of samples.
The resulting model was evaluated after basic train-
ing, and the results for this type of approach were re-
ferred under the name without pool (lower baseline).
The name of the approach is due to the fact that un-
labelled samples from the pool were not used during
training. The YOLOv5x (Jocher et al., 2020) model
was trained with the following training parameters:
epochs=30, batch_size=8. The basic training was pre-
sented in Figure 2a.

Figure 2: Idea scheme for the proposed solution: (1) ba-
sic training, (2) pseudo-labelling and re-training, and (3)
spatio-temporal masking in prediction time.

2.3.2 Pseudo-Labelling with Re-Training

The second stage of the proposed method involved us-
ing a pseudo-labelling method to label samples from
the pool automatically. The pool did not include sam-
ples selected for the test set. The inference was per-
formed for each sample in the pool, and a prediction
was considered relevant if its confidence level was
higher than the parameter confidence score thresh-
old. The parameter confidence score threshold was
fine-tuned under the constant parameter train size.
After automatic labelling according to the described
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method, the model training was repeated, using the
automatically labelled samples and the manually la-
belled samples used in the basic training. The result-
ing model after re-training was evaluated and the re-
sults for this approach were refereed under the name
pool used with pseudo labels. The training settings re-
mained unchanged. Pseudo-labelling with re-training
was presented in Figure 2b.

2.3.3 Spatio-Temporal Masking in Prediction
Time

At the prediction stage, spatio-temporal masking was
introduced to remove some false-positive predictions
characterised by no movement. Each image (tile)
for which a prediction was performed was related
to an image taken 1 s later, resulting in small shifts
in the areas where the larvae were located. The
normalised activity map was calculated using the
Gunnar-Farneback optical flow technique (Farnebäck,
2003). Then, a binary mask was determined using
the defined Farneback activity threshold, where white
pixels represent areas with activity above the thresh-
old. The Farneback activity threshold parameter was
fine-tuned under the constant parameter train size.
A masked RGB image was used for prediction, where
only areas with the minimum defined activity are visi-
ble. When reporting the results from the model evalu-
ations, the use of the described method was indicated
by an appendix in the name + spatio-temporal mask-
ing. The spatio-temporal masking method was pre-
sented in Figure 2c.

2.4 Evaluation

Four sets of samples were distinguished for evalua-
tion purposes: a training set, a validation set, a test
set and a set defined as an image pool. Independence
between the sets was provided at the level of the raw
images from which the tiles were extracted. The size
of the training set was defined by the parameter train
size, which specified approximately the proportion of
the number of objects in this set relative to the number
of objects in the entire dataset. The training set was
used to train the pest detection model. The analysis
was conducted for four training set sizes: 0.02, 0.04,
0.08 and 0.16. The size of the validation set was fixed
and was 1/2 train size (for example, when the training
set contained about 16% of all labelled objects, the
validation set then contained about 8% of all labelled
objects). The validation set was used to evaluate the
model during training and select the model from the
best epoch. The size of the test set was fixed and equal
to 0.3 (about 30% of all manually labelled objects rep-
resenting pests were in the test set). The test set was

used for the final evaluation of the models, and the
referenced results are from the evaluation on this set.
The remaining samples not included in the training,
validation and test sets belonged to the image pool.
Including images from the pool in model training de-
pended on the approach used.

Two types of evaluation were conducted for (1)
low/moderate pest infestation and (2) high pest in-
festation. In the case of (1), the evaluation consid-
ered tiles with and without pests. For low/moderate
infestation, which was present in the analysed im-
ages, there were approximately five pest-free tiles per
tile with at least one pest, as described in more de-
tail in section 2.2. In case (2), the evaluation con-
sidered only tiles with pests. It was decided to carry
out these two types of evaluation because of the sig-
nificant number of false-positive errors that resulted
from the similarity between the analysed objects and
the background elements. The possibility of numer-
ous false-positive errors implies that the accuracy of
the models will strictly depend on the level of pest
infestation.

Besides evaluating the approaches indicated in
section 2.3: without pool (lower baseline), pool used
with pseudo labels, an upper baseline of model accu-
racy was also determined by using true labels instead
of pseudo labels for the pool samples. This approach
was named pool used with true labels.

The following parameter values were checked for
parameter fine-tuning procedures: (a) for the confi-
dence score threshold parameter - [0.1, 0.3, 0.5, 0.7,
0.9], and for the Farneback activity threshold param-
eter - [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2]. For the parameter
Farneback activity threshold, the range of values was
determined based on a preliminary qualitative assess-
ment of the calculated activity maps.

For one experiment related to the selected type
of evaluation, the type of approach and the size of
the training set (parameter train size), three repeats
of pest detection model training were performed re-
lated to the different division of the samples into sets:
training, validation, test and image pool. The results
obtained were averaged over these repeats. Repetition
of training was also used in parameter fine-tuning.

Standard metrics for object detection were cho-
sen as quantitative indicators for evaluation: AP50
(average precision with IoU=50%), F1-score, preci-
sion and recall. The values of F1-score, precision,
and recall were related to the optimal working point
at which the value of the F1-score metric was max-
imised. The values of the indicated metrics were de-
termined separately for the two defined object classes:
pest larvae and pest beetle, and averaged over these
classes.
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3 RESULTS AND DISCUSSION

A comparison of the proposed approaches for the two
types of evaluation is summarised in Table 1 and in
Figures 4a and 4b. In addition, Figures 3a and 3b
show the results of the fine-tuning of two parame-
ters: confidence score threshold and Farneback ac-
tivity threshold. For the discussion of the results,
the AP50 metric (independent of the confidence score
threshold) was chosen for parameter fine-tuning and
the F1-score metric (associated with a specific work-
ing point) for comparing approaches. Fine-tuning was
conducted with a training set size of 0.04 and for eval-
uation type: low/moderate pest infestation. As lower
baseline in Figure 3a the metric values for the with-
out pool (lower baseline) approach were specified. In
Figure 3b the lower baseline was associated with the
pool used with pseudo labels approach. In Table 1, in
addition to the value of the defined train size param-
eter, the averaged number of manually labelled sam-
ples in the training and validation set is also provided.

Figure 3: Fine-tuning results for: (a) confidence score
threshold and (b) Farneback activity threshold.

Figure 3a and 3b confirm the rationale for fine-
tuning the two selected parameters: confidence score
threshold and Farneback activity threshold. For con-
fidence score threshold fine-tuning, the difference be-
tween the lower baseline and the working point was
∆AP50 = 8.9 (increase from 44.3 to 53.2), while for
Farneback activity threshold ∆AP50 = 4.4 (increase
from 53.2 to 57.6). For further approaches, the param-
eter values indicated in Figures 3a and 3b as working
points were used, i.e. 0.3 for confidence score thresh-
old and 0.8 for Farneback activity threshold.

Figure 4: Comparison of the proposed methods according
to the F1-score metric for pest detection for cases of: (a)
low/moderate pest infestation, and (b) high pest infestation.

The impact of pseudo-labelling on pest detec-
tion accuracy can be assessed by comparing the re-
sults for approaches without pool (lower baseline)
(blue line) and pool used with pseudo labels (orange
line) in Figures 4a and 4b. For both low/moderate
and high pest infestation, we can see a positive
and significant effect of using pseudo-labelling for
the image pool on pest detection accuracy. In the
case of the low/moderate pest infestation evaluation,
pseudo-labelling contributed to an increase in the av-
erage F1-score (averaged over different train size) of
∆F1 = 4.0 and in the case of the high infestation F1-
score increased by ∆F1 = 5.4.

The influence of spatio-temporal masking on de-
tection accuracy was assessed by pairwise compar-
ison of the results for the approaches pool used
with pseudo labels (orange line) and pool used with
pseudo labels + spatio-temporal masking (green line)
and for the approaches pool used with true labels
(red line) and pool used with true labels + spatio-
temporal masking (purple line) in Figures 4a and 4b.
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Table 1: Comparison of the proposed methods for two cases: (1) low/moderate pest infestation, (2) high pest infestation.

evaluation type
(degree of pest infestation)

approach type
train size
(# samples)

AP50 F1-score [%] precision [%] recall [%]

low/moderate
pest infestation

without pool
(lower baseline)

0.02 (79) 40.6 45.2 45.4 45.9
0.04 (158) 44.3 48.4 50.7 47.5
0.08 (316) 52.6 56.6 56.8 56.9
0.16 (631) 57.1 59.9 58.9 61.2

pool used with
pseudo labels

0.02 (79) 48.8 51.4 51.5 52.1
0.04 (158) 53.2 53.5 53.6 54.9
0.08 (316) 57.3 59.4 57.9 61.3
0.16 (631) 60.9 61.7 60.4 63.8

pool used with pseudo
labels + spatio-temporal

filtering

0.02 (79) 51.9 55.6 57.0 55.8
0.04 (158) 57.6 58.1 61.8 57.5
0.08 (316) 60.9 62.2 64.7 60.9
0.16 (631) 65.7 66.6 69.5 64.8

pool used with
true labels

all (1841) 65.3 64.8 60.7 72.0

pool used with true
labels + spatio-temporal

filtering
all (1841) 68.6 68.6 68.7 69.0

high
pest infestation

without pool
(lower baseline)

0.02 (79) 61.5 63.3 69.6 58.9
0.04 (158) 64.8 67.3 74.7 62.2
0.08 (316) 72.6 73.0 79.3 68.5
0.16 (631) 76.4 76.9 83.9 71.5

pool used with
pseudo labels

0.02 (79) 70.7 70.2 76.1 66.5
0.04 (158) 76.2 74.0 77.3 71.7
0.08 (316) 79.7 77.4 81.4 74.3
0.16 (631) 83.9 80.5 82.4 79.1

pool used with pseudo
labels + spatio-temporal

filtering

0.02 (79) 68.0 68.5 77.4 63.3
0.04 (158) 74.1 73.5 81.1 68.5
0.08 (316) 76.3 75.7 81.5 71.6
0.16 (631) 80.5 78.9 83.6 75.4

pool used with
true labels

all (1841) 86.9 84.1 85.0 83.5

pool used with true
labels + spatio-temporal

filtering
all (1841) 84.1 82.6 85.7 80.0

Considering the pool used with pseudo labels ap-
proach, an improvement in detection accuracy using
the spatio-temporal masking technique was noted for
the low/moderate pest infestation case. For this case,
F1-score increased by ∆F1 = 4.1. For the high pest
infestation case, a small reduction in detection accu-
racy was noted - F1-score decreased by ∆F1 =−1.4.
The small reduction in detection accuracy was due to
masking areas with pests characterised by low mo-
bility. As expected, applying the spatio-temporal
masking technique in general increased precision
with decreasing recall. However, for the case of
low/moderate pest infestation, in addition to the ex-
pected increase in precision (∆precision = 7.4), an
increase in recall was even observed (∆recall = 1.7),
which was due to the possibility of moving the work-
ing point to a lower confidence score threshold value,
resulting in an increased recall. Despite the small re-
duction in model accuracy in the case of high pest
infestation, it should be stated that this is acceptable,

considering that most boxes during the daily inspec-
tion are characterised by low/moderate pest infesta-
tion. The positive effect of spatio-temporal mask-
ing on detection accuracy is expected to be higher
the smaller the pest infestation. Analogous results
were obtained for the pool used with true labels ap-
proach, where an increase in F1-score was obtained
(∆F1 = 3.8) for the low/moderate infestation and a
small decrease in F1-score (∆F1 =−1.5) for the high
pest infestation case.

Analysing the effect of training set size on detec-
tion accuracy, a significant influence of this param-
eter was observed in the considered range of 0.02 –
0.16. Comparing the results between train size 0.02
and 0.16 for pool used with pseudo labels + spatio-
temporal masking approach (green line), an increase
in F1-score was observed by ∆F1 = 11.0 for the
low/moderate pest infestation case and by ∆F1= 10.4
for the high pest infestation case. Further manual
labelling of the pool samples (representing approxi-
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mately 0.46 of the dataset and 1210 additional sam-
ples for manual annotation), as expected, had a posi-
tive effect on the accuracy of the models, but it was
not such a spectacular improvement as in the con-
sidered range from 0.02 to 0.16. The difference be-
tween the upper baseline (the pool used with true
labels + spatio-temporal filtering approach) and the
pool used with pseudo labels + spatio-temporal mask-
ing approach at train size=0.16 was ∆F1 = 2.0 for
the low/moderate infestation case and ∆F1 = 3.7 for
the high pest infestation case, respectively. For the
specific pest detection problem addressed in this ar-
ticle, the required minimum training set size should
be at least 0.16 (associated with the validation set
size 0.08), resulting in approximately 630 manually
labelled objects. Assuming a low/moderate pest in-
festation under large-scale rearing conditions, obtain-
ing this number of samples in a reasonable time is
only possible with the support of a weak model (e.g.
a model from the pool used with pseudo labels ap-
proach with a small train size) for identifying the
boxes with the highest number of pests.

Lower metric values for the low/moderate pest in-
festation evaluation were obtained due to an increase
in the number of false-positive predictions. Some of
these predictions actually represented objects falsely
detected as pests, e.g., fragments of dead larvae sim-
ilar to pest beetles. A part of these false-positive pre-
dictions was filtered out by spatio-temporal masking
(selected examples are shown in Figure 5).

Figure 5: Examples of false-positive predictions filtered out
by spatio-temporal masking.

After analysing the mistakes made by the pest de-
tection model among the false-positive errors, we can
also find many predictions that can represent not la-
belled pests. Some objects were difficult for the anno-
tator to recognise, influenced by dense scenes, overlap
and small size. Selected objects missed during an-
notation but correctly detected by the pest detection
model are shown in Figure 6.

Figure 6: Selected objects missed during annotation but cor-
rectly detected by the pest detection model.

The observed problem with noisy (or lack of) la-
bels, on the one hand, suggests that the model’s accu-
racy can be even better than referred, and on the other
hand, shows the direction of further work in label re-
finement.

4 CONCLUSIONS

The results presented here confirmed the potential
of the proposed methods (pseudo-labelling, spatio-
temporal masking) for developing pest detection
models. Pseudo-labelling is particularly important for
developing the first models (so-called weak models)
when we have a small labelled dataset and access to
a pool of unlabelled images. The role of the spatio-
temporal masking technique is highest in the case of
a low pest infestation when the main problem is po-
tential false alarms, which is the most common situ-
ation found in professional farming. In future work,
we plan to develop additional methods, e.g., based on
expert knowledge and using new imaging domains to
increase the precision of pest detection in the case of
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low pest infestation. Future work should also analyse
the real characteristics of the change in the number of
pests over time when changing the infestation from
low/moderate to high, which requires a fast reaction
from the farmer. This analysis will enable us to im-
prove our solution for a particular use case.
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Abstract

The large-scale rearing of edible insects, of which Tene-
brio Molitor is a representative, requires monitoring using
vision systems to control the process and to detect anoma-
lies. Previously proposed solutions by researchers relied on
multiple modules related to specific tasks (calculated coef-
ficients) and specific types of models (instance segmenta-
tion, semantic segmentation). Long processing times and
difficulties in maintaining and updating modules encour-
age the search for a more condensed solution as an end-
to-end model. This paper proposed a modified YOLOv8
architecture extended with additional heads related to spe-
cific tasks. Heads were trained on problem-oriented small
datasets, which significantly reduced the time spent on sam-
ple annotation. The proposed solution also included esti-
mation of prediction uncertainty based on variation among
predictions in model ensemble and detection of domain shift
phenomenon. Quantitative results from the conducted ex-
periments confirmed the potential of the developed solution.

