

 Faculty of Computer Science and Management

Doctoral Thesis

Creating and validating UML class diagrams

with the use of domain ontologies

expressed in OWL 2

Małgorzata Sadowska

Supervisor:

prof. dr hab. inż. Zbigniew Huzar

Auxiliary Supervisor:

dr inż. Bogumiła Hnatkowska

 Wrocław 2020

1

2

Abstract

The business models aim to present complex business reality in a simplified manner. They

support communication between system shareholders and thus provide the important

information required to create software, as well as play a key role in that software‟s further

development. An important element of business models is the UML class diagrams which are

the subject of this dissertation. UML class diagrams are used to present important notions in a

specific domain.

The ontology is a representation of a selected field of knowledge, and describes domain

concepts and relationships. The ontologies are increasingly used to support modelling in the

software development process, e.g. in the business modelling phase. Using ontologies allows

creating business models without the need for specialized knowledge or the support of domain

specialists. This dissertation selected domain ontologies expressed in the OWL 2 language

due to the fact that currently there are many ontologies already created in this language and

this number is constantly increasing.

The subject of this doctoral dissertation is the process of creating UML class diagrams using

domain ontologies in OWL 2 and their validation against the ontologies.

The thesis of this doctoral dissertation is that the use of domain ontologies favours the faster

creation of business models and increases their semantic quality.

The aim of this research was to propose methods for creating and validating UML class

diagrams based on domain ontologies expressed in OWL 2, as well as the implementation of

the methods in the tool.

Two methods of creating UML class diagrams were proposed, the so-called direct and

extended extraction. The methods required, among others, the proposition of transformation

rules between the elements of UML class diagrams and OWL 2 constructs. The rules were

established based on a systematic review of the literature, as well as extended by new

proposals by the author of this research.

The method of the direct extraction of UML elements uses only the defined transformation

rules. The method of the extended extraction of UML elements allows extracting such UML

elements which are not fully defined in the ontology. It is especially applicable in the case of

the incomplete ontologies and justified by practical modelling needs and the form of real

ontologies. The extended extraction is the original proposal of the author.

The validation process is designed to state whether the created UML class diagrams are

compliant with the indicated domain ontologies that serve as the knowledge base. The

validation of the diagram consists of two stages: the formal verification, which is carried out

automatically in the proposed tool, and optionally the acceptance of the results by the

modeller who finally decides on the result of validation. The process uses the verification

rules proposed by the author is aimed at checking if the UML class diagram being created is

3

complaint with the indicated domain ontology. The method additionally proposes the

automatically generated suggestions of corrections for UML class diagrams.

The methods of creating and validating UML class diagrams based on ontologies have been

implemented as an extension of Visual Paradigm program. The implementation uses on the

original proposition of the OWL 2 ontology transformations which is called normalization.

The normalized ontologies have a unified axiom structure what makes them easier to compare

algorithmically.

The developed tool was checked with the use of test cases and was empirically assessed

through an experiment with students of the Wrocław University of Science and Technology.

The practical potential and usefulness of the proposed methods was confirmed, and thus the

thesis that the use of domain ontologies promotes faster creation of business models and

increases their semantic quality is proved.

4

Streszczenie

Modele biznesowe mają na celu przedstawienie złożonej rzeczywistości biznesowej w sposób

uproszczony. Służą wsparciu komunikacji pomiędzy udziałowcami systemu, a tym samym

dostarczają ważnych informacji wymaganych do utworzenia oprogramowania i odgrywają

kluczową rolę w jego dalszym rozwoju. Istotnym elementem modeli biznesowych są

diagramy klas UML, które są przedmiotem niniejszej rozprawy. Diagramy klas UML służą do

przedstawiania ważnych pojęć w konkretnym obszarze dziedzinowym.

Ontologia stanowi reprezentację wybranej dziedziny wiedzy, na którą składa się zapis pojęć i

relacji między nimi. Ontologie są coraz częściej wykorzystywane do wspierania modelowania

w procesie tworzenia oprogramowania, m.in. w fazie modelowania biznesowego. Korzystanie

z ontologii pozwala na tworzenie modeli biznesowych bez konieczności posiadania wiedzy

specjalistycznej lub wsparcia ekspertów dziedzinowych. W rozprawie są wykorzystywane

ontologie dziedzinowe wyrażone w języku OWL 2, ponieważ obecnie istnieje bardzo wiele

już utworzonych ontologii w tym języku i ta liczba stale rośnie.

