
Wrocław University Of Science and Technology

doctoral dissertation

PACE and PACE CAM: Security
Issues and Protocol Extensions

Author
Patryk Kozieł

Supervisor
prof. dr hab.

Mirosław Kutyłowski

Wrocław 2023

Abstract

The first part of the thesis is a security analysis of PACE and PACE CAM
protocols (Password Authenticated Connection Establishment and Password
Authenticated Connection Establishment with Chip Authentication Mapping).
These protocols are included in a standard adopted by International Civil Avia-
tion Organization (ICAO). The purpose of these protocols is to aid automation
of border control with biometric passports. The security analysis presented here
is a follow-up work on 2019 paper ”Privacy and security analysis of PACE GM
protocol” by Mirosław Kutyłowski and Przemysław Kubiak with draft proofs
on security of PACE. In the thesis, full versions are provided as well as they are
coupled with security analysis of PACE CAM.

The security analysis is prefaced with a literature review and legal and tech-
nical context. An important part of the introduction is a European Union
regulation making deployment of PACE obligatory for official personal ID cards
issued in the EU. The same regulation also allows for the introduction of ex-
tensions of PACE. Two such extensions are presented in the second part of the
thesis. This work was published at two major conferences: IFIP Networking
2021 as “Poster: e-ID in Europe - Password Authentication Revisited” and at
ESORICS 2021 as “PACE with Mutual Authentication – Towards an Upgraded
eID in Europe”. Both papers are coauthored by the author of this thesis. These
extensions introduce two new functionalities to PACE: Proof of Presence - unde-
niable cryptographic proof that a successful protocol session has occurred with
a given card and Mutual Authentication – strong authentication of both parties
participating in the protocol. We discuss security features and design choices
for these extensions.

Streszczenie rozprawy doktorskiej

Pierwszą częścią rozprawy doktorskiej jest analiza bezpieczeństwa protokołów
PACE (Password Authenticated Connection Establishment) oraz PACE CAM
(PACE with Chip Authentication Mapping). Protokoły te zawarte są w stan-
dardzie przyjętym przez International Civil Aviation Organization (ICAO). Ich
celem jest automatyzacja procesu kontroli granicznej z użyciem paszportów
biometrycznych. Analiza bezpieczeństwa przedstawiona w rozprawie to rozwinię-
cie pracy z 2019 roku “Privacy and Security Analysis of PACE GM Proto-
col” autorstwa prof. Mirosława Kutyłowskiego i dra Przemysława Kubiaka
z zarysami dowodów bezpieczeństwa dla podstawowych własności protokołu
PACE. W niniejszej rozprawie, przedstawiamy pełne wersje dowodów wraz z
argumentacją dla protokołu PACE CAM.

Część analizy bezpieczeństwa jest poprzedzona wstępem zarysowującym kon-
tekst prawny, technologiczny oraz zawierającym przegląd literaturowy. Istotną
częścią wprowadzenia są rozporządzenia Unii Europejskiej, które obligują
państwa członkowskie do implementowania protokołu PACE w warstwie elek-
tronicznej oficjalnych dokumentów tożsamości oraz pozwalają na rozszerzenia
funkcjonalności tych protokołów. Dwa takie rozszerzenia są przedstawione w
drugiej części rozprawy. Są to wyniki opublikowane na dwóch czołowych kon-
ferencjach, a autor rozprawy jest jednym ze współautorów. Pierwsza praca
ukazała się na konferencji IFIP Networking 2021: “Poster: eID in Europe -
Password Authentication Revisited”, zaś druga “PACE with Mutual Authenti-
cation – Towards an Upgraded eID in Europe” na konferencji ESORICS 2021.
Rozszerzenia to, odpowiednio, PACE PoP (Proof of Presence) - rozszerzający
podstawowy protokół o funkcjonalność niezaprzeczalnego dowodu że udana sesja
protokołu miała miejsce z udziałem okreslonej karty oraz PACE MA (Mutual
Authentication) - rozszerzająca protokół o możliwość silnego kryptograficznego
uwierzytelnienia obu stron uczestniczących w protokole. W rozprawie omaw-
iamy własności bezpieczeństwa i decyzje projektowe dla tych protokołów.

Contents

1 Introduction 3
1.1 eIDs in Europe . 3
1.2 Legal context and introduction of PACE 4
1.3 Original security analysis of PACE and contribution described in

this thesis . 5
1.4 Introduction of PACE CAM . 5
1.5 PACE modifications and extensions in literature 6

1.5.1 Proposed extensions PACE MA and PACE PoP 6
1.6 Requirement-driven security analysis 7

2 Preliminaries 8
2.1 Cyclic groups . 8
2.2 Adversary . 8

2.2.1 Negligible advantage and practically negligible advantage 9
2.3 Group assumptions . 10

2.3.1 KEA 1 . 10
2.4 Cryptographic primitives . 11

2.4.1 Hash functions . 11
2.4.2 Encryption . 12
2.4.3 Schnorr Signature . 12
2.4.4 Schnorr Identification Scheme 13
2.4.5 AES-CMAC . 13

3 PACE and PACE CAM security analysis 15
3.1 Description of PACE protocol . 15
3.2 PACE CAM . 18

3.2.1 Algorithms recommended by ICAO specification 19
3.3 Session Resilience and Active Adversaries 20

3.3.1 Protocol Fragility . 21
3.3.2 Key Confidentiality . 29

3.4 Password Security . 31
3.4.1 Adversary interacting with a chip 34
3.4.2 Adversary interacting with a terminal 37
3.4.3 Adversary interacting with the terminal and the chip . . . 42

1

3.4.4 Session hijacking . 45
3.5 Privacy . 46

3.5.1 User tracking . 46
3.5.2 Proof of presence . 47

3.6 Chip Authentication with CAM 48

4 Proposed extensions of PACE 50
4.1 Guidelines for extending a protocol 50
4.2 PACE Mutual Authentication . 51

4.2.1 Description of PACE MA 51
4.2.2 Discussion on the security and privacy 55
4.2.3 Discussion on design . 58

4.3 PACE Proof of Presence . 58
4.3.1 Design and functionality of PACE PoP 59
4.3.2 Analysis of the extension 61
4.3.3 Reduction to the security of the original PACE 63
4.3.4 Fragility . 63
4.3.5 Simultability . 64
4.3.6 Design with reusability in mind 64

5 Summary 65

2

Chapter 1

Introduction

1.1 eIDs in Europe
Electronic identity cards – eIDs – equipped with a chip are becoming the
standard identity documents issued by European governments in recent years.
Among other functionalities, they support electronic authentication. It is needed,
because apart of personal data printed on the document, they store sensitive
personal data in the memory, including biometric data authenticated crypto-
graphically. Moreover, an eID document serves as a cryptographic token held
by its owner. Electronic authentication could be used in many scenarios, with
many automated services that require the authentication of the person holding
the eID. Services can range from airport e-Booths, e-gov web services, health
services (including access to patient’s medical information), financial services,
or even vending machines with age or identity verification.

For the sake of the durability of the document and a possible wide range
of usage, wireless interface communication between a reader (entry point to
the service) and the eID is a preferred choice over using other interfaces. This
creates possibilities for attacks for adversaries who could try to exploit this
channel, from merely intercepting to even hijacking the session between the eID
and the reader. That could be done by installing malicious devices around the
reader or even trying to make a connection with the chip of an eID being in
its vicinity. As the chip does not have its own power supply and is activated
by the reader, in practice there is no option to control when the connection is
made. Therefore, there is a need for strong cryptographic protection, taking
into account different attack scenarios.

As an eID is compulsory for all adult citizens, it provides an opportunity
to be used as a strong cryptographic token ready to use in all the scenarios
mentioned. It has the advantage of being widely recognized and universally
understood, with users knowing how to use it, as opposed to maybe trying
to introduce a new solution for such scenarios. Countries such as Germany
and Estonia have successfully introduced eIDs for their citizens before the EU

3

regulation and integrated them with e-goverment services. However, there are
issues that need to be examined from the point of view of the European common
market. eIDs issued by different countries can be very valuable cryptographic
tokens; however, they are usually not implemented with the interoperability
and cooperation between countries in mind. Therefore, until recently, they
could not be used as universal ID tokens. This has created barriers to effective
cross-border e-government services and free movement of the citizens.

1.2 Legal context and introduction of PACE
To ensure interoperability on eIDs in member states of the European Union,
a Regulation 2019/1157 [1] was introduced with the aim of implementing the
common mechanisms deployed on official eIDs in countries belonging to the EU.
This regulation requires that on all eIDs issued after August 2, 2021, PACE pro-
tocol will be deployed. The Regulation refers to the standard [2] adopted by
the International Civil Aviation Organization (ICAO) and intended for Machine
Readable Travel Documents (MRTDs). It is an example of a PAKE protocol -
Password Authenticated Key Exchange, where the authentication is based on
the knowledge of a password. PACE was developed by the German Federal
Office for Information Security (BSI) [3]. It was intended for travel documents
such as e-passports, with the aim of facilitating automatic border control while
securing against potential privacy threats. This protocol is widely used in bio-
metric passports - e-passports. It automates the process of border control at
special e-Booths, where the front page of the passport with MRZ (machine
readable zone) with individual data (e.g., so-called CAN number) is scanned.
Thanks to PACE, there is a secure connection established between the chip in
the passport and the device at the airport and secured with the password de-
rived from the data scanned. This is a password-authenticated key exchange
which should fail if a wrong password is provided. The established connection is
used to send data for further processing using symmetric encryption and MAC
keys, effectively creating a secure channel from the point of view of privacy and
data protection.

The aforementioned regulations, in addition to enforcing PACE on eIDs,
also provide an opportunity to introduce extensions of PACE on eIDs next
to the original protocol, as long as they do not interfere with PACE. This
prompted the development of an approach in which it is proposed to create a
multitude of protocols based on PACE, fulfilling different purposes and providing
many functionalities. Such an approach makes sense from the point of view of
efficiency, as chips on eIDs are limited in computational power and memory.
Deploying extensions, with a high level of reuse of the existing mechanisms, is
more pragmatic than implementing new protocols from scratch. Using what is
already there can promote backward compatibility and greatly simplify security
analysis. Good practices of this kind are presented in Section 4.1. In this thesis,
two extensions following presented principles are proposed: PACE MA (Mutual
Authentication) and PACE PoP (Proof of Presence). Those extensions come

4

with interesting and useful functionalities that can be used in many scenarios.
The proposed approach may ease the solution to the problem of reaching in-

ternational consensus when it comes to agreeing on universal and internationally
recognized tokens. This can be done by favoring options for particular schemes
based on already deployed PACE with the benefit of greater interoperability,
rather than choosing one of existing, probably incompatible solutions already
deployed on national eIDs in Europe that would surely advantage particular
manufacturers (which can create unfairness).

Although intended for different purposes, protocols from the ”PACE family”
may be used outside of the eID realm. They are well-researched protocols, used
for many years now and there is a lot of development experience in deploying
them on biometric passports and eIDs. There is also a sense of trust among
the general public that comes from that. As there are many more scenarios of
usage of PACE and its extensions, throughout the thesis the terms eID and the
reader are replaced by chip and terminal, as these terms are more general and
fitting, especially for remote communication.

1.3 Original security analysis of PACE and con-
tribution described in this thesis

The first security analysis of PACE was published in [4] showing that the
PACE protocol is secure in the real-or-random sense of Abdalla, Fouque and
Pointcheval [5], under a number-theoretic assumption related to the Diffie-
Hellman problem and assuming random oracles and ideal ciphers. Another
article on the subject appeared by Kutyłowski and Kubiak [6] in the year 2019
with concerns about the original security analysis regarding the validity of the
proof and the limited scope of the proven results when it comes to attack sce-
narios. The main contribution was a different approach to the analysis with the
aim of providing a thorough analysis, regarding both the confidentiality and the
privacy features. One of the main parts of the contribution of this thesis is a full
and refined version of the proofs from that paper with some ideas re-thought and
gaps fixed. A strong result on reducing all active adversaries to a passive one
is one of the most important contributions. Except that, crucial results about
key confidentiality and password security are presented. Additionally, within
that topic, particular design choices in PACE are discussed together with their
impact on the practical security of the scheme. At the time of writing, this work
is under preparation for a publication.

1.4 Introduction of PACE CAM
Although PACE was originally intended to be used for a verification at a local
terminal, it can also be used for online authentication on a remote terminal
(cf. [3]). In this case, the local terminal is merely an untrustworthy man-in-
the-middle, and an end-to-end connection is created between the chip and the

5

remote terminal. PACE ensures that no connection will be established unless
the chip holder gives explicit consent by providing the password. However,
the chip is authenticated only by the knowledge of the password. As the chip
holder explicitly enters the password in the terminal, chip authentication is
very weak. For that reason, efforts were made to couple PACE with strong
chip authentication. Bender et al. [7] proposed a PACE|AA protocol, where
the chip proves that it has a private key assigned to it. The idea is to create
a digital signature of the chip using the messages already exchanged in the
protocol. Subsequently, a simplified version of the above protocol was presented
independently in [8] and [9] with some overlap. It was patented by the German
government and adopted by ICAO under the name PACE CAM (PACE with
Chip Authentication Mapping) [2]. This thesis couples the security analysis
of plain PACE with the security analysis of PACE CAM as to the author’s
knowledge there is no such comprehensive analysis at the time of writing, and
this is a new contribution. Since PACE CAM differs only by a single message
added at the end of the communication (disregarding technicalities concerning
PKI), many security features of PACE transform smoothly and can be reused
for the analysis of PACE CAM.

1.5 PACE modifications and extensions in liter-
ature

PACE and its extensions are of interest to many researchers in the field. There
is a lot of work published on this subject, in addition to those described above.
To better understand the landscape of research, some of them will be cited
here. When it comes to the topic of authentication, there have been efforts to
link PACE with biometric authentication, where the password is derived from
biometrics of the eID holder [10]. Also, to close a technical gap, PACE CAM has
been extended to the option of Integrated Mapping for establishing the common
generator ĝ in [11] and also a couple of years earlier the security analysis of the
IM mode was published [12]. There are also different motivations in mind when
modifying PACE, for example, motivated by the concern of the security and cost
of implementing PRNGs on low-power devices, a paper by Mirosław Kutyłowski
and Adam Bobowski was presented in which they propose to substitute PRNG
with a secure deterministic solution ([13]). An interesting modification of the
PACE protocol has been presented in [14] – it uses a one-time pad as encryption
method during the first phase of PACE. It seems to be quite controversial, but
it turns out, for instance, that it doubles the expected number of trials in the
brute-force attack on the password.

1.5.1 Proposed extensions PACE MA and PACE PoP
As already mentioned, apart from the security analysis of PACE and PACE
CAM there is also a contribution of proposing two extensions to PACE: PACE
with Mutual Authentication [15] presented at ESORICS conference in 2021 and

6

PACE with Proof of Presence [16] presented at IFIP Netowrking conference
also in 2021. These extensions were designed with a strong re-usability mindset
in terms of executable code and the security analysis of the original protocol.
Some of the security analysis from Chapter 3 will be reused to provide arguments
about the security features of the extensions. PACE MA is an extended version
of PACE with mutual authentication, both of the chip and the terminal. PACE
PoP is short for Proof of Presence, where in this modification at the end of the
protocol a strong cryptographic signature of the session is created. The security
discussion and design comments are presented in Chapter 4.

1.6 Requirement-driven security analysis
Security analysis of PACE and PACE CAM referenced in this thesis is car-
ried out with security requirements in mind. Instead of using theoretical mod-
els, pragmatic requirements are presented, and the security proofs are centered
around them. Such an approach benefits from being less error-prone than wide
security/privacy models with multiple properties for the analyzed protocols.
This probably provides more trust to the analysis, as often the soundness of a
complicated model is not clear. Using requirement-driven approach for particu-
lar security issues allows also to focus more on practical security (Section 2.2.1).

A stepping stone for the analysis is to greatly reduce the capabilities of the
active adversary to a passive one, meaning an adversary not able to interfere
with the messages exchanged by the protocol parties such that the session is
not aborted. This result is shown early in the analysis and then drives many
results.

When it comes to password-authenticated protocols, it is a known fact that
such authentication is weaker than authentication with strong cryptography
based on the hardness of particular security assumptions because of the low-
entropy of the password options. The best thing that can be done is to make
sure that the adversary has to carry out an attack with all possible passwords
one by one (brute force attack). That stands in opposition to the adversary
having some kind of advantage, e.g. being able to filter out many passwords
at once. That is an example of a pragmatic requirement. Some other concerns
around password security could be that the adversary is able to recognize that
two sessions were executed using the same (correct) password. This is valuable
information because it can be used to track an eID holder. Such an approach,
which aims to define practical problems, leads to practical corollaries that pro-
vide a deep understanding of the security features of the discussed protocols.
The capabilities of the adversary are also modeled with a practical mindset in
mind. That is because, depending on the context, the adversary can have dif-
ferent goals, such as getting to know the password, impersonating a party in
the protocol, or hijacking the session to steal biometric data.

7

Chapter 2

Preliminaries

Definitions, assumptions, and cryptographic building blocks that are used through-
out the thesis are presented in this chapter. Some assumptions, however, will
be presented during the security analysis to put them in the context and make
them easier to follow.

2.1 Cyclic groups
The calculations in the discussed protocols take place in some chosen cyclic
algebraic subgroup of order q of a multiplicative group modulo p with a generator
g, i.e. an element of the group such that g, g2, g3, . . . , gq = 1 are all the elements
of the group. It is assumed that q|p−1 and both p and q are large prime numbers,
so the assumptions in the following sections hold. Recall that in cyclic groups
of prime order, every element except "1" (the identity element) is a generator.
Sometimes the subgroup generated by g will be denoted by ⟨g⟩. Throughout
this thesis, it is implicitly assumed that when operating on elements of this
group, the operations are performed within that group and therefore mod p
will be skipped for brevity. Additionally, this makes it more universal, as the
specification of PACE [2] allows the usage of a group based on elliptic curves
in the protocol and in those cases such a notation would not make sense. The
exponents for the elements of G come from a finite field Zq (sometimes denoted
by Z/qZ), with modular addition, subtraction, multiplication and division, with
elements in a set {0, 1, 2, . . . , q− 1} and the operations on them will use mod q
throughout the thesis.