1. Introduction

Increasing demands on the quantity and quality of food pro-
duced worldwide are necessitating the search for new food
sources and alternative approaches to food production [9].
Insect rearing (including edible insects) for feed and food
purposes is becoming an increasingly important part of the
agri-food industry. Among the most popular insect species
reared for feed purposes are Hermetia Ilucens (HI) [3] and
Tenebrio Molitor (TM) [12]. The distinguishing factor of
farming the mentioned insects is the possibility of obtain-
ing a product rich in protein, fat and minerals at much lower
environmental costs (greenhouse gas emissions, water con-
sumption) as in the case of traditional farming (pigs, cat-
tle) [21, 24]. The profitability of HI and TM insect farming

is closely related to its large-scale nature, which necessitates
the automation of basic farming operations (e.g. feeding,
harvesting) [22] on the one hand and the need for its moni-
toring on the other. Information obtained from data analysis
is also needed to control rearing and make critical decisions,
e.g. to end rearing and to change the feeding strategy.

Researchers have already addressed the problem of mon-
itoring insect rearing on the example of the TM using a vi-
sion system and computer vision methods [16, 20]. The
proposed solutions allowed (1) detection and counting of
the TM growth stages (larva, pupa, beetle, (2) detection and
counting of anomalies (dead larva), (3) estimation of the
amount of chitinous moults and feed, and (4) estimation of
size indicators of larvae (referred to as phenotyping). The
developed methods were based on the following models:
Mask R-CNN [13] for instance segmentation, U-Net [23]
for semantic segmentation, and YOLOv5 [14] for object de-
tection and classical image processing methods.

An undeniable disadvantage of existing solutions for TM
rearing monitoring is their multi-module nature, i.e. many
separate models related to a specific task. With such an
approach, the problems of long image processing time (dif-
ficulty of achieving real-time inference), maintenance and
updating of specific modules are of great importance. Re-
searchers have also addressed the problem of simplifying
some parts of processing, e.g., the phenotyping module, by
proposing custom regression deep convolutional neural net-
work instead of multistage image processing. However, the
problem of developing a comprehensive solution should be
considered still open [18].

With the above in mind, we propose an end-to-end so-
lution for monitoring the rearing of the TM based on the
YOLOv8 [15] object detection model extended with addi-
tional heads associated with a specific task (calculated indi-
cators). To reduce labelling efforts, an approach of training
individual heads on problem-oriented small datasets was
proposed. Given the importance of some of the calculated

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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indicators in terms of rearing control and in order to in-
crease the reliability of the solution, a method for estimating
prediction uncertainties using an ensemble of models was
also proposed. The calculated prediction uncertainties were
also used to detect the domain shift phenomenon, which,
considering the changeable conditions on the farm, is a sig-
nificant problem.

2. Related Work
The problem of reducing multiple tasks to a single model ar-
chitecture (with a shared backbone) and developing end-to-
end solutions is eagerly addressed in many application areas
of computer vision [2, 32], including agriculture and pheno-
typing of biosystems [6, 30]. Many approaches to develop-
ing condensed model architectures can be distinguished. In
this section, three selected ones will be discussed, namely
(1) multioutput regression models, (2) extending basic mod-
els with new heads (branches), and (3) multi-task learning.

Multioutput regression models. With this approach,
all defined tasks are implementable by calculating a cer-
tain number of numerical values representing specific in-
dicators. In [31], an architecture based on a backbone pre-
trained on ImageNet [8] was proposed for the simultane-
ous calculation of six physical indicators that characterize
cattle, namely the length and width of specific body parts
(shoulder, hip, body) along with the estimated weight. The
input to the model was recorded depth images. A com-
bined loss based on MSE (mean squared error) was used
for training, consisting of parts corresponding to predic-
tion errors for a specific indicator. In [19], different fruit
traits, i.e. moisture content (MC) and soluble solids con-
tent (SSC), were predicted simultaneously based on spec-
tral signals from NIR spectroscopy. The proposed custom
architectures consisted of a certain number of convolution
layers and fully connected layers. The combined loss MSE
for different coefficients was used for training as in [31].

Extending basic models with new heads (branches).
A common approach to extend the functionality of the solu-
tion with new tasks is to extend the basic architecture with
additional heads. Applying this approach, the Faster R-
CNN [11] architecture was extended in [4] to include an
additional branch for weight estimation. In [29], an addi-
tional block for direct counting of soybean pods was pro-
posed as a modification to the YOLOv5 [14] model.

Multi-task learning. For some types of tasks, there is a
need for output in the form of predictions of different types,
for example, returning simultaneously bounding boxes for
an object detection problem along with a predicted map for
a semantic segmentation problem. For these types of is-
sues, multi-task learning methods are helpful. The chal-
lenge in multi-task learning is to propose a suitable loss
function that takes into account predictions in different for-
mats, often with fine-tuning the weights of specific parts

in the loss function. In [5], the problem of detection and
determination of cherry tomato maturity was extended to
the task of detection and determination of maturity of the
whole bunch. For this purpose, additional improved heads
to the YOLOv7 [26] model and a combined loss function
for the tasks posed were proposed. In [27], inspired by the
YOLOP [28] model, a solution was proposed for the simul-
taneous detection of peppers, pepper segmentation and stem
segmentation. The minimized loss during training consisted
of three parts related to the defined tasks.

3. Problem Definition

The problem addressed in this paper is the calculation of
multiple indicators that characterize the current status of
TM rearing based on RGB images of TM rearing boxes
(shown in Fig. 1).

Figure 1. Example image of a rearing box with Tenebrio Molitor.

The tasks undertaken include: (1) counting TM states
(beetles, dead larvae and pupae), (2) estimating indicators
of box coverage with chitinous moults and feed, and (3)
calculating size indicators (width, length) of larvae.

Compared to the nomenclature in [16], the presented ar-
ticle combines object classes from the ’growth stages’ and
’anomalies’ groups into a single group called ’states’ due to
the possibility of counting objects from all classes related to
TM using a single object detection model.

The counting of live larvae was abandoned from the
tasks undertaken since the number of live larvae in the rear-
ing box should be constant under normal conditions. The
estimated number of live larvae will also strongly depend
on the growth stage of the larvae, which is related to the
influence of occlusion on the results and the tendency of
larvae to hide in the substrate. With these problems present,
interpreting the change in the number of live larvae over
time can be problematic for the farmer.
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4. Dataset

Multiple datasets were developed for the experiments, and
each dataset was associated with a specific task. The defined
datasets contained tiles of a certain size extracted from the
whole image (with the size of 4096x3000 pixels) of a rear-
ing box with Tenebrio Molitor as in Fig. 1.

The base dataset contained 640x640 images for train-
ing the basic YOLOv8 model to detect objects from three
classes: beetles (B), dead larvae (DL) and pupae (P). Sam-
ple images with objects from the classes under considera-
tion are shown in Fig. 2. The base dataset contained 373
images with a total number of annotations of 3442 (367 for
beetles, 1781 for dead larvae and 1294 for pupae). For the
base dataset, the annotations were bounding boxes.

Figure 2. Classes of detected and counted objects with example
bounding boxes.

For the task of estimating the chitin coverage index
(CCI) and feed coverage index (FCI), labelling was per-
formed for 150 images with 640x640 size. Labelling con-
sisted of marking all areas in the image representing chitin
or feed. Based on the annotated images, CCI and FCI coef-
ficients were calculated as target values. Selected samples
with assigned values of CCI and FCI coefficients are shown
in Fig. 3.

For the larvae phenotyping task related to calculating
the three quartiles of larvae width (lower, median, upper),
a dataset described in [18] consisting of 739 images of
1024x1024 size was used. Sample images from this dataset
are also shown in Fig. 3.

To conduct experiments for the detection of the domain
shift effect, a separate dataset was developed, consisting of
images from three domains related to image registration by
different vision systems (different cameras, lighting). The
developed dataset contained 640x640 images, respectively
87 from the base domain, 29 from domain A and 15 from
domain B. Sample images from the three considered do-
mains are presented in Fig. 4. Details on the defined do-
mains can also be found in [17] (data source ’JA’ is the base
domain, ’LU’ is domain A, ’CA’ is domain B).

Figure 3. Examples of samples from problem-oriented datasets for
training machine learning models to proposed additional heads in
YOLO architecture.

Figure 4. Examples of images from defined domains.

5. Proposed Approach
The proposed approach to calculating informative indica-
tors for monitoring the rearing of TM is a modified archi-
tecture of the YOLOv8 model for object detection, which
has been extended with additional problem-oriented heads,
namely (1) feed coverage estimation head, (2) chitin cov-
erage estimation head and (3) larvae phenotyping head. At
the training stage, each head was separately fine-tuned us-
ing a different dataset prepared for a specific problem, sav-
ing considerable annotation time. The YOLOv8 base model
allowed the detection of objects from the beetle, dead larvae
and pupae classes and their counting. Feed and chitin cov-
erage estimation heads calculated image coverage indices
for feed or chitin, respectively. Coverage indices should
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be understood as the number of pixels associated with the
considered classes (feed or chitin) divided by the total num-
ber of pixels. In the case of the larvae phenotyping head,
the output was three quartiles (lower, median, upper) of the
width of the larvae as proposed in [18].

5.1. Model Architecture

The developed model architecture is shown in Fig. 5. The
proposed three heads used features extracted from specific
backbone layers of the YOLOv8 model (these are the lay-
ers with indexes from 0 to 9 shown in Fig. 5). In the case
of the YOLOv8 model under consideration, the backbone
is the CSPDarknet53 [25] feature extractor. The indexes of
the layers used for feature extraction for the problems posed
were determined experimentally, and the procedure is de-
scribed in the following sections of the paper. Based on the
extracted features, the selected classical machine learning
models calculated the specified indices. Fig. 5 places the
heads in specific locations associated with the results ob-
tained in the conducted experiments.

5.2. Model Ensemble and Uncertainty Estimation

To increase the estimation accuracy of the proposed indices
and enable the estimation of prediction uncertainty, an en-
semble of models was considered for prediction. A boot-
strap method was used to train successive models, which
involved training successive YOLOv8n models on different
subsets of samples determined from the basic object detec-
tion dataset. The prediction of an ensemble of models was
the unweighted average of single model predictions. Un-
certainty was calculated as the standard deviation among
single-model predictions.

5.3. Domain Shift Detection

The possibility of a domain shift effect is associated with
a change in the nature of the registered images. The first
source of changes can be different acquisition conditions,
for example, due to significant dust or contamination of the
elements of the vision system. Changes can also be asso-
ciated with a variation in the type of feed used or the type
of rearing box used. The domain shift effect can also occur
when implementing a monitoring system for a new large-
scale farm.

The method for detecting the domain shift effect was
based on calculated prediction uncertainties. A logistic re-
gression model was used for the binary classification task.
In addition to the standard approach of detecting domain
shift for single samples, the detection of this phenomenon
was also considered when averaging the uncertainty values
from a subset of samples of a specific size. It was justi-
fied from the point of view of the problem addressed (regis-
tration of multiple images under large-scale rearing condi-
tions).

6. Experiments
6.1. Selection of YOLO Core Architecture

The first stage of the conducted experiments was training
YOLOv8 models using architectures with different com-
plexity and number of parameters (n, s, m, l and x versions).
The training was repeated in 5 iterations of cross-validation,
where the whole dataset was divided into train/val and test
parts. Model training was performed on the training set.
Based on the validation set, the best training epoch was se-
lected. On the test set, an evaluation was carried out. The
best architecture was selected for further experiments based
on the averaged results (metrics) obtained on the test set.

6.2. Selection of Best Settings for Proposed Heads

The next experiment aimed to determine the optimal set-
tings (layer ID for feature extraction and the type of classi-
cal machine learning model for the regression task) for the
proposed heads. Using the GridSearch approach, further
combinations of settings were examined, whereby layers for
feature extraction with indexes from 0 to 9 and the follow-
ing machine learning models for regression were consid-
ered: linear regression (LR), k-nearest neighbours regres-
sion (KNN), support vector regression (SVR) [7] and gradi-
ent boosting regression (GBR) [10]. As in the first experi-
ment, training was repeated for different iterations of cross-
validation, and the results were averaged. The search for
the best settings was conducted for each defined head sepa-
rately. The selected best settings of each head were used for
further experiments.

6.3. Model Ensemble and Uncertainty Estimation

The next experiment involved developing an ensemble of
YOLOv8 models. For this task, the train/val and test splits
from the cross-validation from the first experiment were
used. Training of subsequent models was carried out on sets
determined using bootstrapping. Each determined training
set was extracted from the train/val part, with about 70%
of the unique samples from the train/val part in the training
set. To check the effect of the number of single models in
the ensemble on the results, the prediction was performed in
ensemble mode, averaging the single model predictions us-
ing an unweighted average. Prediction uncertainty was also
determined based on the standard deviation among single
model predictions in the ensemble.

6.4. Domain Shift Detection

The last experiment was developing a model for detecting
the domain shift effect based on estimated prediction uncer-
tainties. The Logistic Regression model was used for this
task. The cases of two domains (A and B) that differed from
the basic domain were considered. The obtained values of
the metrics in the stratified cross-validation were referred
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Figure 5. Modified YOLOv8 architecture with proposed additional heads: feed coverage estimation head, chitin coverage estimation head
and phenotyping head.

to as the results of this experiment. The study also tested
the hypothesis of the possibility of increasing the detection
accuracy of the domain shift effect by averaging the pre-
diction uncertainty over several samples. Experiments were
conducted with different numbers of samples considered for
averaging.

7. Evaluation

The proposed methods were evaluated using standard met-
rics for a specific problem. The referred averaged values
of the specified metrics with standard deviation were based
on the results obtained in successive cross-validation itera-
tions. Consistently, the number of splits in cross-validation
was set at five for all problems posed.

7.1. Metrics for Regression Problems

For the evaluation of regression tasks (TM states counting,
estimation of chitin and feed coverage indexes), three met-
rics were used: mean absolute error (MAE), coefficient of
determination (R2) and Pearson correlation coefficient (r),
which can be calculated using formulas Eq. (1), Eq. (2), and
Eq. (3).

 \label {eq:mae} MAE = \frac {1}{n_{sample}}\sum ^{n_{sample}}_{i=1}|g_{i} - p_{i}| 








   (1)

 \label {eq:r2} R^2 = 1 - \frac {\sum ^{n_{sample}}_{i=1}(g_{i} - p_{i})^2}{\sum ^{n_{sample}}_{i=1}(g_{i} - \overline {g})^2}  


  




  
(2)

 \label {eq:r} r = \frac {\sum ^{n_{sample}}_{i=1}(g_{i} - \overline {g})(p_{i} - \overline {p})}{\sqrt {\sum ^{n_{sample}}_{i=1}(g_{i} - \overline {g})^2}\sqrt {\sum ^{n_{sample}}_{i=1}(p_{i} - \overline {p})^2}} 



    

  


  
(3)

Where nsample is the number of samples, pi - predic-
tion for the i-th sample, gi - target value (true) for the i-th
sample, p - averaged prediction values, g - averaged target
values.