Przedmiotem rozprawy doktorskiej jest proces tworzenia diagramów klas UML z

wykorzystaniem ontologii dziedzinowych w OWL 2 oraz ich późniejszej walidacji względem

tych ontologii.

W pracy postawiono tezę, iż zastosowanie ontologii dziedzinowych sprzyja szybszemu

tworzeniu modeli biznesowych i podnosi ich jakość semantyczną.

Celem pracy jest zaproponowanie metod tworzenia oraz walidacji diagramów klas UML w

oparciu o ontologie dziedzinowe, wyrażone w języku OWL 2, a także implementacja metod w

narzędziu.

Zaproponowano dwie metody tworzenia diagramów klas: bezpośrednią i rozszerzoną.

Opracowanie tych metod wymagało między innymi zdefiniowania reguł transformacji między

elementami diagramów klas UML, a konstrukcjami OWL 2. Reguły te zostały opracowane w

oparciu o systematyczny przegląd literatury, a także rozszerzone o nowe autorskie

propozycje.

Metoda bezpośredniego wydobycia elementów UML wykorzystuje jedynie zdefiniowane

reguły transformacji. Natomiast metoda rozszerzonego wydobycia elementów UML, mająca

zastosowanie w przypadku niekompletnych ontologii, umożliwia na wydobycie również

takich elementów UML, które nie są w pełni zdefiniowane w ontologii. Podejście rozszerzone

jest oryginalną propozycją autorki i uzasadnione praktycznymi potrzebami w zakresie

modelowania oraz postacią rzeczywistych ontologii.

Proces walidacji ma za zadanie jednoznacznie stwierdzić, czy otrzymane diagramy klas UML

są zgodne ze wskazanymi ontologiami dziedzinowymi, które służą jako baza wiedzy.

Walidacja diagramu składa się z dwóch etapów: weryfikacji formalnej, która jest

przeprowadzana automatycznie w proponowanym narzędziu, oraz opcjonalnie, akceptacji

5

wyników przez osobę modelującą, która finalnie decyduje o wyniku walidacji. Proces

wykorzystuje zaproponowane przez autorkę reguły weryfikacji, służące do sprawdzania, czy

tworzony diagram klas UML jest zgodny ze wskazaną ontologią dziedzinową. W pracy

zaproponowano również automatycznie generowane sugestie korekt diagramów klas UML.

Metody tworzenia i walidacji diagramów klas na podstawie ontologii zaimplementowano jako

rozszerzenie programu Visual Paradigm. Implementacja bazuje na oryginalnym

przekształcaniu ontologii OWL 2 nazwanym normalizacją. Znormalizowane ontologie mają

zunifikowaną strukturę aksjomatów, dzięki czemu łatwiej je porównywać w sposób

algorytmiczny.

Narzędzie zostało sprawdzone przypadkami testowymi oraz poddane ocenie empirycznej

poprzez eksperyment ze studentami Politechniki Wrocławskiej. Przeprowadzone badania

potwierdziły praktyczny potencjał i użyteczność proponowanych metod, a tym samym

udowodniły postawioną tezę, iż zastosowanie ontologii dziedzinowych sprzyja szybszemu

tworzeniu modeli biznesowych i podnosi ich jakość semantyczną.

