COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo i Geologia

specjalność/specialisation: Entrepreneurship, Innovation and Technology Integration in Mining

Track LUT – WUST

Semester 1 LUT

Lappeenranta-Lahti University of Technology LUT

Course title	Modelling of Unit Operations W06GIG-SM3056G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), laboratory: 3h/week (3 ECTS), blended learning	Student whole working time (hours)	125
Description of content	Modeling and parameter estimation using Matlab in chemical engineering and applied mathematics in general. The course presents some of the most common unit operations of chemical engineering, including batch reactors, continuously stirred tank reactors (CSTRs), both in dynamic and steady-state; tubular plug flow reactors, flash distillations, and modelling of temperature dependence of reactions and elements of heat transfer. The models are limited to ones that do not require solving partial differential equations (PDEs).		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - Matlab software usage in chemical engineering and applied mathematics, - most common unit operations of chemical engineering, including batch reactors, continuously stirred tank reactors (CSTRs), both in dynamic and steady-state - tubular plug flow reactors, - flash distillations, and modelling of the temperature dependence of reactions and elements of heat transfer, - basic chemical processes in chemical engineering. Skills Upon completion of the course, a student is able to - describe steady-state and transient unit operations with mathematical models, - validate models and estimate their parameters from experimental data, - apply models in process development and design, including sizing, optimization, and scale-up,		
Assessment methods and criteria	 - use mathematical and simulation software. Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Half of the grade for the laboratory is decided by the share of exercises completed by the student, and the other half by the quality of the lab work reports and homework assignments. The course is built around practical laboratory work solved individually or in groups by the students. The lectures constitute the theoretical support for assignment reports and written quizzes during the semester. The lecture i.e. the ability to explain the unit operations of chemical engineering is checked with quizzes during the semester. The practical classes: the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the group. 		
Recommended readings	Lecture notes and links to supplementary material are given in Moodle(Sisu student tools https://sisu.lut.fi/student/courseunit/otm); selected examples from international literature. Online material.		
TU Coordinator	Arto Laari, <u>Arto.Laari@lut.fi</u> ; Miracle Amadi, <u>Mira</u> <u>Esko.Lahdenpera@lut.fi</u> ,	<u>cle.Amadi@lut.fi</u> ; Tuomas Sihvonen, <u>Tuo</u>	omas.Sihvonen@lut.fi, Esko Lahdenperä,

Course title	Advanced Process Design W06GIG-SM3057G		
European Credits (ECTS)	5	Time (hours) given to the students	75
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (1 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content	Chemical and physical properties, determination of chemical components in process simulation; Property estimation methods; Chemical process material and energy balances, sizing, costing, and economical evaluation; Process performance analysis, process evaluation, and optimization; Chemical process synthesis; Biorefinery process synthesis: objectives and steps; Synthesis of separation sequences; Energy integration in process design.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - what kind of design activities are required during the process design, - and understands how product design and process design are related, - what is the design of processes: what it is aiming at and what are the steps, - and understands the role of modern simulation packages during the process life cycle. Skills Upon completion of the course, a student is able to: - apply simulation packages to support every step during process design, - validate models and estimate their parameters from experimental data, - apply models in process development and design.		
Assessment methods and criteria	Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Group work and reports 50%, individual assignments 50%. The lecture: the ability to explain activities required during the process design is checked with quizzes during the semester. The practical classes: the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the group.		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>). Online material.		
TU Coordinator	Kristian Melin, <u>Kristian.Melin@lut.fi</u> ; Nima Rezaei, <u>Nima.Rezaei@lut.fi</u> ; Tuomas Koiranen, <u>Tuomas.Koiranen@lut.fi</u> ,		

Course title	Research Methodology W06GIG-SM3058G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content	This course includes the use of scientific databases to find research results and knowledge including critical source assessment. The students make individual or group workshops on selected research topics where they find knowledge of what is known today and based on that formulate the knowledge gap and relevant objectives for the research they have in mind, identify the relevant scientific methods, and make their research plan to study a pre-selected topic. They understand how to process the results to find the facts. The presentation of the research results in a scientifically credible way is part of the course.		
Intended Learning Outcomes	credible way is part of the course. Knowledge Upon completion of the course, a student knows - the use of scientific databases to find research results and the current knowledge, - and understands critical source assessment, - how to process the results to find the facts, - the basics of data analysis. Skills Upon completion of the course, a student is able to: - search for scientific knowledge - assess the reliability of different sources of knowledge and data, - make a research plan to reach the objectives, - make a design of experiments, - do the data analysis, - present the research results, - organize and carry out the workshop,		
Assessment methods and criteria	 - write a scientific report or article. Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. Group work and reports 50%, individual assignments 50%. The lecture: the ability to explain activities required during the process design is checked with quizzes during the semester. The practical classes: the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the group. 		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>). Online material. Lecture notes and links to supplementary material are given in Moodle; selected examples from international literature.		
TU Coordinator	Marja Talikka, <u>Marja.Talikka@lut.fi</u> ; Nima Rezaei, <u>Nima.Rezaei@lut.fi</u> ,		

Course title	Circular Economy for Materials Processing W06GIG-SM3059G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 1h/week (1 ECTS), blended learning	Student whole working time (hours)	125
Description of content	Circular economy and resource efficiency are important aspects of sustainable development within the industry. The course aim is that students gain the skills needed to ensure that circular economy concepts become adopted into the design, development and operation of mainly metal production processes, during their application, end-of-life stage and recycling. Students carry out project work in groups. The topics are from industry, for example, side stream processing in the metal and steel producing industry, circular economy, and eco-design. Different aspects are emphasized in different projects, depending on the topic.		
Intended Learning Outcomes	 Knowledge Upon completion of the course, a student knows and understands basic concepts of circular economy, materials flow (raw materials, processing, manufacturing until end-of-life recycling and re-usage), issues and drivers for changes, and recognizes the impacts (environmental, economic and social) of the current practice of materials processing from a sustainability aspect. Skills Upon completion of the course, a student is able to: create new business opportunities to re-enter materials into the circular economy, apply processing technologies to accelerate the implementation during business creation, recognize the impacts (environmental, economic and social) of the current practice of materials processing from a sustainability aspect, work as a team member in a development project. 		
Assessment methods and criteria	Homework and class assignments as well as quizzes passed. Moodle exam (lecture). Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. The project class: group project work and meetings, and reports 70%, quizzes 30%. The seminar: presentation of the project work. The lecture: the ability to explain basic concepts of circular economy is checked with exam quizzes. The practical classes: the ability to adopt circular economy concepts into the design, development and operation of mainly metal production processes.		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm-</u>). Online material. Lecture notes and links to supplementary material are given in Moodle; selected examples from international literature, and data from the industry.		
TU Coordinator	Miia John, <u>Miia.John@lut.fi</u> ,		

Course title	Technology and Innovation Management: Introduction W06GIG-SM3060G			
European Credits (ECTS)	3	Time (hours) given to the students	45	
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), classes: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75	
Description of content			y and innovation strategy. Innovation networks. Decision- Innovation performance and learning. Sustainability and	
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - various methods of technology and innovation strategy, - the process of creation of new products and services, - and identifies as well as understands the main innovation and technology management concepts and their linkages to the innovation process, innovation and technology strategy and innovative organization management, - sustainability and innovation basics. Upon completion of the course, a student is able to: - analyze and design technology and innovation strategy of a company, - analyze the usability of various methods of innovation and technology, - recognize and apply the main innovation and technology management concepts to innovative organization management.			
Assessment methods and criteria	Homework and class assignments passed. Self-learning based on online materials and online assignments. Online exam (lecture). Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. The project class: group project work and meetings, and reports 100%). The lecture: the ability to explain basic concepts of innovation as a core business process. The practical classes: the ability to recognize and apply the main innovation and technology management concepts to innovative organization management.			
Recommended readings	Joe Tidd and John Bessant. Managing Innovation – Integrating Technological, Market and Organizational Change, 6th ed. (2018), (including e-learning material), or previous editions (2009, 2013). Online material. Moodle (Sisu student tools https://sisu.lut.fi/student/courseunit/otm).			
TU Coordinator	Ville Ojanen, <u>ville.ojanen@lut.fi</u> ,			

Course title	Solid-Liquid Separation W06GIG-SM3061G		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1ECTS), classes: 1h/week (2 ECTS), lab: 2h/week (2 ECTS), blended learning, Distance learning is possible, except for laboratory work measurements	Student whole working time (hours)	100
Description of content	The topics are as follows: Fundamentals of solid-I design and modelling of filters and scale-up. Filte		ration of filters, cake formation and washing, deliquoring, n in filtration test work.
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - the fundamental phenomena in solid-liquid separation, - different methods and equipment used for solid-liquid separation, - different filter media used in filtration, Skills Upon completion of the course, a student is able to: - select and size suitable equipment for separation processes based on suspension properties and data from laboratory tests, - explain the effects of the characteristics of the solid material and the liquid on the separation and post-treatment processes, - make a preliminary selection of a medium for different cases, - perform an experimental test on a laboratory scale,		
Assessment methods and criteria	 write a scientific report. Homework, laboratory work plus report, literature review and class assignments passed. Moodle exam. Grades: 0-5. Lecture exam 60%, laboratory work and report 20%, literature review 20%. The lecture: the ability to explain the fundamental phenomena, methods, and equipment in solid-liquid separation is checked during the Moodle Exam. The practical classes: the ability to perform an experimental test on a laboratory scale and write a scientific report. 		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>). Online material.		
TU Coordinator	Antti Häkkinen, <u>Antti.Hakkinen@lut.fi</u> ,		

ELECTIVE SUBJECTS BLOCK I

Lappeenranta-Lahti University of Technology LUT

Course title	Artificial Inventiveness W06GIG-SM3070		
European Credits (ECTS)	3 Time (hours) given to the students 45		
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	It is an online course for all interested in creativity, in systematic tools of ideation. The modules contain basic TRIZ (Theory for Inventive Problem Solving) tools for idea generation. Have you ever thought about why it is hard to find a new idea sometimes? How to analyze the situation where you need an out of box solution? How to deliver the list of concepts to improve a product or a service? This self-paced course includes the following modules: Introduction, Function Definition, Ideal Final Result, Function-oriented Search, and Contradictions. This course is a brief introduction to creativity and idea generation with elements of theory, everyday life examples, and tests for self-check.		
Intended Intended Learning Outcomes	Upon completion of the course, a student is able to - identify inventive problems in the complex process of product development - apply several tools for systematic idea generation (Function modelling, Ideal final result, Function-oriented search, Contradictions analysis) - act step-by-step when creative and out-of-box ideas are needed		
Assessment methods and criteria	Video lectures and examples, assessment tests, and discussion forums. Homework and class assignments as well as quizzes passed. No exam. Grades: fail/pass. The course is built around practical problems solved individually. The lectures constitute the theoretical support for assignment reports and written quizzes during the semester.		
Recommended readings	Lecture notes and links to supplementary material are given in Moodle. Course videos are available on the CEPHEI platform.		
TU Coordinator	Anastasia Chakir, <u>Anastasia.Chakir@lut.fi</u> , Leonid Chechurin, <u>Leonid.Chechurin@lut.fi</u> ,		

Course title	Entrepreneurship and Career Opportunities in Raw Material Sector W06GIG-SM3071		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Most industrial sectors are facing a new era that requires companies to transform their operations, create new business models, and foster a digital culture. In this context, the industry is facing a changing talent landscape, necessitating new skill sets in their workforce. Companies need to ensure that their staff are properly constituted to support this transformation process. During the course, entrepreneurship skills as well as innovative thinking for engineers will be trained using examples from the raw material sector. Case studies will bring the understanding of skills and competencies of the future workforce and current trends of the industrial revolution.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and recognizes entrepreneurship and career opportunities in the raw material sector, - and understands the primary sector of the raw materials value chain (geology, mining, mineral processing, metallurgy, and the environment). Skills Upon completion of the course, a student is able to - apply design thinking tools to enhance the creativity and innovation capacity of engineers, - develop skills and competencies to improve the mindset of entrepreneurship.		
Assessment methods and criteria	Online lectures, workshops, exercises, design thinking training, assignments, self-study. Homework and class assignments as well as quizzes passed. No exam. Grades: pass/fail. Group work and individual assignments. 25% lectures and quizzes, 25% training, 25% workshop, 25% self-study.		
Recommended readings	Lecture notes, and articles related to the topics.		
TU Coordinator	Maria Mamelkina, <u>Maria.Mamelkina@lut.fi</u> ,		

Course title	Sustainable Water Use W06GIG-SM3072		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	systems. Wastewater treatment in industry and m	nunicipalities. Sludge treatment. Producti	pply, water use in different sectors and loading of water on of drinking water. Protection of groundwater deposits. treatment methods. Reclaimed water.
Intended Learning Outcomes	Legislation on water quality and sludge treatment. Economic efficiency of different water treatment methods. Reclaimed water. Knowledge Upon completion of the course, a student knows - and defines the key concepts of water pollution control, - and recognizes the main factors affecting water footprint and sustainability of water use, - and explains the operation of essential process technology and equipment related to the control of water pollution, - and recognizes means to protect groundwater and reduce the environmental load of surface waters, - and understands methods for the environmentally friendly management of side-product flows from water treatment. Skills Upon completion of the course, a student is able to: - apply risk analysis methods related to water issues, - implement different methods for water footprint calculation, - compare and give grounded proposals for water treatment methods and processes applicable to different situations,		
Assessment methods and criteria	Lectures, tutorials and independent exercises. Moodle assignments. Moodle quizzes. Homework and class assignments as well as quizzes passed. Grades: 0-5. Moodle quizzes 50%, assignment 50%. Possibility to get a higher grade by giving a presentation of a scientific article - 5 points.		
Recommended readings	handouts provided by the lecturer, course environment on Moodle, Tchobanoglous: Wastewater Engineering. Treatment and Reuse, 2003		
TU Coordinator	Heli Kasurinen, Heli.Kasurinen@lut.fi, Mariia Zhaurova, Mariia.Zhaurova@lut.fi, Risto Soukka, Risto.Soukka@lut.fi,		

Semester 2 LUT

Lappeenranta-Lahti University of Technology LUT

Course title	Fluid Dynamics in Chemical Engineering W06GIG-SM3065G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), classes: 1h/week (1 ECTS), project 2 h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content			reactors. Theoretical basics of CFD (Computational Fluid CFD. COMSOL software for Multiphysics Simulation (FEM).
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - theoretical basics of CFD (Computational Fluid Dynamics) in chemical engineering, - design methods and scale-up of fluid mixers, rheology, and mixing effects in chemical reactors, - understand the basics of fluid rheology Skills Upon completion of the course, a student is able to - select, size and scale up different mixing devices (stirred tanks, in-line mixers) for blending and multiphase mixing (solid-liquid mixing, liquid and gas dispersions) based on short-cut design methods, - and can adapt the basics of fluid rheology to mixing design, - solve basic fluid mixing problems with CFD programs (COMSOL software), - calculate heat transfer, chemical reactions, laminar and turbulent flow in CFD,		
Assessment methods and criteria	 - analyze relevant cases in Power-to-X chemicals production technologies. Homework and class assignments as well as quizzes passed. No exam. Exercise-based lecturing (MS-TEAMS or classroom lecture), home exercises and quizzes 70 h (online in Moodle). 3 homework tasks (Lectures 1-3) will be about hands-on calculations (fluid mixing short-cut methods, engineering maths and calculations). 4 CFD exercises (Lectures 4-7), using COMSOL Multiphysics. Grades: 0-5. 50 % of the grade is from homework (each homework grading 0-100 %, 25 % of the Quizzes (each weekly Quiz 0-100 %), 25 % of Project work. The overall grade for passing the course should be at least 1.0. The course is built around practical calculation work solved individually by the students. The lectures constitute the theoretical support for assignment reports and written quizzes during the semester. 		
Recommended readings	Lecture materials in Moodle. Mixing Device Design Perry's Chemical Engineers' Handbook, Perry, R.H., Green, D.W., Maloney J.O. (Eds.), McGraw-Hill, New York; Handbook of Industrial Mixing, Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M., (Edits.), John Wiley & Sons, USA, 2004; EKATO-Handbook of Mixing Technology, EKATO Rühr- und Mischtechnik GmbH, Schopfheim; Zlokarnik, M., Stirring: Theory and Practice, Wiley- VCH, Weinheim, 2001; CFD Material Tu, J., Yeoh, G. H. & Liu, C. (2013). Computational fluid dynamics: A practical approach (2nd ed.). Amsterdam; Boston: Elsevier/Butterworth-		

	Heinemann (e-book);		
	An introduction to computational Fluid Dynamics–The finite volume method, 2nd Edition, H. K. Versteeg and W. Malalasekera, 2007;		
	An introduction to computational Fluid Dynamics – The finite volume method, Second Edition, H. K. Versteeg and W. Malalasekera, 2007 (book);		
	Comsol Multiphysics User's Guide (inside Software);		
	www.cfd-online.com;		
	www.bakker.org;		
TU Coordinator	Tuomas Koiranen, <u>Tuomas.Koiranen@lut.fi</u> ,		

Course title	Process Intensification W06GIG-SM3066G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), classes: 1h/week (2 ECTS), seminar: 1h/week (1 ECTS), blended learning	Student whole working time (hours)	125
Description of content	The course covers different process intensification methods and their theoretical background. Teaching involves lectures, assignments, meetings and seminars. The main work will be carried out as a process design project assignment where students will work in teams aiming to intensify a process given by the teacher. Each team will write a report and present their results in the seminar. The topics focus mainly on the intensification of different Power-to-X processes, such as the production of E-fuels, carbon-neutral products, energy storage etc.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and explains intensified reactors and separation equipment, combination of reaction and separation, hybrid separation, alternative energy sources, transformation of batch processes to continuous ones, - and explains the principles and goals of process intensification, - and recognizes possibilities to intensify processes and apply novel technology to existing processes (the production of E-fuels, carbon-neutral products, energy storage, etc.), - and understands how product design and process design are related, - and describes the advantages of process intensification and typical intensification methods. Skills Upon completion of the course, a student is able to: - apply intensified reactors and separation equipment, the combination of reaction and separation, hybrid separation, alternative energy sources, the transformation of batch processes to continuous ones, - arout on the course, a student is able to: - apply intensified reactors and separation equipment, the combination of reaction and separation, hybrid separation, alternative energy sources, the transformation of batch processes to continuous ones, - carry out process design to intensify a process given by the teacher, - write a report and present their results,		
Assessment methods and criteria	Lectures, seminars and exercises passed. Group work, self-studies, preparation for the seminars and the examinations. Grades: 0-5. Written examination 50%, seminar report and exercises 50%. The lecture: the ability to explain different process intensification methods and their theoretical background. The practical classes: the ability to carry out a process design project assignment in teams aiming to intensify a process given by the teacher. The ability to lead the seminar and produce the presentation.		
Recommended readings	Lecture notes. Online material.		
TU Coordinator	Arto Laari, <u>Arto.Laari@lut.fi</u> ,		

Course title	Current Issues in Enabling Technologies for Circular Economy W06GIG-SM3067G		
European Credits (ECTS)	CTS)5Time (hours) given to the students60		60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (2 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content	The course will introduce the most important processing technologies that enable the implementation of a circular economy, such as recycling and recovery as well as separation and purification technologies. The approach of the course is mainly solution-based and thus aims to show practical examples of the utilization of different technologies in solving different kinds of challenges in the circular economy. A special emphasis is laid on topical themes, such as recycling and upgrading of plastic, electric, packaging and textile waste as well as on the production of biofuels. The course will also introduce the concept of ecodesign as a tool to manage the complex value chains in the circular economy.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands basic concepts of circular economy (raw materials, processing, manufacturing until end-of-life recycling and reuse) and the drivers for change from linear to circular economy, - and understands the processing technologies of materials in the context of the circular economy. Skills Upon completion of the course, a student is able to: - evaluate the processing technologies of materials in the context of circular economy, - recognize and compare impacts (environmental, economic and social) of processing technologies when assessing the current (linear) practice of material processing vs circular value chains,		
Assessment methods and criteria	 - apply the transferable skills of life cycle thinking (ecodesign) to evaluate processing technologies in circular value chains. The students will prepare a team portfolio on one specific subject during this course that will be assessed. In the preparation and assessment of the portfolios peer and self-evaluation will be utilized. In addition, students will answer individually two compulsory questions (at the beginning and the end of the course). Grades: 0-5. There is no exam. The students will prepare in teams a short pitching video and a report on one specific subject during this course that will be assessed. In the assessment peer and self-evaluation will be utilized. In addition, students will prepare in teams a short pitching video and a report on one specific subject during this course that will be assessed. In the assessment peer and self-evaluation will be utilized. In addition, the course material includes compulsory or voluntary guizzes or guestions related to the topic at hand. 		
Recommended readings	Course material is available in Moodle and consists of video lectures and scientific and topical articles. The course material and the guidance to supplementary material are provided in connection with the different topics.		
TU Coordinator	Miia John, <u>Miia.John@lut.fi</u> ,		

Course title	Start-ups and Venture Formation W06GIG-SM3068G		
European Credits (ECTS)	6	Time (hours) given to the students	75
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	150
Description of content	Entrepreneurship theory and process, business ideas and opportunities, business models, entrepreneurial teams, start-ups and spin-offs, start-up process and development stages, start-up strategies and sequencing activities, start-up financing, testing of business ideas, business plans, and cases.		
Intended Learning Outcomes	Upon completion of the course, a student knows - business start-up theories and processes. Skills Upon completion of the course, a student is able to: - critically analyse different business ventures and is skilled in testing business ideas and models, - analyze business cases and prepare a business plan with its calculations as well as pitch the plan successfully, - work as a team member in a development project.		
Assessment methods and criteria	Individual assignments and preparing for Moodle exam, independent work. Group work. Grades 0-5. Evaluation 0-100 points. Individual assignments 60%, group work 30% (written business plan 20%, oral pitching 10%), Moodle exam 10%.		
Recommended readings	Barringer, B.R. & Ireland, R.D. (2006 or later edition). Entrepreneurship: successfully launching new ventures. Pearson Prentice Hall. Other materials will be distributed during the course.		
TU Coordinator	Noora Heino, <u>Noora.Heino@lut.fi</u> ,		

Course title	Academic Entrepreneurship W06GIG-SM3069G			
European Credits (ECTS)	6 Time (hours) given to the students 75		75	
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 2h/week (2 ECTS), blended Student whole working time (hours) 150			
Description of content	 The central concepts of entrepreneurship, The entrepreneurial mindset, motivations, resources and opportunity recognition, The anatomy of the venturing process, Commercializing academic skills and research activities, Communicating entrepreneurial ventures 			
Intended Learning Outcomes	The course aims to develop the student's awareness of their entrepreneurial mindset. The aims also include enhancing the students' understanding of entrepreneurial opportunities and routes for grasping them. Furthermore, the students learn new ways to commercialize their knowledge, skills and research activities.			
Assessment methods and criteria	Lectures and teamwork, tests and exercises, homework exercises, practising presentations of business cases, study visits or visitor lecturers. Grades: 0-5. 1-5 course assignments and an exam. Moodle assignments, individual and group assignments.			
Recommended readings	Shane, Scott (2003) A general theory of entrepreneurship. The individual-opportunity nexus. Edward Elgar. Other literature is to be announced during the course (including e-learning material). Online material.			
TU Coordinator	Tuuli Ikäheimonen, <u>Tuuli.Ikaheimonen@lut.fi</u> ,			

ELECTIVE SUBJECTS BLOCK II

Lappeenranta-Lahti University of Technology LUT

Course title	Intelligent Product-Service Systems W06GIG-SM3073		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Product-Service Systems (PSS) and Product Lifecycle Management (PLM) trends and digital transformation. Different views on a product/service: structures – processes – lifecycles – data/information, challenges with lifecycle management, requirements management, and systems engineering. Product information modeling, change management, and configuration management through lifecycle (CLM). IoT-based data services for sustainability, features, and functionalities of PSS/PLM systems. PLM project and demos of systems utilization. Future of PSS in various industries.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands trends of product-service systems and digital transformation affecting manufacturing business, - and defines, and explains the concepts related to product data management and product life cycle management, - and recognizes the company's product and service processes and understands their interaction with the company's overall operations Skills Upon completion of the course, a student is able to - compare PLM and ERP systems' characteristics, technical features, and managerial functions and is able to see their role in product development and business management.		
Assessment methods and criteria	Lectures, project meetings, and intensive studies. Course assignments and quizzes. Grades 0-5. Quizzes 60 %, project assignment and participation 40 %.		
Recommended readings	Journal articles and lecture material. Sääksvuori-Immonen: Product Lifecycle Management, Springer 2008.		
TU Coordinator	Ilkka Donoghue, <u>Ilkka.Donoghue@lut.fi</u> , Lea Hannola, <u>Lea.Hannola@lut.fi</u> ,		

Course title	Inventive Product Design and Advanced TRIZ W06GIG-SM3074		
European Credits (ECTS)	3Time (hours) given to the students45		45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Solving) tools for idea generation and other analy hard to find an idea that can save a product, pro- deliver systematically the list of patentable conce an IP strategy? The course includes the followin Biomimetics, Contradictions, Function Modelling Design, Design for Manufacturing and Assembly technology troubleshooting, and inventive solution	rtical tools that have proven their efficient oject, or business? How to analyze the si- opts to improve a product or a service? Ho g modules: Introduction, Basics of Pate g and Ttrimming, Cause-Effect Chain Ana , Conclusion. There are about 20 case si- ons, many of which are coming from succ	tain basic and modern TRIZ (Theory for Inventive Problem ncy in the industry. Have you ever thought about why it is ituation where you need an out of box solution? How to ow to circumvent the patents of competitors and develop nting, Function Definition, Function-oriented Search and lysis, Trends of Engineering System Evolution, Axiomatic tudies and 100+ examples of smart new product design, sess and failure stories of technological giants. Most cases work and what is inside a refrigeratorexcept food plus
Intended Learning Outcomes		ies and practical skills, from the description and multi-disciplinary approach to design and its instruments, cast technology evolution). to e on demand,	nods with a focus on design creativity and innovation. The ive models for analyzing design processes and behaviours gn.
Assessment methods and criteria	Lectures and project meetings, group work, individual work, and studies. Online lectures, exercises, assignments, self-study. Homework and class assignments passed. No exam. Grades: 0-5. Project work is 50% and individual work is 50%.		
Recommended readings	Study materials will be provided during the course, and open-access Internet resources are actively used.		
TU Coordinator	Anastasia Chakir, <u>Anastasia.Chakir@lut.fi</u> , Leonid	Chechurin, <u>Leonid.Chechurin@lut.fi</u> ,	

Course title	Knowledge Discovery and Process Data Analysis W06GIG-SM3075		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Knowledge discovery refers to the overall process of discovering useful knowledge from data. The knowledge discovery process is interactive and iterative and involves several steps starting from studying the application domain and ending with to use of the information discovered. Process data analysis can be part of this process. Fundamental concepts - such as reliability of data, preprocessing (e.g., de-noising, handling missing data, and scaling strategy), data reduction, choosing a methodology, validation, modelling, etc - will be addressed in lectures, Moodle assignments, and discussions. Project work will be carried out in small groups that will define their working methodology. The course is suitable for distance learning.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - have acquired basic information on the main concept of the knowledge discovery process concerning industrial data. Skills Upon completion of the course, a student is able to: - be aware of the effect of digitalization and automation on the amount, nature, and quality of data from the chemical engineering point of view, - apply specified methods and methodology to data, - apply management and collaboration skills in the implementation of project work.		
Assessment methods and criteria	Online lectures, tutorials, online discussions, peer feedback, Moodle quizzes, and weekly assignments. Project work. Grades: 0-5. Project work 39 %, assignments 37 %, discussions in Moodle forum 24 %. Homework and class assignments as well as quizzes passed.		
Recommended readings	Tutorial videos, and online material distributed or announced in Moodle.		
TU Coordinator	Satu-Pia Reinikainen, <u>Satu-Pia.Reinikainen@lut.fi</u> , Tuomas Sihvone, <u>Tuomas.Sihvonen@lut.fi</u> ,		

Course title	Development of New Sustainable Products and Solutions W06GIG-SM3076			
European Credits (ECTS)	3 Time (hours) given to the students 45			
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Veek (2 Student whole working time (hours) 75		
Description of content	The course contains an introduction with an overview of sustainable biobased products, bio-based barrier technologies for packaging applications, Biobased Hygenic Products and Solutions, Biomaterials for Printing, and Biobased tall oil products. and Biomaterials in food application. Fundamentals about biomaterial design, modification, synthesis, and use of fibers, cellulose (derivatives), and lignin in various products. Chemical and mechanical modification, separation methods, mixing and drying methods. Product specification requirements and characterization methods. In addition, the course contains an interesting topic of group and individual assignments related to modern trends of sustainable biobased products and solutions.			
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - various types of new sustainable product development and solutions, - tailoring of functionalities of biobased polymers to meet functionality needed for specific applications, - various renewable resources (biomaterials, biochemicals, cellulose, lignin, starch, carbohydrates, etc) based on sustainable product development and their applications, - material and molecular design and its role in product performance. Upon completion of the course, a student is able to: - use of forest resources and forest-derived biomaterials for food, pharmaceuticals, composites, industry, and other applications.			
Assessment methods and criteria	Mostly self-study and topic-based exercises, topic-based group, and individual assignments. Online lectures, tutorials, online discussions, peer feedback, Moodle quizzes, and weekly assignments. Project work. Grades: 0-5. Exercises (20%), group assignment (30%), video presentation of group assignment (20%) and individual assignment (30%).			
Recommended readings	Lecture material will be distributed via Moodle.			
TU Coordinator	Rama Layek, <u>Rama.Layek@lut.fi</u> ,			

Semester 3 WUST

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Wspomagane komputerowo modelowanie geologiczne i geostatystyka.)

Name of subject in English: Computer-Aided Geological Modelling and Geostatistics Main field of study: Mining and Geology

Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management,

Mineral Resource Exploration,

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3002

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting	Examination	crediting with	Examination	Examination
	with grade	/ crediting	grade	/ crediting	/ crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS			3		
points for practical classes (P)					
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

C1 Developing basic skills in computer modelling of 3-D objects.

C2 Introduction of the principles of digital modelling of typical geological structures.

C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,

PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU_U01 Application of relevant estimation methods for quality modelling of a deposit

PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)

PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT		
	Lecture	Number of hours	
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2	
Lec 2	Geology of the seam.	2	
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2	
Lec 4	Spatial distribution of samples values. Regionalized variable.	2	
Lec 5	BLUE Estimator of the mean value: Kriging.	2	
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2	
Lec 7	Reserves modelling and evaluation.	2	
Lec 8	Mineral resources. International reporting. The JORC Code	1	
	Total hours	15	

	Laboratory	Number of hours
La1	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La4	Construction of the structural wireframe model of stratigraphy layers.	3
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3

La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3
	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

TEACHING TOOLS USED

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes		
forming during	code	achievement		
semester), P –				
concluding (at semester				
end)				
F1	PEU_W01,	Lecture grade on the basis of the written		
	PEU_W02	examination		
F2	PEU_W03,	Laboratory task assessment: "structural modelling		
		assessment		
F3	PEU_U01	Laboratory task assessment: "geostatistical		
		modelling"		
F4	PEU_U02,	Laboratory task assessment: "reserves		
	PEU_U03	evaluation".		
P average of F1, F2, F3, F4				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik

Dr inż. Witold Kawalec

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Cyfrowa kopalnia Name in English: Digital Mine Main field of study: Mining and Geology Specialization: Mining Engineering, Geotechnical and Environmental Engineering, Mineral Resource Exploration, Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time

Kind of subject: obligatory Subject code: W06GIG-SM3006

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Computer literacy skills

2. Basic knowledge related to Mining Engineering and Mineral Processing

3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems.

Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.

PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT		
	Number of hours		
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2	
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2	
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2	
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2	
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2	
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1	
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2	
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2	
	Total hours	15	

Form of classes - laboratory		Number of hours
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data.	3
	Introduction to ARDUINO	
Lab2	Basic sensors for physical parameters measurements	3
Lab3	Measurements in Labview	3
Lab4	Analysis and Visualization in Labview	3
Lab5	Control in labview	3
	Total hours	15

TEACHING TOOLS USED

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Geofizyka inżynierska Name of subject in English: Engineering Geophysics Main field of study: Mining and Geology Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management,

Mineral Resource Exploration,

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3004

Group of courses No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			50	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			2	
including number of ECTS points for practical classes (P)				2	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)				0,9	

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. has knowledge of fundamentals of applied geophysics, physics and geology.

2. knows fundamentals of soil and rock mechanics.

3. is able to use MS Office software.

4. is able to work in a team.

SUBJECT OBJECTIVES

C1 familiarize with physical phenomena in geosphere of the Earth

C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

C4 acquisition of skills to plan geophysical field surveying and to interpret its results.

C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems. relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

Lecture		
Lec 1	Physical properties of rocks. Inter-relationships between the various subdisciplines of applied geophysics. Overview of geophysical methods, their physical principles and applications. Methodology of geophysical surveying.	1
Lec 2	Engineering problems solved with geophysical surveying. Case studies.	2
Lec 3	Electrical resistivity methods. Tomography and VSE. IP method. Physical principles. Equipment. Methods of field surveying. Interpretation and application. Case studies.	
Lec 4	Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric methods. Physical principles. Methods of field surveying. Equipment. Interpretation and application. Case studies.	
Lec 5	GPR surveying. Physical principles. Methods of field surveying. Equipment. Interpretation and application. Case studies.	2
Lec 6	Seismic tomography. Seismic interferometry. Physical principles. Applications. Case studies.	2
Lec 7	Mine geophysics. Seismology. Seismic methods. Active and passive seismic tomography. Microgravimetry. Case studies.	2
Lec 8	Gravity and magnetic surveying. Equipment. Methods of field surveying. Interpretation and application. Case studies.	2
	Total hours	15

PROGRAMME CONTENT

	Project	Number of hours
Proj 1	One selected geophysical technique. Fundamentals and equipment. Field surveying	4
Proj 2	Processing and interpretation of field data.	3
Proj 3	Solving the geophysical problems.	8
	Total hours	15
	TEACHING TOOLS USED	
N1. N1	Lecture aided by presentation.	
N2.De	monstration.	
N3.Dis	scussion and consultations	
N3Cal	culations	

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Learning outcomes	Way of evaluating learning outcomes achievement
during semester), P –	code	
concluding (at semester		
end)		
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05	Grades are given for each of three project tasks
	K02	including tests and reports. The final grade P2 for
		the project course is the weighted average grade
		of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF	F GEOENGINEERING, MINING AND GEOLOGY				
	SUBJECT CARD				
Name in Polish: Zarządza					
Name in English: Environ	mental Management				
Faculty of studies (if applied	cable): Mining and Geology				
Specialisation (if applicable	e): Mining Engineering				
	Mineral Resource Exploration				
	Entrepreneurship, Innovation and Technology Integration				
	in Mining				
Level and form of studies:	,				
Subject Type:	Obligatory				
Subject code:	W06GIG-SM3001				
Group of courses:	No				

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the University (ZZU)	30				15
Number of hours of total student workload (CNPS)	50				25
Form of crediting	Crediting with grade				Crediting with grade
For a group of courses mark (X) for the final course					
Number of ECTS points	2				1
including number of ECTS points for practical (P) classes					1
including number of ECTS points for direct teacher-student contact (BU) classes	1,3				0,8

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.Basic knowledge of issues related to ecology and environmental protection.

SUBJECT OBJECTIVES

- C1. To get students acquainted with systems of environmental management both in Poland and other EU countries.
- C2. To prepare students for rational and sustainable management of environmental components.
- C3. To get students acquainted with the genesis of environmental management systems in Poland, review and standardization of environmental management systems.
- C4. To get students acquainted with benefits and obligations arising from the implementation

of an environmental management system.

- C5. To present the relationship between an environmental management system and a quality management system.
- C6. To provide an overview of informative methods of supporting the implementation of environmental management systems (possibilities and practical usage of computerised systems of environmental information management, decision support in the area of environmental protection and choice of methods and tools used to support the implementation of an environmental management system).

SUBJECT LEARNING OUTCOMES

relating to knowledge:

- PEU_W01 Possesses systematic knowledge of the origins of environmental management systems, review and standardization of environmental management systems.
- PEU_W02 Possesses knowledge of the possibilities and practical applications of tools supporting the implementation of the environmental management system.
- PEU_W03 knows basic formal and legal regulations regarding the implementation and functioning of management systems, tools and instruments of environmental management.
- PEU_W04 Possesses knowledge for rational and sustainable management of environmental components.

relating to skills:

- PEU_U01 Possesses linguistic resources appropriate for specialised language and is able to use it in linguistic activities in order to communicate in the professional environment regarding the field of studies; is able to obtain necessary information and interpret and critically evaluate it, reads and understands professional literature, is able to formulate and comprehensively justify opinions, provide presentations of problems related to a studied discipline and also participate in scientific and professional discussions.
- PEU_U02 Is able to use methods and appropriate IT tools in system management of environmental components.

relating to social competencies:

PEU_K01 - Is able to think and act in a creative and enterprising way.

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec.1	 Basic concepts: Environment, characteristics of individual elements of the environment Characteristics of hazards for the natural environment which are a result of human activities Environmental Management The Environmental Management System 	2
Lec.2	Legal aspects of environmental management	2
Lec.3	History and development of environmental management systems	2
Lec.4	Environmental management systems:	6

Lec.13 Lec.14 Lec.14 Lec.15	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system Environmental management systems in practice Total hours	2 1 3 30
Lec.13 Lec.14 Lec.14 Lec.15	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system Environmental management systems in practice	1
Lec.13 Lec.14 Lec.14	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system	1
Lec.13	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system	2
1	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in	
Lec.11 - Lec.12 - S	IT systems supporting environmental management: - Decision Support Systems - Expert systems - Simulation Models - Geographical Information Systems	4
Lec.9 J Lec.10	Design of an environmental management system	4
Lec.7 Lec.8	 Basic tools of environmental management: Legal and administrative instruments (laws, standards, licenses and permits) Economic instruments (fees, taxes, deposit and refund systems, transferable rights, subsidies, liens, fines) Instruments (techniques) social impact (ecological education, ecological propaganda) Examples of basic tools of environmental management: Procedure for an assessment of environmental impact Integrated permits Audits Safety Reports Monitoring of the Environment 	4
Lec.6 (] - - - - - (() - - - - - - - - () - - - -	 Business Charter for Sustainable Development of the International Chamber of Commerce - ICC Business Charter for Sustainable Development EMAS – Directive of the European Community Commission regarding the approval for voluntary participation by organisations in a community eco-management and eco-audit scheme CP - Clean Production BS 7750 - Specification for Environmental Management Systems ISO 9000 ISO 14000 ISO 14001 Characteristics of selected Environmental Management Systems. The benefits of the implementation of the EMS for a company. Experiences of Polish enterprises from the implementation of EMS. Process of implementation of the selected EMS in a company with an example of EMAS. 	

Se1	The scope and form of an essay and presentation, terms of crediting	
	and literature.	2
	Assignment of seminar topics for individual students.	
Se2	Student speeches with the use of multimedia presentations on the	
Se3	following issues: environmental management systems - specified	
Se4	examples, formal and legal conditions of administrative procedures	
Se5	(eg. receiving a decision on the environmental conditions of a project,	
Se6	an integrated decision etc.), life-cycle analysis of a selected company;	
Se7	fees, taxes, surcharges and environmental deposits; litter management	13
Se8	systems, mineral resource management, renewable energy sources,	
	selected monitoring systems, the institution of environmental	
	protection in Poland and in the world and also alternative energy	
	sources, etc.	
	Group discussion on the content and form of speeches.	
	Total hours	15

TEACHING TOOLS USED

- N1. Informative lecture with elements of problematic lectures.
- N2. Multimedia presentations
- N3. Didactic discussion during lectures and seminars
- N4. Preparation of an essay in the form of a report
- N5. Presentation of the essay
- N6. Consultations

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F – forming (during semester), P – concluding (at semester end)	Educational outcome number	Method of evaluating educational outcome achievement
F1- Grade from content value of an essay	PEU_U01 PEU_U02 PEU_K01	Text and graphical form of essay
F2 – Grade from presentation and issues included in an essay	PEU_U01 PEU_U02 PEU_K01	Presentation of essay
F3 – Grade from a written or oral test	PEU_W01 PEU_W02 PEU_W03 PEU_W04	Positive grade
final grade from the subj content of the essay, 25%		age, respectively: 35% for the substantive 40% for the lecture)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Wilson, G. A., & Bryant, R. L., 2021, Environmental management. Routledge.
- [2] Mitchell B., 2002, Resource and Environmental Management, Routledge, London
- [3] Lukasheh A. F., Droste R. L., Warith M. A., 2001, Review of Expert System (ES), Geographic Information System (GIS), Decision Support System (DSS), and their applications in landfill design and management. W: Waste Management & Research nr 19,
- [4] Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., & Ohlson, D., 2012, Structured decision making: a practical guide to environmental management choices. John Wiley & Sons.
- [5] Schaltegger, S., Burritt, R., & Petersen, H., 2017, An introduction to corporate environmental management: Striving for sustainability. Routledge.

SECONDARY LITERATURE

- [1] Uberoi, N. K., 2000, Environmental management. Excel Books India.
- [2] Krishna, I. M., Manickam, V., Shah, A., & Davergave, N., 2017, Environmental management: science and engineering for industry. Butterworth-Heinemann.
- [3] Wehrmeyer, W. (Ed.). 2017, Greening people: Human resources and environmental management. Routledge.
- [4] Websites given during lectures and seminars

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Justyna Woźniak

- Dr hab. Inz. Katarzyna Pactwa,
- Dr inż. Danuta Szyszka

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

Attachment no. 4. to the Program of Studies
FACULTY OF GEOENGINEERING, MINING AND GEOLOGY
SUBJECT CARD
Name of subject in Polish Bezpieczeństwo i higiena pracy
Name of subject in English: Occupational Health and Safety
Main field of study (if applicable): Górnictwo i geologia.
Specialization (if applicable): Mining Engineering,
Geotechnical and Environmental Engineering,
Mineral Resource Exploration
Entrepreneurship, Innovation and Technology
Integration in Mining
Profile: academic
Level and form of studies: 2nd level, full-time
Kind of subject: obligatory
Subject code W06GIG-SM3005
Group of courses No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15			15	
organized classes in					
University (ZZU)					
Number of hours of total	25			25	
student workload (CNPS)					
Form of crediting	crediting			crediting	
	with grade			with grade	
For group of courses mark					
(X) final course					
Number of ECTS points	1			1	
including number of ECTS				1	
points for practical classes (P)					
including number of ECTS	0,7			0,8	
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

O1: Develop comprehensive knowledge of mining safety and regulations: By the end of the course, students should be able to demonstrate a thorough understanding of local and international safety regulations governing the mining industry.

O2: Apply risk assessment and mitigation strategies in mining environments: Upon

completion of the course, students should be capable of conducting risk assessments, identifying hazards, and implementing effective mitigation strategies in diverse mining settings

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

 PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation PEU_W02 – Possesses knowledge of evaluating and determining the admissibility of

occupational risk.

PEU_W0 3 – Possesses general knowledge of corrective and preventive actions regardinghazards of typical work posts in the mining industry....

relating to skills:

PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typicalwork posts in the mining industry

PEU_U02 Is able to estimate and determine risk acceptability with methods according toSTER software and the RISC SCORE method.

PEU_U03 - Is able to plan corrective and preventive actions for hazards of typical work postsin the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment anddevelop its results and the required documentation in the form of a team report

	PROGRAMME CONTECT	
Ν	LECTURE	Number of hours
1	Introduction to Mining Safety and Health Regulations . The mining industry as one of the most hazardous occupations. Worldwide statistics. The evolution of safety standards in response to past failures or incidents. Overview of key regulations governing occupational safety and health in the mining industry. The importance of compliance with international safety standards. Definition of occupational hazards and risks. The key points of safety management system (SMS) in the mining industry.	3
2	Hazard Identification in Mining Operations. Exploration of hazard identification processes specific to mining environments. Analysis of common hazards in mining operations, including physical, chemical, and ergonomic hazards. Strategies for implementing control measures to mitigate identified hazards. Real-world examples of hazard control success stories in the mining industry.	3
3	Occupational Risk Assessment in Mining. Overview of the methods of identification, evaluation and management risks: Hazard Identification and Risk Assessment (HIRA), Job Safety Analysis (JSA) or Job Hazard Analysis (JHA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA). Occupational exposure limits and their importance.	3
4	Health risk assessment in the mining industry. Health risks associated with mining activities. Methods for assessing occupational health risks, including exposure monitoring and health surveillance. The long-term health implications of exposure to various substances in mining. Strategies for preventing and mitigating occupational health risks in mining.	3
5	Prevention and Control of Occupational Diseases in Mining. Overview of common occupational diseases prevalent in the mining	3

	industry. Discussion on the identification of exposure pathways and risk factors leading to occupational diseases. Strategies for prevention and control, including the use of personal protective equipment, ventilation systems, and monitoring techniques.	
Total		15
hours		

	PROJECT	
1	Developing a plan of safety management system (SMS) for roof bolting operation in underground mining.	3
2	Hazard identification for the haul truck operation in a surface mining operation.	3
3	Occupational risk assessment (by HIRA method) for the machine processing stonemason.	3
4	Occupational risk assessment (by JHA method) for manual processing stonemason.	3
5	Health risk assessment for the workplace of drilling operator.	3
Total hours		15

TEACHING TOOLS USED

1	Informative lectures
2	Multimedia presentations
3	Didactic discussions forums
4	Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning
forming during	code	outcomesachievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes
	PEU_U01- U03	(arithmeticaverage of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

1	ILO Guidelines on occupational safety and health management systems, ILO-OSH 2001.			
2	ILO code of practice: Safety and health in opencast mines. International Labour Office,			
	<u>Geneva, 2018</u>			
3.	Mansdorf S.Z. (Ed.).(2019) Handbook of Occupational Safety and Health. 3rd edn. Wiley.			
4.	Koradecka, D. (Ed.). (2010). Handbook of Occupational Safety and Health (1st ed.).			
	CRC Press. https://doi.org/10.1201/EBK1439806845			
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)				
Dr Iry	Dr Iryna Myshchenko: iryna.myshchenko@pwr.edu.pl			

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Modele Decyzyjne w Zarządzaniu Name in English: Operations Research Main field of study: Mining and Geology Specialization: Mining Engineering, Mineral Resource Exploration

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3000

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	25		50		
Form of crediting	crediting with grade		Crediting with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes			2		
of practical character (P)					
including number of ECTS					
points for direct teacher- student contact (BU) classes *delete as applicable	0,8		0,7		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

- 1. The student has basic knowledge of mining systems, technological and organizational systems in mining
- 2. The student has basic knowledge concerning economics in mining
- 3. The student has basic knowledge concerning mathematical analysis necessary to understand mathematical issues in science having engineering and economic character.
- 4. The student has basic knowledge and skills of using probability theory models and mathematical statistics
- 5. The student can use an Excel spreadsheet
- 6. The student understands the need and knows the possibilities of lifelong learning, improving professional, personal and social skills

SUBJECT OBJECTIVES

C1 Acquiring basic knowledge, taking into consideration its applicational aspects concerning mathematical decision models used in management:

C1.1 Linear programming models

C1.2 Models of planning, deposits and costs of projects

C1.3 Queuing system models

C1.4 Digital simulation models

C2. Learning of qualitative understanding, interpretation and quantitative analysis with applications of selected issues concerning optimisation

C2.1. Production systems:

C2.2. Transport issues

C2.3. Flows in networks.

C2.4. Project schedules

C2.5. Queuing system models

C3. Acquiring and consolidating the competencies of thinking and acting in a systematic way.

SUBJECT LEARNING OUTCOMES

Subject educational effect (knowledge)

PEU_W01 The student has knowledge concerning basic decision models in management

PEU_W02 The student has knowledge concerning line programming models.

PEU_W03 The student has knowledge concerning models for planning and monitoring of activities, deposits, and costs of projects

PEU_W04 The student has knowledge concerning queuing system models

PEU_W05 The student has knowledge concerning simulation models.

Subject educational effect (skills)

PEU_U01 The student has the ability to apply and interpret models using linear programming applications

PEU_U02 The student has the ability to apply and interpret models of planning and monitoring of activities, deposits, and costs of projects with the use of programming applications

PEU_U03 The student has the ability to apply and interpret queuing system models using programming applications

PEU_U04 The student has the ability to apply and interpret simulation models using programming applications

Subject educational effect (social)

PEU_K01 The student can think and act in a system, creative and enterprising way

PEU_K02 The student is able to identify and solve problems with the use of decision models and applications.

	PROGRAMME CONTENT				
	Form of classes - lecture Number of hours				
Le1	Rules of participation in the course.	1			
Le2	Introduction to modelling systems and optimization methods in decisions problems.	2			
Le3	Linear Programming – fundamental principles. The application of LP in transportation issues and resource utilization.	2			
Le4	Network programming (CPM and PERT). Planning and resource balancing in a project.	2			
Le5	Simulation of random processes. Monte Carlo method.	2			
Le6	Queueing theory and models of queueing systems.	2			
Le7	Phases of simulation project and model building.	2			
Le8	Digital twins – case analysis.	1			
Le9	Final test.	1			
	Total hours	15			

	Form of classes - laboratory	Number of hours
La1	Terms of participation in laboratory classes.	1
La2	Defining linear programming problems.	2
La3	Solving LP production optimization.	2
La4	Projects scheduling.	2
La5	Monte Carlo method. Models of queueing system.	2
La6	Simulation building: spatial layout and objects in the system.	2
La7	Processes defining in the model.	2
La8	Simulation experiments and results analysis.	2
	Total hours	15

TEACHING TOOLS USED

N1. Interactive lecture with slides and discussion

N2. Laboratory exercises with the use of IT applications - discussion concerning solutions

N3. Laboratory exercises - short written tests (calculating tasks, tests of knowledge)

N4. Office hours

N5. Own work - preparation for laboratory classes, solving additional tasks

N6. Own work - own literature studies.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Educational effect	Way of evaluating educational effect achievement
(during semester), P –	number	
concluding (at the end of		
semester)		
F1	PEU_U01-02	written test
F2	PEU_U03-04	report
P=(F1+F2)/2 (laboratory)	PEU_U01-04	
D (locture)	PEU_W01-05	witten test
P (lecture)	PEU_K01-02	written test

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Operations Research. Applications and Algorithms. 4th Edition. Winston W. Cengage Learning. 2022.
- [2] Operations Research. Theory and Applications, 6th Edition, Sharma J. K. Trinity Press.
- [3] Operations Research. Examples and Exercises. Kukuła i in. PWN. Warszawa. 2011.
- [4] Simulation Modeling Handbook. A Practical Approach. Chung Ch. A. CRC Press. 2004.

SECONDARY LITERATURE

- [1] Operations Research. An Introduction. 10th Edition. Taha H. A. Pearson Education Limited. 2017
- [2] Operations Research, Yadav S.R. Malik A. Oxford University Press. 2014.
- [3] A Review of Operations Research in Mine Planning. Newman et al. Interfaces 40(3). pp. 222-245. INFORMS. 2010.
- [4] Modelling and Simulation Fundamentals. Theoretical Underpinnings and Practical Domains. Sokolowski J. A. Banks C. M. John Wiley & Sons. 2010.
- [5] Discrete-Event System Simulation. Banks et al. Prentice-Hall. 2014.

<u>SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)</u> dr inż. Witold Kawalec, <u>witold.kawalec@pwr.edu.pl</u>; dr inż. Zbigniew Krysa, <u>zbigniew.krysa@pwr.edu.pl</u>

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Zarządzanie projektami, ocena ich opłacalności i ryzyka.. Name of subject in English: Project Management, Appraisal and Risk Evaluation. Main field of study: Mining and Geology

Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management

Mineral Resource Exploration

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time Kind of subject: obligatory

Subject code: W06GIG-SM3003G

Group of courses: Yes

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30	15	
Number of hours of total student workload (CNPS)	25		50	25	
Form of crediting			Examination		
For group of courses mark (X) final course	Х				
Number of ECTS points	4				
including number of ECTS points for practical classes (P)					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	t r				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

SUBJECT OBJECTIVES

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management.

Part A: The purpose of the course is

C1 to introduce basic concepts of Microeconomics and financial management

C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are

discussed. The issues of inflation and risk analysis are included. Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 knows the concepts of demand, supply and price elasticities, understands how they affect markets
- PEU_W02 knows the concepts of costs in economics and accounting, understands how they differ

PEU_W03 knows the main cost categories and cost accounting methods

- PEU_W04 has basic knowledge about the contents of financial statements
- PEU_W05 has basic knowledge about the method of ratio analysis of financial statements
- PEU_W06 knows and understands the concepts of Present Value and Future Value for simple cash flows and annuities.
- PEU_W07 knows the capital budgeting methods (NPV, IRR, PBP) and understand how to interpret the results

PEU_W08 has basic knowledge about the project risk evaluation methods

relating to skills:

PEU_U01 is able to analyze the causes and effects of demand and supply changes

- PEU_U02 is able to interpret and use information presented in financial statements also by means of ratio analysis
- PEU_U03 is able to use different cost analysis methods and make decisions based on the rsults
- PEU_U03 can calculate Future and Present value, also for annuities and solve simple calculation problems
- PEU_U04 is able to perform discounted cash flow analysis and draw conclusions based on the results
- PEU_U05 is able to carry out sensitivity analysis and scenario analysis using a financial model of an investment
- PEU_U06 is able to work out basic project documentation and initiate a project
- PEU_U07 is able to use basic methods of project management, monitoring and project risk management
- PEU_U08 is able to implement basic conflict management methods in a project group
- PEU_U09 is able to use basic group management methods, can undertake and shape the leadership position

relating to social competences:

PEU_K01 is able to think and act in a systematic, creative and entrepreneurial way

PEU_K02 has an established attitude of economic operation and decision-making based on available financial information and forecasts

	PROGRAMME CONTENT				
	Lecture	Number of hours			
Lec.1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2			
Lec.2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2			
Lec.3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2			
Lec.4	Variable and fixed costs. Break-even point. Cost-volume –profit analysis.	1			
Lec.5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2			
Lec.6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2			
Lec.7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2			
Lec.8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2			
	Total hours	15			

	Project	Number of hours
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3
	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3

Effective managerial behaviour from the different contexts.	
Total hours	15

	Laboratory	Number of hours
	Part A	•
La1	Supply and Demand curves. Elasticity of demand.	2
La2	Economic costs. Cost curves. Profit maximization cases.	2
La3	Managerial cost accounting. Decision making cases.	2
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2
La5	Ratio analysis based on financial statements of companies	2
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3
	Part B	
La8	Basic concepts (process, project, project management, management	3
	by projects, critical factors for project success, competencies).	
	Preparing and initiation of the project. Project analysis (project	
	environment, stakeholders, project objectives).	
La9	Planning and estimating of the project. Project phases and life cycle	3
La10	Project organization. Project scope management. Planning of	3
	activities, resources and costs.	
La11	Project risk management. Project monitoring. Project management	3
	methodologies.	
La12	Quality management. Change control. Project closing.	3
	Suma godzin	30

TEACHING TOOLS USED

N1. Interactive lecture with the use of multimedia and discussion

N2. Laboratory classes: individual problem solving with the use of Excel spreadsheet

N3. Laboratory classes part B and project classes: case studies solving in groups and individually. Project presentations, discussion

N4. Consultation

N5. Self-study: solving assigned problems, literature studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W08	Assesment of student class activity
	PEU_K01-K02	
F2	PEU_U01-U10	Evaluation of student's assignements
	PEU_K01-K02	
P1	PEU_W01-W08	Written test
	PEU_U01-U10	
	PEU_K01-K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E., Glapenski L.: Financial Management, 1997
- 3. Johnson H.: Making Capital Budgeting Decisions Maximising the Value of the Firm. Financial Times/Prentice Hall (April 15, 1999)
- 4. Jonson H.: Strategic Capital Budgeting: Developing and Implementing the Corporate Capital Allocation Program, January 1994.
- 5. Lock Dennis, Project Management, Published April 11, 2013 by Routledge

SECONDARY LITERATURE:

- 1. Jonson H.: Determining Cost of Capital: The Key to Firm Value. Apr 1999.
- 2. A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)
- 3. Johnson H.: Global Financial Institutions and Markets. December 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 78/2023 Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Zasady i zastosowania InSAR oraz GIS w górnictwie Name in English: Principles and Application of InSAR and GIS in Mining Main field of study: Mining and Geology Specialization: Geomatics for Mineral Resources Management, Mineral Resource Exploration, Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory Subject code: W06GIG-SM3007

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.

- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- Has expanded knowledge in the field of using geoinformation systems to collect and PEK_W01 process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

ſ

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2
Lec 2	Introduction to Microwave Signals for Earth Observation	2
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2
Lec 4	Acquisition and processing of SAR data	2
Lec 5	SAR image theory (geometric properties, polarization)	2
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2
Lec 7	Principles and applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2
Lec 8	Fundamental concepts of geographical information systems	2
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2
Lec 10	Methods of spatial analysis in GIS	2
Lec 11	Spatial data interpolation	2
Lec 12	Map algebra. Surface analysis, local and zonal functions	2
Lec 13	Basics of spatial statistics	2
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2
	Total hours	30

	Laboratory	Number of hours
La1	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

TEACHING TOOLS USED

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester)	Learning outcomes code	Way of evaluating learning outcomes achievement
end)		
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 and F2, where F1 – 80% and F2 - 20%) F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl Semester 4 WUST

Wroclaw University of Science and Technology WUST

Course title	Field Academy Student Project W06GIG-SM3064P				
European Credits (ECTS)	2	Time (hours) given to the students 45			
Type (lecture, classes, laboratory, project, seminar	Project-Practical classes, fieldwork: 3h/week (2 ECTS)	Student whole working time (hours)	50		
Description of content	The goal of the course is that students should acquire a hands-on understanding of different field research methodologies, and how they can be integrated with innovation and technology in mining. Innovative techniques such as UAV (drones), UGV (robots), VR, GIS-based data analyses, lidar imaging, hyperspectral method as well as InSAR methods and digitalization trends will be explored by students. The students will investigate companies (raw materials, geological, geodesy, mining, processing plants, municipal objects, IT companies) in view of innovative management and techniques implementation.				
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands trends of product-service syste - and defines, and explains the concepts related t - and recognizes the company's product and serv - and understands the primary sector of the raw - innovative techniques, digitalization trends, and Skills Upon completion of the course, a student is able - compare systems' characteristics, technical feat - see their role in product development and busin - create new business models, and foster a digita - implement innovative techniques in the raw ma	ems and digital transformation affecting to product data management and product ice processes and understands their inte materials value chain (geology, mining, n d the concept of innovation and technolo to tures, and managerial functions, ness management, I culture,	t life cycle management, raction with the company's overall operations, nineral processing, and the environment),		
Assessment methods and criteria	The course is mainly connected with practice work in the field, but also with complementary short lectures and exercises. The investigation results will be assessed together with the report and project.				
Recommended readings	The complementary/introductory material will be provided on Moodle. The students will be responsible for the content of the material.				
TU Coordinator	Anna Gogolewska, anna.gogolewska@pwr.edu.p	I			

Wroclaw University of Science and Technology WUST

Course title	Industrial Research Internship Project W06GIG-	Industrial Research Internship Project W06GIG-SM3062P					
European Credits (ECTS)	2	2 Time (hours) given to the students 30					
Type (lecture, classes, laboratory, project, seminar, internship)	Project classes: 2h/week (2 ECTS), (Practice)	Student whole working time (hours)	50				
Description of content	The aim of the course is to enable students to work in responsible workplaces and apply their skills and knowledge to promote entrepreneurship, innovation, and technology integration in the raw material sector. The students are to become work-ready professionals, who can implement innovative technologies and efficient managerial issues. They will learn how to actively participate in the affairs of the community and promote public interest, equality, and solidarity. The students will face environmental and technological problems such as the degradation of land, air, and water quality as a result of industrial activities. Therefore the students will be familiarized with the necessity of transparency and accountability standards in the raw materials sector and the strategy to meet them. Moreover, they will be exposed to the lack of effective information flow between the companies and society. In industrial or R&D companies the students will develop and implement innovative solutions to technological or managerial problems observed.						
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands trends of product-service syst. - and defines, and explains the concepts related to - and recognizes the company's product and serv. - and understands the primary sector of the raw - innovative techniques, digitalization trends, and Skills Upon completion of the course, a student is able - compare systems' characteristics, technical feat - see their role in product development and busin - create new business models, and foster a digita - engage in an informal professional discussion and - implement innovative techniques in the raw material	ems and digital transformation affecting to product data management and produc ice processes and understands their inte materials value chain (geology, mining, n d the concept of innovation and technolo to cures, and managerial functions, ness management, I culture, nd business communication,	t life cycle management, raction with the company's overall operations, nineral processing, and the environment),				
Assessment methods and criteria	Submission and defense of a project report						
Recommended readings							
TU Coordinator	Supervisors of the student's Master thesis						

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish: Zintegrowana analiza deformacji w geomechanice Name of subject in English: Integrated Analysis of Deformations in Geomechanical Engineering Main field of study: Mining and Geology Specialization: Mining Engineering Geomatics for Mineral Resources Management Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory Subject code: W06GIG-SM3063G Group of courses: Yes

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	75		50		
Form of crediting (Examination/crediting with grade)		Ex	amination		
For group of courses mark (X) final course	Х				
Number of ECTS points			5		
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			2,9		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

1. Introduction to Rock Mechanics

2. Basic knowledge about mining technologies

3. Fundamentals of monitoring of rock mass deformations

SUBJECT OBJECTIVES

C1 Fundamental understanding of integrated analysis of deformations using the combination of monitoring and numerical modelling of deformations, which is essential for studying the processes occurring in engineering structures and in rock mass at the construction and post-construction stages. C2 To understand the fully automated monitoring principles, data collection, and processing. C3 Fundamental understanding of analysis of deformations, which is essential for studying the processes occurring in engineering structures and in rock mass at the construction and post-construction stages.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 Is able to distinguish and describe the applications of deformation monitoring techniques in the spectrum of engineering disciplines such as mining and construction engineering
- PEU_W02 Is able to characterize the rock mass and mining methods
- PEU_W03 Has knowledge of empirical and deterministic analyzes of rock mass deformations using FEM
- PEU_W04 Has knowledge of the basics and applications of the analysis of the integrated deterministic method with the results of geodetic measurements

relating to skills:

- PEU_U01 Is able to determine the main assumptions for geodetic measurement of deformations caused by mining exploitation
- PEU_U02 Is able to create a FEM model
- PEU_U03 Is able to perform integrated analysis using deterministic modelling by means of the FEM method and using the results of geodetic and geotechnical measurements

•••

relating to social competencies:

PEU_K01 Is able to assess the role of monitoring and prediction in sustainable mining throughout its entire cycle

	Lecture	Number of hours
Lec 1	Introduction: course syllabus, methods of evaluation of the learning outcomes, literature	2
Lec 2	Introduction to integrated analysis of deformations. Rock mass and earth mass material characteristics; determination of in-situ rock mass parameters;	2
Lec 3	The role of monitoring in sustainable mining.	2
Lec 4	Description of physical phenomena: statics - dynamics, heat propagation, fluid flow, changes in gravitational force, applications	2
Lec 5	Geodetic and geotechnical monitoring of deformations; deterministic modelling	2
Lec 6	Deformation Monitoring Surveys, design and implementation of geodetic deformation monitoring system. Short review of monitoring requirements and available monitoring techniques.	
Lec 7	Advantages and disadvantages of geodetic and geotechnical methods. The concept of integrated analysis.	2
Lec 8	Solid mechanics, boundary conditions problem	2
Lec 9	Principles of integrated analysis of deformations; analysis based on system theory; analysis based on continuum mechanics; approximate methods for solving continuum problems; Finite Element Method (FEM);	
Lec. 10	Solving truss systems in FEM	2
Lec. 11	Large scale problems in rock mechanics. Empirical and deterministic methods of surface deformations modelling in underground and open pit mining. Utilization of the Finite Element Method	
Lec 12	Examples of utilization of integrated analysis for slope stability problems in open pit mines in Chile and USA	2
Lec 13	Examples of integrated analysis used to control surface deformations caused by underground salt mining in Canada	2

PROGRAMME CONTENT

Lec. 14	Problems of oil and gas mining (Venezuela, Canada)	2
Lec 15	Wrap up: conclusions, final remarks	2
	Total hours	30
	Classes	Number of hours
Cl 1		nours
Cl 2		
	Total hours	
	Laboratory	Number of hours
Lab 1	Presentation of the course scope, literature and assessment methods	2
Lab 2	Analysis of the impact of load on the rock mass – application of the GeoStudio software	2
Lab 3	In-situ stress analysis of rock mass and loaded rock mass	2
Lab 4	Designing a geodetic measurement in a mining area for underground mining based on FEM results. Discussion of the measurement project.	2
Lab 5	Determination of the mining area category. Discussion of the project results	2
Lab 6	Designing a geodetic measurement in an open-pit mine based on the FEM model. Discussion of the measurement project.	2
Lab 7	Designing a geodetic measurement of an earth dam based on an FEM model. Analysis, discussion	2
Lab 8- 11	Task 1: Determining the FEM of rock mass deformations caused by underground mining, determining the terrain category. Elastic and nonlinear analysis. Monitoring overview. Summary	
Lab 12- 15	Task 2: Determination of the FEM of the deformation of the earth mound/dam in conditions of variable water level. Determination of the safety factor using Geostudio software. Monitoring overview. Summary	
	Total hours	30
	Project	Number of hours
Proj 1		
	Total hours	
	Seminar	Number of hours
Semin 1		
Semin 2		
	Total hours	
	TEACHING TOOLS USED	
N2. Inc	cture, film lividual problem solving with the use of software, teacher's support oup discussion	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement			
F1	PEK_W01- PEK_W03	Marks for laboratory assignments and tasks			
_	$1 - PEU_U03$ Final n	nation - final mark for Lecture nark for laboratory classes – average from ments and tasks			
	PRIMARY AND SECO	ONDARY LITERATURE			
PRIMARY LITERA	ATURE:				
[1] Szostak-Chrzanowski, A., A. Chrzanowski,(2010), "INTEGETED ANALYSIS OF					
DEFORMATIONS IN	GEOMECHANICS ", UNE	3, Fredericton, N.B., 220p.			
SECONDARY LITE	RATURE:				

[1] Szostak-Chrzanowski, A., A. Chrzanowski, M. Massiera (2005) "Use of deformation monitoring results in solving geomechanical problems – case studies ", Engineering Geology, vol. 79, Issues 1-2, pp. 3-12.

[2] Chrzanowski, A. (1993): "Modern Surveying Techniques for Mining and Civil Engineering" Chapter 33 in: Comprehensive Rock Engineering, Pergamon Press, Vol.3. Chapter 33, pp.773-809.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Anna Chrzanowska anna.chrzanowska@pwr.edu.pl

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo i Geologia

specjalność/specialisation: Entrepreneurship, Innovation and Technology Integration in Mining

Track WUST – LUT

Semester 1 WUST

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Geofizyka inżynierska Name of subject in English: Engineering Geophysics Main field of study: Mining and Geology Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management,

Mineral Resource Exploration,

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3004

Group of courses No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			50	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			2	
including number of ECTS points for practical classes (P)				2	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)				0,9	

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. has knowledge of fundamentals of applied geophysics, physics and geology.

2. knows fundamentals of soil and rock mechanics.

3. is able to use MS Office software.

4. is able to work in a team.

SUBJECT OBJECTIVES

C1 familiarize with physical phenomena in geosphere of the Earth

C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

C4 acquisition of skills to plan geophysical field surveying and to interpret its results.

C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems. relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

	Lecture			
subdisciplines of app	of rocks. Inter-relationships between the various lied geophysics. Overview of geophysical methods, les and applications. Methodology of geophysical	1		
Lec 2 Engineering problems	solved with geophysical surveying. Case studies.	2		
	nethods. Tomography and VSE. IP method. Physical t. Methods of field surveying. Interpretation and es.			
0	ods. FDEM and TDEM methods. Magnetotelluric inciples. Methods of field surveying. Equipment. ication. Case studies.	2		
Lec 5 GPR surveying. Physic Interpretation and app	cal principles. Methods of field surveying. Equipment. ication. Case studies.	2		
Lec 6 Seismic tomography Applications. Case stu	y. Seismic interferometry. Physical principles. dies.	2		
Lec 7 Mine geophysics. Seis tomography. Microgra	mology. Seismic methods. Active and passive seismic vimetry. Case studies.	2		
Lec 8 Gravity and magnetic Interpretation and app	surveying. Equipment. Methods of field surveying. ication. Case studies.	2		
Total hours		15		

PROGRAMME CONTENT

Project			
Proj 1	One selected geophysical technique. Fundamentals and equipment. Field surveying	4	
Proj 2	Processing and interpretation of field data.	3	
Proj 3	Solving the geophysical problems.	8	
	Total hours	15	
	TEACHING TOOLS USED		
N1. N1	Lecture aided by presentation.		
N2.De	monstration.		
N3.Dis	scussion and consultations		
N3Cal	culations		

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Learning outcomes	Way of evaluating learning outcomes achievement
during semester), P –	code	
concluding (at semester		
end)		
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05	Grades are given for each of three project tasks
	K02	including tests and reports. The final grade P2 for
		the project course is the weighted average grade
		of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Wspomagane komputerowo modelowanie geologiczne i geostatystyka.)

Name of subject in English: Computer-Aided Geological Modelling and Geostatistics Main field of study: Mining and Geology

Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management,

Mineral Resource Exploration,

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3002

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting	Examination	crediting with	Examination	Examination
	with grade	/ crediting	grade	/ crediting	/ crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS			3		
points for practical classes (P)					
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

C1 Developing basic skills in computer modelling of 3-D objects.

C2 Introduction of the principles of digital modelling of typical geological structures.

C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,

PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU_U01 Application of relevant estimation methods for quality modelling of a deposit

PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)

PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT		
	Lecture		
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2	
Lec 2	Geology of the seam.	2	
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2	
Lec 4	Spatial distribution of samples values. Regionalized variable.	2	
Lec 5	BLUE Estimator of the mean value: Kriging.	2	
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2	
Lec 7	Reserves modelling and evaluation.	2	
Lec 8	Mineral resources. International reporting. The JORC Code	1	
	Total hours	15	

	Laboratory	Number of hours
La1	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La4	Construction of the structural wireframe model of stratigraphy layers.	3
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3

La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3
	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

TEACHING TOOLS USED

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes	
forming during	code	achievement	
semester), P –			
concluding (at semester			
end)			
F1	PEU_W01,	Lecture grade on the basis of the written	
	PEU_W02	examination	
F2	PEU_W03,	Laboratory task assessment: "structural modelling	
		assessment	
F3	PEU_U01	Laboratory task assessment: "geostatistical	
		modelling"	
F4	PEU_U02,	Laboratory task assessment: "reserves	
	PEU_U03	evaluation".	
P average of F1, F2, F3, F4			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik

Dr inż. Witold Kawalec

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Cyfrowa kopalnia Name in English: Digital Mine Main field of study: Mining and Geology Specialization: Mining Engineering, Geotechnical and Environmental Engineering, Mineral Resource Exploration, Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time

Kind of subject: obligatory Subject code: W06GIG-SM3006

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Computer literacy skills

2. Basic knowledge related to Mining Engineering and Mineral Processing

3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems.

Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.

PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT				
	Form of classes - lecture				
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2			
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2			
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2			
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2			
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2			
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1			
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2			
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2			
	Total hours	15			

	Form of classes - laboratory	Number of hours
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data.	3
	Introduction to ARDUINO	
Lab2	Basic sensors for physical parameters measurements	3
Lab3	Measurements in Labview	3
Lab4	Analysis and Visualization in Labview	3
Lab5	Control in labview	3
	Total hours	15

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY						
	SUBJECT CARD					
Name in Polish: Zarządza						
Name in English: Environ	mental Management					
Faculty of studies (if applied	cable): Mining and Geology					
Specialisation (if applicable	e): Mining Engineering					
	Mineral Resource Exploration					
	Entrepreneurship, Innovation and Technology Integration					
	in Mining					
Level and form of studies:	,					
Subject Type:	Obligatory					
Subject code:	W06GIG-SM3001					
Group of courses:	No					

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the University (ZZU)	30				15
Number of hours of total student workload (CNPS)	50				25
Form of crediting	Crediting with grade				Crediting with grade
For a group of courses mark (X) for the final course					
Number of ECTS points	2				1
including number of ECTS points for practical (P) classes					1
including number of ECTS points for direct teacher-student contact (BU) classes	1,3				0,8

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.Basic knowledge of issues related to ecology and environmental protection.

SUBJECT OBJECTIVES

- C1. To get students acquainted with systems of environmental management both in Poland and other EU countries.
- C2. To prepare students for rational and sustainable management of environmental components.
- C3. To get students acquainted with the genesis of environmental management systems in Poland, review and standardization of environmental management systems.
- C4. To get students acquainted with benefits and obligations arising from the implementation

of an environmental management system.

- C5. To present the relationship between an environmental management system and a quality management system.
- C6. To provide an overview of informative methods of supporting the implementation of environmental management systems (possibilities and practical usage of computerised systems of environmental information management, decision support in the area of environmental protection and choice of methods and tools used to support the implementation of an environmental management system).

SUBJECT LEARNING OUTCOMES

relating to knowledge:

- PEU_W01 Possesses systematic knowledge of the origins of environmental management systems, review and standardization of environmental management systems.
- PEU_W02 Possesses knowledge of the possibilities and practical applications of tools supporting the implementation of the environmental management system.
- PEU_W03 knows basic formal and legal regulations regarding the implementation and functioning of management systems, tools and instruments of environmental management.
- PEU_W04 Possesses knowledge for rational and sustainable management of environmental components.

relating to skills:

- PEU_U01 Possesses linguistic resources appropriate for specialised language and is able to use it in linguistic activities in order to communicate in the professional environment regarding the field of studies; is able to obtain necessary information and interpret and critically evaluate it, reads and understands professional literature, is able to formulate and comprehensively justify opinions, provide presentations of problems related to a studied discipline and also participate in scientific and professional discussions.
- PEU_U02 Is able to use methods and appropriate IT tools in system management of environmental components.

relating to social competencies:

PEU_K01 - Is able to think and act in a creative and enterprising way.