7.2. Metrics for Uncertainty Estimation

Evaluation of the prediction uncertainty estimation method
was carried out as follows. Using a specified number of pre-
dictions in an ensemble of models, the 95 percent prediction
uncertainties interval (95 PPU) was determined, calculating
the lower (XL

i ) and upper (XU
i ) bounds of the interval being
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the 2.5th and 97.5th percentiles, as in the article [1]. Hav-
ing the limits of the interval, it was checked what part of the
predictions fell within the determined uncertainty interval,
which was referenced under the metric called pred. in 95
PPU. Based on the XL

i and XU
i values, the degree of un-

certainty dx was also determined from the formula Eq. (4)
and then the d-factor metric from the formula Eq. (5).

 \label {eq:degree_un} \overline {d_{x}} = \frac {1}{n_{sample}}\sum ^{n_{sample}}_{i=1}(X_{i}^{U} - X_{i}^{L}) 











  (4)

 \label {eq:d_factor} d-factor = \frac { \overline {d_{x}}}{\sigma _{x}}  



(5)

Where σx is the standard deviation among the target val-
ues for the selected problem

7.3. Metrics for Domain Shift Detection

To evaluate domain shift detection models, precision, re-
call and F1-score metrics were used, whose formulas can
be found in Eq. (6), Eq. (7) and Eq. (8).

 \label {eq:prec} precision = \frac {TP}{TP + FP} 


 
(6)

 \label {eq:rec} recall = \frac {TP}{TP + FN} 


 
(7)

 \label {eq:F1} F1 = \frac {2TP}{2TP + FP + FN} 


   
(8)

Where TP, TN, FP and FN represent the number of true
positive, true negative, false positive and false negative pre-
dictions, respectively.

7.4. Inference Time

The referenced inference time values were based on pre-
dictions made using hardware with the following specifica-
tions: GeForce RTX 2060 SUPER 8 GB (GPU) and AMD
Ryzen 7 1700 3 GHz (CPU). When referencing inference
times for the entire rearing box (size of 4096x3000), the
inference was assumed for 54 individual tiles (dividing the
entire image into 640x640 tiles with 25% overlap).

8. Results and Discussion
8.1. Selection of YOLO Core Architecture

In the first step of developing the proposed solution, the ap-
propriate architecture of the YOLOv8 model was selected,
the results of which are presented in Tab. 1.

Based on the results obtained in Tab. 1, it was decided to
select the YOLOv8n architecture for further experiments.
The YOLOv8n architecture had the highest metrics for the
counting task and the highest throughput, which is particu-
larly important for inference in model ensemble mode.

model class MAE R2 r

YOLOv8n B 0.20±0.04 0.959±0.011 0.985±0.007

YOLOv8n DL 1.07±0.21 0.908±0.020 0.962±0.005

YOLOv8n P 0.82±0.05 0.969±0.012 0.988±0.006

YOLOv8s B 0.21±0.06 0.955±0.009 0.982±0.004

YOLOv8s DL 1.19±0.09 0.893±0.019 0.955±0.002

YOLOv8s P 0.88±0.10 0.966±0.011 0.988±0.006

YOLOv8m B 0.21±0.08 0.949±0.020 0.977±0.012

YOLOv8m DL 1.14±0.12 0.897±0.022 0.955±0.009

YOLOv8m P 0.85±0.14 0.966±0.017 0.989±0.005

YOLOv8l B 0.21±0.07 0.956±0.032 0.979±0.017

YOLOv8l DL 1.26±0.15 0.888±0.022 0.951±0.008

YOLOv8l P 0.83±0.09 0.969±0.015 0.987±0.008

YOLOv8x B 0.23±0.08 0.954±0.012 0.982±0.007

YOLOv8x DL 1.22±0.22 0.889±0.012 0.953±0.010

YOLOv8x P 0.85±0.05 0.973±0.010 0.988±0.004

Table 1. Results for Tenebrio Molitor states (beetle/B, dead
larva/DL, pupa/P) counting for different types of YOLO models.

It is noteworthy that already at the level of the object
detection model, it was possible to achieve a significant re-
duction in computation time compared to [16], where the
YOLOv5x model characterized by an inference time of 40
ms/tile was used. In the case of the YOLOv8n model, the
inference time was 7.9 ms/tile. The reduction in computa-
tion time would be even greater assuming batch inference
(the throughput for YOLOv8n was 395 tiles/s). This results
in a computation time of about 0.14s for the entire rearing
box (composed of 54 tiles). With such values of process-
ing times, even ensemble mode inference, with a reasonable
number of single models, is reasonable.

8.2. Selection of Best Settings for Proposed Heads

In the next step, the best settings (machine learning model
for regression and layer ID for feature extraction) were
searched for the proposed additional heads. The results
from this step are presented in Tab. 2.

Based on the results in Tab. 2, it can be concluded that
different models and features extracted from different lay-
ers were the best choice for different tasks. Finally, for the
chitin coverage estimation head, the GBR model based on
features extracted from the 7th layer was chosen; for the
feed coverage estimation head - the LR model and features
from the 3rd layer; and for the phenotyping head - the GBR
model along with features from the 6th layer. The relatively
high results (R2 > 0.78) confirmed the validity of the pro-
posed solution based on attaching additional heads to the
base YOLOv8n model. The lowest results were achieved
for the estimation of the chitin coverage index. This may be
due to the high similarity between live larvae and chitinous
moults. It is noteworthy that the results obtained for the
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head model layer MAE R2 r

chitin LR 3 0.082±0.024 0.752±0.128 0.919±0.031

chitin KNN 9 0.075±0.023 0.716±0.185 0.911±0.036

chitin SVR 4 0.070±0.018 0.786±0.130 0.947±0.022

chitin GBR 7 0.062±0.025 0.785±0.169 0.948±0.030

feed LR 3 0.042±0.008 0.949±0.025 0.983±0.007

feed KNN 6 0.065±0.017 0.857±0.113 0.938±0.042

feed SVR 0 0.046±0.009 0.941±0.026 0.976±0.012

feed GBR 6 0.065±0.021 0.850±0.137 0.945±0.038

pheno LR 6 0.106±0.005 0.863±0.012 0.930±0.007

pheno KNN 9 0.119±0.008 0.829±0.023 0.917±0.010

pheno SVR 6 0.101±0.002 0.868±0.008 0.932±0.004

pheno GBR 6 0.103±0.004 0.869±0.012 0.935±0.006

Table 2. Results for the tasks related to the proposed heads,
i.e., chitin coverage estimation (chitin), feed coverage estima-
tion (feed) and larvae phenotyping (pheno) using different settings
(chosen machine learning models for prediction based on embed-
dings from a specific layer of the YOLO model).

phenotyping head are comparable with the results reported
in [18], where a special architecture was used for the task of
phenotyping larvae based on the ResNet18 model with fine-
tuning of all model parameters. In the approach considered
in this article, we assume frozen weights for the backbone.

8.3. Predictions with Proposed Heads

The evaluation results in the form of true versus predicted
charts for the regression tasks of estimating feed coverage
index and larvae phenotyping are shown in Fig. 6

Figure 6. Comparative analysis of true vs. predicted values for se-
lected regression tasks: (a) feed coverage estimation and (b) phe-
notyping based on the results from the selected cross-validation
iteration.

The results in Fig. 6 confirm the validity of the devel-
oped approach to calculating the proposed indices and indi-
cate the great potential of extracted features from the chosen
backbone layers of the YOLOv8n model.

8.4. Model Ensemble and Uncertainty Estimation

The results for prediction in model ensemble mode for the
Tenebrio Molitor state counting task are shown in Tab. 3 in
the context of prediction efficiency and Tab. 4 for estimation
of prediction uncertainty.

mode class MAE R2 r

single model B 0.212±0.082 0.949±0.040 0.981±0.011

single model DL 1.134±0.155 0.898±0.021 0.955±0.009

single model P 0.906±0.166 0.965±0.023 0.987±0.008

ensemble(n=5) B 0.194±0.055 0.967±0.013 0.987±0.006

ensemble(n=5) DL 1.004±0.120 0.924±0.013 0.965±0.006

ensemble(n=5) P 0.759±0.087 0.979±0.012 0.991±0.006

ensemble(n=10) B 0.189±0.054 0.970±0.011 0.988±0.005

ensemble(n=10) DL 0.989±0.114 0.927±0.012 0.966±0.006

ensemble(n=10) P 0.732±0.08 0.981±0.011 0.991±0.006

ensemble(n=20) B 0.188±0.054 0.971±0.011 0.988±0.005

ensemble(n=20) DL 0.982±0.114 0.929±0.010 0.966±0.005

ensemble(n=20) P 0.718±0.075 0.981±0.012 0.991±0.006

Table 3. Comparison of results for single-model and ensemble of
models approaches for Tenebrio Molitor states counting.

mode class pred. in 95 PPU d-factor

ensemble(n=5) B 0.928±0.029 0.119±0.032

ensemble(n=5) DL 0.714±0.040 0.251±0.045

ensemble(n=5) P 0.777±0.046 0.138±0.019

ensemble(n=10) B 0.956±0.026 0.156±0.034

ensemble(n=10) DL 0.811±0.030 0.328±0.049

ensemble(n=10) P 0.859±0.037 0.180±0.023

ensemble(n=20) B 0.975±0.017 0.185±0.044

ensemble(n=20) DL 0.865±0.010 0.381±0.053

ensemble(n=20) P 0.920±0.019 0.214±0.023

Table 4. Results for prediction uncertainty estimation using model
ensemble for Tenebrio Molitor states counting.

Based on the results in Tab. 3, it can be concluded that, as
expected, using an ensemble of YOLOv8 models resulted in
a significant increase in counting performance compared to
the results achieved by single models. The optimal number
of models for the ensemble is not obvious. On the one hand,
increasing the number of models in the ensemble from 10 to
20 no longer resulted in a significant increase in prediction
accuracy. On the other hand, based on the results in Tab. 4,
we can see that using more models in an ensemble results
in more accurate uncertainty estimation (a larger proportion
of predictions bracketed by 95 PPU). Of course, this is also
related to the larger d-factor associated with the size of the
uncertainty interval. The final decision on the number of
models for the ensemble should be made, taking into ac-
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count the characteristics of the problems, that is, the cost of
potential FP and FN errors.

8.5. Domain Shift Detection

The distributions of prediction uncertainties for samples
from the defined domains are shown in Fig. 7

Figure 7. Comparison of the distributions of estimated uncertainty
for samples from the base domain and samples from other domains
(A and B).

In Fig. 7, we can see that considering the uncertainties
for single samples, there is a noticeable overlap between the
distributions for the defined domains. Considering the sig-
nificant difference between the average uncertainty for the
considered distributions, averaging the uncertainty values
for a subset of samples of a certain size can significantly
improve the separability of the distributions. We can find
confirmation of this hypothesis in Tab. 5, where quantita-
tive results are presented for detecting the domain shift phe-
nomenon at a certain size of the subset of samples used to
calculate the averaged uncertainty.

With 10 samples taken for averaged uncertainty,
F1 > 0.94 was achieved for the two domains considered.
Quantitative indicators confirm the validity of detecting the
phenomenon of domain shift in the proposed way based on
an increase in the value of prediction uncertainty. Carrying
out a procedure for detecting the phenomenon of domain
shift in production conditions for the problem posed also
does not seem complicated, given the thousands of images
recorded daily (which may represent a subset for averaging
uncertainty).

set size new domain F1 precision recall

1 A 0.622±0.071 0.573±0.067 0.693±0.118

1 B 0.620±0.104 0.487±0.086 0.867±0.163

5 A 0.833±0.140 0.787±0.181 0.893±0.088

5 B 0.876±0.123 0.800±0.187 1.000±0.000

10 A 0.945±0.078 0.971±0.057 0.933±0.133

10 B 0.971±0.057 0.950±0.100 1.000±0.000

Table 5. Results for domain shift detection for different sizes of
the subset of samples used for averaged uncertainty calculation.

9. Conclusion and Future Work

The research proposed an end-to-end solution for calculat-
ing indicators to support the monitoring of Tenebrio Molitor
rearing. Compared to previous approaches, multiple (sep-
arate) models trained for specific tasks were reduced to a
single architecture based on a shared backbone. The ex-
tended YOLOv8 architecture with three problem-oriented
heads made it possible to perform predictions for specific
regression tasks. Training for each head was done sepa-
rately, which made it possible to develop smaller datasets
focused on defined object classes and significantly reduce
the time spent on labelling. The proposed solution is flex-
ible and allows rapid architecture extension for new prob-
lems by adding the following heads. Using an ensemble of
models made it possible to increase the accuracy of predic-
tion and estimate the uncertainty of prediction, which will
increase the reliability of the developed solution and facili-
tate critical decision-making on the farm.

Future work should focus on multi-task learning prob-
lems, making it possible to jointly learn the separated heads
of the architecture. Given the dependencies between the cal-
culated indicators (e.g., the occurrence of pupae is related to
a certain size of larvae), this approach seems reasonable.
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A B S T R A C T
Selective breeding studies for edible insects enable the development of
high-quality rearing input, resulting in higher daily larval mass gains.
Currently, the selection of the best beetles for reproduction is based on static
characteristics, i.e. weight and geometric dimensions that are insufficient to
characterize individuals fully. In this research, we proposed a phenotyping
method with dynamic characteristics determination for Tenebrio Molitor
beetles using re-identification. The proposed procedure consisted of two
stages: training and testing. During the training stage, the beetles were
isolated in individual stations, which allowed the development of a training
set for a re-identification model without manually labeling samples. During
the test stage, the beetles were free to move and interact. Re-identification
in the test stage was carried out based on the segmented abdomen of
beetles, and a physical tag located on the head of the beetle served as
ground truth. For the best re-identification model developed, a precision
at 1 (P@1) of 0.807 was obtained when analyzing 80 individuals. The
P@1 value was further increased to 0.853 through the proposed method
of reducing the domain shift effect. The study also proposed a strategy
for the initial selection of beetles for phenotyping, which made it possible
to increase the number of simultaneously analyzed beetles significantly.
The ablation studies showed the high role of color-related features for re-
identification and confirmed the solution’s reliability. The high quantitative
results obtained confirm the implementation potential of the proposed
phenotyping method.

1. Introduction
Mealworms (Tenebrio Molitor) are one of the most popular representatives of edible insects

used for food and feed production (Tang et al. (2019)). Due to their rich mineral composition
(especially protein and fat) (Costa et al. (2020)) and sustainable farming (low global warming
potential, low water footprint, and low space utilization for a certain amount of final product)
(Grau et al. (2017)), more and more entities in European Union (EU) countries are interested in
farming mealworms (Mancini et al. (2022)).