2.2 Adversary
In order to conduct the security analysis, the notion of an adversary A is intro-
duced. This notion represents an entity whose objective is to somehow break
the security of a protocol or some cryptographic primitive, depending on the
context. As the protocol itself is clearly an algorithm run by some parties, it

8

makes (formal) sense to introduce A as an algorithm as well, which is a stan-
dard practice in cryptography. To reflect real world adversaries, commonly
called attackers, this algorithm must be computationally bounded1 to exclude
brute-force attacks. The brute-force attack way of working is to search through
all possible algorithm runs, usually of the order 2n, where n is the bit length of
the security parameter (usually the key length) in a given security experiment.
Such computational effort is in practice impossible, and cryptographic schemes
are constructed in a way that it is the only way to break their security. Hence,
the following definition:

Definition 2.1 (Adversary). An adversary A is a polynomial time in the secu-
rity parameter randomized algorithm.

Randomization can mean different things depending on the context. In this
thesis, it is an access to some source of randomness that can be used in differ-
ent strategies of the adversary. The adversary in the security experiment/proof
needs some way of operating (a model), and his capabilities need to be clearly
defined, reflecting real-world scenarios close enough to put trust in the security
proof. Usually the capabilities are very wide, to the point that seems unob-
tainable in practice, which only puts more trust in the security of a particular
scheme when it is shown that the scheme is secure against the adversary. Here,
the examples of the adversaries are skipped, to be described in the actual secu-
rity analysis, depending on the security feature in question.

2.2.1 Negligible advantage and practically negligible ad-
vantage

Informally speaking, the probability of A to achieve his goals is called his advan-
tage. In the classical sense, the advantage of A is negligible when it is a function
of the security parameter n of order O(2−n). This represents the notion that
the adversary has no better option than a brute-force attack that is outside of
his computational power or, in other words, that there is no polynomial-time
randomized algorithm that could conduct a successful attack. In this thesis,
the most common way to discuss the advantage of the adversary is closer to
what is called concrete security, which is a more practical approach, focusing
on estimating the actual computational complexity of the problem. Also, as the
subjects of the work presented are interactive protocols, when the key is used
only once per session and time for an action is limited, a practical advantage
can be modeled differently than, for example, trying to model an attack on an
encrypting oracle. This means that probabilities that in classical cryptography
would be deemed too high, here are practically more than sufficient, as usually
A has only one chance to attack having a particular input. These issues will be
discussed in the security analysis to follow.

1Sometimes in the security analysis in the following Chapters, the adversary is given a
”superpower”, e.g. he is able to generate a very large pool of keys, say ∼ 290 keys. In those
cases it is needed to show that even a very powerful adversary is not able to break the security
of a particular scheme.

9

2.3 Group assumptions
In this section, problems considered computationally infeasible in the group G
are presented and formulated as assumptions used throughout the thesis.

Recall that a discrete logarithm to the base b of an element E from the
group G is x ∈ Zq such that bx = E. The term discrete logarithm will be used
without the base specified when the base is obvious from context (usually the
generator). Discrete logarithm problem is a standard problem in cryptography,
meaning that it is believed that for particular groups finding discrete logarithm
of its elements is computationally infeasible, meaning in practice computing a
solution of a random instance takes so much time that it is considered impossible
to compute. It is formalized by the following assumption:

Assumption 2.1 (Discrete Logarithm Problem Assumption). In the considered
group G, given g and gx where x is a random variable with uniform distribution,
the adversary A has a negligible advantage in computing x.

Other known related problem from that field is Computational Diffie-Hellman
Problem, which can be formulated as an assumption:

Assumption 2.2 (Computational Diffie-Hellman Problem). In the considered
group G, given g, gx, gy, where x and y are random variables with uniform
distribution, the adversary A has a negligible advantage in computing gxy.

There is also a decisional version of that assumption:

Assumption 2.3 (Decisional Diffie-Hellman Assumption). In the considered
group G, given a Diffie-Hellman tuple (g, gx, gy, R), where x, y are uniformly
distributed and R = gxy with probability 1

2 and a random group element other-
wise, adversary A has a negligibly greater advantage than 1

2 in deciding whether
R = gxy.

There are others related computational assumptions used in this thesis. One
of them is:

Assumption 2.4 (Inverse Computational Diffie-Hellman Assumption). In the
considered group G, given g and gx, where x is a random variable with uniform
distribution, the adversary A has a negligible probability of computing g

1
x .

Assumption 2.2 and Assumption 2.4 are equivalent to each other [17].

2.3.1 KEA 1
Besides standard cryptographic assumptions, the following one is used, as it
turns out is the assumption that is fundamental for the security of PACE [18]
(the formulation from [19]):

Assumption 2.5 (KEA1 - Knowledge of Exponent Assumption 1). For any
adversary A that takes input q, g, ga, where q is a prime such that 2q+1 is also

10

a prime and g is a generator of order q of a subgroup of a group of order 2q+1
and returns (C, Y) with Y = Ca, there is an extractor A that given the same
inputs as A returns c such that gc = C.

This assumption captures an interesting point of the discrete logarithm prob-
lem: (roughly) if A is able to create a valid Diffie-Hellman tuple only by raising
to the same known power the first two elements from the tuple. This is an
assumption that will prove useful many times in this thesis.

Note 2.5.1. The number ”1” next to the assumption is added to avoid confusion
with other KEA assumptions which have been proven to be false in the past [19].

Note 2.5.2. Implementation of the protocol in real-world applications should
be performed in a way that carefully takes into account security assumptions.
Sometimes implementation choices are driven by performance or easiness of
incorporating some algebraic structure in the project. While those premises are
very important, the crucial deciding factor should be if the implemented protocol
will be secure and adhering to the assumptions ensures that (or at least prevents
many security threats).

For the security analysis of password security, another KEA assumption will
be introduced in Section 3.4.2.

2.4 Cryptographic primitives

2.4.1 Hash functions
Hash function H is a one-way function that takes a bit string input of an ar-
bitrary length and returns a bit string of fixed length. ”One-wayness” of the
hash function means that it is computationally infeasible to find input for given
output. Good hash function should be collision resistant, meaning that it is
computationally infeasible to find x and y such that H(x) = H(y). In this
thesis, every hash function is modeled as a random oracle, which means that
they are thought of as black-box that on a new input returns a truly uniform
random output and for an input already seen returns what was returned in
the past. Other interpretation is also sometimes useful – that a random ora-
cle is an instance of a truly random function from family of random functions
mapping from a particular space to another where every element is mapped
uniformly. Hash functions in the thesis can have different domains and image
spaces, depending on the context, not only mapping bit string to bit strings,
but for example mapping elements of G to Zq.

For the security analysis, also a following assumption will be needed at some
point:

Assumption 2.6. In the following left-or-right game there are given keys K1,K2

and parameters p1 ̸= p2. Distinguisher needs to decide whether there is a K that
K1 and K2 were produced as K1 = H(K||p1), K2 = H(K||p2) or if they are
random strings.

11

The assumption says that the advantage of the distinguisher is negligible over
a random guess if the length of K is sufficiently large.

Random Oracle Model is a very strong assumption about hash functions,
sometimes a little bit weaker assumptions suffice, hence the introduction of
Assumption 2.6 which is used when when proving the main result about key
confidentiality.

Throughout the thesis hash functions will be simply denoted by H, as all of
them are modeled as random oracles and differentiating them would not provide
a useful contribution, but rather could cause confusion with the notation. The
image of the particular functions is always taken into account in the discussion.

2.4.2 Encryption
A symmetric encryption algorithm is a function that takes a key K from key
space K and a plaintext P from a message space P and returns a ciphertext C
from the space of ciphertexts C:

Enc : (K,P) −→ C

It is coupled with a decrypton function Dec that on the same key K and
ciphertext C returns P . In this thesis encryption is modeled as a family of
random keyed permutations, meaning that for a key K it is a random bijection
between the space of plaintext and ciphertexts, what of course means that they
need to be the same.

Encryption is usually denoted in the thesis as Enc(key,message), there are
however a couple of places when it is denoted as Enckey(message) when there
is a focus placed on the message itself in the discussion.

2.4.3 Schnorr Signature
For the PACE PoP modification (Section 4.3) we reuse Schnorr Signature, a
widely used and recognized scheme, which appeared first in [20].

The setup is the following: a user who wants to sign a message M needs to
have a public key pk = g−sk, where sk ∈ Zq is his private key. g is a generator
of a subgroup of prime order q of a group G. There is also a hash function
H : (G, {0, 1}∗) −→ Zq\{0} in the system. Here, the details of the registration
of the public key in a Certificate Authority are skipped, as there are outside of
the security analysis. The following procedures are of interest: how to generate
a signature on a message M and how to verify it.

Signature generation with the secret key sk:

1. Pick a random number r ∈ Zq\{0} and compute X := gr.

2. Compute e := H(X,M)

3. Compute y := r + sk · e (mod q) and output (e, y) as the signature.

12

Signature (e, y) verification with public key pk: Verifier computes:

X̄ = gy · pke

and checks if H(X̄,M) = e. If not, the signature is rejected. The security of
the scheme is based on the hardness of the Discrete Logarithm Problem in G
and Random Oracle Model for hash function .

2.4.4 Schnorr Identification Scheme
As a part of PACE PoP also a slightly modified version od Schnorr Identification
Scheme is used (formulation based on [20]). The setting for the user wanting
to identify himself is the same as in the Schnorr Signature - he possesses a pair
(sk, pk = g−sk) of private and public keys registered in a trusted third party.
Now the steps for the identification in front of a verifier are the following:

1. User chooses r ∈ Zq\{0}, computes X := gr and sends it to the verifier.

2. Verifier chooses e ∈ Zq\{0} and sends it to the user.

3. User computes y := r + sk · e (mod q) and sends it to the verifier.

4. Verifier accepts if X = gy · pke, because for the correct data,
gy · pke = gr · gsk·e · g−sk·e = gr = X.

Security of the scheme is based on the hardness of the Discrete Logarithm
Problem in G.

2.4.5 AES-CMAC
Message Authentication Code is a tag for a message M that is created with a
secret key. Its task is to ensure the integrity of the message.

For Message Authentication Codes (MACs), PACE specification [2] allows a
couple of algorithm options, but recommends only using the Advanced Encryp-
tion Standard in CMAC mode with different key lengths and 8 byte octets of tag
length. Here the specification of this MAC is presented, following NIST Special
Publication 800-38B [21] which consist of two procedures: sub-keys generation
from key K and tag generation.

Sub-keys generation

1. Let L = Enc(K, 0b), where b is a block length.

2. If MSB(L) = 0, then K1 = L≪ 1, else K1 = (L≪ 1)⊕Rb, where MSB
stands for the most significant bit in the bit string and Rb is a bit string
specified in [21] depending on the block length.

3. If MSB(K1) = 0, then K2 = K1 ≪ 1, else K2 = (K1 ≪ 1)⊕Rb.

4. Return K1, K2

13

Tag generation for a message M of length Mlen in bits

1. Apply the sub-key generation process to produce K1 and K2.

2. If Mlen = 0, let n = 1, else let n = ⌈Mlen/b⌉

3. Let M1,M2, . . . ,Mn−1,M
∗
n denote the unique sequence of bit strings such

that M = M1||M2|| . . . ||Mn−1||M∗
n, where M1,M2, . . . ,Mn−1 are com-

plete blocks.

4. If M∗
n is a complete block, let Mn = K1 ⊕ M∗

n; else, let Mn = K2 ⊕
(M∗

n||10j), where j = nb−Mlen − 1.

5. Let C0 = 0b.

6. For i = 1 to n, let Ci = Enc(K,Ci−1 ⊕Mi).

7. Let T = MSBTlen
(Cn), where Tlen denotes the required length of the tag

in bits.

8. Return T .

For the analysis, we treat an encryption algorithm as a family of random
keyed permutations; observe, however, that for the presented scheme the output
before truncation is (for messages of bit length greater than n) a lot shorter,
which makes it not a suitable choice. In addition, decryption is not possible, as
the output is truncated to 64 bits (and, as a matter of fact, is not needed). In
PACE, according to the specification [2] tags are 64-bit long. Aside from those
technical reasons, MAC generating algorithm resembles more a hash function
than an encryption algorithm and also (intuitively) should behave like one to
ensure an acceptable level of security. For these reasons, the tag-generating
algorithm is modeled as a random oracle that takes as an input a pair (key,
message) a returns a bit string of length 64.

MACs are donoted as MAC(key,message).

14

Chapter 3

PACE and PACE CAM
security analysis

In this chapter, crucial security features for the PACE and PACE CAM protocols
will be presented together and analyzed. This analysis is at the time in the
peer review process and has not yet been published, however, the preliminary
version of the research with draft proofs appeared as a conference paper [6] and
includes security analysis of PACE GM. As the difference between PACE and
PACE CAM is only an additional round of exchanged messages needed for chip
authentication, many of the security features of PACE transfer very easily to
PACE CAM while others require a closer look.

3.1 Description of PACE protocol
The acronym PACE stands for Password Authenticated Connection Establish-
ment protocol. It is a protocol recommended in the ICAO specification [2] for
eMRTDs - electronic machine readable travel documents. Its main purpose (in
this context) is to establish secure keys between a chip in a travel document (e-
passport, eID) and a terminal (reader) in order to exchange securely biometric
data intended for border control. The keys are intended to be used in symmetric
key encryption algorithms and for calculating message authentication code tags.
The technical details of how the data are exchanged after successful session of
PACE (e.g. encryption algorithms, communication specification) are out of the
scope of PACE (and this thesis) because it is done after establishing a secure
channel for data exchange with encryption and MAC keys.
There are two parties participating in the protocol. The objective is to execute
the protocol authenticated with password π delivered by the chip owner and
after a successful session to have the same keys established on both sides for the
subsequent communication to send the biometric data.
Before going into details, it is worth mentioning that during a protocol run, the
participants agree on a new generator in the group G as defined in Section 2.1.

15

Although there are two proposed options for establishing the new generator in
the ICAO specification ([2]), in this thesis the focus is placed on the variant
PACE GM - Generic Mapping as it is a base for PACE CAM and the proposed
modifications. Also the security analysis is based on this choice. Other option
is Integrated Mapping (outside the scope of this thesis).

PACE is build of the following steps (see Figure 3.1):

1. The password π is delivered to terminal by the chip user - it is done
typically by scanning the machine readable zone (MRZ) by an optical
reader or could be done by typing in the password.

2. The chip and the terminal create a key Kπ := H(π||0) based on the
password π, where || is the concatenation.

3. The chip selects uniformly at random a nonce s ← Zq \ {0}, encrypts it
to z := EncKπ

(s) and sends it to the terminal together with the algebraic
group description (see Section 3.2.1).

4. The terminal performs decryption s := DecKπ (z).

5. (DH2Point) The parties then establish together a new common generator
ĝ using a Diffie-Hellman key exchange and the nonce s. The chip randomly
chooses xA, sends XA = gxA , the terminal chooses xB and sends XB =
gxB . Then they create on both sides the same h = gxAxB , where the chip
computes XxA

B and the terminal calculates symmetrically XxB

A . After that,
they compute ĝ = h · gs (independently on each side). This procedure is
called General Mapping.

6. Participants perform another Diffie-Hellman key exchange using the new
common generator ĝ to obtain a key K by randomly choosing exponents
yA and yB and exchanging YA = ĝyA and YB = ĝyB . The resulting key is
K = ĝyA·yB .

7. Participants derive new keys: KEnc,KMAC,K
′
MAC from K using the

hash algorithm on concatenation of K and subsequent natural numbers
starting from one, e.g. KEnc = H(K||1).

8. The chip and the terminal exchange tags (Message Authentication Codes)
computed on the elements of the second Diffie-Hellman key exchange using
the key K ′

MAC, namely tags TB = MAC(K ′
MAC, (YA,G)) and TA =

MAC(K ′
MAC, (YB ,G)). After checking the validity of the tag provided

by the other party, it is confirmed that the Diffie-Hellman key exchange
group element was not modified during the exchange (integrity of the
message). Observe that the both parties are able to recompute the tag
sent by the other party, as it done with the same session key K ′

MAC and
data sent over the open channel. When communication is not aborted by
any of the parties of the protocol, it means that the main session key K
is delivered correctly on both sides.

16

chip(A) terminal(B)
holds: holds:
π - password π - input from the chip owner
G - parameters of a group with gen-
erator g of order q

Kπ := H(π||0) Kπ := H(π||0)
choose at random s← Zq\{0}
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect
s := Dec(Kπ, z)

. .DH2Point Start .
choose xA ← Zq\{0} choose xB ← Zq\{0}
XA := gxA

XB←−− XB := gxB

abort if XB ̸∈ ⟨g⟩\{1}
XA−−→ abort if XA ̸∈ ⟨g⟩\{1}

h := XxA
B h := XxB

A

abort if h = 1 abort if h = 1
ĝ := h · gs ĝ := h · gs

. DH2Point End .
choose yA ← Zq\{0} choose yB ← Zq\{0}
YA := ĝyA

YB←−− YB := ĝyB
YA−−→

abort if YB = XB abort if YA = XA

K := YB
yA K := YA

yB

KEnc := H(K||1) KEnc := H(K||1)
KMAC := H(K||2) KMAC := H(K||2)
K′

MAC := H(K||3) K′
MAC := H(K||3)

TA := MAC(K′
MAC, (YB ,G)) TB := MAC(K′

MAC, (YA,G))
TB←−−

abort if TB is incorrect
TA−−→ abort if TA is incorrect

Figure 3.1: PACE protocol. The output key is (KEnc,KMAC). Enc(k,m) denotes a
ciphertext of m obtained with key k, MAC(k,m) represents a MAC for m obtained
with key k, H represents a hash function with image depending on the context.

9. If there was no rejection of the session from any side, the protocol session
is complete and both sides derived keys KEnc and KMAC for subsequent
communication.

The above list is a high-level description. In addition to that, there are many
technical details behind the scenes, like the technical specification of the commu-
nication itself and also strictly defined messages exchanged with the description
of the algorithms that will be used. It is always the chip that establishes the
technical context for the session, as it is usually equipped with little computa-
tional power and which comes with a predefined set of operations and algorithms
deployed on it, as opposed to the terminal that can be a more powerful device,
connected to a network of computers (e.g. in an airport). In this thesis, the
focus is on the security features of the protocol independent of the implementa-
tion and technical details, and more emphasis is placed on the security features
behind the design.

17

chip(A) terminal(B)
holds: holds:
π - password π - input from the chip owner
G - parameters of a group with gen-
erator g of order q

private key zA

public key ZA = gzA

certificate cert(ZA)

Kπ := H(π||0) Kπ := H(π||0)
choose at random s← Zq\{0}
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect
s := Dec(Kπ, z)

. .DH2Point Start .
choose xA ← Zq\{0} choose xB ← Zq\{0}
XA := gxA

XB←−− XB := gxB

abort if XB ̸∈ ⟨g⟩\{1}
XA−−→ abort if XA ̸∈ ⟨g⟩\{1}

h := XxA
B h := XxB

A

abort if h = 1 abort if h = 1
ĝ := h · gs ĝ := h · gs

. DH2Point End .
choose yA ← Zq\{0} choose yB ← Zq\{0}
YA := ĝyA

YB←−− YB := ĝyB
YA−−→

abort if YB = XB abort if YA = XA

K := YB
yA K := YA

yB

KEnc := H(K||1) KEnc := H(K||1)
KMAC := H(K||2) KMAC := H(K||2)
K′

MAC := H(K||3) K′
MAC := H(K||3)

K′
Enc := H(K||4) K′

Enc := H(K||4)
TA := MAC(K′

MAC, (YB ,G)) TB := MAC(K′
MAC, (YA,G))

TB←−−
abort if TB is incorrect

TA−−→ abort if TA is incorrect
. End of PACE .