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec.1	 Basic concepts: Environment, characteristics of individual elements of the environment Characteristics of hazards for the natural environment which are a result of human activities Environmental Management The Environmental Management System 	2			
Lec.2	Legal aspects of environmental management	2			
Lec.3	History and development of environmental management systems	2			
Lec.4	Environmental management systems:	6			

Lec.13 Lec.14 Lec.14 Lec.15	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system Environmental management systems in practice Total hours	2 1 3 30
Lec.13 Lec.14 Lec.14 Lec.15	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system Environmental management systems in practice	1
Lec.13 Lec.14 Lec.14	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system Costs of implementation and functioning of an environmental management system	1
Lec.13	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in Poland and in the world The benefits of an implemented and functioning environmental management system	2
1	Selected types of information systems which support environmental management, their characteristics, examples of implementation both in	
Lec.11 - Lec.12 - S	IT systems supporting environmental management: - Decision Support Systems - Expert systems - Simulation Models - Geographical Information Systems	4
Lec.9 J Lec.10	Design of an environmental management system	4
Lec.7 Lec.8	 Basic tools of environmental management: Legal and administrative instruments (laws, standards, licenses and permits) Economic instruments (fees, taxes, deposit and refund systems, transferable rights, subsidies, liens, fines) Instruments (techniques) social impact (ecological education, ecological propaganda) Examples of basic tools of environmental management: Procedure for an assessment of environmental impact Integrated permits Audits Safety Reports Monitoring of the Environment 	4
Lec.6 (] - - - - - (() - - - - - - - - () - - - -	 Business Charter for Sustainable Development of the International Chamber of Commerce - ICC Business Charter for Sustainable Development EMAS – Directive of the European Community Commission regarding the approval for voluntary participation by organisations in a community eco-management and eco-audit scheme CP - Clean Production BS 7750 - Specification for Environmental Management Systems ISO 9000 ISO 14000 ISO 14001 Characteristics of selected Environmental Management Systems. The benefits of the implementation of the EMS for a company. Experiences of Polish enterprises from the implementation of EMS. Process of implementation of the selected EMS in a company with an example of EMAS. 	

Se1	The scope and form of an essay and presentation, terms of crediting	
	and literature.	2
	Assignment of seminar topics for individual students.	
Se2	Student speeches with the use of multimedia presentations on the	
Se3	following issues: environmental management systems - specified	
Se4	examples, formal and legal conditions of administrative procedures	
Se5	(eg. receiving a decision on the environmental conditions of a project,	
Se6	an integrated decision etc.), life-cycle analysis of a selected company;	
Se7	fees, taxes, surcharges and environmental deposits; litter management	13
Se8	systems, mineral resource management, renewable energy sources,	
	selected monitoring systems, the institution of environmental	
	protection in Poland and in the world and also alternative energy	
	sources, etc.	
	Group discussion on the content and form of speeches.	
	Total hours	15

- N1. Informative lecture with elements of problematic lectures.
- N2. Multimedia presentations
- N3. Didactic discussion during lectures and seminars
- N4. Preparation of an essay in the form of a report
- N5. Presentation of the essay
- N6. Consultations

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F – forming (during semester), P – concluding (at semester end)	Educational outcome number	Method of evaluating educational outcome achievement		
F1- Grade from content value of an essay	PEU_U01 PEU_U02 PEU_K01	Text and graphical form of essay		
F2 – Grade from presentation and issues included in an essay	PEU_U01 PEU_U02 PEU_K01	Presentation of essay		
F3 – Grade from a written or oral test	PEU_W01 PEU_W02 PEU_W03 PEU_W04	Positive grade		
final grade from the subject (the weighted average, respectively: 35% for the substantive content of the essay, 25% for the presentation, 40% for the lecture)				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Wilson, G. A., & Bryant, R. L., 2021, Environmental management. Routledge.
- [2] Mitchell B., 2002, Resource and Environmental Management, Routledge, London
- [3] Lukasheh A. F., Droste R. L., Warith M. A., 2001, Review of Expert System (ES), Geographic Information System (GIS), Decision Support System (DSS), and their applications in landfill design and management. W: Waste Management & Research nr 19,
- [4] Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., & Ohlson, D., 2012, Structured decision making: a practical guide to environmental management choices. John Wiley & Sons.
- [5] Schaltegger, S., Burritt, R., & Petersen, H., 2017, An introduction to corporate environmental management: Striving for sustainability. Routledge.

SECONDARY LITERATURE

- [1] Uberoi, N. K., 2000, Environmental management. Excel Books India.
- [2] Krishna, I. M., Manickam, V., Shah, A., & Davergave, N., 2017, Environmental management: science and engineering for industry. Butterworth-Heinemann.
- [3] Wehrmeyer, W. (Ed.). 2017, Greening people: Human resources and environmental management. Routledge.
- [4] Websites given during lectures and seminars

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Justyna Woźniak

- Dr hab. Inz. Katarzyna Pactwa,
- Dr inż. Danuta Szyszka

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

Attachment no. 4. to the Program of Studies
FACULTY OF GEOENGINEERING, MINING AND GEOLOGY
SUBJECT CARD
Name of subject in Polish Bezpieczeństwo i higiena pracy
Name of subject in English: Occupational Health and Safety
Main field of study (if applicable): Górnictwo i geologia.
Specialization (if applicable): Mining Engineering,
Geotechnical and Environmental Engineering,
Mineral Resource Exploration
Entrepreneurship, Innovation and Technology
Integration in Mining
Profile: academic
Level and form of studies: 2nd level, full-time
Kind of subject: obligatory
Subject code W06GIG-SM3005
Group of courses No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15			15	
organized classes in					
University (ZZU)					
Number of hours of total	25			25	
student workload (CNPS)					
Form of crediting	crediting			crediting	
	with grade			with grade	
For group of courses mark					
(X) final course					
Number of ECTS points	1			1	
including number of ECTS				1	
points for practical classes (P)					
including number of ECTS	0,7			0,8	
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

O1: Develop comprehensive knowledge of mining safety and regulations: By the end of the course, students should be able to demonstrate a thorough understanding of local and international safety regulations governing the mining industry.

O2: Apply risk assessment and mitigation strategies in mining environments: Upon

completion of the course, students should be capable of conducting risk assessments, identifying hazards, and implementing effective mitigation strategies in diverse mining settings

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

 PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation PEU_W02 – Possesses knowledge of evaluating and determining the admissibility of

occupational risk.

PEU_W0 3 – Possesses general knowledge of corrective and preventive actions regardinghazards of typical work posts in the mining industry....

relating to skills:

PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typicalwork posts in the mining industry

PEU_U02 Is able to estimate and determine risk acceptability with methods according toSTER software and the RISC SCORE method.

PEU_U03 - Is able to plan corrective and preventive actions for hazards of typical work postsin the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment anddevelop its results and the required documentation in the form of a team report

	PROGRAMME CONTECT				
Ν	LECTURE	Number of hours			
1	Introduction to Mining Safety and Health Regulations . The mining industry as one of the most hazardous occupations. Worldwide statistics. The evolution of safety standards in response to past failures or incidents. Overview of key regulations governing occupational safety and health in the mining industry. The importance of compliance with international safety standards. Definition of occupational hazards and risks. The key points of safety management system (SMS) in the mining industry.	3			
2	Hazard Identification in Mining Operations. Exploration of hazard identification processes specific to mining environments. Analysis of common hazards in mining operations, including physical, chemical, and ergonomic hazards. Strategies for implementing control measures to mitigate identified hazards. Real-world examples of hazard control success stories in the mining industry.	3			
3	Occupational Risk Assessment in Mining. Overview of the methods of identification, evaluation and management risks: Hazard Identification and Risk Assessment (HIRA), Job Safety Analysis (JSA) or Job Hazard Analysis (JHA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA). Occupational exposure limits and their importance.	3			
4	Health risk assessment in the mining industry. Health risks associated with mining activities. Methods for assessing occupational health risks, including exposure monitoring and health surveillance. The long-term health implications of exposure to various substances in mining. Strategies for preventing and mitigating occupational health risks in mining.	3			
5	Prevention and Control of Occupational Diseases in Mining. Overview of common occupational diseases prevalent in the mining	3			

	industry. Discussion on the identification of exposure pathways and risk factors leading to occupational diseases. Strategies for prevention and control, including the use of personal protective equipment, ventilation systems, and monitoring techniques.	
Total		15
hours		

	PROJECT	
1	Developing a plan of safety management system (SMS) for roof bolting operation in underground mining.	3
2	Hazard identification for the haul truck operation in a surface mining operation.	3
3	Occupational risk assessment (by HIRA method) for the machine processing stonemason.	3
4	Occupational risk assessment (by JHA method) for manual processing stonemason.	3
5	Health risk assessment for the workplace of drilling operator.	3
Total hours		15

1	Informative lectures
2	Multimedia presentations
3	Didactic discussions forums
4	Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning
forming during	code	outcomesachievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes
	PEU_U01- U03	(arithmeticaverage of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

1	ILO Guidelines on occupational safety and health management systems, ILO-OSH 2001.				
2	ILO code of practice: Safety and health in opencast mines. International Labour Office,				
	<u>Geneva, 2018</u>				
3.	Mansdorf S.Z. (Ed.).(2019) Handbook of Occupational Safety and Health. 3rd edn. Wiley.				
4.	Koradecka, D. (Ed.). (2010). Handbook of Occupational Safety and Health (1st ed.).				
	CRC Press. https://doi.org/10.1201/EBK1439806845				
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)					
Dr Iry	Dr Iryna Myshchenko: iryna.myshchenko@pwr.edu.pl				

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Modele Decyzyjne w Zarządzaniu Name in English: Operations Research Main field of study: Mining and Geology Specialization: Mining Engineering, Mineral Resource Exploration

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd, full-time

Kind of subject: obligatory

Subject code: W06GIG-SM3000

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	25		50		
Form of crediting	crediting with grade		Crediting with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes			2		
of practical character (P)					
including number of ECTS					
points for direct teacher- student contact (BU) classes *delete as applicable	0,8		0,7		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

- 1. The student has basic knowledge of mining systems, technological and organizational systems in mining
- 2. The student has basic knowledge concerning economics in mining
- 3. The student has basic knowledge concerning mathematical analysis necessary to understand mathematical issues in science having engineering and economic character.
- 4. The student has basic knowledge and skills of using probability theory models and mathematical statistics
- 5. The student can use an Excel spreadsheet
- 6. The student understands the need and knows the possibilities of lifelong learning, improving professional, personal and social skills

SUBJECT OBJECTIVES

C1 Acquiring basic knowledge, taking into consideration its applicational aspects concerning mathematical decision models used in management:

C1.1 Linear programming models

C1.2 Models of planning, deposits and costs of projects

C1.3 Queuing system models

C1.4 Digital simulation models

C2. Learning of qualitative understanding, interpretation and quantitative analysis with applications of selected issues concerning optimisation

C2.1. Production systems:

C2.2. Transport issues

C2.3. Flows in networks.

C2.4. Project schedules

C2.5. Queuing system models

C3. Acquiring and consolidating the competencies of thinking and acting in a systematic way.

SUBJECT LEARNING OUTCOMES

Subject educational effect (knowledge)

PEU_W01 The student has knowledge concerning basic decision models in management

PEU_W02 The student has knowledge concerning line programming models.

PEU_W03 The student has knowledge concerning models for planning and monitoring of activities, deposits, and costs of projects

PEU_W04 The student has knowledge concerning queuing system models

PEU_W05 The student has knowledge concerning simulation models.

Subject educational effect (skills)

PEU_U01 The student has the ability to apply and interpret models using linear programming applications

PEU_U02 The student has the ability to apply and interpret models of planning and monitoring of activities, deposits, and costs of projects with the use of programming applications

PEU_U03 The student has the ability to apply and interpret queuing system models using programming applications

PEU_U04 The student has the ability to apply and interpret simulation models using programming applications

Subject educational effect (social)

PEU_K01 The student can think and act in a system, creative and enterprising way

PEU_K02 The student is able to identify and solve problems with the use of decision models and applications.

PROGRAMME CONTENT					
	Form of classes - lecture Number of hou				
Le1	Rules of participation in the course.	1			
Le2	Introduction to modelling systems and optimization methods in decisions problems.	2			
Le3	Linear Programming – fundamental principles. The application of LP in transportation issues and resource utilization.	2			
Le4	Network programming (CPM and PERT). Planning and resource balancing in a project.	2			
Le5	Simulation of random processes. Monte Carlo method.	2			
Le6	Queueing theory and models of queueing systems.	2			
Le7	Phases of simulation project and model building.	2			
Le8	Digital twins – case analysis.	1			
Le9	Final test.	1			
	Total hours	15			

	Form of classes - laboratory	Number of hours
La1	Terms of participation in laboratory classes.	1
La2	Defining linear programming problems.	2
La3	Solving LP production optimization.	2
La4	Projects scheduling.	2
La5	Monte Carlo method. Models of queueing system.	2
La6	Simulation building: spatial layout and objects in the system.	2
La7	Processes defining in the model.	2
La8	Simulation experiments and results analysis.	2
	Total hours	15

N1. Interactive lecture with slides and discussion

N2. Laboratory exercises with the use of IT applications - discussion concerning solutions

N3. Laboratory exercises - short written tests (calculating tasks, tests of knowledge)

N4. Office hours

N5. Own work - preparation for laboratory classes, solving additional tasks

N6. Own work - own literature studies.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Educational effect	Way of evaluating educational effect achievement
(during semester), P –	number	
concluding (at the end of		
semester)		
F1	PEU_U01-02	written test
F2	PEU_U03-04	report
P=(F1+F2)/2 (laboratory)	PEU_U01-04	
D (lecture)	PEU_W01-05	witten test
P (lecture)	PEU_K01-02	written test

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Operations Research. Applications and Algorithms. 4th Edition. Winston W. Cengage Learning. 2022.
- [2] Operations Research. Theory and Applications, 6th Edition, Sharma J. K. Trinity Press.
- [3] Operations Research. Examples and Exercises. Kukuła i in. PWN. Warszawa. 2011.
- [4] Simulation Modeling Handbook. A Practical Approach. Chung Ch. A. CRC Press. 2004.

SECONDARY LITERATURE

- [1] Operations Research. An Introduction. 10th Edition. Taha H. A. Pearson Education Limited. 2017
- [2] Operations Research, Yadav S.R. Malik A. Oxford University Press. 2014.
- [3] A Review of Operations Research in Mine Planning. Newman et al. Interfaces 40(3). pp. 222-245. INFORMS. 2010.
- [4] Modelling and Simulation Fundamentals. Theoretical Underpinnings and Practical Domains. Sokolowski J. A. Banks C. M. John Wiley & Sons. 2010.
- [5] Discrete-Event System Simulation. Banks et al. Prentice-Hall. 2014.

<u>SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)</u> dr inż. Witold Kawalec, <u>witold.kawalec@pwr.edu.pl</u>; dr inż. Zbigniew Krysa, <u>zbigniew.krysa@pwr.edu.pl</u>

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name of subject in Polish: Zarządzanie projektami, ocena ich opłacalności i ryzyka.. Name of subject in English: Project Management, Appraisal and Risk Evaluation. Main field of study: Mining and Geology

Specialization: Mining Engineering,

Geotechnical and Environmental Engineering,

Geomatics for Mineral Resource Management

Mineral Resource Exploration

Entrepreneurship, Innovation and Technology Integration in Mining

Profile: academic

Level and form of studies: 2nd level, full-time Kind of subject: obligatory

Subject code: W06GIG-SM3003G

Group of courses: Yes

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30	15	
Number of hours of total student workload (CNPS)	25		50	25	
Form of crediting			Examination		
For group of courses mark (X) final course	Х				
Number of ECTS points			4		
including number of ECTS points for practical classes (P)			3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	t.				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

SUBJECT OBJECTIVES

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management.

Part A: The purpose of the course is

C1 to introduce basic concepts of Microeconomics and financial management

C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are

discussed. The issues of inflation and risk analysis are included. Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 knows the concepts of demand, supply and price elasticities, understands how they affect markets
- PEU_W02 knows the concepts of costs in economics and accounting, understands how they differ

PEU_W03 knows the main cost categories and cost accounting methods

- PEU_W04 has basic knowledge about the contents of financial statements
- PEU_W05 has basic knowledge about the method of ratio analysis of financial statements
- PEU_W06 knows and understands the concepts of Present Value and Future Value for simple cash flows and annuities.
- PEU_W07 knows the capital budgeting methods (NPV, IRR, PBP) and understand how to interpret the results

PEU_W08 has basic knowledge about the project risk evaluation methods

relating to skills:

PEU_U01 is able to analyze the causes and effects of demand and supply changes

- PEU_U02 is able to interpret and use information presented in financial statements also by means of ratio analysis
- PEU_U03 is able to use different cost analysis methods and make decisions based on the rsults
- PEU_U03 can calculate Future and Present value, also for annuities and solve simple calculation problems
- PEU_U04 is able to perform discounted cash flow analysis and draw conclusions based on the results
- PEU_U05 is able to carry out sensitivity analysis and scenario analysis using a financial model of an investment
- PEU_U06 is able to work out basic project documentation and initiate a project
- PEU_U07 is able to use basic methods of project management, monitoring and project risk management
- PEU_U08 is able to implement basic conflict management methods in a project group
- PEU_U09 is able to use basic group management methods, can undertake and shape the leadership position

relating to social competences:

PEU_K01 is able to think and act in a systematic, creative and entrepreneurial way

PEU_K02 has an established attitude of economic operation and decision-making based on available financial information and forecasts

PROGRAMME CONTENT				
	Lecture	Number of hours		
Lec.1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2		
Lec.2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2		
Lec.3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2		
Lec.4	Variable and fixed costs. Break-even point. Cost-volume –profit analysis.	1		
Lec.5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2		
Lec.6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2		
Lec.7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2		
Lec.8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2		
	Total hours	15		

	Project	Number of hours
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3
	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3

Effective managerial behaviour from the different contexts.	
Total hours	15

	Laboratory	Number of hours			
	Part A	•			
La1	1 Supply and Demand curves. Elasticity of demand.				
La2	Economic costs. Cost curves. Profit maximization cases.	2			
La3	Managerial cost accounting. Decision making cases.	2			
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2			
La5	Ratio analysis based on financial statements of companies	2			
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2			
La7	a7 Financial model of an investment. Sensitivity and Scenario analysis.				
	Part B				
La8	Basic concepts (process, project, project management, management	3			
	by projects, critical factors for project success, competencies).				
	Preparing and initiation of the project. Project analysis (project				
	environment, stakeholders, project objectives).				
La9	Planning and estimating of the project. Project phases and life cycle	3			
La10	Project organization. Project scope management. Planning of	3			
	activities, resources and costs.				
La11	Project risk management. Project monitoring. Project management	3			
	methodologies.				
La12	Quality management. Change control. Project closing.	3			
	Suma godzin	30			

N1. Interactive lecture with the use of multimedia and discussion

N2. Laboratory classes: individual problem solving with the use of Excel spreadsheet

N3. Laboratory classes part B and project classes: case studies solving in groups and individually. Project presentations, discussion

N4. Consultation

N5. Self-study: solving assigned problems, literature studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W08	Assesment of student class activity
	PEU_K01-K02	
F2	PEU_U01-U10	Evaluation of student's assignements
	PEU_K01-K02	
P1	PEU_W01-W08	Written test
	PEU_U01-U10	
	PEU_K01-K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E., Glapenski L.: Financial Management, 1997
- 3. Johnson H.: Making Capital Budgeting Decisions Maximising the Value of the Firm. Financial Times/Prentice Hall (April 15, 1999)
- 4. Jonson H.: Strategic Capital Budgeting: Developing and Implementing the Corporate Capital Allocation Program, January 1994.
- 5. Lock Dennis, Project Management, Published April 11, 2013 by Routledge

SECONDARY LITERATURE:

- 1. Jonson H.: Determining Cost of Capital: The Key to Firm Value. Apr 1999.
- 2. A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)
- 3. Johnson H.: Global Financial Institutions and Markets. December 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 78/2023 Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Zasady i zastosowania InSAR oraz GIS w górnictwie Name in English: Principles and Application of InSAR and GIS in Mining Main field of study: Mining and Geology Specialization: Geomatics for Mineral Resources Management, Mineral Resource Exploration, Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory Subject code: W06GIG-SM3007

Group of courses: No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.

- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- Has expanded knowledge in the field of using geoinformation systems to collect and PEK_W01 process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

ſ

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2
Lec 2	Introduction to Microwave Signals for Earth Observation	2
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2
Lec 4	Acquisition and processing of SAR data	2
Lec 5	SAR image theory (geometric properties, polarization)	2
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2
Lec 7	Principles and applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2
Lec 8	Fundamental concepts of geographical information systems	2
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2
Lec 10	Methods of spatial analysis in GIS	2
Lec 11	Spatial data interpolation	2
Lec 12	Map algebra. Surface analysis, local and zonal functions	2
Lec 13	Basics of spatial statistics	2
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2
	Total hours	30

	Laboratory	Number of hours
La1	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester)	Learning outcomes code	Way of evaluating learning outcomes achievement
end)		
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 and F2, where F1 – 80% and F2 - 20%) F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl Semester 2 LUT

Lappeenranta-Lahti University of Technology LUT

Course title	Modelling of Unit Operations W06GIG-SM3056G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), laboratory: 3h/week (3 ECTS), blended learning	Student whole working time (hours)	125
Description of content	Modeling and parameter estimation using Matlab in chemical engineering and applied mathematics in general. The course presents some of the most common unit operations of chemical engineering, including batch reactors, continuously stirred tank reactors (CSTRs), both in dynamic and steady-state; tubular plug flow reactors, flash distillations, and modelling of temperature dependence of reactions and elements of heat transfer. The models are limited to ones that do not require solving partial differential equations (PDEs).		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - Matlab software usage in chemical engineering and applied mathematics, - most common unit operations of chemical engineering, including batch reactors, continuously stirred tank reactors (CSTRs), both in dynamic and steady-state - tubular plug flow reactors, - flash distillations, and modelling of the temperature dependence of reactions and elements of heat transfer, - basic chemical processes in chemical engineering. Skills Upon completion of the course, a student is able to - describe steady-state and transient unit operations with mathematical models, - validate models and estimate their parameters from experimental data, - apply models in process development and design, including sizing, optimization, and scale-up,		
 - use mathematical and simulation software. Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Half of the grade for the laboratory is decided by th exercises completed by the student, and the other half by the quality of the lab work reports and homework assignments. The course is b practical laboratory work solved individually or in groups by the students. The lectures constitute the theoretical support for assignment and written quizzes during the semester. The lecture i.e. the ability to explain the unit operations of chemical engineering is checked with quizzes during the semester. The practical the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the 			ts and homework assignments. The course is built around constitute the theoretical support for assignment reports ed with quizzes during the semester. The practical classes:
Recommended readings	Lecture notes and links to supplementary material are given in Moodle (Sisu student tools https://sisu.lut.fi/student/courseunit/otm); selected examples from international literature. Online material.		
TU Coordinator Arto Laari, Arto.Laari@lut.fi; Miracle Amadi, Miracle.Amadi@lut.fi; Tuomas Sihvonen, Tuomas.Sihvonen@lut.fi, Esko.Lahdenpera@lut.fi, Esko.Lahdenpera@lut.fi,			omas.Sihvonen@lut.fi, Esko Lahdenperä,

Course title	Advanced Process Design W06GIG-SM3057G		
European Credits (ECTS)	5 Time (hours) given to the students 75		75
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (1 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning 125		
Description of content	Chemical and physical properties, determination of chemical components in process simulation; Property estimation methods; Chemical process material and energy balances, sizing, costing, and economical evaluation; Process performance analysis, process evaluation, and optimization; Chemical process synthesis; Biorefinery process synthesis: objectives and steps; Synthesis of separation sequences; Energy integration in process design.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - what kind of design activities are required during the process design, - and understands how product design and process design are related, - what is the design of processes: what it is aiming at and what are the steps, - and understands the role of modern simulation packages during the process life cycle. Skills Upon completion of the course, a student is able to: - apply simulation packages to support every step during process design, - validate models and estimate their parameters from experimental data, - apply models in process development and design.		
Assessment methods and criteria	Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Group work and reports 50%, individual assignments 50%. The lecture: the ability to explain activities required during the process design is checked with quizzes during the semester. The practical classes: the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the group.		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools https://sisu.lut.fi/student/courseunit/otm). Online material.		
TU Coordinator	Kristian Melin, <u>Kristian.Melin@lut.fi</u> ; Nima Rezaei, <u>Nima.Rezaei@lut.fi</u> ; Tuomas Koiranen, <u>Tuomas.Koiranen@lut.fi</u> ,		

Course title	Research Methodology W06GIG-SM3058G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content	This course includes the use of scientific databases to find research results and knowledge including critical source assessment. The students make individual or group workshops on selected research topics where they find knowledge of what is known today and based on that formulate the knowledge gap and relevant objectives for the research they have in mind, identify the relevant scientific methods, and make their research plan to study a pre-selected topic. They understand how to process the results to find the facts. The presentation of the research results in a scientifically credible way is part of the course.		
Intended Learning Outcomes	credible way is part of the course.KnowledgeUpon completion of the course, a student knows- the use of scientific databases to find research results and the current knowledge,- and understands critical source assessment,- how to process the results to find the facts,- the basics of data analysis.SkillsUpon completion of the course, a student is able to:- search for scientific knowledge- assess the reliability of different sources of knowledge and data,- make a research plan to reach the objectives,- make a design of experiments,- do the data analysis,- present the research results,- organize and carry out the workshop,		
Assessment methods and criteria	 - write a scientific report or article. Homework and class assignments as well as quizzes passed. No exam. Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. Group work and reports 50%, individual assignments 50%. The lecture: the ability to explain activities required during the process design is checked with quizzes during the semester. The practical classes: the ability to analyze and apply these processes in real cases is tested with practical examples that are given both individually and in the group. 		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>). Online material. Lecture notes and links to supplementary material are given in Moodle; selected examples from international literature.		
TU Coordinator	Marja Talikka, <u>Marja.Talikka@lut.fi</u> ; Nima Rezaei, <u>Nima.Rezaei@lut.fi</u> ,		

Course title	Circular Economy for Materials Processing W06GIG-SM3059G			
European Credits (ECTS)	5 Time (hours) given to the students 60			
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 1h/week (1 ECTS), blended learning	Student whole working time (hours)	125	
Description of content	Circular economy and resource efficiency are important aspects of sustainable development within the industry. The course aim is that students gain the skills needed to ensure that circular economy concepts become adopted into the design, development and operation of mainly metal production processes, during their application, end-of-life stage and recycling. Students carry out project work in groups. The topics are from industry, for example, side stream processing in the metal and steel producing industry, circular economy, and eco-design. Different aspects are emphasized in different projects, depending on the topic.			
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands basic concepts of circular economy, materials flow (raw materials, processing, manufacturing until end-of-life recycling and re- usage), issues and drivers for changes, - and recognizes the impacts (environmental, economic and social) of the current practice of materials processing from a sustainability aspect. Skills Upon completion of the course, a student is able to: - create new business opportunities to re-enter materials into the circular economy, - apply processing technologies to accelerate the implementation during business creation, - recognize the impacts (environmental, economic and social) of the current practice of materials processing from a sustainability aspect, - work as a team member in a development project.			
Assessment methods and criteria	Homework and class assignments as well as quizzes passed. Moodle exam (lecture). Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. The project class: group project work and meetings, and reports 70%, quizzes 30%. The seminar: presentation of the project work. The lecture: the ability to explain basic concepts of circular economy is checked with exam quizzes. The practical classes: the ability to adopt circular economy concepts into the design, development and operation of mainly metal production processes.			
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm-</u>). Online material. Lecture notes and links to supplementary material are given in Moodle; selected examples from international literature, and data from the industry.			
TU Coordinator	Miia John, <u>Miia.John@lut.fi</u> ,			

Course title	Technology and Innovation Management: Introduction W06GIG-SM3060G		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), classes: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Innovation as a core business process. Innovative organisation. Development of technology and innovation strategy. Innovation networks. Decision- making in technological and market uncertainty. Creation of new products and services. Innovation performance and learning. Sustainability and innovation.		
Intended Learning Outcomes	KnowledgeUpon completion of the course, a student knows- various methods of technology and innovation strategy,- the process of creation of new products and services,- and identifies as well as understands the main innovation and technology management concepts and their linkages to the innovation process,innovation and technology strategy and innovative organization management,- sustainability and innovation basics.Upon completion of the course, a student is able to:- analyze and design technology and innovation strategy of a company,- analyze the usability of various methods of innovation and technology,- recognize and apply the main innovation and technology management concepts to innovative organization management.		
Assessment methods and criteria	Homework and class assignments passed. Self-learning based on online materials and online assignments. Online exam (lecture). Grades: 0-5. Online lectures and exercises, Moodle assignments, personal and group assignments. The project class: group project work and meetings, and reports 100%). The lecture: the ability to explain basic concepts of innovation as a core business process. The practical classes: the ability to recognize and apply the main innovation and technology management concepts to innovative organization management.		
Recommended readings	Joe Tidd and John Bessant. Managing Innovation – Integrating Technological, Market and Organizational Change, 6th ed. (2018), (including e-learning material), or previous editions (2009, 2013). Online material. Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>).		
TU Coordinator	Ville Ojanen, <u>ville.ojanen@lut.fi</u> ,		

Course title	Solid-Liquid Separation W06GIG-SM3061G		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1ECTS), classes: 1h/week (2 ECTS), lab: 2h/week (2 ECTS), blended learning, Distance learning is possible, except for laboratory work measurements	Student whole working time (hours)	100
Description of content	The topics are as follows: Fundamentals of solid-liquid separation, filtration methods, operation of filters, cake formation and washing, deliquoring, design and modelling of filters, and scale-up. Filter media and blinding. Experimental design in filtration test work.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - the fundamental phenomena in solid-liquid separation, - different methods and equipment used for solid-liquid separation, - different filter media used in filtration, Skills Upon completion of the course, a student is able to: - select and size suitable equipment for separation processes based on suspension properties and data from laboratory tests, - explain the effects of the characteristics of the solid material and the liquid on the separation and post-treatment processes, - make a preliminary selection of a medium for different cases, - perform an experimental test on a laboratory scale, - write a scientific report.		
Assessment methods and criteria	Homework, laboratory work plus report, literature review, and class assignments passed. Moodle exam. Grades: 0-5. Lecture exam 60%, laboratory work and report 20%, literature review 20%. The lecture: the ability to explain the fundamental phenomena, methods, and equipment in solid-liquid separation is checked during the Moodle Exam. The practical classes: the ability to perform an experimental test on a laboratory scale and write a scientific report.		
Recommended readings	Basic study material is delivered in Moodle (Sisu student tools <u>https://sisu.lut.fi/student/courseunit/otm</u>). Online material.		
TU Coordinator	Antti Häkkinen, <u>Antti.Hakkinen@lut.fi</u> ,		

ELECTIVE SUBJECTS BLOCK I

Lappeenranta-Lahti University of Technology LUT

Course title	Artificial Inventiveness W06GIG-SM3070		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	It is an online course for all interested in creativity, in systematic tools of ideation. The modules contain basic TRIZ (Theory for Inventive Problem Solving) tools for idea generation. Have you ever thought about why it is hard to find a new idea sometimes? How to analyze the situation where you need an out of box solution? How to deliver the list of concepts to improve a product or a service? This self-paced course includes the following modules: Introduction, Function Definition, Ideal Final Result, Function-oriented Search, and Contradictions. This course is a brief introduction to creativity and idea generation with elements of theory, everyday life examples, and tests for self-check.		
Intended Intended Learning Outcomes	Upon completion of the course, a student is able to - identify inventive problems in the complex process of product development - apply several tools for systematic idea generation (Function modelling, Ideal final result, Function-oriented search, Contradictions analysis) - act step-by-step when creative and out-of-box ideas are needed		
Assessment methods and criteria	Video lectures and examples, assessment tests, and discussion forums. Homework and class assignments as well as quizzes passed. No exam. Grades: fail/pass. The course is built around practical problems solved individually. The lectures constitute the theoretical support for assignment reports and written quizzes during the semester.		
Recommended readings	Lecture notes and links to supplementary material are given in Moodle. Course videos are available on the CEPHEI platform.		
TU Coordinator	Anastasia Chakir, <u>Anastasia.Chakir@lut.fi</u> , Leonid Chechurin, <u>Leonid.Chechurin@lut.fi</u> ,		

Course title	Entrepreneurship and Career Opportunities in Raw Material Sector W06GIG-SM3071			
European Credits (ECTS)	3	Time (hours) given to the students	45	
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75	
Description of content	Most industrial sectors are facing a new era that requires companies to transform their operations, create new business models, and foster a digital culture. In this context, the industry is facing a changing talent landscape, necessitating new skill sets in their workforce. Companies need to ensure that their staff are properly constituted to support this transformation process. During the course, entrepreneurship skills as well as innovative thinking for engineers will be trained using examples from the raw material sector. Case studies will bring the understanding of skills and competencies of the future workforce and current trends of the industrial revolution.			
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and recognizes entrepreneurship and career opportunities in the raw material sector, - and understands the primary sector of the raw materials value chain (geology, mining, mineral processing, metallurgy, and the environment). Skills Upon completion of the course, a student is able to - apply design thinking tools to enhance the creativity and innovation capacity of engineers, - develop skills and competencies to improve the mindset of entrepreneurship.			
Assessment methods and criteria	Online lectures, workshops, exercises, design thinking training, assignments, self-study. Homework and class assignments as well as quizzes passed. No exam. Grades: pass/fail. Group work and individual assignments. 25% lectures and quizzes, 25% training, 25% workshop, 25% self-study.			
Recommended readings	Lecture notes, and articles related to the topics.			
TU Coordinator	Maria Mamelkina, <u>Maria.Mamelkina@lut.fi</u> ,			

Course title	Sustainable Water Use W06GIG-SM3072		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	systems. Wastewater treatment in industry and m	nunicipalities. Sludge treatment. Producti	pply, water use in different sectors and loading of water on of drinking water. Protection of groundwater deposits. treatment methods. Reclaimed water.
Intended Learning Outcomes	Legislation on water quality and sludge treatment. Economic efficiency of different water treatment methods. Reclaimed water. Knowledge Upon completion of the course, a student knows - and defines the key concepts of water pollution control, - and recognizes the main factors affecting water footprint and sustainability of water use, - and explains the operation of essential process technology and equipment related to the control of water pollution, - and recognizes means to protect groundwater and reduce the environmental load of surface waters, - and understands methods for the environmentally friendly management of side-product flows from water treatment. Skills Upon completion of the course, a student is able to: - apply risk analysis methods related to water issues, - implement different methods for water footprint calculation, - compare and give grounded proposals for water treatment methods and processes applicable to different situations,		
Assessment methods and criteria	Lectures, tutorials and independent exercises. Moodle assignments. Moodle quizzes. Homework and class assignments as well as quizzes passed. Grades: 0-5. Moodle quizzes 50%, assignment 50%. Possibility to get a higher grade by giving a presentation of a scientific article - 5 points.		
Recommended readings	handouts provided by the lecturer, course environment on Moodle, Tchobanoglous: Wastewater Engineering. Treatment and Reuse, 2003		
TU Coordinator	Heli Kasurinen, <u>Heli.Kasurinen@lut.fi</u> , Mariia Zhaurova, <u>Mariia.Zhaurova@lut.fi</u> , Risto Soukka, <u>Risto.Soukka@lut.fi</u> ,		

Semester 3 LUT

Lappeenranta-Lahti University of Technology LUT

Course title	Fluid Dynamics in Chemical Engineering W06GIG-SM3065G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), classes: 1h/week (1 ECTS), project 2 h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content			reactors. Theoretical basics of CFD (Computational Fluid CFD. COMSOL software for Multiphysics Simulation (FEM).
Intended Learning Outcomes	KnowledgeUpon completion of the course, a student knows- theoretical basics of CFD (Computational Fluid Dynamics) in chemical engineering,- design methods and scale-up of fluid mixers, rheology, and mixing effects in chemical reactors,- understand the basics of fluid rheologySkillsUpon completion of the course, a student is able to- select, size and scale up different mixing devices (stirred tanks, in-line mixers) for blending and multiphase mixing (solid-liquid mixing, liquid and gas dispersions) based on short-cut design methods,- and can adapt the basics of fluid rheology to mixing design,- solve basic fluid mixing problems with CFD programs (COMSOL software),- calculate heat transfer, chemical reactions, laminar and turbulent flow in CFD,		
Assessment methods and criteria	 - analyze relevant cases in Power-to-X chemicals production technologies. Homework and class assignments as well as quizzes passed. No exam. Exercise-based lecturing (MS-TEAMS or classroom lecture), home exercises and quizzes 70 h (online in Moodle). 3 homework tasks (Lectures 1-3) will be about hands-on calculations (fluid mixing short-cut methods, engineering maths and calculations). 4 CFD exercises (Lectures 4-7), using COMSOL Multiphysics. Grades: 0-5. 50 % of the grade is from homework (each homework grading 0-100 %, 25 % of the Quizzes (each weekly Quiz 0-100 %), 25 % of Project work. The overall grade for passing the course should be at least 1.0. The course is built around practical calculation work solved individually by the students. The lectures constitute the theoretical support for assignment reports and written guizzes during the semester. 		
Recommended readings	Lecture materials in Moodle. Mixing Device Design Perry's Chemical Engineers' Handbook, Perry, R.H., Green, D.W., Maloney J.O. (Eds.), McGraw-Hill, New York; Handbook of Industrial Mixing, Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M., (Edits.), John Wiley & Sons, USA, 2004; EKATO-Handbook of Mixing Technology, EKATO Rühr- und Mischtechnik GmbH, Schopfheim; Zlokarnik, M., Stirring: Theory and Practice, Wiley- VCH, Weinheim, 2001; CFD Material Tu, J., Yeoh, G. H. & Liu, C. (2013). Computational fluid dynamics: A practical approach (2nd ed.). Amsterdam; Boston: Elsevier/Butterworth-		

	Heinemann (e-book);
	An introduction to computational Fluid Dynamics–The finite volume method, 2nd Edition, H. K. Versteeg and W. Malalasekera, 2007;
	An introduction to computational Fluid Dynamics – The finite volume method, Second Edition, H. K. Versteeg and W. Malalasekera, 2007 (book);
	Comsol Multiphysics User's Guide (inside Software);
	www.cfd-online.com;
	www.bakker.org;
TU Coordinator	Tuomas Koiranen, <u>Tuomas.Koiranen@lut.fi</u> ,

Course title	Process Intensification W06GIG-SM3066G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 2h/week (2 ECTS), classes: 1h/week (2 ECTS), seminar: 1h/week (1 ECTS), blended learning	Student whole working time (hours)	125
Description of content	The course covers different process intensification methods and their theoretical background. Teaching involves lectures, assignments, meetings and seminars. The main work will be carried out as a process design project assignment where students will work in teams aiming to intensify a process given by the teacher. Each team will write a report and present their results in the seminar. The topics focus mainly on the intensification of different Power-to-X processes, such as the production of E-fuels, carbon-neutral products, energy storage etc.		
Intended Learning Outcomes	 Knowledge Upon completion of the course, a student knows and explains intensified reactors and separation equipment, combination of reaction and separation, hybrid separation, alternative energy sources, transformation of batch processes to continuous ones, and explains the principles and goals of process intensification, and recognizes possibilities to intensify processes and apply novel technology to existing processes (the production of E-fuels, carbon-neutral products, energy storage, etc.), and understands how product design and process design are related, and describes the advantages of process intensification and typical intensification methods. Skills Upon completion of the course, a student is able to: apply intensified reactors and separation equipment, the combination of reaction and separation, hybrid separation, alternative energy sources, the transformation of batch processes to continuous ones, carry out process design to intensify a process given by the teacher, write a report and present their results, 		
Assessment methods and criteria	Lectures, seminars and exercises passed. Group work, self-studies, preparation for the seminars and the examinations. Grades: 0-5. Written examination 50%, seminar report and exercises 50%. The lecture: the ability to explain different process intensification methods and their theoretical background. The practical classes: the ability to carry out a process design project assignment in teams aiming to intensify a process given by the teacher. The ability to lead the seminar and produce the presentation.		
Recommended readings	Lecture notes. Online material.		
TU Coordinator	Arto Laari, <u>Arto.Laari@lut.fi</u> ,		

Course title	Current Issues in Enabling Technologies for Circular Economy W06GIG-SM3067G		
European Credits (ECTS)	5	Time (hours) given to the students	60
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (2 ECTS), classes: 1h/week (2 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	125
Description of content	recovery as well as separation and purification te examples of the utilization of different technolog	echnologies. The approach of the course gies in solving different kinds of challeng of plastic, electric, packaging and textile v	olementation of a circular economy, such as recycling and is mainly solution-based and thus aims to show practical ges in the circular economy. A special emphasis is laid on vaste as well as on the production of biofuels. The course is in the circular economy.
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands basic concepts of circular economy (raw materials, processing, manufacturing until end-of-life recycling and reuse) and the drivers for change from linear to circular economy, - and understands the processing technologies of materials in the context of the circular economy. Skills Upon completion of the course, a student is able to: - evaluate the processing technologies of materials in the context of circular economy, - recognize and compare impacts (environmental, economic and social) of processing technologies when assessing the current (linear) practice of material processing vs circular value chains,		
Assessment methods and criteria	 - apply the transferable skills of life cycle thinking (ecodesign) to evaluate processing technologies in circular value chains. The students will prepare a team portfolio on one specific subject during this course that will be assessed. In the preparation and assessment of the portfolios peer and self-evaluation will be utilized. In addition, students will answer individually two compulsory questions (at the beginning and the end of the course). Grades: 0-5. There is no exam. The students will prepare in teams a short pitching video and a report on one specific subject during this course that will be assessed. In the assessment peer and self-evaluation will be utilized. In addition, students will prepare in teams a short pitching video and a report on one specific subject during this course that will be assessed. In the assessment peer and self-evaluation will be utilized. In addition, the course material includes compulsory or voluntary guizzes or questions related to the topic at hand. 		
Recommended readings	Course material is available in Moodle and consists of video lectures and scientific and topical articles. The course material and the guidance to supplementary material are provided in connection with the different topics.		
TU Coordinator	Miia John, <u>Miia.John@lut.fi</u> ,		

Course title	Start-ups and Venture Formation W06GIG-SM3068G		
European Credits (ECTS)	6	Time (hours) given to the students	75
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	150
Description of content	Entrepreneurship theory and process, business ideas and opportunities, business models, entrepreneurial teams, start-ups and spin-offs, start-up process and development stages, start-up strategies and sequencing activities, start-up financing, testing of business ideas, business plans, and cases.		
Intended Learning Outcomes	Upon completion of the course, a student knows - business start-up theories and processes. Skills Upon completion of the course, a student is able to: - critically analyse different business ventures and is skilled in testing business ideas and models, - analyze business cases and prepare a business plan with its calculations as well as pitch the plan successfully, - work as a team member in a development project.		
Assessment methods and criteria	Individual assignments and preparing for Moodle exam, independent work. Group work. Grades 0-5. Evaluation 0-100 points. Individual assignments 60%, group work 30% (written business plan 20%, oral pitching 10%), Moodle exam 10%.		
Recommended readings	Barringer, B.R. & Ireland, R.D. (2006 or later edition). Entrepreneurship: successfully launching new ventures. Pearson Prentice Hall. Other materials will be distributed during the course.		
TU Coordinator	Noora Heino, <u>Noora.Heino@lut.fi</u> ,		

Course title	Academic Entrepreneurship W06GIG-SM3069G		
European Credits (ECTS)	6	Time (hours) given to the students	75
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (3 ECTS), seminar: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	150
Description of content	 The central concepts of entrepreneurship, The entrepreneurial mindset, motivations, resources and opportunity recognition, The anatomy of the venturing process, Commercializing academic skills and research activities, Communicating entrepreneurial ventures 		
Intended Learning Outcomes	The course aims to develop the student's awareness of their entrepreneurial mindset. The aims also include enhancing the students' understanding of entrepreneurial opportunities and routes for grasping them. Furthermore, the students learn new ways to commercialize their knowledge, skills and research activities.		
Assessment methods and criteria	Lectures and teamwork, tests and exercises, homework exercises, practising presentations of business cases, study visits or visitor lecturers. Grades: 0-5. 1-5 course assignments and an exam. Moodle assignments, individual and group assignments.		
Recommended readings	Shane, Scott (2003) A general theory of entrepreneurship. The individual-opportunity nexus. Edward Elgar. Other literature is to be announced during the course (including e-learning material). Online material.		
TU Coordinator	Tuuli Ikäheimonen, <u>Tuuli.Ikaheimonen@lut.fi</u> ,		

ELECTIVE SUBJECTS BLOCK II

Lappeenranta-Lahti University of Technology LUT

Course title	Intelligent Product-Service Systems W06GIG-SM3073		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Product-Service Systems (PSS) and Product Lifecycle Management (PLM) trends and digital transformation. Different views on a product/service: structures – processes – lifecycles – data/information, challenges with lifecycle management, requirements management, and systems engineering. Product information modeling, change management, and configuration management through lifecycle (CLM). IoT-based data services for sustainability, features, and functionalities of PSS/PLM systems. PLM project and demos of systems utilization. Future of PSS in various industries.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - and understands trends of product-service systems and digital transformation affecting manufacturing business, - and defines, and explains the concepts related to product data management and product life cycle management, - and recognizes the company's product and service processes and understands their interaction with the company's overall operations Skills Upon completion of the course, a student is able to - compare PLM and ERP systems' characteristics, technical features, and managerial functions and is able to see their role in product development and business management.		
Assessment methods and criteria	Lectures, project meetings, and intensive studies. Course assignments and quizzes. Grades 0-5. Quizzes 60 %, project assignment and participation 40 %.		
Recommended readings	Journal articles and lecture material. Sääksvuori-Immonen: Product Lifecycle Management, Springer 2008.		
TU Coordinator	Ilkka Donoghue, <u>Ilkka.Donoghue@lut.fi</u> , Lea Hannola, <u>Lea.Hannola@lut.fi</u> ,		

Course title	Inventive Product Design and Advanced TRIZ W06GIG-SM3074		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Solving) tools for idea generation and other analy hard to find an idea that can save a product, pro- deliver systematically the list of patentable conce an IP strategy? The course includes the followin Biomimetics, Contradictions, Function Modelling Design, Design for Manufacturing and Assembly technology troubleshooting, and inventive solution	rtical tools that have proven their efficient oject, or business? How to analyze the si- opts to improve a product or a service? Ho g modules: Introduction, Basics of Pate g and Ttrimming, Cause-Effect Chain Ana , Conclusion. There are about 20 case si- ons, many of which are coming from succ	tain basic and modern TRIZ (Theory for Inventive Problem ncy in the industry. Have you ever thought about why it is ituation where you need an out of box solution? How to ow to circumvent the patents of competitors and develop nting, Function Definition, Function-oriented Search and lysis, Trends of Engineering System Evolution, Axiomatic tudies and 100+ examples of smart new product design, sess and failure stories of technological giants. Most cases work and what is inside a refrigeratorexcept food plus
Intended Learning Outcomes			
Assessment methods and criteria	 evaluate design concepts from managerial and production perspectives. Lectures and project meetings, group work, individual work, and studies. Online lectures, exercises, assignments, self-study. Homework and class assignments passed. No exam. Grades: 0-5. Project work is 50% and individual work is 50%. 		
Recommended readings	Study materials will be provided during the course, and open-access Internet resources are actively used.		
TU Coordinator	Anastasia Chakir, <u>Anastasia.Chakir@lut.fi</u> , Leonid	Chechurin, <u>Leonid.Chechurin@lut.fi</u> ,	

Course title	Knowledge Discovery and Process Data Analysis W06GIG-SM3075		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	Knowledge discovery refers to the overall process of discovering useful knowledge from data. The knowledge discovery process is interactive and iterative and involves several steps starting from studying the application domain and ending with to use of the information discovered. Process data analysis can be part of this process. Fundamental concepts - such as reliability of data, preprocessing (e.g., de-noising, handling missing data, and scaling strategy), data reduction, choosing a methodology, validation, modelling, etc - will be addressed in lectures, Moodle assignments, and discussions. Project work will be carried out in small groups that will define their working methodology. The course is suitable for distance learning.		
Intended Learning Outcomes	Knowledge Upon completion of the course, a student knows - have acquired basic information on the main concept of the knowledge discovery process concerning industrial data. Skills Upon completion of the course, a student is able to: - be aware of the effect of digitalization and automation on the amount, nature, and quality of data from the chemical engineering point of view, - apply specified methods and methodology to data, - apply management and collaboration skills in the implementation of project work.		
Assessment methods and criteria	Online lectures, tutorials, online discussions, peer feedback, Moodle quizzes, and weekly assignments. Project work. Grades: 0-5. Project work 39 %, assignments 37 %, discussions in Moodle forum 24 %. Homework and class assignments as well as quizzes passed.		
Recommended readings	Tutorial videos, and online material distributed or announced in Moodle.		
TU Coordinator	Satu-Pia Reinikainen, <u>Satu-Pia.Reinikainen@lut.fi</u> , Tuomas Sihvone, <u>Tuomas.Sihvonen@lut.fi</u> ,		

Course title	Development of New Sustainable Products and Solutions W06GIG-SM3076		
European Credits (ECTS)	3 Time (hours) given to the students 45		45
Type (lecture, classes, laboratory, project, seminar)	lecture: 1h/week (1 ECTS), project: 2h/week (2 ECTS), blended learning	Student whole working time (hours)	75
Description of content	The course contains an introduction with an overview of sustainable biobased products, bio-based barrier technologies for packaging applications, Biobased Hygenic Products and Solutions, Biomaterials for Printing, and Biobased tall oil products. and Biomaterials in food application. Fundamentals about biomaterial design, modification, synthesis, and use of fibers, cellulose (derivatives), and lignin in various products. Chemical and mechanical modification, separation methods, mixing and drying methods. Product specification requirements and characterization methods. In addition, the course contains an interesting topic of group and individual assignments related to modern trends of sustainable biobased products and solutions.		
Intended Learning Outcomes	and solutions. Knowledge Upon completion of the course, a student knows - various types of new sustainable product development and solutions, - tailoring of functionalities of biobased polymers to meet functionality needed for specific applications, - various renewable resources (biomaterials, biochemicals, cellulose, lignin, starch, carbohydrates, etc) based on sustainable product development and their applications, - material and molecular design and its role in product performance. Upon completion of the course, a student is able to: - use of forest resources and forest-derived biomaterials for food, pharmaceuticals, composites, industry, and other applications.		
Assessment methods and criteria	Mostly self-study and topic-based exercises, topic-based group, and individual assignments. Online lectures, tutorials, online discussions, peer feedback, Moodle quizzes, and weekly assignments. Project work. Grades: 0-5. Exercises (20%), group assignment (30%), video presentation of group assignment (20%) and individual assignment (30%).		
Recommended readings	Lecture material will be distributed via Moodle.		
TU Coordinator	Rama Layek, <u>Rama.Layek@lut.fi</u> ,		

Semester 4 WUST

Wroclaw University of Science and Technology WUST

Course title	Field Academy Student Project W06GIG-SM3064P		
European Credits (ECTS)	2	Time (hours) given to the students	45
Type (lecture, classes, laboratory, project, seminar	Project-Practical classes, fieldwork: 3h/week (2 ECTS)	Student whole working time (hours)	50
Description of content	The goal of the course is that students should acquire a hands-on understanding of different field research methodologies, and how they can be integrated with innovation and technology in mining. Innovative techniques such as UAV (drones), UGV (robots), VR, GIS-based data analyses, lidar imaging, hyperspectral method as well as InSAR methods and digitalization trends will be explored by students. The students will investigate companies (raw materials, geological, geodesy, mining, processing plants, municipal objects, IT companies) in view of innovative management and		
Intended Learning Outcomes	techniques implementation. Knowledge Upon completion of the course, a student knows - and understands trends of product-service systems and digital transformation affecting manufacturing business, - and defines, and explains the concepts related to product data management and product life cycle management, - and recognizes the company's product and service processes and understands their interaction with the company's overall operations, - and understands the primary sector of the raw materials value chain (geology, mining, mineral processing, and the environment), - innovative techniques, digitalization trends, and the concept of innovation and technology integration in the raw material sector. Skills Upon completion of the course, a student is able to - compare systems' characteristics, technical features, and managerial functions, - see their role in product development and business management, - create new business models, and foster a digital culture,		
Assessment methods and criteria	 - implement innovative techniques in the raw materials chain. The course is mainly connected with practice work in the field, but also with complementary short lectures and exercises. The investigation results will be assessed together with the report and project. 		
Recommended readings	The complementary/introductory material will be provided on Moodle. The students will be responsible for the content of the material.		
TU Coordinator	Anna Gogolewska, anna.gogolewska@pwr.edu.pl		

Wroclaw University of Science and Technology WUST

Course title	Industrial Research Internship Project W06GIG-	Industrial Research Internship Project W06GIG-SM3062P				
European Credits (ECTS)	2	Time (hours) given to the students	30			
Type (lecture, classes, laboratory, project, seminar, internship)	Project classes: 2h/week (2 ECTS), (Practice)	Student whole working time (hours)	50			
Description of content	The aim of the course is to enable students to work in responsible workplaces and apply their skills and knowledge to promote entrepreneurship, innovation, and technology integration in the raw material sector. The students are to become work-ready professionals, who can implement innovative technologies and efficient managerial issues. They will learn how to actively participate in the affairs of the community and promote public interest, equality, and solidarity. The students will face environmental and technological problems such as the degradation of land, air, and water quality as a result of industrial activities. Therefore the students will be familiarized with the necessity of transparency and accountability standards in the raw materials sector and the strategy to meet them. Moreover, they will be exposed to the lack of effective information flow between the companies and society. In industrial or R&D companies the students will develop and implement innovative solutions to technological or managerial problems observed.					
Intended Learning Outcomes	bit managerial problems observed. Knowledge Upon completion of the course, a student knows - and understands trends of product-service systems and digital transformation affecting manufacturing business, - and defines, and explains the concepts related to product data management and product life cycle management, - and recognizes the company's product and service processes and understands their interaction with the company's overall operations, - and understands the primary sector of the raw materials value chain (geology, mining, mineral processing, and the environment), - innovative techniques, digitalization trends, and the concept of innovation and technology integration in the raw material sector. Skills Upon completion of the course, a student is able to - compare systems' characteristics, technical features, and management, - see their role in product development and business management, - create new business models, and foster a digital culture, - engage in an informal professional discussion and business communication,					
Assessment methods and criteria	Submission and defense of a project report					
Recommended readings						
TU Coordinator	Supervisors of the student's Master thesis					

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish: Zintegrowana analiza deformacji w geomechanice Name of subject in English: Integrated Analysis of Deformations in Geomechanical Engineering Main field of study: Mining and Geology Specialization: Mining Engineering Geomatics for Mineral Resources Management Entrepreneurship, Innovation and Technology Integration in Mining Profile: academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory Subject code: W06GIG-SM3063G Group of courses: Yes

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	75		50		
Form of crediting (Examination/crediting with grade)		Ex	amination		
For group of courses mark (X) final course	Х				
Number of ECTS points			5		
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			2,9		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

1. Introduction to Rock Mechanics

2. Basic knowledge about mining technologies

3. Fundamentals of monitoring of rock mass deformations

SUBJECT OBJECTIVES

C1 Fundamental understanding of integrated analysis of deformations using the combination of monitoring and numerical modelling of deformations, which is essential for studying the processes occurring in engineering structures and in rock mass at the construction and post-construction stages. C2 To understand the fully automated monitoring principles, data collection, and processing. C3 Fundamental understanding of analysis of deformations, which is essential for studying the processes occurring in engineering structures and in rock mass at the construction and post-construction stages.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 Is able to distinguish and describe the applications of deformation monitoring techniques in the spectrum of engineering disciplines such as mining and construction engineering
- PEU_W02 Is able to characterize the rock mass and mining methods
- PEU_W03 Has knowledge of empirical and deterministic analyzes of rock mass deformations using FEM
- PEU_W04 Has knowledge of the basics and applications of the analysis of the integrated deterministic method with the results of geodetic measurements

relating to skills:

- PEU_U01 Is able to determine the main assumptions for geodetic measurement of deformations caused by mining exploitation
- PEU_U02 Is able to create a FEM model
- PEU_U03 Is able to perform integrated analysis using deterministic modelling by means of the FEM method and using the results of geodetic and geotechnical measurements

•••

relating to social competencies:

PEU_K01 Is able to assess the role of monitoring and prediction in sustainable mining throughout its entire cycle

	Lecture	Number of hours
Lec 1	Introduction: course syllabus, methods of evaluation of the learning outcomes, literature	2
Lec 2	Introduction to integrated analysis of deformations. Rock mass and earth mass material characteristics; determination of in-situ rock mass parameters;	2
Lec 3	The role of monitoring in sustainable mining.	2
Lec 4	Description of physical phenomena: statics - dynamics, heat propagation, fluid flow, changes in gravitational force, applications	2
Lec 5	Geodetic and geotechnical monitoring of deformations; deterministic modelling	2
Lec 6	Deformation Monitoring Surveys, design and implementation of geodetic deformation monitoring system. Short review of monitoring requirements and available monitoring techniques.	
Lec 7	Advantages and disadvantages of geodetic and geotechnical methods. The concept of integrated analysis.	2
Lec 8	Solid mechanics, boundary conditions problem	2
Lec 9	Principles of integrated analysis of deformations; analysis based on system theory; analysis based on continuum mechanics; approximate methods for solving continuum problems; Finite Element Method (FEM);	
Lec. 10	Solving truss systems in FEM	2
Lec. 11	Large scale problems in rock mechanics. Empirical and deterministic methods of surface deformations modelling in underground and open pit mining. Utilization of the Finite Element Method	
Lec 12	Examples of utilization of integrated analysis for slope stability problems in open pit mines in Chile and USA	2
Lec 13	Examples of integrated analysis used to control surface deformations caused by underground salt mining in Canada	2

PROGRAMME CONTENT

Lec. 14	Problems of oil and gas mining (Venezuela, Canada)	2
Lec 15	Wrap up: conclusions, final remarks	2
	Total hours	30
	Classes	Number of hours
Cl 1		nours
Cl 2		
	Total hours	
	Laboratory	Number of hours
Lab 1	Presentation of the course scope, literature and assessment methods	2
Lab 2	Analysis of the impact of load on the rock mass – application of the GeoStudio software	2
Lab 3	In-situ stress analysis of rock mass and loaded rock mass	2
Lab 4	Designing a geodetic measurement in a mining area for underground mining based on FEM results. Discussion of the measurement project.	2
Lab 5	Determination of the mining area category. Discussion of the project results	2
Lab 6	Designing a geodetic measurement in an open-pit mine based on the FEM model. Discussion of the measurement project.	2
Lab 7	Designing a geodetic measurement of an earth dam based on an FEM model. Analysis, discussion	2
Lab 8- 11	Task 1: Determining the FEM of rock mass deformations caused by underground mining, determining the terrain category. Elastic and nonlinear analysis. Monitoring overview. Summary	
Lab 12- 15	Task 2: Determination of the FEM of the deformation of the earth mound/dam in conditions of variable water level. Determination of the safety factor using Geostudio software. Monitoring overview. Summary	
	Total hours	30
	Project	Number of hours
Proj 1		
	Total hours	
	Seminar	Number of hours
Semin 1		
Semin 2		
	Total hours	
	TEACHING TOOLS USED	
N2. Inc	cture, film lividual problem solving with the use of software, teacher's support oup discussion	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement			
F1	PEK_W01- PEK_W03	Marks for laboratory assignments and tasks			
_	$1 - PEU_U03$ Final n	nation - final mark for Lecture nark for laboratory classes – average from ments and tasks			
	PRIMARY AND SECO	ONDARY LITERATURE			
PRIMARY LITERA	ATURE:				
[1] Szostak-Chrzanowski, A., A. Chrzanowski,(2010), "INTEGETED ANALYSIS OF					
DEFORMATIONS IN	GEOMECHANICS ", UNE	3, Fredericton, N.B., 220p.			
SECONDARY LITE	RATURE:				

[1] Szostak-Chrzanowski, A., A. Chrzanowski, M. Massiera (2005) "Use of deformation monitoring results in solving geomechanical problems – case studies ", Engineering Geology, vol. 79, Issues 1-2, pp. 3-12.

[2] Chrzanowski, A. (1993): "Modern Surveying Techniques for Mining and Civil Engineering" Chapter 33 in: Comprehensive Rock Engineering, Pergamon Press, Vol.3. Chapter 33, pp.773-809.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Anna Chrzanowska anna.chrzanowska@pwr.edu.pl

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

> specjalność/specialisation: Mineral Resources Exploration - Track WUST - UNI MISKOLC

Semester 1 WUST

crediting

with grade

2

2

0.9

Attachment no. 4. to the Program of Studies

FACULTY OF GEOEN Name of subject in Pol Name of subject in Eng Main field of study: Specialization: Level and form of stud Kind of subject: Subject code Group of courses	SUBJ ish Geofizyka i glish Engineering Mining and go Mining Engino Geotechnical a Geomatics for Mineral Resou lies: 2nd level, full- obligatory	IECT CARI nżynierska g Geophysic eology eering, and Environ Mineral Re rce Explora time	D es imental E source M	Ingineerin		
		Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organ University (ZZU)	ized classes in	15			15	
Number of hours of total s (CNPS)	tudent workload	25			50	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

(P)

crediting

with grade

1

0,8

1. has knowledge of fundamentals of applied geophysics, physics and geology.

other academics (BU)

- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.

For group of courses mark (X) final course

including number of ECTS points for practical classes

classes that require direct participation of lecturers and

including number of ECTS points corresponding to

4. is able to work in a team.

Form of crediting

*delete as not necessary

Number of ECTS points

SUBJECT OBJECTIVES

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

- C4 acquisition of skills to plan geophysical field surveying and to interpret its results.
- C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

PROGRAMME CONTENT Number of Lecture hours Physical properties of rocks. Inter-relationships between the various Lec 1 subdisciplines of applied geophysics. Overview of geophysical methods, 1 their physical principles and applications. Methodology of geophysical surveying. Engineering problems solved with geophysical surveying. Case studies. Lec 2 2 Electrical resistivity methods. Tomography and VSE. IP method. Physical Lec 3 2 principles. Equipment. Methods of field surveying. Interpretation and application. Case studies. Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric Lec 4 methods. Physical principles. Methods of field surveying. Equipment. 2 Interpretation and application. Case studies. GPR surveying. Physical principles. Methods of field surveying. Equipment. Lec 5 2 Interpretation and application. Case studies. Seismic interferometry. Seismic tomography. Physical Lec 6 principles. 2 Applications. Case studies. Mine geophysics. Seismology. Seismic methods. Active and passive seismic Lec 7 2 tomography. Microgravimetry. Case studies. Gravity and magnetic surveying. Equipment. Methods of field surveying. Lec 8 2 Interpretation and application. Case studies. Total hours 15 Number of Project hours

Proj 1	One selected geophysical technique. Fundamentals and equipment. Field	4			
	surveying				
Proj 2	Processing and interpretation of field data.	3			
Proj 3	Solving the geophysical problems.	8			
	Total hours	15			
	TEA CHING TOOL & LIGED				

TEACHING TOOLS USED

N1. N1.Lecture aided by presentation.

N2.Demonstration.

N3.Discussion and consultations

N3Calculations

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY **SUBJECT CARD** Name of subject in Polish Wspomagane komputerowo modelowanie geologiczne i geostatystyka.) Name of subject in English: Computer Aided Geological Modelling and Geostatistics Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory W06GIG-SM3002 Subject code **Group of courses** No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting with grade	Examination / crediting	crediting with grade	Examination / crediting	Examination / crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.
- C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT				
	Lecture				
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2			
Lec 2	Geology of the seam.	2			
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2			
Lec 4	Spatial distribution of samples values. Regionalized variable.	2			
Lec 5	BLUE Estimator of the mean value: Kriging.	2			
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2			
Lec 7	Reserves modelling and evaluation.	2			
Lec 8	Mineral resources. International reporting. The JORC Code	1			
	Total hours	15			

	Laboratory	Number of hours
La1	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La4	Construction of the structural wireframe model of stratigraphy layers.	3
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3
La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3

	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

TEACHING TOOLS USED

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01, PEU_W02	Lecture grade on the basis of the written examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02, PEU_U03	Laboratory task assessment: "reserves evaluation".
P average of F1, F2, F3, F	'4	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec

Attachment no. 4. to the Program of Studies

FACULTY OF GEO	ENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish:	Cyfrowa kopalnia
Name in English:	Digital Mine
Main field of study:	Mining and geology
Specialization:	Mining Engineering,
	Geotechnical and Environmental Engineering,
	Mineral Resource Exploration
Level and form of st	udies: 2nd level, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3006
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Computer literacy skills
- 2. Basic knowledge related to Mining Engineering and Mineral Processing
- 3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems. Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.
- PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT		
	Form of classes - lecture		
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2	
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2	
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2	
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2	
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2	
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1	
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2	
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2	
	Total hours	15	

	Form of classes - laboratory		
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data. Introduction to ARDUINO	3	
Lab2	Basic sensors for physical parameters measurements	3	
Lab3	Measurements in Labview	3	
Lab4	Analysis and Visualization in Labview	3	
Lab5	Control in labview	3	
	Total hours	15	

TEACHING TOOLS USED

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Attachment no. 4. to the Program of Studies

	Attachment no. 4. to the Hogram of
FACULTY OF	F GEOENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish: Zarządza	nie Środowiskiem
Name in English: Environ	mental Management
Faculty of studies (if applic	cable): Mining and Geology
Specialisation (if applicable	e): Mining Engineering
	Mineral Resource Exploration
Level and form of studies:	2nd level, full-time
Subject Type:	Obligatory
Subject code:	W06GIG-SM3001
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the	30				15
University (ZZU)					10
Number of hours of total	50				25
student workload (CNPS)	Caralitian				Caralitica a
Form of crediting	Crediting with grade				Crediting with grade
For a group of courses mark					
(X) for the final course					
Number of ECTS points	2				1
including number of					
ECTS points for practical					
(P) classes					
including number of					
ECTS points for direct	1,3				0,8
teacher-student contact	- ;-				~ ,~
(BU) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.Basic knowledge of issues related to ecology and environmental protection.

SUBJECT OBJECTIVES

- C1. To get students acquainted with systems of environmental management both in Poland and other EU countries.
- C2. To prepare students for rational and sustainable management of environmental components.
- C3. To get students acquainted with the genesis of environmental management systems in Poland, review and standardization of environmental management systems.
- C4. To get students acquainted with benefits and obligations arising from the implementation of an environmental management system.
- C5. To present the relationship between an environmental management system and a quality

management system.

C6. To provide an overview of informative methods of supporting the implementation of environmental management systems (possibilities and practical usage of computerised systems of environmental information management, decision support in the area of environmental protection and choice of methods and tools used to support the implementation of an environmental management system).

SUBJECT LEARNING OUTCOMES

relating to knowledge:

- PEU_W01 Possesses systematic knowledge of the origins of environmental management systems, review and standardization of environmental management systems.
- PEU_W02 Possesses knowledge of the possibilities and practical applications of tools supporting the implementation of the environmental management system.
- PEU_W03 knows basic formal and legal regulations regarding the implementation and functioning of management systems, tools and instruments of environmental management.
- PEU_W04 Possesses knowledge for rational and sustainable management of environmental components.

relating to skills:

- PEU_U01 Possesses linguistic resources appropriate for specialised language and is able to use it in linguistic activities in order to communicate in the professional environment regarding the field of studies; is able to obtain necessary information and interpret and critically evaluate it, reads and understands professional literature, is able to formulate and comprehensively justify opinions, provide presentations of problems related to a studied discipline and also participate in scientific and professional discussions.
- PEU_U02 Is able to use methods and appropriate IT tools in system management of environmental components.

relating to social competencies:

PEU_K01 - Is able to think and act in a creative and enterprising way.

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec.1	 Basic concepts: Environment, characteristics of individual elements of the environment Characteristics of hazards for the natural environment which are a result of human activities Environmental Management The Environmental Management System 	2
Lec.2	Legal aspects of environmental management	2
Lec.3	History and development of environmental management systems	2
Lec.4 Lec.5 Lec.6	Environmental management systems: - Business Charter for Sustainable Development of the International Chamber of Commerce - ICC Business Charter for Sustainable	6

Se1	The scope and form of an essay and presentation, terms of crediting and literature.	hours 2
	Form of classes - seminar	Number of
Lec.15	Environmental management systems in practice Total hours	30
Lec.14	system	3
Lec.14	system Costs of implementation and functioning of an environmental management	1
Lec.13	Poland and in the world The benefits of an implemented and functioning environmental management	2
Lec.11 Lec.12	 Decision Support Systems Expert systems Simulation Models Geographical Information Systems Selected types of information systems which support environmental management, their characteristics, examples of implementation both in 	4
Lec.9 Lec.10	IT systems supporting environmental management:	4
Lec.7 Lec.8	 ISO 14001 Characteristics of selected Environmental Management Systems. The benefits of the implementation of the EMS for a company. Experiences of Polish enterprises from the implementation of EMS. Process of implementation of the selected EMS in a company with an example of EMAS. Basic tools of environmental management: Legal and administrative instruments (laws, standards, licenses and permits) Economic instruments (fees, taxes, deposit and refund systems, transferable rights, subsidies, liens, fines) Instruments (techniques) social impact (ecological education, ecological propaganda) Examples of basic tools of environmental management: Procedure for an assessment of environmental impact Integrated permits Audits Safety Reports Monitoring of the Environment 	4
	 Development EMAS – Directive of the European Community Commission regarding the approval for voluntary participation by organisations in a community eco-management and eco-audit scheme CP - Clean Production BS 7750 - Specification for Environmental Management Systems ISO 9000 ISO 14000 	

	Total hours	15
	Group discussion on the content and form of speeches.	
	sources, etc.	
	protection in Poland and in the world and also alternative energy	
	selected monitoring systems, the institution of environmental	
Se8	systems, mineral resource management, renewable energy sources,	
Se7	fees, taxes, surcharges and environmental deposits; litter management	13
Se6	an integrated decision etc.), life-cycle analysis of a selected company;	
Se5	(eg. receiving a decision on the environmental conditions of a project,	
Se4	examples, formal and legal conditions of administrative procedures	
Se3	following issues: environmental management systems - specified	
Se2	Student speeches with the use of multimedia presentations on the	
	Assignment of seminar topics for individual students.	

TEACHING TOOLS USED

- N1. Informative lecture with elements of problematic lectures.
- N2. Multimedia presentations
- N3. Didactic discussion during lectures and seminars
- N4. Preparation of an essay in the form of a report
- N5. Presentation of the essay
- N6. Consultations

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F – forming (during semester), P – concluding (at semester end)	Educational outcome number	Method of evaluating educational outcome achievement	
F1- Grade from content value of an essay	PEU_U01 PEU_U02 PEU_K01	Text and graphical form of essay	
F2 – Grade from presentation and issues included in an essay	PEU_U01 PEU_U02 PEU_K01	Presentation of essay	
F3 – Grade from a written or oral test	PEU_W01 PEU_W02 PEU_W03 PEU_W04	Positive grade	
final grade from the subject (the weighted average, respectively: 35% for the substantive content of the essay, 25% for the presentation, 40% for the lecture)			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Ejdys J.,1998, Zarządzanie środowiskowe w przedsiębiorstwie koszty i korzyści, Sterowanie ekorozwojem, t.2, Wyd. Politechniki Białostockiej, Białystok,
- [2] Lukasheh A. F., Droste R. L., Warith M. A., 2001, Review of Expert System (ES), Geographic Information System (GIS), Decision Support System (DSS), and their applications in landfill design and management. W: Waste Management & Research nr 19,
- [3] Łunarski J. (red.), 2002, Zarządzanie środowiskiem", Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow
- [4] Nowak Z., 2001, Zarządzanie środowiskiem, Wyd. Politechniki Śląskiej, Gliwice,
- [5] Matuszak-Flejszman A., 2001: Jak skutecznie wdrożyć system zarządzania środowiskowego wg normy ISO 14001. PZIiTS, Poznan
- [6] Pochyluk R. i inni, 1999, Zasady wdrażania systemu zarządzania środowiskowego zgodnego z wymaganiami normy ISO 14001, Eco-Konsult, Gdansk,
- [7] Poskrobko B., Poskrobko T., 2012, Zarządzanie środowiskiem w Polsce, Polskie Wydawnictwo Ekonomiczne, Warsaw
- [8] Poskrobko B., 1998: Zarządzanie środowiskiem. Polskie Wydawnictwo Ekonomiczne, Warsaw
- [9] Przybyłowski P. (red.), 2005, Podstawy zarządzania środowiskowego, Wyd. Akademii Morskiej, Gdynia.