6

Table of Contents

List of Figures .. 12

List of Tables.. 16

Conventions and Symbols .. 20

List of Abbreviations ... 21

Part I: Fundamentals

1. Introduction ... 24

1.1. Thesis of the Doctoral Dissertation ... 25

1.2. Objectives .. 26

1.3. Approach ... 26

1.4. Structure of the Thesis ... 27

1.5. Publications ... 28

2. UML Class Diagrams in Business and Conceptual Modelling............. 30

2.1. Introduction ... 30

2.2. Business and Conceptual Modelling ... 31

2.3. UML Class Diagrams in Business and Conceptual Modelling 31

2.4. BPMN as a language to model business processes ... 33

2.5. The Compound Model of a Process .. 35

2.6. Conclusions ... 36

3. Domain Ontologies and OWL 2 Web Ontology Language 38

3.1. Introduction ... 38

3.2. Domain Ontologies in Relation to Other Types of Ontologies 39

3.3. OWL 2 Ontology as a Set of Axioms ... 41

3.4. Syntactically Different but Semantically Equivalent OWL Axioms 42

3.5. Reasoning in OWL Ontologies ... 43

3.6. Querying the OWL ontologies with the SPARQL Language 44

3.7. Online Databases and Libraries with OWL ontologies ... 45

3.8. Validation and Evaluation of OWL Domain Ontologies 46

3.9. Similarities and Differences of UML and OWL 2 Notations................................ 47

7

3.9.1. Major Similarities Between UML and OWL 2 Notations 47

3.9.2. Major Differences Between UML and OWL 2 Notations 48

3.10. Conclusions ... 49

Part II: Creation and Validation of UML Class Diagrams

Suported by OWL 2 Ontologies

4. The Problem of Validation and Verification of UML Class Diagrams . 52

4.1. Introduction ... 52

4.2. Verification and Validation in this Research .. 53

4.3. The Literature Approaches to Verification of UML Class Diagrams 54

4.4. The Literature Approaches to Validation of UML Class Diagrams 55

4.4.1. The Manual Approaches to Validation of UML Class Diagrams 55

4.4.2. The Tool-Supported Approaches to Validation of UML Class Diagrams 56

4.5. Conclusions ... 57

5. Outline of the Process of Validation of UML Class Diagrams 58

5.1. Introduction ... 58

5.2. Requirements for the Method of Validation .. 59

5.3. Description of the Method of Validation... 59

5.3.1. Outline of the Method of Validation ... 59

5.3.2. Transformation Rules .. 65

5.3.3. Verification Rules ... 66

5.4. Result of the Verification .. 70

5.5. Limitations of the Validation Method .. 72

5.6. Conclusions ... 72

6. Outline of The Process of the Creation of UML Class Diagrams 74

6.1. Introduction ... 74

6.2. Creation of the UML Class Diagram Supported by the OWL Domain Ontology 75

6.2.1. Need for the Modification of the Extracted UML Class Diagram 77

6.2.2. Need for the Verification of the Modified UML Class Diagram 78

6.3. Extraction of UML Elements from the OWL Domain Ontology 79

6.3.1. The Direct Extraction .. 80

6.3.2. The Extended Extraction ... 87

6.4. Conclusions ... 94

Part III: Details of the Proposed Method of Creation and

Validation of UML Class Diagrams

7. The Method of Normalizing OWL 2 DL Ontologies 98

8

7.1. Introduction ... 98

7.2. Related Works ... 101

7.3. OWL 2 Construct Replacements ... 102

7.3.1. Class Expression Axioms .. 102

7.3.2. Object Property Axioms .. 103

7.3.3. Data Property Axioms ... 104

7.3.4. Assertion Axioms .. 104

7.3.5. Data Ranges ... 105

7.3.6. Class Expressions .. 105

7.3.7. Object Property Expressions ... 108

7.4. Remarks Regarding the Normalization of OWL Ontologies 108

7.5. Proofs of the Correctness of the OWL 2 Construct Replacements 109

7.6. Outline of the Ontology Normalization Algorithm ... 112

7.7. The Example of a Normalization of a Single Axiom .. 113

7.8. Conclusions ... 114

8. Representation of UML Class Diagrams in OWL 2 116

8.1. Introduction ... 116

8.2. Review Process .. 117

8.2.1. Research Question ... 117

8.2.2. Data Sources and Search Queries .. 118

8.2.3. Inclusion and Exclusion Criteria ... 118

8.2.4. Study Quality Assessment ... 118

8.2.5. Study Selection .. 119

8.2.6. Threats to Validity ... 119

8.2.7. Search Results ... 120

8.2.8. Summary of the Identified Literature .. 121

8.3. Representation of Elements of the UML Class Diagram in OWL 2 122

8.3.1. Transformation of UML Classes with Attributes .. 123