In most cases, achieving cost-effectiveness in the farming of edible insects requires the
operation on a large scale and the automation of farming activities, including feed preparation,
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feeding, sorting, and post-rearing harvesting (Heckmann et al. (2018)). Manual monitoring
of large-scale farming is impossible, necessitating the use of tools that digitalize farming
(Neethirajan and Kemp (2021)), most often using machine vision systems, computer vision
(CV) methods and machine learning (ML) models. In the literature, we can find few works
on monitoring systems for the farming of edible insects. Majewski et al. (2022) proposed a
multipurpose system for monitoring the rearing of the mealworms, which included counting
growth stages (larvae, pupae, beetles), detection of anomalies (dead larvae, pests in the form
of Alphitobius diaperinus Panzer), estimation of the amount of chitinous moults and food
residues in the rearing box, and basic phenotyping (dimensioning) of larvae during growth.
Majewski et al. (2024) focused on developing and improving the phenotyping part of the system
by increasing the robustness of methods to dense scenes and significant size differentiation of
larvae during rearing and on reducing processing time. The mentioned and present works in the
literature concerned only the rearing period, that is, the period of farming from small larvae as
input (length of about 10 mm) to mature larvae as output (length of about 30 mm), which can
be further processed.

An essential element determining the rearing efficiency of mealworm larvae is the quality
of the input material, which influences, e.g., the length of rearing and the daily mass gain
of larvae. Conducting selective breeding studies is aimed at obtaining high-quality input
material. Researchers have used selective breeding studies for mealworms to increase pupal
size, growth rate, fecundity, the efficiency of food conversion (Morales-Ramos et al. (2019)),
immunity (Armitage and Siva-Jothy (2005)), and to color modification (Song et al. (2022)).
One of the critical elements in selective breeding studies is the selection of adult individuals
(beetles) for further reproduction. The problem arises already at the stage of determining the
sex of an individual, which requires time-consuming manual examination by a specialist for
each individual separately (Bhattacharya et al. (1970)). On the other hand, selecting the best
individual from a group of beetles of the same sex is also not obvious. The often used "bigger
is better" approach (Morales-Ramos et al. (2019)) and basing only on static characteristics may
not be the most optimal solution here. Morales-Ramos et al. (2019) observed that populations
with increased size and biomass productivity may have lower larval survival. Undoubtedly, there
is a need to propose a procedure and metrics to objectively determine the reproductive quality
of beetles for selective breeding studies. In response to the problems described, this research
proposes a procedure of phenotyping with dynamic characteristics determination for Tenebrio
Molitor beetles in selective breeding studies, which is based on observations of the mobility of
individuals and their interactions (e.g., mating pattern detection).

The beetles phenotyping mentioned in the previous paragraph requires re-identification
(recognizing the same individual on successive frames), which is a complex task considering
the high similarity in the appearance of beetles. The problem of re-identification is a relatively
common issue addressed by researchers in the context of humans (Gong et al. (2011), livestock
e.g. dairy cows (Wang et al. (2004); Chen et al. (2021)) and pigs (Wang et al. (2022)), and
wildlife (Schneider et al. (2019)), e.g. tigers (Li et al. (2019), zebras (Lahiri et al. (2011)) and
whale sharks (Arzoumanian et al. (2005)).

In the literature, we can also find the first works on the re-identification of insects. In (Murali
et al. (2019)), the re-identification problem of fruit flies was addressed. In this paper, the re-
identification was posed as a classification problem using the ResNet18 feature extractor with
a softmax output layer composed of a certain number of output units corresponding to the
number of considered individuals. The researchers emphasized the importance of the domain
shift phenomenon on re-identification accuracy and proposed adaptation methods, including
(1) training the model using images from two days instead of one, (2) applying augmentation
techniques such as random cropping, random masking, and (3) using a domain adversarial
neural network (Ganin et al. (2016)). It should be noted that the dataset for the experiments
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was developed by acquiring images separately for each individual under laboratory conditions.
The dataset did not include individuals during interactions under real conditions, which is very
important from an application point of view. For more extensive evaluation, ablation studies
should also have been conducted (as in (Borlinghaus et al. (2023))), e.g. in the form of re-
identification based only on the segmented insects’ bodies, which would have eliminated the
potential influence of background on re-identification and enabled identify the most important
features of the insect’s appearance used for re-identification.

Tausch et al. (2020) proposed a dataset for the re-identification of bumblebees, and Borling-
haus et al. (2023) proposed a re-identification method based on this dataset. As the ResNet18
model was trained with metric learning and triplet loss function, the 128-dimensional embed-
dings obtained for individual images were then used for re-identification. In the paper described
above, ablation studies relevant to the problem were conducted, showing that excluding the
background during training and basing only on the segmented body of the bumblebee results
in a significant reduction in re-identification accuracy, which can be explained by the high
importance of legs and wings for re-identification or the undesirable background features. The
authors also emphasized the important role of shape features for re-identification.

In the work by Chan et al. (2022), they focused on re-identifying honey bees based on images
of the abdomen. The individual’s label was a tag located on the bee’s head, which was excluded
from the training/test images. Image acquisition took place in a specially designed station that
allowed individuals to interact with each other. A custom architecture based on convolutional
neural networks, including ResNet blocks, was used as a model. The training was carried out
using metric learning with semi-hard triplet loss. The reported work proposed a self-supervised
approach for acquiring training images through tracking methods. The researchers emphasized
the importance of augmentation techniques (color distortion, color drop, Gaussian blur and
random cropping) and the number of training images on re-identification accuracy.

Based on the works mentioned in the field of insect re-identification, we can draw the
following conclusions: (1) the re-identification problem should be set in the context of a specific
application problem, and the validation should be carried out under real conditions, e.g., where
there is the interaction between individuals, (2) for a deeper understanding of the performance of
the re-identification model, additional experiments (e.g., ablation studies) are required to exclude
the situation where the model prediction is adversely affected by inappropriate features, e.g. from
the background, (3) the problem of domain shift occurs between the training and test stages and
can be reduced by self-supervised adaptation methods, and (4) a physical tag is necessary for a
fair evaluation of re-identification, as humans do not have a high ability to re-identify animals
to annotate them manually.

Considering the above, we propose a method of phenotyping Tenebrio Molitor beetles in
selective breeding studies based on re-identification and mating detection. The study proposed
(1) an automatic completion method for a re-identification training set with no possibility
of mislabeling, (2) a fair evaluation for re-identification performance where ground truth is
determined based on a physical tag, (3) a self-supervised method for reducing the effect of
domain shift on re-identification accuracy, and (4) ablation studies to identify the most important
features used for re-identification. In addition, an original method was developed for the initial
selection of beetles for re-identification using the proposed hybrid metric.

2. Materials and Methods
2.1. Definition of the problem

The problem addressed in this publication concerned a method for the non-invasive determi-
nation of highly informative characteristics for individual beetles, which can indirectly determine
the reproductive value of beetles and be the basis for selecting individuals in selection breeding
studies. Among the characteristics to be calculated were those of a static and dynamic nature.
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For static characteristics, recording characteristics could be carried out on single frames, which
was not a challenging research task. In the case of dynamic characteristics, re-identification of
individuals in the test stage was required, necessitating prior training of the re-identification
model on a prepared set of training samples. The proposed static and dynamic characteristics
are described in more detail in the 2.4 section. The developed solution should be characterized
by high performance, robustness and an adequate level of interpretability, which was ensured
by conducting subsequent dedicated experiments. The idea scheme for the proposed solution is
shown in Figure 1, and the next steps of this solution are discussed in the following sections.

Figure 1: Idea scheme for the proposed solution: (a) phenotyping procedure, (b) image processing
pipeline, (c) re-identification model training, (d) initial selection of beetles method and (e) domain
adaptation method.

2.2. Data acquisition
In the present studies, images of beetles were obtained using a prepared data acquisition

station (Figure 2). A Phoenix PHX120S-CC color camera (LUCID Vision Labs, Richmond,
Canada) with a resolution of 4096 x 3000 pixels and a 12 mm lens was applied. The camera was
placed 490 mm above the rearing box, in which a transparent grating made of acrylic glass was
placed to form separate cubic spaces for individual beetles. The smooth surface of the acrylic
glass and the height of the plates of 40 mm prevented the beetles from moving outside their space.
The setup was illuminated by fluorescent lamps in diffusing reflectors. The example raw images
in Figure 2 may appear overexposed, but this approach was intentional, in order to highlight the
features of the abdomens and heads of naturally dark beetles.
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Imaging was carried out in two stages. For the training stage, where beetles were kept
in separated spaces (Figure 2e), images were captured every 5 seconds, for 20 minutes. This
frequency guaranteed a noticeable change in the position of the insects between acquisitions.
For the test stage, some of the grating elements were removed to create a common space for all
beetles (Figure 2f). This time images were captured for 15 minutes, also every 5 seconds.

Figure 2: Data acquisition station: (a) camera with lens, (b) rearing box with a transparent grating
of acrylic glass forming partitions for individual beetles (c) illuminators, (d) camera mount; and raw
images of the experimental setup with separated (e) and common (f) space for beetles.

2.3. Dataset for re-identification
The development of the re-identification dataset was mostly automated by sequentially:

(1) segmenting the heads and abdomens of the beetles using the YOLOv8-seg model (see
section 2.5), (2) filtering out occluded abdomens using a classification model based on the pre-
trained backbone (see section 2.6), (3) merging detected heads and non-occluded abdomens
into a single beetle (see section 2.7), (4) determining beetle orientation (see section 2.8), and
(5) automatic tag recognition (see section 2.9). The few errors were eliminated by manually
checking the samples in the automatically completed training and test sets.

The images used for training and testing the re-identification model were abdomen images
(without background) whose rotation was normalized using a pre-determined orientation.
Example samples from the re-identification dataset are shown in Figure 3.

An analogous dataset containing images of whole beetles (including the head containing the
tag) was also developed for research purposes, allowing the determination of an upper baseline
for re-identification.

The procedure for beetles phenotyping (see Figure 1a) for obtaining samples for training and
testing re-identification models was carried out identically to that for beetles without a tag. A
total of 4 separate phenotyping procedures (training stage + test stage) were carried out each
time for 20 individuals, making a total of 80 evaluated individuals. A summary of the developed
re-identification dataset is shown in Table 1.
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Figure 3: Example samples from the re-identification dataset: (a) samples from the training and test
stage for the chosen beetle and (b) samples for different beetles.

Table 1
Summary of the re-identification dataset.

stage
no. samples (per individual)

all samples
mean min max

training 171 33 253 13677
test 110 35 171 8775

2.4. Determination of stationary and dynamic characteristics of beetles
Phenotyping of individual beetles involves the determination of static characteristics and

dynamic characteristics. Dynamic characteristics were determined from observations during the
test stage.
2.4.1. Stationary characteristics of beetles

As part of this research, the following static characteristics of beetles were determined: (S1)
size of the beetle’s head, (S2) size of the beetle’s abdomen, (S3) length of the major axis for the
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beetle abdomen, and (S4) length of the minor axis for the beetle abdomen. Features S1-S2 were
calculated as binary mask areas, while features S3-S4 were calculated as distances between
characteristic points. The procedure for determining the characteristic points is described in
detail in section 2.8.
2.4.2. Dynamic characteristics of beetles

In these studies, the following were defined as dynamic characteristics: (D1) mobility and
(D2) mating frequency. Mobility was measured by recording the successive movements of re-
identified beetles during the test stage. The proposed mating detection method is described in
section 2.13.
2.5. Segmentation of the heads and abdomen of beetles

The motivation for segmenting the beetles’ heads and abdomen was to separate these two
body parts, which was related to placing a tag (ground truth for re-identification) on the beetles’
heads. In this study, only images of the beetles’ abdomen were used for re-identification.

To segment the heads and abdomen of beetles, an instance segmentation model had to
be developed for these two proposed object classes (head, abdomen). The research used a
YOLOv8(-seg) (Jocher et al. (2023)) model adapted to the segmentation task. Various proposed
architectures for this model (n, s, m, l, x versions) were evaluated to find a trade-off between
performance and inference time. Inference for instance segmentation task was performed on
640x640 tiles - parts of whole images acquired during acquisition. The dataset for the beetle
head and abdomen segmentation task consisted of 889 head annotations and 931 abdomen
annotations. The dataset included images from the training and test stages of phenotyping,
images representing occluded and non-occluded body parts, and heads with and without tags.
Details on evaluating this image processing part are presented in the section 2.15.
2.6. Classification of detected abdomens into occluded and non-occluded

In this research, it was assumed that re-identification was to be performed only for non-
occluded abdomen. It was decided that re-identification in the presence of occlusion is a complex
topic, and it is worth dedicating a separate study to this problem.

To distinguish occluded from non-occluded abdomen, a classification model was developed
based on pre-trained on ImageNet (Krizhevsky et al. (2017)) backbones: ResNet18, ResNet50,
ResNet101 (He et al. (2016)), EfficientNet-b0, EfficientNet-b4 (Tan and Le (2019)), and
MobileNetv2 (Sandler et al. (2018))). Three fully connected (FC) hidden layers were also
added to the backbone, where the number of output features determined the number of neurons
for a specific backbone, i.e. for 512 (ResNet18), the following number of neurons in FC
layers was used: [256, 128, 64], for 1028 (MobileNetv2, EfficientNet-b0): [512, 256, 128] and
for 1792 (EfficientNet-b4) and 2048 (ResNet50, ResNet101): [1024, 512, 256]. Inference for
the classification model was performed using 128x128 images. Images of the abdomen after
segmentation and after rotation normalization were placed on a black background in the center of
the image. No re-sizing was done for the abdomen images since the size of the segmented object
was important information in the context of the occlusion classification problem. The dataset
for the occluded/non-occluded abdomen classification task contained 840 samples of the non-
occluded abdomen and 123 samples of the occluded abdomen. Before training, oversampling
was performed for the minority class (occluded abdomen) and normalization of the R, G,
and B channels using the calculated means and standard deviations of the intensities for each
channel. The following classification model training parameters were used: optimizer Adam,
binary cross-entropy loss, number of epochs: 200, learning rate: 10−5, batch size: [32, 64, 128]
depending on the model. For training, all weights were unfrozen (all parameters were trainable).
Details regarding the quantitative evaluation of the classification of the abdomen into occluded
and non-occluded are placed in the section 2.15.
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2.7. Merging the detected heads and abdomen into a single beetle
This section describes the procedure for merging the detected beetle heads and abdomen into

a single beetle. This is an important processing step as it allows further determination of beetle
orientation and automatic labeling of the beetle abdomen for re-identification.

The procedure for merging the detected beetle heads and abdomen into a single beetle is
shown in Figure 4.

Figure 4: Procedure for merging detected beetle heads and abdomen into a single beetle.