σ := xA · z−1
A mod q

C := Enc(K′
Enc, (σ, cert(ZA))

C−→ decrypt C to get σ and cert(ZA)

abort if cert(ZA) invalid or XA̸=Z
σ
A

Figure 3.2: PACE and PACE CAM protocols. The output key is (KEnc,KMAC).
CAM-specific extensions to the original PACE protocol are indicated in gray boxes.
Enc(k,m) denotes a ciphertext of m obtained with key k, MAC(k,m) represents a
MAC for m obtained with key k, H represents a hash function with image depending
on the context.

3.2 PACE CAM
While for some scenarios, an authentication merely by means of knowing the
right password π by the chip holder can be sufficient, it should be kept in mind

18

that for some applications the terminal can sometimes be only an intermediary
in end-to-end communication between the chip and a remote server. In those
cases, when the physical presence of the chip holder cannot be ensured, and
authentication relies only on the fact of knowing a very low-entropy password,
some stronger forms of authentication should be considered. Note also that
a low-entropy password alone is a sufficient reason to look for other, stronger
authentication options in many scenarios. There comes PACE CAM, a version
of PACE with strong authentication of the chip. PACE CAM is designed to
work with the General Mapping option to establish the common generator ĝ,
however, there has been research on extending it to Integrated Mapping in the
past [11] (see Section 1.4 for a short history of PACE CAM).

In PACE CAM, the chip possesses a pair of private, public keys: (zA, ZA =
gzA) created in the same group G in which the protocol takes place. It also has
cert(ZA), issued by a CA with a public known to the terminals, so that the
terminals can verify the validity of the certificate.

PACE CAM adds an authenticating message sent from the chip to the ter-
minal at the end of the original exchange of PACE. It requires the derivation
of one additional key K ′

Enc = H(K||4), some basic group operations, and one
encryption more on the side of the chip. It reuses a message XA to authenticate
the chip using the secret key zA. For reference, see Figure 3.2.

The design choices for PACE CAM can be an example of following good
practices on how to extend a protocol - see Section 4.1.

3.2.1 Algorithms recommended by ICAO specification
Security analysis of PACE and PACE CAM is conducted using models for cryp-
tographic primitives (building blocks) like random oracles for hash functions
and MACs. In this subsection, the actual technical specifications recommended
from [2] are recalled to understand what the models represent.

Groups

ICAO spefication allows:

1. mod p groups with 1024 bit p and 160 bit order of subgroup q.

2. mod p groups with 2048 bit p and 224 and 256 bit order of subgroup q.

3. Elliptic curve groups of field size from 192 to 521 bits.

Hash functions

The specification proposes two functions: SHA-1 and SHA-256. The actual
choice depends on the other parameters in the system, namely what sizes of the
generated keys are needed.

19

Message Authentication Codes

For MAC generating algorithm the following options are described:

1. DES3 in MAC mode according to [ISO/IEC 9797-1] with IV = 0.

2. AES-CMAC as described in Section 2.4.5 with key sizes of 128,192 and
256 bits.

3.3 Session Resilience and Active Adversaries
Throughout this section, the following scenario is considered:

Scenario 3.1 (Successful Session). A successful session of a protocol execution
is an execution in which the terminal and the chip terminate in the accepting
state and hold the same session key.

It will be proven that if a session S is successful, then, with a small exception
for PACE, the adversary could not manipulate the messages sent by the terminal
and the chip during a protocol execution (Section 3.3.1). This means that the
protocol is quite resilient to active attacks: (almost) any attempt to influence
messages exchanged by the protocol participants by a man-in-the-middle results
in a session failure.

In the next part of this section, it is shown that if a chip and a terminal
establish a successful session, then the adversary controlling the communication
between them cannot derive any information about the encryption key KEnc

(Section 3.3.2). This result is shown through a game in which the adversary has
to distinguish between a random key and KEnc.

Another important issue to be discussed in this section is the reaction of pro-
tocol participants to deviations from a correct protocol execution. Recall that
in many real-world systems, the most effective attacks are based on informa-
tion that is leaked in case of failures and deviations from the regular behavior.
Therefore, it is crucial to analyze the protocols from this point of view. Ac-
cording to the PACE and PACE CAM specification [2], a protocol execution
is a chain of commands for which status codes are returned. In particular, the
codes 0x9000 and 0x6300 are used. Their meaning is, respectively, Normal
processing - The protocol (step) was successful, and Authentication failed - The
protocol (step) failed. Thus, if one of the protocol parties receives a message
that is inconsistent with the protocol specification (e.g., in the case that the
other party sends an incorrect tag), then the information about the failure is
sent back immediately. In general, a frequent recommendation for protocol de-
signers is to avoid unnecessary explicit or implicit error messages, as they might
provide valuable information to the adversary. For PACE and PACE CAM, the
situation is relatively easy, since their designers postponed any message depend-
ing stochastically on the secret information to the final steps of the protocol.
Before that moment, all messages are distributed uniformly independently of
the password and the secret key of the chip (in the case of PACE CAM). This

20

property will significantly simplify the analysis of the protocol in case of a faulty
execution.

3.3.1 Protocol Fragility
In this section, it is shown that PACE CAM (and to some extent PACE) is a
protocol, for which any manipulation of messages exchanged by the chip and the
terminal results in a session that is not successful in the sense of Scenario 3.1.

Definition 3.1 (Fragility). Assume that a protocol P is executed by a chip and
a terminal so that an adversary A can arbitrarily modify any message sent by
the chip and the terminal, as well as send its own messages. P is called fragile,
if the probability of a session being successful is negligible in the case where the
adversary has modified at least one message sent by the chip or the terminal
during this session.

The following result is essential to demonstrate that PACE and PACE CAM
are resilient against active adversaries.

Theorem 3.2. (a) PACE CAM is fragile.

(b) PACE is fragile except for the following manipulation: the adversary A
can raise messages XA and XB to an arbitrary exponent α known to A.

Fragility is a property that reduces an active adversary to a passive one:
while the adversary can always make the connection fail (e.g., by converting
a message to random nonsense), he cannot have any influence on a successful
session. Fragility turns out to be an important feature, since, among others,
an adversary may attempt to retrieve some information on the private data
(in particular, the private key of the chip, the password, and identity of the
chip) by manipulating the messages and observing the reaction of the honest
protocol participants. To this end, there are potentially many diverse strategies
that can be applied by the adversary, and a security proof should take all of
them into account. The fragility property implies that no matter what clever
strategy is applied by the adversary, the result is the same with all but negligible
probability (in practice, meaning “always”): the session fails independently of
the private data used by the chip and the terminal. Although the failure message
is always the same, the moment of reporting a failure can potentially leak some
information. It will be proven that this is also not the case.

In this subsection, the possibilities of manipulating the messages by the
adversary A are analyzed step by step. At each stage of the analysis, the set of
manipulations for which A could potentially contradict the claim of Theorem 3.2
is narrowed down. Finally, there is only the single manipulation described in
point (2) of Theorem 3.2 left.

In this subsection, it is assumed that the session considered is successful with
a non-negligible probability, despite the actions of the adversary.

21

Manipulating messages YA, YB

First, it is assumed that YA or YB or both are manipulated by A. In addition
to that, other messages (e.g., XA, XB , and z) can also be manipulated.

Chosen approach in this analysis is to create an environment with carefully
designed simulations of the protocol, with an observer having full control over
the simulation and having access to all data generated by the simulation. The
purpose of the simulation, in which A is used as a kind of plug-in procedure, is
to break some hard cryptographic assumption. In this way, the impossibility of
A with the properties claimed is proven.

Now, take a closer look at protocol executions with adversary A manipulat-
ing the messages exchanged by the chip and the terminal. Here, it is assumed
that the probability of the successful session despite the manipulations exceeds
some tolerance threshold (e.g., 2−20), and this probability is denoted by p.

Assume that, among possibly other messages, A modifies YA, i.e. the ter-
minal gets Y ′

A ̸= YA. Consequently, the tag TB calculated by the terminal is
equal to MAC(K ′

MAC, (Y
′
A,G)). On the other hand, A must deliver the tag

T ′
B = MAC(K ′

MAC, (YA,G)) to the chip. Otherwise, the chip would abort the
session.

Now it will be shown that the adversary can convert TB to a valid tag T ′
B ,

only if he can gain some knowledge about the key K. In this proof the focus
is placed on 256-bit keys for creation of the tags, although other options are
also permitted by the standard (however, it will be seen that security margin
for them is not as good as one might wish).

Now, the correlation between the adversary’s knowledge on the key K and
the ability to produce a valid tag will be analyzed. The adversary receives a tag
created with the key K ′

MAC = H(K||3). Here, the function H ′(x) = H(x||3)
is modeled as a standard random oracle, where x is the query to the oracle.
As H outputs 256-bit strings, it gives no more than 2256 possible keys K ′

MAC.
However, the size of the image of H ′ depends on the size of its domain, which
is the number of all possible keys K, which is q, the order of the subgroup
of G. A simple calculation: for a given k bit string, the probability that it
is not in the image of H ′ equals (1 − 1

2k
)q. By linearity of expectation, the

expected value of the number of different bit strings of length k obtained in
this way is 2k(1 − (1 − 1

2k
)q). Using the expected value, one can find that for

q ≥ 2159 the expected size of the image of H ′ is at least 2158. The choice
is not accidental, as the smallest "q" PACE specification allows is a 160 bit
number, which means that allowable q′s are greater than 2159. There are of
course other, more secure options including groups based on elliptic curves with
a group order up to 521 bit numbers, however, using here the smallest value gives
a better insight into the security of the protocol. Now, one can use Chebyshev
inequality Pr(|X−E[X]| ≥ ϵ) ≤ VAR[X]

ϵ2 to derive that with a probability 1−2−20

the number of the keys in the image of H ′ will be in an interval [2158−2138, 2158+
2138], which is more than 2157. Variance was calculated from standard formula:
VAR[X] = E[X2]− (E[X])2 and is exactly 2256 for q = 2160. Although it is not
the exact value of q, any deviation easily cancels out by the right choice of ϵ.

22

The construction of the MAC is based on a symmetric encryption scheme,
however it does not behave as a family of random permutations - there is no need
to reverse the computation of the tag like there is in case of encryption. More-
over, the values are truncated to 64 bits. From now on, the MAC generating
algorithm is modeled as a random oracle (as was also discussed in Section 2.4.5),
which on a new input (K,x) returns uniformly a random bit string of length 64
and for pairs (K,x) seen before it returns already assigned bit string. The tags
are 64 bits long, so a randomly chosen key (but different from K ′

MAC) yields TB

on input Y ′
A,G with probability 2−64. Let T denote the set of keys that produce

TB . Because of the assumption that the tags are based on a random oracle one
may conclude that with probability 1− 1.244 · 10−15 the set T contains at least
293 − 23 · 246,5 > 292 keys. This number is a result of approximating Binomial
distribution that comes up when choosing the keys giving the right tag by the
Gaussian distribution and using 8 standard deviations (the choice is motivated
by the low probability of the complementary event). This approximation is
appropriate, because of a satisfied condition that everything within 3 standard
deviations of its mean (µ ± 3σ) is within the range of possible values - range
(0, n) where in this case n is the maximum number of "successes" - computing
the right tag for the chosen key.

For a moment, assume that A is very powerful and capable of finding the
keys from the set T . The adversary’s problem is that the tag T ′

B , expected
by the chip, is based on an input different from TB (YA replaces Y ′

A). As it is
assumed that the algorithm for creating the tags is based on a random oracle,
the probability that a given key from T creates the tag T ′

B expected by the chip
is 2−64. The only exception is the key K ′

MAC computed by the chip, where the
probability equals 1. Nevertheless, as |T | ≫ 264, the probability that A would
pick the right key from T to create T ′

B differs from 2−64 by a negligible value,
unless A has some additional knowledge from protocol execution. Observe that
2−64 is actually the success probability of a blind brute force attack, where A
chooses a 64-bit string at random and sends it as the tag T ′

B .
As A has the probability p of having a successful session, it means that, in

the random oracle model for the hash function and for computing the tag, with
probability p′ ≈ p, A has to derive K and thereby K ′

MAC.
Now it is a moment to simulate a protocol execution with A aiming to have

a successful session and where A changes YA as discussed above. The execution
of the protocol is emulated as follows:

• First, the execution of the protocol is emulated on behalf of the chip, the
terminal, and A, up to the moment when the terminal creates YB . (During
this simulation, A can, in particular, manipulate XA, XB , and z).

• The terminal creating YB and A creating Y ′
B are emulated. However, YB

is not created by choosing yB and then computing YB := ĝyB . Instead,
YB is taken as an external input.

• The chip chooses yA at random and calculates YA = ĝyA (where ĝ is
computed according to the chip’s point of view).

23

• The chip, the terminal, and A proceed with the execution of the protocol.
The chip and the terminal use the key K, where K = (Y ′

B)
yA

(so the terminal gets the key computed on the side of the chip from the
simulation and does not compute it itself).
A continues according to his strategy and his point of view on the execu-
tion of the protocol.

The next step is to set up an instance of the Inverse Computational Diffie-
Hellman Problem, where a random YB is put on the side of the terminal without
knowing its discrete logarithm (like described in the simulation).

Observe that the terminal would not be able to derive K, however, for the
purpose of the simulation, it gets the key K from the chip. Such a setting may
definitely create a discrepancy between the real executions corresponding to YB

and all other parameters already exchanged and the simulation. The difference
occurs if in the real case the session would be not sucessful due to different key
K obtained by the terminal and by the chip. In these cases the derivations
described below may fail or provide false results. However, with probability p,
the session will be successful and the rest of the simulation will correspond to a
real protocol execution.

As observed above, in case A succeeds in sending T ′
B accepted by the chip,

then except for a small probability A must be able to derive K. In this case, due
to Assumption 2.5 (KEA1) the strategy of A enables the adversary to extract
y = logĝ Y

′
B with a non-negligible probability. In this case, the observer can

retrieve y from A, as he is in full control of each part of the simulation. This is
the key point to break Assumption 2.4 (Inverse Computational Diffie-Hellman
Assumption) with a non-negligible probability.

Now, see how the data from the simulation can be used. Recall that K =
(Y ′

B)
yA while at the same time K = (Y ′

A)
yB , since the session has to be suc-

cessful. So (ĝy)yA = (Y ′
A)

yB , and Y ′
A = ĝy·yA/yB . Therefore, taking the data

from the chip and A, one can calculate ĝ1/yB . Recall that YB = ĝyB and YB

have been arbitrarily chosen for the simulation, without knowing yB . Thus, the
conclusion is that the simulation using A enables to break Assumption 2.4.

Note 3.2.1. It may happen that Y ′
B = YB. In this case, the argument could be

simplified, as one could directly obtain the discrete logarithm of YB.

The conclusion is then as follows:

Claim 3.2.1. Assume the random oracle model for the hash function and for
the creation of tags. Then if the adversary can manipulate YA so that the session
will be successful with probability 2−64+δ where δ is not negligible, then one can
break Assumption 2.4 with a non-negligible probability.

Note 3.2.2. Observe that there is always a very small chance close to 2−64 that
the adversary will guess the tag without knowing the key, which comes from the
fact that the tags are 64 bits long.

It can encompass situations where the adversary has done some manipula-
tions that would not break the session, that is, the chip and the terminal would

24

establish the common key K, but the adversary would not be able to compute it
himself. (For example, A can set Y ′

A := Y θ
A and Y ′

B := Y θ
B for an arbitrary θ

and later guess the tags T ′
B and T ′

A.)
It could be disputed by some if the probability 2−64 is small enough to call

it "negligible", however, in practical scenarios it should be enough as real-world
attackers rarely have that much resources as assumed in the presented security
analysis. Also, it is now somehow enforced to deem that sufficient as there is no
other option for length of the tags in PACE (CAM) at the present moment in the
specification [2] when it comes to AES-CMAC. In this interactive protocol, it is
very likely that the terminal will also have a timeout set at some particular value
to wait for a message from the chip excluding lengthy, computing heavy attacks.
Similarly, there should be a limit for the number of sessions that a particular chip
can start in a period of time. In practice, this excludes options for exhaustive
search for the adversary as the time for manipulation is very limited and there
is no second try as all the sessions are different. For those reasons, from now
on the term practically negligible will be used when the situation calls for it.

Finally, what is left to inspect is the remaining case, where YA = Y ′
A but

Y ′
B ̸= YB . In this case, A simply forwards TB to the chip, as this tag has the

correct form for the chip. Moreover, in this case, the chip will send TA. Now,
A must produce a tag T ′

A for a different input than TA that will be accepted by
the terminal. A has two valid tags at hand: TB for (YA,G) and TA computed
for (Y ′

B ,G). Here the analysis goes in a little bit different way - it is not assumed
that the adversary can find the keys from the set T , which at this point is of size
approximately 227 (by analogous computations as before). Here assume more
realistic capabilities of the adversary, where without any extra power he needs
to search through the whole set of keys of the cardinality greater than 2157 to
find the key producing the valid MAC. The tags presented by the chip and the
terminal may help in fishing out the candidate keys, but without knowing K
the success probability is about 227/2157 = 2−130 in a single trial. Therefore,
it is infeasible to find a matching key K even if the adversary can compute a
large number of hashes (e.g. 280). However, even if a key K ∈ T is found, the
probability that it is the right one is about 2−27 and the tag generated by the
adversary will be correct is close to 2−27 + (1− 2−27) · 2−64 ≈ 2−27. This leads
to the same conclusions as before.

To summarize:

Claim 3.2.2. If A manipulates at least one of the values YA, YB, then the
session will be successful with a practically negligible probability.

It follows that if an active adversary A aims to obtain a successful session,
then A has to let the messages YA and YB remain unchanged. Thus, the first
step of narrowing down the possibilities left for A is completed. Still, there is a
need to consider possible manipulations of the former messages. However, one
thing is already proven: the possible discrepancies between the chip and the
terminal cannot be compensated for by manipulations of YA and YB !