SECONDARY LITERATURE

- [1] Jeżowski P. (red.), 2007: Ekonomiczne problemy ochrony środowiska i rozwoju zrównoważonego w XXI wieku. Szkoła Główna Handlowa, Warsaw
- [2] Lemański J. F., Matuszak-Flejszman A., Zabawa S. (red.), 2000: Efektywność funkcjonowania wdrożonego systemu zarządzania środowiskowego wg normy ISO 14001. PZIiTS, AE, Poznan – Pila
- [3] Websites given during lectures and seminars

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

- Dr hab. inż. Justyna Woźniak
- Dr hab. Inz. Katarzyna Pactwa,
- Dr inż. Danuta Szyszka

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD

Name of subject in Polish Bezpieczeństwo i higiena pracy Name of subject in English: Occupational Health and Safety Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering,

Mineral Resource Exploration

Profile: academicLevel and form of studies: 2nd level, full-timeKind of subject: obligatorySubject codeW06GIG-SM3005Group of coursesNo

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			25	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			1	
including number of ECTS points for practical classes (P)				1	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,7			0,8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

C1. To introduce the principles of occupational risk assessment in accordance with relevant standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU_W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

relating to skills:

- PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry
- PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.
- PEU_U03 Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3
Lec 2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3
Lec 3	Dangerous factors - identification and assessment of risks.	3
Lec 4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3
Lec 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3
	Total hours	15

	Project			
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3		
Pr2	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of	3		

	harmful factors (vibration, chemical agents)	
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15

TEACHING TOOLS USED

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes (arithmetic
	PEU_U01- U03	average of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- Occupational Safety and Health in Mining. Anthology on the situation in 16 mining countries. Ed.: Kaj Elgstrand and Eva Vingård. University of Gothenburg nr 2013;47(2) (gupea.ub.gu.se > bitstream > gupea 2077 32882 1)
- [2] Boyle, Tony: Health and safety: Risk management. IOSH, 2001. (http://www.iosh.co.uk/index.cfm?go=publications.main)

 [3] Encyclopaedia of occupational health and safety. Fourth edition Stellman, Jeanne M. (ed.). International Labour Organization, 1998 (http://www.ilo.org/public/english/support/publ/xtextre.htm#b103) http://www.ilo.org/public/english/support/publ/encyc/)

[4] McKeown, Céline; Twiss, Michael: Workplace ergonomics: A practical guide, IOSH, 2001, 160 p. http://www.iosh.co.uk/index.cfm?go=publications.main

SECONDARY LITERATURE:

Handouts, articles

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 78/2023 Attachment no. 4. to the Program of Studies

FACULTY OF GEOIENGI	NEERING, MINING AND GEAOLOGY				
	SUBJECT CARD				
Name in Polish: Modele D	ecyzyjne w Zarządzaniu				
Name in English: Operati	ons Research				
Main field of study (if app	licable): Mining and Geology				
Specialization (if applicabl	Specialization (if applicable): Mining Engineering,				
	Mineral Resource Exploration				
Level and form of studies:	2nd, full-time				
Kind of subject: obligatory					
Subject code:	W06GIG-SM3000				
Group of courses: NO					

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	25		50		
Form of crediting	crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes of practical character (P)			2		
including number of ECTS points for direct teacher- student contact (BU) classes	0,8		0,7		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The student has basic knowledge of mining systems, technological and organizational systems in mining
- 2. The student has basic knowledge concerning economics in mining
- 3. The student has basic knowledge concerning mathematical analysis necessary to understand mathematical issues in science having engineering and economic character.
- 4. The student has basic knowledge and skills of using probability theory models and mathematical statistics
- 5. The student can use Excel spreadsheet
- 6. The student understands the need and knows the possibilities of lifelong learning, improving professional, personal and social skills

SUBJECT OBJECTIVES

C1 Acquiring basic knowledge, taking into consideration its applicational aspects concerning mathematical decision models used in management: C1.1 Linear programming models C1.2 Models of planning, deposits and costs of projects

C1.3 Queuing system models

C1.4 Digital simulation models

C2. Learning of qualitative understanding, interpretation and quantitative analysis with applications of selected issues concerning optimization

C2.1. Production systems:

C2.2. Transport issues

C2.3. Flows in networks.

C2.4. Project schedules

C2.5. Queuing system models

C3. Acquiring and consolidating the competencies of thinking and acting in a system way.

SUBJECT LEARNING OUTCOMES

Subject educational effect (knowledge)

PEU_W01 The student has knowledge concerning basic decision models in management

PEU W02 The student has knowledge concerning line programming models.

PEU_W03 The student has knowledge concerning models for planning and monitoring of activities, deposits, and costs of projects

PEU_W04 The student has knowledge concerning queuing system models

PEU_W05 The student has knowledge concerning simulation models.

Subject educational effect (skills)

PEU_U01 The student has the ability to apply and interpret models using linear programming applications

PEU_U02 The student has the ability to apply and interpret models of planning and monitoring of activities, deposits, and costs of projects with the use of programming applications

- PEU_U03 The student has the ability to apply and interpret queuing system models using programming applications
- PEU_U04 The student has the ability to apply and interpret simulation models using programming applications

Subject educational effect (social)

PEU_K01 The student can think and act in a system, creative and enterprising way

PEU_K02 The student is able to identify and solve problems with the use of decision models and applications

	PROGRAMME CONTENT				
	Form of classes - lecture Number of hour				
Le1	Introduction to modelling systems	2			
Le2	Linear programming issues - optimization of production	2			
Le3	Linear programming issues - flow in networks optimization (optimal allocation issues, the issue of transportation, maximum flow, minimizing costs)	2			
Le4	Projects scheduling using critical path	2			
Le5	Le5 Planning and balancing of deposits in projects				
Le6	Le6 Optimization issues of queuing systems				
Le7	Le7 Monte Carlo methods and digital simulation				
	Total hours	15			

Form of classes - laboratory		
La1	Defining and solving linear programming issues (Microsoft Excel-Solver)	2
La2	Production optimization (Microsoft Excel - Solver)	2
La3	Flows in networks optimization (Microsoft Excel - Solver)	2
La4	Projects scheduling (Microsoft Project)	2
La5	Planning and balancing of deposits in projects (Microsoft Project)	2
La6	La6 Optimization issues of queuing systems (Microsoft Excel)	
La7	Elements of Monte Carlo methods and digital simulation (Microsoft Excel)	3
	Total hours	15

TEACHING TOOLS USED

N1. Interactive lecture with slides and discussion

N2. Laboratory exercises with the use of IT applications - discussion concerning solutions

N3. Laboratory exercises - short written tests (calculating tasks, tests of knowledge)

N4. Duty hours

N5. Own work - preparation for laboratory classes, solving additional tasks

N6. Own work - own literature studies.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement		
F1	PEK_U01-04	short written test.		
PEU U01-04 written test (counting exercise)				
PEU W01-05; PEU K01-02 Written test (knowledge test)				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Ignasiak E., Borucki W., Badania operacyjne, PWE, 2001
- [2] Krawczyk S., Badania operacyjne dla menedżerów, PWE
- [3] Baranowska B, Badania operacyjne w zarządzaniu, PWSBIA, 1996

SECONDARY LITERATURE

- [1] Szapiro T., Decyzje menedżerskie z Excelem, PWE 2000
- [2] Trzaskalik T., Modelowanie optymalizacyjne, Absolwent
- [3] Trzaskalik T., Badania operacyjne z komputerem, PWE

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Witold Kawalec

Dr hab. inż. Leszek Jurdziak

Dr inż. Zbigniew Krysa

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish ... Zarządzanie projektami, ocena ich opłacalności i ryzyka.. Name of subject in English: Project Management, Appraisal and Risk Evaluation. Main field of study (if applicable): Mining and Geology Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory

Subject code ... W06GIG-SM3003G **Group of courses YES**

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30	15	
Number of hours of total student workload (CNPS)	25		50	25	
Form of crediting	Examination				
For group of courses mark (X) final course	X				
Number of ECTS points			4		
including number of ECTS points for practical classes (P)			3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			3,1		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER **COMPETENCES**

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

SUBJECT OBJECTIVES

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management.

Part A: The purpose of the course is

C1 to introduce basic concepts of Microeconomics and financial management

C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are discussed. The issues of inflation and risk analysis are included.

Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 knows the concepts of demand, supply and price elasticities, understands how they affect markets
- PEU_W02 knows the concepts of costs in economics and accounting, understands how they differ
- PEU_W03 knows the main cost categories and cost accounting methods
- PEU_W04 has basic knowledge about the contents of financial statements
- PEU_W05 has basic knowledge about the method of ratio analysis of financial statements
- PEU_W06 knows and understands the concepts of Present Value and Future Value for simple cash flows and annuities.
- PEU_W07 knows the capital budgeting methods (NPV, IRR, PBP) and understand how to interpret the results
- PEU_W08 has basic knowledge about the project risk evaluation methods

relating to skills:

- PEU_U01 is able to analyze the causes and effects of demand and supply changes
- PEU_U02 is able to interpret and use information presented in financial statements also by means of ratio analysis
- PEU_U03 is able to use different cost analysis methods and make decisions based on the rsults
- PEU_U03 can calculate Future and Present value, also for annuities and solve simple calculation problems
- PEU_U04 is able to perform discounted cash flow analysis and draw conclusions based on the results
- PEU_U05 is able to carry out sensitivity analysis and scenario analysis using a financial model of an investment
- PEU_U06 is able to work out basic project documentation and initiate a project
- PEU_U07 is able to use basic methods of project management, monitoring and project risk management
- PEU_U08 is able to implement basic conflict management methods in a project group
- PEU_U09 is able to use basic group management methods, can undertake and shape the leadership position

relating to social competences:

- PEU_K01 is able to think and act in a systematic, creative and entrepreneurial way
- PEU_K02 has an established attitude of economic operation and decision-making based on available financial information and forecasts

PROGRAMME CONTENT		
	Number of hours	
Lec.1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2
Lec.2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2
Lec.3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2
Lec.4	Variable and fixed costs. Break even point. Cost-volume –profit analysis.	1
Lec.5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2
Lec.6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2
Lec.7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2
Lec.8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2
	Total hours	15

	Project	Number of hours
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3
	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3

Effective managerial behaviour from the different contexts.	
Total hours	15

	Laboratory	Number of hours
	Part A	
La1	Supply and Demand curves. Elasticity of demand.	2
La2	Economic costs. Cost curves. Profit maximization cases.	2
La3	Managerial cost accounting. Decision making cases.	2
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2
La5	Ratio analysis based on financial statements of companies	2
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3
	Part B	1
La8	Basic concepts (process, project, project management, management	3
	by projects, critical factors for project success, competences). Preparing and initiation of the project. Project analysis (project environment, stakeholders, project objectives).	
La9	Planning and estimating of the project. Project phases and life cycle	3
La10	Project organization. Project scope management. Planning of activities, resources and costs.	3
La11	Project risk management. Project monitoring. Project management methodologies.	3
La12	Quality management. Change control. Project closing.	3
	Suma godzin	30

TEACHING TOOLS USED

N1. Interactive lecture with the use of multimedia and discussion

N2. Laboratory classes: individual problem solving with the use of Excel spreadsheet

N3. Laboratory classes part B and project classes: case studies solving in groups and individually. Project presentations, discussion

N4. Consultation

N5. Self-study: solving assigned problems, literature studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W08	Assesment of student class activity
	PEU_K01-K02	
F2	PEU_U01-U10	Evaluation of student's assignements
	PEU_K01-K02	
P1	PEU_W01-W08	Written test
	PEU_U01-U10	
	PEU_K01-K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E., Glapenski L.: Financial Management, 1997
- 3. Johnson H.: Making Capital Budgeting Decisions Maximising the Value of the Firm. Financial Times/Prentice Hall (April 15, 1999)
- 4. Jonson H.: Strategic Capital Budgeting: Developing and Implementing the Corporate Capital Allocation Program, January 1994.
- 5. Lock Dennis, Project Management, Published April 11, 2013 by Routledge

SECONDARY LITERATURE:

- 1. Jonson H.: Determining Cost of Capital: The Key to Firm Value. Apr 1999.
- A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)
- 3. Johnson H.: Global Financial Institutions and Markets. December 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

	0		
FACULTY OF GEOENGINEERING, MINING AND GEOLOGY			
	SUBJECT CARD		
Name in Polish:	Zasady i zastosowania InSAR oraz GIS w górnictwie		
Name in English:	Principles and Application of InSAR and GIS in mining		
Main field of study:	Mining and geology		
Specialization:	Geomatics for Mineral Resources Management		
-	Mineral Resource Exploration		
Level and form of st	udies: 2nd level, full-time		
Kind of subject:	obligatory		
Subject code:	W06GIG-SM3007		
Group of courses:	No		

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.
- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEK_W01 Has expanded knowledge in the field of using geoinformation systems to collect and process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK_U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2
Lec 2	Introduction to Microwave Signals for Earth Observation	2
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2
Lec 4	Acquisition and processing of SAR data	2
Lec 5	SAR image theory (geometric properties, polarization)	2
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2
Lec 7	Principlesand Applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2
Lec 8	Fundamental concepts of geographical information systems	2
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2
Lec 10		2
Lec 11	Spatial data interpolation	2
Lec 12	Map algebra. Surface analysis, local and zonal functions	2
Lec 13	Basics of spatial statistics	2
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2
	Total hours	30

	Laboratory	Number of hours
Lal	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

TEACHING TOOLS USED

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of F1 and F2, where F1 – 80% and F2 - 20%)
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl Semester 2 and 3 UNI MISKOLC

Course descriptions – Earth Science Engineering MSc

Contents

Course descriptions - Earth Science Engineering MSc	
Physical geology	
Mineralogy and geochemistry	
Geophysical exploration methods I	
Graduate research seminar	
Structural geology	
Mineral deposits	
Engineering geology and hydrogeology	
Analytical technics in mineralogy and petrology	
Geological interpretation and prospecting	
Geophysical interpretation and prospecting	
Global environmental geophysics	
Geoelectric lectureship	
Geological mapping	
Sedimentology	
Geochemical prospecting methods	
Non-metallic industrial minerals	
List of competences	

Physical geology

Type of course (C/E): Course code: MFFT710001 Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars The degree of theoretical or practical nature of the course: (in ECTS%) Type of Assessment (exam. / pr. mark. / other): E During the semester the following tasks should be completed: students have to complete two field programmes: 1) studying sedimentary rocks, reporting in ppt presentations (15%), 2) studying magmatic rocks, Grading scale: % value % value Grade 80 -100% 5 (excellent) 70 - 79% 2 (good) 60 - 69% 3 (satisfactory) 50 - 49% 1 (failed) Position in Curriculum (which semester): 1. Pre-requisites (<i>if any</i>): - Course Description: Objectives of the course: Dbiectives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, making then familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and the stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The role of physical geology in the geological exploration. Magmatic processes, their interpretation on field Sedimentary processes, their interpretation on field Sedimentary processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, hios, hoio: and ch	Course Title: P	hysical geology	ECTS: 4	
The degree of theoretical or practical nature of the course: (in ECTS%) Type of Assessment (exam. / pr. mark. / other): E During the semester the following tasks should be completed: students have to complete two field programmes: 1) studying sedimentary rocks, reporting in ppt presentations (15%), 2) studying magmatic rocks, Grading scale: % value Grade % value Grade 80 -100% 5 (excellent) 70 - 79% 4 (good) 60 - 69% 3 (satisfactory) 50 - 59% 2 (pass) 0 - 49% 1 (failed) Position in Curriculum (which semester): 1. Pre-requisites (if any): - Course Description: Objectives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, makin them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and th stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The romation and the inner structure of the Earth Plate tectonic background of the geological exploration. Magmatic processes, their interpretation on field Fieldtrip, studying magmatic rocks Meanorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic momeclature Stratotype, lito-, bio- and chronostratigraphy Reconstruction of continental sedimentary environments	Type of course (C/E):		Course code: MFFTT710001	
Type of Assessment (exam. / pr. mark. / other): E During the semester the following tasks should be completed: students have to complete two field programmes: 1) studying sedimentary rocks, reporting in ppt presentations (15%), 2) studying magmatic rocks, Grading scale: % value Grade % value Grade 80 -100% 5 (excellent) 70 - 79% 4 (good) 60 - 69% 3 (satisfactory) 50 - 59% 2 (pass) 0 - 49% 1 (failed) Position in Curriculum (which semester): 1. Pre-requisites (<i>if any</i>): - Course Description: Directives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, makin them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and th stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological exploration. Magmatic processes, their interpretation on field Friedtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Friedtrip, studying magmate rocks Metamorphic processes, their interpretation on field Frieldtrip, studying magmate rocks <td>Type (lec./sem./l</td> <th>lab./consult.) and Number of Contact Ho</th> <th>ours per Week: 2 lectures, 1 seminars</th>	Type (lec./sem./l	lab./consult.) and Number of Contact Ho	ours per Week: 2 lectures, 1 seminars	
During the semester the following tasks should be completed: students have to complete two field programmes: 1) studying sedimentary rocks, reporting in ppt presentations (15%), 2) studying magmatic rocks, Grading seale: % value Grade 80 -100% 5 (excellent) 70 - 79% 4 (good) 60 - 69% 3 (satisfactory) 50 - 59% 2 (pass) 0 - 49% 1 (failed) Position in Curriculum (which semester): 1. Pre-requisites (if any): - Course Description: Objectives of the course are deepening the students' abilities for geological interpretation, makin them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and th stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological exploration. Magmatic processes, their interpretation on field Fieldtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Fieldurip, studying magmatic rocks Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, lite., bio- and chronostratigraphy Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, li	The degree of <u>t</u> l	<u>heoretical</u> or practical nature of the co	ourse: (in ECTS%)	
% value Grade 80 -100% 5 (excellent) 70 - 79% 4 (good) 60 - 69% 3 (satisfactory) 50 - 59% 2 (pass) 0 - 49% 1 (failed) Pre-requisites (if any): - Course Description: Objectives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, makin them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and th stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological exploration. Magmatic processes, their interpretation on field Fieldtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, lito-, bio- and chronostratigraphy Magneto-, chemo-, seismic, sequence, and cycle stratigraphy Magneto, chemo-, seismic, sequence, and cycle stratigraphy Reconstruction of marine sedimentary environments Reconstruction of marine sedimentary environments Reconstruction of rock-forming processes and tectonic eve	During the seme programmes: 1)	ster the following tasks should be compl studying sedimentary rocks, reporting in		
Course Description: Objectives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, making them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and the stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological processes The role of physical geology in the geological exploration. Magmatic processes, their interpretation on field Fieldtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, lito-, bio- and chronostratigraphy Magneto-, chemo-, seismic, sequence, and cycle stratigraphy Reconstruction of marine sedimentary environments Reconstruction of marine sedimentary environments Defining the succession of rock-forming processes and tectonic events Teaching methodologies: During the semester the following tasks should be completed: students have to complete two field	% value 80 -100% 70 - 79% 60 - 69% 50 - 59%	5 (excellent) 4 (good) 3 (satisfactory) 2 (pass)		
Objectives of the course: The main objectives of the course are deepening the students' abilities for geological interpretation, making them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and the stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological processes The role of physical geology in the geological exploration. Magmatic processes, their interpretation on field Fieldtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, lito-, bio- and chronostratigraphy Magneto-, chemo-, seismic, sequence, and cycle stratigraphy Reconstruction of continental sedimentary environments Reconstruction of marine sedimentary environments Defining the succession of rock-forming processes and tectonic events Teaching methodologies: During the semester the following tasks should be completed: students have to complete two field	Position in Curri	culum (which semester): 1.	Pre-requisites (if any): -	
The main objectives of the course are deepening the students' abilities for geological interpretation, makin them familiar with the reconstruction of rock-forming processes, introducing them to facial analysis and th stratigraphic methods. Course content: Fieldtrip, analysis of sedimentary formations The formation and the inner structure of the Earth Plate tectonic background of the geological processes The role of physical geology in the geological exploration. Magmatic processes, their interpretation on field Sedimentary processes, their interpretation on field Fieldtrip, studying magmatic rocks Metamorphic processes, their interpretation on field Principles of stratigraphy, stratigraphic nomenclature Stratotype, lito-, bio- and chronostratigraphy Magneto-, chemo-, seismic, sequence, and cycle stratigraphy Reconstruction of continental sedimentary environments Defining the succession of rock-forming processes and tectonic events Teaching methodologies: During the semester the following tasks should be completed: students have to complete two fiel	Course Descrip	tion:		
programmeb. If bradying beamientary reporting in ppt presentations (1570), 27 stadyin	them familiar with stratigraphic mether Course contents Fieldtrip, analysis The formation and Plate tectonic back The role of physic Sedimentary proce Fieldtrip, studying Metamorphic proce Principles of strati Stratotype, lito-, b Magneto-, chemo- Reconstruction of Reconstruction of Defining the succe Teaching mether	h the reconstruction of rock-forming process ods. of sedimentary formations I the inner structure of the Earth kground of the geological processes cal geology in the geological exploration. Ma esses, their interpretation on field g magmatic rocks cesses, their interpretation on field igraphy, stratigraphic nomenclature bio- and chronostratigraphy -, seismic, sequence, and cycle stratigraphy continental sedimentary environments marine sedimentary environments	ses, introducing them to facial analysis and th agmatic processes, their interpretation on field	

Gary Nichols: Sedimentology and Stratigraphy. Wiley-Blackwell, 2009

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K9, K11, K12, K13 Attitudes: Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course gives the fundamentals to later specific geological courses. It introduces the basic concepts and skills necessary for interpretation of different geological processes.

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by classworks as well as field works

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Hartai Éva foldshe@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Mineralogy and geochemistry

Course Title: Mineralogy and geochemistry		ECTS: 4		
Type of course (C/E): Course		Course code: M	rse code: MFFAT710005	
Type (lec./sem.	/lab./consult.) and Number of Conta	ct Hours per Week: 2 l	ectures, 1 seminars	
The degree of	<u>theoretical</u> or practical nature of t	he course: (in ECTS%)	
The final grade	sment (exam. / pr. mark. / other): E will consist of two part. During the n will be the 50% of the final grade. Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)			
	riculum (which semester): 1.	Pre-requisites (į	f any): -	
Course Descri	ption:			

Objectives of the course:

Students will get the knowledge of the principals of the distribution of chemical element in the Earth. They will also know the most important thermodynamic processes concerning solid materials, the geochemical classification of elements, the geochemical aspects of the genesis of the most important minerals and mineral assemblages. The geochemistry of isotopes, which explores the chemical evolution of the Earth will also be introduced, as well as the geochemical characteristics of water, organic matter, magmatic, sedimentary and metamorphic rocks by which we can describe the mineral-and rock-forming processes in the crust and mantle.

Course content:

Introduction; Hydrogen and alkaline metals Alkaline earth metals Boron, aluminium, carbon and silicon Rare earth elements, titanium and zirconium Uranium, thorium, vanadium, niobium and tantalum Chromium, molybdenium and tungsten Midterm test (1st); Manganese, iron, cobalt and nickel Copper, gold, silver and platina group elements Zinc, cadmium, mercury, gallium, indium and thallium Tin, lead, arsenic, antimony and bismuth Nitrogen, phosphorus and oxygen Sulphur, selenium, tellurium, haloids and noble gases

Teaching methodologies:

The final grade will consist of two part. During the semester two midterm tests are written. The average of them will be the 50% of the final grade. The rest 50% is for the final exam.

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Dill H.G. (2010): The "chessboard" classification schene of mineral deposits. Elsevier, 2010. White, W. M. (2013): Geochemistry. Wiley-Blackwell.

Nordstrom D.K., Blowes D.W., Ptacek C.J. (2015): Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, Elsevier.

Albared, F. (2005): Geochemistry. An introduction. Cambridge Univ. Press.

Sarkar D., Datta R., Hanningan R.(2007): Concepts, and applications in environmental geochemistry, Elsevier.

John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols, Eds. (2003): Handbook of Mineralogy. Mineralogical Society of America.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T7 Skills: K1, K2 Attitudes: A1, A2, A9 Autonomy and responsibility: F2, F5

Demonstration of coherence of course content and unit's objectives:

This is a fundamental course, discussing systematic mineralogy and geochemical baskground of mineral formation processes

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by mineralogy laboratory work and geochemical modeling exercises

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*): Móricz Ferenc

Geophysical exploration methods I.

	Geophysical exploration methods I.		ECTS: 4
Type of course (C/E): Course code: MFGFT710002		FGFT7100021	
Type (lec./sem	./lab./consult.) and Number of Contact	Hours per Week: 2 le	ectures, 1 seminars
The degree of	<u>theoretical</u> or practical nature of th	e course: (in ECTS%)	
	ectures is regulated by the university of ith satisfactory results, and two assign		
Grading scale:			
Grading scale: % value	Grade		
% value	Grade 5 (excellent)		
e	5 (excellent)		
% value 86 -100%			
% value 86 -100% 70 – 85%	5 (excellent) 4 (good)		
% value 86 -100% 70 - 85% 60 - 69%	5 (excellent) 4 (good) 3 (satisfactory)		

Course Description:

Objectives of the course:

Understanding the surface geophysical methods and the geophysical methods used in boreholes for the purpose that students can design and execute geophysical research and evaluate data.

Course content:

Classification of applied geophysics methods. Gravity methods: measured quantities, basic corrections and data processing methods. Filtering gravity maps.

Evaluation of measurement data for causative bodies with simple geometries. Geological and environmental geological applications. Magnetic methods: measured quantities, basic corrections and data processing methods.

Reducing magnetic data to the pole. Evaluation of measurement data for magnetizable bodies with simple geometries. Geological and environmental geological applications. The specific resistivity of rocks, the concept of apparent resistivity. Direct current geoelectric methods. VES and multi-electrode measurement methods. Introduction of electromagnetic methods.

Induced Polarization (IP) in the time domain (TDIP) and the frequency domain (FDIP). Types of electric polarizations creating the IP signal and their geological background. Frequency domain electromagnetic methods (FDEM): MT and VLF methods, artificial source frequency sounding methods: measurement systems, zones around the transmitter, characteristics of the apparent resistivity and phase curves.

Time-domain electromagnetic methods (TDEM): transient, IP and ground radar methods. The transient EM measurement system and the zones around the transmitter. In the case of electrical and electromagnetic methods, the possibilities of controlling the depth of penetration.

The development of seismic reflected waves. The travel-time curve and its characteristic parameters. Dynamic and static corrections. The common mid-point (CMP) gather. Features of seismic (TWT) sections.

Interpretation of seismic (2D and 3D) sections. Isochronal maps. Seismic stratigraphy. Vertical and horizontal resolution. Acoustic impedance, reflection and transmission coefficients. Possibilities of detecting gas reservoirs by seismic method. The bright spot.

The development of seismic refracted waves. The travel-time curve and its characteristic parameters. Processing and evaluation of refraction data. Near-surface applications. The relationship between the petrophysical properties of rocks and parameters measured by well logging methods.

Introduction to petrophysics. Reservoir modeling. The basics of nuclear well logging methods. Determination of lithology and porosity. Presentation of main application areas.

The basics of acoustic well logging methods. Determination of sonic porosity and permeability. Presentation of main application areas.

The basics of electric well logging methods. The relation between resistivity and water saturation. Presentation of main application areas.

Possibilities for joint processing of open-hole well logging data. Crossplot techniques. Statistical and depthby-depth inversion methods.

Principle of engineering geophysical sounding measurements. Determination of petrophysical and geotechnical properties of soils/rocks.

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Three writing tests with satisfactory results, and two assignments during the semester is the requirement of signature.

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

Telford W. M., Geldart L. P., Sheriff R. E., 1990. Applied geophysics. Second edition. Cambridge University Press.

Kearey P., Brooks M., Hill I., 2002. An Introduction to Geophysical Exploration. Third edition. Blackwell Science Ltd.

Serra O. & L., 2004. Well logging data acquisition and application, Editions Technip.

Szabó N. P., 2015. Geophysical exploration methods I. Electronic textbook. http://www.uni-miskolc.hu/~geofiz/education.html

Szabó N. P., 2016. Well-logging methods. Electronic textbook. http://www.unimiskolc.hu/~geofiz/education.htmlScientific papers selected from geophysical journals, e.g., First Break, Near Surface Geophysics, Geophysics, Journal of Applied Geophysics etc.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course intruduces the principal theoretical background and practical skills to plan and perform geophysical explorations for different geological environments and deposit types

Demonstration of coherence between teaching methodologies and the learning outcomes:

Following the theoretical part, the students are introduced to different geophysical prospecting and exploration methods in practice.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Szabó Norbert Péter gfnmail@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Graduate research seminar

	Graduate research seminar		ECTS: 2
Type of course	(C/E):	Course code: MFFAT710006	
Type (lec./sem.	/lab./consult.) and Number of Conta	et Hours per Week: 0 l	ectures, 2 seminars
The degree of	theoretical or practical nature of t	he course: (in ECTS%)
topic, outline an submission of f	ester the following tasks should be c nd references (20%), elaboration of t irst draft (15%), submission of the f	the concept map of the	
Grading scale: % value	Grade		
% value	Grade 5 (excellent)		
% value 80 -100%	5 (excellent)		
% value	5 (excellent) 4 (good)		
% value 80 -100% 70 – 79%	5 (excellent)		
% value 80 -100% 70 - 79% 60 - 69%	5 (excellent) 4 (good) 3 (satisfactory)		

Course Description:

Objectives of the course:

To introduce the methods of information gathering and evaluation, formal and ethic requirements of scientific communication, rules for preparation of oral and poster presentations. During the course these general requirements are actualized to the field of earth science and engineering. Examples and excercises will use English publications and text materials.

Course content:

Editorial and formal requirements of scientific publications. Planning of the concept and structure of a scientific publication, making an outline, development of a concept map. Usage of references, reference styles. Etics of scientific writing: how to avoid plagiarism, usage of citations. Information sources provided by the Central Library: hard copy, catalogue search, electronic resources. Usage of electronic information resources: search options, simple and combined search, electronic libraries. Data visualization: graphs, figures, tables. The art of presentation: preparation for an oral contribution. The art of presentation: preparation of a poster.

Teaching methodologies:

During the semester the following tasks should be completed: short presentation of the selected topic, outline and references (20%), elaboration of the concept map of the article (20%), submission of first draft (15%), submission of the final text (20%),

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

L. C. Perelman, J. Paradis, and E. Barrett: The Mayfield Handbook of Technical and Scientific Writing (McGraw-Hill, 2001).

G. J. Alred, C. T. Brusaw, and W. E. Oliu: Handbook of Technical Writing, (St. Martin's, New York, 2003).

Hagan P; Mort P: Report writing guideline for mining entógineers. Mining Education Australia, 2014.

Chun-houh Chen, Wolfgang Härdle, Antony Unwin (eds.) Handbook of Data Visualization (Springer, 2008).

MEA Report writing guide. https://www.engineering.unsw.edu.au/miningengineering/sites/mine/files/publications/MEA_ReportWritingGuide_eBook_2018ed.pdf ISO 690-2: Information and documentation - Bibliographic references.

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T5, T8, T12 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11 Attitudes: A2, A3, A4, A5, A6, A7, A8, A9 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Students are introduced to the information sources available paper-based and electronically. They are also introduced to best practices on scientific writing, referencing and presentation techniques.

Demonstration of coherence between teaching methodologies and the learning outcomes: Completing a small research article and a presentation the students improve their knowledge in scientific communication. This is a learning by doing course, where one of the most important goals is to learn the proper way of scientific writing and referen

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Mádai Ferenc askmf@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Structural geology

Course Title:	Structural geology		ECTS: 4
Type of course (C/E): Course code: MI		FAT720020	
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 1 lectures, 2 seminars			ctures, 2 seminars
The degree of	theoretical or practical nature of the co	ourse: (in ECTS%)	
Attendance at 1 test and constru	sment (exam. / pr. mark. / other): E lectures is regulated by the university code ucting a geological profile at least on satis requirement of signature. The exam is ora Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)	factory level, respe	
Position in Cu	riculum (which semester): 2.	Pre-requisites (if	any): -
Course Descri	ption:		
-	the course: rides a background in the fundamentals of stu-	• •	

The course provides a background in the fundamentals of structural geology. It introduces the methods of interpreting structural observations and determining the 3-D distribution of the lithological units, the physical properties controlling the development of fractures, folds and other structural features. The course also introduces the students to building up, constructing and analysing spatial models.

Course content:

Theoretical backgrounds: basic terms of structural geology and tectonics. Techniques of data acquisition, recording and visualization. Stress and strain, deformation mechanisms, rheological models. Brittle and ductile features, their style and origin. Syngenetic structures and their role in further structural evolution. Plate tectonics and large scale structures. Characteristics of tectonic regimes. Practical exercises: use of tools to measure, demonstrate and analyze the structural data. Basics for constructing maps and cross sections. Lecture: Basic terms; information on the interior of the Earth.

Practice: Use of geological maps; rules and geometrical basis of construction of cross sections.

Lecture: Structural features of the rocks, deformation, description of movements.

Practice: construction of cross sections.

Lecture: Stresses, mechanics.

Practice: construction of cross sections.

Lecture: Rheology and failure envelopes.

Practice: construction of cross sections.

Lecture: Mechanisms and features of brittle deformation. Practice: construction of cross sections with drill logs

Lecture: Mechanisms and features of ductile deformation

Practice: construction of cross sections with drill logs.

Field exercise: structural orientation measurements on folded and faulted rocks.

(The exercise is organised by exchange with the contact hours of another course, in 6 hours)

Practice: working with orientation data, stereograms.

Practice: working with orientation data, stereograms.

Practice: construction exercises.

Practice: construction exercises.

University of Miskolc, Earth Science Engineering MSc

Course descriptions

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Writing a test and constructing a geological profile at least on satisfactory level, respectively during the semester is the requirement of signature. The exam is oral

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Twiss, R. J. & Moores, E. M: Structural Geology. Freeman & Co., New York, 1992, 532 p. Ramsay, J. G. & Huber, M. I: The techniques of modern structural geology. Vol. 1: Strain Analysis. Academic Press, London, 1983, 1-308 p.

Ramsay, J. G. & Huber, M. I: The techniques of modern structural geology. Vol. 2: Folds and Fractures. Academic Press, London, 1987, 309-700 p.

Ramsay, J. G. & Lisle, R. J: The techniques of modern structural geology. Vol. 3: Applications of continuum mechanics in structural geology. Academic Press, London, 2000, 701-1062 p. Twiss, R. J. & Moores, E. M: Tectonics. Freeman & Co., New York, 1995, 415 p.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

In the limited timeframes of the semester, the thematics includes all topics which belong to the structural geology on introductory level. It also provides a possibility to go deeper in some topics for those who have the appropriate basic knowledge alread

Demonstration of coherence between teaching methodologies and the learning outcomes:

The program is arranged with giving the theoretical and practical basics first and then going to the application of these basics by making field observations, measurements and then working with these data. The students have to be able to interpret the obs

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Németh Norbert foldnn@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Mineral deposits

Course Title: Mineral deposits		ECTS: 4	
Type of course (C/E): Course code: MFFTT72		FTT720021	
Type (lec./sem.	/lab./consult.) and Number of Contact Ho	urs per Week: 2 le	ctures, 1 seminars
The degree of	theoretical or practical nature of the co	urse: (in ECTS%)	
Test about reco	ment (exam. / pr. mark. / other): E gnizing the different hand specimens of c fication of ores with examples (65%).	res, raw materials	(35%); Written test
% value	Grade		
% value Grade 80 -100% 5 (excellent)			
70 - 79% 4 (good)			
60 - 69% 3 (satisfactory)			
50 - 59% 2 (pass)			
0 - 49% 1 (failed)			
Position in Curriculum (which semester): 2. Pre-requisites (<i>if any</i>): -			any): -
Course Description:			

Objectives of the course:

The key target of the course is to introduce the geology of raw material deposits, their spatial distribution, their quantity and quality for the different commodities.

Course content:

During the introduction the students get familiar with the different groups of commodities – ores, industrial minerals, solid fossil energy minerals, construction materials and their use and history. In the next period, the students will learn the ore forming geological processes and their appearances, which creates the different deposits. Also they will learn the genetic classification of the deposits with national and international examples. It prepares the students to be able to recognize the geological features of mineralizations, alterations and tectonic preformation. It covers all the important mines and ore districts in Europe and worldwide. During the laboratory classes the students can learn the natural occurrences of the ores, non-ores and industrial minerals. They will learn the physical and chemical properties, and texture of the different raw material types, and how to identify and distinguish them. To the proper use of geological maps and sections in 3D, the students will do exercises to develop their capabilities. During the related field trips the students will examine real deposits in the field.

Teaching methodologies:

Test about recognizing the different hand specimens of ores, raw materials (35%); Written test about the classification of ores with examples (65%).

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Robb, L., (2005): Introduction to Ore-Forming Processes: Blackwell Publishing Co., 373 p. (ISBN 0-632-06378-5).

EVANS, A. M. 1993: Ore Geology and Industrial Minerals – An Introduction. Blackwell Publishing, ISBN 978-0632-02953-2

CRAIG, J. R. & Vaughan, D. J. 1994: Ore Microscopy & Ore Petrography. John Wiley and Sons Inc. ISBN 10158-0012

Dill H.G. (2010): The "chessboard" classification scheme of mineral deposits. Elsevier, 2010. Cox, D.P. Singer D.E. (1992): Mineral Deposit Models, U.S.G.S. Bulletin 1993.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Students get familiar with the different groups of commodities – ores, industrial minerals, solid fossil energy minerals, construction materials and their use and history, as well as the ore forming geological processes and their appearances, genetic clas

Demonstration of coherence between teaching methodologies and the learning outcomes:

Theoretical part is complemented by laboratory classes where students analyze specimens from different deposit types. learn the natural occurrences of the ores, non-ores and industrial minerals. They will learn the physical and chemical properties, and te

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*): Leskó Máté

Engineering geology and hydrogeology

Course Title: E	ngineering geology and hydrogeology		ECTS: 4
Type of course (C/E):		Course code: MFKHT720020	
Type (lec./sem./	lab./consult.) and Number of Contact Ho	ours per Week: 2 le	ctures, 1 seminars
The degree of <u>t</u>	<u>heoretical</u> or practical nature of the co	ourse: (in ECTS%)	
Participation in calculations. The	nent (exam. / pr. mark. / other): E presentation lectures and practical classe e successful completion of the course is b d the successful completion of the exam		
Grading scale: % value 85 -100% 75 - 84% 63 - 74% 50 - 62% 0 - 49%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)		
Position in Curr	iculum (which semester): 2.	Pre-requisites (if	any): -
Course Descrip	tion:		
hydrogeology, so underwater stress, Course content Introduction to the Determination of Soil consolidation Shallow and deep The most importa Hydrogeological p Hydrogeological p Hydrogeology of Isotope hydrogeol Groundwater rech Well hydraulics ca Isotope hydrogeol Teaching metho Participation in calculations. The	e examination of soil characteristics shear strength parameters of soils foundation, the basics of EC7 design nt basics, problems and relationships of hydr bools, flow systems, sustainability, artificial n ry, transport processes nt issues, particularly in cross-border areas the Carpathian Basin ogy, use of stable isotopes to understand gro arge and their interpretation alculations ogy, use of radioactive isotopes to understan	aboratory and field ogeology replenishment undwater d groundwater es is mandatory. Fi	soil tests, water-to-roc
The 3-5 most im David Daming: F. G. Bell: Engin	portant compulsory, or recommended lit Introduction to Hydrogeology, McGraw- neering Geology, Oxford, Blackwell Scie zsef: Hidrogeológia. Akadémiai kiadó	Hill Higher Educa entific Publications	tion, 2002. , 1992

Dr. Juhász József: Hidrogeológia. Akadémiai kiadó, Budapest, 2002. Dr. Juhász József: Mérnökgeológia I-III. Miskolci Egyetemi Kiadó, 1999; 2002; 2003 Dr. Kleb Béla: Mérnökgeológia Budapest, 1980 David Daming: Introduction to Hydrogeology, McGraw-Hill Higher Education,

2002. F. G. Bell: Engineering Geology, Oxford, Blackwell Scientific Publications, 1992 S. E. Ingebritsen, W. E. Sanford: Groundwater in Geologic Processes. Cabridge University Press, 1998. Kruseman G.P. and Ridder N.A: Analysis and Evaluation of Pumping Test Data, ILRI publication, Wageningen, Netherlamds, 1990, pp. 1-377. Neven Kresic: Quantitative Solutions in Hydrogeology and Groundwater Modeling. Lewis Publishers, 1997. Barnes, C. W. (1988): Earth, Time and Life. John Wiley and Sons, New York Brookfield, M. (2006): Principles of Stratigraphy. Blackwell Publishing, New York

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course provides the theory and practical skills to understand the hydrogeological and engineering geological background for interpretation of different geological and geotechnical processes.

Demonstration of coherence between teaching methodologies and the learning outcomes:

Theoretical part is complemented by laboratory classes where students perform calculations and modeling exercises of hydrogeological systems and geotechnical characterization of soils.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): Dr. Szűcs Péter hgszucs@ui-miskolc.hu

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Analytical technics in mineralogy and petrology

Course Title:	Analytical technics in mineralogy and p	oetrology	ECTS: 2
Type of course (C/E): Course code: MFFAT720025			FFAT720025
Type (lec./sem.	/lab./consult.) and Number of Contact Ho	ours per Week: 1 le	ectures, 1 seminars
The degree of	<u>theoretical</u> or practical nature of the co	ourse: (in ECTS%))
There are two v to minimum 50	ment (exam. / pr. mark. / other): P written tests about the theoretical part (50%). We laboratory report must be written issing, or not passed tests can be complete	about the individu	
Grading scale:			
% value	Grade		
80 -100%	5 (excellent)		
70-79%	4 (good)		
60 - 69%	3 (satisfactory)		
50 - 59% 2 (pass)			
0 - 49%	1 (failed)		
Position in Cur	riculum (which semester): 2.	Pre-requisites (if	°any): -
Course Descri	ption:		
for the students. theoretical classe geological questi Course conten Description of th	f the course is to introduce the different analy There are laboratory classes with individua es. Thru these exercises the students learn what ons. <u>t:</u> e work, formulating analytical pairs, work and es (hardness, magnetic, solubility, density), d lecture I.	l work about the le t is the best available d lab safety teaching	arned methods nearby the e method to answer certain

X-ray diffraction practice

DTA lecture

DTA quantitative calculations

Scanning electron microscopy lecture I.

Scanning electron microscopy lecture II.

Scanning electron microscopy practice Formula calculations

Teaching methodologies:

There are two written tests about the theoretical part (50% of the final grade). Both must be written to minimum 50%. Two laboratory report must be written about the individual work (50% of the final grade). Missing, or not passed tests can be completed a

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Reed SJB (2005): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press.

O'Donoghue M (2006): Gems: Their sources, descriptions and identification. Elsevier. Pracejus B (2008): The ore minerals under the microscope: an optical guide. Elsevier. Goldstein J et al. (2003): Scanning Electron Microscopy and X-ray Microanalysis. Kluwer Academic/Plenum Publishers.

King M. et al. (1993): Mineral Powder Diffraction File Search- and Databook. ICDD, USA.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Lectures cover the theoretical fundamentals for different methods of analysis of minerals, which is essential basics for geological exploration tasks.

Demonstration of coherence between teaching methodologies and the learning outcomes: Following the introduction of different analytical methods, this is a learning by doing course where students go through the preparation, analysis and interpretation steps for various analytical techniques (XRPD, EPMA, SEM)

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Geological interpretation and prospecting

Course Title: (Geological interpretation and prospection	ing	ECTS: 4	
Type of course (C/E):		Course code: MI	Course code: MFFAT730026	
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 2 seminars				
The degree of	<u>theoretical</u> or practical nature of the co	ourse: (in ECTS%))	
Participation in exercises. The s	ment (exam. / pr. mark. / other): E presentation lectures and practical classe successful completion of the course is bas and the successful completion of the exam.	sed on the successf		
Grading scale: % value 80 -100% 70 - 79% 60 - 69% 50 - 59% 0 - 49%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)			
Position in Cur	riculum (which semester): 3 .	Pre-requisites (if	°any): -	
Course Descri	ption:			
methods to all was use practical model exploration tasks Course conten Introduction, obj Exploration method Project planning	ive of this course is (1) to integrate all the assessing the economic potential of mineral ra ethods in mineral exploration, (3) to develop in real field situations <u>t:</u> ectives, team exercise information nods, quality control and quality assurance	w material occurrent	ces, (2) to build capacity to	
Team exercise – Geological mode Overview of avai Spatial distributio JORC and NI43- Introduction to R Team field exerc Team exercise –	Rudabánya and Martonyi geology els in interpretation ilable statistical tools on statistics – basic practices 101 reporting standards, exploration requiren ockworks modelling ise – Rudabanya sample Preparation, handlin data harmoniztation with geophysics and geoo discussion of team exercise project Rudabány	g and storage chemnistry		
exercises. The	nodologies: presentation lectures and practical class successful completion of the course is b ad the successful completion of the exam.	based on the succe	-	
Marjoriebanks 74370-5 e-ISBN	nportant compulsory, or recommended li R. 2010: Geological Methods in Minerals N 978-3-540-74375-0 d Blacwell G.H. 2002: Applied Mineral I	Exploration and M	Aining ISBN 978-3-540	

Sinclair A.J. and Blacwell G.H. 2002: Applied Mineral Inventory Estimation ISBN 0-511-03145-9 eBook Alastair J. Sinclair and Garston H. Blackwell 2004 2002

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course goes through the key points of performance and quality assurrance of geological prospection and exploration tasks. This is a synthetizing course for the whole master programme.

Demonstration of coherence between teaching methodologies and the learning outcomes: Following the theoretical part, the students complete small projects about mineral resource assessment and a complex project where geological, geophysical and geochemical prospecting data should be interpreted.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Földessy János foldfj@uni-miskolc.hu**

Geophysical interpretation and prospecting

Course Title:	ECTS: 4			
Type of course (C/E): Course code: MFGFT730025				
Type (lec./sem	/lab./consult.) and Number of Contac	t Hours per Week:	2 lectures, 2 seminars	
The degree of	<u>theoretical</u> or practical nature of th	e course: (in ECT	S%)	
During the sem	sment (exam. / pr. mark. / other): E tester the following tasks should be co m exploration planning to interpretar Grade	· ·	· · ·	
80 -100%	· · · · · ·			
70 – 79% 60 - 69%	(e)			
50 - 59%	2 (pass)			
0 - 49%	1 (failed)			
Position in Curriculum (which semester): 3 . Pre-requisites <i>(if any)</i> : -				
Course Descri	ption:			

Objectives of the course:

In the scope of this subject students acquire knowledge about the closing phase of geological-geophysical exploration and study the linkage and hierarchy of different geophysical methods. They learn how to determine the most probable geological model by using geophysical measurement results and other geoscientific information jointly. They study the points of view of exploration and measurement planning related to the interpretation of data acquited

Course content:

Water exploration by geophysical methods: Some types of water aquifers. Simultaneous application of geoelectrical and IP methods. The use of frequency and time domain EM methods in water exploration. The role of GPR and surface nuclear magnetic resonance methods. The most important well logging methods and their interpretation. Case histories including water base protection. Coal, bauxite, uranium exploration: Coal formation, low-rank and high-rank coals. The physical parameters of different coal types. The use of surface geophysical methods, the adventages of underground exploration. In-seam seismic surveys, in mine geoelectrical methods. Well logging methods for coal qualification. Complex coal exploration case histories. Bauxite formation (carbonate, lateritic bauxite). The role of seismic refraction and VLF method in bauxite exploration. Well logging for quantitative interpretation and neutron activation analysis. The most important types of uranium deposits. The determination of K, U, Th content with (airborne, surface, borehole) NGS method. Rn measurement applied in U exploration. Geophysical methods in geothermal exploration: The types of heat propagation (conduction, convection), Fourier equations, Fourier-Kirchhoff equation, heat transport in porous, isotropic formation. Radioactive heat production. Heat flow maps and their interpretation. The depth dependence of heat flow and temperature for a continental and an oceanic crust. Mantle plumes and hot spots. The role of gravity, magnetic, EM methods in geothermal exploration and the application of passive and active seismic methods. Complex case histories in geothermal energy exploration. HC exploration: HC formation, the basic geological elements of a petroleum system. Different stages of HC exploration (lead, prospect, play). The role of gravity exploration (from the torsion balance invented by R. Eötvös till ROVdog seafloor gravity) measurements in the course of HC exploration including reservoir monitoring. The application of frequency domain EM methods (MT, CSAMT, CSEM, MCSEM). Simultaneous interpretation of marine controlled source electromagnetics and marine seismic reflection. Seismic reflection method for 1D, 2D and 2D situation. Corrections, migration process, VSP, time to depth transformation. The most important seismic attributes. Geological information can be gained based on seismic sequence analysis. Information can be gained from seismic data cube (time slice, horizon slice, etc.).

Interpretation of up-to-date open hole, cased hole logging data systems, the role of production logging. Complex HC exploration case history presented by a MOL expert

Teaching methodologies:

During the semester the following tasks should be completed: presentation on a report covering the process from exploration planning to interpretation (60%), exam (40%)

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Kearey P., Brooks M., Hill I.: An Introduction to Geophysical Exploration, Blackwell Publishing, 2002

Bacon M., Simm R., Redshaw T.: 3-D Seismic Interpretation, 2003 Serra O.: Well Logging and Reservoir Evaluation, 2007 Periodicals: Geophysical Transactions, The Leading Edge, First Break, etc. Work-help tutorials, geophysical softwares

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T5, T7, T8, T9

Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course goes through the key points of performance and quality assurrance of geophysica prospection and exploration tasks. This is a synthetizing course for the whole master programme.

Demonstration of coherence between teaching methodologies and the learning outcomes: During the semester the students complete a project-based tasks based on geophysical exploration data and prepare presentations on relevant topics.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Takács Ernő**

Global environmental geophysics

Course Title: Global environmental geophysics				ECTS: 2
Type of course (C/E): Course code: MI				GFT730027
Type (lec./sem.	/lab./consult.) and Number of Contac	et Hou	ırs per Week: 1 leo	ctures, 1 seminars
The degree of	<u>theoretical</u> or practical nature of tl	he cou	urse: (in ECTS%)	
• •	sment (exam. / pr. mark. / other): exa he lectures and seminars and the solu		of one personal task	k with presentation.
% value	Grade			
86 -100%	5 (excellent)			
71-85%	4 (good)			
61 - 70%	3 (satisfactory)			
46 - 60%	2 (pass)			
0 - 45%	1 (failed)			
Position in Curriculum (which semester): 3 . Pre-requisites <i>(if any)</i> : -				
				• /

Objectives of the course:

Training global environmental geophysics to a level that graduated engineers can begin to work in the field of general geophysics and maintain communication with colleagues working as experts in the field of global environmental geophysics.

Course content:

Solar System. Zonal interior of the Sun, radiochemical transformation in it, differential rotation of the Sun, its atmosphere with processes acting on the Earth. Physical and geometrical parameters of the Sun, solar cycles. Activity of geophysical and astronomical observatories. The classification of the planets of the Solar System. The main physical, chemical and geometrical parameters of the planets. The gravitational and magnetic field of the planets. The main features of the magnetosphere of the Earth, characterization of ionosphere. Magnetic field's reversal. Different types of remanent magnetization. Composition of the Earth' interior based on seismic tomography, the most significant boundaries. Visiting Kövesligethy Radó Seismological Observatory. The zonal composition of the Earth, characterization of the zones, putting emphasis on mantle convection, liquid and solid core. Radiometric dating methods, their reliability. Radioactive heat production. Heat flux map of the Earth. Hot spots, mantle plums. Viscosity, temperature, elastic waves velocity and density in the function of depth. Focal depth determination. Magnitude definitions, energy released, intensity. Focal mechanism based on first motion studies using focal spheres. Connection between plate tectonics and earthquake mechanism. Applied monitoring technologies by CTBTO for detecting nuclear explosion. Student's .ppt presentations, questions, evaluation.

Teaching methodologies:

attendance on the lectures and seminars and the solution of one personal task with presentation.

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

Frank Stacey & Paul Davis: Physics of the Earth. Cambridge Univ. Press, 4. edition 2008. ISBN-10: 0521873622

William Lowrie: Fundamentals of Geophysics 2nd edition, Cambridge Univ. Press. 2007. ISBN-13 978-0-521-85902-8

http://www.uni-miskolc.hu/~geofiz/PG_GlobenvGeophysics.pdf https://www.ctbto.org/verification-regime/monitoring-technologies-how-they-work/

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T5, T6, T7, T8, T9 Skills: K1, K2, K3, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course gives detailed theoretical background to understand large-scale, global geophysical processes and their investigation.

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by individual task which the student should elaborate and present during the semester

Responsible Academic staff member and lecturing load (*name*, *position*, *scientific degree*): Dr. Pethő Gábor , private professor gfpg@uni-miskolc.hu

Geoelectric lectureship

Course Title:	ECTS: 4	
Type of course	Course code: MFGFT730031	
Type (lec./sem	/lab./consult.) and Number of Conta	act Hours per Week: 2 lectures, 2 seminar
The degree of	<u>theoretical</u> or practical nature of t	the course: (in ECTS%)
• •	sment (exam. / pr. mark. / other): ex he seminars and solution of one per-	
% value	Grade	
86 -100%	5 (excellent)	
71 - 85%		
61 - 70%	le de la constante	
46 - 60%	2 (pass)	
0 - 45%	1 (failed)	
Position in Cur	riculum (which semester): 3.	Pre-requisites (if any): -
Course Descri	ption:	· · · · · ·

Objectives of the course:

System of electrical and electromagnetic geophysical methods. Physical basics of direct current (DC) geoelectric methods. Solution of the Laplace equation in layered homogeneous isotropic half space. The geological information content and calculation of the kernel function. Hankel and the Inverse Hankel transformation. Physical basics of alternating current (AC) electromagnetic methods. Derivation of telegraph and wave equations. Information content of the wave number. Wavelength, penetration depth and propagation speed of electromagnetic waves. Characterization of dielectric, lossy and good conducting media. The zones formed around the electric and magnetic dipoles and the phase surfaces of the electromagnetic fields in the various zones. Electromagnetic field calculation of the horizontal electric dipole source in inhomogeneous anisotropic media. Presentation of reports.

Course content:

System of electrical and electromagnetic geophysical methods.

Physical basics of direct current (DC) geoelectric methods. Solution of the Laplace equation in a layered homogeneous isotropic half space.

The geological information content and calculation of the kernel function.

The Hankel and the Inverse Hankel transformation.

Physical basics of alternating current (AC) electromagnetic methods.

Derivation of telegraph and wave equations.

Information content of the wave number.

Wavelength, penetration depth and propagation speed of electromagnetic waves.

Characterization of dielectric, lossy and good conducting media.

The zones formed around the electric and magnetic dipoles and the phase surfaces of the electromagnetic fields in the various zones.

Electromagnetic field calculation of the horizontal electric dipole source in inhomogeneous anisotropic media. Electromagnetic field calculation of the vertical magnetic dipole source in inhomogeneous anisotropic media. Presentation of reports and semester closing.

Teaching methodologies:

attendance on the seminars and solution of one personal task with presentation.

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

Kearey, P., Brooks, M., Hill I., 2002: An introduction to geophysical exploration, Blackwell Science Ltd., ISBN 0-632-04929-4

Keller, G. W., Frischknecht F. C.: Electrical Methods in Geophysical Prospecting, Pergamon Press, Oxford, 1966.

Sumner, J. S.: Principles of Induced Polarization for Geophysical Exploration, Elsevier Scientific Publishing Company, Amsterdam, 1976.

Telford W. M., Geldart L. P., Sheriff R. E., 1990: Applied Geophysics. 2nd Edition. Cambridge University Press, ISBN: 0 521 32693 1

Wait, J. R.: Overvoltage Research and Geophysical Applications, Pergamon Press, London, 1959. Periodicals: Geophysical Transactions, First Break, etc.

Other educational materials and study aids on the web page of Geophysical Department: http://www.uni-miskolc.hu/~geofiz

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: Skills: Attitudes: Autonomy and responsibility:

Demonstration of coherence of course content and unit's objectives: Geoelectric lectureship is an elective subject in the geophysical engineering specialization of the Earth Science Engineering Master Program. The main goal of the specialization is to train engineers who, by developing geophysical methods and applying the

Demonstration of coherence between teaching methodologies and the learning outcomes:

The lectures of the course introduce in detail the methods included in the curriculum and their geological and mathematical-physical descriptions. In practice, students become familiar with and apply each method during field measurements. Each student ela

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Turai Endre, gfturai@gold.uni-miskolc.hu**

Geological mapping

Course Title:	ECTS: 4				
Type of course (C/E): Course code: MFFTT720029					
Type (lec./sem.	/lab./consult.) and Number of Contact Ho	ours per Week: 1 le	ctures, 2 seminars		
The degree of	<u>theoretical</u> or practical nature of the co	ourse: (in ECTS%)			
Type of Assessment (exam. / pr. mark. / other): practical mark Criterion for signature: Preparation of two geological cross-sections based on real Carpathian geological maps (from Slovakia and Romania); Preparation of covered and uncovered (without Quaternary deposits) geological map of an about 2 sq. km territory (i					
Grading scale: % value	Grade				
90 -100%	01000				
75 - 89%					
60 - 74%	(e)				
45 - 59%	2 (pass)				
0 - 44% 1 (failed)					
Position in Curriculum (which semester): 2. Pre-requisites <i>(if any)</i> : -					
Course Description:					

Objectives of the course:

The subject gives knowledge on the figuration of geological phenomena on topographic maps, on preparing geological maps, cross-sections, their legend and on assembling explanatory report

Course content:

The aim of preparing geological maps. The geological map and its additional parts (geological cross-sections, stratigraphical columns and legend). Geological phenomena figured in the geological maps: lithostratigraphical units, structural chacteristics. Different types of geological boundaries and their recognition on the field. Orientation on the field with topographical map and with GPS. Documentation of field observations in the field booklet and on the topographical map. Preparation of geological cross-sections. Preparation of covered and uncovered (without Quaternary deposits) geological maps with stratigraphical column and legend. Assembly of explanatory reports

Teaching methodologies:

Criterion for signature: Preparation of two geological cross-sections based on real Carpathian geological maps (from Slovakia and Romania); Preparation of covered and uncovered (without Quaternary deposits) geological map of an about 2 sq. km territory (i

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Tearprock, D.J. & Bischke, R.E. (2002): Applied Subsurface Geological Mapping with Structural Methods 2nd Edition, 846 p., Prentice Hall

Hamilton, D.E. & Jones, T.A.: Computer modeling of geological surfaces and volumes. – AAPG Computer applications in geology. No.1., 589 p. Tulsa, Oklahoma

McClay, K. (1995): The mapping of Geological Structures. Geolog. Soc. of London Handbook. John Wiley Sons, Chichester, New York, Brisbane, Toronto, Singapore.

SURFER 8.0 Tutorial and User's Guide. - Golden Software. P512. Denver

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T5, T7, T8, T9

Skills: K1, K2, K3, K5, K6, K7, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Theoretical part and laboratory exercisis gives an overview to the students about methodology and tools of geological mapping works.

Demonstration of coherence between teaching methodologies and the learning outcomes: After giving the theoretical basis of mapping methodology, this is a learning by doing course, where the students should compete geological mapping work in the Bükk mountains

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Less György, full professor foldlgy@uni-miskolc.hu**

Sedimentology

Geochemical prospecting methods

Course Title:	Geochemical prospecting methods	ECTS: 4
Type of course (C/E):		Course code: MFFAT720031
Type (lec./sem	/lab./consult.) and Number of Conta	act Hours per Week: 1 lectures, 2 seminars
The degree of	<u>theoretical</u> or practical nature of t	the course: (in ECTS%)
completion of t	sment (exam. / pr. mark. / other): pr hree exercises during the semester a a sampling plan based on the field tri	and participation in a 2-3 days field trip and
Grading scale:		
% value	Grade	
80 -100%	5 (excellent)	
70-79%	4 (good)	
60 - 69%	3 (satisfactory)	
50 - 59%	2 (pass)	
0 - 49%	1 (failed)	
Position in Cur	riculum (which semester): 2 .	Pre-requisites (if any): -
Course Descri	ption:	
geochemical san methods of data	ppling, the detailed discussion of differ processing and interpretation. Complete	methods, including the theorethical background rent sampling and analytical methods, as well as the tion of a geochemical exploration project, including interpretation is an important part of the course.
Course conten	<u>t:</u> tribution of chemical elements in differe	ent rock types
Periodic table fo		sit took types,
	eochemical background.	
	ineation of a mineralization, a mineral c	leposit.
	on, methods of its exploration. bects of weathering.	
	the surface environment.	
Sorption process		
	rsion and methods of its exploration.	
	ds, sampling standards.	
	etation and water surveys. sampling methods, heavy minerals geo	chemistry
Major analytical		enemisu y.
	and statistical methods.	
Teaching metl	10dologies:	
completion of	three everying during the competer	r and participation in a 2-3 days field trip ar

completion of three exercises during the semester and participation in a 2-3 days field trip and completion of a sampling plan based on the field trip

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Reedman J.H.: Techniques in mineral exploration (Appl. Sci. Publ. London, 1979) Kuzvart M. & Böhmer M.: Prospecting and exploration of mineral deposits (Elsevier, 1986) Wite W.M. (2007): Geochemistry. Online textbook, (John Hopkins University, 2007)

Hawkes H.E.: Principles of geochemical prospecting. (US DOE, Geological survey bulletin 1000-F)

Geboj N.J.; Engle E.A. (2011): Quality Assurance and Quality Control of Geochemical Data: A Primer for the Research Scientist (USGS Open-File Report 2011–1187) Sarkar D., Datta R., Hannigan R.: Concepts and applications in environmental geochemistry. (Elsevier, 2007)

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course content introduces the fundamental parameters of the near-surface geochemical system as well as practical skills to plan, organize, perform a geochemical prospecting campaign and interpret the resulting dataset.

Demonstration of coherence between teaching methodologies and the learning outcomes: Students shall understand the interrelationship between different elements of the near-surface geochemical system. Practical skills are developed by a project-like exercise to compile a geochemical prospecting sampling plan of an ore field.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Mádai Ferenc, associate professor askmf@uni-miskolc.hu**

Non-metallic industrial minerals

Course Title:	ECTS: 4				
Type of course (C/E): Course code: MFFTT730030					
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 2 seminars					
The degree of	<u>theoretical</u> or practical nature of the co	ourse: (in ECTS%)			
Lectures with a fieldtrips, meth research + pres	sment (exam. / pr. mark. / other): exam ppt presentation, laboratory exercises for ods for data validation and documentatio entation (60-40%) in an assay. Oral exam	n. Short written tes			
Grading scale: % value	Grade				
90 -100%	01000				
76 - 89%					
60 - 75%					
50 - 59%	2 (pass)				
0 - 49%					
Position in Curriculum (which semester): 3 . Pre-requisites <i>(if any)</i> : -					
Course Descri	ption:	1			

Objectives of the course:

The course will allow students to gather knowledge on the non-metallic mineral resources, geological characteristics of the deposits, type and mode of the accumulations, spatial distribution and quality-quantity data of the mineral types, technological requirements, exploration, exploitation and beneficiation techniques

Course content:

The introductory part is a short review on the geological settings and related petrological-geochemical knowledge, related non-metallic resources, industrial mineral groups. The first part dissects the grouping on genetical and industrial-application point of view mineral resources. During the semester detailed knowledge is offered on 1) native element, 2) sulphide, 3) halogenide, 4) oxide/hydroxide, 5) carbonate/nitrate, 6) borate, 7) sulphate, 8) phosphate and 9) silicate types of industrial minerals. Students get familiar with their mineralogy, deposits and formation, extraction and uses based on detailed international data. We also study the rock type industrial minerals, their generating and applications. In the case of silicates emphasis is put on clay minerals, feldspars and zeolites. Separate lecture+laboratory visit discusses the exploitation and beneficiation techniques. During the laboratory exercises and field trips students learn to recognize industrial minerals, to give mineralogical characterization, exploration and quality remarks, their natural types of occurrence.

Teaching methodologies:

Lectures with .ppt presentation, laboratory exercises for sample and specimen preparation, fieldtrips, methods for data validation and documentation. Short written test. Individual data research + presentation (60-40%) in an assay. Oral examination

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: EVANS A.M. (1993) Ore Geology and Industrial Minerals: an Introduction. Blackwell Publishing, 379 p ISBN 978-0-632-02953-2

Ciulo P. A. (1996) Industrial minerals and their uses. Noyes Publication, New Jersey, 607 p https://minerals.usgs.gov/minerals/pubs/myb.html https://www.ima-europe.eu/

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Students get familiar with their mineralogy, deposits and formation, extraction and uses based on detailed international data. We also study the rock type industrial minerals, their generating and applications. In the case of silicates emphasis is put on

Demonstration of coherence between teaching methodologies and the learning outcomes:

Field trips and individual exercises enhance the skills of the student and to understand the genetic conditions of formation of non-metallic depostis. During the laboratory exercises and field trips students learn to recognize industrial minerals, to give

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Kristály Ferenc, professor emeritus askkf@uni-miskolc.hu**

List of competences

a) Knowledge

T1 - Understands the processes described by the general and specific theories required for the practicising of the fields of earth science engineering (geologist-engineering, geophysical-engineering, geoinformatics-engineering), understands the internal connections between geological processes, and knows the planning and interpretation procedures based on the processes.

T2 - Has a solid technical and scientific knowledge required for the high-level progress in earth sciences engineering disciplines, among others in numerical methods, technical physics and their contexts. T3 - Based on his/her knowledge, understands the structure of the raw material extraction sector, the technologies used for the extraction and preparation of mineral raw materials, as well as the scope of geo-environmental tasks, their external socio-economic environment and regulatory system.

T4 - Has a thorough knowledge and understanding of the best practices applied to earth science engineering tasks and the long-term development directions that can be expected in this field in the medium term.

T5 - Knows the problem-solving (research-planning and management) techniques of best available practices in earth sciences.

T6 - At the application level, knows the GIS methods of computer design and analysis and the geoinformatics systems.

T7 - Knows in detail the geological and geophysical methods suitable for exploring natural resources. T8 - Has a well-established knowledge of the methods of exploring mineral deposits.

T9 - Has detailed knowledge and sound application practice on the methods of knowledge acquisition and data collection in the technical earth sciences, and on their instrumental measurement and IT data processing procedures.

T10 - Has a well-established knowledge of the legal, economic, administrative, safety, work and fire protection, information technology and environmental protection fields related to the fields of earth science engineering.

b) Skills

K1- Able to apply general and specific basic and applied scientific theories within the technical earth sciences, able to systematize them, to solve independent engineering tasks (mainly complex geological prospecting, final report summarizing exploration results, geological-geophysical parts of environmental impact assessments).

K2 - Able to convey knowledge authentically by preparing presentations and written documents in Hungarian or in a foreign language.

K3 - Able to perform complex planning, construction, inspection and official licensing tasks (geological-geophysical exploration plans of natural resources, acquisition of environmental geology) with the innovative application of theories and terminology describing technical earth science knowledge.

K4 - Able to review legal and economic knowledge and activities related to technical earth science tasks, to optimize connections.

K5 - Able to actively cooperate with, organize, manage, and supervise larger and more complex activities based on or incorporating technical earth science tasks (especially mining, environmental technology investments, operations).

K6 - Uses modern information acquisition and data collection methods.

K7 - Able to solve technical problems requiring innovative skills in theory and practice (especially field, surface, underground data collection, measurements, and their processing and interpretation requiring innovative skills).

K8 - Able to process raw material exploration and production data and organize it into geoinformatics databases (systems).

K9 - Able to prospect and explore geological structures, to plan these research phases.

K10 - Able to take quantitative and qualitative assessment of mineral resources, to evaluate their economics, to compile concession tenders and to give opinions on this type of report.

K11- Able to contribute to the solution of geological-geophysical tasks arising during the extraction of mineral raw materials (planning, investment, operation, closure) and to analyze the solution possibilities.

University of Miskolc, Earth Science Engineering MSc

Course descriptions

K12 - Able to review the structure of the raw materials extraction sector, the technologies used for the extraction and processing of mineral raw materials, as well as the scope of geo-environmental tasks, their external socio-economic environment and regulatory system.

K13 - Able to organize cooperation with related disciplines and manage the (working) group within the framework of larger and more complex activities based on or incorporating technical earth science tasks.

c) Competence in terms of attitude

A1 - Open and receptive to the knowledge and acceptance of professional and technological methodological developments in the fields of technical earth sciences, to the acquisition of their management, and to the participation in their development.

A2 - Actively applies innovative skills and knowledge in solving professional problems in the fields of earth science engineering.

A3 - Commits and convincingly demonstrates to knowing and adhering to the professional and ethical values.

A4 - Professionalism and professional solidarity have deepened.

A5 - Respects and follows the ethical principles and written rules of work and professional culture in activities, and is able to follow them even when managing small workgroups.

A6 - In the course of professional work, observes and adheres to the requirements of safety, health, environmental protection and quality assurance and control (SHE and QA / QC).

A7 - Has a sufficient motivation to carry out activities in often changing working, geographical and cultural circumstances.

(d) Competence in terms of autonomy and responsibility

F1 - With the in-depth knowledge of the received strategic guidelines and external environmental requirements, is able to plan the work independently, and is also suitable to lead workgroups. F2 - Takes responsibility and is accountable for the work processes carried out under his / her control, for the employees working in them.

F3 - Makes decisions carefully, in consultation with representatives of other disciplines (primarily legal, economic, and environmental), independently, takes responsibility for decisions.

F4 - In addition to constructive teamwork, is an autonomous specialist capable of making professional decisions in the field of operation entrusted to him/her.

F5 - Committed to the practice of sustainable natural resource management, occupational health and safety

Semester 4 WUST

Course title	Applied field exploration							
European Credits (ECTS)	3		Time (hours) given to the	e students	45			
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium cl Project classes: , Practica classes: , Fieldwork: 3		Student whole working	time (hours)	75			
Description of content	be integrated for targeti Geological, geophysical a stratigraphy, hydrothern	The goal of the course is that students should acquire a hands-on understanding of different field exploration methodologies, and how they can be integrated for targeting VMS deposits. Geological, geophysical and geochemical exploration methods in VMS exploration. Practical field mapping exercises in structural geology, stratigraphy, hydrothermal alteration. Practical geophysical surveying using UAV technology. GIS-based data synthesis for exploration target selection. Drill core logging and assaying.						
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Knowledge: when passed the student is expected to have: -knowledge about different field methods and their use during an exploration program. -knowledge about drilling and sampling methods. -knowledge about different methods for field mapping. Skills: when passed the student is expected to have the ability to - acquire in-depth structural, volcanological and alteration data from outcrops in the field - contextualize field observations in relation to ore genetic model for VMS deposits. - synthesize different types of geological and geophysical data for targeting a VMS deposit. 							
Assessment methods and criteria	Exercises U G# 1.20 Project work G U 3 4 5 1.80 The course is mainly presented via practicals in the field, but also with complementary lectures and excercises, in addition to project work.							
Recommended readings	Online compendium in Canvas room							
TU Coordinator	Nils Jansson, Nils.Jansson@ltu.se							
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercul	OLO5 Value tural judgments / Sustainability	OLO6 Leadership		

Justification for OLO contribution	contribution				
------------------------------------	--------------	--	--	--	--

Course title	SOC Internship				
European Credits (ECTS)	2 Time (hours) given to the students		30		
Type (Lecture, internship, exercise etc.)	Lectures:, Auditorium classes: , Lab. Classes: , Project classes: 2 , Practical classes:, Seminar classes: , Fieldwork: x	Student whole working time (hours)	50		
Description of content	x The aim of the course is to enable students to work in socially responsible workplaces, and apply their skills and knowledge to promote social good. While this develops them to become work-ready professionals, it also nurtures them to become advocates who help build a better world. EDUCATIONAL GOALS: 1. To actively participate in the affairs of the community and in concrete actions on the ground that aim to promote th public interest, equality and solidarity. 2. To reflect on social license to operate issues 3. To work in direct contact with the beneficiaries of the civic activities undertaken e.g.: reception, facilitation, support social assistance, etc. EXAMPLES OF SOCIAL AND CIVIC ISSUES IN MINERALS INDUSTRIES: • Depletion of natural capital (degradation of air, land and water quality), land use conflicts, health impacts • Digitalization and automation generate particular challenges for well-being in mining regions. Limited job opportunities for local workforce and skills mismatches. • High and continuous transparency and accountability standards of the industry, effective methods of information sharing and dialogue • A more equitable value-sharing, Corporate Social Responsibility issues • Facilitation of environmental awareness				
Learning outcomes of the curricular	 Preservation and restoring of historic sites, Knowledge: to understand that social responsibility incorporates an ethical, social and environmentally-friendly 				
unit (knowledge, skills and	perspective to our personal and profess				
competences to be developed by	Skills: To be able to engage in an informal professional discussion and business communication				
the students)	Competences: To cope with complexity	, uncertainty and change in globa	l contexts		

Assessment methods and criteria	Criterion: Submission of a project report					
Recommended readings						
TU Coordinator	Supervisors of the	student's Master the	sis			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in professional discussion and business communication				Students will be able to understand that social responsibility incorporates an ethical, social and environmentally- friendly perspective to our personal and professional activities	
Justification for OLO contribution			· · · · · · · · · · · · · · · · · · ·			·

Course title	Exploration entrepreneurship		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: , Project classes: 1, Practical classes: 3, Seminar classes: 2, Fieldwork:	Student whole working time (hours)	100
Description of content	 and countries. Mentoring within the course is professional with and EurGeol targeted way. Mentoring contrinetworking, social and profession activity. It allows lead be acquired through practice a improves the opportunities of contacts and involvement in protect topics and the mentor and communicate them to the concrete topics and the respect defined. Since the student is at become aware of their own platoecome aware of their own plato	t the current market at improving intern og and CPD requirem ows students to ber bectives in different a process during wh title (mentor) accom- ibutes to developing ional skills regarding earning from profess and can't be found in career beginners by rofessional networks ring cooperation, stu- ir mentor. In consult tive roles within the the centre of the pro- ans and their suppor working among geol ls with contacts help t, medium or long-te- ositions and increase diversity to women and und and Continuing Pro- nals who have acqu- nd work in industrial or actively guides a lls and attitudes fo have in negotiation advises the stude and difficulties. M	t demands. The ational networking and nents of experienced geology hefit from insider knowledge sectors of geological profession hich an experienced mpanies the student in a g personal, entrepreneurial, g the mineral prospecting and sional experiences that can only any textbook. Mentoring providing career-enhancing s. udents formulate clear goals tation with the mentor, e mentoring process will be rocess, it is their task to t needs. ogists all across Europe and bing them to think through, erm career development rin leadership positions by er-represented minorities fessional Development (CPD) ired a high level of industrial

	 Help: The mentor can help open otherwise locked doors that allow the student to pursue their goals. Support: The mentor supports the student in essential decisions without deciding. Mentors assist in the development of professional strategies, as well as in career planning and review of possible obstacles. Inform: The mentor informs the student about (informal) rules and processes applied in organisations or professional life in general. According to the student's background, mentors can also inform about seminars or conferences that they consider helpful. Participation: Mentors allow students to participate in parts of their professional career, experiences and strategic decisions. They allow students to share their professional life and invite them, for instance, to participate in meetings or appointments. Give feedback: Mentor and student provide each other with constructive feedback about their appearance and public perception. Networking: Mentors give the students hints on maintaining and using contacts. They introduce the students into active networks and provide professional contacts. The mentor provides the student with the chance to create a successful CV and take a chance on social networks such as LinkedIn.
Learning outcomes of	Knowledge: to provide background training to support the learning process; make students aware of broad professional issues; provide business and
the curricular	entrepreneurship skills to develop an awareness of business management and commercial practices regarding mineral prospecting and exploration.
unit (knowledge,	Skills: Develop relationships with other persons and maintain them. Can talk frankly about his ideas, fears and weaknesses. Identifying investment
skills and	opportunities in the mineral resources sector.
competences	Competences: To define professional targets, wants to succeed and is actively
to be	committed to implementing these targets. Not afraid of making mistakes and
developed by	experimenting with new ideas. Willing to question himself critically, accept
the students)	external advice, and implement it.
	Practical mark
	At the end of the mentoring process, students will a) reflect their mentoring
	experience on a two-page report highlighting benefits and potential gaps for
	future implementation b) prepare a small business plan for an identified innovative idea of their own.
	Slack channel will allow for student-mentor exchange and networking within the
Assessment	whole cohort of participants.
methods and	Mentoring is a one-to-one relationship between a mentor and a student.
criteria	Mentoring takes place beyond a dependent relationship (e.g. supervisor-
	subordinate or professor-student relationships).
	During the mentoring process, learning and experimentation occur in a
	protected environment.
	 An integral part of mentoring is the development of professional skills and competencies
	competencies. Mentoring is a reciprocal process of "give and take". Both sides learn from each
	Mentoring is a recipiocal process of give and take . Both sides learn norm each

	other because even the mentor will have the opportunity to critically question his professional perspective and discover new perspectives, software and applications, and previously unperceived situations.					
	Mentoring Mindset, Skills and Tools 4th Edition: Make it easy for mentors and students, 2020, Synergetic People Development Pty Ltd, 252 pages, ISBN 0980356458					
	The Mentoring Michigan Publis				udents Succe	ed, 2019,
Recommend ed readings	Wang, J., Shibayama, S., 2022. Mentorship and creativity: Effects of mentor creativity and mentoring style. Research Policy 51, 104451. doi:10.1016/j.respol.2021.104451					
	Entrepreneurship: A Guide To Success For Entrepreneurs And Aspiring Entrepreneurs, 2018, ISBN 978-1720221654 Entrepreneurship: Successfully Launching New Ventures, Global Edition, 2018, Pearson, ISBN: 9781292255330					
TU Coordinator	Pavlos Tyrologou,	, pavlos.tyrol	logou@gma	iil.com		
Contribution to EIT's Overarching Learning	OLO 1 Entrepreneursh ip	OLO2 Innovatio n	OLO3 Creativit y	OLO4 Intercultur al	OLO5 Value judgments / Sustainabili ty	OLO6 Leadershi p
Outcomes (tick relevant box/es)*	xx		x	xx	xx	xx
Justification for OLO contribution						

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

> specjalność/specialisation: Mineral Resources Exploration - Track WUST - UNI ZAGREB

Semester 1 WUST

Zał. nr 5 do ZW 78/2023

crediting

with grade

2

2

0.9

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish Geofizyka inżynierska Name of subject in English Engineering Geophysics Main field of study: Mining and geology Specialization: Mining Engineering, Geotechnical and Environmental Engineering, Geotechnical and Environmental Engineering, Geomatics for Mineral Resource Management Mineral Resource Exploration Level and form of studies: 2nd level, full-time Kind of subject: obligatory Subject code W06GIG-SM3004 Group of courses NO						
		Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organ University (ZZU)	ized classes in	15			15	
Number of hours of total s (CNPS)	tudent workload	25			50	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

(P)

crediting

with grade

1

0,8

1. has knowledge of fundamentals of applied geophysics, physics and geology.

other academics (BU)

- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.