Suppose that after segmentation of the heads and abdomen of the beetles and after selecting
the non-occluded abdomen, we have two sets: 𝐻 and 𝐴, where 𝐻 is the set of all detected
beetle heads and 𝐴 is the set of all detected non-occluded beetle abdomen. Each element from
the set 𝐻 and 𝐴 is associated with a binary mask and the midpoint of the binary mask. We
combine the selected beetle head 𝐻𝑖 with the corresponding abdomen 𝐴𝑗 . For each pair (𝐻𝑖, 𝐴𝑗),where i=const, j=1, ..., m, a section connecting the midpoints of the binary masks and an
intersection coefficient was determined, specifying the part of the determined section contained
within the binary masks region. Among 𝐴𝑗 for different 𝑗, we choose the element for which
the intersection coefficient is the highest. For a pair (𝐻𝑖, 𝐴𝑗) to be considered valid, the value
of the intersection coefficient 𝑐𝑖𝑛𝑡𝑒𝑟 must be sufficiently high (greater than the threshold value
𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛𝑡𝑒𝑟 ). If this condition is not met, the correct abdomen was not detected or was covered. The
threshold value 𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛𝑡𝑒𝑟 was determined by analyzing the values of the intersection coefficient
𝑐𝑖𝑛𝑡𝑒𝑟 for different correct head-abdomen pairs. The value of 𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛𝑡𝑒𝑟 was determined based on the
minimum value of 𝑐𝑖𝑛𝑡𝑒𝑟 among the analyzed pairs and the selected offset.
2.8. Determination of the orientation of the beetle

Determination of the orientation of the beetle is an important issue in the problems addressed,
as it allows (1) registration of static characteristics, e.g., the length of the major and minor axes,
(2) reading the tag located on the beetle’s head and (3) normalizing the beetle’s rotation before
re-identification. In the conducted research, the problem of determining the orientation of the
beetle was posed as determining the position of six characteristic points, i.e. 𝐴 - the center of the
head, 𝐵 - the center of the abdomen, 𝐶 - the upper border point of the abdomen, 𝐷 - the lower
border point of the abdomen, 𝐸 - the left border point of the abdomen and 𝐹 - the right border
point of the abdomen. The characteristic points for the example beetles are shown in Figure 5.

The characteristic points 𝐴 and 𝐵 were determined as the centers of the binary masks of the
head and abdomen. Other characteristic points (𝐶 , 𝐷, 𝐸, and 𝐹 ) were selected from among the
points belonging to the contour and under the following assumptions:
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Figure 5: The characteristic points for example beetle.

1. the angle between the lines 𝑙𝐴𝐵 and 𝑙𝐵𝐶 should be relatively small (smaller than the
threshold angle 𝛼𝑇 1),

2. the angle ∠𝐶𝐵𝐸 should be approximately right (deviation from the right angle smaller
than the threshold angle 𝛼𝑇 2),

3. the ratio |𝐵𝐶|∕|𝐵𝐸| should be as large as possible when conditions 1. and 2. are met,
where |𝐵𝐶| and |𝐵𝐸| are the lengths of the sections between the defined characteristic
points,

4. the characteristic points 𝐷 and 𝐹 are determined after 𝐶 and 𝐸 as the contour points
closest to line 𝑙𝐵𝐶 (for point 𝐷) and line 𝑙𝐵𝐸 (for point 𝐹 ).

To satisfy condition 3., a certain number of pairs of contour points were checked and the
pair for which the ratio |𝐵𝐶|∕|𝐵𝐸| had the largest value was selected. In order to fine-tune the
𝛼𝑇 1 and 𝛼𝑇 2 parameters, the major axes for 50 beetle images were marked manually. Details
regarding the evaluation of beetle orientation determination are described in the section 2.15.

The length of the major axis for the beetle abdomen (S3) was determined as the length of
the |𝐶𝐷| section, and analogously, the length of the minor axis for the beetle abdomen (S4) was
determined as the length of the |𝐸𝐹 | section.
2.9. Automatic tag recognition

Tags on the beetles’ heads enable them to be identified. In order to automatically identify
the beetles, a method had to be developed to read the two-element tag located on the beetle’s
head. There could be five types of colors in the tag: red (R), blue (B), yellow (Y), gold (G) and
white (W), giving a total of 20 combinations for unique tags, e.g. RY (red and yellow). The same
colors were not repeated in the tag. Examples of beetle head tags are shown in Figure 6.

Figure 6: Examples of beetle head tags.

A method based on semantic segmentation of the beetle head image was proposed to facilitate
reading the beetle head tag. The procedure for automatic tag reading is shown in Figure 7.
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Figure 7: Procedure for automatic reading of the tag located on the beetle’s head.

The classes defined for the semantic segmentation represented the colors used for tagging
(R, B, Y, G and W) and the background (BG), e.g. fragments of the beetle head. Image fragments
representing the defined classes were extracted to train the pixel classification model. The
number of extracted areas is summarized in Table 2. Each pixel in the annotated area was one
training sample.

Table 2
Number of annotated areas for the semantic segmentation of beetle head image.

class name R B Y G W BG

no. of annotations 29 29 34 21 31 41

Classical machine learning models were used to perform pixel classification: Logistic
Regression (LogReg), Linear Discriminant Analysis (LDA), SVM with linear kernel (SVM
linear) and SVM with radial basis function kernel (SVM rbf). In the original version, the
beetle head images were in RGB space, so each training sample was characterized by three-
pixel intensities: R, G and B. In one experiment, other color spaces (HSV, Lab, Luv, YCrCb)
were also tested to improve classification accuracy. Each (machine learning model, color space)
combination was tested when fine-tuning the settings. Finally, the best combination of settings
was chosen to read the tags. Details on the evaluation of semantic segmentation for automatic
tag recognition are included in section 2.15.

After semantic segmentation, the resulting mask was filtered to separate the two main colors
belonging to the tag from the noise. The two largest clusters formed by pixels representing one
of the five defined colors were used as the predicted tag colors. Each tag contained two different
colors. The order of the colors was important. The study assumed that the tag had to be read
from left to right, looking from the abdomen to the head.

For the evaluation of the method for tag reading, 111 tagged beetles were selected. A tag
manually read by the user was used as ground truth. Details on the evaluation of the entire
process for automatic tag recognition are described in section 2.15.
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2.10. Development of a model for the re-identification of beetles for the test stage
The beetle re-identification model was trained using images from the dataset described in

section 2.3, which are images of beetle abdomens. Metric learning techniques were used for
training to obtain problem-oriented embeddings, i.e., to distinguish individual beetles from each
other. The selection of the best model and training parameters was conducted in stages. In the
first stage, the best backbone was selected from among the pre-trained architectures: ResNet18,
ResNet50, ResNet101 (He et al. (2016)), EfficientNet-b0, EfficientNet-b4 (Tan and Le (2019)),
and MobileNetv2 (Sandler et al. (2018)). The model in the first stage consisted of a specific
backbone and one (default) FC (fully connected) layer consisting of 512 neurons. Triplet Margin
Loss and Triplet Margin Miner were used to train the re-identification model with a margin
value of 0.2 for both loss and miner. The selected default distance metric was cosine distance,
and the triplets type was semihard. The triplets approach has been used frequently in other re-
identification-related studies (Chen et al. (2021); Borlinghaus et al. (2023); Chan et al. (2022)).

The triplets mentioned above consist of a sample called anchor, one positive sample
(represents the same individual as the anchor) and one negative sample. Using the chosen feature
extractor, we calculate embeddings for these three samples. Let’s specify 𝑑𝑎𝑝 as the distance in
feature space (i.e. cosine distance) between the anchor and the positive sample and as 𝑑𝑎𝑛 the
distance between the anchor and the negative sample. The formula for Triplet Margin Loss for
the 𝑖-th triplet is as follows:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑚𝑎𝑥(𝑑𝑖
𝑎𝑝 − 𝑑𝑖

𝑎𝑛 + 𝑚𝑎𝑟𝑔𝑖𝑛, 0) (1)
where 𝑚𝑎𝑟𝑔𝑖𝑛 is the value of the margin.
The result of the first stage was the selection of the best backbone. In the second stage,

different FC layer structures were tested: [] (no hidden layers), [1024], [512, 256], [1024, 512],
[512, 256, 128], [1024, 512, 256]. The structure with the best results was used in the next stages.
In the third stage, various losses (different from the default Triplet Margin Loss) were tested,
i.e. Circle Loss (Sun et al. (2020)), Generalized Lifted Structure Loss (Hermans et al. (2017)),
Multi-Similarity Loss (Wang et al. (2019)), Proxy-NCA Loss (Movshovitz-Attias et al. (2017))
and FastAP Loss (Cakir et al. (2019)). In stage four, parameters were fine-tuned for best loss
and miner. Details regarding the settings in the subsequent stages of model parameter selection
and training are summarized in Table 12, which can be found in the Appendix. The study used
implementations of methods from the metric-learning library (Musgrave et al. (2020b)).

The study also proposed additional experiments to determine the re-identification model’s
two lower and upper baselines. The first lower baseline was determined by the approach when
the weights in the backbone were frozen. The second lower baseline was related to relying on
handcrafted features, a set of standard features calculated for beetle abdomen images. A total
of 39 handcrafted features related to shape (Hu moments), texture (Haralick features), intensity
(mean values for L, a, b channels) and geometric parameters (area, lengths of major and minor
axis of ellipse, eccentricity, solidity) were used. Implementations of methods from the scikit-
image library (Van der Walt et al. (2014)) were used to calculate handcrafted features. The
upper baseline was an approach where images of the abdomen with the head (where the tag
was located) were used for training while unfreezing all model weights.

Inference of the re-identification model consisted of determining beetle IDs for specific
samples (so-called query samples) based on samples collected in the training stage (so-called
reference samples). Each sample represented one point in a multidimensional feature space.
Inference was based on assigning an ID for the query based on the nearest reference sample.

Details regarding the evaluation of the re-identification model are provided in the section 2.15.
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Table 3
Description of the transformations used for the ablation studies.

approach name input image output image shape (S) texture (T) intensity (I) color (C)

S RGB raw binary mask + - - -
S+T+I RGB raw grayscale + + + -

S+I RGB raw grayscale blurred + - + -
S+I+C RGB raw RGB blurred + - + +

S+T+I+C (baseline) RGB raw - + + + +

2.11. Ablation studies for re-identification
A comprehensive understanding of the inference of models for re-identification is very

important, as it makes it possible to exclude situations in which the model inference is based
on undesirable features (e.g., related to background, acquisition conditions), which can result
from improperly performed acquisition or validation.

To increase our understanding of re-identification, in the case of Tenebrio Molitor beetles,
ablation studies were proposed to answer the question of which type of feature (related to shape,
texture, intensity, or color) is mainly responsible for the beetles’ re-identification ability. Images
from the training and test sets (hereafter referred to as RGB raw) were processed by the following
transformations summarized in Table 3.

The purpose of the transformations described in Table 3 was to eliminate (or reduce) the
influence of a selected group of features on re-identification, i.e. RGB-grayscale transformation
resulted in the elimination of color-related features (only the intensity of pixels from one channel
remains), Gaussian blurring resulted in the reduction of texture features on re-identification.
For the new datasets developed (containing transformed images), training and validation were
carried out according to the procedure described in the section 2.10. The results obtained after
the evaluation were compared with the baseline (results obtained for a dataset containing raw
RGB images). Example images after proposed transformations are shown in Figure 8.

Figure 8: Example images after proposed transformations for ablation studies: (a) RGB raw, (b)
binary mask, (c) grayscale, (d) grayscale blurred, (e) RGB blurred.
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2.12. Initial selection of beetles for re-identification for the test stage
It can be assumed that increasing the number of individuals evaluated simultaneously in the

test stage should contribute to a decrease in re-identification performance, which is associated
with a higher probability of finding pairs of individuals in the pool of evaluated beetles that
are difficult to distinguish from each other. It is also worth noting that some individuals are
easy to re-identify, for example, by having distinctive characteristics in appearance. Adding
such individuals to the pool of simultaneously evaluated beetles will not significantly reduce
re-identification performance.

This part of the study addressed the problem of initial selection of beetles for the test stage.
The motivation for initial selection is the hypothesis that more individuals can be evaluated
simultaneously, with a certain level of re-identification performance, compared to an approach
where individuals for the test stage are selected randomly. Farmers have many beetles on the
farm, so preparing more for initial selection should not be a problem.

The study identified two main factors influencing the difficulty of re-identifying a chosen
individual during the test stage. The first was related to the individual’s appearance and the
ability to distinguish it from other individuals when training the model for re-identification
in the training stage. When achieving relatively low performance on the validation set in the
training stage, achieving high scores on the more challenging test set will be impossible in
most cases. However, basing only on the received metrics values on the validation set for initial
selection is not a fully justified approach. It should be noted that the examined beetles were
characterized by different mobility in the training stage, which resulted in differences in the
number of various views of the beetle. A higher variation in the training set for a selected
beetle generally means a higher chance of robustness to the domain shift phenomenon occurring
between the training and test stages. The beetles characterized by non-mobility were the source
of nearly identical captures, resulting in the training of the re-identification model for a particular
view (not individual). Taking these two factors into account, we can define a formula for a hybrid
metric estimating the ease of re-identification of a given individual in the test stage:

𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑦𝑏𝑟𝑖𝑑 = (𝑝𝑒𝑟𝑓 . 𝑜𝑛 𝑣𝑎𝑙 𝑠𝑒𝑡)𝛼(𝑣𝑎𝑟. 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛 𝑠𝑒𝑡)𝛽 (2)
The coefficients 𝛼 and 𝛽 represent the weights that determine the effect of each part on

the ease of re-identification in the test stage. The higher value of the hybrid metric indicates
a higher ease in re-identifying a given individual in the test stage. The ranking of the ease of
re-identification of beetles, determined by the value of the hybrid metric, was the basis for an
initial selection of beetles.

Let’s assume that the value of the chosen metric (e.g., precision at 1) on the validation set
was 𝑚𝑣𝑎𝑙

𝑅𝑒𝐼𝐷 and that the range of values for the given metric is 0-1. Let’s also set a lower threshold
for the given metric 𝑚𝑡ℎ𝑟𝑒𝑠ℎ

𝑅𝑒𝐼𝐷 , below which there is no validity in using the given individual for
the test stage. Taking this into account, the part of the formula (2) related to performance on the
validation set can be expressed by the equation:

(𝑝𝑒𝑟𝑓 . 𝑜𝑛 𝑣𝑎𝑙 𝑠𝑒𝑡)𝛼 =

(
𝑚𝑣𝑎𝑙

𝑅𝑒𝐼𝐷 − 𝑚𝑡ℎ𝑟𝑒𝑠ℎ
𝑅𝑒𝐼𝐷

1 − 𝑚𝑡ℎ𝑟𝑒𝑠ℎ
𝑅𝑒𝐼𝐷

)𝛼

(3)

To increase reliability in determining performance on the validation set, the value of the
metric 𝑚𝑣𝑎𝑙

𝑅𝑒𝐼𝐷 was the average value of the considered metric for re-identification based on
the results obtained in cross-validation. The procedure for performing cross-validation for this
problem is described in detail in the section 2.15. The equation (3) used min-max scaling for
𝑚𝑣𝑎𝑙

𝑅𝑒𝐼𝐷.
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The second part in the formula (2) determined the variety of samples in the training set. The
procedure for quantifying the variety of samples in the training set is shown in Figure 9.

Figure 9: Procedure for quantifying the variety of samples in the training set: (a) counting relevant
pairs of samples (significantly differing in appearance), (b) calculating the normalised coefficient based
on the proposed exponential function.