25

Common value of ĝ

After the first DH key exchange, both the chip and the terminal calculate ĝ. As
A can arbitrarily modify and replace messages, it can happen that the values
of ĝ computed by the chip and the terminal are different. Let the value of
ĝ calculated by the chip be called ĝA, while the value of ĝ calculated by the
terminal be called ĝB .

First, note that if ĝA ̸= ĝB , then the chip and the terminal cannot observe
the same values of YA and YB in a successful session.

Indeed, assume that the chip and the terminal observe the same YA and YB

but ĝB = ĝδA, for δ ̸= 1. Let YA = (ĝA)
y1 and YB = (ĝA)

y2 . The chip then
computes the key K as Y y1

B = (ĝA)
y1·y2 . On the other hand, the terminal must

use y′ such that YB = (ĝB)
y′

. Since y′ = y2/δ, the terminal would calculate
the key K equal to (YA)

y2/δ = (ĝA)
y1·y2/δ. So in this case, the session is not

successful, as the chip and the terminal derive different values for the session
key K.

At this moment compare the above conclusion with Claim 3.2.2: if ĝA ̸= ĝB ,
then on one hand the values YA or YB must be manipulated to obtain a successful
session, while on the other hand, they must be equal to obtain a successful
session with all but negligible probability. Therefore, the conclusion goes as
follows:

Claim 3.2.3. If an adversary A modifies the messages exchanged by the chip
and the terminal so that ĝA ̸= ĝB, then the resulting session is successful with
practically negligible probability.

Again, the number of choices for the adversary is narrowed down: it cannot
be excluded that A manipulates z, XA, XB , but to get a successful session, the
chip and the terminal must calculate the same value for ĝ. It shall be seen that
this is a severe limitation for the adversary A.

The first DH key exchange

Now the first Diffie-Hellman key exchange will be considered, keeping in mind
Claim 3.2.3. Of course, A can manipulate the messages XA, XB , and z before
they are delivered. Let X ′

A, X ′
B , and z′ denote these messages after (possible)

modifications by A. Let α, β denote the numbers such that X ′
A = Xα

A, X ′
B =

Xβ
B . Observe that these numbers exist as the group used by the protocol is

cyclic. At this point, it is not assumed that A is aware of α and β – maybe the
modifications are performed in a way different from raising to a known power.
However, observe that the chip computes

ĝA := (X ′
B)

xA · gs = gxA·xB ·β · gs

while the terminal computes

ĝB := (X ′
A)

xB · gs
′
= gxA·xB ·α · gs

′

26

where s′ is a plaintext obtained from z′. As ĝ calculated by the chip and the
terminal must be the same acccording to Claim 3.2.3:

xA · xB · β + s = xA · xB · α+ s′ mod q

and hence
β = α+ s′−s

xA·xB
mod q. (3.1)

Claim 3.2.4. If s′ = s mod q (that is, z has not been manipulated by A), then
α = β mod q and A can extract α with all but negligible probability.

Proof. By (3.1), α = β, if s′ = s. Note that for given XB , X
′
B and XA, where XB

and XA have been created at random, A must create X ′
A so that logXA

X ′
A =

logXB
X ′

B . Otherwise, the resulting ĝA and ĝB would be different. At this
moment, Assumption 2.5 (KEA) is applied, where XB and X ′

B play the role
of, respectively, g and ga, XA plays the role of C, and X ′

A plays the role of
Y . Therefore, by Assumption 2.5 adversary A can extract logXA

X ′
A = α with

all but negligible probability. (In fact, in the scenario from Assumption 2.5 the
adversary has more freedom, as he may choose arbitrary C while here C is fixed
by the protocol execution.)

According to Claim 3.2.4, if z is not manipulated, then the only manipu-
lation that has the chance to lead to a successful session is to deliver Xα

A and
Xα

B instead of XA and XB , where α is known to the adversary. As stated in
Theorem 3.2, this is possible for the PACE protocol. Later it will be shown that
for PACE CAM, even this manipulation results in a not successful session.

Modifications of the ciphertext z

As it has been seen, if z is not manipulated, then the possibilities to manipulate
XA and XB are quite limited. Now for the remaining case, where the adversary
has modified the ciphertext z:

Claim 3.2.5. Assume that s ̸= s′ (since either z ̸= z′ or the chip and the ter-
minal hold different keys Kπ due to different passwords used), but the session
remains successful with a non-negligible probability. Then A can break Assump-
tion 2.4 - the Inverse CDH Problem.

Proof. An environment for solving the Inv-CDH Problem will be created. In
this environment, the observer controls not only A, but also the terminal and
the chip. Given a problem instance gy, put XB = gy (which results in xB = y).
The response of the chip XA is set to Xr

B for r chosen at random (consequently
xA = y · r). It can be done because the chip is controlled as well. Furthermore,
the probability distribution of XA from the point of view of A is the same as
in a genuine protocol execution, so A should be able to attack the protocol
as for a genuine execution. The adversary A somehow creates X ′

B = Xβ
B and

X ′
A = Xα

A (where α and β are not necessarily known to A, but α ̸= β according
to Eqn. (3.1)). Note that

X ′
B = Xβ

B = (XB)
α+ s′−s

xAxB = (XB)
α · g

s′−s
xA = (X ′

A)
1
r · g

s′−s
y·r

27

Therefore
g

1
y = (X ′

B
r · (X ′

A)
−1)

1
s′−s (3.2)

Equation (3.2) can be used to compute g
1
y , since the data on the right hand

side are available in the simulation.

Note 3.2.3. Note that in the simulation used in the proof of Claim 3.2.5, the
execution after the first DH key exchange is not continued. In fact, it is im-
possible, as the chip and the terminal do not know y. However, the goal was to
exploit the power of the adversary, for whom the execution was not distinguish-
able from the one, where the chip and the terminal follow the protocol and know
the discrete logarithms of XB , XA.

From Claim 3.2.5 the next Claim follows:

Claim 3.2.6. If A manipulates z so that the plaintext is changed, then the
resulting session is not successful with all but practically negligible probability.

At this moment, it can be concluded that Theorem 3.2(b) concerning PACE
has been proven. It remains to take care of the case of PACE CAM, where there
is a stronger result.

The case of PACE CAM

Now consider again the first key exchange and modifications of XA. It is known
that the only strategy of A that does not lead to an unsuccessful session with all
but practically negligible probability is to raise XA and XB to the same known
power, say α, and to deliver z, YA, YB without any manipulation.

Recall that at the last stage of PACE CAM, a ciphertext C for the plaintext
xA/zA mod q is sent from the chip to the terminal. So, if A replaces XA by
X ′

A = (XA)
α, in the early stage of the protocol execution, then finally A has

to replace the ciphertext C by a ciphertext for α · xA/zA to avoid rejecting the
session by the terminal.

For the sake of protocol analysis, consider an artificial protocol F , which is
the same as PACE (CAM), except that instead of computing K as described in
the protocol specification, the key K is chosen at random in the same way on
the terminal’s side and on the chip’s side. Although in reality such a protocol
F cannot be executed, it helps to analyze the capabilities of the adversary.

Claim 3.2.7. If A has a non-negligible advantage in recognizing whether PACE
(CAM) or F is executed, then A will have a non-negligible advantage in solving
the Decisional Diffie-Hellman Problem (Assumption 2.3).

In this subsection we focus on PACE CAM, however, later there will be
references to Claim 3.2.7 for PACE. For this reason, the formulation is slightly
more general.

Proof. Given a DDH Problem instance (ga, gb, L) emulate the protocol until the
moment when YA and YB are sent. Then put YA = ga, YB = gb. The simulation

28

knows m such that ĝ = gm. Hence, K should be equal to L1/m in the case where
(g, ga, gb, L) is a Diffie-Hellman tuple. The rest of simulation is run with the
key K = L1/m the messages are presented to A.

Now, to solve the DDH problem, A is asked whether the genuine protocol
or F has been executed. If A is able to respond correctly with probability non-
negligibly greater than 1

2 , then solving the DDH problem is possible with the
same non-negligible advantage.

By Claim 3.2.7, it suffices to consider the protocol F . The next artificial
protocol F ′ is defined, where instead of deriving the remaining keys from K
according to the protocol description, the chip and the terminal choose the
same values of K ′

MAC and KEnc at random, where the choices for KEnc and
K ′

MAC are stochastically independent.

Claim 3.2.8. A has at most a negligible advantage in recognizing whether F ′

or F is executed.

Claim 3.2.8 is based on the observation that otherwise Assumption 2.6 would
be broken. Indeed, given candidate keys K1,K2 run the PACE CAM protocol
with K ′

MAC = K1 and K ′
Enc = K2 – skipping the derivation steps for K ′

MAC

and K ′
Enc. Therefore, A observes an execution of either F or F ′. In this

situation, any advantage of A to distinguish between these cases would mean
an advantage for deciding whether there is a key K such that K1 = H(K||3),
K2 = H(K||4).

For F ′ the encryption key used to create C is random. So A is faced
with the following question: for a random key K ′

Enc is it possible to derive
C ′ = Enc(K ′

Enc, (σ/α, cert(ZA))) given C = Enc(K ′
Enc, (σ, cert(ZA)), α, and

cert(ZA))). Even if A was granted the additional knowledge of σ, then in fact
A cannot compute the required ciphertext with probability greater than negli-
gible without the knowledge of the key, because encryption is modeled as the
random keyed permutation model. Therefore, it can be concluded that except
for a negligible probability, the session of F ′ would be not successful if α ̸= 1.
Summarizing:

Claim 3.2.9. If A executes PACE CAM so that XA and XB are replaced by
Xα

A and Xα
B for α ̸= 1, then the session is successful only with a negligible

probability.

Claim 3.2.9 concludes the proof of Theorem 3.2(a).

3.3.2 Key Confidentiality
Definition 3.2. Consider the following game executed by Challenger and an
adversary A. Challenger is responsible for acting as the chip and the terminal
of PACE (resp. PACE CAM) while A is an active adversary controlling the
communication between the chip and the terminal. If either the chip or the
terminal rejects the session or they derive different keys KEnc, then A looses
the game immediately. Finally, the following steps are executed:

29

step 1: Challenger chooses a bit b uniformly at random,

step 2: Challenger presents Λ to A, where Λ = KEnc if b = 1, otherwise Λ is
generated uniformly at random from the key space,

step 3: A presents a bit b′.

A wins the game, if b′ = b. A breaks confidentiality, if the probability to win by
A is 1

2 + ϵ where advantage ϵ is non-negligible.

Note that according to Definition 3.2 A may win only in case of a successful
session. Therefore, it does not cover the case that at the end of the session the
session key is shared by the adversary and either the chip or the terminal.

Theorem 3.3. For PACE and PACE CAM, the adversary A cannot break
session confidentiality.

Proof. From now on, assume that the session executed by the Challenger and
A is successful. So, according to Theorem 3.2, A is passive (the case of PACE
CAM), or can perform very limited manipulations (the case of PACE).

A potential complication for the Challenger and an opportunity for A is that
the key KEnc does not come alone – it is somehow related to the keys KMAC,
K ′

MAC, K ′
Enc used for creating the messages exchanged by the chip and the

terminal. Therefore, we must show that these potential information sources
cannot be used by A to win the game.

The first observation is that A cannot distinguish between a genuine protocol
execution and an artificial protocol execution F , where K is chosen at random
(the same value on the terminal side and on the chip side) instead of deriving the
session key K according to the protocol specification. In fact, here Claim 3.2.7
applies from the proof of Theorem 3.2.

The next step is to consider an artificial protocol F ′, where the keys KEnc,
KMAC, K ′

MAC, K ′
Enc are chosen at random instead of deriving them from K.

A cannot distinguish between executions of F ′ and F with all but negligible
probability. Indeed, otherwise given a tuple K1,K2,K3,K4, one could run the
protocol (F or F ′) where K1,K2,K3,K4 would take the place of KEnc, KMAC,
K ′

MAC, K ′
Enc. Any non-negligible difference in protocol behavior observable by

A would be used to break Assumption 2.6. This is possible since for F and F ′

the rest of the protocol is not related to the derivation of K.
For the game F ′, the key KEnc is not correlated with the rest of the pro-

tocol, as it is for the second option considered in the game from Definition 3.2.
However, the analysis went too far: the keys KMAC, K ′

MAC, K ′
Enc are inde-

pendent, too. Fortunately, it is easy to step back: Let F ′′ be the same as F ′,
but now KMAC, K ′

MAC, K ′
Enc are derived from the same random K. Assump-

tion 2.6 can be used again to show that A cannot distinguish between F ′ and
F ′′ with all but negligible probability. Now a potential distinguisher can be
build by putting the tested keys K1,K2,K3 in place of KMAC, K ′

MAC, K ′
Enc,

but choosing the key KEnc at random.

30

The last step is to convert the protocol F ′′ to F ′′′ where the key K is again
not a random key but derived according to the protocol. At this moment, it
can be argued as for Claim 3.2.7 that any advantage of A in distinguishing be-
tween F ′′ and F ′′′ could be used to break the Decisional Diffie-Hellman Problem
(Assumption 2.3).

As presented, after starting with the genuine protocol, a sequence of steps
was made, where each time the difference between the protocols is undetectable
for A with all but negligible probability. The last protocol corresponds to the
second option from Step 2 in the game from Definition 3.2. This concludes the
proof.

In particular, the following weak version of Theorem 3.3 can be formulated:

Corollary 3.3.1. If the chip and the terminal establish successfully a session
with a session key K, then K is not known to the adversary acting as man-in-
the-middle between the chip and the terminal.

Of course, Theorem 3.3 says much more than Corollary 3.3.1. Informally,
it says that no useful property of KEnc can be derived by A for a successful
session. Therefore, it does not help A to break the ciphertexts exchanged by
the chip and the terminal, except for a negligible probability.

Theorem 3.3 does not say that the adversary cannot establish a session with
a chip or with a terminal. Note that in case of an interaction with the chip, A
can establish a session, provided that A guesses the password used by the chip.
In this case, the chip may reveal some data to A, since the chip believes that it
interacts with an authorized terminal. This and other situations are discussed
in the next sections.

3.4 Password Security
In this section, we consider executions during which an adversary A interacts
with a chip, or with a terminal, or simultaneously with a chip and a terminal
sharing the same password. However, the assumption is that A does not know
the password used by the other party or parties.

The adversary does not need to follow the protocol specification. Moreover,
A may take advantage of messages exchanged with one party for communica-
tion with the other party. Note that the last case encompasses the scenario of
a passive observer that monitors the communication between the chip and the
terminal – in that case A simply forwards the messages sent by the chip and by
the terminal. This also applies to all offline attacks, where transcripts of real
interactions between the chip and the terminal holding the same password are
analyzed.

In the scenario described, the adversary may have different goals. The fol-
lowing ones are now considered:

password breaking: learning the password used by the legitimate chip or
terminal (or at least getting some information about the password),

31

session hijacking: setting up a session with the chip or with the terminal
taking advantage of the fact that the chip and the terminal have initiated
the communication using the same password,

tracing: it means not only recognizing that a given chip has participated
in a given session, but generally getting any knowledge about the chips
being active in observed interactions. For example, it might concern the
question whether two observed executions correspond to the same chip or
password.

In the following these scenarios are discussed in a bit more detail.

Breaking password

Note that in the case of PACE, there is an option for a brute-force attack against
the password: an adversary A guesses the password and interacts with the chip
or with the terminal that uses the correct password. A successful session in this
case means that the guessed password is likely to be correct. If the attempted
password π′ is different from the password π used by the chip (or the terminal),
then Kπ ̸= Kπ′ with all but negligible probability. In this case, A uses a different
value of s than used by the chip or by the terminal. Thus, by Claim 3.2.5 the
session will not be successful with all but a negligible probability.

The situation is only slightly more complicated for PACE CAM, if the adver-
sary plays the role of a chip (the case where the adversary plays the role of the
terminal is the same as in the case of PACE). Guessing the password correctly
would mean that A will be able to send the correct tag TA, and the session will
not be broken at this moment. However, it is extremely unlikely that A will be
able to send the ciphertext C that would be accepted by the terminal, unless A
knows the private key zA of the chip. Anyway, a failure message received im-
mediately after delivering TA indicates that the password guess was incorrect,
while the other situation means that the password guess was correct with very
high probability.

In the described scenario, A can try the passwords one by one. As the
entropy of the passwords is usually low, such an attack will eventually succeed.
By a careful protocol design, it is a goal to achieve that the best strategy of
the adversary to learn the password is to perform the brute force attack, where
no more than one password can be effectively tested in one session. This would
exclude, for example, offline attacks, where the adversary takes the transcripts
of some interactions between the chip and the terminal using the same correct
password and attempts to learn which passwords might have been used.

We shall see that for PACE and PACE CAM, we are (almost) in such an
ideal situation.

Session hijacking

As we have shown in Section 3.3, except for one (useless) case, the adversary
cannot modify the messages exchanged without breaking the session between

32

the chip and the terminal. However, it does not mean that the adversary cannot
establish a session with either the chip or the server so that this party will believe
that the session has been established with a party knowing the password. A
situation of this kind would be considered a successful attack against password
authentication, despite the fact that the adversary may still be unaware of the
password value.

Note that session hijacking is a slightly more general problem than estab-
lishing a connection without knowing the password. It concerns any situation
where a session is run by a legitimate party, but later the communication is
taken over by the adversary that may even know the password used. This may
correspond to a situation, where the holder of the chip enables it to start an
interaction with a legitimate terminal (e.g. by typing in the password to the
terminal or presenting the chip to the optical scanner of the terminal), but later
the chip starts to interact with a different terminal, run by the adversary A.

We shall see that in the case of PACE and PACE CAM, knowing the pass-
word does not help hijacking a session.

Tracking

Capturing the meaning of resilience to tracking attacks is a complex issue. One
of the simplest scenarios is inability to decide whether an observed interaction
corresponds to a given password. A slightly more complex scenario concerns
the case where the adversary aims to decide whether two observed protocol
executions correspond to the same password. However, there is a large palette
of more sophisticated attack scenarios and goals: An adversary may interact
with a chip not aiming to establish a session (we shall see that it is doomed
to fail), but only to test the behavior of the chip and learn something about
its identity. For example, an adversary may attempt to learn that two given
executions correspond to similar passwords or that certain executions certainly
do not correspond to the same password. The adversary can be both active (as in
the scenario just mentioned) or passively operating a network of eavesdropping
devices at public places.

We must be aware that the adversary may use some side channel information.
For example, in some cases, the location and distance between the terminals,
as well as execution times, may indicate the route of a user (or, conversely,
exclude a route) without breaking the cryptographic protocol. Thus, all we
may hope for is to show that the messages exchanged by the cryptographic
protocol do not provide non-negligible additional knowledge to the adversary.
In an ideal case, the protocol should guarantee that an adversary should not be
able to distinguish between a genuine protocol execution from a fake protocol
execution, where the participating parties exchange random messages.