For group of courses mark (X) final course

including number of ECTS points for practical classes

classes that require direct participation of lecturers and

including number of ECTS points corresponding to

4. is able to work in a team.

Form of crediting

*delete as not necessary

Number of ECTS points

SUBJECT OBJECTIVES

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

- C4 acquisition of skills to plan geophysical field surveying and to interpret its results.
- C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

PROGRAMME CONTENT Number of Lecture hours Physical properties of rocks. Inter-relationships between the various Lec 1 subdisciplines of applied geophysics. Overview of geophysical methods, 1 their physical principles and applications. Methodology of geophysical surveying. Engineering problems solved with geophysical surveying. Case studies. Lec 2 2 Electrical resistivity methods. Tomography and VSE. IP method. Physical Lec 3 2 principles. Equipment. Methods of field surveying. Interpretation and application. Case studies. Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric Lec 4 methods. Physical principles. Methods of field surveying. Equipment. 2 Interpretation and application. Case studies. GPR surveying. Physical principles. Methods of field surveying. Equipment. Lec 5 2 Interpretation and application. Case studies. Seismic interferometry. Seismic tomography. Physical Lec 6 principles. 2 Applications. Case studies. Mine geophysics. Seismology. Seismic methods. Active and passive seismic Lec 7 2 tomography. Microgravimetry. Case studies. Gravity and magnetic surveying. Equipment. Methods of field surveying. Lec 8 2 Interpretation and application. Case studies. Total hours 15 Number of Project hours

Proj 1	One selected geophysical technique. Fundamentals and equipment. Field	4			
	surveying				
Proj 2	Processing and interpretation of field data.	3			
Proj 3	Solving the geophysical problems.	8			
	Total hours	15			
	TEA CHING TOOL & LIGED				

TEACHING TOOLS USED

N1. N1.Lecture aided by presentation.

N2.Demonstration.

N3.Discussion and consultations

N3Calculations

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY **SUBJECT CARD** Name of subject in Polish Wspomagane komputerowo modelowanie geologiczne i geostatystyka.) Name of subject in English: Computer Aided Geological Modelling and Geostatistics Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory W06GIG-SM3002 Subject code **Group of courses** No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting with grade	Examination / crediting	crediting with grade	Examination / crediting	Examination / crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.
- C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT				
	Lecture	Number of hours			
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2			
Lec 2	Geology of the seam.	2			
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2			
Lec 4	Spatial distribution of samples values. Regionalized variable.	2			
Lec 5	BLUE Estimator of the mean value: Kriging.	2			
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2			
Lec 7	Reserves modelling and evaluation.	2			
Lec 8	Mineral resources. International reporting. The JORC Code	1			
	Total hours	15			

	Laboratory	Number of hours
La1	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La4	Construction of the structural wireframe model of stratigraphy layers.	3
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3
La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3

	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

TEACHING TOOLS USED

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01, PEU_W02	Lecture grade on the basis of the written examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02, PEU_U03	Laboratory task assessment: "reserves evaluation".
P average of F1, F2, F3, F	'4	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEO	ENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish:	Cyfrowa kopalnia
Name in English:	Digital Mine
Main field of study:	Mining and geology
Specialization:	Mining Engineering,
-	Geotechnical and Environmental Engineering,
••••••	Mineral Resource Exploration
Level and form of st	udies: 2nd level, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3006
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Computer literacy skills
- 2. Basic knowledge related to Mining Engineering and Mineral Processing
- 3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems. Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.
- PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT	
Form of classes - lecture		
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2
	Total hours	15

Form of classes - laboratory		
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data. Introduction to ARDUINO	3
Lab2	Basic sensors for physical parameters measurements	3
Lab3	Measurements in Labview	3
Lab4	Analysis and Visualization in Labview	3
Lab5	Control in labview	3
	Total hours	15

TEACHING TOOLS USED

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

	Attachment no. 4. to the Hogram of
FACULTY OF	F GEOENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish: Zarządza	anie Środowiskiem
Name in English: Environ	mental Management
Faculty of studies (if applic	cable): Mining and Geology
Specialisation (if applicabl	e): Mining Engineering
	Mineral Resource Exploration
Level and form of studies:	2nd level, full-time
Subject Type:	Obligatory
Subject code:	W06GIG-SM3001
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the	30				15
University (ZZU)	00				10
Number of hours of total	50				25
student workload (CNPS)					_
Form of crediting	Crediting with grade				Crediting with grade
For a group of courses mark					
(X) for the final course					
Number of ECTS points	2				1
including number of					
ECTS points for practical					
(P) classes					
including number of					
ECTS points for direct	1,3				0,8
teacher-student contact	-,0				-,0
(BU) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.Basic knowledge of issues related to ecology and environmental protection.

SUBJECT OBJECTIVES

- C1. To get students acquainted with systems of environmental management both in Poland and other EU countries.
- C2. To prepare students for rational and sustainable management of environmental components.
- C3. To get students acquainted with the genesis of environmental management systems in Poland, review and standardization of environmental management systems.
- C4. To get students acquainted with benefits and obligations arising from the implementation of an environmental management system.
- C5. To present the relationship between an environmental management system and a quality

management system.

C6. To provide an overview of informative methods of supporting the implementation of environmental management systems (possibilities and practical usage of computerised systems of environmental information management, decision support in the area of environmental protection and choice of methods and tools used to support the implementation of an environmental management system).

SUBJECT LEARNING OUTCOMES

relating to knowledge:

- PEU_W01 Possesses systematic knowledge of the origins of environmental management systems, review and standardization of environmental management systems.
- PEU_W02 Possesses knowledge of the possibilities and practical applications of tools supporting the implementation of the environmental management system.
- PEU_W03 knows basic formal and legal regulations regarding the implementation and functioning of management systems, tools and instruments of environmental management.
- PEU_W04 Possesses knowledge for rational and sustainable management of environmental components.

relating to skills:

- PEU_U01 Possesses linguistic resources appropriate for specialised language and is able to use it in linguistic activities in order to communicate in the professional environment regarding the field of studies; is able to obtain necessary information and interpret and critically evaluate it, reads and understands professional literature, is able to formulate and comprehensively justify opinions, provide presentations of problems related to a studied discipline and also participate in scientific and professional discussions.
- PEU_U02 Is able to use methods and appropriate IT tools in system management of environmental components.

relating to social competencies:

PEU_K01 - Is able to think and act in a creative and enterprising way.

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec.1	 Basic concepts: Environment, characteristics of individual elements of the environment Characteristics of hazards for the natural environment which are a result of human activities Environmental Management The Environmental Management System 	2
Lec.2	Legal aspects of environmental management	2
Lec.3	History and development of environmental management systems	2
Lec.4 Lec.5 Lec.6	Environmental management systems: - Business Charter for Sustainable Development of the International Chamber of Commerce - ICC Business Charter for Sustainable	6

Se1	The scope and form of an essay and presentation, terms of crediting and literature.	hours 2
	Form of classes - seminar	Number of
Lec.15	Environmental management systems in practice Total hours	30
Lec.14	system	3
Lec.14	system Costs of implementation and functioning of an environmental management	1
Lec.13	Poland and in the world The benefits of an implemented and functioning environmental management	2
Lec.11 Lec.12	 Decision Support Systems Expert systems Simulation Models Geographical Information Systems Selected types of information systems which support environmental management, their characteristics, examples of implementation both in 	4
Lec.9 Lec.10	IT systems supporting environmental management:	4
Lec.7 Lec.8	 - ISO 14001 - ISO 14001 Characteristics of selected Environmental Management Systems. The benefits of the implementation of the EMS for a company. Experiences of Polish enterprises from the implementation of EMS. Process of implementation of the selected EMS in a company with an example of EMAS. Basic tools of environmental management: Legal and administrative instruments (laws, standards, licenses and permits) Economic instruments (fees, taxes, deposit and refund systems, transferable rights, subsidies, liens, fines) Instruments (techniques) social impact (ecological education, ecological propaganda) Examples of basic tools of environmental management: Procedure for an assessment of environmental impact Integrated permits Audits Safety Reports Monitoring of the Environment 	4
	 Development EMAS – Directive of the European Community Commission regarding the approval for voluntary participation by organisations in a community eco-management and eco-audit scheme CP - Clean Production BS 7750 - Specification for Environmental Management Systems ISO 9000 ISO 14000 	

	Total hours	15
	Group discussion on the content and form of speeches.	
	sources, etc.	
	protection in Poland and in the world and also alternative energy	
	selected monitoring systems, the institution of environmental	
Se8	systems, mineral resource management, renewable energy sources,	
Se7	fees, taxes, surcharges and environmental deposits; litter management	13
Se6	an integrated decision etc.), life-cycle analysis of a selected company;	
Se5	(eg. receiving a decision on the environmental conditions of a project,	
Se4	examples, formal and legal conditions of administrative procedures	
Se3	following issues: environmental management systems - specified	
Se2	Student speeches with the use of multimedia presentations on the	
	Assignment of seminar topics for individual students.	

- N1. Informative lecture with elements of problematic lectures.
- N2. Multimedia presentations
- N3. Didactic discussion during lectures and seminars
- N4. Preparation of an essay in the form of a report
- N5. Presentation of the essay
- N6. Consultations

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F – forming (during semester), P – concluding (at semester end)	Educational outcome number	Method of evaluating educational outcome achievement	
F1- Grade from content value of an essay	PEU_U01 PEU_U02 PEU_K01	Text and graphical form of essay	
F2 – Grade from presentation and issues included in an essay	PEU_U01 PEU_U02 PEU_K01	Presentation of essay	
F3 – Grade from a written or oral test	PEU_W01 PEU_W02 PEU_W03 PEU_W04	Positive grade	
final grade from the subject (the weighted average, respectively: 35% for the substantive content of the essay, 25% for the presentation, 40% for the lecture)			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Ejdys J.,1998, Zarządzanie środowiskowe w przedsiębiorstwie koszty i korzyści, Sterowanie ekorozwojem, t.2, Wyd. Politechniki Białostockiej, Białystok,
- [2] Lukasheh A. F., Droste R. L., Warith M. A., 2001, Review of Expert System (ES), Geographic Information System (GIS), Decision Support System (DSS), and their applications in landfill design and management. W: Waste Management & Research nr 19,
- [3] Łunarski J. (red.), 2002, Zarządzanie środowiskiem", Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow
- [4] Nowak Z., 2001, Zarządzanie środowiskiem, Wyd. Politechniki Śląskiej, Gliwice,
- [5] Matuszak-Flejszman A., 2001: Jak skutecznie wdrożyć system zarządzania środowiskowego wg normy ISO 14001. PZIiTS, Poznan
- [6] Pochyluk R. i inni, 1999, Zasady wdrażania systemu zarządzania środowiskowego zgodnego z wymaganiami normy ISO 14001, Eco-Konsult, Gdansk,
- [7] Poskrobko B., Poskrobko T., 2012, Zarządzanie środowiskiem w Polsce, Polskie Wydawnictwo Ekonomiczne, Warsaw
- [8] Poskrobko B., 1998: Zarządzanie środowiskiem. Polskie Wydawnictwo Ekonomiczne, Warsaw
- [9] Przybyłowski P. (red.), 2005, Podstawy zarządzania środowiskowego, Wyd. Akademii Morskiej, Gdynia.

SECONDARY LITERATURE

- [1] Jeżowski P. (red.), 2007: Ekonomiczne problemy ochrony środowiska i rozwoju zrównoważonego w XXI wieku. Szkoła Główna Handlowa, Warsaw
- [2] Lemański J. F., Matuszak-Flejszman A., Zabawa S. (red.), 2000: Efektywność funkcjonowania wdrożonego systemu zarządzania środowiskowego wg normy ISO 14001. PZIiTS, AE, Poznan – Pila
- [3] Websites given during lectures and seminars

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

- Dr hab. inż. Justyna Woźniak
- Dr hab. Inz. Katarzyna Pactwa,
- Dr inż. Danuta Szyszka

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD

Name of subject in Polish Bezpieczeństwo i higiena pracy Name of subject in English: Occupational Health and Safety Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering,

Mineral Resource Exploration

Profile: academicLevel and form of studies: 2nd level, full-timeKind of subject: obligatorySubject codeW06GIG-SM3005Group of coursesNo

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			25	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			1	
including number of ECTS points for practical classes (P)				1	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,7			0,8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

C1. To introduce the principles of occupational risk assessment in accordance with relevant standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU_W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

relating to skills:

- PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry
- PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.
- PEU_U03 Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3
Lec 2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3
Lec 3	Dangerous factors - identification and assessment of risks.	3
Lec 4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3
Lec 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3
	Total hours	15

	Project	Number of hours
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3
Pr2	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of	3

	harmful factors (vibration, chemical agents)	
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes (arithmetic
	PEU_U01- U03	average of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- Occupational Safety and Health in Mining. Anthology on the situation in 16 mining countries. Ed.: Kaj Elgstrand and Eva Vingård. University of Gothenburg nr 2013;47(2) (gupea.ub.gu.se > bitstream > gupea 2077 32882 1)
- [2] Boyle, Tony: Health and safety: Risk management. IOSH, 2001. (http://www.iosh.co.uk/index.cfm?go=publications.main)

 [3] Encyclopaedia of occupational health and safety. Fourth edition Stellman, Jeanne M. (ed.). International Labour Organization, 1998 (http://www.ilo.org/public/english/support/publ/xtextre.htm#b103) http://www.ilo.org/public/english/support/publ/encyc/)

[4] McKeown, Céline; Twiss, Michael: Workplace ergonomics: A practical guide, IOSH, 2001, 160 p. http://www.iosh.co.uk/index.cfm?go=publications.main

SECONDARY LITERATURE:

Handouts, articles

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 78/2023 Attachment no. 4. to the Program of Studies

FACULTY OF GEOIENGI	NEERING, MINING AND GEAOLOGY
	SUBJECT CARD
Name in Polish: Modele D	ecyzyjne w Zarządzaniu
Name in English: Operati	ons Research
Main field of study (if app	licable): Mining and Geology
Specialization (if applicabl	e): Mining Engineering,
	Mineral Resource Exploration
Level and form of studies:	2nd, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3000
Group of courses: NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	25		50		
Form of crediting	crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes of practical character (P)			2		
including number of ECTS points for direct teacher- student contact (BU) classes	0,8		0,7		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The student has basic knowledge of mining systems, technological and organizational systems in mining
- 2. The student has basic knowledge concerning economics in mining
- 3. The student has basic knowledge concerning mathematical analysis necessary to understand mathematical issues in science having engineering and economic character.
- 4. The student has basic knowledge and skills of using probability theory models and mathematical statistics
- 5. The student can use Excel spreadsheet
- 6. The student understands the need and knows the possibilities of lifelong learning, improving professional, personal and social skills

SUBJECT OBJECTIVES

C1 Acquiring basic knowledge, taking into consideration its applicational aspects concerning mathematical decision models used in management: C1.1 Linear programming models C1.2 Models of planning, deposits and costs of projects

C1.3 Queuing system models

C1.4 Digital simulation models

C2. Learning of qualitative understanding, interpretation and quantitative analysis with applications of selected issues concerning optimization

C2.1. Production systems:

C2.2. Transport issues

C2.3. Flows in networks.

C2.4. Project schedules

C2.5. Queuing system models

C3. Acquiring and consolidating the competencies of thinking and acting in a system way.

SUBJECT LEARNING OUTCOMES

Subject educational effect (knowledge)

PEU_W01 The student has knowledge concerning basic decision models in management

PEU W02 The student has knowledge concerning line programming models.

PEU_W03 The student has knowledge concerning models for planning and monitoring of activities, deposits, and costs of projects

PEU_W04 The student has knowledge concerning queuing system models

PEU_W05 The student has knowledge concerning simulation models.

Subject educational effect (skills)

PEU_U01 The student has the ability to apply and interpret models using linear programming applications

PEU_U02 The student has the ability to apply and interpret models of planning and monitoring of activities, deposits, and costs of projects with the use of programming applications

- PEU_U03 The student has the ability to apply and interpret queuing system models using programming applications
- PEU_U04 The student has the ability to apply and interpret simulation models using programming applications

Subject educational effect (social)

PEU_K01 The student can think and act in a system, creative and enterprising way

PEU_K02 The student is able to identify and solve problems with the use of decision models and applications

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Le1	Introduction to modelling systems	2			
Le2	Linear programming issues - optimization of production	2			
Le3	Linear programming issues - flow in networks optimization (optimal allocation issues, the issue of transportation, maximum flow, minimizing costs)	2			
Le4	Projects scheduling using critical path	2			
Le5	Planning and balancing of deposits in projects	2			
Le6	Optimization issues of queuing systems	2			
Le7	Monte Carlo methods and digital simulation	3			
	Total hours	15			

	Number of hours	
La1	Defining and solving linear programming issues (Microsoft Excel-Solver)	2
La2	Production optimization (Microsoft Excel - Solver)	2
La3	Flows in networks optimization (Microsoft Excel - Solver)	2
La4	Projects scheduling (Microsoft Project)	2
La5	Planning and balancing of deposits in projects (Microsoft Project)	2
La6	Optimization issues of queuing systems (Microsoft Excel)	2
La7	Elements of Monte Carlo methods and digital simulation (Microsoft Excel)	3
	Total hours	15

N1. Interactive lecture with slides and discussion

N2. Laboratory exercises with the use of IT applications - discussion concerning solutions

N3. Laboratory exercises - short written tests (calculating tasks, tests of knowledge)

N4. Duty hours

N5. Own work - preparation for laboratory classes, solving additional tasks

N6. Own work - own literature studies.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_U01-04	short written test.
PEU_U01-04 written test (counting exercise)	
PEU W01-05; PEU K01-0	2 Written test (knowled	ge test)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Ignasiak E., Borucki W., Badania operacyjne, PWE, 2001
- [2] Krawczyk S., Badania operacyjne dla menedżerów, PWE
- [3] Baranowska B, Badania operacyjne w zarządzaniu, PWSBIA, 1996

SECONDARY LITERATURE

- [1] Szapiro T., Decyzje menedżerskie z Excelem, PWE 2000
- [2] Trzaskalik T., Modelowanie optymalizacyjne, Absolwent
- [3] Trzaskalik T., Badania operacyjne z komputerem, PWE

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Witold Kawalec

Dr hab. inż. Leszek Jurdziak

Dr inż. Zbigniew Krysa

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish ... Zarządzanie projektami, ocena ich opłacalności i ryzyka.. Name of subject in English: Project Management, Appraisal and Risk Evaluation. Main field of study (if applicable): Mining and Geology Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory

Subject code ... W06GIG-SM3003G **Group of courses YES**

	Lecture	Classes	Laboratory	Project	Seminar		
Number of hours of organized classes in University (ZZU)	15		30	15			
Number of hours of total student workload (CNPS)	25		50	25			
Form of crediting			Examination				
For group of courses mark (X) final course	X						
Number of ECTS points		4					
including number of ECTS points for practical classes (P)							
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)			3,1				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER **COMPETENCES**

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

SUBJECT OBJECTIVES

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management.

Part A: The purpose of the course is

C1 to introduce basic concepts of Microeconomics and financial management

C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are discussed. The issues of inflation and risk analysis are included.

Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 knows the concepts of demand, supply and price elasticities, understands how they affect markets
- PEU_W02 knows the concepts of costs in economics and accounting, understands how they differ
- PEU_W03 knows the main cost categories and cost accounting methods
- PEU_W04 has basic knowledge about the contents of financial statements
- PEU_W05 has basic knowledge about the method of ratio analysis of financial statements
- PEU_W06 knows and understands the concepts of Present Value and Future Value for simple cash flows and annuities.
- PEU_W07 knows the capital budgeting methods (NPV, IRR, PBP) and understand how to interpret the results
- PEU_W08 has basic knowledge about the project risk evaluation methods

relating to skills:

- PEU_U01 is able to analyze the causes and effects of demand and supply changes
- PEU_U02 is able to interpret and use information presented in financial statements also by means of ratio analysis
- PEU_U03 is able to use different cost analysis methods and make decisions based on the rsults
- PEU_U03 can calculate Future and Present value, also for annuities and solve simple calculation problems
- PEU_U04 is able to perform discounted cash flow analysis and draw conclusions based on the results
- PEU_U05 is able to carry out sensitivity analysis and scenario analysis using a financial model of an investment
- PEU_U06 is able to work out basic project documentation and initiate a project
- PEU_U07 is able to use basic methods of project management, monitoring and project risk management
- PEU_U08 is able to implement basic conflict management methods in a project group
- PEU_U09 is able to use basic group management methods, can undertake and shape the leadership position

relating to social competences:

- PEU_K01 is able to think and act in a systematic, creative and entrepreneurial way
- PEU_K02 has an established attitude of economic operation and decision-making based on available financial information and forecasts

	PROGRAMME CONTENT			
	Lecture	Number of hours		
Lec.1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2		
Lec.2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2		
Lec.3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2		
Lec.4	Variable and fixed costs. Break even point. Cost-volume –profit analysis.	1		
Lec.5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2		
Lec.6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2		
Lec.7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2		
Lec.8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2		
	Total hours	15		

	Project	Number of hours
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3
	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3

Effective managerial behaviour from the different contexts.	
Total hours	15

	Laboratory	Number of hours			
Part A					
La1	1 Supply and Demand curves. Elasticity of demand.				
La2	Economic costs. Cost curves. Profit maximization cases.	2			
La3	Managerial cost accounting. Decision making cases.	2			
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2			
La5	Ratio analysis based on financial statements of companies	2			
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2			
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3			
	Part B	1			
La8	Basic concepts (process, project, project management, management	3			
	by projects, critical factors for project success, competences). Preparing and initiation of the project. Project analysis (project environment, stakeholders, project objectives).				
La9	Planning and estimating of the project. Project phases and life cycle	3			
La10	Project organization. Project scope management. Planning of activities, resources and costs.	3			
La11	Project risk management. Project monitoring. Project management methodologies.	3			
La12	Quality management. Change control. Project closing.	3			
	Suma godzin	30			

N1. Interactive lecture with the use of multimedia and discussion

N2. Laboratory classes: individual problem solving with the use of Excel spreadsheet

N3. Laboratory classes part B and project classes: case studies solving in groups and individually. Project presentations, discussion

N4. Consultation

N5. Self-study: solving assigned problems, literature studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W08	Assesment of student class activity
	PEU_K01-K02	
F2	PEU_U01-U10	Evaluation of student's assignements
	PEU_K01-K02	
P1	PEU_W01-W08	Written test
	PEU_U01-U10	
	PEU_K01-K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E., Glapenski L.: Financial Management, 1997
- 3. Johnson H.: Making Capital Budgeting Decisions Maximising the Value of the Firm. Financial Times/Prentice Hall (April 15, 1999)
- 4. Jonson H.: Strategic Capital Budgeting: Developing and Implementing the Corporate Capital Allocation Program, January 1994.
- 5. Lock Dennis, Project Management, Published April 11, 2013 by Routledge

SECONDARY LITERATURE:

- 1. Jonson H.: Determining Cost of Capital: The Key to Firm Value. Apr 1999.
- A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)
- 3. Johnson H.: Global Financial Institutions and Markets. December 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

	0
FACULTY OF GEO	ENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish:	Zasady i zastosowania InSAR oraz GIS w górnictwie
Name in English:	Principles and Application of InSAR and GIS in mining
Main field of study:	Mining and geology
Specialization:	Geomatics for Mineral Resources Management
-	Mineral Resource Exploration
Level and form of st	udies: 2nd level, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3007
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.
- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEK_W01 Has expanded knowledge in the field of using geoinformation systems to collect and process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK_U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

	PROGRAMME CONTENT	
	Lecture	Number of hours
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2
Lec 2	Introduction to Microwave Signals for Earth Observation	2
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2
Lec 4	Acquisition and processing of SAR data	2
Lec 5	SAR image theory (geometric properties, polarization)	2
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2
Lec 7	Principlesand Applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2
Lec 8	Fundamental concepts of geographical information systems	2
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2
Lec 10		2
Lec 11	Spatial data interpolation	2
Lec 12	Map algebra. Surface analysis, local and zonal functions	2
Lec 13	Basics of spatial statistics	2
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2
	Total hours	30

	Laboratory	Number of hours
Lal	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of F1 and F2, where F1 – 80% and F2 - 20%)
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl Semester 2 and 3 UNI ZAGREB University of Zagreb, RGNF

Course title	Sedimentology					
European Credits (ECTS)	5	Time (hours) given to the students	75			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: , Fieldwork: x	Classes: , Project classes: , Practical classes: , Seminar classes: , (hours)				
Description of content	 basic features of modern and palaeo- d sequences, to analyse all elements presenvironment This course gives students knowledge a L1 - DEFINITION OF FACIES CYCLES AND L2 - WAYS OF VERTICAL SUCCESSIONS E L3 - SEDIMENTARY ENVIRONMENT OF A L4 - DEPOSITIONAL ENVIRONMENT OF A L4 - DEPOSITIONAL ENVIRONMENT OF A L5 - DELTAIC SEDIMENTARY ENVIRONMENT OF A L6 - SILICICLASTIC SHORELINE; SILICICLA PROCESSES L7 - WAVE- TIDE- STORM-INFLUENCED L8 - SHALOW-MARINE CARBONATE ENVIRONMENT OF A L9 - CHARACTERISTICS AND FACIES OF C L10 - CHARACTERISTICS AND FACIES OF C L11 - EVAPORITIC SEDIMENTARY ENVIR L12 - CARBONATE DIAGENESIS - DOLOM L13 - DEEPWATER SEDIMENTARY ENVIR 	epositional environments, to reco ent in the sedimentary environments bout sedimentary processes and SEDIMENTARY SEQUENCES DISPLAY (SEDIMENTARY COLUMN ALUVIAL FANS; TECTONIC SETTING BRAIDED, MEANDRING AND ANA SES ENT; PROCESSES, TYPES OF DELT ASTIC SHELF / RAMP DEPOSITION SILICICLASTIC SHORELINE (SHELF, VIRONMENTS; DEPOSITION ON C CARBONATE PLATFORM (accordin CARBONATE RAMP / SHELF (accordin CARBONATE PLATFORM (accordin CARBONATE RAMP / SHELF (accordin CONMENTS - PELAGIC DEPOSITION	its interpretation. S); WAYS AND POSSIBILITIES OF CORRELATION GS, PROCESSES, CHARACTERISTIC SEQUENCES STOMOSING RIVERS; TECTONIC SETTINGS, AS; PARTS OF THE DELTA; CHARACTERISTIC AL ENVIRONMENT; NEARSHORE SHELF / RAMP / RAMP) ARBONATE PLATFORM (processes), og to Flügel, 2004) ording to Flügel, 2004)			

	CURRENTS; CHARACTERISTICS OF TURBIDITE FANS L15 - MIXED (SILICLASTIC-CARBONATE) SEDIMENTARY ENVIRONMENTS - CHARACTERISTIC SEQUENCES					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students) Assessment methods and criteria	Knowledge: To conduct complex sedimentological investigations, including the construction of strata sequences, facies differentiation and interpretation of sedimentary environments. Skills: To construct general and thematic geological maps, as well as geological profiles with accompanying descriptions Competences: To engage in informed professional discussion and business communication,exam During the semester the requirement for signature is atendance of leactures and practicum. Students will participate in research and practical work as part of practicum. At the end oral exam will be organized. Theoretical part is complemented by research work, practical work and field works where students will learn about sedimentology processes and depositional environment.					
Recommended readings	Flügel, E., (2004): Microfacies of Carbonate Rocks; Analysis, Interpretation and Application. Springer (976 pp)					
TU Coordinator	Dunja Aljinović, du	nja.aljinovic@rgn.hr				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in informed professional discussion and business communication		Students will have to construct general and thematic geological maps and profiles with accompanying descriptions			

Justification for OLO contribution	
------------------------------------	--

Course title	Mineral Deposits Exploration				
European Credits (ECTS)	5	Time (hours) given to the students	75		
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: x, Fieldwork:	Student whole working time (hours)	125		
Description of content	resources. L1 - Classification of mineral deposits. Ed L2 - Nature and morphology of orebodie L3 - Metallogeny, metallogenetic provin L4 - Geological criteria in the exploration L5 - Structural control factor. L6 - Geological models of mineral deposed of areas for exploration of a mineral deposed L7 - Application of geophysical methods L8 - Prospecting indications (alteration, L9 - Prospecting indications (indicator ele L10 - Geochemical prospecting methods L11 - Sampling media (stream sediment L12 - Statistical processing of geochemical L13 - Sampling of mineral resources. L14 - Mining legislation. Categorisation a L15 - Calculation of mineral reserves. Pr	nts which should be applied durin conomic aspects of mineral deports. ces and periods. In of mineral deposits. Magmatic of its as a basis for exploration plan posit. and remote sensing in the explo alteration mineral assemblages, of lements, indicator minerals). S. s, soil, lake sediments, sediment cal prospecting results.	ng geological part of exploration of mineral sits. control factor. ning. Reconnaissance. Selection and definition ration of mineral deposits. ore outcrops and remains of old mining). cover, water, gases, vegetation, rocks).		
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students) Knowledge: To describe all phases of raw materials exploration, from prospecting of deposits to the pro- reports on raw materials reserves. To select basic geological, geochemical, geophysical, and statistical responses. Skills: To apply statistical methods and spatial analyses in interpretation of laboratory and field measur information technology in computation and modelling of geological phenomena and processes. To ider properties of geological materials and processes within hydrogeological, engineering geological and pe					

	engineering investigation and mineral exploration. Competences: , To apply standards and (legal) regulations related to geological research, geohazards, environmental protection, water exploitation, exploitation of mineral resources or construction conditions. To interpret and summarize the results of field, laboratory and office research and prepare and present a geological expert report using other relevant data sources. To create geological reports for the economy and strategic documents.						
Assessment methods and criteria	topic, and have ind Through seminars						
Recommended readings	1. Moon, C.J., Whateley, M.G.K. & Evans, A.M. (2009): Introduction to mineral exploration, Blackwell Science, 496 s. 2. Annels, A.E. (1991): Mineral Deposits Evaluation, Chapman & Hall, 436 s						
TU Coordinator	Goran Durn, goran	.durn@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will create geological reports for the economy and strategic documents.	Students will apply statistical methods and spatial analyses in interpretation of laboratory and field measurements.	Students will apply statistical methods and spatial analyses in interpretation of laboratory and field measurements.		Students will apply standards and (legal) regulations.		
Justification for OLO contribution							

Course title	Petroleum Geology					
European Credits (ECTS)	5	Time (hours) given to the students	75			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: x, Fieldwork: x	Student whole working time (hours)	125			
Description of content	 students, future engineers for all aspect as well as for professional interaction w Students aquire specific skills in the area Lectures (30 hours) Abiogenic theories of petroleum origin a discussion) Biomarkers as indicators of origin of sou Types of kerogen (conditions of depositi Pyrolysis of source rocks (generation an Differences in porosity of clastic and car Correlations of porosity and permeabilit Directions and ranges of primary and se Diagenetic processes important for the Diapirism. Origin and processes during of the Adriatic s An overview of the types of traps in the Theoretical foundations of basin modell Oil and natural gas reserves in convention Reflective seismic surveys - significance type Drilling of a deep exploratory well (TDC Application of the results of interpretati electrical, radioactive, sound. Influences diameter, influence of mud 	ss of exploration and exploitation ith engineers of related profession a of exploration and exploitation and biogenic theory of petroleum arce rocks and deposition condition ion of organic matter, composition d maturation parameters) bonate sediments. Permeability of ty. condary migration in different str migration and accumulation of hy diaper movement. The significance world ing onal accumulations in the world in petroleum geological explorat laboratory, Master Log) ion of well logging. Measurement s on the results of geophysical me	of oil and gas. a origin (presentation of arguments and guided ons on and structure of kerogen) of clastic and carbonate sediments. ratigraphic-tectonic conditions ydrocarbons se of diapirism in petroleum geology. Diapirs in ion and limitations with regard to reservoir systems with respect to energy sources:			

	gas in shales, natural gas in coal seams)
	Practical Exercises
	Comparison of effective porosity differences based on a simple experiment (weighing two dry samples of different
	effective porosity, immersing the samples in water for 15 minutes after which the samples are weighed again, and their
	porosity is estimated based on the change in mass)
	Luminescence of oil and natural gas (observation and description)
	Preparation of samples taken in the field (separation of fossil content by wet sieving, preparation of samples for
	analysis of total organic carbon content)
	Microscopy of fossil contents, discussion of observation results in terms of interpretation of sediment characteristics
	Analysis of total organic carbon content
	Project work (15 hours)
	Systematization of input data
	Shale volume analysis by interpreting the spontaneous potential curve
	Calculation of the share of rock thickness with reservoir properties within the total rock thickness (Net / Gross)
	Porosity analysis of reservoir rocks by interpretation of well - logs in a specialized computer program
	Making a contour map of the top of the reservoir in a computer software
	Making a contour map of the bottom of the reservoir in a computer software
	Making a map of the spatial distribution of the share of rock thickness with collector properties within the total rock
	thickness in a computer software
	Making a map of the spatial distribution of reservoir porosity in a computer software
	Making a cross-section through the reservoir
	Calculation of reserves based on the constructed reservoir model
	Making a simple 1D basin model
	Fieldwork (15 hours)
	Construction of geological column in clastic sedimentary rocks of Neogene age and sampling for assessment of
	generative potential of source rocks
	Construction of a geological column of a characteristic transgressive cycle of Neogene rocks
	Reconstruction of the circumstances that led to natural hydrocarbon outcrops
	Knowledge: Interpret the results of analyses and measurements: laboratory and field (from outcrops and from wells)
Learning outcomes of the curricular	Bring conclusions about the generative-maturation properties of source rocks based on the results of pyrolysis
unit (knowledge, skills and	Discuss the interconnectedness of the elements of the petrogeological system
competences to be developed by	Describe the main elements of the drilling rig and the work of geologists during the drilling of deep wells
the students)	Skills: Analyse the role of biomarkers in determining the origin of hydrocarbons (origin of organic matter and

	sedimentation environment). Estimate geological (total) reserves of hydrocarbon based on a simple reservoir model constructed in a computer software Competences: Assess the significance of petrophysical properties of reservoir and cap rocks for hydrocarbon accumulation and production. Compare research on conventional and unconventional hydrocarbon accumulations,					
Assessment methods and criteria	exam The requirement for signature is atendance of leactures and practicum. Students will have to write seminar on specific topic, and have independent assignents. At the end oral exam will be organized. Theoretical part is complemented by practical work through seminars and workshops, independent assignents and field works where students will learn about importance of geology in petroleum exploration.					
Recommended readings	Selected chapters: Velić, J. (2007): Geologija ležišta nafte i plina [Geology of Oil and Gas Reservoirs], Zagreb, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, 2007 (university textbook)					
TU Coordinator	Marko Cvetković, Iv	va Kolenković Močila	c, marko.cvetkovic@	rgn.hr iva.kolenkovi	ic@rgn.hr	
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)* Student will learn how to have professional interaction with engineers of related professions.						Student will work in teamwork.
Justification for OLO contribution						

Course title	Engineering Geological Investigations					
European Credits (ECTS)	5	Time (hours) given to the students	60			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	125			
Description of content	 engineering and mining. This course covers all important aspects: Course content elaborated according to T1: Lectures - Types of engineering geol T2: Lectures - Engineering geological investigated area T3: Lectures - Methods of detailed engineering description of coarse graineering T4: Lectures - Genetic classification of set Exercises - Geomechanical classification T5: Lectures - Classification and categor - clastic rocks T6: Lectures - Methods of engineering geological T7: Lectures - Methods of engineering geological T6: Lectures - Methods of engineering geological T8: Lectures - Methods of engineering geological T9: Lectures - Methods of engineering geological T10: Lectures - Methods of engineering geological in T10: Lectures - Methods of engineering geological in T11: Lectures - Methods of engineering geological in T11: Lectures - Engineering geological in 	s of engineering geological investi o the schedule of lectures and exe logical investigations; Exercises - F vestigations in site investigations; eneering geological investigations; ed soil oil and rock mass, rock mass weat n and engineering description of f ization of rock mass; Exercises - E geological investigations for site in eological description of rock mass geological investigations for site in tion of rock mass geological investigations for site in tion of rock mass geological investigations for site in tion of rock mass geological investigations for site in geological investigations for site in oreholes geological investigations of active ngineering geological profile nvestigations and potential proble fiels – 1st Par	Arcises: Review of geotechnical reports Exercises - Description of natural ; Exercises - Geomechanical classification and thering and engineering geological profile; fine grained soil ingineering geological description of rock mass investigations related to foundation - carbonate rocks investigations related to slope constructions; investigations related to dam construction; investigations related to tunnel construction;			

Contribution to EIT's Overarching	OLO 1	OLO2 Innovation	OLO3 Creativity	OLO4	OLO5 Value	OLO6 Leadership	
TU Coordinator	Snježana Mihalić Arbanas, snjezana.mihalic-arbanas@rgn.hr						
Recommended readings	Selected chapters from: De Vallejo, L.G., Ferrer, M., de Freitas, M. (2011): Geological Engineering. CRC Press, 700 p.						
Assessment methods and criteria	exam During the semester the requirement for signature is attendance of leactures. Students will participate in research and practical work as part of practicum. Students will have preliminary exam, writtena and oral exam. Theoretical part is complemented by practical work through project work and independent assigmensts.						
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Exercises - Engineering geological mapping of tunnels – 2nd Part T13: Lectures - Review of the results of engineering geological investigations and preparation of technical documentation; Exercises - Engineering geological mapping of the road route – 1st Part T14: Lectures - Methods and results of regional engineering geological investigations; Exercises - Engineering geological mapping of the road route – 1st Part T15: Lectures - Application of results of regional engineering geological investigations; Exercises - Engineering geological mapping in scale 1:5000 Knowledge: Select appropriate level of site investigations for the purpose of different types of studies and projects. Select appropriate type of regional engineering geological investigations for the purpose of different types of studies and projects. To make concept of detailed engineering geological investigations for different types of structures/constructions. Identify causes of active geomorphological processes (sliding, erosion, subsidence, etc.) and consequences of geodynamic processes (earthquakes) and to apply appropriate methods of engineering geological investigations. Identify weathering profiles in different rock types and to apply appropriate methods of engineering geological investigations in geotechnical engineering. Classify and to describe soil and rock mass according to different recommendations and standards in engineering. Skills: Evaluate the results of conducted research and testing. Construct an engineering geological profile and technical tunnel drawings Conduct reconnaissance engineering geological mapping Competences: , 						

EIT label – Teaching units <TIMREX – T-shaped Master Programme for Innovative Mineral Resource Exploration>

Learning Outcomes (tick relevant box/es)*	Entrepreneurship			Intercultural	judgments / Sustainability	
		Students will conduct reconnaissance engineering geological mapping.	Students will construct an engineering geological profile and technical tunnel drawings.		Students will apply standards and (legal) regulations.	
Justification for OLO contribution						

Course title	Exploration Geochemistry						
European Credits (ECTS)	4	Time (hours) given to the students	45 100				
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)					
Description of content	Students will be introduced to the basic caused by the weathering of the ore de- environments, sampling media (soil, wa statistical methods and interpretation o oral presentation and writing reports re Students will acquire a basic knowledge LECTURES 1. Introduction to the course, basic prin 2. Primary dispersion 3. Secondary dispersion 4. Sampling media, sampling and sample 5. Instrumental analytical methods 6. Statistical methods in geochemical pr 7. Construction of geochemical maps 8. Types of geochemical research and re 9-10. Principles of geochemical prospec EXERCISES (5 blocks of 3 hours) The 15 hours of exercises will include a	Fieldwork:Students will be introduced to the basic principles of geochemical prospecting, i.e., finding the geochemical anomaly caused by the weathering of the ore deposit. Students will be introduced to the behavior of trace elements in surface environments, sampling media (soil, water, sediment, plant rocks), chemical analysis of geological materials (AAS, ICP), statistical methods and interpretation of geochemical data. Students will develop their communication skills through oral presentation and writing reports related to project assignments. Students will acquire a basic knowledge about importance of geochemical prospecting. LECTURES1. Introduction to the course, basic principles of geochemical prospecting 2. Primary dispersion3. Secondary dispersion 4. Sampling media, sampling and sample preparation for analysis 5. Instrumental analytical methods 6. Statistical methods in geochemical prospecting; background and threshold determination. 7. Construction of geochemical prospecting in environmental protectionEXERCISES (5 blocks of 3 hours) The 15 hours of exercises will include a series of individual tasks that students will have to solve independently and present orally and in the form of an essay. In addition to individual assignments, students will receive a geochemical y and in the form of an essay. In addition to individual assignments, students will receive a geochemical					
Learning outcomes of the curricular	Knowledge: To explain the behaviour of chemical elements in surface environments and the processes that control the						
unit (knowledge, skills and	geochemical anomaly.						
competences to be developed by the students)	To select a suitable sampling medium, the proper sample preparation procedure, and the analytical method, as well as						
the students	analyte in order to find the geochemical anomaly caused by the weathering of the ore body.						

	Skills: To apply univariate, bivariate and multivariate statistical methods in the interpretation of geochemical data. To construct geochemical maps. Design preliminary, regional and detailed geochemical survey of mineral resources. Competences: To systematize and combine the results of geochemical prospecting with other data and prepare and present a geological report.,					
Assessment methods and criteria	 exam Students are required to attend classes, solve independent project tasks, participate in a team project and pass the written exam. Through practical work and independent assigments students will be introduced to the basic principles of geochemical prospecting, 					
Recommended readings	1. Moon, C.J. (2006): Exploration Geochemistry (pp 155-178). In: Introduction to Mineral Exploration; 2nd Edition; Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans (Editors); Blackwell Publishing, 2006, 469p.					
TU Coordinator	Marta Mileusnić, marta.mileusnic@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will develop communication skills through oral presentation and writing reports related to project assignments.				Students will develop communication skills through oral presentation and writing reports related to project assignments.
Justification for OLO contribution			·	·		·

Г

Course title	Remote sensing of mineral resources					
European Credits (ECTS)	3	Time (hours) given to the students	30			
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	75			
Description of content	 images required for analysis at surface regulation of satellite in Through the course students will acquire exploration. P-1. Introduction, review and definit P-2. Electromagnetic radiation. Activ P-3. Electromagnetic radiation. Activ P-4. Satellite missions, sensors, access mineral resources. P-5. Spatial, spectral, radiometric an resources P-6. Use of software tools and programe programe for satellite image pr	pendently collect and analyse mu mineral resources. Introduce stuc nages in the analysis of surface m e basic knowledge about applicat ion of remote sensing of mineral ve and passive sensors for remote ve and passive sensors for remote ssories and equipment of existing d temporal resolution of satellite amming languages for remote se amming languages for remote se es. in sensor operation morphological influences on the morphological influences on the assification on the example of mi assification on the example of mi	<pre>altispectral, hyperspectral and radar satellite dents to the automatic supervised and hineral raw materials. tion of remote sensing in mineral raw materials resources e sensing. e sensing of mineral resources. g satellite systems for remote sensing of e images used in the analysis of mineral ensing of mineral resources 1 ensing of mineral resources 2. quality of satellite images 1 quality of satellite images 2 neral resources research 1.</pre>			

Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Knowledge: Describe the basic principles and methods of remote sensing for surface mineral raw materials. Use multispectral and hyperspectral images for analysis at surface raw materials Describe the characteristics of electromagnetic radiation for the purposes of remote sensing of mineral resources. Skills: Develop a controlled and uncontrolled classification of mineral resources from satellite images Apply at least one software tool for interpretation and processing in remote sensing of mineral resources. Competences: , 					
Assessment methods and criteria	exam Students will have lectures and project work. Students are required to attend classes and solve project tasks independently and / or in a team. Students will learn about remote sensing, with an emphasis on their application in mineral exploration through lessons and practical work.					
Recommended readings						
TU Coordinator	Ivan Medved, ivan.	medved@rgn.hr				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will independently collect and analyse mineral resources via remote sensing.				
Justification for OLO contribution						

Course title	GIS in Exploration of Mineral Resources					
European Credits (ECTS)	3	Time (hours) given to the students	30			
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	75				
Description of content	 P1 Introductory lecture on the subject. Onetworking, computer usage rules. P2 Basics of GIS (repetition of undergrade P3 Scanning and image processing. V3 H P4 Raster georeferencing. V4 Georefere P5 Raster georeferencing V5 Raster geore P6 Raster georeferencing V6 Raster geore P7 Review projects and quick maps. V7 H P8 Vectorization of geological map, part P9 Vectorization of geological map, part P10 Stages of GIS project development of introductory part. V10 Stages of GIS project P11 Geotransformation of vector and ravector and raster GIS in HTRS96 / TM an P12 SGA Geoportal data, in general. V12 P13 Geoconversions of point data in Geo 	n GIS projects. Advanced use of ge or the purpose of making cartogra e basic knowledge about applicat Overview of teaching topics. V1 C duate material). V2 Reminder to A landling maps in paper and digitancing three sheets with known por referencing over vectors. referencing over a raster. Development of an overview projet. 1. V8 Vectorization of a geologication the example of making a map ject development on the example ster GIS in HTRS96 / TM and WGS ad WGS84, data table. 2. Data from SGA Geoportal, use in otrans, in general. V13 Geoconve ers and test data, in general. V14	eoinformatics on computer and mobile aphic contents of diploma theses. ion of GIS software in mineral exploration. urriculum in the semester. Merlin, ArcMap, ArcView, advantages and disadvantages. I form. Dints on geological maps. ect and GIS map for each location. al map within a given area, Part 1. map within a given area, part 2. of mineral resources of western Slavonia, e of making a map of mineral resources of 584, in general. V11 Geotransformation of n GIS project. rsions of point data in Geotrans, task. Geodetic transformations, parameters and			

Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Knowledge: To apply statistical methods and spatial analyses in interpretation of laboratory and field measurements To use information technology in computation and modelling of geological phenomena and processes To interpret the results of geological and geochemical prospecting, geophysical and remote sensing investigation of mineral deposits using geographic information system in the analysis of spatial data. Skills: To construct general and thematic geological maps, as well as geological cross-sections with accompanying descriptions To interpret and summarize the results of field, laboratory and office research and prepare and present a geological expert report using other relevant data sources Competences: , 						
Assessment methods and criteria	 practical mark The student is obliged to do all the exercises and attend 80% of the lectures. It is necessary to complete all project tasks and submit the final GIS projects for review and evaluation. Knowledge is evaluated based on assessment from project assignments, attendance at exercises and overall commitment to teaching. Students will learn about GIS softwers with an emphasis on their application in mineral exploration through lessons and project excercise and independent assigments. 1. De Smith, M., Longley, P., Goodchild, M.: Geospatial Analysis - A comprehensive guide (online + PDF format), 						
Recommended readings	 a. De siniti, M., Edigley, P., Goodenid, M.: Geospatial Analysis - A comprehensive guide (online + PDF format), https://spatialanalysisonline.com/ 2. ESRI: Free eBooks as part of its "Best Practices" series, (online + PDF format), https://www.gislounge.com/free-gis-books/ 3. The Rutgers Center on Public Security (PDF format), https://www.rutgerscps.org/gis-book.html 						
TU Coordinator	Dario Perković, dar	Dario Perković, dario.perkovic@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will independently collect and analyse mineral resources via GIS softwares.	Students will independently collect and analyse mineral resources via GIS softwares.				

|--|--|

Course title	Seismotectonics					
European Credits (ECTS)	4 Time (hours) given to the students		45			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	100			
Description of content	 Adriatic region and in the Eastern Meditused in evaluation of seismicity and seiss scale, active stress regimes in the Earth' and seismogenic sources. The course cover all the important data L1. Introduction to Seismology. Seismicits seismometers and seismograms. Earthque Models of earthquake recurrence. Ex1. Seismogram analysis, definition of L2. Introduction to seismic hazard and risearthquake Catalogue. Gutenberg-Richtt Ex 2. Calculation of earthquake epicentre L3. An overview of geodetic methods to faults and in fault zones. Trilateration new measurements: principles and examples geodynamics in circum Adriatic region a Ex 3. Calculation of earthquake epicentre L4. Type of stresses in the Earth's crust. stress map database. Introduction to bo examples. Ex 4. Analysis of earthquake focal mechanisms and characterization, examples. Ex 5. Analysis of earthquake focal mechanisms and characterization. 	terranean, and to provide studen mic hazard, assessment of recen- s crust, and in identification and and seismotectonic properties of ty in Croatia and in neighbouring uake intensity and magnitude. Ea- spatial and surface seismic wave isk in Croatia. Croatian Seismolog er Relationship. Seismic hazard n re and magnitude based on seism measure tectonic movements. C etwork, Precise leveling: principle s. GPS data in Croatia and in surro nd in the eastern Mediterranean re and magnitude based on seism Stress regimes at the tectonic pla orehole breakouts. Fault plane sol anisms (EFM) – interpretation of in circum-Adriatic region. Individu les from DISS and SHARE seismog anisms (EFM) - construction of EF	countries. Global seismicity. Seismic waves, arthquake cycle. Elastic Rebound Theory. s gical Survey, seismograph network and Croatian naps in Croatia and in neighbouring countries. icity data (Part 1) conceptual models of deformation and slip on es and examples. VLB Interferometry and GPS punding region used in interpretation of icity data (Part 2). ate boundaries and far - field stresses. World lutions: basic theoretical principles and EFMs ual and composite seismogenic sources: genic databases.			

	Ex. 6. Analysis of earthquake focal mechanisms (EFM) - construction of EFM (Part 2).
	L7. Integration of geological and seismological data in construction of seismotectonic maps and profiles: basic
	principles.
	Ex. 7. Visit to Croatian Seismological Survey – Earthquake monitoring and analysis
	L8. Seismotectonics in extensional geodynamic settings. Global distribution of extensional settings. An overview of
	structural styles and potential seismogenic sources in extensional settings.
	Ex. 8. Integration of geological and seismological data for construction of seismotectonic profile – Construction of
	geological profile
	L9. Seismotectonics in continental graben structures: examples from the East African Rift, Rhone-Rhine Graben, Basin &
	Range Province. Seismotectonic properties of back-arc basin areas: examples from Aegean and Tyrrhenian sea. Ex. 9.
	Construction of seismotectonic profile – Construction of geological profile
	L10. Seismotectonics in compressional geodynamic settings. Global distribution of compressional settings. An overview
	of structural styles and potential seismogenic sources in compressional settings.
	Ex. 10. Construction of seismotectonic profile – Earthquake Catalogue analysis and delineation of earthquake series in
	the profile buffer 10 km wide
	L11. Seismotectonics in fold-thrust belts: examples from the Alps and External Dinarides.
	Ex. 11. Construction of seismotectonic profile – Earthquake hypocentre projection on geological profile and correction
	of structural framework corrections
	L12. Seismotectonics in strike-slip geodynamic settings. Global distribution of strike-slip settings. An overview of
	structural styles and potential seismogenic sources in strike-slip settings.
	Ex. 12. Construction of seismotectonic profile – Identification of seismogenic faults/sources along the profile
	L13. Seismotectonics in strike-slip geodynamic settings: examples from Dinarides, California, New Zealand and Eastern
	Mediterranean. Ex. 13. Student's presentations of constructed seismotectonic profiles (Part 1).
	L14. An overview on seismotectonics in Croatia: key examples from Pannonian basin, Dinarides and Adriatic region.
	Ex. 14. Student's presentations of constructed seismotectonic profiles (Part 2).
	L15 & Ex 15. Student's seminar presentations
	Knowledge: Distinguish stress type and its distribution in Earth's crust in respect to tectonic plate boundary types,
	regional and local geodynamic processes
Learning outcomes of the curricular	Explain general terms in Seismology (seismicity, seismic waves, earthquake magnitude, earthquake hazard and risk,
unit (knowledge, skills and	Earthquake Cycle and Elastic Rebound Theory)
competences to be developed by	Describe basic properties of global and local seismicity
the students)	Describe seismotectonic properties of the extensional, compressional and strike-slip tectonic regions
	Define geodetic methods that are used in measurements of tectonic movements
	Categorize seismotectonically active regions on Earth, in more detail Mediterranean area and Croatia

	Skills: Compute earthquake epicentre location based on seismic station seismogram analysis Compute focal mechanism solutions based on geometric and kinematic features of investigated faults Compute values of moment magnitude and assess earthquake intensity Competences: , Construct and analyse seismotectonics maps and profiles. Integrate geological and seismic data in identification and categorization of seismogenic faults/seismogenic sources in seismotectonic active regions.					
Assessment methods and criteria	exam Teaching methodologies are: lectures, project and independent assigments and partial e-learning. Course attendance (minimum 70% attendance), tasks constructed and given for evaluation. Course evaluation: constructed programs, seminar paper, written exam and oral exam. Students will be introduced to seismotectonics via lectures, project work and independent assigments and partial e- learning.					
Recommended readings	Yeats, R. (2012): Active Faults of the World. Cambridge Univ. Press, 600 str. (selected chapters)					
TU Coordinator	Bruno Tomljenović,	/Bojan Matoš,				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			During the course students will construct seismotectonic profiles and have presentations.		Students will learn about importance of determining seismicity and about seismic hazards and tectonic activities and its impact.	
Justification for OLO contribution						

Г

Course title	Regional Hydrogeology					
European Credits (ECTS)	4 Time (hours) given to the students		60			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	100			
Description of content	and calculating groundwater reserves. T Republic of Croatia and strategic ground Students aquire specific skills in the area Energy conditions of groundwater move Croatia, geothermal potential analysis. Geochemical cycle, Hydrochemical facie Groundwater chemistry and its impact of water classifications depending on the i Regional hydrogeology, scale effect (spa and physical, scale effect on permeabilit Hydrogeological parameters. Heteroger flow in relation to the position of layers Basic flow of inclined aquifer systems ar significance of the recession coefficient Radial flow, well hydraulics, direct integ Unconfined aquifer, flow below water s aquifer Hydrogeological objects (wells, piezome aquifer heterogeneity) Hydrogeological maps and issues of gra relationships. Examples of hydrogeologi Hydrogeology of the Republic of Croatia characteristics of the Sava River Basin, t Sava. Analysis of the water level and flo	The student will acquire basic know dwater reserves. a of hydrogeological interpretation ement, Basic concept of thermal rest es. Examples of laboratory chemic on water use (water supply, indust ntended use (Doneen, USDA). atial and temporal), the continuity ty neity and anisotropy of hydraulic of and unit hydrograph, runoff coeffic on the example ration of Darcy's law. Calculation urface, Dupit assumption. Flow the eters), construction and use. Examplication phical representation of hydrogeo and units of territories by basins, he valley part of the Sava River B w of the Sava on significant water	regime. Map of the geothermal gradient of cal analyzes of water, Piper diagrams stry, agriculture) and legislation. Examples of y equation. The concept of scales cartographic conductivity (example of parallel and vertical cient and recovery coefficient. Hydrogeological (identification) of hydrogeological parameters hrough horizontally and vertically stratified mples of hydrogeological objects (question of ological properties, phenomena and			

	Basins of right tributaries of the Sava, Kupa basin, Dobra basin, Mrežnica basin, Korana basin, Una basin. Analysis of hydrographs of significant sources in the basins of the right tributaries of the Sava, definition of the equation of the recession part of the hydrograph, recession coefficient and dynamic reserves. Drava basin, valley part of the Drava basin, hilly and hilly area of the Drava basin. Analysis of water level and flow of the Drava on significant water meter profiles, comparison of Drava water level and groundwater level in the hinterland, inference about the hydraulic connection of the Drava and the hinterland, drainage and recharge. Hydrogeology of Istria, Croatian Littoral, Lika and Podvelebita (Gacka and Lika basins), Zrmanja basin, Krka basin. Analysis of hydrographs of significant sources in the Mirna, Gacka, Lika, Zrmanja and Krka basins, definition of the equation of the recession part of the hydrograph, recession coefficient and dynamic reserves. Cetina basin, lower Neretva basin, coastal basin from Neretva to Boka Kotorska, basins of significant coastal springs. Ranking of watersheds by quantity and quality of water, strategic reserves of Croatian groundwater from the first to the fifth level. Analysis of data on groundwater tracing carried out in the area of southern Dalmatia and conclusion on karst watersheds.
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: Define the concept of scale in hydrogeology and explain its effect through permeability properties Describe the basic concept of the Earth's thermal regime and relate it to the genesis and dynamics of thermal waters Describe the geochemical cycle Interpret the chemical composition of water Define and graphically represent hydrochemical facies Analyze the spring hydrograph Explain how to determine groundwater reserves Describe the hydrogeological systems of Croatia Skills: Apply hydrogeological maps in the description of hydrogeological features of the area Assess the significance of a particular hydrogeological system for a water supply Competences: ,
Assessment methods and criteria	exam Teaching methodologies are: lectures, project and independent assigments. Students will have to finish hidrogeological project for evaluation. Through the course students will learn about hydrogeological interpretations on a regional scale.
Recommended readings	Struckmeier, W.F. & Margat, J. (1995): Hydrogeological maps, A guide and a standard legend, pp. 177.,International association of hydrogeologist, Verlag Heinz Heise, Hannover

EIT label – Teaching units <TIMREX – T-shaped Master Programme for Innovative Mineral Resource Exploration>

TU Coordinator	Željko Duić/Jelena	Parlov,				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*					Students will learn about importance of groundwater reserves and its preservation.	
Justification for OLO contribution						

Type (Lecture, internship, exercise etc.)Class class Fieldetc.)The the The L1 - L2 - paly L3 -	tures: 2, Auditorium classes: , Lab. sses: , Project classes: , Practical	Time (hours) given to the students	60			
Type (Lecture, internship, exercise etc.) Class Field The the The L1 - L2 - paly L3 -						
the The L1 - L2 - paly L3 -	dwork:	Student whole working time (hours)	125			
L6 - Description of content L8 - L9 - L10 indu L11 indu L12 L13 L14 L15	 e objective of the course is to learn al main industrial minerals and their ap course covers all important data ab Definitions of terms: (1) ore mineral Physicochemical conditions for the f ygorskites. Mineralogy and geology of kaolin de Mineralogy and geology of bentonit Construction clays and industrial ap Physicochemical conditions of bauxi Quartz mineral raw materials (quart liment, diatomite, flint). Feldspar dep Physicochemical conditions of evapore Physicochemical conditions of pho ustry. Deposits of halite, sylvine, soda, bor Physicochemical conditions of pho ustry. Deposits of barite, fluorite and refusitions Physicochemical conditions of zeol Openosits of pyrite and sulphur. App Physicochemical conditions of zeol Pigments and their application in in 	pplication in industry. out industrial minerals and its application of clay deposits. Industrial mineral. Classiformation of clay deposits. Industriate posits. Application of kaolin in inter, sepiolite and palygorskite deposits deposits. Laterite and karst batz crystals, quartz sands and sands posits. Application of quartz minerorite formation. Deposits of gypsorate, Mg and Li salts. Subphate formation. Apatite and philotation of kaolin in interation. Application of kaolin in interation of kaolin in interation of kaolin in industry. graphite in industry.	fications of industrial minerals. crial clays: Kaolins, bentonites, sepiolites and dustry. osits. Application in industry. uxites. Application of bauxite in industry. stones, SiO2 as chemical and biogenic ral raw materials and feldspar in industry. um and anhydrite. hosphorite deposits. Phosphate application in parite, fluorite and refractory materials in industry. pplication of zeolite in industry.			
•	owledge: Identify and describe the ty					
	Analyse and argue the physicochemical and geological conditions for the formation of deposits of industrial minerals					
competences to be developed byPrepresentationthe students)Evaluation			nine the potential for industrial application			

	Evaluate and recon Skills: Competences: , exam Methodologies are	mend the application	on of industrial miner	als in agriculture an	ement and refractory nd various industries. t. The examination wi	ll be taken orally.	
Assessment methods and criteria	submitted and held	Requirements for taking the exam are: 1. committed and positively evaluated assignments in the internship 2. Submitted and held seminar paper 3. submitted field report 4. positively evaluated both colloquia Main proceses of forming industrial mineral and its application will be introduced to students through the lectures and practical work.					
Recommended readings	1.Manning, D.A.C. 2. Evans, A. M. (199 3. Chang, L. L. Y. (20	 Manning, D.A.C. (1995): Introduction to industrial minerals, Chapman & Hall, 276s. Manning, D.A.C. (1995): Introduction to industrial minerals, Chapman & Hall, 276s. Evans, A. M. (1993): Ore geology and industrial minerals, Blackwell Science Publications, 389s. Chang, L. L. Y. (2002): Industrial mineralogy, Prentice Hall, 472. Harben, P. W. & Kužvart, M. (1997): Industrial minerals-A global geology, Industrial Minerals Information, 476s. 					
TU Coordinator	Goran Durn, goran	durn@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will prepare a plan Students will rarching for the Iearn about						
Justification for OLO contribution							

Course title	Analytical methods in ore deposits					
European Credits (ECTS)	5	Time (hours) given to the students	60			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	125			
Description of content	The aim of this course is to review the most important analytical methods and applications in the mineral deposits investigation in order to determine mineralogical, geochemical and isotopic composition and reconstruction of genetic processes. The course covers: microscopy in transmitted and reflected light, electron microscopy and electron microprobe, microthermometry of fluid inclusions, ion chromatography, vitrinite reflection, crystallinity of chlorite, illite and graphite, atomic absorption and emission spectroscopy, inductively coupled plasma mass spectrometry (ICP- MS), stable and radiogenic isotopes. This course gives students knowledge about analytical methods in mineral deposits exploration. Polarised light microscopy - Contact-metamorphic reactions; Mineral stability fields; Alteration reactions. Reflected light microscopy - Fundamentals of ore microscopy (optical properties in reflected light); examples of the most important structures and textures; Interpretation. Electron microscopy / EMPA - Basics principles; Detectors; Application and interpretation; Geothermobarometric use in equilibrium systems; Sample preparation. Microthermometry of fluid inclusions - Basics principles; Application and interpretation. Vitrinite reflection / Crystallinity of chlorite / illite / graphite - Basics principles; Application in ore deposits; t / c conditions; Sample preparation (illiterate crystallinity); AAS; AES; ICP-MS; Stable isotopes (oxygen, hydrogen, carbon); Radiogenic isotopes					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 (K / Ar; Rb / Sr; Sm / Nd; U / Th / Pb, fission-tracks) - Basics principles; Application in ore deposits; Data interpretation. Knowledge: To explain the application of individual method, principle, sample preparation and instrument characteristics To prepare a geological sample for selected methods (sawing, grinding, polishing, pulverizing, dissolving, diluting, etc) To determine mineral paragenesis, structures and textures in plane-polarised regular and reflected light To determine the succession (phases) of crystallization (pre-ore; ore and post-ore stage) and subsequent alterations To interpret obtained analytical data and determine composition of fluids, pressures and temperatures of formation of ore deposits and alterations. To interpret the micro, macro and trace element composition. To interpret the results of stable isotope analysis and conclude on the source fluid. To interpret the results of radiogenic isotopes in order to determine the age of the host rock, mineralization, and 					

	subsequent events Skills: Competences: ,						
Assessment methods and criteria	Students will learn	exam Students will have lectures, practicum, independent assigments, and at the end oral exam. Students will learn about most important analytical methods and applications in the mineral deposits investigation through practicum, and independent assigments.					
Recommended readings	Reed, S. J. B. (2010) Press, 201 p.	Reed, S. J. B. (2010): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, 201 p.					
TU Coordinator	Sibila Borojević Šoš	tarić, sibila.borojevio	c-sostaric@rgn.hr				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will review the most important analytical methods and applications in the mineral deposits investigation.				
Justification for OLO contribution					1	1	

Course title	Geophysical Exploration of Mineral Res	sources			
European Credits (ECTS)	3	Time (hours) given to the students	30		
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 0, Seminar classes: , Fieldwork:	Student whole working time (hours)	75		
Description of content	Magnetometric exploration. Magnetom Aeromagnetometric exploration. Magnet Field survey design for characteristic geo Gravity exploration. Gravity map transfor Microgravity exploration. Gravity mode Electrical tomography. Theoretical foun instruments. Electrical tomography in the exploration Electromagnetic exploration. TURAM m magnetotelluric method - theoretical fo Georadar - theoretical foundations, field Seismic measurements in wells. "Down- application. Refraction seismics. Methods of refraction High resolution reflection seismics (HRS	d raw mineral materials. of geophysical methods for pros etric data interpretation method etometric exploration of solid raw ological models. ormations - goal, transformation i lling and application in raw miner dations. Measurement geometry of construction materials depos ethod, Electromagnetic method of undations, instruments, data pro d measurement methods, resolut hole" and "Cross-hole" methods on data interpretation: DTM, Del method) – conducting exploratio	 spection and exploration of mineral deposits. s. w materials. methods, application. rals exploration. . Tomographic inversion. Electrical tomography its. using moving transmitter, VLF method, cessing, interpretation and application. ion and depth, instruments, application. measuring methods, instruments, ta – t – V, GRM and refraction tomography. on, data processing, interpretation. 		
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Seismic modelling. Synthetic seismogram - construction of synthetic seismogram, application of synthetic seismogram. Knowledge: To control principles of working with instruments for magnetometric exploration. To control principles of working with instruments for electric and electromagnetic exploration. Skills: To be able to interpret the obtained magnetometric measurements data. To be able to interpret the obtained gravimetric measurements data. To be able to interpret the obtained electrical tomography data. To be able to determine the first arrivals of the waves when measuring seismic velocities in a well. 				

Assessment methods and criteria	To be able to choos To be able to condu exploration. Competences: , exam Students will have I	e the optimal geoph uct geophysical explo ectures, practicum,	al speeds and interpo hysical exploration mo oration in the specific independent assigm udents will study abo	ethods in the constr geological models i ents, and at the end	uction material dep n terms of solid raw oral exam.	materials
Recommended readings						
TU Coordinator	Franjo Šumanovac,					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will have to interpret different geophisical data and make conclusions about mineral deposits and its main characteristics.			
Justification for OLO contribution			1 1		1	1

Course title	Field and laboratory practicum		
European Credits (ECTS)	6	Time (hours) given to the students	120
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 128, Seminar classes: , Fieldwork: x	Student whole working time (hours)	150
Description of content	 will be trained to recognize mineralization of the activities will be related to proper sampling. Furthermore, students will and in the laboratories. Finally, they will lear geological research and produce and protocol research and produce and produce and protocol research and research an	on, visualize 3D geological structure r geological fieldwork: observationalyse the collected geological sar in to combine and interpret obtates and geological expert reports. For the collected geological sar rouced to various field and labor ogical and geochemical field exert 15 terms of 8 hours. The field part of mineral deposits and two selends for exploration of the mineral deposits for exploration of the mineration and conduct field geochemical pro- s will be introduced to the comple- to the processing, final products sampled geological materials.	and waste disposal. The laboratory part will dwork) and profile (2 days) heralization (2 days)

	parameters (1 day) 6) Additional independent work of students (1 day)						
	Mineral raw materials cycle - industrial materials of the Republic of Croatia (2 days): 7) From ceramic clay and quartz sand to bricks (ceramic clay deposit, quartz sand deposit, brick factory; 1 day) 8) From natural gypsum to gypsum boards (gypsum bed, gypsum board factory; 1 day) Laboratory days (2 days)						
	1) Preparation and exploration of mine	analysis of geologica eral deposits.	l materials sampled	during geochemical	prospecting at the p	oolygon for	
	To prepare a geolog To prepare laterally	nowledge: To select a suitable geophysical method for exploration of the mineral deposit o prepare a geological map and the corresponding profile with the indicated types of mineralization o prepare laterally developed underground mine map					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	To describe the over and final product, h	al composition of the erall process of mine highlighting the prima rious geological mat	ral raw materials star ary raw materials pro	rting from exploration perties.	on and exploitation t	to the processing	
	potential, radioacti Competences: ,	ts. To conduct field n vity) for the purpose			geological materials	e (eg pH, EC, redox	
Assessment methods and criteria		field and laboratory v roduced to various f y work.				leposits through	
Recommended readings	FOREGS Geochemical Mapping Field Manual. Geological Survay of Finland, Espo, 1998. Marjoribanks, R. (2010) Geological Methods in Mineral Exploration and Mining, Springer, 238 s.						
TU Coordinator	Sibila Borojevic Šoš	tarić, sibila.borojevic	:-sostaric@rgn.hr				
Contribution to EIT's Overarching Learning Outcomes (tick relevant	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
box/es)*	Students will be introduced to						

EIT label – Teaching units <TIMREX – T-shaped Master Programme for Innovative Mineral Resource Exploration>

Justification for OLO contribution		I
	various field and laboratory methods and work used in exploration of mineral deposits where all skills will be developed.	