The variety of samples in the training set was determined as follows. Suppose we have a
series of beetle images from the training stage: 𝑖𝑚𝑔1, 𝑖𝑚𝑔2, .... and 𝑖𝑚𝑔𝑛 assuming that the images
are sorted according to acquisition time. For each pair of neighboring samples, sequentially
(𝑖𝑚𝑔1,𝑖𝑚𝑔2), (𝑖𝑚𝑔2, 𝑖𝑚𝑔3), ..., (𝑖𝑚𝑔𝑛−1, 𝑖𝑚𝑔𝑛), we calculate the structural similarity index (SSIM)
(Wang et al. (2004)). Then we count the number of pairs of neighboring images 𝑖 and 𝑖 + 1 for
which the calculated 𝑆𝑆𝐼𝑀(𝑖𝑚𝑔𝑖,𝑖𝑚𝑔𝑖+1) is lower than 𝑆𝑆𝐼𝑀𝑡ℎ𝑟𝑒𝑠ℎ. The value of 𝑆𝑆𝐼𝑀𝑡ℎ𝑟𝑒𝑠ℎindicates a significant change in appearance between neighboring images. In the case of no
movement, the values of 𝑆𝑆𝐼𝑀(𝑖𝑚𝑔𝑖,𝑖𝑚𝑔𝑖+1) would be relatively high. Let 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 denote
the number of pairs of neighboring images for which a significant change in appearance had
occurred. The part of the formula (2) related to the variety of the training set can then be
expressed by the following formula:

(𝑣𝑎𝑟. 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛 𝑠𝑒𝑡)𝛽 = (1 − 𝑒𝑥𝑝(−𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡∕𝑎))𝛽 (4)
where 𝑎 > 0. The formula (4) is derived from the assumption that at small 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, increasing

the value of parameter 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 would result in a greater gain in re-identification performance
than a corresponding increase at large 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡. For the reason described, the formula (4) used
an exponential dependence instead of a linear dependence. The introduction of the parameter 𝑎
was intended to scale the parameter 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, which facilitated further parameter fine-tuning and
analysis of the function 𝑓 (𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = (1 − 𝑒𝑥𝑝(−𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡∕𝑎)). For example, for 𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 = 4𝑎, the
value of 𝑓 (𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) was already very close to the maximum value (0.982) and further increasing
𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 no longer contributed significantly to the value of 𝑓 (𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡). The chart of the function
𝑓 (𝑛𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) is shown in Figure 9b.

The determined values of the hybrid metric for individual beetles provided the basis for
determining the ranking of beetles. Based on the ranking of beetles, a curve of re-identification
performance versus the number of simultaneously evaluated beetles was determined. Each point
on the chart was associated with a certain number of beetles less than or equal to the number of
individuals used in the experiment. For example, for a point indicating 𝑛𝑏𝑒𝑒𝑡𝑙𝑒 evaluated beetles,
𝑛𝑏𝑒𝑒𝑡𝑙𝑒 best individuals were selected according to a designated ranking. A better ranking meant
a greater area under the designed curve re-identification performance versus the number of
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simultaneously evaluated beetles. The study tested various combinations of the parameters 𝛼,
𝛽, 𝑚𝑡ℎ𝑟𝑒𝑠ℎ

𝑅𝑒𝐼𝐷 , 𝑆𝑆𝐼𝑀𝑡ℎ𝑟𝑒𝑠ℎ and 𝑎. Details about the evaluation of beetle initial selection based on
ranking are described in the section 2.15.
2.13. Detection of beetle mating

One element of the proposed phenotyping method is the detection of mating. The detection
of this behaviour pattern during the test stage can be used to determine the sex of individuals
further and to select the individuals most willing to reproduce from the population.

In the study, the mating pattern was detected in the recorded images using a YOLOv8 model
adapted for instance segmentation. Five types of YOLOv8 models were evaluated in the study:
n, s, m, l and x, which varied in complexity. Manual labeling was performed for all recorded
images of beetles with and without tags. A total of 173 mating patterns were labelled on the
different views, resulting in 443 tiles containing the mating pattern and 2518 tiles not containing
the mating pattern. The developed set of images provided the basis for determining the training,
validation and test subsets for successive splits. Details of the evaluation of the mating detection
models are presented in section 2.15. Examples of mating patterns from the developed image
set are shown in Figure 10. Figure 10 shows the 640x640 tiles that were the input to the instance
segmentation models for the beetle mating pattern detection.

Figure 10: Examples of mating patterns from the developed dataset: (a)-(c) real images, and
(d) generated synthetic image.

Additionally, a method was developed to generate synthetic data to increase the number
of samples in the training set for the mating detection problem. The extracted images of two
beetles were combined with a specific overlap along a determined orientation, which allowed a
simple simulation of the mating pattern. An example of the generated synthetic image is shown
in Figure 10d.

The number of epochs for training YOLOv8 models was set to 20. After the selected (20)
epochs, no improvement in performance was observed on the validation set. The batch size
parameter was chosen considering the capabilities of the GPU used: 2, 4 or 8, depending on the
complexity of the models. Before training, oversampling was performed for samples containing
a mating pattern to balance the number of tiles with a mating pattern and those without a mating
pattern. The training set was assumed to be balanced regarding the number of samples related
to the real images and the generated synthetic images.
2.14. Reduction of the impact of domain shift effect on re-identification

Between the training stage and the test stage, a problem with domain shift was noted,
resulting in a noticeable decrease in re-identification performance when comparing the results
obtained on the validation set (acquired in the training stage) and the results on the test set
(acquired in the test stage). Domain shift phenomenon was particularly significant for beetles,
which had low mobility in the training stage, resulting in a low variety of samples in the training
set. This problem was also highlighted in the section 2.12.

The study proposed a method of adaptation of the re-identification model to the new
data using a pseudo-labeling mechanism. After performing the entire experiment cycle for
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phenotyping, a set of labelled images from the training stage and a set of unlabelled images
from the test stage were obtained. The first re-identification model was obtained after training the
model on the set of labelled images from the training stage (with true labels). The first model was
then used to make a prediction on the beetle images from the test stage. The prediction included
using a k-nearest neighbors algorithm based on a feature space complemented by samples from
the training stage, where the number of features depended on the type of model architecture used.
Each prediction’s probability 𝑝 was also estimated as the ratio of the number of samples of the
predicted (majority) class among the 𝑘 nearest neighbors to the number of 𝑘 nearest neighbors.
Samples from the test stage were then selected for which the probability of prediction was greater
than the threshold probability value 𝑝𝑡ℎ𝑟𝑒𝑠ℎ, i.e. 𝑝 > 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. The selected samples were used in
the training of the second re-identification model. In the second re-identification model training,
samples from the training stage (with true labels) and the test stage (with pseudo-labels with the
appropriate probability value) were used.

The proposed adaptation method was evaluated for various combinations of parameters 𝑘
and 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. The details of evaluating the adaptation method are described in the section 2.15.
2.15. Evaluation

For all the evaluation procedures described, the reported results were those obtained on
the test set. In the case of repetition (cross-validation), the results were refereed in the form
of averaged metrics values given with standard deviation.
2.15.1. Segmentation of the head and abdomen of beetles

For the task of segmenting the head and abdomen of beetles, 4 splits were proposed for the
training set and the test set, with the test set consisting of samples from a different acquisition
series in each iteration. From the training set, 30% of samples were extracted for the validation
set. Independence between the training and validation collections was ensured at the level of the
individual frames from which the tiles were extracted. Standard metrics for object detection tasks
were used, i.e., average precision at IoU 50% (AP50), mean average precision (mAP50:95) and
F1-score (for optimal working point). The best training epoch was selected based on the results
on the validation set. The training and evaluation procedure was repeated for each YOLOv8
architecture. Details of the calculated metrics can be found in Padilla et al. (2020).
2.15.2. Classification of detected abdomens into occluded and non-occluded

Quantitative evaluation of the abdomen classification model into occluded/non-occluded
was carried out using cross-validation with the number of splits equal to 3 - in each iteration
a different part of the dataset was used as a test set containing about 1/3 of the samples. From
the training set, 30% of samples were extracted for the validation set. Two threshold-independent
metrics were used to evaluate the classification model: the area under the precision-recall curve
(AUCPR) and the area under the ROC curve (AUCROC). The ROC curve (receiver operating
characteristic curve) determines the relationship between the true positive rate (TPR) and the
false positive rate (FPR) for different threshold values. Additionally, the F1-score metric (related
to the optimal working point) was calculated. The best training epoch was selected based on the
results on the validation set using the AUCPR metric. The training and evaluation procedure
was repeated for each backbone.
2.15.3. Determination of the orientation of the beetle

To quantitatively evaluate orientation determination, a set of manually labelled beetles (with
the orientation of the major axis marked) was split into a training-validation set (70% of samples)
and a test set (30% of samples). Using the training-validation set, cross-validation was performed
at 5 splits for fine-tuning the 𝛼𝑇 1 and 𝛼𝑇 2 parameters. Mean absolute error (MAE) was used as
a metric, defining the mean absolute difference between the true orientation (expressed by the
angle in degrees) and the orientation determined by the proposed method. For the fine-tuned 𝛼𝑇 1

P. Majewski et al.: Preprint submitted to Elsevier Page 16 of 32



Phenotyping of Tenebrio Molitor beetles

and 𝛼𝑇 2 values, a final evaluation of the orientation determination method was performed on the
test set.
2.15.4. Automatic tag recognition

Two quantitative evaluations were carried out for the automatic tag recognition problem. The
first evaluation was related to selecting the best combination (machine learning model, color
space) for the classification of pixels (semantic segmentation) belonging to the beetle head. This
experiment used stratified cross-validation at 5 splits with F1-macro (averaged F1 for each class)
metric. Splits were determined at the level of the annotated areas described in Table 2. Results
were reported as averaged F1-macro values over the splits with the standard deviation. The best
combination of settings obtained was used to evaluate the automatic tag reading method overall.
The second (overall) evaluation compared the automatically determined tag by the proposed
method and the tag read by the user. The percentage of correctly determined tags was referred
to as the results of this evaluation.
2.15.5. Re-identification

In the case of re-identification, the division into training/validation and test sets was
related to the successive stages of phenotyping: training and test, which ensured the complete
independence of the data in these sets. To carry out repetitions for training the re-identification
model and introduce variance in the training set, the samples collected in the training stage were
divided into 5 approximately equal parts associated with a specific acquisition time interval. In
each repetition, a different part functioned as the validation set. For the quantitative evaluation
of re-identification models, 4 metrics were used: (1) mean average precision (MAP), (2) mean
average precision at R (MAP@R), (3) precision at 1 (P@1), and (4) R-precision (RP). The P@1
metric was used for qualitative evaluation, as it was the easiest to interpret (the probability that
the determined ID based on the nearest neighbor is correct). The rest of the three metrics also
took into account (unlike P@1) reference samples that were not directly used during the inference
(other neighbors), which more broadly describes the model’s (embeddings) performance and
provides metrics robustness to local noise. The version of metrics with the addition of "at R"
assumes that only a selected number 𝑅 of reference samples is used to calculate the metric’s
value, the validity of which has been argued by researchers (Musgrave et al. (2020a)). The
best training epoch of the re-identification model was selected based on the results on the
validation set using the MAP@R metric. The referenced metrics are averaged values over the
values obtained for consecutive individuals, with the weight for each individual in calculating
the average being the same. An implementation of metrics from the metric-learning library
(Musgrave et al. (2020b)) was used. In the documentation of the metric-learning library, further
details can be found regarding determining the values of specific metrics.
2.15.6. Initial selection of beetles for re-identification

The basis for quantitative evaluation of the method for the initial selection of beetles for
re-identification (under different settings) was the characteristic 𝑃@1(𝑛𝑠𝑖𝑚) - the change of P@1
depending on the number of simultaneously analyzed beetles 𝑛𝑠𝑖𝑚. The number of characteristic
𝑃@1(𝑛𝑠𝑖𝑚) points corresponded to the number of individuals, i.e. 80. Based on the characteristic,
the area under the curve (AUCPN) and the values of 𝑛𝑠𝑖𝑚 were calculated for a certain threshold
of the average value of 𝑃@1, i.e. for the thresholds considered in the study of 0.85, 0.90, 0.95,
the parameters 𝑛0.85𝑠𝑖𝑚 , 𝑛0.90𝑠𝑖𝑚 , and 𝑛0.95𝑠𝑖𝑚 were determined, respectively. The parameters 𝑛0.85𝑠𝑖𝑚 , 𝑛0.90𝑠𝑖𝑚 ,
and 𝑛0.95𝑠𝑖𝑚 were calculated by averaging the values of 𝑛𝑠𝑖𝑚 for the 5 characteristic points closest
to the threshold under consideration. The area under the curve (AUCPN) was calculated by
averaging the 𝑃@1 values over all 𝑛𝑠𝑖𝑚. To determine 𝑃@1(𝑛𝑠𝑖𝑚) characteristic points, 5 re-
identification models were used from cross-validation at the settings for which the best results
for re-identification were achieved. Each 𝑃@1(𝑛𝑠𝑖𝑚) characteristic point represented results
averaged over splits (different models). The rankings (in the standard version of the initial
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selection) were determined based on the results on the validation set (part of the images acquired
in the training stage). For the baselines considered, the rankings were determined randomly for
the lower baseline and based on the results on the test set for the upper baseline. The 𝑃@1(𝑛𝑠𝑖𝑚)characteristic was smoothed with a moving average using a sliding window of size 3.
2.15.7. Detection of beetle mating

Quantitative evaluation of beetle mating detection was carried out for specific YOLO models
with the setting ’use synthetic’, determining whether synthetic data were added to the training
set. Independence between the training-validation and test sets was ensured at the level of the
different acquisition series. Three test sets were defined using the best-represented sets (with the
largest number of samples) from the three selected series. Independence between the training
and validation collections was ensured at the level of the individual frames from which the tiles
were extracted. A total of 9 separate model trainings were carried out for a specific combination
(YOLO model type, parameter ’use synthetic’). For each of the three test sets, training was
repeated 3 times for a different split between the training and validation sets. As metrics for this
experiment, average precision at IoU 50% (AP50), mean average precision (mAP50:95) and F1-
score (for the optimal working point) were used. Metrics were calculated using the determined
bounding boxes (Box).
2.15.8. Processing time

For training and inference of the developed model, hardware with the following parameters
was used: GeForce RTX 2060 SUPER 8GB (GPU) and AMD Ryzen 7 1700 3GHz (CPU).
Processing time analyses were based on times assuming batch mode processing of single images
at the largest possible batch size. When referencing inference time, only steps relevant to the
final solution (phenotyping beetles without physical tags) were included, i.e. (1) abdomen/head
segmentation, (2) abdomen occluded/non-occluded classification, (3) orientation determination,
(4) abdomen/head merging, (5) re-identification, and (6) mating detection. Total inference times
were referenced as unit time (per tile or per beetle) and as total time (per frame) for phenotyping
beetles in the test stage. In the analysis of processing time, simultaneous analysis of 20 beetles
was assumed (as in the acquisition series), and the number of tiles analyzed was 63, which made
it possible to analyze the whole recorded images using 25% overlaps between adjacent tiles in
order to eliminate boundary effects. In the case of re-identification, processing time included
extracting embeddings and finding k-nearest neighbors among gallery samples at 𝑘 = 10.

3. Results and Discussion
This section presents the quantitative results for the following issues addressed in the

following order: (1) detection and segmentation of the head and abdomen of beetles, (2)
classification of detected abdomens into occluded and non-occluded, (3) determination of the
orientation of the beetle, (4) automatic tag recognition, (5) development of a model for the re-
identification of beetles for the test stage, (6) ablation studies for re-identification, (7) initial
selection of beetles for re-identification for the test stage, (8) detection of beetle mating, (9)
reduction of the impact of domain shift effect on re-identification, (10) further possibilities to
expand the method for beetles phenotyping, and (11) processing time.
3.1. Detection and segmentation of the head and abdomen of beetles

Quantitative results for the problem of detection and segmentation of the head and abdomen
of beetles are presented in Table 4.