Note that there is another tracking scenario, in which an adversary A holds
the password of the tracked chip T . Of course, in this case, the capabilities of
A are much stronger since the adversary may directly interact with the chips
that are suspected to be T . These issues will be discussed in more detail in
Section 3.5.1.

33

3.4.1 Adversary interacting with a chip
Let us consider the situation where an adversary A plays the role of a termi-
nal and interacts with the chip without knowing the password π used by the
chip. Note that this is the primary situation considered by the designers of the
protocol – opening a session with a chip should be prevented unless the correct
password is given to the terminal.

From now on, assume that Π is the set of all possible passwords. Without
discussing the shape of Π we may assume that the cardinality of Π is relatively
small. For example, for PACE used on Polish ID documents, the password
is a 6-digit so-called CAN number. In biometric passports, the password is
the personal data written on the so-called machine readable zone (MRZ). In
the former case, this results in at most 106 possible keys for the encryption
algorithm Enc. As the set of passwords is relatively small and the function H
used for derivation Kπ := H(π∥0) should be a cryptographically strong hash
function, we can safely make the following assumption:

Assumption 3.4. We assume that the keys Kπ for π ∈ Π are all different.

Note that if Π is a fixed set (such as the set of 6-digit CAN numbers), validity
of Assumption 3.4 can be practically verified, and we did so using SHA256 and
UTF-8 encoding for the CAN numbers. Note also that finding any hash func-
tion collision Kπ = Kπ′ would have far-reaching consequences, where security
implications for PACE would be one of the least significant issues.

According to the specification, the nonce s is, in fact, coined as l-bit string,
where l is a multiple of the block size of the chosen block cipher, so its entropy
should be high.

Claim 3.4.1. Assume that π0 ∈ Π, |Π| = 106, the nonce s has been chosen at
random, and z = Enc(Kπ0

, s). Assume also that Enc is a family of random
permutations on bit strings of length l, where each permutation Enc(K,−) is
chosen independently, uniformly at random. Then the probability that

Dec(Kπ′ , z) = Dec(Kπ′′ , z) (3.3)

for some π′ ̸= π′′ ∈ Π is practically negligible, i.e. finding such pair is almost
impossible.

Proof. The probability that (3.3) does not hold equals∏106−1
j=1

(
1− j

2l

)
> (1− 106−1

2l

)106−1 (3.4)

Since 106 is negligibly small compared to 2l, the value in (3.4) differs from 1 by
a negligible value (e.g., for l = 128 the difference is of magnitude 10−26).

By Claim 3.4.1, we may assume that for the ciphertext z concerned, the
plaintext s = Dec(Kπ, z) is different for each password π ∈ Π as the probability
of the complementary event is negligible. As h is uniquely determined by XA

34

and XB , it follows that each choice of π would lead to a different value of
ĝ = ĝ(π) from the point of view of A. Consequently, for each π there is a
different yB(π) such that YB = ĝ(π)yB(π). As K = Y

yB(π)
A on the side of A, we

may assume that for each π ∈ Π, the value of K = K(π) is different with all
but a negligible probability.

Recall that z, XA, and YA are stochastically independent of the password
used. The first message sent by the chip that depends on the password used
by the chip is TA. Before TA is created by the chip, A must present TB that
depends on the MAC key K ′

MAC. However, K ′
MAC = H(K||3), so it depends

directly on K = K(π) used. The probability that for two different values of K
the same KMAC will be derived is negligible because in random oracle model
the probability of finding collisions is negligible. The number of the possible
keys is many orders to small for the birthday paradox to occur (that would
require e.g. approximately 280 trials when there are 2160 possible keys). Thus,
we may assume that each K ′

MAC(π) is different. As the input of TB is fixed,
the probability that for KMAC(π

′) ̸= KMAC(π
′′), we get the same value of

TB is negligible. This comes from the fact that the number of possible keys
KMAC(π) is too small for the birthday paradox to occur as there is only 106

possible keys and 264 possible outputs of the MAC(K,x) algorithm (remember
that we model tag generating algorithm as a random oracle). Therefore, TB

sent by the adversary is bound to at most one value of π. Moreover, if π ̸= π0,
then the chip will find that the tag TB is invalid and will reject the session. In
conclusion, apart from a probability 2−64 + δ, where δ is negligible, the only
way to execute a successful protocol by A as the terminal is to use the correct
π0 on his side.

This discussion leads to the following result:

Theorem 3.5. If adwersary A playing the role of a terminal does not know the
password π0 used by the chip, then with all but a practically negligible probability,
an interaction with the chip may result in one of the two following situations:

1. A correctly executes the protocol using the password π0 (somehow guessed),
the session is established correctly and thereby A gets confirmation that π0

is the password used by the chip,

2. the session results in a failure on the side of the chip, and always at the
same moment – namely, the moment of receiving TB. Furthermore, all
messages received by A from the chip are distributed uniformly at random,
independently of the password π0 of the chip and the messages sent by A.

Proof. By the considerations preceding Theorem 3.5, with all but practically
negligible probability there are only two situations possible:

1. A proceeds exactly as a terminal knowing π0: applies the same s during
the derivation of ĝ, and thereby can extract π0 by finding π such that
EncKπ (s) = z,

2. the chip aborts after receiving TB .

35

So, all we have to show is that in the second case A learns nothing about π0.
First, consider a ciphertext z. Note that for each password π, there is exactly

one s out of 2l possibilities such that z = Enc(Kπ, s), namely s = Dec(Kπ′ , z).
Therefore, the probability to get z given password π is exactly 1

2l
. As the

probability is the same for each password, z is stochastically independent of the
password used by the chip.

The next message sent by the chip is XA. Recall that xA is chosen at random
independently of the other events during the protocol run, so XA has the same
probability 1

q−1 for each password (recall that the group is cyclic with a prime
order q and that we choose xA uniformly at random from {1, . . . , q − 1}).

For YA, the situation is only slightly more complicated. The value of ĝ
computed by the chip depends on the password π0 used by the chip (via the
value of s corresponding to z) and on XB sent by A. However, the resulting
element ĝ is an element of a cyclic group and, therefore, it is a generator of this
group. As the chip chooses yA uniformly at random from {1, . . . , q − 1}, the
resulting YA is again uniformly distributed in the set of group elements different
from 1 and XA.

In the interaction considered, the message TA is not sent, as the chip rejects
the session after receiving TB . We may conclude that in this case all messages
received by A are stochastically independent of π0.

Note 3.5.1. In the above proof, there is a negligible probability of a false pos-
itive: TB created for a wrong password π could be correct for π0 and accepted
by the chip. Then A will get a valid TA from the chip and possibly gain some
knowledge about π0. A may realize at this moment that the password π is wrong
(with overwhelming probability TA is inconsistent with π unless K ′

MAC is the
same for π0 and π). In Section 3.4.2, we shall investigate likelihood of this
event more closely for the case where A has more capabilities to ensure that this
situation may occur. For now, it suffices to say that this case occurs with a
practically negligible probability.

Of course, we cannot assume that the probability distribution of passwords
from Π is always uniform from the point of view of the adversary. A may have
some side-channel information about the password used. Moreover, the a priori
distribution of the passwords may be different for each location and time and
a particular implementation. This a priori knowledge might be available to the
adversary. Thus, the real question is about difference of the following probability
distributions:

• the probability distribution D resulting from the a priori knowledge,

• the probability distribution D′ equal to the probability D conditioned by
the protocol execution observed by A.

Some differences between D and D′ are inevitable: an adversary may guess
a password, execute the protocol with the guessed password, and learn if the
guess was correct. The key question is whether the adversary can learn more

36

from the execution of the protocol. We concern here not only changing the set
of passwords with non-zero probability, but also changing the probabilities in a
nontrivial way. For an incautious protocol design, an attacker would gain a lot
if the probabilities in D′ are significantly more skewed than in D.

Luckily, Theorem 3.5 says that apart from an event of a negligible probability,
either A gets an implicit confirmation that the guessed password is correct, or
the data gained by A (including the termination moment) are stochastically
independent of the correct password and the only information leaked is that
the guessed password is wrong. Therefore, if the guessed password π is wrong,
the probability distribution D′ is obtained from D as conditional probabilities,
where the condition is that π is incorrect. So for any π′ ̸= π

PrD′(π′) = PrD(π′)
1−PrD(π) .

3.4.2 Adversary interacting with a terminal
In this subsection, we will show that the adversary acting as a chip in the
communication does not have any strategy significantly more advantageous than
just a brute force approach in trying out password candidates, similarly to
Section 3.4.1. We shall also show how many passwords can be checked in a
single trial. In this setting, the adversary starts to interact with the terminal
after the correct password π0 is conveyed to the terminal.

This scenario is needed as a stepping stone for a more complicated scenario
in the next subsection; however, let us remark that it corresponds also to a
stand-alone attack. That is, a person holding a chip may enter the correct
password into the terminal, hoping that the terminal will start an interaction
with the chip. However, the adversary may transmit a much stronger signal and
thereby replace the chip in communication with the terminal. The terminal will
be unaware of the situation and will run the protocol.

Unlike in Section 3.4.1, the adversary A now has the freedom to choose
z. Note that for each password π ∈ Π, the adversary A can compute sπ(z) =
Dec(Kπ, z). If we treat the mapping π, z → sπ(z) as a random function and z is
chosen at random, then the probability of a collision should be small. However,
the situation is slightly more complicated since A now has the freedom to choose
one of the 2l possible ciphertexts z. Therefore, from the point of view of A, it
might be beneficial to solve the following problem:

Problem 3.6. For m > 1, find z such that there are m different passwords
π1, . . . , πm in Π such that sπ1(z) = sπ2(z) = · · · = sπm(z).

Note that given passwords π1 and π2, the probability that sπ1
(z) = sπ2

(z)
(that is, Dec(Kπ1

, z) = Dec(Kπ2
, z)) for a randomly chosen z is 1

2l
, provided

that we model the encryption function as a family of random keyed permuta-
tions. Therefore, the expected number of collisions for sπ1

(z) = sπ2
(z) for a

single z is 1
2l

. By summing up over all ciphertexts z, we find that the expected
number of ciphertexts z for which sπ1(z) = sπ2(z) is equal to 1. Finding such z

37

is a different issue; however, the search can be done only once for all attacks of
this kind.

Now, consider three different passwords π1, π2, π3 and calculate the expected
number of ciphertexts z such that sπ1

(z) = sπ2
(z) = sπ3

(z). The probability
that a single z yields such a solution is 1

(2l)2
. Thus, the expected number of

ciphertexts z such that sπ1(z) = sπ2(z) = sπ3(z) equals 1
2l

, which is a negligible
value. Therefore, the expected number of triples where such a solution exists is(
106

3

)
· 1
2l

. For realistic values of l the value (106)3

2l
is negligibly small. Therefore,

we may assume as follows:

Assumption 3.7. There are no solutions to Problem 3.6 with m ≥ 3 for the
set of passwords that can be used for PACE (CAM).

By Assumption 3.7, we may conclude as follows:

Corollary 3.7.1. An adversary A sending z is aware of at most two passwords
π1, π2 such that sπ1

(z) = sπ2
(z).

It follows that A cannot test directly 3 or more passwords in one interac-
tion with the terminal, while testing 2 passwords at a time is possible, but
conditioned by an extremely large precomputation.

Security analysis of this scenario requires introducing an additional assump-
tion that we will call Extended KEA1:

Assumption 3.8 (Extended KEA1). Consider the following game between a
challenger C and an adversary A:

Phase 1: C chooses ζ after performing some interactive protocol with A.
Phase 2: C randomly chooses y, calculates Y := ζy, and provides it to A.
Phase 3: A presents a pair C, D such that D = Cy.
If A can present such a pair with a non-negligible advantage, then there is

an extractor which can be used to return x and ζ such that C = ζx and D = Y x

on the same input as A.

Note 3.8.1. Observe that Assumption 3.8 extends Assumption 2.5 (KEA1) by
the fact that A is not provided with ζ, but rather infers it himself by participating
in the protocol with C.

Assumption 3.8 captures the very fundamental security requirement for
PACE and possibly was implicitly assumed by its designers.

The construction of PACE seems to rely heavily on unforgebility and pseu-
dorandomness of the tags TB and TA. These properties can be derived in the
Random Oracle Model, but generally hang on the concrete design for the tags.

Assumption 3.9. (a) If given a valid tag TB created by the terminal following
the protocol, the adversary A can derive TA for the same key K ′

MAC with prac-
tically non-negligible probability p, then the adversary can extract K derived by
the terminal.
(b) If, with practically non-negligible advantage p, the adversary A can distin-
guish a random string 64-bit string from a valid tag TB created by the terminal

38

following the protocol, then A can extract K such that K ′
MAC = H(K∥3) and

where K ′
MAC is the key to be used to create TB.

Let us observe that Assumption 3.9 is fulfilled in the Random Oracle Model.
Indeed, for property (a) note that the value of TA can be obtained by A by a call
to the random oracle. For this query, the argument K ′

MAC must be presented
by A to the oracle. As K ′

MAC = H(K∥3), except for a negligible probability,
K ′

MAC may appear in the calculations of A only if A queries the oracle for
the value of H(K∥3). Thus, A must be able to derive the argument K. The
argument for part (b) is similar.

Now, let us resume analyzing a protocol execution performed by A and the
terminal. In the setup discussed, A acts as the chip, so at some point A sends
XA to the terminal. Let us prove the following lemma needed for the subsequent
analysis:

Lemma 3.9.1. If A can establish a successful session, then in this case A must
be able to recover the discrete logarithm of XA except for a practically negligible
probability.

Lemma 3.9.1 confirms the intuition that the only chance to create a successful
session is to know xA. There might be different strategies to create XA, but
nevertheless they must lead to the same result: A must be able to derive xA.

Proof. In this proof, we will build a simulation and show that ifA can establish a
successful session of PACE with the terminal (with a non-negligible probability),
then A can also recover the discrete logarithm of XA. First, let us define
phase 0 of the simulation: having full control over the simulation, which means
controlling the terminal and the adversary, we start an execution of the protocol
up to the point where A creates XA. Then we proceed to phase 1, still having
full control, up to the moment when the chip should create TA. In this phase,
we assume that A can produce a valid tag TA for (YB ,G).

Observe that at the moment of calculating TA, the adversary A already
received a valid TB created by the terminal with the key K ′

MAC. Now, by
Assumption 3.9(a), we counclude that A is in possession of the key K. This is
a solution to an instance of the Computational Diffie-Hellman Problem, where
(ĝ, YA, YB) play the role of (g, ga, gb). The simulation is built in such a way that
YB is randomly chosen on the side of the terminal.

Let us check the situation from the point of view of Assumption 3.8: A has a
pair (C,D) = (YA,K), where YA = ĝyA and K = Y yA

B for some yA. So according
to Assumption 3.8, A in particular knows ĝ calculated by the terminal.

Now, A can guess the password π and deduce s used by the terminal (recall
that the number of possible passwords is limited so that A can guess correctly
with a non-negligible probability). For s, the adversary A derives h = ĝ/gs.
So, A gets the solution to the Diffie-Hellman Problem for the tuple (g,XA, XB)
with a nonnegligible probability. By Assumption 2.5, this is only possible if A
can extract xA.

39

One can get a slightly stronger result with the same proof but using As-
sumption 3.9(b) instead of Assumption 3.9(a).

Lemma 3.9.2. If A can distinguish between TB created correctly by the terminal
and a random 64-bit string, then A must be able to recover the discrete logarithm
of XA except for a practically negligible probability.

Although Lemma 3.9.1 says that A eventually knows xA, it does not yet
say when A learns xA for the first time. Let us take a closer look at this
question. Definitely, as shown in the proof of Lemma 3.9.1, A has to know xA

after receiving TB .
According to the random oracle model, the oracle may choose the value for

K ′
MAC, and thus for TB , in advance and before the terminal presents a query for

H(K||3) and before A presents YA. The choice of K ′
MAC is random. Hence, A

can start the procedure of retreiving xA already after receiving YB by choosing
K ′

MAC at random and passing this value into the oracle for H. In this scenario,
YA can be disregarded, as it is determined by A.

Now, recall that the probability distribution of YB is uniform (except for XB ,
which is forbidden). Thus, A can start the procedure to retrieve xA not after
receiving YB , but before – the input YB can be simulated by A by a random
choice.

We conclude that A must be able to find xA immediately after sending XA.
This means that the strategy of A is to send XA for which A can determine its
discrete logarithm. This leads to the following conclusion.

Corollary 3.9.1. For the considered strategies of A, we may assume that A
knows xA.

Now let us turn our attention to the main result in this subsection:

Theorem 3.10. If A has a non-negligible probability in succeeding in establish-
ing a session with some passwords π1, π2, giving different decryptions of z, he
can solve Discrete Logarithm Problem for XB.

Proof. Let us create another simulation of the protocol between A and the
terminal. This time the terminal does not choose xB at random. Instead, we
take XB = Aκ, where κ is chosen at random, and A is an instance of the Discrete
Logarithm Problem we want to solve using A. Of course, it suffices to find the
discrete logarithm of XB .

According to Corollary 3.9.1, A can extract xA at the time of creation of XA.
As the terminal cannot compute h itself, the value of h is passed to the terminal
as XxA

B . This is possible, since we control the simulation and have access to the
memory of A. Moreover, note that for each password πi, the adversary A can
calculate ĝ(πi) = h · gsi , where si = Dec(Kπi , z) and Kπi = H(πi||0).

Now, assume that πi ̸= πj , si ̸= sj and that A can create valid sessions
with the terminal using πi and πj , when the initial messages exchanged are z,
XB , XA, YB , YA. This means that A can create a valid tag TA in both cases
–the tag corresponding to πi and the tag corresponding to πj – in response

40

to TB obtained from the terminal. By Assumption 3.9, in either case A must
be able to obtain the key K (which depends on the password). In turn, by
Assumption 3.8, it means that A can derive yA,i and yA,j such that

YA = (h · gsi)yA,i and YA = (h · gsj)yA,j

Hence,
hyA,j−yA,i = gsi·yA,i−sj ·yA,j

Note that yA,j ̸= yA,i (because those are discrete logarithms of YA for different
generators), we have:

h = g(si·yA,i−sj ·yA,j)/(yA,j−yA,i)

As h = XxA

B , we conclude that the discrete logarithm of XB is equal to

(si · yA,i − sj · yA,j)

(yA,j − yA,i) · xA
mod q

Theorem 3.10 shows that A acting as a chip and aiming to get a successful
session has no option but to follow the protocol with a guessed password. If the
guess is wrong, then the only gain will be to learn that the guess was wrong. The
only optimization might be to test two passwords at once (see Corollary 3.7.1)
exploiting the fact that a carefully chosen z may decrypt to the same s with
these passwords.