Course title	Analyses of mineral paragenesis		
European Credits (ECTS)	3	Time (hours) given to the students	45
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	75
Description of content	magmatic and metamorphic rocks and t rocks in the certain geotectonic environ Students will aquire knowledge about m The definition of the mineral parageness Postequlibration and postconsolidation parageneses: (1) resorption and late ma caused by weathering. Phase relations in reactions in the magmatic rocks. Phase e peritectic point). Two-component system new compound which melts incongruen alkali feldspars and quartz, with plagiocol influence of volatiles on the crystallisatio intergrowths and exsolutions by phase of intergrowths, perthite/antiperthite). The ilmenite, biotite). Disequilibrium state: a oscillatory zoning) in different minerals; xenocrystalls and microgranitoid enclave peridotites and mantle peridotites. Oph	heir interpretation in the light of ment. hineral paragenesis of magmatic a changes of primary magmatic mi gmatic subsolidus reactions; (2) I in the crystallisation systems as the diagrams (liquidus, solidus, binary ms with the eutectic point, with o ttly. Three-component systems we ase, clinopyroxene and olivine ar on of the system. The explanation diagrams (ophitic texture, intergr e exsolution process in the differ a) the occurrence of zoning (conc b) the occurrence of "sieve" text es. The differences in the minera iolite and their metamorphic sole cure, primary and secondary par	inerals and the origin of secondary hydrothermal alterations and (3) the changes he result of fractionation processes and y and ternary eutectic, cotectic curves, solvus, continuing solid solution crystal serie and the vith the clinopyroxene and plagioclase, with hd forsterite, anorthite and quartz The n of genesis of different magmatic textures, anular texture, graphic and myrmekitic ent minerals (pyroxenes, feldspars, calcite, centric, patchy, sector, normal, reversal and ture. Enclaves in the magmatic rocks: xenoliths, I parageneses and textures in the crust e. Precise classification and nomenclature of rageneses and petrogenetic interpretation of
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	ophiolite complexes.	microtextures in crust peridotite	nineral parageneses in magmatic rocks. Is from those in the mantle peridotites in the condary mineral parageneses and reconstruct

	To distinguish diffe	To distinguish different mineral parageneses and the sequence of their formation in the metamorphic rocks.					
	inside of minerals in To use evident sign evolution and petro	Skills: To apply phase diagrams in the interpretation of genesis of different microtextures, intergrowths and exsolutions inside of minerals in magmatic rocks. To use evident signs of disequilibrium in minerals and rocks in the interpretation of their crystallisation and later evolution and petrogenesis, respectively. To apply different types of mineral recrystallization and their deformations to deduce the p-T evolution of the metamorphic rocks.					
	Competences: ,		··· p·····				
Assessment methods and criteria	microscope. At the Main emphasis is o						
Recommended readings							
TU Coordinator	Vesnica Garašić, ve	snica.garasic@rgn.h	r				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will have to interpret mineral paragenesis and make conclusions about genesis of rocks.				
Justification for OLO contribution							

Course title	MSc thesis							
European Credits (ECTS)	20		Time (hours) given students	to the	5			
Type (Lecture, internship, exercise etc.)	Lectures: , Auditori Classes: , Project cla classes: , Seminar c	asses 1: , Practical	Student whole wor (hours)	king time 5	600			
Description of content	tasks/problems in t The master thesis is given engineering p	The master thesis for the student aims to prove the ability of independent analysing and solving complex engineering tasks/problems in the field of geology related to the master thesis topic. The master thesis is a paper in which the student must demonstrate the ability of independent analysis and solving a given engineering problem/task in the field of geology using the knowledge acquired through graduate study from a theoretical and practical point of view.						
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: To define a professional problem / task To summarise master thesis in English To apply the methodology of writing a professional and scientific paper To write master thesis linguistically and ethically correct To apply the acquired knowledge and general competencies acquired through graduate study To interpret research results Skills: To solve a complex practical problem / task. To argue the results of the conducted research in an expert							
Assessment methods and criteria	discussion Competences: To respect ethical norms and rules of citing literature, To design and conduct research. practical mark The student is obliged to apply for one of the offered topics, make a plan of activities with the mentor and submit the master thesis for evaluation within the given deadlines, prepare a presentation and defend the master thesis in front of the committee.							
Recommended readings	Selected literature based on the topic of master thesis and according to the mentor's recommendation.							
TU Coordinator	All teachers in the scientific-teaching profession							
Contribution to EIT's Overarching Learning Outcomes (tick relevant	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultura	OLO5 Value Il judgments /	OLO6 Leadership		

EIT label – Teaching units <TIMREX – T-shaped Master Programme for Innovative Mineral Resource Exploration>

box/es)*			Sustainability	
	The student will			
	develop all skills			
	through work on			
	the master thesis			
	and through			
	solving complex			
	engineering			
	tasks/problems.			
Justification for OLO contribution				

Semester 4 WUST

Course title	Applied field exploration						
European Credits (ECTS)	3		Time (hours) given to the	e students	45		
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium cl Project classes: , Practica classes: , Fieldwork: 3		Student whole working	time (hours)	75		
Description of content	be integrated for targeti Geological, geophysical a stratigraphy, hydrothern	The goal of the course is that students should acquire a hands-on understanding of different field exploration methodologies, and how they can be integrated for targeting VMS deposits. Geological, geophysical and geochemical exploration methods in VMS exploration. Practical field mapping exercises in structural geology, stratigraphy, hydrothermal alteration. Practical geophysical surveying using UAV technology. GIS-based data synthesis for exploration target selection. Drill core logging and assaying.					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 -knowledge about differ -knowledge about drillin -knowledge about differ Skills: when passed the s - acquire in-depth struct - contextualize field obset 	Knowledge: when passed the student is expected to have: -knowledge about different field methods and their use during an exploration program. -knowledge about drilling and sampling methods. -knowledge about different methods for field mapping. Skills: when passed the student is expected to have the ability to - acquire in-depth structural, volcanological and alteration data from outcrops in the field - contextualize field observations in relation to ore genetic model for VMS deposits. - synthesize different types of geological and geophysical data for targeting a VMS deposit.					
Assessment methods and criteria	Exercises U G# 1.20 Project work G U 3 4 5 1.80 The course is mainly presented via practicals in the field, but also with complementary lectures and excercises, in addition to project work.						
Recommended readings	Online compendium in Canvas room						
TU Coordinator	Nils Jansson, Nils.Jansson@ltu.se						
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercul	OLO5 Value tural judgments / Sustainability	OLO6 Leadership	

Justification for OLO contribution	contribution				
------------------------------------	--------------	--	--	--	--

Course title	SOC Internship				
European Credits (ECTS)	2	Time (hours) given to the students	30		
Type (Lecture, internship, exercise etc.)	Lectures:, Auditorium classes: , Lab. Classes: , Project classes: 2 , Practical classes:, Seminar classes: , Fieldwork: x	Student whole working time (hours)	50		
Description of content	x The aim of the course is to enable students to work in socially responsible workplaces, and apply their skills and knowledge to promote social good. While this develops them to become work-ready professionals, it also nurture them to become advocates who help build a better world. EDUCATIONAL GOALS: 1. To actively participate in the affairs of the community and in concrete actions on the ground that aim to promo public interest, equality and solidarity. 2. To reflect on social license to operate issues 3. To work in direct contact with the beneficiaries of the civic activities undertaken e.g.: reception, facilitation, sup social assistance, etc. EXAMPLES OF SOCIAL AND CIVIC ISSUES IN MINERALS INDUSTRIES: • Depletion of natural capital (degradation of air, land and water quality), land use conflicts, health impacts • Digitalization and automation generate particular challenges for well-being in mining regions. Limited job opportunities for local workforce and skills mismatches. • High and continuous transparency and accountability standards of the industry, effective methods of informat sharing and dialogue • A more equitable value-sharing, Corporate Social Responsibility issues • Facilitation of environmental awareness				
Learning outcomes of the curricular	Preservation and restoring of historic Knowledge: to understand that social results and the social results are solved.		cal, social and environmentally-friendly		
unit (knowledge, skills and	perspective to our personal and profess				
competences to be developed by	Skills: To be able to engage in an inform	•			
the students)	Competences: To cope with complexity	, uncertainty and change in globa	l contexts		

Assessment methods and criteria	Criterion: Submission of a project report					
Recommended readings						
TU Coordinator	Supervisors of the	student's Master the	sis			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in professional discussion and business communication				Students will be able to understand that social responsibility incorporates an ethical, social and environmentally- friendly perspective to our personal and professional activities	
Justification for OLO contribution			· · · · · · · · · · · · · · · · · · ·			·

Course title	Exploration entrepreneurship		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: , Project classes: 1, Practical classes: 3, Seminar classes: 2, Fieldwork:	Student whole working time (hours)	100
Description of content	 and countries. Mentoring within the course is professional with and EurGeol targeted way. Mentoring contrinetworking, social and profession activity. It allows be acquired through practice a improves the opportunities of contacts and involvement in protect topics and the mentor and communicate them to the concrete topics and the respect defined. Since the student is at become aware of their own platoecome aware of their own platoecome	t the current market at improving intern og and CPD requirem ows students to ber bectives in different a process during wh title (mentor) accom- ibutes to developing ional skills regarding earning from profess and can't be found in career beginners by rofessional networks ring cooperation, stu- ir mentor. In consult tive roles within the the centre of the pro- ans and their suppor working among geol ls with contacts help t, medium or long-te- ositions and increase diversity to women and und and Continuing Pro- nals who have acqu- nd work in industrial or actively guides a lls and attitudes fo have in negotiation advises the stude and difficulties. M	t demands. The ational networking and nents of experienced geology hefit from insider knowledge sectors of geological profession hich an experienced mpanies the student in a g personal, entrepreneurial, g the mineral prospecting and sional experiences that can only a ny textbook. Mentoring providing career-enhancing s. udents formulate clear goals tation with the mentor, e mentoring process will be rocess, it is their task to t needs. ogists all across Europe and bing them to think through, erm career development rin leadership positions by er-represented minorities fessional Development (CPD) ired a high level of industrial

	 Help: The mentor can help open otherwise locked doors that allow the student to pursue their goals. Support: The mentor supports the student in essential decisions without deciding. Mentors assist in the development of professional strategies, as well as in career planning and review of possible obstacles. Inform: The mentor informs the student about (informal) rules and processes applied in organisations or professional life in general. According to the student's background, mentors can also inform about seminars or conferences that they consider helpful. Participation: Mentors allow students to participate in parts of their professional career, experiences and strategic decisions. They allow students to share their professional life and invite them, for instance, to participate in meetings or appointments. Give feedback: Mentor and student provide each other with constructive feedback about their appearance and public perception. Networking: Mentors give the students hints on maintaining and using contacts. They introduce the students into active networks and provide professional contacts. The mentor provides the student with the chance to create a successful CV and take a chance on social networks such as LinkedIn.
Learning outcomes of	Knowledge: to provide background training to support the learning process; make students aware of broad professional issues; provide business and
the curricular	entrepreneurship skills to develop an awareness of business management and commercial practices regarding mineral prospecting and exploration.
unit (knowledge,	Skills: Develop relationships with other persons and maintain them. Can talk frankly about his ideas, fears and weaknesses. Identifying investment
skills and	opportunities in the mineral resources sector.
competences	Competences: To define professional targets, wants to succeed and is actively
to be	committed to implementing these targets. Not afraid of making mistakes and
developed by	experimenting with new ideas. Willing to question himself critically, accept
the students)	external advice, and implement it.
	Practical mark
	At the end of the mentoring process, students will a) reflect their mentoring
	experience on a two-page report highlighting benefits and potential gaps for
	future implementation b) prepare a small business plan for an identified innovative idea of their own.
	Slack channel will allow for student-mentor exchange and networking within the
Assessment	whole cohort of participants.
methods and	Mentoring is a one-to-one relationship between a mentor and a student.
criteria	Mentoring takes place beyond a dependent relationship (e.g. supervisor-
	subordinate or professor-student relationships).
	During the mentoring process, learning and experimentation occur in a
	protected environment.
	 An integral part of mentoring is the development of professional skills and competencies
	competencies. Mentoring is a reciprocal process of "give and take". Both sides learn from each
	Mentoring is a recipiocal process of give and take . Both sides learn norm each

	other because even the mentor will have the opportunity to critically question his professional perspective and discover new perspectives, software and applications, and previously unperceived situations.						
	Mentoring Mindset, Skills and Tools 4th Edition: Make it easy for mentors and students, 2020, Synergetic People Development Pty Ltd, 252 pages, ISBN 0980356458						
	The Mentoring Guide: Helping Mentors and Students Succeed, 2019, Michigan Publishing Services, ISBN: 1607855399.						
Recommend ed readings	adings Wang, J., Shibayama, S., 2022. Mentorship and creativity: Effects of men						
TU Coordinator	Pavlos Tyrologou,	, pavlos.tyrol	logou@gma	il.com			
Contribution to EIT's Overarching Learning	OLO 1OLO2OLO3OLO4OLO5 ValueOLO6EntrepreneurshInnovatioCreativitInterculturSustainabiliLeadershipnyaltyp						
Outcomes (tick relevant box/es)*							
Justification for OLO contribution							

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

> specjalność/specialisation: Mineral Resources Exploration - Track UNI ZAGREB -WUST

Semester 1 and 2 UNI ZG University of Zagreb, RGNF

Course title	Sedimentology					
European Credits (ECTS)	5	Time (hours) given to the students	75			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: , Fieldwork: x	Student whole working time (hours)	125			
Description of content	e Classes: , Project classes: , Practical classes: , Seminar classes: , (hours)					

	CURRENTS; CHARACTERISTICS OF TURBIDITE FANS L15 - MIXED (SILICLASTIC-CARBONATE) SEDIMENTARY ENVIRONMENTS - CHARACTERISTIC SEQUENCES					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students) Assessment methods and criteria	 Knowledge: To conduct complex sedimentological investigations, including the construction of strata sequences, facies differentiation and interpretation of sedimentary environments. Skills: To construct general and thematic geological maps, as well as geological profiles with accompanying descriptions Competences: To engage in informed professional discussion and business communication, exam During the semester the requirement for signature is atendance of leactures and practicum. Students will participate in research and practical work as part of practicum. At the end oral exam will be organized. Theoretical part is complemented by research work, practical work and field works where students will learn about sedimentology processes and depositional environment. 					
Recommended readings	Flügel, E., (2004): Microfacies of Carbonate Rocks; Analysis, Interpretation and Application. Springer (976 pp)					
TU Coordinator	Dunja Aljinović, du	nja.aljinovic@rgn.hr				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in informed professional discussion and business communication		Students will have to construct general and thematic geological maps and profiles with accompanying descriptions			

Justification for OLO contribution	
------------------------------------	--

Course title	Mineral Deposits Exploration				
European Credits (ECTS)	5	Time (hours) given to the students	75		
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: x, Fieldwork:	Student whole working time (hours)	125		
Description of content	resources. L1 - Classification of mineral deposits. Ed L2 - Nature and morphology of orebodie L3 - Metallogeny, metallogenetic provin L4 - Geological criteria in the exploration L5 - Structural control factor. L6 - Geological models of mineral deposed of areas for exploration of a mineral deposed L7 - Application of geophysical methods L8 - Prospecting indications (alteration, L9 - Prospecting indications (indicator electron) L10 - Geochemical prospecting methods L11 - Sampling media (stream sediment L12 - Statistical processing of geochemical L13 - Sampling of mineral resources. L14 - Mining legislation. Categorisation a L15 - Calculation of mineral reserves. Pr	nts which should be applied durin conomic aspects of mineral deports. ces and periods. In of mineral deposits. Magmatic of its as a basis for exploration plan posit. and remote sensing in the explo alteration mineral assemblages, of lements, indicator minerals). S. s, soil, lake sediments, sediment cal prospecting results.	ng geological part of exploration of mineral sits. control factor. ning. Reconnaissance. Selection and definition ration of mineral deposits. ore outcrops and remains of old mining). cover, water, gases, vegetation, rocks).		
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: To describe all phases of raw materials exploration, from prospecting of deposits to the preparation of				

	engineering investigation and mineral exploration. Competences: , To apply standards and (legal) regulations related to geological research, geohazards, environmental protection, water exploitation, exploitation of mineral resources or construction conditions. To interpret and summarize the results of field, laboratory and office research and prepare and present a geological expert report using other relevant data sources. To create geological reports for the economy and strategic documents.						
Assessment methods and criteria	topic, and have ind Through seminars						
Recommended readings	1. Moon, C.J., Whateley, M.G.K. & Evans, A.M. (2009): Introduction to mineral exploration, Blackwell Science, 496 s. 2. Annels, A.E. (1991): Mineral Deposits Evaluation, Chapman & Hall, 436 s						
TU Coordinator	Goran Durn, goran	.durn@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will create geological reports for the economy and strategic documents.	Students will apply statistical methods and spatial analyses in interpretation of laboratory and field measurements.	Students will apply statistical methods and spatial analyses in interpretation of laboratory and field measurements.		Students will apply standards and (legal) regulations.		
Justification for OLO contribution							

Course title	Petroleum Geology					
European Credits (ECTS)	5	Time (hours) given to the students	75			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 3, Seminar classes: x, Fieldwork: x	Student whole working time (hours)	125			
Description of content	 students, future engineers for all aspect as well as for professional interaction w Students aquire specific skills in the area Lectures (30 hours) Abiogenic theories of petroleum origin a discussion) Biomarkers as indicators of origin of sou Types of kerogen (conditions of depositi Pyrolysis of source rocks (generation an Differences in porosity of clastic and car Correlations of porosity and permeabilit Directions and ranges of primary and se Diagenetic processes important for the Diapirism. Origin and processes during of the Adriatic s An overview of the types of traps in the Theoretical foundations of basin modell Oil and natural gas reserves in convention Reflective seismic surveys - significance type Drilling of a deep exploratory well (TDC Application of the results of interpretati electrical, radioactive, sound. Influences diameter, influence of mud 	ss of exploration and exploitation ith engineers of related profession a of exploration and exploitation and biogenic theory of petroleum arce rocks and deposition condition ion of organic matter, composition d maturation parameters) bonate sediments. Permeability of ty. condary migration in different str migration and accumulation of hy diaper movement. The significance world ing onal accumulations in the world in petroleum geological explorat laboratory, Master Log) ion of well logging. Measurement s on the results of geophysical me	of oil and gas. a origin (presentation of arguments and guided ons on and structure of kerogen) of clastic and carbonate sediments. ratigraphic-tectonic conditions ydrocarbons se of diapirism in petroleum geology. Diapirs in ion and limitations with regard to reservoir systems with respect to energy sources:			

	gas in shales, natural gas in coal seams)
	Practical Exercises
	Comparison of effective porosity differences based on a simple experiment (weighing two dry samples of different
	effective porosity, immersing the samples in water for 15 minutes after which the samples are weighed again, and their
	porosity is estimated based on the change in mass)
	Luminescence of oil and natural gas (observation and description)
	Preparation of samples taken in the field (separation of fossil content by wet sieving, preparation of samples for
	analysis of total organic carbon content)
	Microscopy of fossil contents, discussion of observation results in terms of interpretation of sediment characteristics
	Analysis of total organic carbon content
	Project work (15 hours)
	Systematization of input data
	Shale volume analysis by interpreting the spontaneous potential curve
	Calculation of the share of rock thickness with reservoir properties within the total rock thickness (Net / Gross)
	Porosity analysis of reservoir rocks by interpretation of well - logs in a specialized computer program
	Making a contour map of the top of the reservoir in a computer software
	Making a contour map of the bottom of the reservoir in a computer software
	Making a map of the spatial distribution of the share of rock thickness with collector properties within the total rock
	thickness in a computer software
	Making a map of the spatial distribution of reservoir porosity in a computer software
	Making a cross-section through the reservoir
	Calculation of reserves based on the constructed reservoir model
	Making a simple 1D basin model
	Fieldwork (15 hours)
	Construction of geological column in clastic sedimentary rocks of Neogene age and sampling for assessment of
	generative potential of source rocks
	Construction of a geological column of a characteristic transgressive cycle of Neogene rocks
	Reconstruction of the circumstances that led to natural hydrocarbon outcrops
	Knowledge: Interpret the results of analyses and measurements: laboratory and field (from outcrops and from wells)
Learning outcomes of the curricular	Bring conclusions about the generative-maturation properties of source rocks based on the results of pyrolysis
unit (knowledge, skills and	Discuss the interconnectedness of the elements of the petrogeological system
competences to be developed by	Describe the main elements of the drilling rig and the work of geologists during the drilling of deep wells
the students)	Skills: Analyse the role of biomarkers in determining the origin of hydrocarbons (origin of organic matter and

	sedimentation environment). Estimate geological (total) reserves of hydrocarbon based on a simple reservoir model constructed in a computer software Competences: Assess the significance of petrophysical properties of reservoir and cap rocks for hydrocarbon accumulation and production. Compare research on conventional and unconventional hydrocarbon accumulations,						
Assessment methods and criteria	topic, and have ind Theoretical part is o						
Recommended readings	Selected chapters: Velić, J. (2007): Geologija ležišta nafte i plina [Geology of Oil and Gas Reservoirs], Zagreb, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, 2007 (university textbook)						
TU Coordinator	Marko Cvetković, Iv	va Kolenković Močila	c, marko.cvetkovic@	rgn.hr iva.kolenkovi	ic@rgn.hr		
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Student will learn how to have professional interaction with engineers of related professions.					Student will work in teamwork.	
Justification for OLO contribution							

Course title	Engineering Geological Investigations						
European Credits (ECTS)	5	Time (hours) given to the students	60				
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	125				
Description of content	students Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: , Practical classes: 2, Seminar classes: , (hours)						

Contribution to EIT's Overarching
TU Coordinator
Recommended readings
Assessment methods and criteria
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)

Learning Outcomes (tick relevant box/es)*	Entrepreneurship			Intercultural	judgments / Sustainability	
		Students will conduct reconnaissance engineering geological mapping.	Students will construct an engineering geological profile and technical tunnel drawings.		Students will apply standards and (legal) regulations.	
Justification for OLO contribution						

Course title	Exploration Geochemistry					
European Credits (ECTS)	4	Time (hours) given to the students	45			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	100			
Description of content	Students will be introduced to the basic caused by the weathering of the ore dep environments, sampling media (soil, wa statistical methods and interpretation o oral presentation and writing reports re Students will acquire a basic knowledge LECTURES 1. Introduction to the course, basic print 2. Primary dispersion 3. Secondary dispersion 4. Sampling media, sampling and sample 5. Instrumental analytical methods 6. Statistical methods in geochemical pr 7. Construction of geochemical maps 8. Types of geochemical research and re 9-10. Principles of geochemical prospect EXERCISES (5 blocks of 3 hours) The 15 hours of exercises will include a spresent orally and in the form of an essa	bosit. Students will be introduced ter, sediment, plant rocks), chem f geochemical data. Students will lated to project assignments. about importance of geochemical ciples of geochemical prospecting e preparation for analysis ospecting; background and thres port writing ting in environmental protection series of individual tasks that stud ay. In addition to individual assign york throughout the semester in	g hold determination. dents will have to solve independently and nments, students will receive a geochemical synergy with exercises from two other courses			
Learning outcomes of the curricular	- · ·	chemical elements in surface en	vironments and the processes that control the			
unit (knowledge, skills and	geochemical anomaly.		and we could be evel attacked would be all the state			
competences to be developed by the students)	To select a suitable sampling medium, t analyte in order to find the geochemical		ocedure, and the analytical method, as well as			
the students	analyte in order to find the geothernical	anomaly caused by the weather	ing of the ofe bouy.			

	construct geochem Competences: To s present a geologica	variate, bivariate and ical maps. Design pr ystematize and coml al report.,	eliminary, regional a	nd detailed geochen	nical survey of mine	ral resources.
Assessment methods and criteria	Students are requir written exam.	Through practical work and independent assigmensts studenst will be introduced to the basic principles of geochemical				
Recommended readings	1. Moon, C.J. (2006): Exploration Geochemistry (pp 155-178). In: Introduction to Mineral Exploration; 2nd Edition; Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans (Editors); Blackwell Publishing, 2006, 469p.					
TU Coordinator	Marta Mileusnić, m	narta.mileusnic@rgn	.hr			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will develop communication skills through oral presentation and writing reports related to project assignments.				Students will develop communication skills through oral presentation and writing reports related to project assignments.
Justification for OLO contribution			·	·		·

Г

Course title	Remote sensing of mineral resources		
European Credits (ECTS)	3	Time (hours) given to the students	30
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	75
Description of content	 images required for analysis at surface r unsupervised classification of satellite in Through the course students will acquire exploration. P-1. Introduction, review and definit P-2. Electromagnetic radiation. Activ P-3. Electromagnetic radiation. Activ P-4. Satellite missions, sensors, access mineral resources. 	<pre>altispectral, hyperspectral and radar satellite dents to the automatic supervised and hineral raw materials. tion of remote sensing in mineral raw materials resources e sensing. e sensing of mineral resources. g satellite systems for remote sensing of e images used in the analysis of mineral ensing of mineral resources 1 ensing of mineral resources 2. quality of satellite images 1 quality of satellite images 2 neral resources research 1.</pre>	

Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Use multispectral a Describe the charae Skills: Develop a co	Knowledge: Describe the basic principles and methods of remote sensing for surface mineral raw materials. Use multispectral and hyperspectral images for analysis at surface raw materials Describe the characteristics of electromagnetic radiation for the purposes of remote sensing of mineral resources. Skills: Develop a controlled and uncontrolled classification of mineral resources from satellite images Apply at least one software tool for interpretation and processing in remote sensing of mineral resources.					
Assessment methods and criteria	independently and Students will learn						
Recommended readings							
TU Coordinator	Ivan Medved, ivan.	medved@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will independently collect and analyse mineral resources via remote sensing.					
Justification for OLO contribution							

Course title	GIS in Exploration of Mineral Resources					
European Credits (ECTS)	3	Time (hours) given to the students	30			
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	75			
Description of content	 P1 Introductory lecture on the subject. Onetworking, computer usage rules. P2 Basics of GIS (repetition of undergrade P3 Scanning and image processing. V3 H P4 Raster georeferencing. V4 Georefere P5 Raster georeferencing V5 Raster geore P6 Raster georeferencing V6 Raster geore P7 Review projects and quick maps. V7 H P8 Vectorization of geological map, part P9 Vectorization of geological map, part P10 Stages of GIS project development of introductory part. V10 Stages of GIS project P11 Geotransformation of vector and ravector and raster GIS in HTRS96 / TM an P12 SGA Geoportal data, in general. V12 P13 Geoconversions of point data in Geo 	n GIS projects. Advanced use of ge or the purpose of making cartogra e basic knowledge about applicat Overview of teaching topics. V1 C duate material). V2 Reminder to A landling maps in paper and digitancing three sheets with known por referencing over vectors. referencing over a raster. Development of an overview projet. 1. V8 Vectorization of a geologication the example of making a map ject development on the example ster GIS in HTRS96 / TM and WGS ad WGS84, data table. 2. Data from SGA Geoportal, use in otrans, in general. V13 Geoconve ers and test data, in general. V14	eoinformatics on computer and mobile aphic contents of diploma theses. ion of GIS software in mineral exploration. urriculum in the semester. Merlin, ArcMap, ArcView, advantages and disadvantages. I form. bints on geological maps. ect and GIS map for each location. al map within a given area, Part 1. map within a given area, part 2. of mineral resources of western Slavonia, e of making a map of mineral resources of 584, in general. V11 Geotransformation of n GIS project. rsions of point data in Geotrans, task. Geodetic transformations, parameters and			

Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: To apply statistical methods and spatial analyses in interpretation of laboratory and field measurements To use information technology in computation and modelling of geological phenomena and processes To interpret the results of geological and geochemical prospecting, geophysical and remote sensing investigation of mineral deposits using geographic information system in the analysis of spatial data. Skills: To construct general and thematic geological maps, as well as geological cross-sections with accompanying descriptions To interpret and summarize the results of field, laboratory and office research and prepare and present a geological expert report using other relevant data sources Competences: ,					
Assessment methods and criteria	practical mark The student is obliged to do all the exercises and attend 80% of the lectures. It is necessary to complete all project tasks and submit the final GIS projects for review and evaluation. Knowledge is evaluated based on assessment from project assignments, attendance at exercises and overall commitment to teaching. Students will learn about GIS softwers with an emphasis on their application in mineral exploration through lessons and project excercise and independent assignments. 1. De Smith, M., Longley, P., Goodchild, M.: Geospatial Analysis - A comprehensive guide (online + PDF format),					
Recommended readings	 a. De sinici, M., Edigicy, F., Goodenia, M.: Geospatial Analysis "Acompletiensive guide (online + PDF format), https://spatialanalysisonline.com/ 2. ESRI: Free eBooks as part of its "Best Practices" series, (online + PDF format), https://www.gislounge.com/free-gis-books/ 3. The Rutgers Center on Public Security (PDF format), https://www.rutgerscps.org/gis-book.html 					
TU Coordinator	Dario Perković, dar	io.perkovic@rgn.hr				
	OLO 1 Entrepreneurship OLO2 Innovation OLO3 Creativity OLO4 Intercultural OLO5 Value judgments / Sustainability OLO6 Leadership					
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*		Students will independently collect and analyse mineral resources via GIS softwares.	Students will independently collect and analyse mineral resources via GIS softwares.			

|--|--|

Course title	Seismotectonics					
European Credits (ECTS)	4	Time (hours) given to the students	45			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 1, Seminar classes: , Fieldwork:	Student whole working time (hours)	100			
Description of content	 Adriatic region and in the Eastern Meditused in evaluation of seismicity and seiss scale, active stress regimes in the Earth' and seismogenic sources. The course cover all the important data L1. Introduction to Seismology. Seismicits seismometers and seismograms. Earthque Models of earthquake recurrence. Ex1. Seismogram analysis, definition of L2. Introduction to seismic hazard and risearthquake Catalogue. Gutenberg-Richtt Ex 2. Calculation of earthquake epicentre L3. An overview of geodetic methods to faults and in fault zones. Trilateration new measurements: principles and examples geodynamics in circum Adriatic region a Ex 3. Calculation of earthquake epicentre L4. Type of stresses in the Earth's crust. stress map database. Introduction to bo examples. Ex 4. Analysis of earthquake focal mechanisms and characterization, examples. Ex 5. Analysis of earthquake focal mechanisms. 	terranean, and to provide studen mic hazard, assessment of recen- s crust, and in identification and and seismotectonic properties of ty in Croatia and in neighbouring uake intensity and magnitude. Ea- spatial and surface seismic wave isk in Croatia. Croatian Seismolog er Relationship. Seismic hazard n re and magnitude based on seism measure tectonic movements. C etwork, Precise leveling: principle s. GPS data in Croatia and in surro nd in the eastern Mediterranean re and magnitude based on seism Stress regimes at the tectonic pla orehole breakouts. Fault plane sol anisms (EFM) – interpretation of in circum-Adriatic region. Individu les from DISS and SHARE seismog anisms (EFM) - construction of EF	countries. Global seismicity. Seismic waves, arthquake cycle. Elastic Rebound Theory. s gical Survey, seismograph network and Croatian naps in Croatia and in neighbouring countries. ticity data (Part 1) conceptual models of deformation and slip on es and examples. VLB Interferometry and GPS punding region used in interpretation of ticity data (Part 2). ate boundaries and far - field stresses. World lutions: basic theoretical principles and EFMs ual and composite seismogenic sources: genic databases.			

	Ex. 6. Analysis of earthquake focal mechanisms (EFM) - construction of EFM (Part 2).
	L7. Integration of geological and seismological data in construction of seismotectonic maps and profiles: basic
	principles.
	Ex. 7. Visit to Croatian Seismological Survey – Earthquake monitoring and analysis
	L8. Seismotectonics in extensional geodynamic settings. Global distribution of extensional settings. An overview of
	structural styles and potential seismogenic sources in extensional settings.
	Ex. 8. Integration of geological and seismological data for construction of seismotectonic profile – Construction of
	geological profile
	L9. Seismotectonics in continental graben structures: examples from the East African Rift, Rhone-Rhine Graben, Basin &
	Range Province. Seismotectonic properties of back-arc basin areas: examples from Aegean and Tyrrhenian sea. Ex. 9.
	Construction of seismotectonic profile – Construction of geological profile
	L10. Seismotectonics in compressional geodynamic settings. Global distribution of compressional settings. An overview
	of structural styles and potential seismogenic sources in compressional settings.
	Ex. 10. Construction of seismotectonic profile – Earthquake Catalogue analysis and delineation of earthquake series in
	the profile buffer 10 km wide
	L11. Seismotectonics in fold-thrust belts: examples from the Alps and External Dinarides.
	Ex. 11. Construction of seismotectonic profile – Earthquake hypocentre projection on geological profile and correction
	of structural framework corrections
	L12. Seismotectonics in strike-slip geodynamic settings. Global distribution of strike-slip settings. An overview of
	structural styles and potential seismogenic sources in strike-slip settings.
	Ex. 12. Construction of seismotectonic profile – Identification of seismogenic faults/sources along the profile
	L13. Seismotectonics in strike-slip geodynamic settings: examples from Dinarides, California, New Zealand and Eastern
	Mediterranean. Ex. 13. Student's presentations of constructed seismotectonic profiles (Part 1).
	L14. An overview on seismotectonics in Croatia: key examples from Pannonian basin, Dinarides and Adriatic region.
	Ex. 14. Student's presentations of constructed seismotectonic profiles (Part 2).
	L15 & Ex 15. Student's seminar presentations
	Knowledge: Distinguish stress type and its distribution in Earth's crust in respect to tectonic plate boundary types,
	regional and local geodynamic processes
Learning outcomes of the curricular	Explain general terms in Seismology (seismicity, seismic waves, earthquake magnitude, earthquake hazard and risk,
unit (knowledge, skills and	Earthquake Cycle and Elastic Rebound Theory)
competences to be developed by	Describe basic properties of global and local seismicity
the students)	Describe seismotectonic properties of the extensional, compressional and strike-slip tectonic regions
	Define geodetic methods that are used in measurements of tectonic movements
	Categorize seismotectonically active regions on Earth, in more detail Mediterranean area and Croatia

	Skills: Compute earthquake epicentre location based on seismic station seismogram analysis Compute focal mechanism solutions based on geometric and kinematic features of investigated faults Compute values of moment magnitude and assess earthquake intensity Competences: , Construct and analyse seismotectonics maps and profiles. Integrate geological and seismic data in identification and categorization of seismogenic faults/seismogenic sources in seismotectonic active regions.					
Assessment methods and criteria	exam Teaching methodol Course attendance Course evaluation:	Teaching methodologies are: lectures, project and independent assigments and partial e-learning. Course attendance (minimum 70% attendance), tasks constructed and given for evaluation. Course evaluation: constructed programs, seminar paper, written exam and oral exam. Students will be introduced to seismotectonics via lectures, project work and independent assigments and partial e-				
Recommended readings	Yeats, R. (2012): Active Faults of the World. Cambridge Univ. Press, 600 str. (selected chapters)					
TU Coordinator	Bruno Tomljenović,	/Bojan Matoš,				
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			During the course students will construct seismotectonic profiles and have presentations.		Students will learn about importance of determining seismicity and about seismic hazards and tectonic activities and its impact.	
Justification for OLO contribution						

Г

Course title	Regional Hydrogeology					
European Credits (ECTS)	4	Time (hours) given to the students	60			
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: , Project classes: x, Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	100			
Description of content	and calculating groundwater reserves. T Republic of Croatia and strategic ground Students aquire specific skills in the area Energy conditions of groundwater move Croatia, geothermal potential analysis. Geochemical cycle, Hydrochemical facie Groundwater chemistry and its impact of water classifications depending on the i Regional hydrogeology, scale effect (spa and physical, scale effect on permeabilit Hydrogeological parameters. Heteroger flow in relation to the position of layers Basic flow of inclined aquifer systems ar significance of the recession coefficient Radial flow, well hydraulics, direct integ Unconfined aquifer, flow below water s aquifer Hydrogeological objects (wells, piezome aquifer heterogeneity) Hydrogeological maps and issues of gra relationships. Examples of hydrogeologi Hydrogeology of the Republic of Croatia characteristics of the Sava River Basin, t Sava. Analysis of the water level and flo	The student will acquire basic know dwater reserves. a of hydrogeological interpretation ement, Basic concept of thermal rest es. Examples of laboratory chemic on water use (water supply, indust ntended use (Doneen, USDA). atial and temporal), the continuity ty neity and anisotropy of hydraulic of and unit hydrograph, runoff coeffic on the example ration of Darcy's law. Calculation urface, Dupit assumption. Flow the eters), construction and use. Examplication phical representation of hydrogeo and units of territories by basins, he valley part of the Sava River B w of the Sava on significant water	regime. Map of the geothermal gradient of cal analyzes of water, Piper diagrams stry, agriculture) and legislation. Examples of y equation. The concept of scales cartographic conductivity (example of parallel and vertical cient and recovery coefficient. Hydrogeological (identification) of hydrogeological parameters hrough horizontally and vertically stratified mples of hydrogeological objects (question of ological properties, phenomena and			

	Basins of right tributaries of the Sava, Kupa basin, Dobra basin, Mrežnica basin, Korana basin, Una basin. Analysis of hydrographs of significant sources in the basins of the right tributaries of the Sava, definition of the equation of the recession part of the hydrograph, recession coefficient and dynamic reserves. Drava basin, valley part of the Drava basin, hilly and hilly area of the Drava basin. Analysis of water level and flow of the Drava on significant water meter profiles, comparison of Drava water level and groundwater level in the hinterland, inference about the hydraulic connection of the Drava and the hinterland, drainage and recharge. Hydrogeology of Istria, Croatian Littoral, Lika and Podvelebita (Gacka and Lika basins), Zrmanja basin, Krka basin. Analysis of hydrographs of significant sources in the Mirna, Gacka, Lika, Zrmanja and Krka basins, definition of the equation of the recession part of the hydrograph, recession coefficient and dynamic reserves. Cetina basin, lower Neretva basin, coastal basin from Neretva to Boka Kotorska, basins of significant coastal springs. Ranking of watersheds by quantity and quality of water, strategic reserves of Croatian groundwater from the first to the fifth level. Analysis of data on groundwater tracing carried out in the area of southern Dalmatia and conclusion on karst watersheds.
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: Define the concept of scale in hydrogeology and explain its effect through permeability properties Describe the basic concept of the Earth's thermal regime and relate it to the genesis and dynamics of thermal waters Describe the geochemical cycle Interpret the chemical composition of water Define and graphically represent hydrochemical facies Analyze the spring hydrograph Explain how to determine groundwater reserves Describe the hydrogeological systems of Croatia Skills: Apply hydrogeological maps in the description of hydrogeological features of the area Assess the significance of a particular hydrogeological system for a water supply Competences: ,
Assessment methods and criteria	exam Teaching methodologies are: lectures, project and independent assigments. Students will have to finish hidrogeological project for evaluation. Through the course students will learn about hydrogeological interpretations on a regional scale.
Recommended readings	Struckmeier, W.F. & Margat, J. (1995): Hydrogeological maps, A guide and a standard legend, pp. 177.,International association of hydrogeologist, Verlag Heinz Heise, Hannover

TU Coordinator	Željko Duić/Jelena	Željko Duić/Jelena Parlov,					
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
					Students will learn about importance of groundwater reserves and its preservation.		
Justification for OLO contribution							

Type (Lecture, internship, exercise etc.)Class class Fieldetc.)The the The L1 - L2 - paly L3 -	tures: 2, Auditorium classes: , Lab. sses: , Project classes: , Practical	Time (hours) given to the students	60			
Type (Lecture, internship, exercise etc.) Class Field The the The L1 - L2 - paly L3 -						
the The L1 - L2 - paly L3 -	dwork:	Student whole working time (hours)	125			
L6 - Description of content L8 - L9 - L10 indu L11 indu L12 L13 L14 L15	 e objective of the course is to learn al main industrial minerals and their ap course covers all important data ab Definitions of terms: (1) ore mineral Physicochemical conditions for the f ygorskites. Mineralogy and geology of kaolin de Mineralogy and geology of bentonit Construction clays and industrial ap Physicochemical conditions of bauxi Quartz mineral raw materials (quart liment, diatomite, flint). Feldspar dep Physicochemical conditions of evapore Physicochemical conditions of pho ustry. Deposits of halite, sylvine, soda, bor Physicochemical conditions of pho ustry. Deposits of barite, fluorite and refusitions Physicochemical conditions of zeol Openosits of pyrite and sulphur. App Physicochemical conditions of zeol Pigments and their application in in 	pplication in industry. out industrial minerals and its application of clay deposits. Industrial mineral. Classiformation of clay deposits. Industriate posits. Application of kaolin in inter, sepiolite and palygorskite deposits deposits. Laterite and karst batz crystals, quartz sands and sands posits. Application of quartz minerorite formation. Deposits of gypsorate, Mg and Li salts. Subphate formation. Apatite and philotation of kaolin in interation. Application of kaolin in interation of kaolin in interation of kaolin in industry. graphite in industry.	fications of industrial minerals. crial clays: Kaolins, bentonites, sepiolites and dustry. osits. Application in industry. uxites. Application of bauxite in industry. stones, SiO2 as chemical and biogenic ral raw materials and feldspar in industry. um and anhydrite. hosphorite deposits. Phosphate application in parite, fluorite and refractory materials in industry. pplication of zeolite in industry.			
•	owledge: Identify and describe the ty					
	Analyse and argue the physicochemical and geological conditions for the formation of deposits of industrial minerals Prepare a plan for the exploration of industrial mineral deposits to determine the potential for industrial application					
competences to be developed byPrepresentationthe students)Evaluation			•			

	Demonstrate the technological processes of manufacturing bricks, tiles, glass, cement and refractory materials. Evaluate and recommend the application of industrial minerals in agriculture and various industries. Skills: Competences: , exam Methodologies are: lectures, seminars, workshops and independent assignment. The examination will be taken orally. Requirements for taking the exam are: 1. committed and positively evaluated assignments in the internship 2.						
Assessment methods and criteria	submitted and held	submitted and held seminar paper 3. submitted field report 4. positively evaluated both colloquia Main proceses of forming industrial mineral and its application will be introduced to students through the lectures and					
Recommended readings	 Manning, D.A.C. (1995): Introduction to industrial minerals, Chapman & Hall, 276s. Manning, D.A.C. (1995): Introduction to industrial minerals, Chapman & Hall, 276s. Evans, A. M. (1993): Ore geology and industrial minerals, Blackwell Science Publications, 389s. Chang, L. L. Y. (2002): Industrial mineralogy, Prentice Hall, 472. Harben, P. W. & Kužvart, M. (1997): Industrial minerals-A global geology, Industrial Minerals Information, 476s. 						
TU Coordinator	Goran Durn, goran	durn@rgn.hr					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will prepare a plan for the exploration of industrial mineral deposits to determine the potential for industrial application.				Students will learn about importance of Industrial Mineral Deposits and its Applications and applying of the regulations.		
Justification for OLO contribution							

Course title	Analytical methods in ore deposits				
European Credits (ECTS)	5	Time (hours) given to the students	60		
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	125		
Description of content	Fieldwork:The aim of this course is to review the most important analytical methods and applications in the mineral depositsinvestigation in order to determine mineralogical, geochemical and isotopic composition and reconstruction of geneticprocesses. The course covers: microscopy in transmitted and reflected light, electron microscopy and electronmicroprobe, microthermometry of fluid inclusions, ion chromatography, vitrinite reflection, crystallinity of chlorite,illite and graphite, atomic absorption and emission spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), stable and radiogenic isotopes.This course gives students knowledge about analytical methods in mineral deposits exploration.Polarised light microscopy - Contact-metamorphic reactions; Mineral stability fields; Alteration reactions. Reflectedlight microscopy - Fundamentals of ore microscopy (optical properties in reflected light); examples of the mostimportant structures and textures; Interpretation. Electron microscopy / EMPA - Basics principles; Detectors;Application and interpretation; Geothermobarometric use in equilibrium systems; Sample preparation.Microthermometry of fluid inclusions - Basics principles; Application and interpretation. Sample preparation./ Crystallinity of chlorite / illite / graphite - Basics principles; Application in ore deposits; t / c conditions; Sample/ Crystallinity of chlorite / illite / graphite - Basics principles; Application in ore deposits; t / c conditions; Sample/ Preparation (illiterate crystallinity); AAS; AES; ICP-MS; Stable isotopes (oxygen, hydrogen, carbon); Radiogenic isotopes(K / Ar; Rb / Sr; Sm / Nd; U / Th / Pb, fission-tracks) - Basics principles; Application in ore deposits; Data inter				
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Knowledge: To explain the application of individual method, principle, sample preparation and instrument characteristics To prepare a geological sample for selected methods (sawing, grinding, polishing, pulverizing, dissolving, diluting, etc) To determine mineral paragenesis, structures and textures in plane-polarised regular and reflected light To determine the succession (phases) of crystallization (pre-ore; ore and post-ore stage) and subsequent alterations To interpret obtained analytical data and determine composition of fluids, pressures and temperatures of formation of ore deposits and alterations. To interpret the micro, macro and trace element composition. To interpret the results of stable isotope analysis and conclude on the source fluid. To interpret the results of radiogenic isotopes in order to determine the age of the host rock, mineralization, and 				

	subsequent events. Skills: Competences: ,					
Assessment methods and criteria	Students will learn	exam Students will have lectures, practicum, independent assigments, and at the end oral exam. Students will learn about most important analytical methods and applications in the mineral deposits investigation through practicum, and independent assigments.				
Recommended readings	Reed, S. J. B. (2010): Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, 201 p.					
TU Coordinator	Sibila Borojević Šoš	tarić, sibila.borojevio	c-sostaric@rgn.hr			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will review the most important analytical methods and applications in the mineral deposits investigation.			
Justification for OLO contribution					1	1

Course title	Geophysical Exploration of Mineral Resources						
European Credits (ECTS)	3	Time (hours) given to the students	30				
Type (Lecture, internship, exercise etc.)	Lectures: 2, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 0, Seminar classes: , Fieldwork:	Student whole working time (hours)	75				
Description of content	construction materials deposits and soli The course goes through the key points Magnetometric exploration. Magnetom Aeromagnetometric exploration. Magnet Field survey design for characteristic geo Gravity exploration. Gravity map transfor Microgravity exploration. Gravity mode Electrical tomography. Theoretical foun instruments. Electrical tomography in the exploration Electromagnetic exploration. TURAM m magnetotelluric method - theoretical fo Georadar - theoretical foundations, field Seismic measurements in wells. "Down- application. Refraction seismics. Methods of refracti High resolution reflection seismics (HRS	Mastering the specialist geophysical methods of measurement and interpretation applied in the exploration of construction materials deposits and solid raw mineral materials. The course goes through the key points of geophysical methods for prospection and exploration of mineral deposits. Magnetometric exploration. Magnetometric data interpretation methods. Aeromagnetometric exploration. Magnetometric exploration of solid raw materials. Field survey design for characteristic geological models. Gravity exploration. Gravity map transformations - goal, transformation methods, application. Microgravity exploration. Gravity modelling and application in raw minerals exploration. Electrical tomography. Theoretical foundations. Measurement geometry. Tomographic inversion. Electrical tomography instruments. Electrical tomography in the exploration of construction materials deposits. Electromagnetic exploration. TURAM method, Electromagnetic method using moving transmitter, VLF method, magnetotelluric method - theoretical foundations, instruments, data processing, interpretation and application. Georadar - theoretical foundations, field measurement methods, resolution and depth, instruments, application. Seismic measurements in wells. "Down-hole" and "Cross-hole" methods – measuring methods, instruments,					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Seismic modelling. Synthetic seismogram - construction of synthetic seismogram, application of synthetic seismogram. Knowledge: To control principles of working with instruments for magnetometric exploration. To control principles of working with instruments for electric and electromagnetic exploration. Skills: To be able to interpret the obtained magnetometric measurements data. To be able to interpret the obtained gravimetric measurements data. To be able to interpret the obtained electrical tomography data. To be able to determine the first arrivals of the waves when measuring seismic velocities in a well. 						

Assessment methods and criteria	To be able to choos To be able to condu exploration. Competences: , exam Students will have I	e the optimal geoph act geophysical explo ectures, practicum,	al speeds and interpo hysical exploration mo oration in the specific independent assigme udents will study abo	ethods in the constr geological models i ents, and at the end	uction material dep n terms of solid raw oral exam.	materials
Recommended readings						
TU Coordinator	Franjo Šumanovac,					
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will have to interpret different geophisical data and make conclusions about mineral deposits and its main characteristics.			
Justification for OLO contribution			·		1	1

Course title	Field and laboratory practicum						
European Credits (ECTS)	6	Time (hours) given to the students	120				
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 128, Seminar classes: , Fieldwork: x	Student whole working time (hours)	150				
Description of content	 will be trained to recognize mineralization of the activities will be related to proper sampling. Furthermore, students will and in the laboratories. Finally, they will lear geological research and produce and protocol research and produce and produce and protocol research and produce and protocol research and produce and protocol research and research an	on, visualize 3D geological structure r geological fieldwork: observationalyse the collected geological sar on to combine and interpret obtates esent geological expert reports. Foduced to various field and labor ogical and geochemical field exert 15 terms of 8 hours. The field part of mineral deposits and two selends for exploration of the mineral deposits and two selends for exploration of the mineral and conduct field geochemical pro- swill be introduced to the comple- to the processing, final products sampled geological materials.	and waste disposal. The laboratory part will dwork) and profile (2 days) heralization (2 days)				

	parameters (1 day) 6) Additional independent work of students (1 day)						
	7) From ceramic cla	Mineral raw materials cycle - industrial materials of the Republic of Croatia (2 days): 7) From ceramic clay and quartz sand to bricks (ceramic clay deposit, quartz sand deposit, brick factory; 1 day) 8) From natural gypsum to gypsum boards (gypsum bed, gypsum board factory; 1 day)					
	1) Preparation and exploration of mine	analysis of geologica eral deposits.	l materials sampled	during geochemical	prospecting at the p	oolygon for	
	To prepare a geolog To prepare laterally	Knowledge: To select a suitable geophysical method for exploration of the mineral deposit To prepare a geological map and the corresponding profile with the indicated types of mineralization To prepare laterally developed underground mine map					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	To describe the over and final product, h	al composition of the erall process of mine highlighting the prima rious geological mat	ral raw materials star ary raw materials pro	rting from exploration perties.	on and exploitation t	to the processing	
	potential, radioacti Competences: ,	ts. To conduct field n vity) for the purpose		•	geological materials	e (eg pH, EC, redox	
Assessment methods and criteria	Students will have	practical mark Students will have field and laboratory work, work with mentor, project assigments. Students will be introduced to various field and laboratory methods used in exploration of mineral deposits through field and laboratory work					
Recommended readings	FOREGS Geochemical Mapping Field Manual. Geological Survay of Finland, Espo, 1998. Marjoribanks, R. (2010) Geological Methods in Mineral Exploration and Mining, Springer, 238 s.						
TU Coordinator	Sibila Borojevic Šoš	tarić, sibila.borojevic	:-sostaric@rgn.hr				
Contribution to EIT's Overarching Learning Outcomes (tick relevant	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership	
box/es)*	Students will be introduced to						

Justification for OLO contribution		
	various field and laboratory methods and work used in exploration of mineral deposits where all skills will be developed.	

Course title	Analyses of mineral paragenesis					
European Credits (ECTS)	3	Time (hours) given to the students	45			
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: x, Project classes: , Practical classes: 2, Seminar classes: , Fieldwork:	Student whole working time (hours)	75			
Description of content	magmatic and metamorphic rocks and t rocks in the certain geotectonic environ Students will aquire knowledge about m The definition of the mineral parageness Postequlibration and postconsolidation parageneses: (1) resorption and late ma caused by weathering. Phase relations in reactions in the magmatic rocks. Phase e peritectic point). Two-component system new compound which melts incongruen alkali feldspars and quartz, with plagiocol influence of volatiles on the crystallisatio intergrowths and exsolutions by phase of intergrowths, perthite/antiperthite). The ilmenite, biotite). Disequilibrium state: a oscillatory zoning) in different minerals; xenocrystalls and microgranitoid enclave peridotites and mantle peridotites. Oph	heir interpretation in the light of ment. nineral paragenesis of magmatic a changes of primary magmatic mi gmatic subsolidus reactions; (2) I in the crystallisation systems as the diagrams (liquidus, solidus, binary ms with the eutectic point, with o ty. Three-component systems we ase, clinopyroxene and olivine ar on of the system. The explanation diagrams (ophitic texture, intergr e exsolution process in the differ a) the occurrence of zoning (conc b) the occurrence of "sieve" text es. The differences in the minera iolite and their metamorphic sole cure, primary and secondary par	inerals and the origin of secondary hydrothermal alterations and (3) the changes he result of fractionation processes and y and ternary eutectic, cotectic curves, solvus, continuing solid solution crystal serie and the vith the clinopyroxene and plagioclase, with hd forsterite, anorthite and quartz The n of genesis of different magmatic textures, anular texture, graphic and myrmekitic ent minerals (pyroxenes, feldspars, calcite, centric, patchy, sector, normal, reversal and ture. Enclaves in the magmatic rocks: xenoliths, I parageneses and textures in the crust e. Precise classification and nomenclature of rageneses and petrogenetic interpretation of			
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	ophiolite complexes.	microtextures in crust peridotite of microtextures, primary and se	nineral parageneses in magmatic rocks. Is from those in the mantle peridotites in the condary mineral parageneses and reconstruct			

	To distinguish diffe	To distinguish different mineral parageneses and the sequence of their formation in the metamorphic rocks.				
	inside of minerals in To use evident sign evolution and petro	Skills: To apply phase diagrams in the interpretation of genesis of different microtextures, intergrowths and exsolutions inside of minerals in magmatic rocks. To use evident signs of disequilibrium in minerals and rocks in the interpretation of their crystallisation and later evolution and petrogenesis, respectively. To apply different types of mineral recrystallization and their deformations to deduce the p-T evolution of the metamorphic rocks.				
	Competences: ,					
Assessment methods and criteria	microscope. At the Main emphasis is o					
Recommended readings						
TU Coordinator	Vesnica Garašić, ve	snica.garasic@rgn.h	r			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*			Students will have to interpret mineral paragenesis and make conclusions about genesis of rocks.			
Justification for OLO contribution						

Course title	MSc thesis						
European Credits (ECTS)	20		Time (hours) given students	to the	.5		
Type (Lecture, internship, exercise etc.)	Lectures: , Auditori Classes: , Project cla classes: , Seminar c	asses 1: , Practical	Student whole wor (hours)	king time 5	500		
Description of content	tasks/problems in t The master thesis is given engineering p	The master thesis for the student aims to prove the ability of independent analysing and solving complex engineering tasks/problems in the field of geology related to the master thesis topic. The master thesis is a paper in which the student must demonstrate the ability of independent analysis and solving a given engineering problem/task in the field of geology using the knowledge acquired through graduate study from a theoretical and practical point of view.					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: To define a professional problem / task To summarise master thesis in English To apply the methodology of writing a professional and scientific paper To write master thesis linguistically and ethically correct To apply the acquired knowledge and general competencies acquired through graduate study To interpret research results Skills: To solve a complex practical problem / task. To argue the results of the conducted research in an expert						
Assessment methods and criteria	discussion Competences: To respect ethical norms and rules of citing literature, To design and conduct research. practical mark The student is obliged to apply for one of the offered topics, make a plan of activities with the mentor and submit the master thesis for evaluation within the given deadlines, prepare a presentation and defend the master thesis in front of the committee.						
Recommended readings	Selected literature based on the topic of master thesis and according to the mentor's recommendation.						
TU Coordinator	All teachers in the scientific-teaching profession						
Contribution to EIT's Overarching Learning Outcomes (tick relevant	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultura	OLO5 Value I judgments /	OLO6 Leadership	

box/es)*			Sustainability	
	The student will			
	develop all skills			
	through work on			
	the master thesis			
	and through			
	solving complex			
	engineering			
	tasks/problems.			
Justification for OLO contribution				

Semester 3 WUST

crediting

with grade

2

2

0.9

Attachment no. 4. to the Program of Studies

FACULTY OF GEOEN Name of subject in Pol Name of subject in Eng Main field of study: Specialization: Level and form of stud Kind of subject: Subject code Group of courses	SUBJ ish Geofizyka i glish Engineering Mining and go Mining Engino Geotechnical a Geomatics for Mineral Resou lies: 2nd level, full- obligatory	IECT CARI nżynierska g Geophysic eology eering, and Environ Mineral Re rce Explora time	D s mental F source M	Ingineerin		
		Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organ University (ZZU)	ized classes in	15			15	
Number of hours of total s (CNPS)	tudent workload	25			50	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

(P)

crediting

with grade

1

0,8

1. has knowledge of fundamentals of applied geophysics, physics and geology.

other academics (BU)

- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.

For group of courses mark (X) final course

including number of ECTS points for practical classes

classes that require direct participation of lecturers and

including number of ECTS points corresponding to

4. is able to work in a team.

Form of crediting

*delete as not necessary

Number of ECTS points

SUBJECT OBJECTIVES

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

- C4 acquisition of skills to plan geophysical field surveying and to interpret its results.
- C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

PROGRAMME CONTENT Number of Lecture hours Physical properties of rocks. Inter-relationships between the various Lec 1 subdisciplines of applied geophysics. Overview of geophysical methods, 1 their physical principles and applications. Methodology of geophysical surveying. Engineering problems solved with geophysical surveying. Case studies. Lec 2 2 Electrical resistivity methods. Tomography and VSE. IP method. Physical Lec 3 2 principles. Equipment. Methods of field surveying. Interpretation and application. Case studies. Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric Lec 4 methods. Physical principles. Methods of field surveying. Equipment. 2 Interpretation and application. Case studies. GPR surveying. Physical principles. Methods of field surveying. Equipment. Lec 5 2 Interpretation and application. Case studies. Seismic interferometry. Seismic tomography. Physical Lec 6 principles. 2 Applications. Case studies. Mine geophysics. Seismology. Seismic methods. Active and passive seismic Lec 7 2 tomography. Microgravimetry. Case studies. Gravity and magnetic surveying. Equipment. Methods of field surveying. Lec 8 2 Interpretation and application. Case studies. Total hours 15 Number of Project hours

Proj 1	One selected geophysical technique. Fundamentals and equipment. Field	4			
	surveying				
Proj 2	Processing and interpretation of field data.	3			
Proj 3	Solving the geophysical problems.	8			
	Total hours	15			

N1. N1.Lecture aided by presentation.

N2.Demonstration.

N3.Discussion and consultations

N3Calculations

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY **SUBJECT CARD** Name of subject in Polish Wspomagane komputerowo modelowanie geologiczne i geostatystyka.) Name of subject in English: Computer Aided Geological Modelling and Geostatistics Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory W06GIG-SM3002 Subject code **Group of courses** No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting with grade	Examination / crediting	crediting with grade	Examination / crediting	Examination / crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.
- C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT				
	Lecture	Number of hours			
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2			
Lec 2	Geology of the seam.	2			
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2			
Lec 4	Spatial distribution of samples values. Regionalized variable.	2			
Lec 5	BLUE Estimator of the mean value: Kriging.	2			
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2			
Lec 7	Reserves modelling and evaluation.	2			
Lec 8	Mineral resources. International reporting. The JORC Code	1			
	Total hours	15			

	Laboratory	
La1	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La4	Construction of the structural wireframe model of stratigraphy layers.	3
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3
La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3

	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01, PEU_W02	Lecture grade on the basis of the written examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02, PEU_U03	Laboratory task assessment: "reserves evaluation".
P average of F1, F2, F3, F	'4	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec

Attachment no. 4. to the Program of Studies

FACULTY OF GEO	ENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish:	Cyfrowa kopalnia
Name in English:	Digital Mine
Main field of study:	Mining and geology
Specialization:	Mining Engineering,
-	Geotechnical and Environmental Engineering,
••••••	Mineral Resource Exploration
Level and form of st	udies: 2nd level, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3006
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Computer literacy skills
- 2. Basic knowledge related to Mining Engineering and Mineral Processing
- 3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems. Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.
- PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2			
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2			
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2			
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2			
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2			
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1			
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2			
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2			
	Total hours	15			

	Form of classes - laboratory	
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data. Introduction to ARDUINO	3
Lab2	Basic sensors for physical parameters measurements	3
Lab3	Measurements in Labview	3
Lab4	Analysis and Visualization in Labview	3
Lab5	Control in labview	3
	Total hours	15

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Attachment no. 4. to the Program of Studies

	Attachment no. 4. to the Hogram of				
FACULTY OF	FACULTY OF GEOENGINEERING, MINING AND GEOLOGY				
	SUBJECT CARD				
Name in Polish: Zarządza	anie Środowiskiem				
Name in English: Environ	mental Management				
Faculty of studies (if applic	cable): Mining and Geology				
Specialisation (if applicabl	e): Mining Engineering				
	Mineral Resource Exploration				
Level and form of studies:	2nd level, full-time				
Subject Type:	Obligatory				
Subject code:	W06GIG-SM3001				
Group of courses:	No				

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the	30				15
University (ZZU)	00				10
Number of hours of total	50				25
student workload (CNPS)					_
Form of crediting	Crediting with grade				Crediting with grade
For a group of courses mark					
(X) for the final course					
Number of ECTS points	2				1
including number of					
ECTS points for practical					
(P) classes					
including number of					
ECTS points for direct	1,3				0,8
teacher-student contact	-,0				-,0
(BU) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.Basic knowledge of issues related to ecology and environmental protection.

SUBJECT OBJECTIVES

- C1. To get students acquainted with systems of environmental management both in Poland and other EU countries.
- C2. To prepare students for rational and sustainable management of environmental components.
- C3. To get students acquainted with the genesis of environmental management systems in Poland, review and standardization of environmental management systems.
- C4. To get students acquainted with benefits and obligations arising from the implementation of an environmental management system.
- C5. To present the relationship between an environmental management system and a quality

management system.

C6. To provide an overview of informative methods of supporting the implementation of environmental management systems (possibilities and practical usage of computerised systems of environmental information management, decision support in the area of environmental protection and choice of methods and tools used to support the implementation of an environmental management system).

SUBJECT LEARNING OUTCOMES

relating to knowledge:

- PEU_W01 Possesses systematic knowledge of the origins of environmental management systems, review and standardization of environmental management systems.
- PEU_W02 Possesses knowledge of the possibilities and practical applications of tools supporting the implementation of the environmental management system.
- PEU_W03 knows basic formal and legal regulations regarding the implementation and functioning of management systems, tools and instruments of environmental management.
- PEU_W04 Possesses knowledge for rational and sustainable management of environmental components.

relating to skills:

- PEU_U01 Possesses linguistic resources appropriate for specialised language and is able to use it in linguistic activities in order to communicate in the professional environment regarding the field of studies; is able to obtain necessary information and interpret and critically evaluate it, reads and understands professional literature, is able to formulate and comprehensively justify opinions, provide presentations of problems related to a studied discipline and also participate in scientific and professional discussions.
- PEU_U02 Is able to use methods and appropriate IT tools in system management of environmental components.

relating to social competencies:

PEU_K01 - Is able to think and act in a creative and enterprising way.

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec.1	 Basic concepts: Environment, characteristics of individual elements of the environment Characteristics of hazards for the natural environment which are a result of human activities Environmental Management The Environmental Management System 	2			
Lec.2	Legal aspects of environmental management	2			
Lec.3	History and development of environmental management systems	2			
Lec.4 Lec.5 Lec.6	Environmental management systems: - Business Charter for Sustainable Development of the International Chamber of Commerce - ICC Business Charter for Sustainable	6			

Se1	The scope and form of an essay and presentation, terms of crediting and literature.	hours 2
	Form of classes - seminar	Number of
Lec.15	Environmental management systems in practice Total hours	30
Lec.14	system	3
Lec.14	system Costs of implementation and functioning of an environmental management	1
Lec.13	Poland and in the world The benefits of an implemented and functioning environmental management	2
Lec.11 Lec.12	 Decision Support Systems Expert systems Simulation Models Geographical Information Systems Selected types of information systems which support environmental management, their characteristics, examples of implementation both in 	4
Lec.9 Lec.10	IT systems supporting environmental management:	4
Lec.7 Lec.8	 - ISO 14001 - ISO 14001 Characteristics of selected Environmental Management Systems. The benefits of the implementation of the EMS for a company. Experiences of Polish enterprises from the implementation of EMS. Process of implementation of the selected EMS in a company with an example of EMAS. Basic tools of environmental management: Legal and administrative instruments (laws, standards, licenses and permits) Economic instruments (fees, taxes, deposit and refund systems, transferable rights, subsidies, liens, fines) Instruments (techniques) social impact (ecological education, ecological propaganda) Examples of basic tools of environmental management: Procedure for an assessment of environmental impact Integrated permits Audits Safety Reports Monitoring of the Environment 	4
	 Development EMAS – Directive of the European Community Commission regarding the approval for voluntary participation by organisations in a community eco-management and eco-audit scheme CP - Clean Production BS 7750 - Specification for Environmental Management Systems ISO 9000 ISO 14000 	

	Total hours	15
	Group discussion on the content and form of speeches.	
	sources, etc.	
	protection in Poland and in the world and also alternative energy	
	selected monitoring systems, the institution of environmental	
Se8	systems, mineral resource management, renewable energy sources,	
Se7	fees, taxes, surcharges and environmental deposits; litter management	13
Se6	an integrated decision etc.), life-cycle analysis of a selected company;	
Se5	(eg. receiving a decision on the environmental conditions of a project,	
Se4	examples, formal and legal conditions of administrative procedures	
Se3	following issues: environmental management systems - specified	
Se2	Student speeches with the use of multimedia presentations on the	
	Assignment of seminar topics for individual students.	

- N1. Informative lecture with elements of problematic lectures.
- N2. Multimedia presentations
- N3. Didactic discussion during lectures and seminars
- N4. Preparation of an essay in the form of a report
- N5. Presentation of the essay
- N6. Consultations

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F – forming (during semester), P – concluding (at semester end)	Educational outcome number	Method of evaluating educational outcome achievement	
F1- Grade from content value of an essay	PEU_U01 PEU_U02 PEU_K01	Text and graphical form of essay	
F2 – Grade from presentation and issues included in an essay	PEU_U01 PEU_U02 PEU_K01	Presentation of essay	
F3 – Grade from a written or oral test	PEU_W01 PEU_W02 PEU_W03 PEU_W04	Positive grade	
final grade from the subject (the weighted average, respectively: 35% for the substantive content of the essay, 25% for the presentation, 40% for the lecture)			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Ejdys J.,1998, Zarządzanie środowiskowe w przedsiębiorstwie koszty i korzyści, Sterowanie ekorozwojem, t.2, Wyd. Politechniki Białostockiej, Białystok,
- [2] Lukasheh A. F., Droste R. L., Warith M. A., 2001, Review of Expert System (ES), Geographic Information System (GIS), Decision Support System (DSS), and their applications in landfill design and management. W: Waste Management & Research nr 19,
- [3] Łunarski J. (red.), 2002, Zarządzanie środowiskiem", Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow
- [4] Nowak Z., 2001, Zarządzanie środowiskiem, Wyd. Politechniki Śląskiej, Gliwice,
- [5] Matuszak-Flejszman A., 2001: Jak skutecznie wdrożyć system zarządzania środowiskowego wg normy ISO 14001. PZIiTS, Poznan
- [6] Pochyluk R. i inni, 1999, Zasady wdrażania systemu zarządzania środowiskowego zgodnego z wymaganiami normy ISO 14001, Eco-Konsult, Gdansk,
- [7] Poskrobko B., Poskrobko T., 2012, Zarządzanie środowiskiem w Polsce, Polskie Wydawnictwo Ekonomiczne, Warsaw
- [8] Poskrobko B., 1998: Zarządzanie środowiskiem. Polskie Wydawnictwo Ekonomiczne, Warsaw
- [9] Przybyłowski P. (red.), 2005, Podstawy zarządzania środowiskowego, Wyd. Akademii Morskiej, Gdynia.

SECONDARY LITERATURE

- [1] Jeżowski P. (red.), 2007: Ekonomiczne problemy ochrony środowiska i rozwoju zrównoważonego w XXI wieku. Szkoła Główna Handlowa, Warsaw
- [2] Lemański J. F., Matuszak-Flejszman A., Zabawa S. (red.), 2000: Efektywność funkcjonowania wdrożonego systemu zarządzania środowiskowego wg normy ISO 14001. PZIiTS, AE, Poznan – Pila
- [3] Websites given during lectures and seminars

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

- Dr hab. inż. Justyna Woźniak
- Dr hab. Inz. Katarzyna Pactwa,
- Dr inż. Danuta Szyszka

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD

Name of subject in Polish Bezpieczeństwo i higiena pracy Name of subject in English: Occupational Health and Safety Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering,

Mineral Resource Exploration

Profile: academicLevel and form of studies: 2nd level, full-timeKind of subject: obligatorySubject codeW06GIG-SM3005Group of coursesNo

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			25	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			1	
including number of ECTS points for practical classes (P)				1	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,7			0,8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

C1. To introduce the principles of occupational risk assessment in accordance with relevant standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU_W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

relating to skills:

- PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry
- PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.
- PEU_U03 Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	PROGRAMME CONTENT			
	Lecture	Number of hours		
Lec 1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3		
Lec 2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3		
Lec 3	Dangerous factors - identification and assessment of risks.	3		
Lec 4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3		
Lec 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3		
	Total hours	15		

	Project		
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3	
Pr2	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of	3	

	harmful factors (vibration, chemical agents)	
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes (arithmetic
	PEU_U01- U03	average of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- Occupational Safety and Health in Mining. Anthology on the situation in 16 mining countries. Ed.: Kaj Elgstrand and Eva Vingård. University of Gothenburg nr 2013;47(2) (gupea.ub.gu.se > bitstream > gupea 2077 32882 1)
- [2] Boyle, Tony: Health and safety: Risk management. IOSH, 2001. (http://www.iosh.co.uk/index.cfm?go=publications.main)

 [3] Encyclopaedia of occupational health and safety. Fourth edition Stellman, Jeanne M. (ed.). International Labour Organization, 1998 (http://www.ilo.org/public/english/support/publ/xtextre.htm#b103) http://www.ilo.org/public/english/support/publ/encyc/)

[4] McKeown, Céline; Twiss, Michael: Workplace ergonomics: A practical guide, IOSH, 2001, 160 p. http://www.iosh.co.uk/index.cfm?go=publications.main

SECONDARY LITERATURE:

Handouts, articles

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 78/2023 Attachment no. 4. to the Program of Studies

FACULTY OF GEOIENGI	NEERING, MINING AND GEAOLOGY
	SUBJECT CARD
Name in Polish: Modele D	ecyzyjne w Zarządzaniu
Name in English: Operati	ons Research
Main field of study (if app	licable): Mining and Geology
Specialization (if applicabl	e): Mining Engineering,
	Mineral Resource Exploration
Level and form of studies:	2nd, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3000
Group of courses: NO	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		
Number of hours of total student workload (CNPS)	25		50		
Form of crediting	crediting with grade		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes of practical character (P)			2		
including number of ECTS points for direct teacher- student contact (BU) classes	0,8		0,7		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The student has basic knowledge of mining systems, technological and organizational systems in mining
- 2. The student has basic knowledge concerning economics in mining
- 3. The student has basic knowledge concerning mathematical analysis necessary to understand mathematical issues in science having engineering and economic character.
- 4. The student has basic knowledge and skills of using probability theory models and mathematical statistics
- 5. The student can use Excel spreadsheet
- 6. The student understands the need and knows the possibilities of lifelong learning, improving professional, personal and social skills

SUBJECT OBJECTIVES

C1 Acquiring basic knowledge, taking into consideration its applicational aspects concerning mathematical decision models used in management: C1.1 Linear programming models C1.2 Models of planning, deposits and costs of projects

C1.3 Queuing system models

C1.4 Digital simulation models

C2. Learning of qualitative understanding, interpretation and quantitative analysis with applications of selected issues concerning optimization

C2.1. Production systems:

C2.2. Transport issues

C2.3. Flows in networks.

C2.4. Project schedules

C2.5. Queuing system models

C3. Acquiring and consolidating the competencies of thinking and acting in a system way.

SUBJECT LEARNING OUTCOMES

Subject educational effect (knowledge)

PEU_W01 The student has knowledge concerning basic decision models in management

PEU W02 The student has knowledge concerning line programming models.

PEU_W03 The student has knowledge concerning models for planning and monitoring of activities, deposits, and costs of projects

PEU_W04 The student has knowledge concerning queuing system models

PEU_W05 The student has knowledge concerning simulation models.

Subject educational effect (skills)

PEU_U01 The student has the ability to apply and interpret models using linear programming applications

PEU_U02 The student has the ability to apply and interpret models of planning and monitoring of activities, deposits, and costs of projects with the use of programming applications

- PEU_U03 The student has the ability to apply and interpret queuing system models using programming applications
- PEU_U04 The student has the ability to apply and interpret simulation models using programming applications

Subject educational effect (social)

PEU_K01 The student can think and act in a system, creative and enterprising way

PEU_K02 The student is able to identify and solve problems with the use of decision models and applications

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Le1	Introduction to modelling systems	2			
Le2	Linear programming issues - optimization of production	2			
Le3	Linear programming issues - flow in networks optimization (optimal allocation issues, the issue of transportation, maximum flow, minimizing costs)	2			
Le4	Projects scheduling using critical path	2			
Le5	Planning and balancing of deposits in projects	2			
Le6	Optimization issues of queuing systems	2			
Le7	Monte Carlo methods and digital simulation	3			
	Total hours	15			

	Form of classes - laboratory	Number of hours
La1	Defining and solving linear programming issues (Microsoft Excel-Solver)	2
La2	Production optimization (Microsoft Excel - Solver)	2
La3	Flows in networks optimization (Microsoft Excel - Solver)	2
La4	Projects scheduling (Microsoft Project)	2
La5	Planning and balancing of deposits in projects (Microsoft Project)	2
La6	Optimization issues of queuing systems (Microsoft Excel)	2
La7	Elements of Monte Carlo methods and digital simulation (Microsoft Excel)	3
	Total hours	15

N1. Interactive lecture with slides and discussion

N2. Laboratory exercises with the use of IT applications - discussion concerning solutions

N3. Laboratory exercises - short written tests (calculating tasks, tests of knowledge)

N4. Duty hours

N5. Own work - preparation for laboratory classes, solving additional tasks

N6. Own work - own literature studies.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement		
F1	PEK_U01-04	short written test.		
PEU U01-04 written test (counting exercise)				
PEU W01-05; PEU K01-02 Written test (knowledge test)				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Ignasiak E., Borucki W., Badania operacyjne, PWE, 2001
- [2] Krawczyk S., Badania operacyjne dla menedżerów, PWE
- [3] Baranowska B, Badania operacyjne w zarządzaniu, PWSBIA, 1996

SECONDARY LITERATURE

- [1] Szapiro T., Decyzje menedżerskie z Excelem, PWE 2000
- [2] Trzaskalik T., Modelowanie optymalizacyjne, Absolwent
- [3] Trzaskalik T., Badania operacyjne z komputerem, PWE

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Witold Kawalec

Dr hab. inż. Leszek Jurdziak

Dr inż. Zbigniew Krysa

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD Name of subject in Polish ... Zarządzanie projektami, ocena ich opłacalności i ryzyka.. Name of subject in English: Project Management, Appraisal and Risk Evaluation. Main field of study (if applicable): Mining and Geology Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory

Subject code ... W06GIG-SM3003G **Group of courses YES**

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30	15	
Number of hours of total student workload (CNPS)	25		50	25	
Form of crediting			Examination		
For group of courses mark (X) final course	X				
Number of ECTS points			4		
including number of ECTS points for practical classes (P)					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER **COMPETENCES**

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

SUBJECT OBJECTIVES

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management.

Part A: The purpose of the course is

C1 to introduce basic concepts of Microeconomics and financial management

C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are discussed. The issues of inflation and risk analysis are included.

Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 knows the concepts of demand, supply and price elasticities, understands how they affect markets
- PEU_W02 knows the concepts of costs in economics and accounting, understands how they differ
- PEU_W03 knows the main cost categories and cost accounting methods
- PEU_W04 has basic knowledge about the contents of financial statements
- PEU_W05 has basic knowledge about the method of ratio analysis of financial statements
- PEU_W06 knows and understands the concepts of Present Value and Future Value for simple cash flows and annuities.
- PEU_W07 knows the capital budgeting methods (NPV, IRR, PBP) and understand how to interpret the results
- PEU_W08 has basic knowledge about the project risk evaluation methods

relating to skills:

- PEU_U01 is able to analyze the causes and effects of demand and supply changes
- PEU_U02 is able to interpret and use information presented in financial statements also by means of ratio analysis
- PEU_U03 is able to use different cost analysis methods and make decisions based on the rsults
- PEU_U03 can calculate Future and Present value, also for annuities and solve simple calculation problems
- PEU_U04 is able to perform discounted cash flow analysis and draw conclusions based on the results
- PEU_U05 is able to carry out sensitivity analysis and scenario analysis using a financial model of an investment
- PEU_U06 is able to work out basic project documentation and initiate a project
- PEU_U07 is able to use basic methods of project management, monitoring and project risk management
- PEU_U08 is able to implement basic conflict management methods in a project group
- PEU_U09 is able to use basic group management methods, can undertake and shape the leadership position

relating to social competences:

- PEU_K01 is able to think and act in a systematic, creative and entrepreneurial way
- PEU_K02 has an established attitude of economic operation and decision-making based on available financial information and forecasts

	PROGRAMME CONTENT			
	Lecture	Number of hours		
Lec.1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2		
Lec.2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2		
Lec.3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2		
Lec.4	Variable and fixed costs. Break even point. Cost-volume –profit analysis.	1		
Lec.5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2		
Lec.6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2		
Lec.7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2		
Lec.8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2		
	Total hours	15		

	Project	Number of hours
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3
	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3

Effective managerial behaviour from the different contexts.	
Total hours	15

	Laboratory	Number of hours
	Part A	
La1	Supply and Demand curves. Elasticity of demand.	2
La2	Economic costs. Cost curves. Profit maximization cases.	2
La3	Managerial cost accounting. Decision making cases.	2
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2
La5	Ratio analysis based on financial statements of companies	2
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3
	Part B	1
La8	Basic concepts (process, project, project management, management	3
	by projects, critical factors for project success, competences). Preparing and initiation of the project. Project analysis (project environment, stakeholders, project objectives).	
La9	Planning and estimating of the project. Project phases and life cycle	3
La10	Project organization. Project scope management. Planning of activities, resources and costs.	3
La11	Project risk management. Project monitoring. Project management methodologies.	3
La12	Quality management. Change control. Project closing.	3
	Suma godzin	30

N1. Interactive lecture with the use of multimedia and discussion

N2. Laboratory classes: individual problem solving with the use of Excel spreadsheet

N3. Laboratory classes part B and project classes: case studies solving in groups and individually. Project presentations, discussion

N4. Consultation

N5. Self-study: solving assigned problems, literature studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W08	Assesment of student class activity
	PEU_K01-K02	
F2	PEU_U01-U10	Evaluation of student's assignements
	PEU_K01-K02	
P1	PEU_W01-W08	Written test
	PEU_U01-U10	
	PEU_K01-K02	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E., Glapenski L.: Financial Management, 1997
- 3. Johnson H.: Making Capital Budgeting Decisions Maximising the Value of the Firm. Financial Times/Prentice Hall (April 15, 1999)
- 4. Jonson H.: Strategic Capital Budgeting: Developing and Implementing the Corporate Capital Allocation Program, January 1994.
- 5. Lock Dennis, Project Management, Published April 11, 2013 by Routledge

SECONDARY LITERATURE:

- 1. Jonson H.: Determining Cost of Capital: The Key to Firm Value. Apr 1999.
- A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)
- 3. Johnson H.: Global Financial Institutions and Markets. December 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Attachment no. 4. to the Program of Studies

	0				
FACULTY OF GEOENGINEERING, MINING AND GEOLOGY					
	SUBJECT CARD				
Name in Polish:	Zasady i zastosowania InSAR oraz GIS w górnictwie				
Name in English:	Principles and Application of InSAR and GIS in mining				
Main field of study:	Mining and geology				
Specialization:	Geomatics for Mineral Resources Management				
-	Mineral Resource Exploration				
Level and form of studies: 2nd level, full-time					
Kind of subject:	obligatory				
Subject code:	W06GIG-SM3007				
Group of courses:	No				

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.
- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEK_W01 Has expanded knowledge in the field of using geoinformation systems to collect and process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK_U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

PROGRAMME CONTENT				
	Number of hours			
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2		
Lec 2	Introduction to Microwave Signals for Earth Observation	2		
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2		
Lec 4	Acquisition and processing of SAR data	2		
Lec 5	SAR image theory (geometric properties, polarization)	2		
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2		
Lec 7	Principlesand Applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2		
Lec 8	Fundamental concepts of geographical information systems	2		
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2		
Lec 10		2		
Lec 11	Spatial data interpolation	2		
Lec 12	Map algebra. Surface analysis, local and zonal functions	2		
Lec 13	Basics of spatial statistics	2		
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2		
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2		
	Total hours	30		

	Laboratory	Number of hours
Lal	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of F1 and F2, where F1 – 80% and F2 - 20%)
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl Semester 4 WUST

Course title	Applied field exploration					
European Credits (ECTS)	3		Time (hours) given to the	e students	45	
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium cl Project classes: , Practica classes: , Fieldwork: 3		Student whole working t	ime (hours)	75	
Description of content	The goal of the course is that students should acquire a hands-on understanding of different field exploration methodologies, and how they can be integrated for targeting VMS deposits. Geological, geophysical and geochemical exploration methods in VMS exploration. Practical field mapping exercises in structural geology, stratigraphy, hydrothermal alteration. Practical geophysical surveying using UAV technology. GIS-based data synthesis for exploration target selection. Drill core logging and assaying.					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	 Knowledge: when passed the student is expected to have: -knowledge about different field methods and their use during an exploration program. -knowledge about drilling and sampling methods. -knowledge about different methods for field mapping. Skills: when passed the student is expected to have the ability to - acquire in-depth structural, volcanological and alteration data from outcrops in the field - contextualize field observations in relation to ore genetic model for VMS deposits. - synthesize different types of geological and geophysical data for targeting a VMS deposit. 					
Assessment methods and criteria	Exercises U G# 1.20 Project work G U 3 4 5 1.80 The course is mainly presented via practicals in the field, but also with complementary lectures and excercises, in addition to project work.					
Recommended readings	Online compendium in Canvas room					
TU Coordinator	Nils Jansson, Nils.Jansson@ltu.se					
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercul	OLO5 Value tural judgments / Sustainability	OLO6 Leadership

Justification for OLO contribution	contribution				
------------------------------------	--------------	--	--	--	--

Course title	SOC Internship				
European Credits (ECTS)	2	2 Time (hours) given to the students			
Type (Lecture, internship, exercise etc.)	Lectures:, Auditorium classes: , Lab. Classes: , Project classes: 2 , Practical classes:, Seminar classes: , Fieldwork: x	Student whole working time (hours)	50		
Description of content	 The aim of the course is to enable students to work in socially responsible workplaces, and apply their skills and knowledge to promote social good. While this develops them to become work-ready professionals, it also nurtures them to become advocates who help build a better world. EDUCATIONAL GOALS: To actively participate in the affairs of the community and in concrete actions on the ground that aim to promote the public interest, equality and solidarity. To reflect on social license to operate issues To work in direct contact with the beneficiaries of the civic activities undertaken e.g.: reception, facilitation, support, social assistance, etc. EXAMPLES OF SOCIAL AND CIVIC ISSUES IN MINERALS INDUSTRIES: Depletion of natural capital (degradation of air, land and water quality), land use conflicts, health impacts Digitalization and automation generate particular challenges for well-being in mining regions. Limited job opportunities for local workforce and skills mismatches. High and continuous transparency and accountability standards of the industry, effective methods of information sharing and dialogue A more equitable value-sharing, Corporate Social Responsibility issues Facilitation of environmental awareness 				
Learning outcomes of the curricular	 Preservation and restoring of historic sites, Knowledge: to understand that social responsibility incorporates an ethical, social and environmentally-friendly 				
unit (knowledge, skills and	perspective to our personal and professional activities				
competences to be developed by	Skills: To be able to engage in an informal professional discussion and business communication				
the students)	Competences: To cope with complexity, uncertainty and change in global contexts				

Assessment methods and criteria	Criterion: Submission of a project report					
Recommended readings						
TU Coordinator	Supervisors of the	student's Master the	sis			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in professional discussion and business communication				Students will be able to understand that social responsibility incorporates an ethical, social and environmentally- friendly perspective to our personal and professional activities	
Justification for OLO contribution			· · · · · · · · · · · · · · · · · · ·			·

Course title	Exploration entrepreneurship		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: , Project classes: 1, Practical classes: 3, Seminar classes: 2, Fieldwork:	Student whole working time (hours)	100
Description of content	 and countries. Mentoring within the course is professional with and EurGeol targeted way. Mentoring contrinetworking, social and profession activity. It allows lead be acquired through practice a improves the opportunities of contacts and involvement in protect topics and the mentor and communicate them to the concrete topics and the respect defined. Since the student is at become aware of their own platoecome aware of their own plato	t the current market at improving intern og and CPD requirem ows students to ber bectives in different a process during wh title (mentor) accom- ibutes to developing ional skills regarding earning from profess and can't be found in career beginners by rofessional networks ring cooperation, stu- ir mentor. In consult tive roles within the the centre of the pro- ans and their suppor working among geol ls with contacts help t, medium or long-te- ositions and increase diversity to women and und and Continuing Pro- nals who have acqu- nd work in industrial or actively guides a lls and attitudes fo have in negotiation advises the stude and difficulties. M	t demands. The ational networking and nents of experienced geology hefit from insider knowledge sectors of geological profession hich an experienced mpanies the student in a g personal, entrepreneurial, g the mineral prospecting and sional experiences that can only any textbook. Mentoring providing career-enhancing s. udents formulate clear goals tation with the mentor, e mentoring process will be rocess, it is their task to t needs. ogists all across Europe and bing them to think through, erm career development rin leadership positions by er-represented minorities fessional Development (CPD) ired a high level of industrial

	 Help: The mentor can help open otherwise locked doors that allow the student to pursue their goals. Support: The mentor supports the student in essential decisions without deciding. Mentors assist in the development of professional strategies, as well as in career planning and review of possible obstacles. Inform: The mentor informs the student about (informal) rules and processes applied in organisations or professional life in general. According to the student's background, mentors can also inform about seminars or conferences that they consider helpful. Participation: Mentors allow students to participate in parts of their professional career, experiences and strategic decisions. They allow students to share their professional life and invite them, for instance, to participate in meetings or appointments. Give feedback: Mentor and student provide each other with constructive feedback about their appearance and public perception. Networking: Mentors give the students hints on maintaining and using contacts. They introduce the students into active networks and provide professional contacts. The mentor provides the student with the chance to create a successful CV and take a chance on social networks such as LinkedIn.
Learning outcomes of	Knowledge: to provide background training to support the learning process; make students aware of broad professional issues; provide business and
the curricular	entrepreneurship skills to develop an awareness of business management and commercial practices regarding mineral prospecting and exploration.
unit (knowledge,	Skills: Develop relationships with other persons and maintain them. Can talk frankly about his ideas, fears and weaknesses. Identifying investment
skills and	opportunities in the mineral resources sector.
competences	Competences: To define professional targets, wants to succeed and is actively
to be	committed to implementing these targets. Not afraid of making mistakes and
developed by	experimenting with new ideas. Willing to question himself critically, accept
the students)	external advice, and implement it.
	Practical mark
	At the end of the mentoring process, students will a) reflect their mentoring
	experience on a two-page report highlighting benefits and potential gaps for
	future implementation b) prepare a small business plan for an identified innovative idea of their own.
	Slack channel will allow for student-mentor exchange and networking within the
Assessment	whole cohort of participants.
methods and	Mentoring is a one-to-one relationship between a mentor and a student.
criteria	Mentoring takes place beyond a dependent relationship (e.g. supervisor-
	subordinate or professor-student relationships).
	During the mentoring process, learning and experimentation occur in a
	protected environment.
	 An integral part of mentoring is the development of professional skills and competencies
	competencies. Mentoring is a reciprocal process of "give and take". Both sides learn from each
	Mentoring is a recipiocal process of give and take . Both sides learn norm each

	other because even the mentor will have the opportunity to critically question his professional perspective and discover new perspectives, software and applications, and previously unperceived situations.					
	Mentoring Mindset, Skills and Tools 4th Edition: Make it easy for mentors and students, 2020, Synergetic People Development Pty Ltd, 252 pages, ISBN 0980356458					
	The Mentoring Guide: Helping Mentors and Students Succeed, 2 Michigan Publishing Services, ISBN: 1607855399.					ed, 2019,
Recommend ed readings	Wang, J., Shibayama, S., 2022. Mentorship and creativity: Effects of mento creativity and mentoring style. Research Policy 51, 104451 doi:10.1016/j.respol.2021.104451					
	Entrepreneurship: A Guide To Success For Entrepreneurs And Aspiring Entrepreneurs, 2018, ISBN 978-1720221654 Entrepreneurship: Successfully Launching New Ventures, Global Edition, 2018, Pearson, ISBN: 9781292255330					
TU Coordinator	Pavlos Tyrologou,	, pavlos.tyrol	logou@gma	iil.com		
Contribution to EIT's Overarching Learning	ion OLO 1 OLO2 OLO3 OLO4 OLO5 Value OLO Entrepreneursh Inpovatio Creativit Intercultur Judgments / Lead					
Outcomes (tick relevant box/es)*	xx x xx xx xx					
Justification for OLO contribution						

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

> specjalność/specialisation: Mineral Resources Exploration - Track UNI MISKOLC-WUST

Semester 1 and 2 UNI MISKOLC

Course descriptions – Earth Science Engineering MSc

Contents

Course descriptions - Earth Science Engineering MSc	
Core part	2
Numerical methods and optimization	2
Engineering physics	
Physical geology	6
Mineralogy and geochemistry	
Geodesy, spatial informatics	
Computer science for engineers	
Geophysical exploration methods I	
Data and information processing	
Graduate research seminar	
Structural geology	
Mineral deposits	
Engineering geology and hydrogeology	
Analytical technics in mineralogy and petrology	
Geopphysical engineering specialisation	
Geophysical measurements	
Geophysical Exploration Methods II	
Geological engineering specialisation	
Historical geology	
Geological mapping	
List of competences	

Core part

Numerical methods and optimization

Course Title: N	Numerical methods and optimization		ECTS: 2		
Type of course	(C/E):	Course code: GE	MAK712MA		
Type (lec./sem./	Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 1 lectures, 1 seminars				
The degree of <u>t</u>	<u>heoretical</u> or practical nature of the co	urse: (in ECTS%)			
Type of Assess	ment (exam. / pr. mark. / other): P				
Grading scale: % value 90 -100% 80 - 89% 70 - 79% 60 - 69% 0 - 59%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)				
Position in Curr	iculum (which semester): 1.	Pre-requisites (if	any): -		
Course Descrip	otion:				
problems can be equations. In add problems. Course content 1. Extrema	<u>Course content:</u>				
 Convex of A. Minimiz Minimiz Minimization with Methods Methods Multiaid Linear p About So About So About So About So Numeric Numeric Numeric 	of penalty functions. ed and multicriteria decision problems (Pareto rogramming. oft Computing (SC) methods: fuzzy systems oft Computing (SC) methods: genetic algorith oft Computing (SC) methods: neural network al solutions of ordinary differential equations cal solutions of ordinary differential equations al solutions of ordinary differential equations	ad, Newton, modifie o efficient solutions) ms and system of equat s and system of equat	tions: Runge-Kutta, tions: predictor-corrector		
Teaching meth					
	nportant compulsory, or recommended lit	erature (textbook,	, book) resources:		

Égertné, M. É., Kálovics, F., Mészáros, G.: Numerical Analysis I.-II. (Lecture notes), Miskolci Egyetemi Kiadó (1992), 1-175.

R. Fletcher: Practical Methods of Optimization, John Wiley &Sons, 2000.
P. E. Gill, W. Murray, M. H. Wright: Practical Optimization, Academic Press, 1981.
J. Nocedal, S. J. Wright: Numerical Optimization, Springer, 2000.
Galántai Aurél-Jeney András: Numerikus Módszerek; Miskolci Egyetemi Kiadó, 1997.
Galántai Aurél: Optimalizálási módszerek; Miskolci Egyetemi Kiadó, 2004.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T11 Skills: K4, K5, K6, K7, K8, K9, K10, K11 Attitudes: Autonomy and responsibility: F1, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course gives the theory beckground for calculations applying numerical methods which are essential to solve different statistical and geophysical tasks.

Demonstration of coherence between teaching methodologies and the learning outcomes:

The course focuses on theory, which is supplemented by the course Computer sciences for engineers, providing the practical applications and exercises.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Körei Attila matka@uni-miskolc.hu**

Engineering physics

Course Title: Engineering physics		ECTS: 4			
Type of course	(C/E):	Course code: MFGFT7100011			
Type (lec./sem.	Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars				
The degree of	The degree of theoretical or practical nature of the course: (in ECTS%)				
Attendance at l	ment (exam. / pr. mark. / other): E ectures is regulated by the university code st satisfactory level, respectively during th				
% value	Grade				
85 -100%					
70 - 84%					
60 - 69%	3 (satisfactory)				
46 - 59%	2 (pass)				
0 - 45%	0 - 45% 1 (failed)				
Position in Cur	Position in Curriculum (which semester): 1. Pre-requisites <i>(if any)</i> : -				
Course Descri	ption:				

Objectives of the course:

Within the framework of the Earth Science Engineering MSc program, the students gain the deepening knowledge in those fields of the continuum physics, which are necessary to understand the geological processes and geophysical methods.

Course content:

The principles of continuum physics. The relationship between the micro- and macroscopic descriptions, averaging in time and space. The kinematical principles of deformable continuum, deformation tensor. Volume and surface forces, stress tensor. Basic equations of continuum mechanics, continuity theories. The equation of motion of elastic continuum, integral and differential forms. Law of conservation of mass, continuity equation. Extensive and intensive quantities, the 0th law of thermodynamics. General forms of law of conservation of mass. Material equations, Curie's law. Perfectly elastic body, linearly elastic body. Equation of motion of Hooke body. Fluid models, ideal fluids, viscous fluids. Newton body, Navier-Stokes body. Rheological models, Kelvin-Voight model, Maxwell model, Poynting-Thomson's law for material and motion equation of standard body. Wave propagation in linearly elastic medium. Solutions of wave equation. Wave propagation in different rocks, dispersion, absorption. Disperse waves.

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Writing two tests at least satisfactory level, respectively during the semester is the requirement of signature

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

1.Dobróka M., Somogyiné M. J. 2014: An introduction to continuum mechanics and elastic wave propagation Lecture notes. University of Miskolc.

2.K. Aki and P. Richards. Quantitative seismology. vol. 1: Theory and Methods. W H Freeman & amp; Co (1980)

3.K. Aki and P. G. Richards. Quantitative seismology. vol. 2: Theory and Methods. W H Freeman & amp; Co (1980)

4. Hudson J.A.1980. The excitation and propagation of seismic waves. Cambridge University Press

5. Schön J. 1998. Physical properties of Rocks. In. Seismic Exploration vol. 18.

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2 Skills: Attitudes: A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

This is primarily a theoretical course, giving strong background for later geophysical courses in order to understand and interpret the physical processes that are used in geophysical prospecting and exploration works.

Demonstration of coherence between teaching methodologies and the learning outcomes: Following the theoretical part, the students complete different exercises in continuum mechanics.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Dobróka Mihály dobroka@uni-miskolc.hu**

Physical geology

Course Title:	Physical geology		ECTS: 4		
Type of course	(C/E):	Course code: MF	FTT710001		
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars					
The degree of	The degree of <u>theoretical</u> or practical nature of the course: (in ECTS%)				
During the sem programmes: 1	Type of Assessment (exam. / pr. mark. / other): E During the semester the following tasks should be completed: students have to complete two field programmes: 1) studying sedimentary rocks, reporting in ppt presentations (15%), 2) studying magmatic rocks,				
Grading scale: % value 80 -100% 70 - 79% 60 - 69% 50 - 59% 0 - 49%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)				
Position in Cur	riculum (which semester): 1.	Pre-requisites (if	any): -		
Course Descri	ption:				
	ives of the course are deepening the students' th the reconstruction of rock-forming process				
The formation and Plate tectonic bas The role of phys Sedimentary pro Fieldtrip, studyin Metamorphic pro Principles of stra Stratotype, lito-, Magneto-, chemo Reconstruction of Reconstruction of	t: s of sedimentary formations and the inner structure of the Earth ekground of the geological processes ical geology in the geological exploration. Ma cesses, their interpretation on field ang magmatic rocks becesses, their interpretation on field trigraphy, stratigraphic nomenclature bio- and chronostratigraphy o-, seismic, sequence, and cycle stratigraphy of continental sedimentary environments of marine sedimentary environments cession of rock-forming processes and tectoni		eir interpretation on field		
	nester the following tasks should be comp) studying sedimentary rocks, reporting				
	nportant compulsory, or recommended lit Principles of Sedimentology and Stratigra				

Sam J. Boggs: Principles of Sedimentology and Stratigraphy, Prentice Hall Publishing, 2011 Angela L. Coe: Field techniques. Wiley-Blackwell 2010

Gary Nichols: Sedimentology and Stratigraphy. Wiley-Blackwell, 2009

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K9, K11, K12, K13 Attitudes: Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course gives the fundamentals to later specific geological courses. It introduces the basic concepts and skills necessary for interpretation of different geological processes.

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by classworks as well as field works

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): Dr. Hartai Éva foldshe@uni-miskolc.hu

Mineralogy and geochemistry

Course Title: Mineralogy and geochemistry		ECTS: 4			
Type of course (C/E):	Course code: MF	FAT710005			
Type (lec./sem./lab./consult.) and Number of Contact Ho	Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars				
The degree of <u>theoretical</u> or practical nature of the co	urse: (in ECTS%)				
Type of Assessment (exam. / pr. mark. / other): E The final grade will consist of two part. During the semester two midterm tests are written. The average of them will be the 50% of the final grade. The rest 50% is for the final exam.					
Grading scale: % value Grade 90 -100% 5 (excellent) 80 - 89% 4 (good) 70 - 79% 3 (satisfactory) 60 - 69% 2 (pass) 0 - 59% 1 (failed)					
Position in Curriculum (which semester): 1.	Pre-requisites (if a	any): -			
Course Description:					
will also know the most important thermodynamic processes classification of elements, the geochemical aspects of the genes assemblages. The geochemistry of isotopes, which explores th introduced, as well as the geochemical characteristics of wate	Objectives of the course: Students will get the knowledge of the principals of the distribution of chemical element in the Earth. They will also know the most important thermodynamic processes concerning solid materials, the geochemical classification of elements, the geochemical aspects of the genesis of the most important minerals and mineral assemblages. The geochemical characteristics of water, organic matter, magmatic, sedimentary and metamorphic rocks by which we can describe the mineral-and rock-forming processes in the crust and mantle.				
Introduction; Hydrogen and alkaline metals Alkaline earth metals Boron, aluminium, carbon and silicon Rare earth elements, titanium and zirconium Uranium, thorium, vanadium, niobium and tantalum Chromium, molybdenium and tungsten Midterm test (1st); Manganese, iron, cobalt and nickel Copper, gold, silver and platina group elements Zinc, cadmium, mercury, gallium, indium and thallium Tin, lead, arsenic, antimony and bismuth Nitrogen, phosphorus and oxygen Sulphur, selenium, tellurium, haloids and noble gases					
<u>Teaching methodologies:</u> The final grade will consist of two part. During the sen average of them will be the 50% of the final grade. The re					
The 3-5 most important compulsory, or recommended lit Dill H.G. (2010): The "chessboard" classification schene White, W. M. (2013): Geochemistry. Wiley-Blackwell.	,	·			

Nordstrom D.K., Blowes D.W., Ptacek C.J. (2015): Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, Elsevier.

Albared, F. (2005): Geochemistry. An introduction. Cambridge Univ. Press.

Sarkar D., Datta R., Hanningan R.(2007): Concepts, and applications in environmental geochemistry, Elsevier.

John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols, Eds. (2003): Handbook of Mineralogy. Mineralogical Society of America.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T7 Skills: K1, K2 Attitudes: A1, A2, A9 Autonomy and responsibility: F2, F5

Demonstration of coherence of course content and unit's objectives:

This is a fundamental course, discussing systematic mineralogy and geochemical baskground of mineral formation processes

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by mineralogy laboratory work and geochemical modeling exercises

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Geodesy, spatial informatics

Course Title: Geodesy, spatial informatics		ECTS: 4	
Type of course	(C/E):	Course code: MFGGT710002	
Type (lec./sem	/lab./consult.) and Number of Cont	act Hours per Week: 2 lectures, 1 seminar	
The degree of	<u>theoretical</u> or practical nature of	the course: (in ECTS%)	
Students will b	e assessed with using the following	elements. Attendance15 %Short quizzes10	
%Midterm exa Grading scale:	m40 %Final exam 35 %		
%Midterm exa Grading scale: % value 85 -100%	m40 %Final exam 35 % Grade 5 (excellent)		
%Midterm exa Grading scale: % value 85 -100% 70 - 84% 55 - 69%	m40 %Final exam 35 % Grade 5 (excellent) 4 (good) 3 (satisfactory)		
%Midterm exa Grading scale: % value 85 -100% 70 - 84%	m40 %Final exam 35 % Grade 5 (excellent) 4 (good)		

Objectives of the course:

The students will acquire the principles of modern geomatics, its measuring methods and the application of IT in the subject. They will be prepared to apply the modern measuring techniques, the remote data-acquiring methods and use them to solve practical problems. They will learn the application fields of geo-informatics and GIS programs. The students will be competent in the application of modern geodetic technology and geo-informatics in their field. The students enable to process their professional data and organize them into geo-information databases.

Course content:

Coordinate Systems in geodesy. Geometric shape and gravitational field of Earth. Projections and mapping. Hungarian projections and mapping. Modern measuring techniques in Geodesy: Photogrammetry, Remote Sensing, GPS, Inertial Measurements, SAR technology for promoting surveying tasks in the related special fields. Geo-objects and geo-models. Raster and vector models. Data-storing techniques. Database-modelling in geo-informatics. Thematical data and their storage problems. GIS packages. Digitalization, analytical problems, knowledge based systems in GIS environment. Practical work: self-made solutions of simple casestudy problems.

Teaching methodologies:

Students will be assessed with using the following elements. Attendance15 %Short quizzes10 %Midterm exam40 %Final exam 35 %

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Quest: GeodesyTutorial;

Vanicek, P.: Geodesy;

Burkard, R.K.: GeodesyfortheLayman;

Gábor Bartha: Geoinformation Master Course. University of Miskolc, 2014.

István Havasi -Gábor Bartha: Introduction to GIS, Introduction to Geoinformatics (pp. 10.5) (Gábor Bartha), Satellite Global Positioning Systems (pp. 67) (István Havasi). angol nyelvű digitális

tankönyv: http://digitalisegyetem.uni-miskolc.hu, Miskolci Egyetem. TÁMOP 4.1.2.-08/1/A-2009-0033 projekt, 2011; Short,N.: The RemoteSensingTutorial

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T7 Skills: K2 Attitudes: A2 Autonomy and responsibility: F6

Demonstration of coherence of course content and unit's objectives:

The course contributes to skills of students which should be applied for different geological and geophysical prospecting and exploration tasks in field as well as presenting and handling spatial data.

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by exercises

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Bartha Gábor iitgabor@uni-miskolc.hu**

Computer science for engineers

Course Title: Computer science for engineers		ECTS: 2	
Type of course	(C/E):	Course code: GEMAK713MA	
Type (lec./sem	Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 0 lectures, 2 seminars		
The degree of	<u>theoretical</u> or practical nature of the	course : (in ECTS%)	
Type of Assess	sment (exam. / pr. mark. / other): P		
Grading scale:			
% value	Grade		
90 -100%	5 (excellent)		
80 - 89%	4 (good)		
70 - 79%	3 (satisfactory)		
60 - 69%	2 (pass)		
0 - 59%	1 (failed)		
Position in Curriculum (which semester): 1. Pre-requisites (<i>if any</i>): -			ny): -
Course Descri	ption:		

Objectives of the course:

Programming and using of MATLAB environment (desktop): opration with matrices, elements of linear algebra, plot of one, two or three dimensional functions, printing, control statements, handle graphics and user interface.

Course content:

Object-oriented programming. Design of programming. Computer aided solution plan for chosen problems. Numerical kernel: numerical methods, input-output. Using of files. User interface with karakters and graphics. Writing, testing an documentation for programs. Online and printed description of programs. Help and demo in programs. Printability for the results. Basic concepts, objects of Maple programming language: definition and using of assign, variable, set, array, function. The Maple as programming language: using of array, conditional and loop statement. Definition and application of procedure. Main algorithm in Maple. Graphics of Maple: plot and plot3d, animation statements. Using of files, applications.

Teaching methodologies:

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: H. Moore: MATLAB for Engineers, Prentice Hall, 2011 P. E. Gill, W. Murray, M. H. Wright: Practical Optimization, Academic Press, 1981.

J. Nocedal, S. J. Wright: Numerical Optimization, Springer, 2000.

Stoyan G. (szerk.): MATLAB, Typotex, 2005.

The MATH WORKS Inc., Release 13 Product Family Documentation Set, 2002.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T2, T7 Skills: Attitudes: Autonomy and responsibility:

Demonstration of coherence of course content and unit's objectives:

The course provides practical skills to solve technical tasks by applying numerical methods

Demonstration of coherence between teaching methodologies and the learning outcomes: This is a learning by doing course where students shall complete calculations using numerical methods with application of MATLAB

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Körei Attila matka@uni-miskolc.hu**

Geophysical exploration methods I.

Course Title: Geophysical exploration methods I.		ECTS: 4	
Type of course	(C/E):	Course code: MI	FGFT7100021
Type (lec./sem	./lab./consult.) and Number of Contact I	and Number of Contact Hours per Week: 2 lectures, 1 seminars	
The degree of	theoretical or practical nature of the	course: (in ECTS%)	
Attendance at l writing tests wi of signature.	sment (exam. / pr. mark. / other): E ectures is regulated by the university co ith satisfactory results, and two assignm		
Grading scale: % value	Grade		
86 -100%			
70 - 85%	4 (good)		
60 - 69%	3 (satisfactory)		
46 - 59%	2 (pass)		
0 - 45%	1 (failed)		
Position in Cur	riculum (which semester): 1.	Pre-requisites (if	`any): -
Course Descri	ption:	1	

Objectives of the course:

Understanding the surface geophysical methods and the geophysical methods used in boreholes for the purpose that students can design and execute geophysical research and evaluate data.

Course content:

Classification of applied geophysics methods. Gravity methods: measured quantities, basic corrections and data processing methods. Filtering gravity maps.

Evaluation of measurement data for causative bodies with simple geometries. Geological and environmental geological applications. Magnetic methods: measured quantities, basic corrections and data processing methods.

Reducing magnetic data to the pole. Evaluation of measurement data for magnetizable bodies with simple geometries. Geological and environmental geological applications. The specific resistivity of rocks, the concept of apparent resistivity. Direct current geoelectric methods. VES and multi-electrode measurement methods. Introduction of electromagnetic methods.

Induced Polarization (IP) in the time domain (TDIP) and the frequency domain (FDIP). Types of electric polarizations creating the IP signal and their geological background. Frequency domain electromagnetic methods (FDEM): MT and VLF methods, artificial source frequency sounding methods: measurement systems, zones around the transmitter, characteristics of the apparent resistivity and phase curves.

Time-domain electromagnetic methods (TDEM): transient, IP and ground radar methods. The transient EM measurement system and the zones around the transmitter. In the case of electrical and electromagnetic methods, the possibilities of controlling the depth of penetration.

The development of seismic reflected waves. The travel-time curve and its characteristic parameters. Dynamic and static corrections. The common mid-point (CMP) gather. Features of seismic (TWT) sections.

Interpretation of seismic (2D and 3D) sections. Isochronal maps. Seismic stratigraphy. Vertical and horizontal resolution. Acoustic impedance, reflection and transmission coefficients. Possibilities of detecting gas reservoirs by seismic method. The bright spot.

The development of seismic refracted waves. The travel-time curve and its characteristic parameters. Processing and evaluation of refraction data. Near-surface applications. The relationship between the petrophysical properties of rocks and parameters measured by well logging methods.

Introduction to petrophysics. Reservoir modeling. The basics of nuclear well logging methods. Determination of lithology and porosity. Presentation of main application areas.

The basics of acoustic well logging methods. Determination of sonic porosity and permeability. Presentation of main application areas.

The basics of electric well logging methods. The relation between resistivity and water saturation. Presentation of main application areas.

Possibilities for joint processing of open-hole well logging data. Crossplot techniques. Statistical and depthby-depth inversion methods.

Principle of engineering geophysical sounding measurements. Determination of petrophysical and geotechnical properties of soils/rocks.

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Three writing tests with satisfactory results, and two assignments during the semester is the requirement of signature.

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Telford W. M., Geldart L. P., Sheriff R. E., 1990. Applied geophysics. Second edition. Cambridge University Press.

Kearey P., Brooks M., Hill I., 2002. An Introduction to Geophysical Exploration. Third edition. Blackwell Science Ltd.

Serra O. & L., 2004. Well logging data acquisition and application, Editions Technip.

Szabó N. P., 2015. Geophysical exploration methods I. Electronic textbook. http://www.uni-miskolc.hu/~geofiz/education.html

Szabó N. P., 2016. Well-logging methods. Electronic textbook. http://www.unimiskolc.hu/~geofiz/education.htmlScientific papers selected from geophysical journals, e.g., First Break, Near Surface Geophysics, Geophysics, Journal of Applied Geophysics etc.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course intruduces the principal theoretical background and practical skills to plan and perform geophysical explorations for different geological environments and deposit types

Demonstration of coherence between teaching methodologies and the learning outcomes: Following the theoretical part, the students are introduced to different geophysical prospecting and exploration methods in practice.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Szabó Norbert Péter gfnmail@uni-miskolc.hu**

Data and information processing

Course Title: Data and information processing		ECTS: 4		
Type of course (C/E): Course code: MFGFT7100031			GFT7100031	
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars				
The degree of	<u>theoretical</u> or practical nature of the co	urse: (in ECTS%)		
Attendance at least two tests at least signature.	ment (exam. / pr. mark. / other): P ectures is regulated by the university code it satisfactory level, respectively during th			
Grading scale: % value	Grade			
86 -100%				
70 - 85%	4 (good)			
60 - 69%	3 (satisfactory)			
46 - 59%	2 (pass)			
0 - 45%	1 (failed)			
Position in Curriculum (which semester): 1 . Pre-requisites <i>(if any)</i> : -				
Course Description:				

Objectives of the course:

Understanding the basics of inversion method-based geoinformation processing

Course content:

Introduction to the vector analysis. Multidimensional Euclidean spaces: N-dimensional dataspace, Mdimensional model parameter space. The parameters of inversion-based data and information processing. Classification of geophysical problems: direct problem, inverse problem. Explicit and implicit forms of direct problems. The linearization of the nonlinear direct problems, introduction of the Jacobi-matrix. The linear inverse problems. Solution of the overdetermined linear inverse problems: Gaussian Least Squares method (LSQ). Normal equation, stability, condition number. Definition of the generalized linear inverse problem. Solution of the underdetermined linear inverse problem by Lagrange multiplicators, generalized inverse problem. The principle of the simple solution. The principles of information theory. The theory of signals. The principles of data and information processing by means of inversion methods. Modeling, model types. Theoretical and measured characteristics. Error characteristic parameters in the data and the model space. The purport of local and global inversion methods. Spectral transformations (Fourier integral transformation, DFT, FFT, Z-transformation). Convolution, discrete convolution. Correlation functions, discrete correlation functions. Deterministic filtering. Image processing filters.

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Writing two tests at least satisfactory level, respectively during the semester is the requirement of signature.

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Dobróka M., 2001: The Methods of Geophysical Inversion. University textbook, University of Miskolc.

W. Menke, 1984: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Inc. Mrinal Sen and Paul L. Stoffa: Seismic Exploration - Global Optimization: Methods In Geophysical Inversion. Software, Elsevier Science Ltd. 1997.

Szabó N.P., Dobróka M.: Float-encoded genetic algorithm used for the inversion processing of welllogging data Global Optimization: Theory, Developments and Applications: Mathematics Research Developments, Computational Mathematics and Analysis Series. New York: Nova Science Publishers Inc., 2013. pp. 79-104.

P.J.M. van Laarhoven, E.H.L. Aarts, 1987: Simulated Annealing: Theory and Applications. D. Reidel Publishing Company, ISBN 90-277-2513-6

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T6, T9 Skills: K2, K6, K7 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Theoretical background and application of data processing tasks are princial for completion of geophysical measurements and interpretation works. The course provides both theory and practice in this topic.

Demonstration of coherence between teaching methodologies and the learning outcomes: Following the theoretical part, the students complete data management and processing exercises.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): Dr. Dobróka Mihály dobroka@uni-miskolc.hu

Graduate research seminar

Course Title: Graduate research seminar			ECTS: 2	
Type of course	(C/E):	С	Course code: MFFAT710006	
Type (lec./sem	/lab./consult.) and Number of Conta	act Hours	s per Week: 0 le	ctures, 2 seminars
The degree of	<u>theoretical</u> or practical nature of	the cour	se: (in ECTS%)	
topic, outline a submission of f	ester the following tasks should be nd references (20%), elaboration of first draft (15%), submission of the f	the conc	ept map of the a	
Grading scale: % value	Grade			
80 -100%	01000			
70 – 79%				
60 - 69%	3 (satisfactory)			
50 - 59%	2 (pass)			
50 - 5770	1 (0 1 1)			
0 - 49%	1 (failed)			
0 - 49%	riculum (which semester): 1.	Р	re-requisites (if	any): -

Objectives of the course:

To introduce the methods of information gathering and evaluation, formal and ethic requirements of scientific communication, rules for preparation of oral and poster presentations. During the course these general requirements are actualized to the field of earth science and engineering. Examples and excercises will use English publications and text materials.

Course content:

Editorial and formal requirements of scientific publications. Planning of the concept and structure of a scientific publication, making an outline, development of a concept map. Usage of references, reference styles. Etics of scientific writing: how to avoid plagiarism, usage of citations. Information sources provided by the Central Library: hard copy, catalogue search, electronic resources. Usage of electronic information resources: search options, simple and combined search, electronic libraries. Data visualization: graphs, figures, tables. The art of presentation: preparation for an oral contribution. The art of presentation: preparation of a poster.

Teaching methodologies:

During the semester the following tasks should be completed: short presentation of the selected topic, outline and references (20%), elaboration of the concept map of the article (20%), submission of first draft (15%), submission of the final text (20%),

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

L. C. Perelman, J. Paradis, and E. Barrett: The Mayfield Handbook of Technical and Scientific Writing (McGraw-Hill, 2001).

G. J. Alred, C. T. Brusaw, and W. E. Oliu: Handbook of Technical Writing, (St. Martin's, New York, 2003).

Hagan P; Mort P: Report writing guideline for mining entógineers. Mining Education Australia, 2014.

Chun-houh Chen, Wolfgang Härdle, Antony Unwin (eds.) Handbook of Data Visualization (Springer, 2008).

MEA Report writing guide. https://www.engineering.unsw.edu.au/miningengineering/sites/mine/files/publications/MEA_ReportWritingGuide_eBook_2018ed.pdf ISO 690-2: Information and documentation - Bibliographic references.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T5, T8, T12 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11 Attitudes: A2, A3, A4, A5, A6, A7, A8, A9 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Students are introduced to the information sources available paper-based and electronically. They are also introduced to best practices on scientific writing, referencing and presentation techniques.

Demonstration of coherence between teaching methodologies and the learning outcomes:

Completing a small research article and a presentation the students improve their knowledge in scientific communication. This is a learning by doing course, where one of the most important goals is to learn the proper way of scientific writing and referen

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Mádai Ferenc askmf@uni-miskolc.hu**

Structural geology

Course Title:	Structural geology	ECTS: 4
Type of course (C/E):		Course code: MFFAT720020
Type (lec./sem	./lab./consult.) and Number of Contact H	ours per Week: 1 lectures, 2 seminars
The degree of	theoretical or practical nature of the c	ourse: (in ECTS%)
Attendance at l test and constru	sment (exam. / pr. mark. / other): E lectures is regulated by the university coducting a geological profile at least on sati requirement of signature. The exam is or	
Grading scale:		
% value	Grade	
86 -100%	5 (excellent)	
70-85%	4 (good)	
60 - 69%	3 (satisfactory)	
46 - 59%	2 (pass)	
0 - 45%	1 (failed)	
Position in Cur	riculum (which semester): 2 .	Pre-requisites (if any): -
Course Descri	ption:	
interpreting struct properties control	vides a background in the fundamentals of s ctural observations and determining the 3-D of	tructural geology. It introduces the methods of listribution of the lithological units, the physics and other structural features. The course als sing spatial models.
recording and vis features, their st tectonics and lat measure, demon Lecture: Basic te Practice: Use of Lecture: Structure	kgrounds: basic terms of structural geology sualization. Stress and strain, deformation me tyle and origin. Syngenetic structures and rge scale structures. Characteristics of tector strate and analyze the structural data. Basics erms; information on the interior of the Earth geological maps; rules and geometrical basis ral features of the rocks, deformation, descrip- tection of cross sections.	of construction of cross sections.

Practice: construction of cross sections.

Lecture: Rheology and failure envelopes.

Practice: construction of cross sections.

Lecture: Mechanisms and features of brittle deformation. Practice: construction of cross sections with drill logs

Lecture: Mechanisms and features of ductile deformation

Practice: construction of cross sections with drill logs.

Field exercise: structural orientation measurements on folded and faulted rocks.

(The exercise is organised by exchange with the contact hours of another course, in 6 hours)

Practice: working with orientation data, stereograms.

Practice: working with orientation data, stereograms.

Practice: construction exercises.

Practice: construction exercises.

Teaching methodologies:

Attendance at lectures is regulated by the university code of education and examination. Writing a test and constructing a geological profile at least on satisfactory level, respectively during the semester is the requirement of signature. The exam is ora

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Twiss, R. J. & Moores, E. M: Structural Geology. Freeman & Co., New York, 1992, 532 p. Ramsay, J. G. & Huber, M. I: The techniques of modern structural geology. Vol. 1: Strain Analysis. Academic Press, London, 1983, 1-308 p.

Ramsay, J. G. & Huber, M. I: The techniques of modern structural geology. Vol. 2: Folds and Fractures. Academic Press, London, 1987, 309-700 p.

Ramsay, J. G. & Lisle, R. J: The techniques of modern structural geology. Vol. 3: Applications of continuum mechanics in structural geology. Academic Press, London, 2000, 701-1062 p. Twiss, R. J. & Moores, E. M: Tectonics. Freeman & Co., New York, 1995, 415 p.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

In the limited timeframes of the semester, the thematics includes all topics which belong to the structural geology on introductory level. It also provides a possibility to go deeper in some topics for those who have the appropriate basic knowledge alread

Demonstration of coherence between teaching methodologies and the learning outcomes:

The program is arranged with giving the theoretical and practical basics first and then going to the application of these basics by making field observations, measurements and then working with these data. The students have to be able to interpret the obs

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Németh Norbert foldnn@uni-miskolc.hu**

Mineral deposits

Course Title: Mineral deposits			ECTS: 4	
Type of course (C/E): Course		Course code: M	rse code: MFFTT720021	
Type (lec./sem	/lab./consult.) and Number of Conta	ct Hours per Week: 2 I	lectures, 1 seminars	
The degree of	<u>theoretical</u> or practical nature of t	he course: (in ECTS%	ó)	
Test about reco	sment (exam. / pr. mark. / other): E ognizing the different hand specimens ification of ores with examples (65%)		s (35%); Written test	
% value	Grade			
80 -100%		5 (excellent)		
70-79%				
60 - 69%	3 (satisfactory)			
50 - 59%	2 (pass)			
0 - 49%	1 (failed)			
Position in Curriculum (which semester): 2. Pre-requisites <i>(if any)</i> : -		if any): -		
Course Descri	ption:			

Objectives of the course:

The key target of the course is to introduce the geology of raw material deposits, their spatial distribution, their quantity and quality for the different commodities.

Course content:

During the introduction the students get familiar with the different groups of commodities – ores, industrial minerals, solid fossil energy minerals, construction materials and their use and history. In the next period, the students will learn the ore forming geological processes and their appearances, which creates the different deposits. Also they will learn the genetic classification of the deposits with national and international examples. It prepares the students to be able to recognize the geological features of mineralizations, alterations and tectonic preformation. It covers all the important mines and ore districts in Europe and worldwide. During the laboratory classes the students can learn the natural occurrences of the ores, non-ores and industrial minerals. They will learn the physical and chemical properties, and texture of the different raw material types, and how to identify and distinguish them. To the proper use of geological maps and sections in 3D, the students will do exercises to develop their capabilities. During the related field trips the students will examine real deposits in the field.

Teaching methodologies:

Test about recognizing the different hand specimens of ores, raw materials (35%); Written test about the classification of ores with examples (65%).

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Robb, L., (2005): Introduction to Ore-Forming Processes: Blackwell Publishing Co., 373 p. (ISBN 0-632-06378-5).

EVANS, A. M. 1993: Ore Geology and Industrial Minerals – An Introduction. Blackwell Publishing, ISBN 978-0632-02953-2

CRAIG, J. R. & Vaughan, D. J. 1994: Ore Microscopy & Ore Petrography. John Wiley and Sons Inc. ISBN 10158-0012

Dill H.G. (2010): The "chessboard" classification scheme of mineral deposits. Elsevier, 2010.

Cox, D.P. Singer D.E. (1992): Mineral Deposit Models, U.S.G.S. Bulletin 1993.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Students get familiar with the different groups of commodities – ores, industrial minerals, solid fossil energy minerals, construction materials and their use and history, as well as the ore forming geological processes and their appearances, genetic clas

Demonstration of coherence between teaching methodologies and the learning outcomes:

Theoretical part is complemented by laboratory classes where students analyze specimens from different deposit types. learn the natural occurrences of the ores, non-ores and industrial minerals. They will learn the physical and chemical properties, and te

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Engineering geology and hydrogeology

Course Title: l	Engineering geology and hydrogeology		ECTS: 4	
Type of course (C/E):		Course code: MFKHT720020		
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars				
The degree of	The degree of <u>theoretical</u> or practical nature of the course: (in ECTS%)			
Type of Assessment (exam. / pr. mark. / other): E Participation in presentation lectures and practical classes is mandatory. Field trips and classroom calculations. The successful completion of the course is based on the successful completion of the semester test and the successful completion of the exam				
Grading scale: % value 85 -100% 75 - 84% 63 - 74% 50 - 62% 0 - 49%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)			
Position in Cur	riculum (which semester): 2 .	Pre-requisites (if	<i>any</i>): -	
Course Descri	ption:			
 Objectives of the course: It introduces students to the key concepts of engineering geology, modern hydrogeology, and field hydrogeology, soil formation, soil classification methods, laboratory and field soil tests, water-to-rock underwater stress, and groundwater flow patterns. Course content: Introduction to the examination of soil characteristics Determination of shear strength parameters of soils Soil consolidation Shallow and deep foundation, the basics of EC7 design The most important basics, problems and relationships of hydrogeology Hydrogeological pools, flow systems, sustainability, artificial replenishment Hydrogeology of the Carpathian Basin Isotope hydrogeology, use of stable isotopes to understand groundwater Groundwater recharge and their interpretation Well hydraulics calculations 				
<u>Teaching methodologies:</u> Participation in presentation lectures and practical classes is mandatory. Field trips and classroom calculations. The successful completion of the course is based on the successful completion of the semester test and the successful completion of the exam				
The 3-5 most important compulsory, or recommended literature (textbook, book) resources : David Daming: Introduction to Hydrogeology, McGraw-Hill Higher Education, 2002.				

F. G. Bell: Engineering Geology, Oxford, Blackwell Scientific Publications, 1992

Dr. Juhász József: Hidrogeológia. Akadémiai kiadó, Budapest, 2002. Dr. Juhász József: Mérnökgeológia I-III. Miskolci Egyetemi Kiadó, 1999; 2002; 2003 Dr. Kleb Béla: Mérnökgeológia Budapest, 1980 David Daming: Introduction to Hydrogeology, McGraw-Hill Higher Education, 2002. F. G. Bell: Engineering Geology, Oxford, Blackwell Scientific Publications, 1992 S. E. Ingebritsen, W. E. Sanford: Groundwater in Geologic Processes. Cabridge University Press, 1998. Kruseman G.P. and Ridder N.A: Analysis and Evaluation of Pumping Test Data, ILRI publication, Wageningen, Netherlamds, 1990, pp. 1-377. Neven Kresic: Quantitative Solutions in Hydrogeology and Groundwater Modeling. Lewis Publishers, 1997. Barnes, C. W. (1988): Earth, Time and Life. John Wiley and Sons, New York Brookfield, M. (2006): Principles of Stratigraphy. Blackwell Publishing, New York

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K8, K9, K10, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The course provides the theory and practical skills to understand the hydrogeological and engineering geological background for interpretation of different geological and geotechnical processes.

Demonstration of coherence between teaching methodologies and the learning outcomes: Theoretical part is complemented by laboratory classes where students perform calculations and modeling exercises of hydrogeological systems and geotechnical characterization of soils.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Szűcs Péter hgszucs@ui-miskolc.hu**

Analytical technics in mineralogy and petrology

Course Title: A	nalytical technics in mineralogy and p	etrology	ECTS: 2	
Type of course (C/E):		Course code: MFFAT720025		
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 1 lectures, 1 seminars				
The degree of theoretical or practical nature of the course: (in ECTS%)				
There are two wit to minimum 50% final grade). Mis	nent (exam. / pr. mark. / other): P itten tests about the theoretical part (509 b. Two laboratory report must be written sing, or not passed tests can be complete	about the individu		
Grading scale: % value 80 -100% 70 - 79% 60 - 69% 50 - 59% 0 - 49%	Grade 5 (excellent) 4 (good) 3 (satisfactory) 2 (pass) 1 (failed)			
Position in Curri	culum (which semester): 2.	Pre-requisites (if	fany): -	
Course Descript	tion:			
for the students. I theoretical classes. geological question <u>Course content</u> : Description of the Physical properties X-ray diffraction le X-ray diffraction le X-ray diffraction p DTA lecture DTA quantitative of Scanning electron	he course is to introduce the different analy There are laboratory classes with individua Thru these exercises the students learn what as. work, formulating analytical pairs, work and a (hardness, magnetic, solubility, density), d ecture I. ecture II. ractice calculations microscopy lecture I. microscopy lecture II. microscopy practice ns	l work about the le t is the best availabl d lab safety teaching	arned methods nearby the e method to answer certain	
There are two wirto minimum 50%	itten tests about the theoretical part (50 ^o). Two laboratory report must be written or not passed tests can be completed a			
Reed SJB (2005) Cambridge Univ O'Donoghue M	portant compulsory, or recommended lit): Electron Microprobe Analysis and Service Press. (2006): Gems: Their sources, description (2016): The ore minerals under the microscop	canning Electron I	Microscopy in Geology. on. Elsevier.	

Goldstein J et al. (2003): Scanning Electron Microscopy and X-ray Microanalysis. Kluwer Academic/Plenum Publishers.

King M. et al. (1993): Mineral Powder Diffraction File Search- and Databook. ICDD, USA.

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T7, T8, T9 Skills: K1, K2, K3, K5, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Lectures cover the theoretical fundamentals for different methods of analysis of minerals, which is essential basics for geological exploration tasks.

Demonstration of coherence between teaching methodologies and the learning outcomes:

Following the introduction of different analytical methods, this is a learning by doing course where students go through the preparation, analysis and interpretation steps for various analytical techniques (XRPD, EPMA, SEM)

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Zajzon Norbert askzn@uni-miskolc.hu**

Geopphysical engineering specialisation

Geophysical measurements

Course Title:	Geophysical measurements			ECTS: 4
Type of course	Type of course (C/E): Course code: MFGFT72001		GFT720012	
Type (lec./sem.	Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars			ctures, 1 seminars
The degree of	<u>theoretical</u> or practical nature of t	he cou	urse: (in ECTS%)	
Type of Assess	ment (exam. / pr. mark. / other): ex	am		
Grading scale:				
% value	Grade			
90 -100%	5 (excellent)			
80 - 89%				
65 - 79%	3 (satisfactory)			
60 - 64%	2 (pass)			
0 - 49%	1 (failed)			
Position in Cur	riculum (which semester): 2.		Pre-requisites (if	any): -
Course Descri	ption:			

Objectives of the course:

Within the frame of this subject the students specialized in geophysical engineering study the application of geophysical methods in the different exploration phases, as well as the principles and aspects of planning geophysical surveys. An additional aim of the subject is to familiarize the students with the working principles and use of geophysical measurement devices.

Course content:

Lectures: General principles and main tasks of the raw-material exploration. Exploration phases. The principles of geophysical surveys. The role of geophysical methods in the exploration phases. Gravity data acquisition. Measuring devices and measured quantities of the gravity method. Gravity data processing and corrections. Magnetic data acquisition. Measuring devices and measured quantities of the magnetic method. Magnetic gradiometry. Magnetic data processing and corrections. The components and properties of geoelectrical data acquisition systems. Electrode configurations and setting up of electrode spreads. Main aspects of planning geoelectrical surveys. The components and properties of electromagnetic data acquisition systems. Survey configurations of different electromagnetic methods. Main aspects of planning electromagnetic surveys. Quality control of recorded data. The types and properties of seismic sources. The components and properties of seismic data acquisition systems. Main aspects of planning seismic surveys. Quality control of recorded seismic data. The field techniques of improving the signal-to-noise ratio. Basic steps of seismic data processing. Components and properties of data acquisition systems used for vertical seismic profiling (VSP). Basic steps of VSP data processing. Main properties and components of the techniques of borehole geophysical logging (wireline logging and measured while logging). Quality control a well logs. The constructions and properties of resistivity and induction logging tools. The constructions and properties of nuclear logging tools. The constructions and properties of sonic logging tools. Seminar

Spreading systems of geophysical surveys. The steps and products of the workflow of geophysical surveys. The introduction of Scintrex CG-5 Autograv gravimeter. The introduction of GEM GSM-19 Ovehauser magnetometer. The introduction of geoelectrical data acquisition systems. The introduction of VLF measuring

devices and ground penetrating radar. The introduction of a gamma spectrometer. The main functions and properties of the components of a wireline logging system. The main aspects of planning a well logging program.

Teaching methodologies:

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

P. Kearey, M. Brooks, I. Hill, 2002: An introduction to geophysical exploration, Blackwell Science Ltd., ISBN 0-632-04929-4

D. V. Ellis, J. M. Singer, 2007: Well logging for earth scientists. Springer, Dordrecht, The Netherlands, ISBN 978-1-4020-3738-2 (HB).

W. M. Telford, L. P. Geldart, R. E. Sheriff., 1990: Applied Geophysics. 2nd Edition. Cambridge University Press, ISBN: 0 521 32693 1

O. Serra, L. Serra, 2004: Data Acquisition and Applications, Editions Serralog, France, ISBN: 978295156125

Other educational materials and study aids on the web page of Geophysical Department: http://www.uni-miskolc.hu/~geofiz/segedlet.html

Operating manuals: https://scintrexltd.com/wp-content/uploads/2017/02/CG-5-Manual-Ver_8.pdf; https://userpage.fu-berlin.de/geodyn/instruments/Manual_GEM_GSM-19.pdf

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K9, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The syllabus elaborated for and applied to the education of the course strives to cover all the important parts of the specialities connected to the objectives. This well-considered construction of topics enables the lecturer to emphasize the essential re

Demonstration of coherence between teaching methodologies and the learning outcomes:

The applied teaching methodologies are aimed at communicating up-to-date knowledge, developing the students' capability to apply the introduced ideas and information, improving their ability to test these ideas and evidence, to generate own ideas and evid

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Vass Péter, private professor gfvassp@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*): Dr. Gombár László, Dr. Turai Endre, Dr. Szabó Norbert Péter

Geophysical Exploration Methods II

Course Title: Geophysical Exploration Methods II			ECTS: 4	
Type of course (C/E): Course code: MFGFT720		GFT720015		
Type (lec./sem./lab./consult.) and Number of Contact Hours per Week: 2 lectures, 1 seminars				
The degree of t	The degree of theoretical or practical nature of the course: (in ECTS%)			
Type of Assessment (exam. / pr. mark. / other): exam				
Grading scale:				
% value				
86 -100%	5 (excellent)			
71 – 85% 4 (good)				
61 - 70% 3 (satisfactory)				
46 - 60%	46 - 60% 2 (pass)			
0 - 45%	1 (failed)			
Position in Curriculum (which semester): 2. Pre-requisites <i>(if any)</i> : -			any): -	
Course Description:				

Objectives of the course:

The main objective of the subject is to familiarize the students specialized in geophysical engineering with the details of different geophysical methods used in the fields of raw-material exploration and environmental investigations.

Course content:

Physical basics of seismic methods. Reflexion seismic method. Refraction seismic method. Vertical seismic profile (VSP). Geophysical inversion of magnetic data. Magnetic forward problem of arbitrary shaped source. The problem of ambiguity. 3D underdetermined problems of magnetic data. Geological applications. Physical basics of geoelectrical methods. Self-potential method. Charged-body method. Direct current resistivity methods. Induced polarization method. Physical basics of electromagnetic (EM) methods. Magnetotelluric method. Frequency-domain (FD) electromagnetic methods. Transient electromagnetic method (TEM). Very-low-frequency electromagnetic method (VLF-EM). Main features and essentials of borehole geophysics. Classification of well logging methods. Formation density logging. Photoelectric factor logging. Neutron logging methods. Well log interpretation techniques. Quick-Look Interpretation. Crossplots and overlays. Formation evaluation in shaly sands.

Teaching methodologies:

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

W. M. Telford, L. P. Geldart, R. E. Sheriff., 1990: Applied Geophysics. 2nd Edition. Cambridge University Press, ISBN: 0 521 32693 1

UBC Geophysical Inversion Facility – Inversion manuals (GRAV3D and MAG3D). http://gif.eos.ubc.ca/documentation

P. Kearey, M. Brooks, I. Hill, 2002: An introduction to geophysical exploration, Blackwell Science Ltd., ISBN 0-632-04929-4

D. V. Ellis, J. M. Singer, 2007: Well logging for earth scientists. Springer, Dordrecht, The Netherlands, ISBN 978-1-4020-3738-2 (HB).

O. Serra, L. Serra, 2004: Data Acquisition and Applications, Editions Serralog, France, ISBN: 978295156125

Other educational materials and study aids on the web page of Geophysical Department: http://www.uni-miskolc.hu/~geofiz/segedlet.html

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T5, T6, T7, T8, T9 Skills: K1, K2, K3, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

The syllabus elaborated for and applied to the education of the course strives to cover all the important parts of the specialities connected to the objectives. This well-considered construction of topics enables the lecturer to emphasize the essential re

Demonstration of coherence between teaching methodologies and the learning outcomes:

The applied teaching methodologies are aimed at communicating up-to-date knowledge, developing the students' capability to apply the introduced ideas and information, improving their ability to test these ideas and evidence, to generate own ideas and evid

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Vass Péter, gfvassp@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*): Dr. Gombár László, Dr. Turai Endre, Dr. Szabó Norbert Péter

Geological engineering specialisation

Historical geology

Course Title:	Historical geology		ECTS: 4
Type of course	(C/E):	Course code: MF	FFTT720028
Type (lec./sem.	/lab./consult.) and Number of Contact Ho	urs per Week: 2 le	ctures, 1 seminars
The degree of	<u>theoretical</u> or practical nature of the co	urse: (in ECTS%)	
Completion of once. Practical them	sment (exam. / pr. mark. / other): exam inter-semester test with at least satisfactor requirements: obligatory participation in t	•	· ·
Grading scale: % value	Grade		
80 -100%			
70 - 79%			
60 - 69%			
50 - 59%	2 (pass)		
0 - 49%	1 (failed)		
Position in Cur	Position in Curriculum (which semester): 2 . Pre-requisites <i>(if any)</i> : -		
Course Descri	ption:	1	

Objectives of the course:

The aim of the subject is to give knowledge (1) on the role of time in the geological processes, (2) on the different methods of age-determination, (3) on the structural evolution of the Earth and (4) on the history of life in the Earth with special emphasis on the utility of all these in prospecting raw materials) and how to reconstruct paleoenvironments in geology as basic information for raw material exploration

Course content:

Principles of stratigraphy. Basic principles of stratigraphy, litho-, bio- and chronostratigraphy. Different methods of stratigraphical correlation and their significance in raw material prospecting. Age-determining methods: biostratigraphy, radiometry, magnetostratigraphy, chemostratigraphy, event stratigraphy, sequence stratigraphy. Reconstruction of different palaeoenvironments and their application in raw material prospecting. Different magmatic, metamorphic and sedimentary facies types. The geological time scale, the structural, climatological and biological evolution of the Earth during the Precambrian, the Paleozoic, the Mesozoic and the Cenozoic. The evolution of Homoidea.

Teaching methodologies:

Completion of inter-semester test with at least satisfactory result (see below). It can be repeated once. Practical requirements: obligatory participation in the field-trips, ppt-presentation for one of them

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Levin, H.L. (2006) – The Earth Through Time, 8th Ed., 616 p., Wiley Barnes, C.W. (1988): Earth, Time and Life. John Wiley and Sons, New York Brookfield, M. (2006): Principles of Stratigraphy. Blackwell Publishing, New York

Competencies to evolve (relevant Learning outcomes, Appendix 1): Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

This is a fundamental course to understand the principles of stratigraphy, its applicability to solve complex geological problems and tasks.

Demonstration of coherence between teaching methodologies and the learning outcomes: The lectures of the course introduce in detail the methods included in the curriculum, while practical skills are developed by field trips and case studies.

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Less György, full professor foldlgy@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

Geological mapping

Course Title: Geological mapping		ECTS: 4
Type of course	(C/E):	Course code: MFFTT720029
Type (lec./sem	./lab./consult.) and Number of Cont	act Hours per Week: 1 lectures, 2 seminar
The degree of	<u>theoretical</u> or practical nature of	the course: (in ECTS%)
		cal cross-sections based on real Carpathian eparation of covered and uncovered (witho
	posits) geological map of an about 2	
Grading scale:	posits) geological map of an about 2	
Grading scale: % value	posits) geological map of an about 2 Grade	
Grading scale:	oosits) geological map of an about 2 Grade 5 (excellent)	
Grading scale: % value 90 -100%	Grade 5 (excellent) 4 (good)	
Grading scale: % value 90 -100% 75 - 89%	Grade 5 (excellent) 4 (good)	
Grading scale: % value 90 -100% 75 - 89% 60 - 74%	Grade 5 (excellent) 4 (good) 3 (satisfactory)	

Objectives of the course:

The subject gives knowledge on the figuration of geological phenomena on topographic maps, on preparing geological maps, cross-sections, their legend and on assembling explanatory report

Course content:

The aim of preparing geological maps. The geological map and its additional parts (geological cross-sections, stratigraphical columns and legend). Geological phenomena figured in the geological maps: lithostratigraphical units, structural chacteristics. Different types of geological boundaries and their recognition on the field. Orientation on the field with topographical map and with GPS. Documentation of field observations in the field booklet and on the topographical map. Preparation of geological cross-sections. Preparation of covered and uncovered (without Quaternary deposits) geological maps with stratigraphical column and legend. Assembly of explanatory reports

Teaching methodologies:

Criterion for signature: Preparation of two geological cross-sections based on real Carpathian geological maps (from Slovakia and Romania); Preparation of covered and uncovered (without Quaternary deposits) geological map of an about 2 sq. km territory (i

The 3-5 most important compulsory, or recommended **literature** (textbook, book) **resources**: Tearprock, D.J. & Bischke, R.E. (2002): Applied Subsurface Geological Mapping with Structural Methods 2nd Edition, 846 p., Prentice Hall

Hamilton, D.E. & Jones, T.A.: Computer modeling of geological surfaces and volumes. – AAPG Computer applications in geology. No.1., 589 p. Tulsa, Oklahoma

McClay, K. (1995): The mapping of Geological Structures. Geolog. Soc. of London Handbook. John Wiley Sons, Chichester, New York, Brisbane, Toronto, Singapore.

SURFER 8.0 Tutorial and User's Guide. - Golden Software. P512 . Denver

Competencies to evolve (relevant Learning outcomes, Appendix 1):

Knowledge: T1, T2, T3, T4, T5, T7, T8, T9 Skills: K1, K2, K3, K5, K6, K7, K9, K11, K12, K13 Attitudes: A1, A2, A3, A4, A5, A7 Autonomy and responsibility: F1, F2, F3, F4, F5

Demonstration of coherence of course content and unit's objectives:

Theoretical part and laboratory exercisis gives an overview to the students about methodology and tools of geological mapping works.

Demonstration of coherence between teaching methodologies and the learning outcomes: After giving the theoretical basis of mapping methodology, this is a learning by doing course, where the students should compete geological mapping work in the Bükk mountains

Responsible Academic staff member and lecturing load (*name, position, scientific degree*): **Dr. Less György, full professor foldlgy@uni-miskolc.hu**

Other Academic Staff Involved in Teaching, if any and lecturing load (*name, position, scientific degree*):

List of competences

a) Knowledge

T1 - Understands the processes described by the general and specific theories required for the practicising of the fields of earth science engineering (geologist-engineering, geophysical-engineering, geoinformatics-engineering), understands the internal connections between geological processes, and knows the planning and interpretation procedures based on the processes.

T2 - Has a solid technical and scientific knowledge required for the high-level progress in earth sciences engineering disciplines, among others in numerical methods, technical physics and their contexts. T3 - Based on his/her knowledge, understands the structure of the raw material extraction sector, the technologies used for the extraction and preparation of mineral raw materials, as well as the scope of geo-environmental tasks, their external socio-economic environment and regulatory system.

T4 - Has a thorough knowledge and understanding of the best practices applied to earth science engineering tasks and the long-term development directions that can be expected in this field in the medium term.

T5 - Knows the problem-solving (research-planning and management) techniques of best available practices in earth sciences.

T6 - At the application level, knows the GIS methods of computer design and analysis and the geoinformatics systems.

T7 - Knows in detail the geological and geophysical methods suitable for exploring natural resources.T8 - Has a well-established knowledge of the methods of exploring mineral deposits.

T9 - Has detailed knowledge and sound application practice on the methods of knowledge acquisition and data collection in the technical earth sciences, and on their instrumental measurement and IT data processing procedures.

T10 - Has a well-established knowledge of the legal, economic, administrative, safety, work and fire protection, information technology and environmental protection fields related to the fields of earth science engineering.

b) Skills

K1- Able to apply general and specific basic and applied scientific theories within the technical earth sciences, able to systematize them, to solve independent engineering tasks (mainly complex geological prospecting, final report summarizing exploration results, geological-geophysical parts of environmental impact assessments).

K2 - Able to convey knowledge authentically by preparing presentations and written documents in Hungarian or in a foreign language.

K3 - Able to perform complex planning, construction, inspection and official licensing tasks (geological-geophysical exploration plans of natural resources, acquisition of environmental geology) with the innovative application of theories and terminology describing technical earth science knowledge.

K4 - Able to review legal and economic knowledge and activities related to technical earth science tasks, to optimize connections.

K5 - Able to actively cooperate with, organize, manage, and supervise larger and more complex activities based on or incorporating technical earth science tasks (especially mining, environmental technology investments, operations).

K6 - Uses modern information acquisition and data collection methods.

K7 - Able to solve technical problems requiring innovative skills in theory and practice (especially field, surface, underground data collection, measurements, and their processing and interpretation requiring innovative skills).

K8 - Able to process raw material exploration and production data and organize it into geoinformatics databases (systems).

K9 - Able to prospect and explore geological structures, to plan these research phases.

K10 - Able to take quantitative and qualitative assessment of mineral resources, to evaluate their economics, to compile concession tenders and to give opinions on this type of report.

K11- Able to contribute to the solution of geological-geophysical tasks arising during the extraction of mineral raw materials (planning, investment, operation, closure) and to analyze the solution possibilities.

K12 - Able to review the structure of the raw materials extraction sector, the technologies used for the extraction and processing of mineral raw materials, as well as the scope of geo-environmental tasks, their external socio-economic environment and regulatory system.

K13 - Able to organize cooperation with related disciplines and manage the (working) group within the framework of larger and more complex activities based on or incorporating technical earth science tasks.

c) Competence in terms of attitude

A1 - Open and receptive to the knowledge and acceptance of professional and technological methodological developments in the fields of technical earth sciences, to the acquisition of their management, and to the participation in their development.

A2 - Actively applies innovative skills and knowledge in solving professional problems in the fields of earth science engineering.

A3 - Commits and convincingly demonstrates to knowing and adhering to the professional and ethical values.

A4 - Professionalism and professional solidarity have deepened.

A5 - Respects and follows the ethical principles and written rules of work and professional culture in activities, and is able to follow them even when managing small workgroups.

A6 - In the course of professional work, observes and adheres to the requirements of safety, health, environmental protection and quality assurance and control (SHE and QA / QC).

A7 - Has a sufficient motivation to carry out activities in often changing working, geographical and cultural circumstances.

(d) Competence in terms of autonomy and responsibility

F1 - With the in-depth knowledge of the received strategic guidelines and external environmental requirements, is able to plan the work independently, and is also suitable to lead workgroups. F2 - Takes responsibility and is accountable for the work processes carried out under his / her control, for the employees working in them.

F3 - Makes decisions carefully, in consultation with representatives of other disciplines (primarily legal, economic, and environmental), independently, takes responsibility for decisions.

F4 - In addition to constructive teamwork, is an autonomous specialist capable of making professional decisions in the field of operation entrusted to him/her.

F5 - Committed to the practice of sustainable natural resource management, occupational health and safety

Semester 3 WUST

Zał. nr 5 do ZW 78/2023

crediting

with grade

2

2

0.9

Attachment no. 4. to the Program of Studies

FACULTY OF GEOEN Name of subject in Pol Name of subject in Eng Main field of study: Specialization: Level and form of stud Kind of subject: Subject code Group of courses	SUBJ ish Geofizyka i glish Engineering Mining and go Mining Engino Geotechnical a Geomatics for Mineral Resou lies: 2nd level, full- obligatory	IECT CARI nżynierska g Geophysic eology eering, and Environ Mineral Re rce Explora time	D s mental F source M	Ingineerin		
		Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organ University (ZZU)	ized classes in	15			15	
Number of hours of total s (CNPS)	tudent workload	25			50	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

(P)

crediting

with grade

1

0,8

1. has knowledge of fundamentals of applied geophysics, physics and geology.

other academics (BU)

- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.

For group of courses mark (X) final course

including number of ECTS points for practical classes

classes that require direct participation of lecturers and

including number of ECTS points corresponding to

4. is able to work in a team.

Form of crediting

*delete as not necessary

Number of ECTS points

SUBJECT OBJECTIVES

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying

C3 familiarize with various geophysical surveys.

- C4 acquisition of skills to plan geophysical field surveying and to interpret its results.
- C5 development of skills to work in a group.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

relating to skills:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

relating to social competences:

PEU_K01 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

PROGRAMME CONTENT Number of Lecture hours Physical properties of rocks. Inter-relationships between the various Lec 1 subdisciplines of applied geophysics. Overview of geophysical methods, 1 their physical principles and applications. Methodology of geophysical surveying. Engineering problems solved with geophysical surveying. Case studies. Lec 2 2 Electrical resistivity methods. Tomography and VSE. IP method. Physical Lec 3 2 principles. Equipment. Methods of field surveying. Interpretation and application. Case studies. Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric Lec 4 methods. Physical principles. Methods of field surveying. Equipment. 2 Interpretation and application. Case studies. GPR surveying. Physical principles. Methods of field surveying. Equipment. Lec 5 2 Interpretation and application. Case studies. Seismic interferometry. Seismic tomography. Physical Lec 6 principles. 2 Applications. Case studies. Mine geophysics. Seismology. Seismic methods. Active and passive seismic Lec 7 2 tomography. Microgravimetry. Case studies. Gravity and magnetic surveying. Equipment. Methods of field surveying. Lec 8 2 Interpretation and application. Case studies. Total hours 15 Number of Project hours

Proj 1	One selected geophysical technique. Fundamentals and equipment. Field	4			
	surveying				
Proj 2	Processing and interpretation of field data.	3			
Proj 3	Solving the geophysical problems.	8			
	Total hours	15			
	TEA CHING TOOL & LIGED				

TEACHING TOOLS USED

N1. N1.Lecture aided by presentation.

N2.Demonstration.

N3.Discussion and consultations

N3Calculations

N5Practical field surveying

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.
- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

SECONDARY LITERATURE:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.

[3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY **SUBJECT CARD** Name of subject in Polish Wspomagane komputerowo modelowanie geologiczne i geostatystyka.) Name of subject in English: Computer Aided Geological Modelling and Geostatistics Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering, **Geomatics for Mineral Resource Management Mineral Resource Exploration Profile:** academic Level and form of studies: 2nd level, full-time Kind of subject: obligatory W06GIG-SM3002 Subject code **Group of courses** No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	15		45		
organized classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload (CNPS)					
Form of crediting	crediting with grade	Examination / crediting	crediting with grade	Examination / crediting	Examination / crediting
		with grade*		with grade*	with grade*
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS	0,8		1,9		
points corresponding to classes					
that require direct participation					
of lecturers and other					
academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

SUBJECT OBJECTIVES

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.
- C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

relating to skills:

PEU U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

relating to social competences:

PEK_K01 The student can think and act in a creative and enterprising way

	PROGRAMME CONTENT			
	Lecture	Number of hours		
Lec 1	Introduction to the course. Geological database and validation of the geological data.	2		
Lec 2	Geology of the seam.	2		
Lec 3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2		
Lec 4	Spatial distribution of samples values. Regionalized variable.	2		
Lec 5	BLUE Estimator of the mean value: Kriging.	2		
Lec 6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2		
Lec 7	Reserves modelling and evaluation.	2		
Lec 8	Mineral resources. International reporting. The JORC Code	1		
	Total hours	15		

	Laboratory	Number of hours		
La1	1 Determining the rules of work at the laboratory.			
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3		
La3	Data validation and creating initial geological database.	3		
La4	Construction of the structural wireframe model of stratigraphy layers.	3		
La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3		
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3		
La7	Domain analysis with the use of the statistical methods.	3		
La8	Determination of the empirical variogram. Anisotropy analysis.	3		
La9	Variogram modelling.	3		
La10	Kriging Neighborhood Analysis - defining optimal parameters of the	3		

	estimation procedure.	
La11	Estimation of quality parameters in block model of the deposit layers.	3
	Validation of the estimation quality.	
La12	Validation of the quality model and classification of the resources. Balance	3
	resources evaluation.	
La13	Preparation of data for continuous surface mining ultimate pit design.	3
	Ultimate pit outlines generation	
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Total hours	45

TEACHING TOOLS USED

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01, PEU_W02	Lecture grade on the basis of the written examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02, PEU_U03	Laboratory task assessment: "reserves evaluation".
P average of F1, F2, F3, F	'4	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

SECONDARY LITERATURE:

[10] Handouts, tutorials.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEO	ENGINEERING, MINING AND GEOLOGY
	SUBJECT CARD
Name in Polish:	Cyfrowa kopalnia
Name in English:	Digital Mine
Main field of study:	Mining and geology
Specialization:	Mining Engineering,
-	Geotechnical and Environmental Engineering,
••••••	Mineral Resource Exploration
Level and form of st	udies: 2nd level, full-time
Kind of subject:	obligatory
Subject code:	W06GIG-SM3006
Group of courses:	No

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	15		15		
of organized					
classes in					
University (ZZU)					
Number of hours of total	25		25		
student workload					
(CNPS)					
Form of crediting	crediting		crediting		
	with grade		with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	1		1		
including number of			1		
ECTS points for practical					
(P) classes					
Including number of ECTS	0,8		0,8		
points for direct teacher-					
student contact					
(BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Computer literacy skills
- 2. Basic knowledge related to Mining Engineering and Mineral Processing
- 3. Programming

SUBJECT OBJECTIVES

C1. Acquisition of the ability to create utility applications in the C / C ++ and LabVIEW environment C2. Providing students with knowledge about embedded systems, their construction, selection of components, designing, programming and their exploitation.