Based on the results in Table 4, it can be seen that the best results were achieved for the
YOLOv8s-seg model while using the smaller YOLOv8n-seg model will not contribute to a
noticeable reduction in accuracy and will result in shorter inference times. The YOLOv8n-seg
model for detection and segmentation of the head and abdomen of beetles was selected for further
analysis. The very high results obtained for the segmentation of the head/abdomen allow us
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Table 4
Results for beetle head and abdomen detection.

model name class names AP50(Box) mAP50:95(Box) F1-score(Box)

YOLOv8n-seg head/abdomen 0.990± 0.001 0.794± 0.013 0.971± 0.003

YOLOv8s-seg head/abdomen 0.991± 0.002 0.801± 0.012 0.972± 0.007

YOLOv8m-seg head/abdomen 0.988± 0.003 0.793± 0.015 0.968± 0.011

YOLOv8l-seg head/abdomen 0.989± 0.002 0.793± 0.014 0.964± 0.009

YOLOv8x-seg head/abdomen 0.988± 0.004 0.791± 0.015 0.962± 0.009

to assume that this pipeline element will not significantly affect the performance of the final
solution.
3.2. Classification of detected abdomens into occluded and non-occluded

Quantitative results for the problem of classification of detected abdomens into occluded and
non-occluded are presented in Table 5.

Table 5
Results for classification of detected abdomens into occluded and non-occluded.

backbone name class names AUCPR AUCROC F1-score

ResNet18 occluded/non-occluded 0.942±0.024 0.992±0.001 0.904±0.011

ResNet50 occluded/non-occluded 0.877±0.043 0.980±0.007 0.837±0.031

ResNet101 occluded/non-occluded 0.833±0.100 0.978±0.015 0.830±0.064

MobileNetV2 occluded/non-occluded 0.933±0.019 0.991±0.001 0.878±0.020

EfficientNetB0 occluded/non-occluded 0.814±0.028 0.968±0.006 0.756±0.023

EfficientNetB4 occluded/non-occluded 0.859±0.014 0.979±0.005 0.833±0.020

Based on the results in Table 5, it can be observed that the best results were achieved for the
ResNet18 model, which was selected for further analysis. The results obtained for the present
classification problem made it possible to effectively filter out non-occluded from the occluded
abdomens. The errors made by the classification model mainly were related to borderline
examples, e.g., the abdomen with a small occlusion. Re-identification for such examples should
still make sense. However, the effect of occlusion on re-identification performance should be
explored in more detail in future work.
3.3. Determination of the orientation of the beetle

Qualitative results for the problem of determining beetle orientation are shown in Figure 11.
Figure 11 shows selected images of beetles with identified characteristic points and positions for
the major and minor axes. The orientation of the major axis was used then in the normalization
of the beetle rotation before re-identification and in the automatic tag recognition method.

After fine-tuning, the parameter values were set to 𝛼𝑇 1 = 1◦ and 𝛼𝑇 2 = 1◦. The MAE error
between the manually marked and the determined orientations was 1.76◦ ± 1.48◦. The results
shown in Figure 11 and the low MAE values confirm the high performance of this processing
step.
3.4. Automatic tag recognition

The results for the automatic tag recognition problem are presented in Figure 12 and in
Table 11 (can be found in the Appendix). Table 11 shows the results for searching the best
combination (machine learning model, color space) for a semantic segmentation task. Figure 12
shows qualitative results (successive steps of the proposed method) for selected samples
(individual beetles).
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Figure 11: Results of the proposed method for determining beetle orientation by identifying
characteristic points and the position of the major (red line) and minor (blue line) axes for selected
samples.

Based on the results in Table 11 (in Appendix), it can be concluded that the best results
for semantic segmentation were obtained using the SVM rbf model to classify pixels from
images after transformation to HSV color space. These settings were used to perform semantic
segmentation for selected samples from the test set. Figure 12 shows the semantic segmentation
results for the selected samples from the test set (raw and after filtering). Among the 111
samples evaluated, 5 errors were registered, resulting in a 95.5% accuracy of the automatic tag
recognition method. All errors were related to mistakes between white/yellow/gold colors when
overexposure occurred. The overexposure problem is shown for selected samples in Figure 12.
Using other tag colors (e.g. green, orange) in the future should eliminate the problem completely.
The qualitative and quantitative results confirmed the proposed method’s effectiveness for
automatic tag recognition. The automatic tag recognition method significantly reduced the time
to develop a dataset for beetle re-identification. The few errors that occurred were eliminated by
manual inspection of the samples.

Figure 12: Results for automatic tag recognition as visualisation of the successive steps of the
proposed method for selected samples (individual beetles).
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3.5. Development of a model for the re-identification of beetles for the test stage
The quantitative results of beetle re-identification are shown in Table 6 (comparison of

the proposed approach for re-identification of beetles with lower and upper baselines) and in
Table 13 in Appendix (results of fine-tuning parameters for re-identification model and training).

Table 6
Comparison of the proposed approach for re-identification of beetles with lower and upper
baselines.

approach name visible part fine-
tuning

MAP MAP@R P@1 RP

standard (fine-tuned
backbone)

abdomen yes 0.818± 0.017 0.770± 0.021 0.807± 0.022 0.791± 0.019

lower baseline v1
(frozen backbone)

abdomen no 0.128± 0.001 0.063± 0.001 0.185± 0.005 0.128± 0.002

lower baseline
v2 (handcrafted
features)

abdomen - 0.043± 0.001 0.019± 0.001 0.130± 0.002 0.051± 0.001

upper baseline abdomen+head
(with tag)

yes 0.962± 0.002 0.947± 0.003 0.959± 0.003 0.953± 0.003

The fine-tuning of beetle re-identification model parameters and training (see results in
Table 13 in Appendix) finally resulted in the selection of the following optimal settings:
MobileNetv2 model with one hidden layer consisting of 1024 neurons trained with Triplet
Margin Loss and Triplet Margin Miner. The margin values were set at 0.2 for loss and miner.
The best results were achieved with cosine distance and using all triplets in training (no
filtering of triplets). Based on the results in Table 6, it can be concluded that for the beetle re-
identification problem being addressed, developing a problem-oriented feature extractor (fine-
tuned) is necessary to obtain satisfactory results. The results obtained when using a frozen
backbone (lower baseline 1) or handcrafted features (lower baseline 2) extractor were very
low. As expected, relatively high results were obtained for the approach of using beetle images
with tags (abdomen+head) when fine-tuning the extractor (upper baseline). The reasons for the
mistakes that occurred with this approach should be sought in the repetition of tag colors in
successive series, i.e. among the 80 beetles considered, each tag repeated 4 times (4 separate
phenotyping series). In Figure 13a-c, the charts for TSNE analysis (Van der Maaten and Hinton
(2008)) for the considered approaches are shown. In Figure 13a-c, each color is associated with
a different individual, and the type of tag (circle or plus) indicates the training or test stage of
the phenotyping.

The results in Figure 13a-c confirm the quantitative results in Table 6. It is worth noting the
very good separability of classes in feature space in the case of chart 13b, which is related to the
proposed approach when only images of the abdomen are used for re-identification. In the case of
13c, an almost perfect separation of the considered classes was achieved. Figure 13d additionally
shows the re-identification precision distribution for the analyzed individuals. As many as 57/80
individuals had a re-identification precision higher than 0.8, and only 5/80 individuals were
particularly difficult to re-identify (precision less than 0.5). The variation within re-identification
precision for individuals was the main motivation for proposing a method for the initial selection
of beetles for re-identification.

Figure 14 shows examples of re-identification model predictions, distinguishing TP (with
estimated probability equal to 1 and less than 0.9), FN and FP predictions.
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Figure 13: Results for beetle re-identification: (a) TSNE analysis for lower baseline v1 (frozen
backbone and abdomen images) approach, (b) TSNE analysis for standard (fine-tuned backbone and
abdomen images) approach, (c) TSNE analysis for upper baseline (fine-tuned backbone and images of
whole beetle with tag) approach, and (d) histogram for re-identification metric for individual beetles
under standard approach.

Analyzing the predictions in Figure 14, it can be observed that there is a wide variation
among TP predictions, confirming the re-identification model’s robustness. Among the most
important reasons for mistakes (or reduction in prediction probability) by the re-identification
model are (sample references are in the form [number row].[number column]): (1) significant
change in pose (samples 1.6., 1.8, and 4.8), (2) segmentation errors (sample 4.10.), (3) significant
change in abdomen structure (samples 3.6, and 3.9), (4) motion blur (samples 2.6, 2.7, and 5.6),
(5) significant change in lighting conditions (sample 5.8), and (6) contamination (sample 4.7.).

Figure 15 presents the beetles ranked according to ease of re-identification (10 easiest and
10 most difficult to re-identify), taking into account the results on the test set.

In the case of the 10 beetles easiest to re-identify, it is important to note the characteristics in
the appearance of these individuals, which undoubtedly facilitated re-identification, including
color characteristics (e.g. in the case of beetles with ranks 2 and 6, we can see brown spots
on the black abdomen), relatively bright abdomen (e.g., for beetles with ranks 3, 4, and 5, we
observe brown abdomens), and abdomen structure characteristics (e.g., for beetle with rank 4, we
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Figure 14: Examples of re-identification model prediction: TP (with confidence equal to 1), TP (with
confidence less than 0.9), FN and FP errors.

see dent). It should be emphasized that appearance features were only one element determining
the ease of re-identification. The other important element was the variation in training samples
obtained during the training stage (when the beetles were isolated). For the most difficult beetles
to re-identify, 8/10 were characterized by lack of (or very low mobility) during the training stage,
which was the main reason for the difficulty of re-identification in this case. Future work should
consider strategies to ensure that the training samples are varied for each beetle, e.g. through
forced changes in the acquisition conditions, i.e. lighting and camera position.
3.6. Ablation studies for re-identification

Quantitative results of ablation studies for beetle re-identification are summarized in Table 7.
Table 7
Results of ablation studies for beetle re-identification.

approach name MAP MAP@R P@1 RP

S 0.083± 0.003 0.032± 0.003 0.060± 0.003 0.058± 0.002

S+T+I 0.367± 0.030 0.301± 0.031 0.339± 0.026 0.323± 0.031

S+I 0.321± 0.025 0.254± 0.024 0.292± 0.025 0.279± 0.025

S+I+C 0.781± 0.009 0.728± 0.012 0.763± 0.010 0.750± 0.011

S+T+I+C (baseline) 0.818± 0.017 0.770± 0.021 0.807± 0.022 0.791± 0.019

The results in Table 7 clearly show that color-related features had the greatest impact on
beetle re-identification, as evidenced by the significant difference between the results obtained
for the S+T+I (grayscale images) and S+T+I+C (raw RGB images) approaches - MAP=0.367
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Figure 15: Results for beetle re-identification: (a) 10 beetles easiest to re-identify (1-10 positions in
ranking), (b) 10 beetles most difficult to re-identify (71-80 positions in ranking).

for S+T+I and MAP=0.818 for S+T+I+C. By comparing the results for the S+I/S+T+I and
S+I+C/S+T+I+C approaches, it is possible to assess the influence of texture features on the
re-identification of beetles. In both cases, it can be observed that texture features had a positive
effect on re-identification results. However, still, the texture had a much smaller impact than
color features, i.e., considering texture for re-identification contributed to an increase in MAP
from 0.321 to 0.367 for S+I/S+T+I and from 0.781 to 0.818 for S+I+C/S+T+I+C. Basing only
on shape features (S approach) did not allow the re-identification of beetles. At this point, it is
worth mentioning that in the paper (Murali et al. (2019)) very high results were achieved for
the re-identification of fruit flies when based on grayscale images, while it was not shown in the
paper what mainly affected the ability to re-identify insects. Undoubtedly, the results shown
for beetle re-identification confirm the importance of conducting ablation studies for insect
re-identification problems, which enables a deeper understanding of how the re-identification
model works.
3.7. Initial selection of beetles for re-identification for the test stage

The results for the proposed beetle initial selection strategy for re-identification are included
in Table 14 (in Appendix) and Figure 16. Table 14 contains quantitative details from subsequent
parameter fine-tuning steps for the approach based on the proposed hybrid metric. Figure 16
summarizes the results obtained, comparing the proposed approach (red curve) with the lower
(random selection, blue curve) and upper baseline (selection based on results on the test set,
green curve). Figure 16 also shows results for re-identifying beetles when considering the use
of physical tags (orange curve).

After parameter fine-tuning for the hybrid metric approach for the initial selection (see
Table 14), the following optimal parameters were obtained: 𝑚𝑡ℎ𝑟𝑒𝑠ℎ

𝑅𝑒𝐼𝐷 = 0.7, 𝑆𝑆𝐼𝑀𝑡ℎ𝑟𝑒𝑠ℎ = 0.8,
𝑎 = 40, 𝛼 = 1 and 𝛽 = 4. Figure 16 confirms that the use of the initial selection of beetles
for re-identification can allow a significant increase in the number of simultaneously analyzed
beetles at a given level of average precision for re-identification. For example, for a threshold
of average precision set at 0.9, the proposed approach would allow increasing the number of
simultaneously analyzed beetles from 21 to 44, comparing the proposed approach with the lower
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Figure 16: Chart showing the change in re-identification precision as a function of the number of
beetles analyzed simultaneously in the phenotyping procedure with different approaches to the initial
selection of beetles.

baseline (random selection). It should also be noted that the obtained number of beetles does not
deviate significantly from the upper baseline (selection based on results on the test set), i.e. the
difference is only 12 additional individuals. The obtained results for the proposed initial selection
approach confirm the validity of introducing this step into the phenotyping procedure, especially
since the pool of possible objects (available beetles) for phenotyping will not be a limitation in
most cases.
3.8. Detection of beetle mating

The model evaluation results for the beetle mating detection problem are summarized in
Table 8.

Table 8
Results for detection of beetle mating.

model name class names use synthetic AP50(Box) mAP50:95(Box) F1-score(Box)

YOLOv8n-seg mating 0 0.693 ± 0.092 0.567 ± 0.097 0.669 ± 0.063

YOLOv8n-seg mating 1 0.815 ± 0.035 0.690 ± 0.041 0.756 ± 0.041

YOLOv8s-seg mating 0 0.718 ± 0.101 0.607 ± 0.097 0.687 ± 0.087

YOLOv8s-seg mating 1 0.778 ± 0.055 0.670 ± 0.057 0.731 ± 0.031

YOLOv8m-seg mating 0 0.754 ± 0.060 0.633 ± 0.060 0.729 ± 0.034

YOLOv8m-seg mating 1 0.794 ± 0.070 0.684 ± 0.057 0.760 ± 0.045

YOLOv8l-seg mating 0 0.774 ± 0.149 0.656 ± 0.142 0.750 ± 0.134

YOLOv8l-seg mating 1 0.835 ± 0.067 0.732 ± 0.049 0.777 ±0.063

YOLOv8x-seg mating 0 0.684 ±0.127 0.578 ±0.106 0.676 ±0.081

YOLOv8x-seg mating 1 0.753 ±0.110 0.660 ±0.093 0.706 ±0.112

For the beetle mating detection problem, the best results were obtained for the YOLOv8l-seg
model when applying the proposed augmentation technique (using generated synthetic images
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to train the model). It is also worth noting that the addition of synthetic images to the training set
for all models enabled improved detection accuracy. The results confirmed the ability to detect
the mating pattern on single shots. Future work should focus on expanding the dataset of beetle
mating examples. Due to the relatively high performance of the detection model obtained in this
work, the labeling process can be effectively speeded up using a weak model when assessing
the relevance of a large amount of unlabeled data. It is also worth considering other methods
for mating detection, e.g. based on temporal data and supported by tracking. Undoubtedly, the
results of the detection of the mating pattern of beetles obtained in this study confirmed the
validity of including this element in the procedure of beetles phenotyping.
3.9. Reduction of the impact of domain shift effect on re-identification

Quantitative results for the proposed method of reducing the effect of domain shift on re-
identification are summarized in Table 15 and Table 9. Table 15 in the Appendix shows the
results of parameter fine-tuning for the proposed method, and Table 9 summarizes the results
for domain shift problem, comparing the results with (for the best parameter combination) and
without using the domain adaptation mechanism.