Still, A may attempt to learn something about the password used by the
terminal without actually hoping to establish a session. The point is that TB

may carry some information about the password. Recall that this is the first
(and only) element sent by the terminal that depends stochastically on the
password.

Theorem 3.11. If A can distinguish between TB created by the terminal and
a random 64-bit string, then A must have followed the protocol with the same
password as the one used by the terminal.

Theorem 3.11 says in particular that A cannot learn anything about the
password used by the terminal, unless A has guessed this password in advance
and executed the protocol according to the specification with the guessed pass-
word.

Proof. Since the probability to distinguish between random strings and TB is
practically non-negligible, for a non-negligible fraction of tuples:

(z,XA, XB , YA, YB)

the adversary A can distinguish between valid TB and random strings. As
XB , YB are independent of the password, in a practically non-negligible number

41

of cases A may distinguish between random strings and TB created for a practi-
cally non-negligible number of passwords. If we select two passwords π1, π2 from
this set, then with high probability (see Assumption 3.7) s1 = Dec(Kπ1

, z) ̸=
Dec(Kπ2

, z) = s2. In this case, the keys K corresponding to π1 and π2 are
different.

By Lemma 3.9.2, we may assume that A knows xA and thus can compute the
same h as the terminal. On the other hand, by Assumption 3.9(b), A must be
able to compute K corresponding to π1 and π2. By Assumption 2.5, computing
K = K(πi) implies that A can compute yA,i such that YA = (h · gsi)YA,i .

Now we can proceed as in the proof of Theorem 3.10: we build a simulation
that enables to solve the Discrete Logarithm Problem for XB .

The above proofs transfers smoothly to PACE CAM, as in PACE CAM the
adversary acting as the chip in the communication also finds out if the password
is right at the moment of exchanging the tags. It remains only to show that
in this case A the session run by A and the terminal will finally fail due to a
wrong last message sent to the terminal.

Theorem 3.12. Assume that adversary A acting as a chip in PACE CAM
interacts with the terminal using password π, where A knows π but not the
private key zA. If the strategy of A enables him to establish a session with the
terminal, then the Discrete Logarithm Problem can be solved.

Proof. As observed above in Lemma 3.9.1, A has to know xA in order to create a
valid tag TA. Moreover, the session would be terminated prematurely in case of
an invalid tag. At the last step, A has to provide a ciphertext of xA/zA mod q.

In order to solve the Discrete Logarithm Problem, on instance Z, we take
ZA = Zκ for a random κ. We choose arbitrary password π, and run PACE CAM
for A executing the discussed strategy and impersonating the owner of ZA. We
mimic the terminal using the password π and finally examine the memory of
A to find the value of xA, and the memory of the terminal to find the value of
xA/zA mod q. This enables us to derive zA and zA/κ mod q which is equal to
the discrete logarithm of Z.

3.4.3 Adversary interacting with the terminal and the chip
Finally, we have to consider the most general case in which the adversary in-
teracts with both a chip and a terminal using the same password. Namely, we
consider the following scenario:

Scenario 3.13. In this scenario, the adversary A interacts with the chip C
and a terminal T , there is no direct communication between C and T , the chip
and the terminal start the protocol with the same password π0, while A has no
information about the password used by the chip and the terminal.

Scenario 3.13 may occur in practice, when a legitimate user enters the correct
password π0 to the terminal (thus, both the chip and the terminal use the same

42

password). At the same time, the adversary may control communication over
the radio channel as a man-in-the-middle, simply by sending stronger signals
and blocking any direct communication.

We already know (see Theorem 3.3) that the adversary cannot learn the
session key if the connection between the chip and the terminal is successfully
established. However, the aim of the attack may be limited: instead of breaking
into the channel established by the chip and the terminal, A may attempt to
learn the password π0 or impersonate the chip or the terminal knowing the pass-
word. The latter option, called session hijacking, will be discussed in Sect. 3.4.4.

For the interaction between the chip and A let us use the same notation as in
the protocol description, while for the interaction between A and the terminal,
we mark the variables with "(r)", e.g. we use X

(r)
A instead of XA.

First, we may assume that the messages appear in the following order:

z, z(r), Xr
B , XB , XA, X

(r)
A , Y

(r)
B , YB , YA, Y

(r)
A , T

(r)
B , TB , TA, T

(r)
A

(with the exception that the chip can break up the communication before
sending TA). In fact, any other order of execution can be converted to the above
schedule by postponing the messages sent by A. This works to the advantage of
the adversary, since A has more data at hand when sending the next message.

T
(r)
B is the first message received by A that is not stochastically independent

of the password π0 used by the chip and the terminal. At this moment, A
has to send the message TB that depends on π0. Note that at this moment of
execution both the terminal and the chip have already calculated the key K.
By Theorem 3.3, there are only two cases:

case 1: either the chip and the terminal share the same key K and this key
cannot be derived by A, or

case 2: the terminal and the chip calculate different keys K.

Case 1: In this situation, we may concern A as man-in-the-middle between
the chip and the terminal manipulating their communication, but attempting
to establish a session with the same master key K. In Theorem 3.2, we have
shown that the session will be successful from the point of view of both the
terminal and the chip, if and only if A does not manipulate any message. The
only exception is to raise XA and XB to the same power in the case of PACE.
As the adversary does not know the key K used to derive K ′

MAC, the tags
T

(r)
B and TA created by the terminal and the chip correspond to random oracle

queries, where the adversary does not know the arguments. Consequently, A
does not gain any information about π0.

Now, we have to consider the situations where the session between the tag
and the terminal is not successful. The reason for that would be an invalid tag
delivered either to the chip or to the terminal. Potentially, this scenario may
create an opportunity for A to learn something about π0. Definitely, as the ad-
versary does not know the key shared by the chip and the terminal, any attempt
to create a valid tag by A will fail with all but practically negligible probability.

43

So, the only situation that remains to be considered is forwarding the tags T (r)
B

and TA created, respectively, by the terminal and the chip. However, in this case
the situation is again oblivious: except for a practically negligible probability,
T

(r)
B will be accepted by the chip if and only if YA = Y

(r)
A . Similarly, TA will be

accepted if and only if YB = Y
(r)
B . Therefore, the outcome does not depend on

the password used.

Case 2: In this case, T r
B is created with a different key than the key used for

verification of TB . Therefore, for all but a practically negligible probability, A
has to create TB presented to the chip.

Note that by Theorem 3.11, the tag T r
B can be distinguished from a random

64-bit string only if A follows the protocol with correctly guessed password π0.
Thus, the whole interaction between the terminal and A can be simulated by A.
One case is when A does not follow the protocol with π0 – then the tag T r

B can
be simulated by a random 64-bit string. The second case is when π0 is used by
A following the protocol specification – now A can simulate the responses of the
terminal. The only information that is not known in advance is the password.
If A correctly guesses π0 and uses the guess for the interaction with the chip, it
will get confirmation of the right guess. Otherwise, it will know that the guess
was wrong.

Note that the messages sent by the chip until the moment after receiving
TB may correspond to any password used. A strategy of A that would succeed
to create valid TB in practically non-negligible number of cases must ensure
that the correct TB will be created for a non-negligible number of passwords.
However, recall that according to Assumption 3.7, each value of s corresponds
to at most two different passwords from this set. Therefore, we conclude that
there are 2 passwords π, π′, for which A can create valid TB . However, this
contradicts Theorem 3.5. Therefore, the only option to create a valid TB was to
guess π0 and follow the protocol with password π0 in the interaction with the
chip. In this case, an interaction with the terminal may only confirm at an early
moment that the guess was correct. The answer TA of the chip brings only one
information: it confirms the correctness of the guess of the password, while the
value TA can be calculated by A himself.

Let us now check what can happen in the interaction between A and the
terminal. If A has followed the protocol for the correctly guessed password π0,
then of course A knows the correct key to create T

(r)
A , independently of what

has happened in the interaction with the chip. The question is whether this is
the only case where T

(r)
A will be accepted by the chip.

Let us assume that the strategy of A enables him to provide T
(r)
A that would

be accepted by the terminal for non-negligibly many passwords. As we have
seen, apart from a practically negligible number of cases, the interaction with
the chip is interrupted after sending TB , or A has followed the protocol with
correctly guessed π0. In the second case, the interaction can be simulated by
A (even if PACE CAM s concerned). Therefore, the only advantage for A is,
possibly, confirmation of the password used by the chip. So, at this moment,

44

we can use Theorem 3.10 and conclude that the assumption was false.
Note that if PACE CAM is executed, then, for case 2, in the last step A

will fail. Indeed, as we have seen, in this case the interaction between the chip
and the terminal can be fully simulated. So the success of A in this case would
contradict Theorem 3.12.

Corollary 3.13.1. After analyzing all the cases, we may conclude that inter-
acting with both the chip and the terminal at the same time brings no additional
advantage for the adversary. Except for a practically negligible number of events
either

• the interactions with the chip and the terminal are independent, or

• A simply acts as passive man-in-the-middle and learns nothing abut the
password, or

• the protocol is aborted by either the chip or the terminal in a oblivious
way, that is, at the moments that do not depend on the password used by
the terminal and the chip.

3.4.4 Session hijacking
By Corollary 3.3.1 we already know that the session cannot be established so
that the chip, the terminal, and an adversary A acting as a man-in-the-middle
hold the same session key. This does not automatically mean that it is impossible
to establish a session between A and the chip, or between A and the terminal,
or even that A gets two separate connections: one with the chip and one with
the terminal. In the case of PACE, the last situation is possible if A holds
the password shared by the chip and the terminal (or guesses this password
correctly). In principle, we may fear thatA takes advantage of the fact that both
the chip and the terminal use the same password, and that at the right moment
(when the password is already checked), A takes over the communication and
succeeds in connecting regardless of the lack of the password.

Session hijacking might be beneficial for many malicious purposes. For ex-
ample, when a chip starts a session with a legitimate terminal, the adversary
may try to hijack the session and learn the data that the chip reveals to the
terminal, believing that this is the terminal authenticated by the password.
Similarly, A may attempt to provide false information to the terminal, allegedly
originating from the chip.

Fortunately, in Sect. 3.4.3 we have shown that A can successfully create a
session with either the chip or the terminal or both, if and only if A has guessed
the correct password before receiving any message dependent on the password
shared by the chip and the terminal. Thereby, session hijacking does not make
any practical sense: the adversary may try his luck directly by guessing the
password and interacting either with the chip or with the terminal.

In the case of PACE CAM, we have observed even more. While A can
establish a session with the chip (assuming that A uses the correct password),

45

A will fail to send the correct message in the last step of PACE CAM and the
session will be aborted by the terminal. The point is that the authentication of
the chip based on the secret key is not transferrable.

3.5 Privacy

3.5.1 User tracking
An adversary may initiate wireless communication with a chip in their vicinity,
attempting to learn the identity of the chip. There might be a whole network
of malicious terminals interacting with the chips. As wireless communication
may be initiated by the terminal, chip holders may be unaware of the situation.
In fact, this is one of the main concerns frequently expressed by opponents of
electronic identity documents.

Although entering the password to the terminal is regarded as a consent
of the chip holder, it is likely that the network of malicious terminals uses
passwords presented during legitimate interactions and retained (illegally). This
is a problem that occurs for any system based on passwords, where the terminal
is authorized only by knowledge of the password. (Let us note that this problem
does not appear in the version of PACE we have presented in [15].)

In the case of PACE, the password is the only identifying information avail-
able, as long as the chip does not transfer any identity-related information after
establishing the session with PACE. In the case of PACE CAM, the identifying
information is not only the password, but also the public key. Unlike for the
password alone, the identity based on the public key uniquely defines the chip
holder.

If an adversary A controlling a network of terminals does not know the
password of the tracked person, then according to the results of Section 3.4.1
the chip will abort the session unless the terminal decrypts the ciphertext z
as intended by the chip. According to Claim 3.4.1, with all but practically
negligible probability, this happens only if A uses the correct password.

According to the results of Section 3.4.3, a similar situation occurs when the
adversary acts as an active man-in-the-middle. The only difference is that the
adversary can probe at the same time the chip and the terminal holding the
password of the chip. As at most two passwords can be tested when interacting
with the terminal (see Section 3.4.2) at most three passwords can be tested at
a time. Note that tracking attacks of this kind are not purely theoretical and
could be similar to skimming ATM chips on ATM machines.

Given the large number of passwords, it seems that the described threats
are limited to the case when the adversary has substantial a priori knowledge
on who may appear at a given location, or the adversary is focused on tracking
a small number of chips. Obviously, some false positives are possible, if the
passwords are short enough compared to the number of users. In the case of
CAN numbers used in Germany (Zugangsnummer) consisting of 6 digits, given
the size of the population, the average number of personal ID cards with the

46

same CAN in the country is probably less than 100 (taking into account ID
cards issued to non-citizens). Unless the CAN numbers are issued in a heavy
non-uniform way, the probability of false positives in tracking is quite limited.

Note that PACE CAM does not contribute any protection against user track-
ing. This is due to two factors: first, the error messages are generated immedi-
ately after detecting an invalid tag. Second, the terminals are not authenticated,
so they can freely probe the chips.

3.5.2 Proof of presence
One of the major issues to be considered for authentication protocols is whether
a terminal can create a proof of interaction with a chip after executing the
protocol with this chip. The proof may be composed of any values known to the
terminal – not only the messages exchanged, but also private ones. The session
concerned need not to succeed – in some cases also a session aborted by one of
the protocol participants might be enough to prove the chip’s participation.

Such a proof might be an explicit and useful functionality: a good application
area is creating cryptographic evidence to prove that a patient has visited a
healthcare unit. This can be useful to reduce the number of cases where a
healthcare unit charges an insurance company for fake services. Let us note
that such a proof-of-presence can be created on top of PACE [16] as will be
discussed in Section 4.3.

In most cases, creating a proof-of-presence is not a legitimate goal of an inter-
action with the chip. If, nevertheless, creating a proof-of-presence is technically
possible, then a serious security problem emerges. For example, according to
GDPR [22] the entity that runs the terminals must guarantee that there will be
no cases of misuse of personal data based on the proofs-of-presence. In general,
the declarations are insufficient, as the system must be secure-by-design. Con-
sequently, a pragmatic solution might be to backtrack and redesign the protocol
in order to eliminate the threat of a proof-of-presence.

One of the fundamental properties of PACE and PACE CAM considered by
their designers was simulability :

Definition 3.3. A protocol transcript from the point of view of a protocol partic-
ipant X is a list of all messages exchanged during a protocol execution together
with all ephemeral values created by X during this execution.

A protocol S is simulatable by participant X if for any strategy A (which
may deviate from the protocol specification), participant X can generate protocol
transcripts of X that are indistinguishable from transcripts generated during real
protocol executions where X follows the strategy A.

In the above definition, we can talk about computational indistinguishability
or information-theoretic indistinguishability. In this case, we use information-
theoretic indistinguishability, as the simulated transcripts have the same prob-
ability distribution.

Let us check the situation from the point of view of the terminal. First, note
that the messages z, XA, YA are independent of the password and uniformly

47

distributed. By Theorem 3.5, there are two outcomes of the protocol execution:
either messages XB , YB and TB correspond to the right password and the
terminal knows xB and yB , or the protocol is interrupted by the chip after
receiving an invalid TB . Both options are easy to simulate. In the first case, the
transcript contains the values created by the terminal during protocol execution.
For the values allegedly generated by the chip:

• s is created at random, then z is calculated as Enc(Kπ, s),

• XA is calculated as Zσ
A for σ chosen at random,

• YA is chosen at random,

• TA is calculated according to the protocol specification (recall that the
terminal uses the same key K ′

MAC),

• in the case of PACE CAM, the last message C is calculated as
Enc(K ′

Enc, (σ, cert(ZA)) where the key K ′
Enc is determined as on the ter-

minal’s side.

It is easy to see that such simulated responses of the chip have exactly the same
probability distribution as in the case of a real computation.

The second case is even easier. The messages z,XA, YA can be generated at
random, and an error message appears instead of TA.

Note that the above simulations can be performed by any party. For this
purpose, it suffices to mimic the terminal. In particular, it can be a third party
or a chip (regardless whether it holds zA or not). Finally, we can conclude as
follows:

Theorem 3.14. PACE and PACE CAM are simultable by the chip, by the
terminal, and by an external observer.

3.6 Chip Authentication with CAM
While in the previous section we have shown that the password protection pro-
vided by PACE is relatively strong, it does not help in the situation when an
adversary knows the password corresponding to a given chip. As argued in
Sect. 3.5.1, it is inevitable that an adversary can collect the passwords of the
attacked persons and then use these passwords for impersonation. Therefore,
PACE alone might be regarded only as a very weak authentication of a chip.
The design goal of PACE CAM was to provide a reliable chip authentication
integrated with a password-based authenticated key exchange.

Although intuitively the mechanism introduced in PACE seems to be secure,
and previous papers have provided arguments for that, we investigate the pro-
tocol taking into account the full spectrum of active attacks. Fortunately, given
the results of the previous sections, the following theorem is a straightforward
corollary.

48

Theorem 3.15. If PACE CAM protocol terminates successfully, then the chip
knows the secret key zA.

The crucial observation for analyzing the situation is the observation formu-
lated in Corollary 3.9.1. Namely, we can assume that if the terminal does not
abort a session after exchanging the tags, then the chip knows xA, the discrete
logarithm of XA. As the terminal can test that σ equals xA/zA by checking
that Zσ

A = XA, the terminal may conclude that its interlocutor knows both xA

and xA/zA. It means that the chip may extract zA as well. In this way, the
proof-of-possession of the secret zA is completed.

Another issue to be concerned is whether executing PACE CAM by the
terminal leaks information about zA so that an attacker can derive it. However,
a simple argument based on simultability leads to the following theorem:

Theorem 3.16. If an attacker A aiming to break public key ZA interacts with
the chip running PACE CAM using the key zA, then the same result can be
obtained by A without interacting with the chip.

Proof. The result follows directly from Theorem 3.14: instead of running an
interaction with the chip, it is simulated. So, the attack can be performed
offline by A.

Corollary 3.16.1. Impersonating the chip in the PACE CAM protocol is equiv-
alent to breaking the Discrete Logarithm Problem.

Proof. By Theorem 3.12, an adversary A that succeeds to authenticate itself
for public key ZA, can extract the private key zA. On the other hand, by
Theorem 3.16 any prior interaction can be simulated by A. Therefore, A can
be used to break the Discrete Logarithm Problem for ZA.