C3. Familiarizing with the advances of technology & methods of future mining operations.

C4. Acquisition and consolidation of social competencies including emotional intelligence skills involving the cooperation in the group of students aiming to effectively solve problems. Responsibility, honesty and fairness in the proceedings; observance force in academia and society

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEU_W01 A student has knowledge related to automation systems, control systems and measurement systems in various aspects of the mining industry.
- PEU_W02 The student has knowledge of the importance of automation and robotics systems in modern mining.

relating to skills:

- PEU_U01 A student is able to select and integrate elements of a specialized measuring and control system including: control unit, executive system, measuring system as well as peripheral and communication modules
- PEU_U02 A student can design improvements in the existing design solutions for automation and robotics components and systems

relating to social competences:

- PEU_K01 A student is aware of the need for a professional approach to technical issues, meticulous reading of documentation and knows environmental conditions in which devices and their components can function
- PEU_K02 The student has knowledge concerning the benefits of creation and implementation new solutions&technologies into mining industry

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec 1	Terminology (process, automation, robots, measurement devices, control systems). Definition of digital mine	2			
Lec 2	Aims, benefits, drawbacks of automation. Industrial revolutions. Definition of industry 4.0. Overview of components of the 4th industrial revolution. Industry 4.0 and mining	2			
Lec 3	Elements of technological process in mining. Automation of cyclic processes Measuring technologies in industry 4.0. Sensors systems. Data transmission and data storage technologies. Analytics in industry 4.0. Industrial BigData, Cloud Computing	2			
Lec 4	Industrial Internet of Things. M2M communication, anti-collision systems, location of people underground	2			
Lec 5	Virtual and augmented realities for industry. Simulators. Digital Twin. Digital models of processes and objects. Management information creation systems, reporting	2			
Lec 6	Case study: Automation in open pit lignite mining (KTZ, Autonomous haulage (use case from Australia))	1			
Lec 7	Case study: underground mine (Rock Vader – Sandvik project, other use cases from Sandvik, Epiroc, MineMaster, Zanam, AOT from ZGPS KGHM, KIC project on shaft inspection,etc)	2			
Lec 8	Case study: mineral processing (ConVis, FlowVis) in KGHM, OPMO project	2			
	Total hours	15			

	Form of classes - laboratory		
Lab1	Scope of the course, teaching purpose, crediting conditions, literature, data. Introduction to ARDUINO	3	
Lab2	Basic sensors for physical parameters measurements	3	
Lab3	Measurements in Labview	3	
Lab4	Analysis and Visualization in Labview	3	
Lab5	Control in labview	3	
	Total hours	15	

TEACHING TOOLS USED

N1. Type of lectures - traditional, illustrated with multimedia presentations with the usage of audio- visual equipment.

N2. Discussion concerning lectures and laboratory.

N3 Configuration on laboratory classes measuring systems (hardware and software),

performing of measurements, teamwork

N4. Projects defence - oral and written form.

N5. Duty hours.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at the end of semester)	Educational effect number	Way of evaluating educational effect achievement
F1, P1	PEK_U02- PEK_U04	 F1.1 Grade from laboratory work's performance and its merits F.1.2 Grade from laboratory work's oral or written defence P1.Final grade (weighted average of F1.1 - 60% and F1.2 - 40%).
F2, P2	PEK_U02- PEK_U04	 F2.1 Grade from activity during the lecture (questions, discussions etc) F.2.2 Grade from written exam P2.Final grade (weighted average of F2.1 - 20% and F2.2 - 80%).

LITERATURE

PRIMARY LITERATURE:

- [1] LabVIEWTM Getting Started with LabVIEW http://www.ni.com/pdf/manuals/373427j.pdf
- [2] Monk Simon: Arduino dla początkujących. Podstawy i szkice, Anderson R., Cervo D., Helion, 2018
- [3] Monk Simon: Arduino dla początkujących. Kolejny krok, Anderson R., Cervo D., Helion, 2015

ONLINE LITERATURE:

- [1] LabVIEW Tutorial
- [2] ARDUINO Tutorial
- [3] Materials prepared by Tutor
- [4] Internet websites

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Radosław Zimroz, radoslaw.zimroz@pwr.edu.pl dr inż. Anna.Nowak-Szpak

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY SUBJECT CARD

Name of subject in Polish Bezpieczeństwo i higiena pracy Name of subject in English: Occupational Health and Safety Main field of study (if applicable): Górnictwo i geologia. Specialization (if applicable): Mining Engineering, Geotechnical and Environmental Engineering,

Mineral Resource Exploration

Profile: academicLevel and form of studies: 2nd level, full-timeKind of subject: obligatorySubject codeW06GIG-SM3005Group of coursesNo

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			25	
Form of crediting	crediting with grade			crediting with grade	
For group of courses mark (X) final course					
Number of ECTS points	1			1	
including number of ECTS points for practical classes (P)				1	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,7			0,8	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

SUBJECT OBJECTIVES

C1. To introduce the principles of occupational risk assessment in accordance with relevant standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU_W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

relating to skills:

- PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry
- PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.
- PEU_U03 Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

relating to social competences:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	PROGRAMME CONTENT				
	Lecture	Number of hours			
Lec 1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3			
Lec 2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3			
Lec 3	Dangerous factors - identification and assessment of risks.	3			
Lec 4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3			
Lec 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3			
	Total hours	15			

	Project		
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3	
Pr2	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of	3	

	harmful factors (vibration, chemical agents)	
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15

TEACHING TOOLS USED

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes
forming during	code	achievement
semester), P –		
concluding (at semester		
end)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03	grade from a presentation
	PEU_U01- U03	
P2	PEU_W01-W03	final grade from project classes (arithmetic
	PEU_U01- U03	average of F1 and F2)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- Occupational Safety and Health in Mining. Anthology on the situation in 16 mining countries. Ed.: Kaj Elgstrand and Eva Vingård. University of Gothenburg nr 2013;47(2) (gupea.ub.gu.se > bitstream > gupea 2077 32882 1)
- [2] Boyle, Tony: Health and safety: Risk management. IOSH, 2001. (http://www.iosh.co.uk/index.cfm?go=publications.main)

 [3] Encyclopaedia of occupational health and safety. Fourth edition Stellman, Jeanne M. (ed.). International Labour Organization, 1998 (http://www.ilo.org/public/english/support/publ/xtextre.htm#b103) http://www.ilo.org/public/english/support/publ/encyc/)

[4] McKeown, Céline; Twiss, Michael: Workplace ergonomics: A practical guide, IOSH, 2001, 160 p. http://www.iosh.co.uk/index.cfm?go=publications.main

SECONDARY LITERATURE:

Handouts, articles

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 78/2023

Attachment no. 4. to the Program of Studies

	0				
FACULTY OF GEO	FACULTY OF GEOENGINEERING, MINING AND GEOLOGY				
	SUBJECT CARD				
Name in Polish:	Zasady i zastosowania InSAR oraz GIS w górnictwie				
Name in English:	Principles and Application of InSAR and GIS in mining				
Main field of study:	Mining and geology				
Specialization:	Geomatics for Mineral Resources Management				
-	Mineral Resource Exploration				
Level and form of st	udies: 2nd level, full-time				
Kind of subject:	obligatory				
Subject code:	W06GIG-SM3007				
Group of courses:	No				

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours	30		45		
of organized					
classes in					
University (ZZU)					
Number of hours of total	50		75		
student workload					
(CNPS)					
Form of crediting	Examination		crediting		
			with grade		
For group of courses mark					
(X) final course					
Number of ECTS points	2		3		
including number of			3		
ECTS points for practical					
(P) classes					
Including number of ECTS	1,4		2,0		
points for direct teacher-					
student contact					
(BU) classes					

*niepotrzebne skreślić

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of C ++ and Python programming language.
- 2. Basic knowledge of GIS functions and spatial data acquisition techniques
- 3. Ability to use GIS software package
- 4. Basic knowledge of databases

SUBJECT OBJECTIVES

- C1 Presentation of knowledge of satellite radar interferometry, as well as the possibility of using it in the ground deformation measurements.
- C2 Acquiring the ability to determine surface displacements based on satellite radar data.
- C3 Presentation of information on the use of GIS in advanced analysis of objects, phenomena and processes occurring in space.
- C4 Acquiring the ability to formulate and solve tasks using GIS analytical functions.
- C5 Acquiring skills to use spatial data and services in accordance with the INSPIRE Directive

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

- PEK_W01 Has expanded knowledge in the field of using geoinformation systems to collect and process data used in modeling of both natural and anthropogenic phenomena and processes
- PEK_W02 Knows the principles of construction and functioning of geoinformation systems in the mining industry and public administration

relating to skills:

- PEK_U01 has the ability to use advanced GIS tools in mining, studies of natural phenomena, the impact of mining on the environment and space development,
- PEK_U02 has the ability to formulate and solve spatial tasks in the GIS environment
- PEK_U03 has the ability to interpret the results obtained and draw conclusions

relating to social competences:

PEU_K01 has the ability to formulate and transfer knowledge on the use of geoinformation systems in spatial analysis and presentation of their results

	PROGRAMME CONTENT			
	Lecture	Number of hours		
Lec 1	Discussion of syllabus, requirements for passing the course, literature	2		
Lec 2	Introduction to Microwave Signals for Earth Observation	2		
Lec 3	Principles and Applications of Passive and Active Microwave Remote Sensing	2		
Lec 4	Acquisition and processing of SAR data	2		
Lec 5	SAR image theory (geometric properties, polarization)	2		
Lec 6	Basics of SAR data calculation using the DInSAR and SBAS methods	2		
Lec 7	Principlesand Applications of Interferometric SAR (monitoring surface activity, natural and anthropogenic phenomena)	2		
Lec 8	Fundamental concepts of geographical information systems	2		
Lec 9	Data modelling in GIS. Representation of spatial data. Spatial databases. Current status and development trends	2		
Lec 10		2		
Lec 11	Spatial data interpolation	2		
Lec 12	Map algebra. Surface analysis, local and zonal functions	2		
Lec 13	Basics of spatial statistics	2		
Lec 14	Spatial Information Infrastructure. Inspire Directive. Open Data	2		
Lec 15	Examples of applications of geoinformation systems in mining and environmental protection	2		
	Total hours	30		

	Laboratory	Number of hours
Lal	Configuration of the environment for SAR calculations	3
La2-3	Introduction to radar data calculations - calculation tasks	6
La4	Acquiring radar data and calculating the interferogram - DInSAR method	3
La5	Unwrapping of the interferometric phase - calculations	3
La6-7	Presentation of results in the GMT environment	6
La8	Discrete data interpolation. Preparation of input data for analysis (e.g. deformation measurements in the mining area)	3
La9	Discrete data interpolation. Development mining area terrain deformation maps with various interpolation methods.	3
La10	Discrete data interpolation. Analysis and assessment of the quality and uncertainty of interpolation. Prediction map. Development of maps of changes between two periods using a raster calculator.	3
La11	Spatial analysis - assessment of the suitability of the area for the location	3
La12	of mining operation. Construction of a database of spatial location criteria	3
La13	Spatial analysis - assessment of the suitability of the area for the location	3
La14	of mining operation. Selection of analytical procedures and conducting analytical operations.	3
La15	Spatial analysis - assessment of the suitability of the area for the location	3
	Total hours	45

TEACHING TOOLS USED

- N1. Lectures
- N2. Multimedia presentations
- N3. Preparation of individual written term paper on a given topic
- N4. Multimedia materials (MOOC)
- N5. Laboratory instructions
- N6. Reports from laboratory exercises

N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F1 Final mark for the written examination F2 Mark for the written report, P Final mark for the lecture (weighted average of F1 and F2, where F1 – 80% and F2 - 20%)
F, P	PEU_W01 - 02 PEU_U01 - 03 PEU_K01	F3 Mark for the written assignment reports F4 Mark from written tests, P2 Final mark for the laboratory (weighted average of F3 and F4, where F3 – 80% and F4 - 20%)

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

SECONDARY LITERATURE:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl

FACULTY OF GEOENGINEERING, MINING AND GEOLOGY

SUBJECT CARD

Name in Polish: Geochemia				
Name in English: Geocher	nistry			
Faculty of studies (if applic	cable): Mining and Geology			
Specialisation (if applicable	e): Mining Engineering			
	Mineral Resource Exploration			
Level and form of studies:	2nd level, full-time			
Subject Type:	Obligatory			
Subject code: W06GIG- SM3055W				
Group of courses:	NO			

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in the University (ZZU)	30				
Number of hours of total student workload (CNPS)	50				
Form of crediting	Crediting with grade				
For a group of courses mark (X) for the final course					
Number of ECTS points	2				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes	1,4				

* delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Possesses basic knowledge in the area of general chemistry (inorganic and organic) and physics.
- 2. Possesses basic knowledge in the area of mineralogy and petrology.
- 3. Possesses basic knowledge and skills in the area of hydrogeology.
- 4. Is familiar with basic concepts of deposit and mining geology.

SUBJECT OBJECTIVES

C1 Aim of the subject is to familiarize students with fundamental physicochemical principles and processes which occur in the Earth's crust and their theoretical foundations and implications.

SUBJECT LEARNING OUTCOMES

relating to knowledge:

PEU_W01 Possesses knowledge relating to the thermodynamic and geochemical principles and processes which occur in the Earth's crust.

PEU_W02 Possesses basic knowledge in the area of rock formation and the determination of the age of rocks.

relating to skills:

PEU_U01 Is able to search for information on geochemical processes and carry out their critical evaluation and analysis.

relating to social competencies:

PEU_K01 Is able to formulate and impart knowledge regarding processes occurring in the Earth's crust and their impact on the environment.

	PROGRAMME CONTENT					
	Form of classes - lecture					
Lec.1	Lec.1 Introduction. History, present time and future of the Universe. Construction of the Earth and the structure of outer zones					
Lec.2	The basics of thermodynamic geological processes (parameters and functions of state)	3				
Lec.3	Geochemical calculations (solutions, reactions, pH, Eh, dissolution, phase diagrams, stability, rule of contradiction)	3				
Lec.4	Geochemical calculations (chemical equilibria diagrams)	3				
Lec.5	Global geochemical cycles	3				
Lec.6	Geochemistry of elements	3				
Lec.7	Geochemistry of organic compounds	3				
Lec.8	Earth and life	3				
Lec.9	Applied Geochemistry	3				
Lec.10	Determination of the absolute age of rocks. Mineral thermometry and barometry	3				
Lec.11	Mineral facies indicators	3				
Lec.12	Natural non-isotope markers	3				
Lec.13	Natural isotope markers	3				
Lec.14	Artificial non-isotope markers	3				
Lec.15	*					
	Total hours	45				

	Form of classes - seminar	Number of hours
Se1		
Se2		
	Total hours	

	Form of classes - laboratory					
La1-						
La2-						
	Total hours					
	TEACHING TOOLS USED					
N1. Tr	N1. Traditional lecture supplemented with multimedia presentations and discussions.					

EVALUATION OF SUBJECT EDUCATIONAL OUTCOME ACHIEVEMENTS

Evaluation F –	Educational outcome	Method of evaluating educational outcome
forming (during	number	achievement
semester), P –		
concluding (at semester		
end)		
	PEU_W01-W02	
Р	PEU_U01	Written test
	PEU_K01	
F, P		
F, P		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] Albarède F., 2009 Geochemistry. An introduction. Cambridge University Press, Cambridge, UK.
- [2] Allègre C. J., 2008 Isotope geology. Cambridge University Press, Cambridge, UK.
- [3] Hefferan K., O'Brien J., 2010 Earth materials. Wiley-Blackwell, Chichester, UK.
- [4] Marshall C. P., Fairbridge R. W. (eds), 1999 Encyklopedia of Geochemistry. Kluwer Academic Publishers, Dodrecht, Boston, London.
- [5] McSween H. Y., Huss G. R., 2010 Cosmochemistry. Cambridge University Press, Cambridge, UK
- [6] Tolstikhin I. N., Kramers J. D., 2008 The evolution of matter. From the Big Bang to the Present Day. Cambridge University Press, Cambridge, UK

SECONDARY LITERATURE

- [1] Appelo C.A.J., Postma D., 2005 Geochemistry, groundwater and pollution. Balkema.
- [2] Merkel B., Planer-Friedrich 8., 2005 Groundwater geochemistry. Springer

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Tadeusz Przylibski

dr inż. Danuta Szyszka, dr inż. Katarzyna Łuszczek, dr inż. Agata Kowalska

Semester 4 WUST

Course title	Applied field exploration						
European Credits (ECTS)	3		Time (hours) given to the	e students	45		
Type (Lecture, internship, exercise etc.)	Lectures: , Auditorium cl Project classes: , Practica classes: , Fieldwork: 3		Student whole working	time (hours)	75		
Description of content	be integrated for targeti Geological, geophysical a stratigraphy, hydrothern	The goal of the course is that students should acquire a hands-on understanding of different field exploration methodologies, and how they can be integrated for targeting VMS deposits. Geological, geophysical and geochemical exploration methods in VMS exploration. Practical field mapping exercises in structural geology, stratigraphy, hydrothermal alteration. Practical geophysical surveying using UAV technology. GIS-based data synthesis for exploration target selection. Drill core logging and assaying.					
Learning outcomes of the curricular unit (knowledge, skills and competences to be developed by the students)	Knowledge: when passed the student is expected to have: -knowledge about different field methods and their use during an exploration program. -knowledge about drilling and sampling methods. -knowledge about different methods for field mapping. Skills: when passed the student is expected to have the ability to - acquire in-depth structural, volcanological and alteration data from outcrops in the field - contextualize field observations in relation to ore genetic model for VMS deposits. - synthesize different types of geological and geophysical data for targeting a VMS deposit. Competences: ,						
Assessment methods and criteria	Exercises U G# 1.20 Project work G U 3 4 5 1.80 The course is mainly presented via practicals in the field, but also with complementary lectures and excercises, in addition to project work.						
Recommended readings	Online compendium in Canvas room						
TU Coordinator	Nils Jansson, Nils.Jansson@ltu.se						
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercul	OLO5 Value tural judgments / Sustainability	OLO6 Leadership	

Justification for OLO contribution	contribution				
------------------------------------	--------------	--	--	--	--

Course title	SOC Internship					
European Credits (ECTS)	2 Time (hours) given to the students		30			
Type (Lecture, internship, exercise etc.)	Lectures:, Auditorium classes: , Lab. Classes: , Project classes: 2 , Practical classes:, Seminar classes: , Fieldwork: x	Student whole working time (hours)	50			
Description of content	x The aim of the course is to enable students to work in socially responsible workplaces, and apply their skills and knowledge to promote social good. While this develops them to become work-ready professionals, it also nurtures them to become advocates who help build a better world. EDUCATIONAL GOALS: 1. To actively participate in the affairs of the community and in concrete actions on the ground that aim to promote the public interest, equality and solidarity. 2. To reflect on social license to operate issues 3. To work in direct contact with the beneficiaries of the civic activities undertaken e.g.: reception, facilitation, support, social assistance, etc. EXAMPLES OF SOCIAL AND CIVIC ISSUES IN MINERALS INDUSTRIES: • Depletion of natural capital (degradation of air, land and water quality), land use conflicts, health impacts • Digitalization and automation generate particular challenges for well-being in mining regions. Limited job opportunities for local workforce and skills mismatches. • High and continuous transparency and accountability standards of the industry, effective methods of information sharing and dialogue • A more equitable value-sharing, Corporate Social Responsibility issues • Facilitation of environmental awareness					
Learning outcomes of the curricular	 Preservation and restoring of historic sites, Knowledge: to understand that social responsibility incorporates an ethical, social and environmentally-friendly 					
unit (knowledge, skills and	perspective to our personal and profess					
competences to be developed by	Skills: To be able to engage in an informal professional discussion and business communication					
the students)	Competences: To cope with complexity	, uncertainty and change in globa	l contexts			

Assessment methods and criteria	Criterion: Submission of a project report					
Recommended readings						
TU Coordinator	Supervisors of the	student's Master the	sis			
	OLO 1 Entrepreneurship	OLO2 Innovation	OLO3 Creativity	OLO4 Intercultural	OLO5 Value judgments / Sustainability	OLO6 Leadership
Contribution to EIT's Overarching Learning Outcomes (tick relevant box/es)*	Students will be engaged in professional discussion and business communication				Students will be able to understand that social responsibility incorporates an ethical, social and environmentally- friendly perspective to our personal and professional activities	
Justification for OLO contribution			· · · · · · · · · · · · · · · · · · ·			·

Course title	Exploration entrepreneurship		
European Credits (ECTS)	4	Time (hours) given to the students	60
Type (Lecture, internship, exercise etc.)	Lectures: 1, Auditorium classes: , Lab. Classes: , Project classes: 1, Practical classes: 3, Seminar classes: 2, Fieldwork:	Student whole working time (hours)	100
Description of content	 and countries. Mentoring within the course is professional with and EurGeol targeted way. Mentoring contrinetworking, social and profession activity. It allows lead be acquired through practice a improves the opportunities of contacts and involvement in protect topics and the mentor and communicate them to the concrete topics and the respect defined. Since the student is at become aware of their own platoecome aware of their own plato	t the current market at improving intern og and CPD requirem ows students to ber bectives in different a process during wh title (mentor) accom- ibutes to developing ional skills regarding earning from profess and can't be found in career beginners by rofessional networks ring cooperation, stu- ir mentor. In consult tive roles within the the centre of the pro- ans and their suppor working among geol ls with contacts help t, medium or long-te- ositions and increase diversity to women and und and Continuing Pro- nals who have acqu- nd work in industrial or actively guides a lls and attitudes fo have in negotiation advises the stude and difficulties. M	t demands. The ational networking and nents of experienced geology hefit from insider knowledge sectors of geological profession hich an experienced mpanies the student in a g personal, entrepreneurial, g the mineral prospecting and sional experiences that can only any textbook. Mentoring providing career-enhancing s. udents formulate clear goals tation with the mentor, e mentoring process will be rocess, it is their task to t needs. ogists all across Europe and bing them to think through, erm career development rin leadership positions by er-represented minorities fessional Development (CPD) ired a high level of industrial

	 Help: The mentor can help open otherwise locked doors that allow the student to pursue their goals. Support: The mentor supports the student in essential decisions without deciding. Mentors assist in the development of professional strategies, as well as in career planning and review of possible obstacles. Inform: The mentor informs the student about (informal) rules and processes applied in organisations or professional life in general. According to the student's background, mentors can also inform about seminars or conferences that they consider helpful. Participation: Mentors allow students to participate in parts of their professional career, experiences and strategic decisions. They allow students to share their professional life and invite them, for instance, to participate in meetings or appointments. Give feedback: Mentor and student provide each other with constructive feedback about their appearance and public perception. Networking: Mentors give the students hints on maintaining and using contacts. They introduce the students into active networks and provide professional contacts. The mentor provides the student with the chance to create a successful CV and take a chance on social networks such as LinkedIn.
Learning outcomes of	Knowledge: to provide background training to support the learning process; make students aware of broad professional issues; provide business and
the curricular	entrepreneurship skills to develop an awareness of business management and commercial practices regarding mineral prospecting and exploration.
unit (knowledge,	Skills: Develop relationships with other persons and maintain them. Can talk frankly about his ideas, fears and weaknesses. Identifying investment
skills and	opportunities in the mineral resources sector.
competences	Competences: To define professional targets, wants to succeed and is actively
to be	committed to implementing these targets. Not afraid of making mistakes and
developed by	experimenting with new ideas. Willing to question himself critically, accept
the students)	external advice, and implement it.
	Practical mark
	At the end of the mentoring process, students will a) reflect their mentoring
	experience on a two-page report highlighting benefits and potential gaps for
	future implementation b) prepare a small business plan for an identified innovative idea of their own.
	Slack channel will allow for student-mentor exchange and networking within the
Assessment	whole cohort of participants.
methods and	Mentoring is a one-to-one relationship between a mentor and a student.
criteria	Mentoring takes place beyond a dependent relationship (e.g. supervisor-
	subordinate or professor-student relationships).
	During the mentoring process, learning and experimentation occur in a
	protected environment.
	 An integral part of mentoring is the development of professional skills and competencies
	competencies. Mentoring is a reciprocal process of "give and take". Both sides learn from each
	Mentoring is a recipiocal process of give and take . Both sides learn norm each

	other because even the mentor will have the opportunity to critically question his professional perspective and discover new perspectives, software and applications, and previously unperceived situations.					
	Mentoring Mindset, Skills and Tools 4th Edition: Make it easy for mentors and students, 2020, Synergetic People Development Pty Ltd, 252 pages, ISBN 0980356458					
	The Mentoring Michigan Publis				udents Succe	ed, 2019,
Recommend ed readings	Wang, J., Shibay creativity and doi:10.1016/j.re	mentori	ng style.	•	ativity: Effects Policy 51,	
	Entrepreneurshi Entrepreneurs, 2 Entrepreneurship Pearson, ISBN: 97	2018, ISBN 9 Successfull	978-17202 y Launching	21654		
TU Coordinator	Pavlos Tyrologou,	, pavlos.tyrol	logou@gma	iil.com		
Contribution to EIT's Overarching Learning	OLO 1 Entrepreneursh ip	OLO2 Innovatio n	OLO3 Creativit y	OLO4 Intercultur al	OLO5 Value judgments / Sustainabili ty	OLO6 Leadershi p
Outcomes (tick relevant box/es)*	xx		x	xx	xx	xx
Justification for OLO contribution						

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

specialisation/specjalność: GEOMATICS FOR MINERAL RESOURCE MANAGEMENT

ścieżka studiów/study track: FREIBERG

1-st Semester

Semestr 1

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii,	Górnictwa i Geologii
	KARTA PRZEDMIOTU
Nazwa przedmiotu w języ	ku polskim Wspomagane komputerowo modelowanie
geologiczne i geostat	ystyka(zajęcia są prowadzone w języku angielskim)
Nazwa przedmiotu w języ	ku angielskim Computer Aided Geological Modelling and
Geostatistics	
Kierunek studiów (jeśli do	tyczy): Górnictwo i geologia.
Specjalność (jeśli dotyczy)	: Mining Engineering,
	Geotechnical and Environmental Engineering,
	Geomatics for Mineral Resource Management
Poziom i forma studiów:	II stopień, stacjonarna
Rodzaj przedmiotu:	obowiązkowy *
Kod przedmiotu	W06GIG-SM0038
Grupa kursów	NIE*
-	

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć	15		45		
zorganizowanych w Uczelni					
(ZZU)					
Liczba godzin całkowitego	30		120		
nakładu pracy studenta					
(CNPS)					
Forma zaliczenia	Egzamin /	Egzamin /	Egzamin /	Egzamin /	Egzamin /
	zaliczenie	zaliczenie na	zaliczenie na	zaliczenie na	zaliczenie na
	na ocenę*	ocenę*	ocenę*	ocenę*	ocenę*
Dla grupy kursów zaznaczyć					
kurs końcowy (X)					
Liczba punktów ECTS	1		4		
w tym liczba punktów			4		
odpowiadająca zajęciom					
o charakterze praktycznym (P)					
w tym liczba punktów ECTS	1		2		
odpowiadająca zajęciom					
wymagającym bezpośredniego					
udziału nauczycieli lub innych					
osób prowadzących zajęcia					
(BU)					

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

CELE PRZEDMIOTU

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.

C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

Z zakresu umiejętności:

PEU_U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

Z zakresu kompetencji społecznych:

PEK_K01 The student can think and act in a creative and enterprising way

	TREŚCI PROGRAMOWE		
	Forma zajęć - wykład	Liczba godzin	
Wy1	Introduction to the course. Geological database and validation of the geological data.	2	
Wy2	Geology of the seam.	2	
Wy3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2	
Wy4	Spatial distribution of samples values. Regionalized variable.	2	
Wy5	BLUE Estimator of the mean value: Kriging.	2	
Wy6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2	
Wy7	Reserves modelling and evaluation.	2	
Wy8	Mineral resources. International reporting. The JORC Code	1	
	Suma godzin	15	

	Forma zajęć - ćwiczenia	Liczba godzin
Ćw1		
Ćw2		
Ćw3		
Ćw4		
	Suma godzin	0

Forma zajęć - laboratorium	Liczba
	godzin

Lal	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La3	Construction of the structural wireframe model of stratigraphy layers.	3
La1 La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3
La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the estimation procedure.	3
La11	Estimation of quality parameters in block model of the deposit layers. Validation of the estimation quality.	3
La12	Validation of the quality model and classification of the resources. Balance resources evaluation.	3
La13	Preparation of data for continuous surface mining ultimate pit design. Ultimate pit outlines generation	3
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Suma godzin	45

Pr1 Pr2	
Pr2	
Pr3	
Pr4	
•••	
Suma godzin	0
Forma zajęć - seminarium	Liczba godzin

	r orma zajęc - semmarium	Litzba gouzin
Se1		
Se2		
Se3		
	Suma godzin	0

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEU_W01,	Lecture grade on the basis of the written
	PEU_W02	examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
E2	DELL LIO1	
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02,	Laboratory task assessment: "reserves
	PEU_U03	evaluation".
P average of F1, F2, F3, H	54	

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

LITERATURA UZUPEŁNIAJĄCA:

[10] Handouts, tutorials.

OPIEKUN PRZEDMIOTU (IMIE, NAZWISKO, ADRES E-MAIL)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec, Dr Paweł Zagożdżon

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów

WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA i GEOLOGII					
	KARTA PRZEDMIOTU				
Nazwa przedmiotu w języ	ku polskim Geofizyka inżynierska				
(zajęcia są prowa	dzone w języku angielskim)				
Nazwa przedmiotu w języ	Nazwa przedmiotu w języku angielskim Engineering Geophysics				
Kierunek studiów (jeśli do	otyczy): górnictwo i geologia				
Specjalność (jeśli dotyczy): Mining Engineering,					
Geotechnical and Environmental Engineering,					
Geo	matics for Mineral Resource Management				
Poziom i forma studiów:	I-/ II stopień / jednolite studia magisterskie *, stacjonarna /				
	niestacjonarna *				
Rodzaj przedmiotu:	obowiązkowy- / wybieralny / ogólnouczelniany *				
Kod przedmiotu	W06GIG-SM0040				
Grupa kursów	TAK / NIE*				

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15			15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	40			50	
Forma zaliczenia	Egzamin-/ zaliczenie na ocenę*			Egzamin / zaliczenie na ocenę*	
Dla grupy kursów zaznaczyć kurs końcowy (X)					
Liczba punktów ECTS	1			2	
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)				2	
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)				2	

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. has knowledge of fundamentals of applied geophysics, physics and geology.
- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.
- 4. is able to work in a team.

CELE PRZEDMIOTU

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying
- C3 familiarize with various geophysical surveys.

C4 acquisition of skills to plan geophysical field surveying and to interpret its results. C5 development of skills to work in a group.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

Z zakresu umiejętności:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

Z zakresu kompetencji społecznych:

PEU_K02 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

	TREŚCI PROGRAMOWE			
	Forma zajęć - wykład			
Wy1	Physical properties of rocks. Inter-relationships between the various subdisciplines of applied geophysics. Overview of geophysical methods, their physical principles and applications. Methodology of geophysical surveying.	1		
Wy2	Engineering problems solved with geophysical surveying. Case studies.	2		
Wy3	Electrical resistivity methods. Tomography and VSE. IP method. Physical principles. Equipment. Methods of field surveying. Interpretation and application. Case studies.	2		
Wy4	Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric methods. Physical principles. Methods of field surveying. Equipment. Interpretation and application. Case studies.	2		
Wy5	GPR surveying. Physical principles. Methods of field surveying.	2		

	Equipment. Interpretation and application. Case studies.	
Wy6	Seismic tomography. Seismic interferometry. Physical principles. Applications. Case studies.	2
Wy7	Mine geophysics. Seismology. Seismic methods. Active and passive seismic tomography. Microgravimetry. Case studies.	2
Wy8	Gravity and magnetic surveying. Equipment. Methods of field surveying. Interpretation and application. Case studies.	2
	Suma godzin	15

	Forma zajęć - projekt		
Pr1	One selected geophysical technique. Fundamentals and equipment. Field surveying	4	
Pr2	Processing and interpretation of field data.	3	
Pr3	Pr3 Solving the geophysical problems.		
	Suma godzin	15	

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1.Lecture aided by presentation.N2.Demonstration.N3.Discussion and consultationsN3CalculationsN5Practical field surveying

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na koniec semestru)	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.

- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

LITERATURA UZUPEŁNIAJĄCA:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.
- [3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów WYDZIAŁ GEOINŻYNIERII. GÓRNICTWA I GEOLOGII **KARTA PRZEDMIOTU** Nazwa przedmiotu w języku polskim: Zintegrowana analiza deformacji w geomechanice......(zajęcia są prowadzone w języku angielskim) Nazwa przedmiotu w języku angielskim: Integrated Analysis of Deformations in **Geomechanical Engineering** Kierunek studiów (jeśli dotyczy): górnictwo i geologia Specjalność (jeśli dotyczy): Geomatics for Mineral Resources Management Poziom i forma studiów: I/ II stopień / jednolite studia magisterskie*, stacjonarna / niestacjonarna* **Rodzaj przedmiotu:** obowiązkowy / wybieralny / ogólnouczelniany * W06GIG-SM0041G Kod przedmiotu Grupa kursów TAK / NIE*

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć	30		30		
zorganizowanych w Uczelni					
(ZZU)					
Liczba godzin całkowitego	90		60		
nakładu pracy studenta					
(CNPS)					
Forma zaliczenia	Egzamin /		Egzamin /		
	zaliczenie		zaliczenie na		
	na ocenę*		ocenę*		
Dla grupy kursów zaznaczyć					
kurs końcowy (X)					
Liczba punktów ECTS		5			
w tym liczba punktów	3		2		
odpowiadająca zajęciom					
o charakterze praktycznym (P)					
w tym liczba punktów ECTS	2,5		1,5		
odpowiadająca zajęciom					
wymagającym bezpośredniego					
udziału nauczycieli lub innych					
osób prowadzących zajęcia					
(BU)					

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Podstawowa wiedza z zakresu goemechaniki
- 2. Podstawową wiedza dotycząca eksploatacji górniczej
- 3. Podstawowa wiedza monitorowania zmian górotworu

CELE PRZEDMIOTU

- C1 Przedstawienie roli monitorowania w górnictwie zrównoważonym
- C2 Przygotowanie i przeprowadzenie analizy deformacji górotworu spowodowanych działalnością górniczą

- C3 Przygotowanie i przeprowadzenie analizy deformacji zapór i usypisk ziemnych
- C4 Nauczenie zasad modelowania MES
- C5 Nabycie umiejętności wykorzystania analizy zintegrowanej wykorzystując modelowanie deterministyczne MES i wyniki pomiarów geodezyjnych i geotechnicznych

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Potrafi rozróżnić i opisać zastosowania technik monitorowania deformacji w sPEUtrum dyscyplin inżynieryjnych takich jak górnictwo i inżynieria budowlana PEU W02 Potrafi scharakteryzować górotwór i metody górnicze PEU W03. Posiada wiedzę z zakresu analiz: empirycznych i deterministycznych z zastosowaniem FEM deformacji górotworu, PEU W04. Posiada wiedzę podstaw i zastosowań analizy zintegrowanej metody deterministycznej z wynikami pomiarów geodezyjnych PEU W05. Potrafi wyznaczyć główne założenia pomiaru geodezyjnego deformacji wywołanych eksploatacja górniczą PEU W06 Ma znajomość przygotowania modelu MES Z zakresu umiejętności:

Z zakresu kompetencji społecznych:

PEU K01 Potrafi ocenić rolę monitorowania i predykcji w górnictwie zrównoważonym w całym jego cyklu

	TREŚCI PROGRAMOWE			
	Forma zajęć - wykład	Liczba godzin		
Wy1	Syllabus, warunki zaliczenia, literatura,	2		
Wy2	Wstęp do zintegrowanej analizy deformacji	2		
Wy3	Rola monitorowania w górnictwie zrównoważonym	2		
Wy4	Opis zjawisk fizycznych: statyka- dynamika , rozchodzenie się ciepła, przepływ cieczy, zmiany siły grawitacji, zastosowania	2		
Wy5	Metody analizy deformacji: stosując analizę systemów i mechaniki ciała stałego	2		
Wy6	Ogólna klasyfikacja metod monitorowania: absolutne i względne pomiary deformacji,	2		
Wy7	zalety i wady metod geodezyjnych i geotechniczno-strukturalnych, koncepcja pomiarów zintegrowanych	2		

Wy8	Mechanika ciała stałego, Problem warunków brzegowych	2
Wy9	Rozwiązanie systemu kratownicy - relacja do MES MES	2
Wy10	Empiryczne metody wyznaczania deformacji powierzchni wywołanych eksploatacją podziemną (gaz i nafta) i eksploatacją odkrywkową, zastosowanie MES, Kategoria terenu	2
Wy11	Przykłady zastosowania integracji : stabilności zboczy w kopalniach odkrywkowych, Chiquqimata, Chile, NevadaUSA	2
Wy12	Przykłady zastosowania integracji : deformacja górotworu na terenach podziemnej eksploatacji górniczej w kopalni soli w Kanadzie,	2
Wy13	Problemy wydobycia gazu naturalnego i nafty	2
Wy14	Podsumowanie	2
Wy15	Kolokwium	2
	Suma godzin	30

	Forma zajęć - ćwiczenia	Liczba godzin
Ćw1		
Ćw2		
Ćw3		
Ćw4		
	Suma godzin	

	Forma zajęć - laboratorium	Liczba godzin
Lal	Przedstawienie zakresu ćwiczeń, warunków zaliczenia oraz literatury.	2
La2	Analiza wpływu obciążenia na górotwór –zastosowanie programu GeoStudio 2007	2
La3	Analiza naprężeń in-situ górotworu i górotworu obciążonego	2
La4	Zaprojektowanie pomiaru geodezyjnego na terenie górniczym prowadzenia podziemnej eksploatacji na podstawie wyników MES. Dyskusja projektu pomiarów.	2
La5	Wyznaczenie kategorii terenu górniczego Dyskusja wyników projektu	2
La6	Zaprojektowanie pomiaru geodezyjnego na terenie kopalni odkrywkowej na podstawie modelu MES . Dyskusja projektu pomiarów.	2
La7	Zaprojektowanie pomiaru geodezyjnego ziemnej zapory wodnej na podstawie modelu MES. Dyskusja analizy	2
La8	Podsumowanie	1
	Suma godzin	15

	Forma zajęć - projekt	Liczba godzin
Pr1	Wyznaczenie MES deformacji górotworu spowodowanych eksploatacją podziemną, wyznaczenie kategorii terenu. Analiza sprężysta i nieliniowa . Omowienie monitorowania	6
Pr2	Podsumowanie	1
Pr3	Wyznaczenie MES deformacji usypiska/zapory ziemnej w warunkach zmiennego poziomu wody. Wyznaczenie wspolczynnika bezpieczeństwa stosując oprogramowanie Geostudio. Omowienie monitorowania	6
Pr4	Podsumowanie	2
	Suma godzin	15

	Forma zajęć - seminarium	Liczba godzin
Se1		
Se2		
Se3		
	Suma godzin	

	STOSOWANE NARZĘDZIA DYDAKTYCZNE	
N1. Wykład, film		
N2.		
N3.		

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEK_U01 -	Oceny z Lab 2-7, projekt 1 i 2.
	PEK_U06	
F2		
F3		
P P PEU_W01 – PEU_W06, Kolokwium, Ocena końcowa z wykładu		
PEU_U01 – PEU_U06 Ocena końcowa z laboratorium . Średnia ze sprawozdań i		
projektu		

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

[1] Szostak-Chrzanowski, A., A. Chrzanowski,(2010), "INTEGETED ANALYSIS OF DEFORMATIONS IN GEOMECHANICS ", UNB, Fredericton, N.B., 220p.

LITERATURA UZUPEŁNIAJĄCA:

- Szostak-Chrzanowski, A., A. Chrzanowski, M. Massiera (2005) "Use of deformation monit results in solving geomechanical problems – case studies ", *Engineering Geology*, vol. 7 Issues 1-2, pp. 3-12.
- 2 Chrzanowski, A. (1993): "Modern Surveying Techniques for Mining and Civil Engineering
- 33 in: Comprehensive Rock Engineering, Pergamon Press, Vol.3. Chapter 33, pp.773-809.

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) Anna Chrzanowska anna.chrzanowska@pwr.edu.pl

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii, Górnictwa i Geologii		
	KARTA PRZEDMIOTU	
Nazwa przedmiotu w języ	ku polskim Bezpieczeństwo i higiena pracy(zajęcia są	
prowadzone w języku	angielskim)	
Nazwa przedmiotu w języ	ku angielskim Occupational Health and Safety	
Kierunek studiów (jeśli do	otyczy): Górnictwo i geologia.	
Specjalność (jeśli dotyczy)	: Mining Engineering	
Geotechnical and Environmental Engineering,		
Geomatics for Mineral Resource Management		
Poziom i forma studiów:	II stopień, stacjonarna	
Rodzaj przedmiotu:	obowiązkowy *	
Kod przedmiotu	W06GIG-SM0042	
Grupa kursów	NIE*	

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15			15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	30			30	
Forma zaliczenia	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocene*	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocenę*
Dla grupy kursów zaznaczyć	ina occinę				occnę
kurs końcowy (X)					
Liczba punktów ECTS	1			1	
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)				1	
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)	1			1	

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

CELE PRZEDMIOTU

C1. To introduce the principles of occupational risk assessment in accordance with relevant

standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU _W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

Z zakresu umiejętności:

PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry

PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.

PEU_U03 - Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

Z zakresu kompetencji społecznych:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	TREŚCI PROGRAMOWE		
	Forma zajęć - wykład	Liczba godzin	
Wy1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3	
Wy2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3	
Wy3	Dangerous factors - identification and assessment of risks.	3	
Wy4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3	
Wy 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3	
	Suma godzin	15	

	Forma zajęć - ćwiczenia	Liczba godzin
Ćw1		
Ćw2		
Ćw3		

Ćw4		
	Suma godzin	

	Forma zajęć - laboratorium	
La1		
La2		
La3		
La4		
La5		
	Suma godzin	

	Forma zajęć - projekt	Liczba godzin
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3
Pr2	Occupational risk assessment with the use of STER software for two work	
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15
	Forma zajeć - seminarium	Liczba godzin

Forma zajęć - seminarium		Liczba godzin
Se1		
Se2		
Se3		
	Suma godzin	

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03 PEU_U01-U03	grade from a presentation
P2	PEU_W01-W03 PEU_U01- U03	final grade from project classes (arithmetic average of F1 and F2)
Р		

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Iwona Romanowska Słomka, Adam Słomka Zarządzanie ryzykiem zawodowym. Wydawnictwo TARBONUS, Krakow Tarnobrzeg, 2009
- Iwona Romanowska Słomka, Adam Słomka Ocena ryzyka zawodowego.
 Wydawnictwo TARBONUS, Krakow Tarnobrzeg, 2010
- [3] Wiesława Horst Ryzyko zawodowe na stanowisku pracy. Część 1, Ergonomiczne czynniki ryzyka. Wydawnictwo Politechniki Poznańskiej, Poznan, 2004

LITERATURA UZUPEŁNIAJĄCA:

[1] PN-N-18002 Systemy zarządzania bezpieczeństwem i higieną pracy - Ogólne wytyczne do oceny ryzyka zawodowego

[2]

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii,	Górnictwa i Geologii
	KARTA PRZEDMIOTU
Nazwa przedmiotu w języ	ku angielskim: Project Management, Appraisal and Risk
Evaluation(zajec	ia sa prowadzone w języku angielskim)
Nazwa przedmiotu w języ ryzyka.	ku polskim :Zarządzanie projektami, ocena ich opłacalności i
Kierunek studiów (jeśli do	otyczy): Górnictwo i geologia
Specjalność (jeśli dotyczy)	: Mining Engineering,
	Geotechnical and Environmental Engineering,
	Geomatics for Mineral Resource Management
Poziom i forma studiów:	II stopień, stacjonarna
Rodzaj przedmiotu:	obowiązkowy
Kod przedmiotu	W06GIG-SM0039G
Grupa kursów	ТАК

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15		30	15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	30		60	30	
Forma zaliczenia		Egzamin			
Dla grupy kursów zaznaczyć kurs końcowy (X)	X				
Liczba punktów ECTS			4		
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)			3		
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)			3		

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

CELE PRZEDMIOTU

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management. Part A: The purpose of the course is C1 to introduce basic concepts of Microeconomics and financial management C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are discussed. The issues of inflation and risk analysis are included.

Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU_W01 rozumie pojęcia podaży i popytu, elastyczności popytu i ich wpływ na rynki PEU W02 zna pojęcia kosztów w ekonomii i rachunkowości, rozumie różnice

- PEU_W03 zna sposoby klasyfikacji kosztów w przedsiębiorstwach, zna i rozumie podstawowe pojęcia rachunku kosztów
- PEU_W04 ma podstawową wiedzę o treści i wzajemnych relacjach bilansu, rachunku zysków i strat oraz rachunku przepływów pieniężnych, zna sposób prezentacji danych finansowych przedsiębiorstw w ustawowych sprawozdaniach finansowych i zna ich warianty.
- PEU_W05 ma podstawową wiedzę na temat metody analizy wskaźnikowej sprawozdań finansowych
- PEU_W06 zna pojęcia wartości przyszłej i wartości obecnej przepływów pieniężnych i rent rocznych
- PEU_W07 zna podstawowe i zaawansowane metody oceny efektywności inwestycji (NPV, IRR, MIRR, DPBP, PBP) oraz zakresy ich stosowania
- PEU_W08 ma podstawową wiedzę o metodach oceny ryzyka inwestycji

Z zakresu umiejętności:

- PEU_U01 potrafi przeprowadzić analizę przyczyn i skutków zmiany popytu i podaży
- PEU_U02 na podstawie krzywych kosztowych potrafi przeprowadzić optymalizację wielkości produkcji w różnych przypadkach.
- PEU_U03 umie zinterpretować i korzystać z informacji zawartych w ustawowych sprawozdaniach finansowych. Umie przeprowadzić analizę wskaźnikową sprawozdań finansowych w podstawowym zakresie
- PEU_U03 umie korzystać z danych kosztowych przedstawionych w różnych układach ewidencyjnych kosztów, umie stosować podstawowe metody rachunkowości zarządczej do podejmowania decyzji krótkoterminowych
- PEU_U04 potrafi obliczyć wartość przyszłą i obecną pieniądza dla szeregu płatności oraz rozwiązać zadania rachunkowe z zakresu wartości pieniądza w czasie
- PEU_U05 potrafi przeprowadzić ocenę opłacalności inwestycji poznanymi metodami
- PEU_U06 potrafi przeprowadzić analizę wrażliwości i analizę scenariuszy z wykorzystaniem modelu finansowego inwestycji
- PEU_U07 potrafi przygotować dokumentację projektową w podstawowym zakresie i

zainicjować projekt

PEU_U08 potrafi zastosować podstawowe metody zarządzania projektami, monitorowania i zarządzania ryzykiem projektu

PEU_U09 potrafi zastosować podstawowe metody zarządzania konfliktami w grupie

PEU_U10 potrafi zastosować podstawowe metody zarządzania grupą i kreowania pozycji lidera, potrafi ocenić skuteczność zarządzania grupą

Z zakresu kompetencji społecznych:

PEU_K01 potrafi myśleć i działać w sposób systemowy, kreatywny i przedsiębiorczy PEU_K02 ma utrwaloną postawę ekonomicznego działania i podejmowania decyzji w oparciu o dostępne informacje finansowe i prognozy

	TREŚCI PROGRAMOWE	
	Forma zajęć - wykład	Liczba godzin
Wy1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2
Wy2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2
Wy3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2
Wy4	Variable and fixed costs. Break even point. Cost-volume –profit analysis.	1
Wy5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2
Wy6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2
Wy7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2
Wy8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2
	Suma godzin	15

	Forma zajęć - projekt	Liczba godzin
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3

	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3
	Effective managerial behaviour from the different contexts.	
	Suma godzin	15

	Forma zajęć - laboratorium	Liczba godzin		
	Part A			
La1	Lal Supply and Demand curves. Elasticity of demand.			
La2	Economic costs. Cost curves. Profit maximization cases. 2			
La3	Managerial cost accounting. Decision making cases.	2		
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2		
La5	Ratio analysis based on financial statements of companies	2		
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2		
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3		
	Part B			
La8	Basic concepts (process, project, project management, management by projects, critical factors for project success, competences). Preparing and initiation of the project. Project analysis (project environment, stakeholders, project objectives).	3		
La9	Planning and estimating of the project. Project phases and life cycle	3		
La10	Project organization. Project scope management. Planning of activities, resources and costs.	3		
La11	Project risk management. Project monitoring. Project management methodologies.	3		
La12	Quality management. Change control. Project closing.	3		
	Suma godzin	30		

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Wykład interaktywny z pokazem slajdów i dyskusją

N2. Ćwiczenia laboratoryjne: indywidualne rozwiązywanie zadań z wykorzystaniem arkusza kalkulacyjnego.

N3. Ćwiczenialaboratoryjne: rozwiązywanie zadań w grupach. Prezentacja wyników. Dyskusja o otrzymanych wynikach

N4. Konsultacje

N5. Praca własna – rozwiązywanie zadań domowych

N6. Praca własna - samodzielne studia literaturowe

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca	Numer efektu	Sposób oceny osiągnięcia efektu uczenia się
(w trakcie semestru), P	uczenia się	

– podsumowująca (na		
koniec semestru)		
F1	PEU_W01-W08 PEU_K01-K02	Dyskusja na zajęciach, ocena aktywności studentów na zajęciach laboratoryjnych i projektowych
F2	PEU_U01-U10 PEU_K01-K02	Ocena rozwiązań zadań uzyskanych przez studentów w trakcie zajęć laboratoryjnych i projektowych
P1	PEU_W01-W08 PEU_U01-U10 PEU_K01-K02	Egzamin pisemny
P2	PEU_W01-W08 PEU_U01-U10 PEU_K01-K02	Ocena indywidualnych rozwiązań zadań nadesłanych przez studentów po zajęciach

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E.: Podstawy zarządzania finansami. Polskie Wydawnictwo Ekonomiczne, Warszawa 1997
- 3. Czekaj J., Dresler Z.: Podstawy zarządzania finansami firm. PWN Warszawa 1996
- 4. Jaruga A., Sobańska J., Kopczyńska L. Szychta A.: *Rachunkowość dla menedżerów*. Towarzystwo Gospodarcze RAFIB, Łódź 1996.
- 5. Jonson H.: Ocena projektów inwestycyjnych. Maksymalizacja wartości przedsiębiorstwa. Wyd. K.E. Liber, Warszawa 2000.
- 6. Nowak E.: Rachunek kosztów przedsiębiorstwa. Wydawnictwo Ekspert, Wrocław 2001
- 7. Sierpińska M., Jachna T.: Ocena przedsiębiorstwa według standardów światowych, PWN Warszawa 1994.
- 8. Świderska G. K.(red): Rachunkowość zarządcza. (praca zbiorowa) Wyd. Poltext, Warszawa 1997
- 9. Wysocki Robert K., McGary R., Efektywne zarządzanie projektami, OnePress, 2005
- 10.Lock Dennis, Podstawy zarządzania projektami, PWE, 2009

LITERATURA UZUPEŁNIAJĄCA:

- 1. Jajuga K., Jajuga T., 2006. Inwestycje. Instrumenty finansowe, aktywa niefinansowe, ryzyko finansowe, inżynieria finansowe, Wydawnictwo Naukowe PWN, Warszawa.
- 2. Jonson H.: Koszt kapitału. Klucz do wartości firmy. Wyd. K.E. Liber, Warszawa 2000
- 3. Turyna J., Pułaska-Turyna B.: Rachunek kosztów i wyników. Wyd. Finans-Servis, Warszawa 1997.
- A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów

WYDZIAŁ GEOINZYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU

Nazwa przedmiotu w języku polskim Zasady i zastosowania InSAR oraz GIS w górnictwie Nazwa przedmiotu w języku angielskim Principles and Application of InSAR and GIS in mining

Kierunek studiów (jeśli dotyczy): Górnictwo i geologia

Specjalność (jeśli dotyczy): Geomatics for Mineral Resources Management (Geomatyka w zarządzaniu surowcami mineralnymi)

Poziom i forma studiów: I / II stopień / jednolite studia magisterskie*, stacjonarna / niestacjonarna*

Rodzaj przedmiotu:	obowiązkowy / wybieralny / ogólnouczelniany *
Kod przedmiotu	W06GIG-SM0037
Grupa kursów	TAK / NIE*

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	30		45		
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	60		90		
Forma zaliczenia	Egzamin / zaliczenie na ocenę*		Egzamin / zaliczenie na ocenę*		
Dla grupy kursów zaznaczyć kurs końcowy (X)					
Liczba punktów ECTS	2		3		
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)			3		
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)	2		2		

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Zna podstawy programowania w językach: C++ oraz Python.
- 2. Ma podstawową wiedzę z zakresu roli narzędzi geoinformacyjnych (GIS) oraz z zakresu technik pozyskiwania danych przestrzennych.
- 3. Potrafi posługiwać się pakietem oprogramowania GIS
- 4. Ma podstawową wiedzę z zakresu baz danych

CELE PRZEDMIOTU

- C1 Przedstawienie wiadomości z zakresu satelitarnej interferometrii radarowej, a także możliwości wykorzystania jej w pomiarach deformacji terenu.
- C2 Nabycie umiejętności wyznaczania przemieszczeń powierzchni terenu w oparciu o satelitarne dane radarowe.

- C3 Przedstawienie wiadomości dotyczących stosowania GIS w zaawansowanej analizie obiektów, zjawisk i procesów zachodzących w przestrzeni
- C4 Nabycie umiejętności formułowania i rozwiązywania zadań z zastosowaniem funkcji analitycznych GIS
- C4 Nabycie umiejętności korzystania z danych i usług danych przestrzennych zgodnie z dyrektywą INSPIRE

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

- PEU_W01 Posiada poszerzoną wiedzę w zakresie wykorzystywania systemów geoinformacyjnych do gromadzenia i przetwarzania danych wykorzystywanych w modelowaniu zjawisk i procesów zarówno naturalnych jak i antropogenicznych
- PEU_W02 Zna zasady budowy i funkcjonowania systemów geoinformacyjnych w branży górniczej i administracji publicznej

Z zakresu umiejętności:

- PEU_U01 Potrafi korzystać z zaawansowanych narzędzi GIS w górnictwie, badaniach zjawisk przyrodniczych, oddziaływaniu górnictwa na otoczenie i zagospodarowaniu przestrzeni,
 PEU_U02 Potrafi formułować i rozwiązywać zadania przestrzenne w środowisku GIS
- PEU U03 Potrafi interpretować otrzymane wyniki oraz wyciągać wnioski

Z zakresu kompetencji społecznych:

PEU_K01 Potrafi formułować i przekazać wiedzę na temat wykorzystania systemów geoinformacyjnych w analizach przestrzennych i prezentacji ich wyników

	TREŚCI PROGRAMOWE	
	Forma zajęć - wykład	Liczba godzin
Wy1	Omówienie syllabusu, warunków zaliczenia, literatury	2
Wy2	Wprowadzenie do teorii sygnałów mikrofalowych do obserwacji Ziemi	2
Wy3	Wykorzystanie pasywnej i aktywnej teledetekcji satelitarnej do wyznaczania przemieszczeń powierzchni terenu	2
Wy4	Akwizycja i przetwarzanie danych SAR	2
Wy5	Teoria obrazów SAR (geometryczne właściwości, polaryzacja)	2
Wy6	Podstawy obliczeń danych SAR metodami: DinSAR oraz SBAS	2
Wy7	Wykorzystanie danych SAR w monitorowaniu aktwyności powierzchni terenu (czynniki naturalne i antropogeniczne)	2
Wy8	Usystematyzowanie podstawowych pojęć z zakresu systemów informacji geograficznej	2
Wy9	Modelowanie danych w GIS. Reprezentacja danych przestrzennych. Bazy danych przestrzennych. Stan obecny i trendy rozwojowe	2
Wy10	Metody analiz przestrzennych w GIS	2
Wy11	Interpolacja danych przestrzennych	2
Wy12	Algebra mapy. Analizy powierzchni, funkcje lokalne, funkcje strefowe	2
Wy13	Podstawy statystyki przestrzennej	2
Wy14	Infrastruktury Informacji Przestrzennej. Dyrektywa Inspire. Open data	2
Wy15	Przykłady zastosowań systemów geoinformacyjnych w górnictwie i ochronie środowiska	2
	Suma godzin	15

	Forma zajęć - laboratorium	Liczba godzin
Lal	Konfiguracja środowiska do obliczeń SAR	3
La2	Wprowadzenie do obliczeń danych radarowych – zadania obliczeniowe	6
La3	Pozyskanie danych radarowych oraz obliczenia interferogramu – metoda DInSAR	3
La4	Rozwiniecie fazy interferometrycznej – obliczenia	3
La5	Prezentacja wyników obliczeń danych SAR w środowisku GMT	6
La6	Interpolacja danych dyskretnych. Przygotowanie danych wejściowych do analizy (np. pomiar przemieszczeń powierzchni terenu górniczego)	3
La7	Interpolacja danych dyskretnych. Opracowanie map rozkładu przestrzennego przemieszczeń różnymi metodami interpolacji.	3
La8	Interpolacja danych dyskretnych. Analiza i ocena jakości interpolacji. Mapa prognozy. Opracowanie map zmian zanieczyszczenia pomiędzy dwoma okresami z zastosowaniem kalkulatora rastrowego.	3
La9	Analizy przestrzenne – ocena przydatności terenu pod lokalizację wybranej inwestycji górniczej. Budowa bazy danych przestrzennych kryteriów lokalizacji	3
La10	Analizy przestrzenne – ocena przydatności terenu pod lokalizację Inwestycji górniczej. Wybór procedur i przeprowadzenie operacji analitycznych.	3
La11	Analizy przestrzenne – ocena przydatności terenu pod lokalizację inwestycji górniczej. Opracowanie modelu przetwarzania danych przestrzennych.	3
La12	Analizy przestrzenne – ocena przydatności terenu pod lokalizację inwestycji górniczej. Analiza i interpretacja wyników. Prezentacja graficzna i statystyczna wyników. Geowizualizacja	3
La13	GIS mobilny. Pozyskiwanie danych przestrzennych i atrybutowych w terenie.	3
	Suma godzin	45

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Wykład z elementami wykładu problemowego

- N2. Prezentacje multimedialne
- N3. Wykonanie indywidualnej pisemnej pracy semestralnej na zadany temat
- N4. Materiały multimedialne (MOOC)
- N5. Instrukcje laboratoryjne
- N6. Wykonanie zadań laboratoryjnych i przygotowanie sprawozdań

N7. Konsultacje

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na koniec semestru)	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
F, P	PEU_W01 - 02	F1 Ocena końcowa z egzaminu w formie
	PEU_U01 - 03	pisemnej,
	PEU_K01	F2 Ocena z pisemnej pracy semestralnej,
		P Ocena końcowa z wykładu (średnia ważona z
		F1 – 80% oraz F2 - 20%)
F, P	PEU_W01-02	F3 Ocena z wykonanych zadań i sprawozdań
	PEU_U01 - 03	Pisemnych,

PEU_K01	F4 Ocena ze sprawdzianów pisemnych,
	P2 Ocena końcowa z laboratorium (średnia
	ważona z F3 – 80% oraz F4 - 20%)

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

LITERATURA UZUPEŁNIAJĄCA:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl

Semestr 2

TU Bergakademie Freiberg

Data:	MGEOFER.MA.Nr.2013	Stand:	Start:
		31.10.2017	WiSe 2019
Module	Applied Remote Sensing in Geoscien	ces	
name:			
Course	Prof. DrIng. Jörg Benndorf		
coordinator:			
Instructors:	John, Andre / DrIng.		
Department:	Department of Mine Surveying and G	eodesy	
Duration:	1 Semester		
Study goals	 After successful completion of the course students will be able to apply methods of remote sensing in the context of analysis of spatio-temporal processes in geosciences. This includes in particular, the ability to choose suitable sensor technology based on knowledge about available sensors and related physical principles processing of remote sensing data using typical software application of multi-variate statistical methods to infer relevant information from sensor data, relevant to specific case studies application of spatial modelling techniques for prediction of attributes at not samples location or times. integration of before mentioned aspects in an efficient work flow. 		
Content:	This module covers the introduction to remote sensing in geosciences by the Topics covered include - review of theoretical foundatio - data acquisition techniques (te - spatio-temporal analysis of da - Geoscientific background rela Practical exercises will be conducted change detection of ground properties conduct individual project assignment	e means of selected case s n of remote sensing erestrial , airborne, spaceb ta ted to the case studies. applying multi-spectral and s and ground deformations	orne) d radar data for S. Students will
Typical	Richards and Jia, Remote Sensing D		
literature:	Schowengerdt, Remote Sensing: Models and Methods for Image Processing, Academic Press		
Teaching	S1 (WS): Lecture (1 SWS)		
mode:	S1 (WS): practical work (3 SWS)		
Prerequisites:	Pre-requisites are basic knowledge in geosciences, remote sensing and statistics.		
Term:	Winter Term		
Examination:	Project assignment and presentation		
ECTS (LP):	6		
Grade:	Assessment of the project assignment and presentation		
Study load:	Total estimated study lead is180h. It consists of 60h supervised lecture and practical time and 120 independent work including group work, practical, self-study and preparation for examination.		

Data:	Geomod. MA. Nr. 638 /	Stand:	Start:
	Prüfungs-Nr.: 30105	24 40 2017	WiSe 2019
Module	Geomodelling – Geostatistics for	31.10.2017	WISe 2019
name:	Compacining Coostatistics for	natural resource modeling	
Course	Prof. DrIng. Jörg Benndorf		
coordinator:	6 6		
Instructors:	Prof. DrIng. Jörg Benndorf		
Department:	Department of Mine Surveying ar	nd Geodesy	
Duration:	1 Semester		
Study goals	 model building and estimation apply geostatistical methors sources/reserves critically evaluate model at lation method and choose discuss the critical characteria 	ndation of spatial data analys	is, geostatistical g natural re- ation and simu- applications rable reserves
Content:	Importance of Resource Mode Mining, uni-variate and multi- Spatial Continuity, the Spatial tions of Stationarity and Ergor using unbiased Estimators, D raphy and Variogram Modelin cluding the Polygon Method, Polynomial Regression, Geos cluding Simple Kriging, Ordina Secondary Information into S Kriging, other methods includ duction in Modeling spatial Un Method of Sequential Gaussia in Estimating Reserves in Ter fining Smallest Minable Units Mining Cases, Introduction to standards (example JORC Co	variate Explorative Data Analy Random Function Model, Mo dicity, Inference of a Spatial R ealing with Preferential Samp og, Simple Methods for Spatial Triangulation, Inverse Distance statistical Methods for Spatial ary Kriging and Universal Krig patial Modeling using Technic ing Indicator Kriging and Bloc meertainty using Conditional S an Simulation, Geostatistical of ms of Volume-Variance Relation and Grade Tonnage Curves, CRIRSCO-based Internation	ysis, Analysis of odel Assump- Random Function oling, Variog- I Estimation in- ce Power and Estimation in- ging, Integrating ques of Co- k Kriging, Intro- simulation, the Considerations tionship for de- Applications in
Typical literature:	M. Armstrong: "Basic Linear Geo H. Akin, H. Siemes: "Praktische C A. G. Journel, and C.J. Huijbregts Press; P. Goovaerts: "Geostatistics for N University Press; T. Schafmeister: "Geostatistik für Verlag	Geostatistik", Springer Verlag; s, 1978, Mining Geostatistics, Natural Resource Evaluation", die hydrogeologische Praxis	Academic Oxford
Teaching	S1 (WS): Lecture, language Engl		
mode: Proroquisitos:	S1 (WS): practical work in groups	5 (2 3783)	
Fierequisites:	Recommended: Introduction to Statistics		
	Calculus		
Term:	Winter Term.		
	I		

	Written Exam of 90 minutes Group Work Assignment For modules with multiple assessment methods, each of these must be passed with a minimum grade of "sufficient" (4.0).
ECTS (LP):	5
Grade:	Written Exam (weight 2) Set of assignment (weight 1)
Study load:	Total estimated study lead is150h. It consists of 60h presence time (lectures and practical), and 90 hours independent work including group work, practical, self-study and preparation for examination

Data:	GEOMON. BA. 128 / Prüfungs-	Stand:	Start:
	Nr.: -		
Madula	Coomonitoring	31.10.2017	WiSe 2019
Module name:	Geomonitoring		
Course	Prof. DrIng. Jörg Benndorf		
coordinator:	r for. Dring. sorg Defindon		
Instructors:	Benndorf, Jörg/ Prof. DrIng.		
	John, Andre / DrIng.		
Department:	Department of Mine Surveying a	and Geodesy	
Duration:	1 Semester	2	
Study goals	Students are able to build on their knowledge about geodetic and geotechnical measurement methods on the one hand and their understanding about the geogenic/ antropogenic process to monitor on the other hand to generate reliable and effective monitoring concepts for spatial, temporal and spatio-temporal processes. Students are able to critically analyze monitoring concepts and interpret monitoring results.		
Content:	The Lecture introduces to applications and to the methodological approach of Geomonitoring. Starting on the basis of measurement and data acquisition techniques it discusses monitoring design aspects and statistical and model based inference strategies. The aim is to infer an understanding of geo- processes and their relevant spatio-temporal dynamics, including change detection. Topical application in the context of resource extraction impact- and environmental impact monitoring on different scales in time and space will be discussed and analyzed.		
Typical	Kavanagh, B.F. (2002): Geomat	ics. Pearson Education, Uppe	er Saddle
literature:	River; Jain, R. (2015). Environmental Impact of Mining and Mineral Processing: Management, Monitoring, and Auditing Strategies. Butterworth-Heinemann. Fischer-Stabel, P. (2005): Umweltinformationssysteme. Wichmann, Heidelberg. de Gruijter, J., Brus, D.J., Bierkens, M.F.P., Knotters, M.(2006). Sampling for Natural Resources. Springer.		
Teaching	S1 (WS): Lecture (2 SWS)		
mode:	S1 (WS): practical work in group	os (2 SWS)	
Prerequisites:	Recommended: Introduction to Remote Sensing Geodetic Surveying Introduction to GIS Engineering Surveying Geomodelling		
Term:	Winter Term		
Examination:			
	Set of Assignments		
ECTS (LP):	5 Oral France (and interface)		
Grade:	Oral Exam (weight 1)		
Study lood	Assignment (weight 1)	h It consists of 60h supervis	ad lacture and
Study load:	Total estimated study lead is150 practical time and 90 independent work including <u>o</u> preparation for examination.	-	

 ical analysis of measurement results for underground surveying capaigns optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns red to the absolute spatial orientation of underground mining workir independently conduct typically underground mine surveying tasks analyze results. Content: Legal regulations with respect to underground mine surveying (in pticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement Transfer of coordinates and directional angels from surface to underground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) Alignment control in underground drifts and tunnels Underground geodetic infrastructure and mine mapping Drill hole surveying Recent developments Typical literature: Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7.; Deutscher Markscheiderverein e.V., Bochum, 1999; 	Data:	MARVERM. BA. Nr. 641 /	Stand:	Start:
Module name: Underground Mine Surveying name: Prof. DrIng. Jörg Benndorf Course Prof. DrIng. Jörg Benndorf Instructors: Prof. DrIng. Jörg Benndorf Department: Department: Department: Department: Study goals After successful completion of the course, students are able to: - apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying ca paigns - optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns r ed to the absolute spatial orientation of underground mine surveying tasks analyze results. Content: - Legal regulations with respect to underground mine surveying (in p ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) - Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement - Transfer of coordinates and directional angels from surface to und ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) - Alignment control in underground drifts and tunnels - Underground geodetic infrastructure and mine mapping -		Pr ü fungs−Nr.∶	04 40 0047	W/O - 0040
name: Orest Course Prof. DrIng. Jörg Benndorf Cordinator: Prof. DrIng. Jörg Benndorf Department: Department of Mine Surveying and Geodesy Duration: 1 Semester Study goals After successful completion of the course, students are able to: - apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying ca paigns - optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns r ed to the absolute spatial orientation of underground mine surveying tasks analyze results. Content: - Legal regulations with respect to underground mine surveying tasks analyze results. Content: - Legal regulations with respect to underground mine surveying (in p ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) - Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement - Transfer of coordinates and directional angels from surface to und ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) - Alignment control in underground drifts and tunnels - Underground geodetic inf	Modulo	Underground Mine Surveying	31.10.2017	WISe 2019
Course coordinator: Prof. DrIng. Jörg Benndorf Instructors: Prof. DrIng. Jörg Benndorf Department: Department of Mine Surveying and Geodesy Duration: 1 Semester After successful completion of the course, students are able to: - apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying ca paigns - optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns r ed to the absolute spatial orientation of underground mine wrveying tasks analyze results. Content: - Legal regulations with respect to underground mine surveying (in p ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) - Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement - Transfer of coordinates and directional angels from surface to und ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) - Alignment control in underground drifts and tunnels - Underground geodetic infrastructure and mine mapping - Drill hole surveying - Recent developments Typical Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die literature: betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufa		Underground Mine Surveying		
coordinator: Instructors: Prof. DrIng. Jörg Benndorf Department: Department: Department: Study goals After successful completion of the course, students are able to: 1 Study goals After successful completion of the course, students are able to: - apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying carpaigns - optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns i ed to the absolute spatial orientation of underground mine surveying tasks analyze results. Content: - Legal regulations with respect to underground mine surveying (in pt ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) - Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement - Transfer of coordinates and directional angels from surface to under ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) - Alignment control in underground drifts and tunnels - Underground geodetic infrastructure and mine mapping - Drill hole surveying - Recent developments Typical		Prof. DrIng. Jörg Benndorf		
Department: Department of Mine Surveying and Geodesy Duration: 1 Semester Study goals After successful completion of the course, students are able to: apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying capaigns optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns red to the absolute spatial orientation of underground mining workir				
Duration: 1 Semester Study goals After successful completion of the course, students are able to: - apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying capaigns - optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns red to the absolute spatial orientation of underground mining workir - independently conduct typically underground mine surveying (in pticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) - Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement - Transfer of coordinates and directional angels from surface to und ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) - Alignment control in underground drifts and tunnels - Underground geodetic infrastructure and mine mapping - Drill hole surveying - Recent developments Typical Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheiderverein e.V., Bochum, 1999; Ogundare, J. O. (2015). Precision surveying: the principles and geomatics practice, John Wiley & Sons. Zeitschriften:	Instructors:	Prof. DrIng. Jörg Benndorf		
Study goals After successful completion of the course, students are able to: apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying capaigns optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns r ed to the absolute spatial orientation of underground mining workir independently conduct typically underground mine surveying tasks analyze results. Content: Legal regulations with respect to underground mine surveying (in p ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement Transfer of coordinates and directional angels from surface to under ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) Alignment control in underground drifts and tunnels Underground geodetic infrastructure and mine mapping Drill hole surveying Recent developments Typical Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde; ; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheidekunde; ; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheidekunde; ; 1. Auflage, ISBN: 3-89653-530-7,;	Department:		d Geodesy	
 apply the theory of error propagation in the context of planning and ical analysis of measurement results for underground surveying capaigns optimize the case specific use of suitable surveying instrumentation measurement design and data processing method for campaigns red to the absolute spatial orientation of underground mining workin independently conduct typically underground mine surveying tasks analyze results. Content: Legal regulations with respect to underground mine surveying (in pticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement Transfer of coordinates and directional angels from surface to underground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) Alignment control in underground drifts and tunnels Underground gededic infrastructure and mine mapping Drill hole surveying Recent developments Typical Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die literature: betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7.; Deutscher Markscheiderverein e.V., Bochum, 1999; Ogundare, J. O. (2015). Precision surveying: the principles and geomatics practice. John Wiley				
 ticular German law: Verordnung über markscheiderische Arbeiten Beobachtung der Oberfläche - Markscheider-Bergverordnung vom Dezember 1986) Application of the theory of error propagation and GUM - Guide to Expression of Uncertainty in Measurement Transfer of coordinates and directional angels from surface to under ground (mechanical and optical shaft plumbing, gyroscopic measu ments, application of inertial systems) Alignment control in underground drifts and tunnels Underground geodetic infrastructure and mine mapping Drill hole surveying Recent developments Typical Schulte, Löhr, Vosen: Markscheidekunde für das Studium und die betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheidekunde.; 1. Auflage, J. O. (2015). Precision surveying: the principles and geomatics practice. John Wiley & Sons. Zeitschriften: Markscheidewesen, AVN, VDV-Magazin Teaching S1 (WS): Lecture (2 SWS) mode: S1 (WS): exercises and practical work in groups (3 SWS) Prerequisites: Basic knowledge about surveying, surveying instrumentation and undergre mining. Term: Winter Term. Examination: Oral Assessment (30 Minutes)	Study goals	 apply the theory of error propagation in the context of planning and critical analysis of measurement results for underground surveying campaigns optimize the case specific use of suitable surveying instrumentation, the measurement design and data processing method for campaigns related to the absolute spatial orientation of underground mining workings. independently conduct typically underground mine surveying tasks and 		
literature: betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtun VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheiderverein e.V., Bochum, 1999; Ogundare, J. O. (2015). Precision surveying: the principles and geomatics practice. John Wiley & Sons. Zeitschriften: Markscheidewesen, AVN, VDV-Magazin Teaching S1 (WS): Lecture (2 SWS) mode: S1 (WS): exercises and practical work in groups (3 SWS) Prerequisites: Basic knowledge about surveying, surveying instrumentation and undergromining. Term: Winter Term. Examination: Oral Assessment (30 Minutes)	Content:	 ticular German law: Verordnung über markscheiderische Arbeiten und Beobachtung der Oberfläche - Markscheider-Bergverordnung vom 19. Dezember 1986) Application of the theory of error propagation and GUM - Guide to the Expression of Uncertainty in Measurement Transfer of coordinates and directional angels from surface to under- ground (mechanical and optical shaft plumbing, gyroscopic measure- ments, application of inertial systems) Alignment control in underground drifts and tunnels Underground geodetic infrastructure and mine mapping Drill hole surveying 		
mode: S1 (WS): exercises and practical work in groups (3 SWS) Prerequisites: Basic knowledge about surveying, surveying instrumentation and undergromining. Term: Winter Term. Examination: Oral Assessment (30 Minutes)	literature:	 betriebliche Praxis. Springer Verlag; Meixner, H. und Bukrinskij, A.: Markscheidewesen für Bergbaufachrichtungen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1985; Knufinke, P.: Allgemeine Vermessungs- und Markscheidekunde.; 1. Auflage, ISBN: 3-89653-530-7,; Deutscher Markscheiderverein e.V., Bochum, 1999; Ogundare, J. O. (2015). Precision surveying: the principles and geomatics practice. John Wiley & Sons. 		
Prerequisites: Basic knowledge about surveying, surveying instrumentation and undergromining. Term: Winter Term. Examination: Oral Assessment (30 Minutes)	-			
mining. Term: Winter Term. Examination: Oral Assessment (30 Minutes)				
Examination: Oral Assessment (30 Minutes)				
		Winter Term.		
	Examination:			