Table 9
The impact of the proposed domain adaptation method on beetle re-identification results.

use adaptation MAP MAP@R P@1 RP

no 0.818± 0.017 0.770± 0.021 0.807± 0.022 0.791± 0.019

yes 0.866± 0.018 0.838± 0.022 0.853± 0.019 0.847± 0.020

The results in Table 9 show that the proposed method significantly improved the re-
identification results by adapting the model to the data acquired during the test stage (MAP
increase from 0.818 to 0.866). The best adaptation results were achieved with parameters
𝑘 = 100 and 𝑝𝑡ℎ𝑟𝑒𝑠ℎ = 0.95.
3.10. Further possibilities to expand the method for dynamic phenotyping of beetles

The very promising results for the beetle re-identification and mating detection task make
it possible to consider applying the techniques proposed in this article to another problem that
is very important from the breeder’s point of view, namely determining the sex of beetles. The
idea of the solution for determining the sex of beetles is presented in Figure 17.

Figure 17: The idea of sex determination based on detected mating patterns.

The idea presented in Figure 17 assumes that when mating is detected, the two beetles’
relative position (up/down) is determined. In the case of a male individual during mating, the
abdomen is usually visible in full, allowing re-identification to be carried out. In the case of
a female individual, sex determination could be carried out after mating, e.g., supported by
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tracking techniques. Validation of the proposed method should be based on the labels established
by the specialist in manual sex verification. Undoubtedly, adding a part related to the sex
determination of beetles to the phenotyping procedure is an important direction for future work.
3.11. Processing time

The results regarding the analysis of processing time for each processing step are shown in
Table 10.
Table 10
Processing time for each image processing step.

ID processing step model type unit time (per tile
or per beetle)

total time (per
frame)

1 abdomen/head segmentation YOLOv8n-seg 4ms 0.24 s
2 abdomen occlusion classification ResNet18 < 1ms < 0.01 s
3 orientation determination - 52 ms 1.04 s
4 abdomen/head merging - - 0.56 s
5 re-identification MobileNetV2 1 ms 0.02 s
6 mating detection YOLOv8l-seg 28 ms 1.75 s

summary 3.62 s

Based on the results in Table 10, it is possible to locate the bottlenecks in the whole system,
considering the processing time, which was mating detection and orientation determination. For
the mating detector, a relatively large model based on the YOLOv8l-seg architecture was used,
as the best detection results were achieved for this model. In the future, with the expansion of the
dataset with new examples of mating, the accuracy of smaller models is expected to increase,
making it reasonable to replace the current model with another one with lower complexity. For
orientation determination, the approach based on classical image processing can be replaced
in the future by a small regression convolutional network trained on the output of the current
orientation determination method, which should significantly reduce the processing time for this
step. It is also worth noting that the key processing element related to re-identification has very
short processing times and can even be used in near real-time processing.

4. Conclusions
The study proposed phenotyping method with dynamic characteristics determination for

Tenebrio Molitor beetles in selective breeding studies based on re-identification and computer
vision. The study showed that re-identification of Tenebrio Molitor beetles based on images of
the abdomen only (without tags) is possible with satisfactory accuracy using automated image
acquisition for training the re-identification model (proposing the training stage when the beetles
were isolated). Physical tags enabled reliable experiments and validation by easily identifying
individuals during the phenotyping test stage. The proposed methods of initial selection of
beetles and reduction of the domain shift effect made it possible to enhance re-identification
performance further. The ablation studies and analyses of sample predictions showed the high
importance of color features for re-identification. Also, they excluded the potential basing of
the re-identification model on undesirable features. The studies also showed the key role of
training data quality on the accuracy of the re-identification model, which was exploited by
proposing an initial beetle selection strategy. Promising results for behavioural pattern detection
(i.e., mating) allow for consideration of further elements for the phenotyping procedure, e.g.,
sex determination of individuals. As the most important directions for future work, we see (1)
increasing the diversity of training samples by interfering with image acquisition conditions
(e.g., forced change of illumination, camera position), i.e. preventing the phenomenon of domain
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shift at the level of the vision system, (2) developing a procedure for determining the sex of
beetles with validation based on the labels proposed by the specialist, (3) supporting the re-
identification of beetles with tracking techniques, (4) analyzing re-identification when occlusion
occurs and proposing methods robust to this phenomenon, and (5) determining the impact of
individual dynamic characteristics on the reproductive value of beetles (e.g., taking into account
the fecundity of beetles).
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A. Appendix

Table 11
Results for searching for the best combination (machine learning model, color space) for a semantic
segmentation task for automatic tag recognition task.

ID color space model name F1-macro

1 HSV SVM rbf 0.870± 0.019

2 YCrCb SVM rbf 0.862± 0.023

3 RGB SVM rbf 0.859± 0.023

4 Lab SVM rbf 0.857± 0.021

5 YCrCb SVM linear 0.851± 0.026

6 YCrCb LogReg 0.849± 0.028

7 RGB SVM linear 0.847± 0.028

8 Luv SVM rbf 0.845± 0.024

9 Lab SVM linear 0.845± 0.026

10 RGB LogReg 0.840± 0.029

11 Lab LogReg 0.839± 0.026

12 Luv LogReg 0.838± 0.03

13 Luv SVM linear 0.838± 0.03

14 YCrCb LDA 0.743± 0.021

Table 12
Description of the stages of selection of optimal parameters for the beetle re-identification model.

ID backbone FC layers loss type miner type margin
val in
loss

margin
val in
miner

distance
type

triplets
type

1.1. ResNet18 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
1.2. ResNet50 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
1.3. ResNet101 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
1.4. EfficientNet-b0 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
1.5. EfficientNet-b4 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
1.6. MobileNetv2 [512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.1. MobileNetv2 [] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.2. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.3. MobileNetv2 [512, 256] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.4. MobileNetv2 [1024, 512] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.5. MobileNetv2 [512, 256, 128] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
2.6. MobileNetv2 [1024, 512, 256] Triplet Margin Triplet Margin 0.2 0.2 cosine semihard
3.1. MobileNetv2 [1024] Circle Triplet Margin - 0.2 cosine semihard
3.2. MobileNetv2 [1024] GLS Triplet Margin - 0.2 cosine semihard
3.3. MobileNetv2 [1024] Multi-Similarity Triplet Margin - 0.2 cosine semihard
3.4. MobileNetv2 [1024] Proxy-NCA Triplet Margin - 0.2 cosine semihard
3.5. MobileNetv2 [1024] FastAP Triplet Margin - 0.2 cosine semihard
4.1. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.05 0.2 Euclidean all
4.2. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.05 0.2 Euclidean semihard
4.3. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.05 0.2 cosine all
4.4. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.05 0.2 cosine semihard
4.5. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.2 0.2 Euclidean all
4.6. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.2 0.2 Euclidean semihard
4.7. MobileNetv2 [1024] Triplet Margin Triplet Margin 0.2 0.2 cosine all
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Table 13
Results for the subsequent stages of selection of optimal parameters for the beetle re-identification
model.

ID MAP MAP@R P@1 RP

1.1. 0.765± 0.009 0.717± 0.012 0.744± 0.008 0.732± 0.010

1.2. 0.783± 0.011 0.733± 0.012 0.765± 0.009 0.752± 0.012

1.3. 0.772± 0.014 0.722± 0.016 0.757± 0.015 0.742± 0.016

1.4. 0.655± 0.054 0.593± 0.056 0.639± 0.056 0.617± 0.056

1.5. 0.779± 0.055 0.724± 0.064 0.769± 0.053 0.748± 0.060

1.6. 0.800± 0.035 0.750± 0.039 0.783± 0.036 0.770± 0.038

2.1. 0.800± 0.028 0.754± 0.033 0.775± 0.031 0.764± 0.031

2.2. 0.814± 0.018 0.765± 0.020 0.797± 0.017 0.784± 0.019

2.3. 0.785± 0.019 0.732± 0.024 0.765± 0.021 0.752± 0.021

2.4. 0.777± 0.027 0.723± 0.028 0.759± 0.027 0.743± 0.029

2.5. 0.604± 0.063 0.521± 0.070 0.577± 0.071 0.553± 0.066

2.6. 0.711± 0.055 0.646± 0.065 0.685± 0.061 0.669± 0.060

3.1. 0.799± 0.019 0.749± 0.023 0.788± 0.022 0.770± 0.021

3.2. 0.773± 0.020 0.717± 0.023 0.750± 0.025 0.737± 0.022

3.3. 0.804± 0.012 0.757± 0.015 0.792± 0.009 0.776± 0.013

3.4. 0.685± 0.060 0.653± 0.062 0.658± 0.063 0.655± 0.062

3.5. 0.806± 0.023 0.762± 0.025 0.787± 0.026 0.778± 0.025

4.1. 0.761± 0.010 0.685± 0.010 0.756± 0.006 0.725± 0.010

4.2. 0.760± 0.009 0.685± 0.009 0.757± 0.009 0.721± 0.009

4.3. 0.767± 0.025 0.694± 0.032 0.756± 0.018 0.731± 0.028

4.4. 0.779± 0.012 0.712± 0.017 0.776± 0.008 0.745± 0.014

4.5. 0.787± 0.001 0.726± 0.001 0.767± 0.006 0.752± 0.001

4.6. 0.791± 0.015 0.733± 0.016 0.773± 0.014 0.759± 0.017

4.7. 0.818± 0.017 0.770± 0.021 0.807± 0.022 0.791± 0.019

Table 14
Results of beetle re-identification using initial selection strategy for various chosen parameters.

ID 𝑚𝑡ℎ𝑟𝑒𝑠ℎ
𝑅𝑒𝐼𝐷 𝑆𝑆𝐼𝑀𝑡ℎ𝑟𝑒𝑠ℎ 𝑎 𝛼 𝛽 AUCPN 𝑛0.85𝑠𝑖𝑚 𝑛0.90𝑠𝑖𝑚 𝑛0.95𝑠𝑖𝑚

1.1. 0.5 0.6 10 1 1 0.8970 66.0 41.0 12.0
1.2. 0.6 0.6 10 1 1 0.8968 67.0 40.0 8.0
1.3. 0.7 0.6 10 1 1 0.8988 66.0 38.0 15.3
1.4. 0.8 0.6 10 1 1 0.8971 67.0 39.0 7.5
2.1. 0.7 0.4 10 1 1 0.8968 67.0 37.0 13.5
2.2. 0.7 0.5 10 1 1 0.8981 66.5 39.0 12.5
2.3. 0.7 0.7 10 1 1 0.8953 66.0 42.5 6.0
2.4. 0.7 0.8 10 1 1 0.9001 66.5 44.0 11.0
2.5. 0.7 0.9 10 1 1 0.8910 66.0 38.0 6.0
3.1. 0.7 0.8 5 1 1 0.8914 64.0 40.5 5.5
3.2. 0.7 0.8 20 1 1 0.8993 65.0 42.0 12.0
3.3. 0.7 0.8 40 1 1 0.9024 66.0 41.0 17.0
3.4. 0.7 0.8 80 1 1 0.9007 66.5 39.5 16.0
4.1. 0.7 0.8 40 1 0.25 0.8990 66.0 37.0 15.0
4.2. 0.7 0.8 40 1 0.5 0.8991 65.5 38.0 15.0
4.3. 0.7 0.8 40 1 2 0.9027 66.0 43.0 17.0
4.4. 0.7 0.8 40 1 4 0.9040 66.0 44.5 17.0
4.5. 0.7 0.8 40 1 6 0.8993 65.5 43.5 13.0
4.6. 0.7 0.8 40 1 8 0.9025 65.5 43.0 16.0
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Table 15
Results of beetle re-identification using the proposed domain adaptation method for various chosen
parameters.

ID 𝑘 𝑝𝑡ℎ𝑟𝑒𝑠ℎ MAP MAP@R P@1 RP

1 20 0.70 0.826± 0.023 0.794± 0.026 0.808± 0.024 0.802± 0.025

2 20 0.90 0.844± 0.021 0.815± 0.021 0.829± 0.022 0.823± 0.021

3 20 0.95 0.847± 0.022 0.819± 0.024 0.833± 0.022 0.827± 0.023

4 20 1.00 0.854± 0.018 0.826± 0.020 0.840± 0.021 0.834± 0.019

5 50 0.70 0.831± 0.018 0.800± 0.019 0.813± 0.019 0.808± 0.019

6 50 0.90 0.851± 0.015 0.823± 0.017 0.837± 0.018 0.832± 0.017

7 50 0.95 0.858± 0.015 0.830± 0.016 0.846± 0.016 0.839± 0.016

8 50 0.97 0.861± 0.016 0.834± 0.019 0.848± 0.018 0.843± 0.018

9 50 1.00 0.865± 0.014 0.837± 0.015 0.856± 0.015 0.847± 0.015

10 100 0.70 0.834± 0.018 0.804± 0.019 0.818± 0.020 0.813± 0.018

11 100 0.90 0.855± 0.013 0.827± 0.016 0.844± 0.014 0.836± 0.015

12 100 0.95 0.866± 0.018 0.838± 0.022 0.853± 0.019 0.847± 0.020

13 100 0.97 0.863± 0.012 0.835± 0.014 0.853± 0.011 0.844± 0.014

14 100 0.99 0.865± 0.015 0.836± 0.019 0.856± 0.017 0.846± 0.017

15 100 1.00 0.864± 0.014 0.835± 0.016 0.856± 0.015 0.846± 0.015
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List of Abbreviations

CNN convolutional neural network

CV computer vision

HB honeybee

HDBSCAN hierarchical density-based spatial clustering of applications with noise

K-Means clustering algorithm

Mask R-CNN mask region-based convolutional neural network, instance segmentationmodel

ML machine learning

MLP multilayer perceptron

MW mealworm (Tenebrio Molitor)

NIR near infrared

PA precision agriculture

PB precision beekeeping

PCA principal component analysis

PIF precision insect farming

PLF precision livestock farming

RegCNN regression convolutional neural network

ROI region of interest

SIFT scale-invariant feature transform

SVM support vector machines

TSNE t-distributed stochastic neighbor embedding (dimensionality reduction technique)
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List of Abbreviations

U-Net semantic segmentation model

VLAD vector of locally aggregated descriptors

YOLO You Only Look Once, group of object detection models
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