49

Chapter 4

Proposed extensions of PACE

In this chapter, guidelines for extending a protocol are presented as well as some
previous work. Security analysis of the proposed extensions contains mostly
arguments reducing the security of the discussed schemes to the security of
PACE or PACE CAM, providing a clear path to reductions, using the results
from the previous chapter. The main focus of this chapter is to present possible
functionalities that can be achieved and to understand the general requirements
behind them. All the extensions are based on version of PACE with General
Mapping, so suffix ”GM” will be omitted in this section.

4.1 Guidelines for extending a protocol
In this section, strategies are discussed on how to make a modification to a pro-
tocol to increase its chances of acceptance by researchers and industry. A general
“golden rule” would be to keep the necessary software changes to a minimum
from the technological perspective and to reuse the security analysis for the new
protocol as much as possible so that the introduction of a new security analysis
can be facilitated. Some of the most beneficial rules that should be followed are
the following:

• Backwards compatibility: The design of the modified protocol should
allow to quickly switch to the original version when one of the parties
participating in the protocol notices that the other one does not support
the extended version. In terms of PACE, it means that connection should
be established even if the chip or terminal runs the plain PACE if the
extra functionality offered by the extended protocol is not crucial for the
specific application.

• Minimal changes: For widely recognized protocols, their core function-
alities are often enclosed in well-tested libraries. For that reason, the
original protocol should be fine-tuned in such a way that the effort to
build, test, and incorporate new functionalities into existing solutions is

50

minimal. This also means that the order and general structure of the mes-
sages should be maintained if possible, with new steps coming at the end
and keeping the number of new messages to a minimum, which reduces the
probability of a failure and promotes robustness. There will be examples
presented in which a new functionality could be obtained without changes
to the number of messages from the original protocol.

• Reusing of code and cryptographic operations: Usually in the inter-
active protocols the cryptographic operations are the parts of the program
that take the most time to compute and are most complicated, like secure
exponentiation. For that reason, the code and time-consuming crypto-
graphic operations should be reused when possible. Chips that execute
PACE are usually low-power devices with limited memory and computa-
tional power, so the executable code must be deeply optimized.

• Security arguments: Arguably, this is the most important principle in
designing modifications from the point of view of researchers. The secu-
rity features should not be compromised by the modifications introduced;
rather, the opposite should be true. Design of the new functionalities
should take into account the existing security analysis to facilitate future
security arguments. Preferably, security arguments for the original scheme
and for the extension should be composed to provide security arguments
for the extended scheme. Unfortunately, this requires very careful design
of both the original scheme and of the extension and in many cases it is
not possible.

The presented extensions are intended to follow as much of these rules as
possible. While discussing the designs, comments will be provided on the rules
followed.

4.2 PACE Mutual Authentication
The extension discussed below was presented at ESORICS’21 conference and
was published there ([15]).

4.2.1 Description of PACE MA
PACE MA is in a way an extension of the functionality of PACE CAM. The
acronym MA stands for Mutual Authentication. In this extension, not only the
chip authenticates itself but also the terminal. There are many scenarios where
such functionality might be critical. Modern financial and healthcare systems
exchanging sensitive data with a user, are good examples: a chip should have
firm guarantees that sensitive data from it are not transmitted to unauthorized
parties. In general, all scenarios where there is a need for authentication of
both sides before sending sensitive data over a secure channel could potentially
benefit from this extension.

51

There are proposed two versions of PACE MA – PACE MA and PACE
MA-light. The second one achieves the same extended functionality as the first
one, however they represent different approaches in design - the first one adds
messages at the end of the communication between the chip and the terminal,
and the other one follows the minimal approach (in terms of communication)
of preserving the number of messages from the original PACE (hence the suffix
”light”). Both of them realize the same functionality beside establishing se-
cure channel – strong authentication of both sides of the protocol by means
of introducing public key cryptography authentication via static Diffie-Hellman
authentication.

Setting

In this extension, both sides use a pair of public and private keys in the group G,
where for the chip we denote them (x,X = gx) and for the terminal (y, Y = gy).
There are certificates created for both public keys by a Certificate Authority
(CA) that the other side must be able to verify. Protocol participants need
to also agree on the hash functions and MAC algorithm used in this instance
of the protocol. As this protocol is not part of a standard, there are many
more options available, in particular one could choose to use longer tags, which
lowers the probability of forging them1. The fact that AES-CMAC is used in
PACE only in 64-bit option could raise concerns. Here those concerns could be
alleviated.

Changes - PACE MA

In PACE MA (see Figure 4.1) the following changes to the original protocol
were introduced:

• Messages from the first Diffie-Hellman exchange XA and XB are reused
for the static Diffie-Hellman authentication protocol, where the counter-
party of the protocol raises the received group element to the power of its
private key, for example, the chip computes KA := Xx

B . Later, using the
public key of the chip and its own ephemeral value xB , the terminal can
verify if the exponentiation was done with the secret key x. An analogous
(symmetric) operation is performed on the side of the terminal.

• The token KA is hashed: hA := H(KA) mainly to save memory, but
also to make algebraic attacks more difficult for the adversary in case the
token hA is revealed. The same operation is performed on the side of the
terminal with KB .

• hA and hB are encrypted with the relevant certificates of X and Y using
a key K ′

SC and sent to the other participant as CA and CB . This also
protects the identities of the parties participating in the protocol, as the

1That is, assuming a random oracle model for tags. In general, choosing an algorithm that
produces longer tags does not automatically guarantee a higher level of security.

52

chip(A) terminal(B)
holds: holds:
π - password π, input from the chip owner
x - private key of the chip y - private key of the terminal

X = gx - public key of the chip Y = gy - public key of the terminal

cert(X) - certificate for X cert(Y) - certificate for Y

G = (a, b, p, q, g, k) - parameters
. .Phase 1 .

Kπ := H(π||0) Kπ := H(π||0)
choose s← Zq\{0} at random
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect
s := Dec(Kπ, z)

. .Phase 2 .
choose xB ← Zq\{0} at random

XB←−− XB := gxB

abort if XB ̸∈ ⟨g⟩\{1}
choose xA ← Zq\{0} at random
XA := gxA

XA−−→
abort if XA ̸∈ ⟨g⟩\{1}

h := XxA
B h := XxB

A

abort if h = 1 abort if h = 1
ĝ := h · gs ĝ := h · gs

. .Phase 3 .
choose yA ← Zq\{0} at random choose yB ← Zq\{0} at random
YA := ĝyA YB := ĝyB

YB←−−
YA−−→

K := YB
yA K := YA

yB

KEnc := H(K||1) KEnc := H(K||1)
K′

SC := H(K||2) K′
SC := H(K||2)

KMAC := H(K||3) KMAC := H(K||3)
K′

MAC := H(K||4) K′
MAC := H(K||4)

. .Phase 4 .
TA := MAC(K′

MAC, (YB ,G)) TB := MAC(K′
MAC, (YA,G))

TB←−−
check correctness of TB by recomputing
it

TA−−→ check correctness of TA by recomputing
it

. Phase 5 (Chip and Terminal Authentication) .

KA := Xx
B KB := Xy

A

hA := H(KA) hB := H(KB)

CA := Enc(K′
SC, (cert(X), hA)) CB := Enc(K′

SC, (cert(Y), hB))

CB←−−
CA−−→

recover CB , abort if cert(Y) invalid recover CA, abort if cert(X) invalid

or hB ̸= H(Y xA) or hA ̸= H(XxB)

Figure 4.1: PACE MA – an extension of PACE with mutual authentication. H
denotes a hash function, with its range given by the context. Gray boxes indicate the
changes specific to PACE MA, the rest of the protocol is the original PACE.

authentication tokens are encrypted and a transcript of the protocol itself
would not be sufficient to reveal the identities.

• Upon receiving CA and CB , the chip and terminal decrypt them with the

53

key K ′
SC known only to them (as it follows from the execution of the

protocol), verify the validity of the certificates and recompute hA and hB

and check if they are correct using their xA and xB . If the equalities are
satisfied, they complete the protocol successfully and can proceed to the
subsequent communication with secure keys established.

The order of exchanging the messages (first CB and then CA) is not acci-
dental. It follows from the order once preferred by the German information
security authority BSI. It is the terminal that should present its identity first.
Then the chip can make a decision if it wants to disclose its identity, too. The
reason is that the identity of the chip usually falls to the category of personal
data of the chip owner and the identity of the terminal not, as a part of infras-
tructure. Therefore, this approach is a good example of following the rules from
the GDPR regulation [22]. Nevertheless, for specific applications, where it is
the chip that needs to authenticate first, this order could be reversed.

Changes - PACE MA-light

PACE MA-light preserves the number of messages from PACE. It is done by
merging two phases into one: exchange of the tags TA and TB and the authenti-
cation. For reference, look at Figure 4.2. The last phase of PACE CAM is also
added for easier comparison between authentication mechanisms. The detailed
changes are as follows:

• Exchange of tags TA and TB is now merged with authentication. In addi-
tion to ensuring that the session key K was correctly derived by including
YA and YB on the tags, the authentication tokens KA and KB are also
included.

• Here static Diffie-Hellman authentication is also used, like in PACE MA.
However, instead of comparing hash values of recomputed authentication
tokens, MACs are compared, verifying both the session key and the iden-
tity of the other party at the same time The tokens need to be recom-
puted on each side proving that the verifying party is in the possession of
ephemeral secret (respectively, xA or xB).

• Like in the case of PACE MA, the identities of the participants are pro-
tected by encrypting the certificates.

• Protocol is completed successfully when no participant aborts the session
during the verification process.

Observe that the identity information is sent after establishing the session
key and using that session key for encryption. Note that the chip has an option
to abort the session after learning the identity of the terminal.

54

chip(A) Terminal(B)
holds: holds:
π - password π, input from the document owner
x - private key y - private key
X = gx - public key Y = gy - public key

cert(X) - certificate for X cert(Y) - certificate for Y

G = (a, b, p, q, g, k) - parameters
. .Phase 1 .

Kπ := H(π||0) Kπ := H(π||0)
choose s← Zq\{0} at random
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect
s := Dec(Kπ, z)

. .Phase 2 .
choose xB ← Zq\{0} at random

XB←−− XB := gxB

abort if XB ̸∈ ⟨g⟩\{1}
choose xA ← Zq\{0} at random
XA := gxA

XA−−→
abort if XA ̸∈ ⟨g⟩\{1}

h := XxA
B h := XxB

A

abort if h = 1 abort if h = 1
ĝ := h · gs ĝ := h · gs

. .Phase 3 .
choose yA ← Zq\{0} at random choose yB ← Zq\{0} at random
YA := ĝyA YB := ĝyB

YB←−−
YA−−→

K := YB
yA K := YA

yB

KEnc := H(K||1) KEnc := H(K||1)
K′

SC := H(K||2) (K′
Enc for PACE

CAM)
K′

SC := H(K||2) (K′
Enc for PACE

CAM)
KMAC := H(K||3) KMAC := H(K||3)
K′

MAC := H(K||4) K′
MAC := H(K||4)

. Phase 4 (Chip and Terminal Authentication) - PACE-MA-light .

KA := Xx
B KB := Xy

A

CA := {Enc(K′
SC, (cert(X))), CB := {Enc(K′

SC, (cert(Y))),

MAC(K′
MAC, (KA, YB ,G))} MAC(K′

MAC, (KB , YA,G))}
CB←−−
CA−−→

decrypt CB , compute KB := Y xA , decrypt CA, KA := XxB ,

abort if cert(Y) or MAC is invalid abort if cert(X) or MAC is invalid
. Phase 4 (Chip Authentication) - PACE CAM only .

σ := xA · x−1 mod q

C := Enc(K′
Enc, (σ, cert(X))

C−→ decrypt C to get σ and cert()
abort if cert(X) invalid or XA̸=X

σ

Figure 4.2: PACE MA-light – an extension of PACE with mutual authentication
with the same number of messages as for the plain PACE. PACE MA-light changes to
PACE CAM are in gray boxes, and additionally the last phases for PACE MA-light
and PACE CAM are separated.

4.2.2 Discussion on the security and privacy
In this subsection, the security analysis of PACE (CAM) will be heavily reused
and coupled with additional security arguments to discuss the features of the

55

presented extensions. Here are recalled crucial security properties from the work
presented at ESORICS conference. These seem to be the most fundamental
requirements, however there is always a potential to explore more application-
specific scenarios. For the purpose of presentation of the main potential security
issues of PACE MA(-light) protocols, the following discussion should be suffi-
cient.

Fragility

The property that simplifies the security analysis for a protocol is fragility (as
defined in Section 3.3.1).

Claim 4.0.1. PACE MA and PACE MA-light are fragile.

For PACE MA: as the first phases are the same as in plain PACE, the same
conditions for aborting the session apply. That leaves A only with an option to
raise XA and XB to the same power α ̸= 1. Consider now the message CB and
let A have the power to decipher it somehow with a non-negligible probability,
without the knowledge of the key. Thanks to that, he can retrieve hB . To have
CB accepted by the chip, A would have to replace hB with H(gxA·y), because
at this point it is equal to H(gxA·y·α) due to the adversary’s manipulation of
XA. As H is modeled as a random oracle, that means that A has to produce
gxA·y, which he can do with only negligible probability without solving the
Diffie-Hellman Computational Problem for (g,XA, Y), which is the basis of the
security of static Diffie-Hellman authentication.

For PACE MA-light: Any manipulations other than raising to the power
α ̸= 1 values XA and XB lead to a session failure, as (augmented) TA and
TB are sent between the parties in a ciphertexts CA and CB encrypted with
K ′

SC . Even if we gave the power to decrypt CB to the adversary, he would need
to transform tags MAC(K ′

MAC, g
xA·y·α, YA,G) to MAC(K ′

MAC, g
xA·y, YA,G)

which is practically infeasible in random oracle model for tags, based on the
same arguments as above.

That leads to a corollary that any active man-in-the middle attack againts
PACE MA and PACE MA-light can be reduced to a passive one.

Protection of secrets

With an authentication, there may be a risk of leaking the secrets of the authen-
ticating parties. Observe that for PACE MA and PACE MA-light those secrets
are never sent in clear, they are used to compute tokens KA and KB which are
later put into a hash function or a MAC. If an adversary is able to recover x or
y with a non-negligible probability, this means that there is a reduction solving
the Discrete Logarithm Problem (Assumption 2.1) for X or Y .

There is also another concern related to the authentication, different from
recovering x or y by A. Can A authenticate himself as a protocol party with
a non-negligible probability? This would effectively mean that the adversary
could be used as a plug in-procedure in solving an instance of the Computational

56

Diffie-Hellman Problem (Assumption 2.2) with a non-negligible probability is
some specific setting.

When it comes to testing the password π by the adversary the situation is
reduced to the situation of PACE CAM in PACE MA. Messages CA and CB do
not provide the adversary any non-negligible advantage when it comes to the
knowledge of π, because the only way to decipher them is via the knowledge
of K ′

SC , which requires the knowledge K (because of random oracle model for
hash functions). Probability of the adversary deriving the right key K using
π′ ̸= π is negligible as shown in Section 3.4, so the only way to get information
about the correct π is brute-force testing.

In PACE MA-light, the adversary has even less information than in PACE
MA, as the tags TA and TB that could be potentially useful in some way are
now encrypted, and the argument above is still valid.

Session key security

The main goal of the protocol is to establish a secure channel, meaning that A
cannot derive keys KEnc and KMAC. To show that, it is enough to consider a
security experiment in which the adversary is presented with a bit string at the
end of the protocol and needs to distinguish if it is a random bit string or if it
is the key KEnc. While this is of course impossible for PACE as was shown
by Theorem 3.3, in the case of PACE MA, the adversary has additionally the
messages CA and CB to maybe provide him some non-negligible advantage. Let
us bring the capabilities of the adversary to the ones from the original PACE.
As usual, assume the random oracle model for hash functions. Let us give A
an extra power: he would be given K ′

SC in case of PACE MA and additionally
K ′

MAC in case of PACE MA-light and x and y with certificates for the public
keys and thus he will to be able to fully recompute the messages CA and CB

himself in both cases. That brings the situation of A to the one from the original
PACE, and the adversary still has no means to derive K as the parameters given
to him are independent from it (x and y) or they are not useful because of the
random oracle model (K ′

SC and K ′
MAC).

Simultability

In PACE MA and PACE MA-light it is possible to generate protocol transcripts
without knowing the secret values x and y in the sense of Definition 3.3 as a
chip, or a terminal or a third party, so this is not a proof that a successful session
has occurred. Observe that it is possible to choose all ephemeral values for
both sides and knowing them, compute the authentication tokens KA and KB

without knowing the secrets x and y, in the same way as the verifier recomputes
them in the protocol – using the public key X or Y and their ephemeral value
xB or xA. For the extensions considered here, Phase 1 is identical to the one
from PACE. Consequently, revealing both s and z always leads to revealing of
π, as it is feasible to list all possible z’s for a particular s for different password
candidates. However, even if the terminal holder decides to reveal the right π

57

this way (which therefore compromises the chip if the password is not temporary
for the chip, as in the case of e-passports), it is still not a proof that the session
has occurred, as they could simulate it themselves.

4.2.3 Discussion on design
Both PACE MA and PACE MA-light are examples of following good practices
when extending a protocol from a technical point of view. For PACE MA:

• The changes are introduced after the messages exchanged in the original
version, which makes it easier to fall back to the original protocol (back-
ward compatibility) and to argue about security.

• The original messages XA and XB are reused for different purposes, which
result in reusing executable code and saving memory.

• The order and structure of messages is the same as in the original PACE
for the most part of the protocol.

• There are not many changes to the scope of software/hardware operations.
In addition to what is already implemented, what could be needed is
potentially an additional hash function and a procedure for checking the
certificates issued by CA.

For PACE MA-light:

• The number of messages is the same as in PACE.

• Original messages are reused – XA and XB .

• The structure of messages is almost the same for the most part of the
protocol.

• There are not many new operations, like in PACE MA.

Observe that some design features are almost identical, which makes sense
as similar strategies and tools to achieve new functionalities are used and also
core functionality is preserved. There is also high degree of reusing what is
already deployed in PACE – reusing already exchanged messages XA and XB

for the authentication..

4.3 PACE Proof of Presence
In this section, another extension is discussed – PACE Proof of Presence. This
protocol was presented at IFIP Networking conference in 2021 as a short pre-
sentation and was published in [16].

58

4.3.1 Design and functionality of PACE PoP
PACE Proof of Presence (PACE PoP) is an extension of the original PACE that
allows the chip to obtain a proof of presence - a cryptographic confirmation that
a successful session of PACE has taken place between the chip and the terminal.
This is obtained by introducing a version of Schnorr identification protocol into
the messeges of PACE, which results in producing a Schnorr signature by the
chip for the session that can be stored and later used as a proof of successful
session in front of a third party.