	For modules with multiple assessment methods, each of these must be passed with a minimum grade of "sufficient" (4.0).
ECTS (LP):	5
Grade:	Oral assessment (weight 1)
Study load:	Total estimated study load is180h. It consists of 75h presence time (lectures and underground surveying practical), and 105 hours independent work including group work, practical, self-study and preparation for examination

Semestr 3 TU Bergakademie Freiberg

Data:	GEOINF2. MA. Nr. 529 /	Stand:	Stort:		
Data:	Prüfungs-Nr.:	Stand:	Start:		
		31.10.2017	SoSe 2018		
Module name:	Applied Spatial Data Analysis and M				
Course	Prof. DrIng. Jörg Benndorf				
coordinator:					
Instructors:	Löbel, Karl-Heinz / DrIng.				
	Benndorf, Jörg/ Prof. DrIng.				
Department:	Department of Mine Surveying and Geodesy				
Duration:	1 Semester				
Study goals	After successful completion of the c				
	 independently create solutions f 		• •		
	oengineering applying knowledg				
	otechnical engineering and engi		nodern methods in		
	geospatial data analysis, geo-m	-			
	 critically assess and interpreted 	results of the analysis and pro	vide recommenda-		
	tions related to expected impact	of mining activities during acti	ve and post-mining		
	phase.				
	 coordinate team work, create pr 	oject plans and manage the w	ork progress		
	 present results in a report and/o 				
	conduct auto-didactical education re	elated to detailed handling of ty	pical software.		
Content:	 project work on a case study rel 				
	 supporting acquisition of georef 				
	 impact analysis on environment 	-			
	 data base structures suited to m 	hap the problem on hand			
	 GIS project management 				
	 Interpolation, 2¹/₂- and 3D mode 	l building			
	Geospatial data analysis				
	Network analysis				
	Client/Server concepts				
	 GIS and internet 				
	 Presentation of results in thema 	tic maps and presentations			
Typical	David Maguire, Michael Batty, Micha	ael Goodchild: GIS, Spatial An	alysis,		
literature:	and Modeling. ISBN: 1-58948-130-5		•		
	The ESRI Guide to GIS Analysis, Vo				
	Relationships. ISBN: 1-879102-06-4		nents		
	and Statistics. ISBN: 1-58948-116-X		07007 440 0		
	Josef Fürst: GIS in Hydrologie und V Wolfgang Liebig, Jörg Schaller (Hrs				
	ISBN 978-3-87907-346-7;	g.) . Alchew GIS - GIS-Albeita	buch,		
	Peter Fischer-Stabel (Hrsg.):Umwel	tinformationssysteme, ISBN 97	78-3-87907-423-5;		
	Franz-Josef Behr: Strategisches GI				
	und Betrieb, ISBN 978-3-87907-350				
	Thomas Brinkhoff: Geodatenbanksy	steme in Theorie und Praxis, I	SBN		
	• 978-3-87907-433-4				
L					
Teaching	S1 (SS): Lecture (1 SWS)	SIM(S)			
mode: Droroguioitoo:	S1 (SS): practical work in groups (2	34431			
rierequisites:	Recommended:				
	Introduction to GIS, 2014-06-16				
	Introduction to Mine Surveying				
Larm:	Summor Torm				
Term: Examination:	Summer Term. Oral Exam				
	Group Work Assignment				

ECTS (LP):	5
Grade:	Oral Exam (weight 2)
	Assignment (weight 3)
Study load:	Total estimated study lead is150h. It consists of 45h lectures 105 independent work including group work, practical, self-study and preparation for examination

Data:	MARKLAG. BA. Nr. 648 /	Stand:	Start:		
	Prüfungs-Nr.: -				
		31.10.2017	SoSe 2019		
Module	Geomatics for Resource and Reserve Management				
name:	Prof. Dr. Ing. Jörg Ronndorf				
Course coordinator:	Prof. DrIng. Jörg Benndorf				
Instructors:	Prof. DrIng. Jörg Benndorf				
Department:	Department of Mine Surveying an	d Geodesv			
Duration:	1 Semester				
Study goals	After successful completion of the course, students are able to create case specific work flows and apply methods that support a safe, economical end environmental responsible exploitation of mineral deposits. The particular focus of this module is on: - exploration of the resource and geo-mechanical aspects including tectonics, - evaluation of mineral resources and reserves according international stand- ards, - monitoring of operational accessible reserves (in-pit reserves), - grade control and reconciliation, - operational production and safety monitoring and - aspects related to optimization of mine design.				
Content:	 Methods and phases of resource exploration Resource/Reserve estimation Operational production and safety monitoring Grade control and reconciliation Tectonic structures and its visualization in mine maps (folding structures and discontinuities) Geotechnical design aspects Applied operations resource for optimized mine design 				
Typical literature:	Eisbacher, G.H.: Einführung in die Tektonik. Ferdinand Enke Verlag Stuttgart; Klassifikation von Lagerstätten. GDMB-Hefte, GDMB-Clausthal- Zel- lerfeld; Michaely, H., Blasgude H.G.: Rissmusteratlas- Bergmännisches Risswerk. FABERG-Normenausschuss Bergbau im DIN Deutsches Institut für Normung e.V. Domschke, W., Drexl, A., Klein, R., Scholl, A. (2015) Einführung in das Opera- tions Research. Springer, Berlin.				
Teaching	S1 (SS): Lecture (2 SWS)				
mode:	S1 (SS): exercises and practical v	vork in groups (2SWS)			
	Basic knowledge about mine map	pping.			
Term:	Summer Term.				
Examination:	Oral Assessment (30 Minutes) Set of assignments Excursion (successful completion is a pre-requisite for oral examination)				
ECTS (LP):	6				
Grade:	Oral assessment (weight 1)				
Study load:	Total estimated study load is180h and underground surveying practi including group work, practical, se	ical), and 120 hours independ	lent work		

Data:	BODBEWB. BA. Nr. 646 /	Stand:	Start:	
	Prüfungs-Nr.: -			
		31.10.2017	SoSe 2019	
Module	Special Topics Geokinematics			
name:	Drof Dr. Ing. lärg Bonndorf			
Course coordinator:	Prof. DrIng. Jörg Benndorf			
Instructors:	Benndorf, Jörg/ Prof. DrIng.			
	John, Andre / DrIng.			
Department:	Department of Mine Surveying an	d Geodesy		
Duration:	1 Semester			
Study goals	After successful completion of the	course, students are able to	:	
	• solve topical problems related to predicting and monitoring mining induced			
	ground movements,			
	 utilize methods of inverse mod 	delling to estimate parameters	s of prediction	
	models based on monitoring d	÷ .	·	
	 apply methods of machine lea 		sional data and	
	identify relations between inde			
Content:	 Review of methods for predict 	ing mining induced ground m	ovements on	
	topical examples			
	Applied inverse modelling and	geostatistics for parameter e	estimation in the	
	context of ground movement prediction			
	 Introduction to supervised and unsupervised learning (Machine 			
	Learning) in the context of resource extraction monitoring and prediction			
	 Case studies of machine learning in the context of mining induced ground 			
	movement modelling and exploration			
	C .		or actimation	
	 Case studies for ground move 	ment prediction and paramet	eresumation	
Typical	Kratzsch, Helmut: Bergschadenku	unde. 4. Aufl., 2004, 873 S., I	SBN	
literature:	3-00-001661-9;		-	
	Whittaker, B.N., Reddish D.J.: Sul	bsidenceOccurrence, Pred	ction and	
	Control, 1989, 528 S., ISBN 0-444			
	Kanevski, M., Timonin, V., & Pozo		•	
	spatial environmental data: theory	· · ·	-	
	Dzegniuk, B., Fenk, J., Pielok, J. : Gebirgsbewegungen im Flözbergt	, .		
	Journals: Markscheidewesen, Geo			
	Computer and Geosciences, Jour		01011000,	
Teaching	S1 (SS): Lecture, language Englis			
mode:	S1 (SS): practical work in groups	. ,		
Prerequisites	Recommended:	· · ·		
	Mining Subsidence Engineering (A	Allgemeine Grundlagen der		
	Bergschadenkunde)			
	Geomodelling (Geomodellierung)			
	Geodetic Adjustment Theory (Aus	gieicnungsrechnung)		
Term:	Summer Term.			
Examination:				
	Group Work Assignment			
ECTS (LP):	4			
Grade:	Oral exam of duration 20 to 30 mi	nutes (weight 2)		
	Set of assignment (weight 1)	· · · · ·		
	· · · · · · · · · · · · · · · · ·			

Study load:	Total estimated study lead is120h. It consists of 60h presence time (lectures
	and practical), and 60 hours independent work including group work, practical,
	self-study and preparation for examination

COURSE DESCRIPTIONS/ KARTY PRZEDMIOTÓW

second-level studies/ studia II stopnia main field of study/ kierunek studiów: Mining and Geology/ Górnictwo I Geologia

specialisation/specjalność: GEOMATICS FOR MINERAL RESOURCE MANAGEMENT ścieżka studiów/study track: LEOBEN 1-st Semester

Semestr 1

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii,	Górnictwa i Geologii
	KARTA PRZEDMIOTU
Nazwa przedmiotu w języ	ku polskim Wspomagane komputerowo modelowanie
geologiczne i geostat	ystyka(zajęcia są prowadzone w języku angielskim)
Nazwa przedmiotu w języ	ku angielskim Computer Aided Geological Modelling and
Geostatistics	
Kierunek studiów (jeśli do	tyczy): Górnictwo i geologia.
Specjalność (jeśli dotyczy)	: Mining Engineering,
	Geotechnical and Environmental Engineering,
	Geomatics for Mineral Resource Management
Poziom i forma studiów:	II stopień, stacjonarna
Rodzaj przedmiotu:	obowiązkowy *
Kod przedmiotu	W06GIG-SM0038
Grupa kursów	NIE*
-	

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć	15		45		
zorganizowanych w Uczelni					
(ZZU)					
Liczba godzin całkowitego	30		120		
nakładu pracy studenta					
(CNPS)					
Forma zaliczenia	Egzamin /	Egzamin /	Egzamin /	Egzamin /	Egzamin /
	zaliczenie	zaliczenie na	zaliczenie na	zaliczenie na	zaliczenie na
	na ocenę*	ocenę*	ocenę*	ocenę*	ocenę*
Dla grupy kursów zaznaczyć					
kurs końcowy (X)					
Liczba punktów ECTS	1		4		
w tym liczba punktów			4		
odpowiadająca zajęciom					
o charakterze praktycznym (P)					
w tym liczba punktów ECTS	1		2		
odpowiadająca zajęciom					
wymagającym bezpośredniego					
udziału nauczycieli lub innych					
osób prowadzących zajęcia					
(BU)					

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Mathematical Statistics,
- 2. Fundamentals of Geology and Mineral Deposits

CELE PRZEDMIOTU

- C1 Developing basic skills in computer modelling of 3-D objects.
- C2 Introduction of the principles of digital modelling of typical geological structures.

C3 Introduction to the methods of deposit parameters estimation and resources evaluation.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Estimation methods, principles of geostatistics, kriging estimators

- PEU_W02 Geostatistical modelling of the selected deposit parameters (domain analysis, variogram modelling,
- PEU_W03 Creating and validating 3-D models of various geological structures in the comprehensive dedicated software environment.

Z zakresu umiejętności:

PEU_U01 Application of relevant estimation methods for quality modelling of a deposit

- PEU_U02 Evaluating 3-D objects against structural and quality block models (volumes, tonnages, grades)
- PEU_U03 Describing the interpretation and applied approach, creating models, evaluation results, recommendations for possible enhancements

Z zakresu kompetencji społecznych:

PEK_K01 The student can think and act in a creative and enterprising way

	TREŚCI PROGRAMOWE		
	Forma zajęć - wykład		
Wy1	Introduction to the course. Geological database and validation of the geological data.	2	
Wy2	Geology of the seam.	2	
Wy3	Structural model of the stratified deposit. Methods of the prediction of the surface layer parameters.	2	
Wy4	Spatial distribution of samples values. Regionalized variable.	2	
Wy5	BLUE Estimator of the mean value: Kriging.	2	
Wy6	Quality model of the deposit – block model of the parameter layers. Estimation and evaluation of the block model.	2	
Wy7	Reserves modelling and evaluation.	2	
Wy8	Mineral resources. International reporting. The JORC Code	1	
	Suma godzin	15	

	Forma zajęć - ćwiczenia	Liczba godzin
Ćw1		
Ćw2		
Ćw3		
Ćw4		
	Suma godzin	0

Forma zajęć - laboratorium	Liczba
	godzin

Lal	Determining the rules of work at the laboratory.	3
La2	Assignment of the individual dataset for the exercises and creating initial data files.	3
La3	Data validation and creating initial geological database.	3
La3	Construction of the structural wireframe model of stratigraphy layers.	3
La1 La5	Construction of the block model of the deposit and overburden layers. Thickness and stripping ratio analysis.	3
La6	Data preparation to geostatistical analysis. Compositing of the samples.	3
La7	Domain analysis with the use of the statistical methods.	3
La8	Determination of the empirical variogram. Anisotropy analysis.	3
La9	Variogram modelling.	3
La10	Kriging Neighborhood Analysis - defining optimal parameters of the estimation procedure.	3
La11	Estimation of quality parameters in block model of the deposit layers. Validation of the estimation quality.	3
La12	Validation of the quality model and classification of the resources. Balance resources evaluation.	3
La13	Preparation of data for continuous surface mining ultimate pit design. Ultimate pit outlines generation	3
La14	Wireframe and block modelling of the ultimate pit	3
La15	Reserves evaluation, visualization and interrogation of created models	3
	Suma godzin	45

Pr1 Pr2	
Pr2	
Pr3	
Pr4	
•••	
Suma godzin	0
Forma zajęć - seminarium	Liczba godzin

	r orma zajęc - semmarium	Litzba gouzin
Se1		
Se2		
Se3		
	Suma godzin	0

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Form of lectures - traditional, multimedia presentations using specialized software and demonstrations of its application "live", individual development of specialist topics covered during the lecture,

N2. individual development of project tasks within the laboratories frames, individual development of electronic reports concerning project tasks within the laboratories frames, N3. evaluation of laboratory tasks reports with multipoint grade of student's work, group analysis of the results obtained during laboratory tasks; preparation of conclusions concerning data dependencies and constraints of mining projects, skill control tests, duty hours in laboratory.

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEU_W01,	Lecture grade on the basis of the written
	PEU_W02	examination
F2	PEU_W03,	Laboratory task assessment: "structural modelling assessment
E2	DELL LIO1	
F3	PEU_U01	Laboratory task assessment: "geostatistical modelling"
F4	PEU_U02,	Laboratory task assessment: "reserves
	PEU_U03	evaluation".
P average of F1, F2, F3, H	54	

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] M. Armstrong, Basic Linear Geostatistics, Springer Verlag, 1998.
- [2] P. Goovaerts: "Geostatistics for Natural Resource Evaluation", Oxford University Press, 1997.
- [3] R. H. Grishong, Jr., 3-D Structural Geology, Springer Verlag, 2008
- [4] K. Hefferan, J. O'Brien, Earth materials, Willey-Blacwell, Chichester U.K., 2010
- [5] W. Hustrulid, M. Kuchta, Open pit mine planning and design. Chapter 3. Orebody description, Taylor&Francis, 2013.
- [6] A. G. Journel, and C.J. Huijbregts, Mining Geostatistics, Academic Press, 1978.
- [7] Ch.C. Plummer, D.H. Carlson, L. Hammersley, Physical geology, McGraw-Hill I.E. N.Y. 2010
- [8] D.R. Prothero, R.H. Dott Jr., Evolution of the Earth, McGraw-Hill I.E. N.Y., 2010
- [9] M.W. Rossi, C.V. Deutsch, Mineral Resources Estimation, Springer Verlag 2014.

LITERATURA UZUPEŁNIAJĄCA:

[10] Handouts, tutorials.

OPIEKUN PRZEDMIOTU (IMIE, NAZWISKO, ADRES E-MAIL)

Dr inż. Krzysztof Hołodnik Dr inż. Witold Kawalec, Dr Paweł Zagożdżon

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów

WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA i GEOLOGII					
KARTA PRZEDMIOTU					
Nazwa przedmiotu w języ	ku polskim Geofizyka inżynierska				
(zajęcia są prowa	dzone w języku angielskim)				
Nazwa przedmiotu w języ	ku angielskim Engineering Geophysics				
Kierunek studiów (jeśli do	otyczy): górnictwo i geologia				
Specjalność (jeśli dotyczy)	: Mining Engineering,				
Geo	technical and Environmental Engineering,				
Geo	matics for Mineral Resource Management				
Poziom i forma studiów:	I-/ II stopień / jednolite studia magisterskie *, stacjonarna /				
	niestacjonarna *				
Rodzaj przedmiotu: obowiązkowy-/ wybieralny / ogólnouczelniany *					
Kod przedmiotu W06GIG-SM0040					
Grupa kursów	TAK / NIE*				

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15			15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	40			50	
Forma zaliczenia	Egzamin-/ zaliczenie na ocenę*			Egzamin / zaliczenie na ocenę*	
Dla grupy kursów zaznaczyć kurs końcowy (X)					
Liczba punktów ECTS	1			2	
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)				2	
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)				2	

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. has knowledge of fundamentals of applied geophysics, physics and geology.
- 2. knows fundamentals of soil and rock mechanics.
- 3. is able to use MS Office software.
- 4. is able to work in a team.

CELE PRZEDMIOTU

- C1 familiarize with physical phenomena in geosphere of the Earth
- C2 familiarize with engineering problems solved by means of geophysical surveying
- C3 familiarize with various geophysical surveys.

C4 acquisition of skills to plan geophysical field surveying and to interpret its results. C5 development of skills to work in a group.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU_W01 recognizes, names and explains engineering problems in different fields.

PEU_W02 identifies, describes and chooses geophysical surveying methods.

PEU_W03 analyses and assesses case studies from solving the engineering problems.

Z zakresu umiejętności:

- PEU_U01 is able to coordinate team work, create field research plans and manage the work progress.
- PEU_U02 is able to independently create solutions for complex practical problems in engineering and geoengineering applying knowledge about geophysical surveying, mining geophysics, utilizing modern methods in geophysical data acquisition and interpretation.
- PEU_U03 is able to critically assess, process and interpreted results of the geophysical surveying and provide recommendations related to engineering problems in mining, civil engineering, engineering geology, municipal waste site, archeology, engineering properties of soil and rocks, hydrogeology, monitoring seepage in river dykes or dams.
- PEU_U04 is able to solve geophysical problems.
- PEU_U05 is able to conduct auto-didactical education related to detailed handling of typical software.

Z zakresu kompetencji społecznych:

PEU_K02 understands the need to create and transfer to the society – among others by mass media- information and opinions related to mining engineering achievements and other activities of mining engineer; tries to transfer the information in commonly understood way, presenting different points of view; is aware of the quality and need to shape the work safety culture in mining and the responsibility for the health and life of other employees.

TREŚCI PROGRAMOWE				
	Forma zajęć - wykład	Liczba godzin		
Wy1	Physical properties of rocks. Inter-relationships between the various subdisciplines of applied geophysics. Overview of geophysical methods, their physical principles and applications. Methodology of geophysical surveying.	1		
Wy2	Engineering problems solved with geophysical surveying. Case studies.	2		
Wy3	Electrical resistivity methods. Tomography and VSE. IP method. Physical principles. Equipment. Methods of field surveying. Interpretation and application. Case studies.	2		
Wy4	Electromagnetic methods. FDEM and TDEM methods. Magnetotelluric methods. Physical principles. Methods of field surveying. Equipment. Interpretation and application. Case studies.	2		
Wy5	GPR surveying. Physical principles. Methods of field surveying.	2		

	Equipment. Interpretation and application. Case studies.	
Wy6	Seismic tomography. Seismic interferometry. Physical principles. Applications. Case studies.	2
Wy7	Mine geophysics. Seismology. Seismic methods. Active and passive seismic tomography. Microgravimetry. Case studies.	2
Wy8	Gravity and magnetic surveying. Equipment. Methods of field surveying. Interpretation and application. Case studies.	2
	Suma godzin	15

	Liczba godzin	
Pr1	One selected geophysical technique. Fundamentals and equipment. Field surveying	4
Pr2	Pr2 Processing and interpretation of field data.	
Pr3	Pr3 Solving the geophysical problems.	
	Suma godzin	15

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1.Lecture aided by presentation.N2.Demonstration.N3.Discussion and consultationsN3CalculationsN5Practical field surveying

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na koniec semestru)	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
P1	W01-W03	Test related to lecture content. Final grade.
F1	U01-U02, U05	Test. Project 1. Report on Project 1
F2	U03, U05	Test. Project 2. Report on Project 2
F3	U04, U05	Test. Solving geophysical problems
F1-F3, P2	U01-U05 K02	Grades are given for each of three project tasks including tests and reports. The final grade P2 for the project course is the weighted average grade of F1-F3.

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Aki, K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman Co.. San Francisco.
- [2] Burger, H.R., Sheehan, A.F., Jones, C.H., 2006. Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W.W. Norton & Company, Inc.
- [3] Mendecki, A.J. (ed.), 1997. Seismic Monitoring in Mines. Chapman & Hall.
- [4] Reynolds, J.M., 2011. An Introduction to Applied and Environmental Geophysics. Wiley Blackwell. John Wiley & Sons.

- [5] Sharma, Prem V., 2002. Environmental and engineering geophysics. Cambridge University Press.
- [6] Torge, W., 1989. Gravimetry. Water de Gruyter. Berlin. New York.
- [7] Selected Journal Publications (for example journals: Progress in Geophysics, Engineering Geophysics Journal, Environmental and Engineering Geophysics, Journal of Geophysics and Engineering, Pure and Applied Geophysics).

LITERATURA UZUPEŁNIAJĄCA:

- [1] Lowrie, W., 2007. Fundamentals of Geophysics. Cambridge University Press.
- [2] Milsom, J., 2003. Field Geophysics. John Wiley & Sons Ltd.
- [3] Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) ANNA BARBARA GOGOLEWSKA, anna.gogolewska@pwr.edu.pl

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów WYDZIAŁ GEOINŻYNIERII. GÓRNICTWA I GEOLOGII **KARTA PRZEDMIOTU** Nazwa przedmiotu w języku polskim: Zintegrowana analiza deformacji w geomechanice......(zajęcia są prowadzone w języku angielskim) Nazwa przedmiotu w języku angielskim: Integrated Analysis of Deformations in **Geomechanical Engineering** Kierunek studiów (jeśli dotyczy): górnictwo i geologia Specjalność (jeśli dotyczy): Geomatics for Mineral Resources Management Poziom i forma studiów: I/ II stopień / jednolite studia magisterskie*, stacjonarna / niestacjonarna* **Rodzaj przedmiotu:** obowiązkowy / wybieralny / ogólnouczelniany * W06GIG-SM0041G Kod przedmiotu Grupa kursów TAK / NIE*

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć	30		30		
zorganizowanych w Uczelni					
(ZZU)					
Liczba godzin całkowitego	90		60		
nakładu pracy studenta					
(CNPS)					
Forma zaliczenia	Egzamin /		Egzamin /		
	zaliczenie		zaliczenie na		
	na ocenę*		ocenę*		
Dla grupy kursów zaznaczyć					
kurs końcowy (X)					
Liczba punktów ECTS		5			
w tym liczba punktów	3		2		
odpowiadająca zajęciom					
o charakterze praktycznym (P)					
w tym liczba punktów ECTS	2,5		1,5		
odpowiadająca zajęciom					
wymagającym bezpośredniego					
udziału nauczycieli lub innych					
osób prowadzących zajęcia					
(BU)					

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Podstawowa wiedza z zakresu goemechaniki
- 2. Podstawową wiedza dotycząca eksploatacji górniczej
- 3. Podstawowa wiedza monitorowania zmian górotworu

CELE PRZEDMIOTU

- C1 Przedstawienie roli monitorowania w górnictwie zrównoważonym
- C2 Przygotowanie i przeprowadzenie analizy deformacji górotworu spowodowanych działalnością górniczą

- C3 Przygotowanie i przeprowadzenie analizy deformacji zapór i usypisk ziemnych
- C4 Nauczenie zasad modelowania MES
- C5 Nabycie umiejętności wykorzystania analizy zintegrowanej wykorzystując modelowanie deterministyczne MES i wyniki pomiarów geodezyjnych i geotechnicznych

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Potrafi rozróżnić i opisać zastosowania technik monitorowania deformacji w sPEUtrum dyscyplin inżynieryjnych takich jak górnictwo i inżynieria budowlana PEU W02 Potrafi scharakteryzować górotwór i metody górnicze PEU W03. Posiada wiedzę z zakresu analiz: empirycznych i deterministycznych z zastosowaniem FEM deformacji górotworu, PEU W04. Posiada wiedzę podstaw i zastosowań analizy zintegrowanej metody deterministycznej z wynikami pomiarów geodezyjnych PEU W05. Potrafi wyznaczyć główne założenia pomiaru geodezyjnego deformacji wywołanych eksploatacja górniczą PEU W06 Ma znajomość przygotowania modelu MES Z zakresu umiejętności:

Z zakresu kompetencji społecznych:

PEU K01 Potrafi ocenić rolę monitorowania i predykcji w górnictwie zrównoważonym w całym jego cyklu

TREŚCI PROGRAMOWE				
	Forma zajęć - wykład	Liczba godzin		
Wy1	Syllabus, warunki zaliczenia, literatura,	2		
Wy2	Wstęp do zintegrowanej analizy deformacji	2		
Wy3	Rola monitorowania w górnictwie zrównoważonym	2		
Wy4	Opis zjawisk fizycznych: statyka- dynamika , rozchodzenie się ciepła, przepływ cieczy, zmiany siły grawitacji, zastosowania	2		
Wy5	Metody analizy deformacji: stosując analizę systemów i mechaniki ciała stałego	2		
Wy6	Ogólna klasyfikacja metod monitorowania: absolutne i względne pomiary deformacji,	2		
Wy7	zalety i wady metod geodezyjnych i geotechniczno-strukturalnych, koncepcja pomiarów zintegrowanych	2		

Wy8	Mechanika ciała stałego, Problem warunków brzegowych	2
Wy9	Rozwiązanie systemu kratownicy - relacja do MES MES	2
Wy10	Empiryczne metody wyznaczania deformacji powierzchni wywołanych eksploatacją podziemną (gaz i nafta) i eksploatacją odkrywkową, zastosowanie MES, Kategoria terenu	2
Wy11	Przykłady zastosowania integracji : stabilności zboczy w kopalniach odkrywkowych, Chiquqimata, Chile, NevadaUSA	2
Wy12	Przykłady zastosowania integracji : deformacja górotworu na terenach podziemnej eksploatacji górniczej w kopalni soli w Kanadzie,	2
Wy13	Problemy wydobycia gazu naturalnego i nafty	2
Wy14	Podsumowanie	2
Wy15	Kolokwium	2
	Suma godzin	30

	Forma zajęć - ćwiczenia	Liczba godzin
Ćw1		
Ćw2		
Ćw3		
Ćw4		
	Suma godzin	

	Liczba godzin	
Lal	Przedstawienie zakresu ćwiczeń, warunków zaliczenia oraz literatury.	2
La2	Analiza wpływu obciążenia na górotwór –zastosowanie programu GeoStudio 2007	2
La3	Analiza naprężeń in-situ górotworu i górotworu obciążonego	2
La4	Zaprojektowanie pomiaru geodezyjnego na terenie górniczym prowadzenia podziemnej eksploatacji na podstawie wyników MES. Dyskusja projektu pomiarów.	2
La5	Wyznaczenie kategorii terenu górniczego Dyskusja wyników projektu	2
La6	Zaprojektowanie pomiaru geodezyjnego na terenie kopalni odkrywkowej na podstawie modelu MES . Dyskusja projektu pomiarów.	2
La7	Zaprojektowanie pomiaru geodezyjnego ziemnej zapory wodnej na podstawie modelu MES. Dyskusja analizy	2
La8	Podsumowanie	1
	Suma godzin	15

	Forma zajęć - projekt	Liczba godzin
Pr1	Wyznaczenie MES deformacji górotworu spowodowanych eksploatacją podziemną, wyznaczenie kategorii terenu. Analiza sprężysta i nieliniowa . Omowienie monitorowania	6
Pr2	Podsumowanie	1
Pr3	Wyznaczenie MES deformacji usypiska/zapory ziemnej w warunkach zmiennego poziomu wody. Wyznaczenie wspolczynnika bezpieczeństwa stosując oprogramowanie Geostudio. Omowienie monitorowania	6
Pr4	Podsumowanie	2
	Suma godzin	15

	Liczba godzin	
Se1		
Se2		
Se3		
	Suma godzin	

	STOSOWANE NARZĘDZIA DYDAKTYCZNE	
N1. Wykład, film		
N2.		
N3.		

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEK_U01 -	Oceny z Lab 2-7, projekt 1 i 2.
	PEK_U06	
F2		
F3		
P P PEU_W01 – PEU_W06, Kolokwium, Ocena końcowa z wykładu		
PEU_U01 – PEU_U06 Ocena końc		cowa z laboratorium . Średnia ze sprawozdań i
projektu		

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

[1] Szostak-Chrzanowski, A., A. Chrzanowski,(2010), "INTEGETED ANALYSIS OF DEFORMATIONS IN GEOMECHANICS ", UNB, Fredericton, N.B., 220p.

LITERATURA UZUPEŁNIAJĄCA:

- Szostak-Chrzanowski, A., A. Chrzanowski, M. Massiera (2005) "Use of deformation monit results in solving geomechanical problems – case studies ", *Engineering Geology*, vol. 7 Issues 1-2, pp. 3-12.
- 2 Chrzanowski, A. (1993): "Modern Surveying Techniques for Mining and Civil Engineering
- 33 in: Comprehensive Rock Engineering, Pergamon Press, Vol.3. Chapter 33, pp.773-809.

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL) Anna Chrzanowska anna.chrzanowska@pwr.edu.pl

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii,	WYDZIAŁ Geoinżynierii, Górnictwa i Geologii				
	KARTA PRZEDMIOTU				
Nazwa przedmiotu w języ	ku polskim Bezpieczeństwo i higiena pracy(zajęcia są				
prowadzone w języku	angielskim)				
Nazwa przedmiotu w języ	ku angielskim Occupational Health and Safety				
Kierunek studiów (jeśli do	otyczy): Górnictwo i geologia.				
Specjalność (jeśli dotyczy)	Specjalność (jeśli dotyczy): Mining Engineering				
Geotechnical and Environmental Engineering,					
Geo	Geomatics for Mineral Resource Management				
Poziom i forma studiów:	II stopień, stacjonarna				
Rodzaj przedmiotu: obowiązkowy *					
Kod przedmiotu	W06GIG-SM0042				
Grupa kursów	NIE*				

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15			15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	30			30	
Forma zaliczenia	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocene*	Egzamin / zaliczenie na ocenę*	Egzamin / zaliczenie na ocenę*
Dla grupy kursów zaznaczyć	ina occinę				occnę
kurs końcowy (X)					
Liczba punktów ECTS	1			1	
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)				1	
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)	1			1	

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Possesses basic knowledge of technologies used in open-pit mines and underground mines.
- 2. Is able to use Microsoft Office environment to prepare documents in Word, multimedia presentations in Power Point and work with Excel spreadsheets.
- 3. Is able to identify harmful, dangerous and nuisance factors in the workplace environment.

CELE PRZEDMIOTU

C1. To introduce the principles of occupational risk assessment in accordance with relevant

standards

C2 To present the principles of occupational risk assessment and the determination of admissibility with the use of STER software and the RISC SCORE method.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU W01 Possesses general knowledge of rules of occupational risk assessment formulation

- PEU_W02 Possesses knowledge of evaluating and determining the admissibility of occupational risk.
- PEU _W0 3 Possesses general knowledge of corrective and preventive actions regarding hazards of typical work posts in the mining industry....

Z zakresu umiejętności:

PEU_U01 Is able to identify hazards of harmful, dangerous and nuisance factors of typical work posts in the mining industry

PEU_U02 Is able to estimate and determine risk acceptability with methods according to STER software and the RISC SCORE method.

PEU_U03 - Is able to plan corrective and preventive actions for hazards of typical work posts in the mining industry....

Z zakresu kompetencji społecznych:

PEU_K01 - Is able to work in a team and together complete occupational risk assessment and develop its results and the required documentation in the form of a team report

	TREŚCI PROGRAMOWE		
	Forma zajęć - wykład	Liczba godzin	
Wy1	Definition of occupational risk. Legal basics of occupational risk assessment. Risk assessment methods. Course of occupational risk assessment. Information necessary for occupational risk assessment. Identification of harmful, dangerous and nuisance factors in the work environment.	3	
Wy2	Estimation of occupational risk assessment and determination of admissibility. Corrective and preventive actions. Familiarising employees with the results of occupational risk assessment. Implementation of agreed corrective and preventive actions. Monitoring the effectiveness of implemented actions. Periodic occupational risk assessment. Harmful factors – identification and assessment of risks.	3	
Wy3	Dangerous factors - identification and assessment of risks.	3	
Wy4	Nuisance factors in occupational risk assessment: psychological burden, static burden, monotype.	3	
Wy 5	Methods of occupational risk assessment: STER software, the RISC SCORE method, written test	3	
	Suma godzin	15	

	Forma zajęć - ćwiczenia	
Ćw1		
Ćw2		
Ćw3		

Ćw4		
	Suma godzin	

	Forma zajęć - laboratorium		
La1			
La2			
La3			
La4			
La5			
	Suma godzin		

	Forma zajęć - projekt	Liczba godzin
Pr1	Occupational risk assessment with the use of STER software for two work posts – description of work post, identification of hazards. Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (dust, noise)	3
Pr2	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of harmful factors (vibration, chemical agents)	3
Pr3	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility of dangerous factors (slippery or uneven surfaces, falling elements, moving parts, moving machinery and transported bimi items)	3
Pr4	Occupational risk assessment with the use of STER software for two work posts – estimation of occupational risk and determination of admissibility for nuisance factors (psychological burden, static burden, monotype)	3
Pr 5	Occupational risk assessment for a selected work post with the use of the RISC SCORE method, presentation of executed exercises, test	3
	Suma godzin	15
	Forma zajeć - seminarium	Liczba godzin

	Forma zajęć - seminarium	Liczba godzin
Se1		
Se2		
Se3		
	Suma godzin	

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Informative lecture with elements of problematic lectures.

N2 Multimedia presentations.

N3 Didactic discussions during lectures.

N4 Didactic discussions during laboratory classes.

N5Computer presentation of executed occupational risk assessments.

N6Consultation.

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
koniec semestru)		
F1	PEU_W01-W03	grade from a test
F2	PEU_W01-W03 PEU_U01-U03	grade from a presentation
P2	PEU_W01-W03 PEU_U01- U03	final grade from project classes (arithmetic average of F1 and F2)
Р		

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Iwona Romanowska Słomka, Adam Słomka Zarządzanie ryzykiem zawodowym. Wydawnictwo TARBONUS, Krakow Tarnobrzeg, 2009
- Iwona Romanowska Słomka, Adam Słomka Ocena ryzyka zawodowego.
 Wydawnictwo TARBONUS, Krakow Tarnobrzeg, 2010
- [3] Wiesława Horst Ryzyko zawodowe na stanowisku pracy. Część 1, Ergonomiczne czynniki ryzyka. Wydawnictwo Politechniki Poznańskiej, Poznan, 2004

LITERATURA UZUPEŁNIAJĄCA:

[1] PN-N-18002 Systemy zarządzania bezpieczeństwem i higieną pracy - Ogólne wytyczne do oceny ryzyka zawodowego

[2]

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Żaklina Konopacka

Zał. nr 5 do ZW 8/2020 Załacznik nr ... do programu studiów

WYDZIAŁ Geoinżynierii,	Górnictwa i Geologii
	KARTA PRZEDMIOTU
Nazwa przedmiotu w języ	ku angielskim: Project Management, Appraisal and Risk
Evaluation(zajec	ia sa prowadzone w języku angielskim)
Nazwa przedmiotu w języ ryzyka.	ku polskim :Zarządzanie projektami, ocena ich opłacalności i
Kierunek studiów (jeśli do	otyczy): Górnictwo i geologia
Specjalność (jeśli dotyczy)	: Mining Engineering,
	Geotechnical and Environmental Engineering,
	Geomatics for Mineral Resource Management
Poziom i forma studiów:	II stopień, stacjonarna
Rodzaj przedmiotu:	obowiązkowy
Kod przedmiotu	W06GIG-SM0039G
Grupa kursów	ТАК

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	15		30	15	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	30		60	30	
Forma zaliczenia		Egzamin			
Dla grupy kursów zaznaczyć kurs końcowy (X)	Х				
Liczba punktów ECTS			4		
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)			3		
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)			3		

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Knowledge of basic mathematical analysis, probability and statistical models
- 2. Skills in using Excel spreadsheets
- 3. Understanding of the need of lifelong learning and the importance of application of Economics, Management and Social Sciences in engineering.

CELE PRZEDMIOTU

The course combines two groups of topics: basics of mineral economics and financial management and introduction to project management. Part A: The purpose of the course is C1 to introduce basic concepts of Microeconomics and financial management C2 to introduce the concept of time value of money and present the methods used to evaluate investment projects. Different techniques are illustrated by examples and case studies. The range of application as well as the advantages and disadvantages of each method are discussed. The issues of inflation and risk analysis are included.

Part B:

C3 Introduction to project management basic concepts, methods and tools.

C4 Presentation of given project management areas: Project scope management, Project time management, Project cost management, Project risk management. Project planning, scheduling and control using Microsoft Project.

C5 Presentation of the issues of effective communication in project teams, group behaviour and leadership.

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

PEU_W01 rozumie pojęcia podaży i popytu, elastyczności popytu i ich wpływ na rynki PEU W02 zna pojęcia kosztów w ekonomii i rachunkowości, rozumie różnice

- PEU_W03 zna sposoby klasyfikacji kosztów w przedsiębiorstwach, zna i rozumie podstawowe pojęcia rachunku kosztów
- PEU_W04 ma podstawową wiedzę o treści i wzajemnych relacjach bilansu, rachunku zysków i strat oraz rachunku przepływów pieniężnych, zna sposób prezentacji danych finansowych przedsiębiorstw w ustawowych sprawozdaniach finansowych i zna ich warianty.
- PEU_W05 ma podstawową wiedzę na temat metody analizy wskaźnikowej sprawozdań finansowych
- PEU_W06 zna pojęcia wartości przyszłej i wartości obecnej przepływów pieniężnych i rent rocznych
- PEU_W07 zna podstawowe i zaawansowane metody oceny efektywności inwestycji (NPV, IRR, MIRR, DPBP, PBP) oraz zakresy ich stosowania
- PEU_W08 ma podstawową wiedzę o metodach oceny ryzyka inwestycji

Z zakresu umiejętności:

- PEU_U01 potrafi przeprowadzić analizę przyczyn i skutków zmiany popytu i podaży
- PEU_U02 na podstawie krzywych kosztowych potrafi przeprowadzić optymalizację wielkości produkcji w różnych przypadkach.
- PEU_U03 umie zinterpretować i korzystać z informacji zawartych w ustawowych sprawozdaniach finansowych. Umie przeprowadzić analizę wskaźnikową sprawozdań finansowych w podstawowym zakresie
- PEU_U03 umie korzystać z danych kosztowych przedstawionych w różnych układach ewidencyjnych kosztów, umie stosować podstawowe metody rachunkowości zarządczej do podejmowania decyzji krótkoterminowych
- PEU_U04 potrafi obliczyć wartość przyszłą i obecną pieniądza dla szeregu płatności oraz rozwiązać zadania rachunkowe z zakresu wartości pieniądza w czasie
- PEU_U05 potrafi przeprowadzić ocenę opłacalności inwestycji poznanymi metodami
- PEU_U06 potrafi przeprowadzić analizę wrażliwości i analizę scenariuszy z wykorzystaniem modelu finansowego inwestycji
- PEU_U07 potrafi przygotować dokumentację projektową w podstawowym zakresie i

zainicjować projekt

PEU_U08 potrafi zastosować podstawowe metody zarządzania projektami, monitorowania i zarządzania ryzykiem projektu

PEU_U09 potrafi zastosować podstawowe metody zarządzania konfliktami w grupie

PEU_U10 potrafi zastosować podstawowe metody zarządzania grupą i kreowania pozycji lidera, potrafi ocenić skuteczność zarządzania grupą

Z zakresu kompetencji społecznych:

PEU_K01 potrafi myśleć i działać w sposób systemowy, kreatywny i przedsiębiorczy PEU_K02 ma utrwaloną postawę ekonomicznego działania i podejmowania decyzji w oparciu o dostępne informacje finansowe i prognozy

	TREŚCI PROGRAMOWE	
	Forma zajęć - wykład	Liczba godzin
Wy1	Supply and demand, equilibrium price, changes in demand and supply. Stock and commodity markets used by mineral industries	2
Wy2	Costs in economics and in accounting. Cost and money outflow. Relevant cost, incremental cost, marginal cost, alternative cost. Short- term decision making.	2
Wy3	Costs as the subject of cost accounting, different systems of cost accounting Different methods of cost data presentation (by types, divided into direct and indirect costs). Cost allocation	2
Wy4	Variable and fixed costs. Break even point. Cost-volume –profit analysis.	1
Wy5	Basics of financial accounting. Income statement and cash flow statement. Balance sheet. Working capital. Examples of financial statements of mining companies	2
Wy6	Financial ratio analysis. Liquidity, profitability, activity and debt ratios. Financial and operating leverage.	2
Wy7	The concept of time value of money. Computation of future and present value of money by means of spreadsheet functions. Basics of capital budgeting. Evaluation of different methods.	2
Wy8	The concept of risk and return. Quantification of risk. Risk analysis in project evaluation: sensitivity analysis, scenario analysis, other methods.	2
	Suma godzin	15

	Forma zajęć - projekt	Liczba godzin
Pr 1	Issues of understanding communication:	3
	Definitions Models (Schramm model, Berlo's SMCR (source,	
	message, channel, receiver) model, McCroskey model, Reusch and	
	Bateson model, Westley-MacLean model)	
Pr 2	Conflict	3
	Sources of conflicts	
	Kilmann and Thomas classification of conflict	
	Kilmann and Thomas test	
	Different styles of conflict solving	
	Roles of conflict in group development.	
Pr3	Team roles	3

	Team roles Belbin perspective	
	Discussion group roles	
	Effective managerial behaviour in the context of team roles	
Pr4	Leadership	3
	Hersey and Blanchard theory	
	Black and Mouton approach to leadership	
	Fiedler theory and his Least Preferred Coworker Scale	
	Situational leadership self-assessment	
Pr5	Summary;	3
	Effective managerial behaviour from the different contexts.	
	Suma godzin	15

	Forma zajęć - laboratorium	Liczba godzin
	Part A	
La1	Supply and Demand curves. Elasticity of demand.	2
La2	Economic costs. Cost curves. Profit maximization cases.	2
La3	Managerial cost accounting. Decision making cases.	2
La4	Basic financial accounting. Creation of simple Balance Sheet, Profit and Loss Statement and Cash Flow Statement	2
La5	Ratio analysis based on financial statements of companies	2
La6	Time value of money and capital budgeting – calculation by means of Excel functions	2
La7	Financial model of an investment. Sensitivity and Scenario analysis.	3
	Part B	I
La8	Basic concepts (process, project, project management, management by projects, critical factors for project success, competences). Preparing and initiation of the project. Project analysis (project environment, stakeholders, project objectives).	3
La9	Planning and estimating of the project. Project phases and life cycle	3
La10	Project organization. Project scope management. Planning of activities, resources and costs.	3
La11	Project risk management. Project monitoring. Project management methodologies.	3
La12	Quality management. Change control. Project closing.	3
	Suma godzin	30

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Wykład interaktywny z pokazem slajdów i dyskusją

N2. Ćwiczenia laboratoryjne: indywidualne rozwiązywanie zadań z wykorzystaniem arkusza kalkulacyjnego.

N3. Ćwiczenialaboratoryjne: rozwiązywanie zadań w grupach. Prezentacja wyników. Dyskusja o otrzymanych wynikach

N4. Konsultacje

N5. Praca własna – rozwiązywanie zadań domowych

N6. Praca własna - samodzielne studia literaturowe

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca	Numer efektu	Sposób oceny osiągnięcia efektu uczenia się
(w trakcie semestru), P	uczenia się	

– podsumowująca (na		
koniec semestru)		
F1	PEU_W01-W08 PEU_K01-K02	Dyskusja na zajęciach, ocena aktywności studentów na zajęciach laboratoryjnych i projektowych
F2	PEU_U01-U10 PEU_K01-K02	Ocena rozwiązań zadań uzyskanych przez studentów w trakcie zajęć laboratoryjnych i projektowych
P1	PEU_W01-W08 PEU_U01-U10 PEU_K01-K02	Egzamin pisemny
P2	PEU_W01-W08 PEU_U01-U10 PEU_K01-K02	Ocena indywidualnych rozwiązań zadań nadesłanych przez studentów po zajęciach

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- 1. Erhardt M., Brigham E.: Financial Management Theory and Practice. South-Western Cengage Learning, USA
- 2. Brigham E.: Podstawy zarządzania finansami. Polskie Wydawnictwo Ekonomiczne, Warszawa 1997
- 3. Czekaj J., Dresler Z.: Podstawy zarządzania finansami firm. PWN Warszawa 1996
- 4. Jaruga A., Sobańska J., Kopczyńska L. Szychta A.: *Rachunkowość dla menedżerów*. Towarzystwo Gospodarcze RAFIB, Łódź 1996.
- 5. Jonson H.: Ocena projektów inwestycyjnych. Maksymalizacja wartości przedsiębiorstwa. Wyd. K.E. Liber, Warszawa 2000.
- 6. Nowak E.: Rachunek kosztów przedsiębiorstwa. Wydawnictwo Ekspert, Wrocław 2001
- 7. Sierpińska M., Jachna T.: Ocena przedsiębiorstwa według standardów światowych, PWN Warszawa 1994.
- 8. Świderska G. K.(red): Rachunkowość zarządcza. (praca zbiorowa) Wyd. Poltext, Warszawa 1997
- 9. Wysocki Robert K., McGary R., Efektywne zarządzanie projektami, OnePress, 2005
- 10.Lock Dennis, Podstawy zarządzania projektami, PWE, 2009

LITERATURA UZUPEŁNIAJĄCA:

- 1. Jajuga K., Jajuga T., 2006. Inwestycje. Instrumenty finansowe, aktywa niefinansowe, ryzyko finansowe, inżynieria finansowe, Wydawnictwo Naukowe PWN, Warszawa.
- 2. Jonson H.: Koszt kapitału. Klucz do wartości firmy. Wyd. K.E. Liber, Warszawa 2000
- 3. Turyna J., Pułaska-Turyna B.: Rachunek kosztów i wyników. Wyd. Finans-Servis, Warszawa 1997.
- A Guide to Project Management Body of Knowledge (PMBOK®Guide Fourth Edition), Project Management Institute, 2008 (2004). wydanie polskie, MT&DC Warszawa, 2009 (2006)

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Dr inż. Gabriela Paszkowska, Gabriela.paszkowska@pwr.wroc.pl

Zał. nr 5 do ZW 8/2020

Załącznik nr ... do programu studiów

WYDZIAŁ GEOINZYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU

Nazwa przedmiotu w języku polskim Zasady i zastosowania InSAR oraz GIS w górnictwie Nazwa przedmiotu w języku angielskim Principles and Application of InSAR and GIS in mining

Kierunek studiów (jeśli dotyczy): Górnictwo i geologia

Specjalność (jeśli dotyczy): Geomatics for Mineral Resources Management (Geomatyka w zarządzaniu surowcami mineralnymi)

Poziom i forma studiów: I / II stopień / jednolite studia magisterskie*, stacjonarna / niestacjonarna*

Rodzaj przedmiotu:	obowiązkowy / wybieralny / ogólnouczelniany *
Kod przedmiotu	W06GIG-SM0037
Grupa kursów	TAK / NIE*

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni (ZZU)	30		45	-	
Liczba godzin całkowitego nakładu pracy studenta (CNPS)	60		90		
Forma zaliczenia	Egzamin / zaliczenie na ocenę*		Egzamin / zaliczenie na ocenę*		
Dla grupy kursów zaznaczyć kurs końcowy (X)					
Liczba punktów ECTS	2		3		
w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P)			3		
w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego udziału nauczycieli lub innych osób prowadzących zajęcia (BU)	2		2		

*niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I KOMPETENCJI SPOŁECZNYCH

- 1. Zna podstawy programowania w językach: C++ oraz Python.
- 2. Ma podstawową wiedzę z zakresu roli narzędzi geoinformacyjnych (GIS) oraz z zakresu technik pozyskiwania danych przestrzennych.
- 3. Potrafi posługiwać się pakietem oprogramowania GIS
- 4. Ma podstawową wiedzę z zakresu baz danych

CELE PRZEDMIOTU

- C1 Przedstawienie wiadomości z zakresu satelitarnej interferometrii radarowej, a także możliwości wykorzystania jej w pomiarach deformacji terenu.
- C2 Nabycie umiejętności wyznaczania przemieszczeń powierzchni terenu w oparciu o satelitarne dane radarowe.

- C3 Przedstawienie wiadomości dotyczących stosowania GIS w zaawansowanej analizie obiektów, zjawisk i procesów zachodzących w przestrzeni
- C4 Nabycie umiejętności formułowania i rozwiązywania zadań z zastosowaniem funkcji analitycznych GIS
- C4 Nabycie umiejętności korzystania z danych i usług danych przestrzennych zgodnie z dyrektywą INSPIRE

PRZEDMIOTOWE EFEKTY UCZENIA SIĘ

Z zakresu wiedzy:

- PEU_W01 Posiada poszerzoną wiedzę w zakresie wykorzystywania systemów geoinformacyjnych do gromadzenia i przetwarzania danych wykorzystywanych w modelowaniu zjawisk i procesów zarówno naturalnych jak i antropogenicznych
- PEU_W02 Zna zasady budowy i funkcjonowania systemów geoinformacyjnych w branży górniczej i administracji publicznej

Z zakresu umiejętności:

- PEU_U01 Potrafi korzystać z zaawansowanych narzędzi GIS w górnictwie, badaniach zjawisk przyrodniczych, oddziaływaniu górnictwa na otoczenie i zagospodarowaniu przestrzeni,
 PEU_U02 Potrafi formułować i rozwiązywać zadania przestrzenne w środowisku GIS
- PEU U03 Potrafi interpretować otrzymane wyniki oraz wyciągać wnioski

Z zakresu kompetencji społecznych:

PEU_K01 Potrafi formułować i przekazać wiedzę na temat wykorzystania systemów geoinformacyjnych w analizach przestrzennych i prezentacji ich wyników

	TREŚCI PROGRAMOWE		
	Forma zajęć - wykład	Liczba godzin	
Wy1	Omówienie syllabusu, warunków zaliczenia, literatury	2	
Wy2	Wprowadzenie do teorii sygnałów mikrofalowych do obserwacji Ziemi	2	
Wy3	3 Wykorzystanie pasywnej i aktywnej teledetekcji satelitarnej do wyznaczania przemieszczeń powierzchni terenu		
Wy4	v4 Akwizycja i przetwarzanie danych SAR		
Wy5	5 Teoria obrazów SAR (geometryczne właściwości, polaryzacja)		
Wy6	Podstawy obliczeń danych SAR metodami: DinSAR oraz SBAS	2	
Wy7	⁷ y7 Wykorzystanie danych SAR w monitorowaniu aktwyności powierzchni terenu (czynniki naturalne i antropogeniczne)		
Wy8	^{/8} Usystematyzowanie podstawowych pojęć z zakresu systemów informacji geograficznej		
Wy9	Wy9 Modelowanie danych w GIS. Reprezentacja danych przestrzennych. Bazy danych przestrzennych. Stan obecny i trendy rozwojowe		
Wy10	Metody analiz przestrzennych w GIS	2	
Wy11	Interpolacja danych przestrzennych	2	
Wy12			
Wy13	Wy13 Podstawy statystyki przestrzennej		
Wy14	Infrastruktury Informacji Przestrzennej. Dyrektywa Inspire. Open data	2	
Wy15	Przykłady zastosowań systemów geoinformacyjnych w górnictwie i ochronie środowiska	2	
	Suma godzin	15	

	Forma zajęć - laboratorium	Liczba godzin	
Lal	Konfiguracja środowiska do obliczeń SAR		
La2	Wprowadzenie do obliczeń danych radarowych – zadania obliczeniowe	6	
La3	a3 Pozyskanie danych radarowych oraz obliczenia interferogramu – metoda DInSAR		
La4	Rozwiniecie fazy interferometrycznej – obliczenia		
La5	Prezentacja wyników obliczeń danych SAR w środowisku GMT	6	
La6	Interpolacja danych dyskretnych. Przygotowanie danych wejściowych do analizy (np. pomiar przemieszczeń powierzchni terenu górniczego)		
La7			
La8	Interpolacja danych dyskretnych. Analiza i ocena jakości interpolacji. Mapa prognozy. Opracowanie map zmian zanieczyszczenia pomiędzy dwoma okresami z zastosowaniem kalkulatora rastrowego.	3	
La9	Analizy przestrzenne – ocena przydatności terenu pod lokalizację wybranej inwestycji górniczej. Budowa bazy danych przestrzennych kryteriów lokalizacji	3	
La10	Analizy przestrzenne – ocena przydatności terenu pod lokalizację Inwestycji górniczej. Wybór procedur i przeprowadzenie operacji analitycznych.	3	
La11	Analizy przestrzenne – ocena przydatności terenu pod lokalizację inwestycji górniczej. Opracowanie modelu przetwarzania danych przestrzennych.	3	
La12	12 Analizy przestrzenne – ocena przydatności terenu pod lokalizację inwestycji górniczej. Analiza i interpretacja wyników. Prezentacja graficzna i statystyczna wyników. Geowizualizacja		
La13	GIS mobilny. Pozyskiwanie danych przestrzennych i atrybutowych w terenie.	3	
	Suma godzin	45	

STOSOWANE NARZĘDZIA DYDAKTYCZNE

N1. Wykład z elementami wykładu problemowego

- N2. Prezentacje multimedialne
- N3. Wykonanie indywidualnej pisemnej pracy semestralnej na zadany temat
- N4. Materiały multimedialne (MOOC)
- N5. Instrukcje laboratoryjne
- N6. Wykonanie zadań laboratoryjnych i przygotowanie sprawozdań

N7. Konsultacje

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW UCZENIA SIĘ

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na koniec semestru)	Numer efektu uczenia się	Sposób oceny osiągnięcia efektu uczenia się
F, P	PEU_W01 - 02	F1 Ocena końcowa z egzaminu w formie
	PEU_U01 - 03	pisemnej,
	PEU_K01	F2 Ocena z pisemnej pracy semestralnej,
		P Ocena końcowa z wykładu (średnia ważona z
		F1 – 80% oraz F2 - 20%)
F, P	PEU_W01-02	F3 Ocena z wykonanych zadań i sprawozdań
	PEU_U01 - 03	Pisemnych,

PEU_K01	F4 Ocena ze sprawdzianów pisemnych,
	P2 Ocena końcowa z laboratorium (średnia
	ważona z F3 – 80% oraz F4 - 20%)

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. 2015: Geographic Information Science and Systems, 4th Edition, John Wiley & Sons;
- [2] Maguire D., Batty M., Goodchild M., 2005. GIS Spatial Analysis and Modelling. ESRI Press
- [3] Berry J., 2007-2013. Beyond Mapping IV GIS Modelling
- [4] Satellite InSAR Data: Reservoir Monitoring from Space, A. Ferretti, EAGE; 1st edition, 2014
- [5] GMTSAR: An InSAR Processing System Based on Generic Mapping Tools (Second Edition), D. Sandwell i in., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2016
- [6] InSAR Principles Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, 2008

LITERATURA UZUPEŁNIAJĄCA:

- [1] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- [2] Kennedy M., 2009: Introducing Geographic Information Systems with ArcGIS: A Workbook Approach to Learning GIS, Second Edition, John Wiley and Sons;
- [3] Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W., 2006. GIS. Teoria i praktyka. Wydawnictwo Naukowe PWN, Warszawa
- [4] Urbański J., 2010. GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego
- [5] Dokumentacja środowiska GMT (Generic Mapping Tools) http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation

OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES E-MAIL)

Wojciech Milczarek, wojciech.milczarek@pwr.edu.pl Jan Blachowski, jan.blachowski@pwr.edu.pl

Semestr 2

Montanuniversitaet Leoben

Mine Surveying Project Study

Course Nb	200.032	
ECTS	4,5	
Туре	Project Work	
Offering period	Wintersemester	
Lecturer	Mayer, Pilgram	
Course description		
Content	 Project study on various topics in the field of Mine Surveying and Mining Subsidence Engineering 	
Previous knowledge expected	 Good English skills (Minimum: CEF Level B1) Successful completion of the courses Applied Geodesy (200.199) Applied Geodesy Practical (200.200) Engineering Surveying (200.201) Engineering Surveying Practical (200.202) Pre-Calculation of Ground Movements (200.028) 	
Objective	On completion of this course the participants shall	
(expected results of study	be able to:	
and acquired competences)	Structure the project, define the sequence with	
	 milestones and form working groups Combine interdisciplinary knowledge from mine surveying and mining subsidence engineering on a practical topic 	
Languages of instruction	English	
Teaching and learning method (delivery of skills) workload for students	Practical teamwork	

Further information		
Recommended reading	Ghilani, C. D., Wolf, P., Elementary Surveying	
	Kratzsch, H.: Bergschadenkunde, ISBN 3-00-	
	001661-9	
	Kratzsch, H.: Mining Subsidence Engineering,	
	ISBN 0-387-11930-2	
	Möser, Müller, Schlemmer, Werner: Handbuch	
	Ingenieurgeodäsie- Grundlagen; 3.Auflage; ISBN	
	3-87907-293-0	
	Torge, W., Müller, J.: Geodesy; 4th edition; ISBN	
	978-3-11-020718-7	
Note	The assessment methods and the compulsory	
	readings of this course will be announced in detail	
	in the first lecture.	
	The latest version of the lecture notes will be	
	uploaded at the beginning of the semester.	
Study Program		
Master program	Mining and Tunneling	
	Specialty 1 "Mining" / Systems Engineering and Open Pit	
	Mining	
Туре	Compulsory subject	

Mining Subsidence Engineering

Course Nb	200.045	
ECTS	3	
Туре	Lecture	
Offering period	Wintersemester	
Lecturer	Pilgram	
C	Course description	
Content	Legal issues applied to mining subsidence	
	engineering especially the pre-calculation of	
	ground subsidence	
	• The dynamics of ground movement and the	
	critical areas of extraction in a subsidence	
	trough after Lehmann	
	 Calculation of trough components 	
	 Some varieties of calculation procedure 	
	 Measures to reduce mining damage 	
	The components of ground movement	
	The time factor	
	 Mining damage above ground 	
	Compensation of subsidence damage	
	The calculation of diminished value	
Previous knowledge expected	 Good English skills (Minimum: CEF Level B1) 	
Objective	On completion of this course the participants shall	
(expected results of study	be able to:	
and acquired competences)	 plan, implement and evaluate the pre- 	
	calculation of Ground Movements with some	
	simple different methods.	
	plan, assemble and analyze deformation	
	profiles and monitoring networks of ground	
	movements	

	know the basics about the legal relationship	
	between mining and land ownership	
	calculate the diminished value	
	 plan and implement measures to reduce 	
	mining damage	
	share the costs for damage from two or more	
	mines.	
Languages of instruction	English	
Teaching and learning	Lectures	
method (delivery of skills)	Active participation, discussions	
workload for students	Practical examples	
Further information		
Recommended reading	Kratzsch, H.: Bergschadenkunde, ISBN 3-00-	
	001661-9	
	Kratzsch, H.: Mining Subsidence Engineering,	
	ISBN 0-387-11930-2	
	Pilgram, R.: Lehrbehelf zur Vorausberechnung	
	von Bodenbewegungen, The Precalculation of	
	Ground Subsidence, Chair of Mining,	
	Montanuniversitaet Leoben	
Note	The assessment methods and the compulsory	
	readings of this course will be announced in detail	
	in the first lecture.	
	The latest version of the lecture notes will be	
	uploaded at the beginning of the semester.	
	Study Program	
Master program	Mining and Tunneling	
	Specialty 1 "Mining" / Rock Mechanics, Systems	
	Engineering und Underground Mining	
Туре	Compulsory subject	

Risk Management in Mines

Course Nb	200.145
ECTS	1,5
Туре	Lecture
Offering period	Wintersemester
Lecturer	Wagner
	Course description
Content	 Introduction into the objectives and methods of
	risk management in mines
	 Definitions: hazard, risk, damage, severity
	number, risk number
	 Types of risks in mining: safety, human,
	geological, technical, economic, contractual,
	political, time, environmental
	Safety risk-safety statistics
	Acceptable and tolerable risks
	 Methods of risk identification: brain storming,
	risk check lists, expert risk evaluation
	Methods of risk analysis: Regression and
	correlation analysis, probabilistic event
	analysis, fault tree analysis, Delphi-method,
	Monte Carlo simulation, scenario building
	Risk classification: risk matrix-severity and
	probability; risk register
	 Risk treatment: eliminate
	 Monitoring: physical, environmental, financial,
	human
	Human factor in risk management

5	2	/	

Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	 Proven knowledge of mining engineering 	
	(Bachelor in Mineral Resources Engineering,	
	examination in major mining engineering	
	subjects)	
	 In case these are missing the student has to 	
	pass an entrance test at the beginning of the	
	course with the following contents:	
	 Surface and underground mining methods 	
	 Mining equipment 	
	 Mine ventilation 	
	o Geology	
Objective	On completion of this course the participants shall	
(expected results of study	be able to:	
and acquired competences)	 Have an appreciation of the inherent risks in 	
	mining	
	 Have skills to identify and quantify mining risks 	
	 Know the risk management process with the 	
	emphasis on mining risks	
	 Know risk analysis and evaluation techniques 	
	 Know about basic capabilities to perform risk 	
	assessment and management in mines.	
Languages of instruction	English	
Teaching and learning	Lectures	
method (delivery of skills)	Active participation and discussion	
workload for students		
Examination	Oral examination	
	urther information	
Recommended reading	Hartman, h. L. and Mutmansky, J. M. (2002):	
	Introductory Mining Engineering, John Wiley	
	&Sons Inc., 570 pp.	

Study Guide

	ISO 3100- Risk Management. Intern. Standards
	Organization
	Wagner, H. (2001): Die Besonderheiten des
	Risikomanagements im Bergbau. Berg- und
	Hüttenmännische Monatshefte, BHM., 146 Jg.,
	Springerverlag Wien, S.37-41.
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	unloaded at the beginning of the competer
	uploaded at the beginning of the semester.
	Study Program
Master program	
Master program	Study Program
Master program Type	Study Program Mining and Tunnelling
	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects
Туре	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject
Туре	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject Mining and Tunneling
Туре	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject Mining and Tunneling Specialty 3 "Raw Materials and Energy Systems" /
Type Master program	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject Mining and Tunneling Specialty 3 "Raw Materials and Energy Systems" / Restricted Electives
Type Master program Type	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject Mining and Tunneling Specialty 3 "Raw Materials and Energy Systems" / Restricted Electives Compulsory subject
Type Master program Type	Study Program Mining and Tunnelling Specialty 1 "Mining" / Elective Subjects Compulsory subject Mining and Tunneling Specialty 3 "Raw Materials and Energy Systems" / Restricted Electives Compulsory subject International Master of Science in Advanced Mineral

- 2

Spatial Planning

Course Nb	200.177	
ECTS	1,25	
Туре	Lecture / Practical	
Offering period	Wintersemester	
Lecturer	Pilgram	
Course description		
Content	Functional and Legal Spatial Planning	
	 Overview of the levels and planning 	
	instruments of Spatial Planning in Austria	
	 How to use these planning tools 	
	How and where can I get information about	
	sources of data and accuracy of these data	
	 Data sets and services of the Austrian 	
	provinces for free of use based on the	
	principles of Open Data	
	Spatial Planning tasks associated with Mining	
	License Procedures	
	Reorganization of Land	
	 Cadaster and Land registration 	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
Objective	On completion of this course the participants shall	
(expected results of study	be able to:	
and acquired competences)	Use the basics of Functional and Legal Spatial	
	Planning	
	 Use the planning instruments of Spatial 	
	Planning in Austria, the countries and	
	Planning Tools of the regions and urbans	
	Know how and where to get information about	
	sources of data and accuracy of these data	

	 Use data sets and services of the Austrian 	
	Provinces	
	 Use Spatial Planning Tasks associated with 	
	Mining License Procedures	
	Know about reorganization of land	
	Know about cadaster and land registration	
Languages of instruction	English	
Teaching and learning	Lectures	
method (delivery of skills)	Active participation, discussions	
workload for students		
F	urther information	
Note	The assessment methods and the compulsory	
	readings of this course will be announced in detail	
	in the first lecture.	
	The latest version of the lecture notes will be	
	uploaded at the beginning of the semester.	
	uploaded at the beginning of the semester. Study Program	
Master program		
Master program	Study Program	

Underground Mining

Course Nb	200.036	
ECTS	4,5	
Туре	Lecture	
Offering period	Wintersemester	
Lecturer	Moser P.	
Course description		
Content	Underground mining methods.	
	Mine development.	
	 Stoping methods for tabular deposits. 	
	 Rock Mechanic design of room and pillar 	
	system.	
	 Pillar extraction mining. 	
	 Longwall mining. 	
	 Cut and fill mining methods. 	
	 Shrinkage stoping. 	
	Open stoping.	
	Caving methods	
	Backfill	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	 Sustainable knowledge in the following fields - 	
	successful completion of the following lectures:	
	 Mining Rock Mechanics (200.179) 	
	 Basics of Excavation Engineering 	
	(200.054)	
Objective	On completion of this course the participant	
(expected results of study	should be able to	
and acquired competences)	-on the basis of a practical (deposit) example-:	
	Design the access to the deposit	
	 Develop a mining method 	

·	
	Discuss the geotechnical requirements and
	implications of different mining methods
3	 Join together and combine all his acquired
	knowledge (systems thinking)!!
Languages of instruction	English
Teaching and learning	Lectures
method (delivery of skills)	 Active participation and discussion.
workload for students	
	Further information
Recommended reading	Brady, B.H.G. and Brown, E.T.; Rock mechanics
Ū	for underground mining; 3rd Ed., 2004
	Cernica, J.; Soil Mechanics; 1995
	Hustrulid: Underground mining methods. 200
	Potvin, Y.; Thomas, E.; Handbook in Mine Fill;
	2005
Note	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.
	Study Program
Master program	Mining and Tunneling
	Specialty 1 "Mining" / Rock Mechanics, Excavation
	Engineering und Underground Mining
Туре	Compulsory subject
Master program	Mining and Tunneling
	Specialty 3 "Raw Materials and Energy Systems" / Raw
	Materials
Туре	Compulsory subject
Master program	International Master of Science in Advanced Mineral
	Resources Development
Tura	Restricted Elective Subjects
Туре	Elective subject

3-rd Semester Semestr 3 Montanuniversitaet Leoben

Environmental Aspects of Mineral Extraction

Course Nb	200.058	
ECTS	3	
Туре	Lecture	
Offering period	Summersemester	
Lecturer	Tscharf	
C	Course description	
Content	This course provides a comprehensive outline	
	and understanding on the impacts that mineral	
	extraction may have on society and environment.	
	The unit covers 7 broad areas	
	 Mining, sustainability and ethical 	
	responsibilities	
	Impacts of mining projects on atmospheric	
	environment	
	Impacts of mining projects on terrestrial	
	environment	
	Impacts of mining projects on aquatic	
	environment	
	 Impacts of mining projects on social values 	
	 Site reclamation and mine closure 	
	Environmental Impact Assessment (EIA)	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	 Basics of Open Pit Mining (200.061) 	
	 Basics of Underground Mining (200.180) 	
Objective	The students should become familiar and be	
(expected results of study	capable of demonstrating an understanding with	
and acquired competences)	the environmental and social aspects associated	
	with mining projects as well as environmental	
	impact assessment processes (EIA) in Austria,	

-		_
•	21	-
		-
		-

	Europa and Overseas
	Europe and Overseas.
	On completion of this course the participants shall
	be able to
	Describe the principles of mining and
	sustainable development in context with
	ethical responsibilities
	Identify, analyze and understand the major
	impacts of mining projects in atmospheric,
	terrestrial and aquatic environments
	Describe the major issues associated with
	social/community impacts of mining projects
	Discuss the aspects of site reclamation and
	mine closure in context with the prevention of
	environmental impacts for decades after
	mining ceases
	Describe the purpose and the stages of the
	EIA process
Languages of instruction	English
Teaching and learning	Lecture
method (delivery of skills)	Active participation, discussions
workload for students	
F	urther information
Recommended reading	Azcue, J. M., Ed.: Environmental impacts of
	mining activities. Springer, 1999.
	Environmental Law Alliance Worldwide (ELAW):
	Guidebook for Evaluation Mining Project EIAs, 1st
	edition, 2010
	Evans, A.M.: An introduction to economic geology
	and its environmental impact. Blackwell Science
	Ltd, 1997.

Study Guide

	Sengupta, M.: Environmental impacts of mining –	
	monitoring, restoration and control. Lewis	
	Publishers, 1993.	
	Wagner, H. et al.: Umweltauswirkungen der	
	Rohstoffgewinnung. Montanuniversitaet Leoben,	
	2006.	
Note	The assessment methods and the compulsory	
	readings of this course will be announced in detail	
	in the first lecture.	
	The latest version of the lecture notes will be	
	uploaded at the beginning of the semester.	
	Study Program	
Master program	Mining and Tunneling	
	Specialty 1 "Mining" / Rock Mechanics, Excavation	
	Engineering und Underground Mining	
Туре	Compulsory subject	
Master program	Mining and Tunneling	
	Specialty 3 "Raw Materials and Energy Systems" /	
Туре	Restricted Electives	
	Compulsory subject	

Applied Geodesy

Course Nb	200.199	
ECTS	3	
Туре	Lecture	
Offering period	Summersemester	
Lecturer	Mayer, Pilgram	
C	Course description	
Content	 Theory of errors in observations and 	
	adjustments; method of least squares	
	 Reference and mapping systems 	
	 Methods of precise surveying 	
	Gyroscopic surveying	
	 Methods of 3D positioning 	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	 Sustainable knowledge in the field of 	
	surveying.	
	 At the beginning of the course the students 	
	have to pass an entrance test with the	
	following contents:	
	 Implementation and evaluation of an angle 	
	measurement with a theodolite	
	 Calculation of the 1st and 2nd main task of 	
	geodesy	
	 Planning, implementation and calculation 	
	of a traverse	
	• Planning, implementation and calculation	
	of a levelling	
	 Coordinate and mapping systems in goodesy and reference systems for 	
	geodesy and reference systems for	
	position and height measurements	

Objective	On completion of this course the participants shall	
(expected results of study	be able to	
and acquired competences)	Detect and adjust errors in surveying	
	 Apply reference and mapping systems 	
	including calculations	
	Plan, implement and evaluate precise	
	surveying methods for distance	
	measurements, angle measurements and	
	levelling	
	Plan, implement and evaluate measurements	
	with gyrotheodolites	
	 Apply 3D positioning methods such as 	
	traversing, GNSS-surveying, free positioning,	
	reverse cut and forward cut	
Languages of instruction	English	
Teaching and learning	Lectures	
method (delivery of skills)	Active participation and discussion	
workload for students		
F	urther information	
Recommended reading	Ghilani, C. D. and Wolf, P. R., Elementary	
	Surveying	
Note	The assessment methods and the compulsory	
	readings of this course will be announced in detail	
	in the first lecture.	
	The latest version of the lecture notes will be	
	uploaded at the beginning of the semester.	
	Study Program	
Master program	Mining and Tunneling	
Type	Specialty 1 "Mining" – Elective Subjects	
Туре	Compulsory subject	

-

Applied	Geodesy	(Practical)
---------	---------	-------------

Course Nb	200.200	
ECTS	2	
Туре	Practical	
Offering period	Summersemester	
Lecturer	Mayer, Pilgram	
C	Course description	
Content	See Applied Geodesy (200.199)	
Previous knowledge expected	Good English skills (Minimum: CEF Level B1)	
	 Sustainable knowledge in the field of 	
	surveying.	
	 At the beginning of the course the students 	
	have to pass an entrance test with the	
	following contents:	
	 Implementation and evaluation of an angle 	
	measurement with a theodolite	
	 Calculation of the 1st and 2nd main task of 	
	geodesy	
	 Planning, implementation and calculation 	
	of a traverse	
	 Planning, implementation and calculation 	
	of a levelling	
	 Coordinate and mapping systems in 	
	geodesy and reference systems for	
	position and height measurements	
Objective	 See Applied Geodesy (200.199) 	
(expected results of study		
and acquired competences)	English	
Languages of instruction	English	

Teaching and learning	Practical exercises
method (delivery of skills)	
workload for students	
Further information	
Recommended reading	Ghilani, C. D., Wolf, P. R.: Elementary Surveying
Note	This Practical can only be enrolled together with
	the lecture Applied Geodesy (200.199)!
	The assessment methods and the compulsory
	readings of this course will be announced in detail
	in the first lecture.
	The latest version of the lecture notes will be
	uploaded at the beginning of the semester.
Study Program	
Master program	Mining and Tunneling
	Specialty1 "Mining" – Elective Subjects
Туре	Compulsory subject