This is a meaningful contribution and indeed an extension, as in the original
protocol the transcript itself is not a proof that can be used by the chip that
the interaction occurred. While it is a required feature from the point of view
of privacy protection and GDPR, in various scenarios that could be a desired
functionality. For example, an inspector controlling technical installations in the
field may be obliged to provide proof that he has actually visited certain physical
locations when presenting the bill. This extension is a very good example of
how a protocol can be slightly altered with some parts reused, providing a new
functionality at very low cost in terms of rework required.

The extension is based on PACE where one additional message is added at
the end, and there are some computational modifications introduced on the side
of the terminal in the phase of establishing the key and computations on the
side of the chip at the end. A visual description of the modified protocol is
presented in Figure 4.3 with gray boxes indicating changes compared to PACE.
The idea to achieve the required functionality is to reuse some of the messages
and internal data as parts of the produced Schnorr signature (see Section 2.4.3
for a reference to the Schnorr signature). In some sense, it is a reversion of
PACE CAM, where it is the terminal that authenticates itself instead of the
chip with the added functionality of providing the proof of interaction by means
of the “signature of the session” with the terminal. It is also different from PACE
MA(-light) where both sides authenticate themselves, but the transcript itself
is not a proof of interaction of the chip and the terminal, as it can be simulated.

For reference of the described modifications, see Figure 4.3.

Setting

In PACE PoP, in addition to the setting needed for PACE, the terminal has a
pair of private and public keys: (zB , ZB = gzB) and also a certificate cert(ZB)
for key ZB . This certificate should be created/signed by a Certificate Authority
whose public key is known to the chip so that it can verify its validity (technical
details concerning PKI framework can be omitted here). Furthermore, the chip
and the terminal agree on a secure hash function H : ({0, 1}∗,G,G) −→ Zq\{0}
among other hash functions and a MAC algorithm. This can be done during the
initial phase of communication, which is used to establish the domain parameters
(ICAO specification [2] provides details on that). Observe that in the original
Schnorr Signature, the public key is of the form g−zB , which could be easily
switched, as −zB would be just another element of the group. The procedure

59

chip(A) Terminal(B)
holds: holds:
π - password π password (e.g. entered by the

user)
zB , ZB = gzB - private and public
key
cert(ZB) - certificate for ZB

G - parameters of a group of order q arbitrary message M , e.g. the cur-
rent time

Protocol execution
Kπ := H(π||0) Kπ := H(π||0)
choose s← Zq\{0} at random
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect, decrypt z
. .

choose xB ← Zq\{0} at random
abort if XB ̸∈ ⟨g⟩\{1}

XB←−− XB := gxB

choose xA ← Zq\{0} at random
XA := gxA

XA−−→
h := XxA

B (abort if h = 1) h := XxB

A (abort if h = 1)
ĝ := h · gs ĝ := h · gs

. .
choose yA ← Zq\{0} at random yB := xB + zB ·H(M,XB , XA) mod q

YA := ĝyA
YB←−− YB := ĝyB

YA−−→
abort if YB = XB abort if YA = XA

K := YB
yA K := YA

yB

KEnc := H(K||1), KMAC :=
H(K||2)

KEnc := H(K||1), KMAC :=
H(K||2)

K ′
MAC := H(K||3),

K ′
Enc := H(K||4)

K ′
MAC := H(K||3),

K ′
Enc := H(K||4)

. .
TA := MAC(K ′

MAC, (YB ,G)) TB := MAC(K ′
MAC, (YA,G))

TB←−−
abort if TB incorrect TA−−→ abort if TA incorrect

. Terminal’s Signature .

abort if cert(ZB) invalid or CB←−− CB := Enc(K ′
Enc, (M,yB , cert(ZB)))

gyB ̸= XB · ZH(M,XB ,XA)
B or YB ̸= ĝyB

output Schnorr signature (XB , yB)

together with XA,M

Figure 4.3: PACE PoP – a proof of presence for the chip. H stands for a hash function
where the choice of the function depends on the context – the target image of the hash
function. Grey boxes indicate the changes to the original PACE GM protocol.

to generate the signature would be slightly different, but this version is chosen
for better readability and to fit the notation used in PACE.

60

Proof of Presence

The protocol is not modified up to the phase of establishing the common key K.
In this phase, on the side of the terminal the value YB is created differently from
the original protocol. In the original version YB := ĝyB , where yB is chosen at
random from the appropriate group. Here, yB is created to be a component of
the Schnorr signature and calculated as yB := xB + zB ·H(M,XB , XA) mod q.

Observe that this modification inserts elements of the interactive Schnorr
identification protocol (Section 2.4.4) between the terminal and the chip into
PACE. In addition to that, messages from both sides are used to form a Schnorr
signature for the session. The message M can be an arbitrary string of bits of
non-zero length that suits the purposes of the particular protocol needs. As
the content of the message is arbitrary, it can be, for example, a timestamp,
the physical location of the terminal, or maybe even some other cryptographic
token or an encrypted message. This may open some possibilities to extend
the protocol further. yB is sent to the chip together with the certificate of the
terminal cert(ZB) and the message M and encrypted with K ′

Enc created as
H(K||4), where K is the key resulting from the Diffie-Hellman key exchange.
CB is the ciphertext.

Verification and finishing the protocol session

After decryption of CB , the chip obtains three components: yB , M and cert(ZB).
Then it performs the following steps:

1. Check validity of cert(ZB) - abort the session if it is invalid.

2. Check if gyB = XB ·ZH(M,XB ,XA)
B and if YB = ĝyB . If at least one of those

is false, abort the session.

3. Output (XB , yB) as a signature for XA,M and/or store it for future ref-
erence.

After returning the signature, with the knowledge of the public key of the
terminal, one can verify that the signature is valid by checking if

gyB = XB · ZH(M,XB ,XA)
B .

This is also the part of the procedure above when the chip verifies that the
returned signature is valid and there was no tempering with the session.

4.3.2 Analysis of the extension
Observe that the signature is tied not only to the identity of the terminal by
means of the secret key x but also to the session itself, as it binds the signature
to the values XA, XB , yB . When participants follow the protocol specification,
the probability that those values reappear at the same terminal in some other
session is negligible, as it is 2−3q.

61

Note that any possibility of forging the session signature would effectively
mean that it is possible to forge the Schnorr Signature for some specific messages.
Therefore, if the chip can present a valid signature (XB , yB) for some XA,M
it means that the terminal having a public key ZB must have participated in
the creation of the signature, also using XA provided by the chip. Note also
that the signature is created only after the exchange of valid tags TB , TA, so
after a successful session with the key K is established (with all but negligible
probability).

Observe also that this is a proof of presence only in case when the chip
presents the signature and not in case when the terminal does it. The terminal
is capable of simulating the whole execution of the protocol for some chosen
π′. For some situations, like e-passports, the chip may deny its participation
at the cost of revealing the correct password if for π ̸= π′, z ̸= Enc(Kπ, s), at
the same time possibly compromising the document with password π. However,
if terminal knows the correct π or if the chip is not bound to a constant π,
the simulated transcript will be indistinguishable from a real one, so this proof
should be considered useless.

Those considerations can be summarized with a claim for PACE PoP:

Claim 4.0.2. The probability of forging a valid signature (XB , yB) over a mes-
sage (XA,M) is negligible without the knowledge of zB, and therefore a chip
presenting it to the third party confirms that a successful session occurred at
some point in time with the terminal with all but negligible probability.

Note that the proof is useful only in situations where the terminal wants to
deny that a session has occured. When the chip and the terminal cooperate, it
is not a proof that the session took place, as the terminal is able to produce the
transcript and signature itself and provide it to the chip. However, this might be
technically problematic, if the chip has a fixed state machine for communication
protocols, and no protocol execution deviating from the chip specification is
possible.

Now, the following points can be potential concerns about the security of
the scheme:

Revealing yB

As yB is revealed as a part of the signature, that could raise concerns that it
could lead to leakage of the secret key zB of the terminal, as
yB = xB+zB ·H(M,XB , XA) mod q and XB , while XA and M are made public
(or could be when presenting the proof). Observe however, that
zB = yB−xB

H(M,XB ,XA) mod q and xB is never revealed. For A, calculating xB

would mean breaking the Discrete Logarithm Problem for XB , which can be
done with negligible probability only.

62

yB being not random

Security of Diffie-Hellman key exchange relies on the fact that A is not able to
break the Computational Diffie-Hellman Problem with a non-negligible proba-
bility. There may be therefore a concern that if yB is not chosen uniformly at
random, it could somehow make it easier for A to find the discrete logarithm of
YB or provide him with some other non-negligible advantage. Observe, however,
that yB in PACE PoP is created using a randomly chosen value xB which is not
revealed at any point which makes it impossible to distinguish yB computed ac-
cording to the protocol from a randomly chosen yB . YB could potentially reveal
that information, as YB = ĝyB , but yB is the discrete logarithm of YB which by
itself is solvable with negligible probability only, and additionally no participant
knows the discrete logarithm of ĝ. As there is no non-negligible advantage in
distinguishing a random yB from non-random, it follows that the adversary has
the same advantage in this problem as in PACE.

Comment about XA

There may be a doubt about how XA fits in the Schnorr Identification Scheme,
as it comes from a different group – G than intended for the calculation of the
particular part of the signature – Zq, however, XA together with XB and M
are later treated as input for H and this transforms it to the right group.

4.3.3 Reduction to the security of the original PACE
Consider now the ciphertext CB created with K ′

Enc. Let us consider an arti-
ficial protocol F , where K ′

Enc is chosen at random instead of being computed
as K ′

Enc = H(K||4). Following an analogous discussion as in the proof of The-
orem 3.3 we can claim that A cannot distinguish between a protocol F and
PACE PoP, which in turn reduces his capabilities to those proved in Chapter 3
and by that reduces security of PACE PoP to security of PACE in terms of
properties discussed - fragility (with a comment below), key confidentiality and
password security.

4.3.4 Fragility
In the original PACE, the only thing the adversary is able to do without breaking
the session (in the sense of Scenario 3.1) is to raise XA and XB to the same
power α ̸= 1 known to him. Observe that in PACE PoP such a modification is
impossible, as H(M,XB , XA) is computed on both sides at some point. For the
chip to verify the value yB as valid with the modification described, A needs to
change somehow value of YB , to make it verifiable for the chip later. However,
as there was proven in Claim 3.2.2 any change of YA or YB is impossible with
practically negligible probability without breaking the session. Therefore, a
claim can be formulated:

Claim 4.0.3. PACE PoP is fragile with all but practically negligible probability.

63

4.3.5 Simultability
For PACE PoP one of the most important considerations is that someone can
create a protocol session transcript in a way that is indistinguishable from a real
transcript of the protocol (in the sense of information theory), like it is possible
in plain PACE, PACE CAM (Theorem 3.14), or even PACE MA as discussed
in Section 4.2.2. In this case, however, providing such a transcript without zB
means effectively forging Schnorr Signature for some specific messages, which
can be done with negligible probability only.

4.3.6 Design with reusability in mind
The design of PACE PoP follows many rules described in Section 4.1. Note
that computations concerning extended functionality are added at the end of
the protocol, within a separate message, which could make it easier to imple-
ment than in the case where there are added messages in the middle of the
original protocol. This also makes it easily backward compatible on the side
of the terminal, as it can simply turn off the extra functionality when the chip
does not support it. It can be recognized at the moment of establishing domain
parameters for the protocol even before the protocol starts, when the chip re-
sponds without providing an option for H used in the signature. It could also
be the case that the chip simply disregards CB as junk and follows through as
in the regular PACE.

In terms of additional operations, the chip needs to be able to verify the
terminal certificate and possibly evaluate H if the engineering choice would be
different from other hash functions already implemented. All other operations
are already deployed, like operations in the group and exponentiation.

In addition to all the considerations above, the design choice of reusing
messages yB and XA to serve two different purposes is a primary example of
a smart design mindset. Thanks to that approach, there is only one message
added at the end to provide a powerful, nontrivial functionality. For smart cards
with limited capacity in terms of memory and computational power, that can
make a real difference.

64

Chapter 5

Summary

In this thesis, they were presented refined and very detailed proofs of secu-
rity features for PACE and PACE CAM, developed from sketches and ideas
presented first in ”Privacy and security analysis of PACE GM protocol” by
Mirosław Kutyłowski and Przemysław Kubiak in 2019. The requirement-driven
approach was proven to work well in this security analysis, filling the gaps for
crucial security concerns for the discussed protocols, like many scenarios where
password security could be endangered in different ways. Among others, a prop-
erty called fragility was proven to be true for PACE and PACE CAM and it
turns out that it helps tremendously in the security analysis of other security
features. Reducing all possible active adversaries to a passive one greatly sim-
plifies other proofs and could be used as a general approach when analyzing
interactive protocols. The discussion on negligible probability in the classical
cryptographic sense versus practically negligible probability was also provided
and argumented that the latter can be sufficient in particular scenarios.

Outside of obvious security features needed to be considered, like key confi-
dentiality, other potential threats were discussed with strong results, like discus-
sion on hijacking the session and privacy in terms of simultability of the protocol
in the context of proof-of-presence. Such a security analysis could be regarded
by some as more valuable, because of the focus on very real requirements instead
of theoretical models.

Except for filling the gap of discussion on security issues of widely used pro-
tocols, there is also a useful contribution provided with proposed extensions
of the protocol. Although interesting as research topic, what is shown by the
fact that many publications with modifications exist, the extensions are moti-
vated above all by the practical needs and legal context. Recent EU regulations
provide an opportunity to develop a wide system of protocols based on PACE,
enclosed in one hardware token, which could be universal across the member
states as parts of electronic layer of the issued eIDs. Work presented in this the-
sis follows good design practices, making it easy to deploy the extensions and
earn the general public trust for them by means of reusing when possible the
robust security analysis. This particular contribution included two modifica-

65

tions extending functionalities of the original protocols PACE and PACE CAM
by proposing mutual authentication in two variants and also a functionality of
creating a cryptographic signature for the session, the so-called proof of pres-
ence. These are examples of a good level of reusing what is already accessible
that could prompt other research to follow this approach.

Some of the future research directions include further development of the
extensions, by providing more detailed security analysis and creating new ex-
tensions for well-motivated scenarios, leaving the realm of eIDs when needed.
When it comes to the security analysis itself, a potential challenge could be to
provide the proofs in different settings, replacing random oracle models with
other assumptions, bringing the proofs a little closer to the technical reality.

66

Bibliography

[1] The European Parliament and the Council of the European Union. Regu-
lation (EU) 2019/1157 — strengthening the security of identity cards and
of residence documents issued to EU citizens and their family members
exercising their right of free movement. Official Journal of the European
Union, 188(67), 2019.

[2] ICAO. Machine Readable Travel Documents - Part 11: Security Mechanism
for MRTDs. Doc 9303, 2015.

[3] BSI. Advanced security mechanism for machine readable travel documents
extended access control (eac). In Technical Report (BSI-TR-03110) Version
2.05 Release Candidate. Bundesamt fuer Sicherheit in der Informationstech-
nik (BSI), 2010.

[4] Jens Bender, Marc Fischlin, and Dennis Kügler. Security Analysis of the
PACE Key-Agreement Protocol. In Information Security, pages 33–48,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[5] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-
Based Authenticated Key Exchange in the Three-Party Setting. In Serge
Vaudenay, editor, Public Key Cryptography - PKC 2005, pages 65–84,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[6] Miroslaw Kutylowski and Przemyslaw Kubiak. Privacy and Security Anal-
ysis of PACE GM Protocol. In 2019 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 763–768, 2019.

[7] Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler. The
PACE|AA Protocol for Machine Readable Travel Documents, and Its Se-
curity. In Proc. of 16th International Conference Financial Cryptography
and Data Security, pages 344–358, 2012.

[8] Lucjan Hanzlik, Lukasz Krzywiecki, and Miroslaw Kutylowski. Simplified
PACE|AA Protocol. In Prof. of 9th International Conference Information
Security Practice and Experience, pages 218–232, 2013.

67

[9] Jens Bender, Marc Fischlin, and Dennis Kügler. The PACE|CA Protocol
for Machine Readable Travel Documents. In Prof. of 5th International
Conference Trusted Systems, pages 17–35, 2013.

[10] Nicolas Buchmann, Roel Peeters, Harald Baier, and Andreas Pashalidis. Se-
curity considerations on extending PACE to a biometric-based connection
establishment. In Proc. of the 12th International Conference of Biometrics
Special Interest Group, pages 15–26, 2013.

[11] Lucjan Hanzlik and Miroslaw Kutylowski. Chip Authentication for E-
Passports: PACE with Chip Authentication Mapping v2. In Prof. of 19th
International Conference Information Security, pages 115–129, 2016.

[12] Jean-Sébastien Coron, Aline Gouget, Thomas Icart, and Pascal Paillier.
Supplemental Access Control (PACE v2): Security Analysis of PACE
Integrated Mapping, pages 207–232. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[13] Adam Bobowski and Mirosław Kutyłowski. Derandomized PACE with
Mutual Authentication. In Network and System Security, pages 697–705,
Cham, 2019. Springer International Publishing.

[14] E. E. Trukhina N. N. Shenets. X-PACE: Modified Password Authen-
ticated Connection Establishment Protocol. AUTOMATIC CONTROL
AND COMPUTER SCIENCES, 51(8):972–977, 2017.

[15] Patryk Kozieł, Przemysław Kubiak, and Mirosław Kutyłowski. PACE
with Mutual Authentication – Towards an Upgraded eID in Europe. In
Computer Security – ESORICS 2021, pages 501–519. Springer Interna-
tional Publishing, 2021.

[16] Mirosław Kutyłowski, Przemysław Kubiak, Patryk Koziel, and Yanmei
Cao. Poster: eID in Europe - Password Authenticatio Revisited. In 2021
IFIP Networking Conference (IFIP Networking), pages 1–3, 2021.

[17] Feng Bao, Robert H. Deng, and HuaFei Zhu. Variations of Diffie-Hellman
Problem. In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors,
Information and Communications Security, pages 301–312, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[18] Ivan Damgård. Towards Practical Public Key Systems Secure Against
Chosen Ciphertext Attacks. In Joan Feigenbaum, editor, Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, volume 576, pages 445–456. Springer, 1991.

[19] Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent Assump-
tions and 3-Round Zero-Knowledge Protocols. Cryptology ePrint Archive,
Report 2004/008, 2004.

68

[20] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards.
In Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89
Proceedings, pages 239–252, New York, NY, 1990. Springer New York.

[21] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication. Technical Report 800-38B, NIST,
2005.

[22] The European Parliament and the Council of the European Union. REG-
ULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union, 119(1), 2016.

69