8.3.2. Transformation of UML Associations .. 129

8.3.3. Transformation of UML Generalization Relationship .. 139

8.3.4. Transformation of UML Data Types ... 144

8.3.5. Transformation of UML Comments .. 149

8.4. Influence of UML-OWL Differences on Transformation 150

8.4.1. Instances .. 150

8.4.2. Disjointness in OWL 2 and UML ... 151

8.4.3. Concepts of Class and DataType in UML and OWL .. 152

8.5. Examples of UML-OWL Transformations ... 153

8.6. Conclusions ... 160

Part IV: Tool Support

9. Description of the Tool ... 164

9.1. Introduction ... 164

9

9.2. Architecture of the Tool .. 165

9.3. A Summary of Features of the Server Part .. 165

9.4. A Summary of Features of the Client Part .. 166

9.5. Installation ... 166

9.6. The User Interface ... 167

9.6.1. The Settings Form ... 167

9.6.2. The Normalization Form ... 168

9.6.3. The Complementary Tool Functions ... 170

9.7. Conclusions ... 172

10. Tool Features for Verification of UML Class Diagrams 173

10.1. Introduction ... 173

10.2. Tool Features for Diagram Verification .. 173

10.3. Types of Ontology-based Suggestions for Diagram Corrections 174

10.4. The Example Verification of the UML Class Diagram....................................... 180

10.5. Limitations of the Tool in the Context of Diagram Verification......................... 185

10.6. Conclusions ... 186

11. Tool Features for Creation of UML Class Diagrams 188

11.1. Introduction ... 188

11.2. Tool Features for the Creation of UML Class Diagrams 189

11.2.1. Tab 1: UML Classes .. 190

11.2.2. Tab 2: UML Attributes... 192

11.2.3. Tab 3: UML Binary Associations and UML AssociationClasses 192

11.2.4. Tab 4: UML Generalizations Between the Classes or Between the Associations . 194

11.2.5. Tab 5: UML GeneralizationSets with Constraints .. 194

11.2.6. Tab 6: UML Enumerations .. 195

11.2.7. Tab 7: UML Structured DataTypes .. 196

11.3. The Example Creation of the UML Class Diagram .. 196

11.4. Limitations of the Tool in the Context of Diagram Creation 201

11.5. Conclusions ... 202

Part V: Empirical Evaluation

12. Description of the Experiment ... 206

12.1. Introduction ... 206

12.2. Subjects ... 206

12.3. Objects ... 207

12.4. Domain Ontologies .. 207

12.5. Variables .. 208

12.6. Hypotheses .. 208

12.7. Description of Tasks in the Experiment .. 209

12.8. Operation of the Experiment ... 209

10

12.8.1. Instrumentation .. 209

12.8.2. Preparation of the Laboratory Room ... 210

12.8.3. Time Frame for the Experiment .. 210

12.8.4. Date of the Experiment and Number of Subjects .. 210

13. Analysis of the Results of the Experiment .. 212

13.1. Measures and Scores of Tasks ... 212

13.2. Descriptive Statistics ... 212

13.3. Wilcoxon Signed Ranks Test for the Median Difference 215

13.3.1. Assumptions of Wilcoxon Signed-Ranks Test .. 216

13.3.2. Computations in Wilcoxon Signed-Ranks Test .. 217

13.4. Evaluation of Validity ... 224

13.5. Conclusions ... 226

Part VI: Final

14. Conclusions .. 230

14.1. Thesis Contributions .. 230

14.1.1. Thesis Contributions in the Context of Validation of UML Class Diagrams 231

14.1.2. Thesis Contributions in the Context of the Creation of UML Class Diagrams .. 232

14.1.3. Additional Thesis Contributions ... 232

14.2. Future Works ... 233

Appendix A. Test Cases ... 236

Appendix A.1. Test Cases for Normalization... 236

Appendix A.2. Test Cases for Transformation Rules ... 249

Appendix A.3. Test Cases for Verification Rules .. 258

Appendix B. Materials for the Experiment ... 264

Appendix B.1. Selected Domain Ontologies .. 264

Appendix B.2. Textual Descriptions of the Domain Ontologies 270

Appendix B.3. The Full Text of the Experiment Forms ... 273

References .. 282

11

12

List of Figures

Figure 1.1 Aspects of quality in accordance with [10]... 25

Figure 2.1 The structure of the compound model of a process. ... 36

Figure 3.1 Ontology classification based on domain scope from [59] (figure on page 26 from

[59]). ... 40

Figure 3.2 A relation between OWL 2 ontology and axioms (extract from Figure 1 in OWL 2

specification [1]). ... 41

Figure 3.3 The example relation between the selected class axiom, relevant expressions and

entities on the basis of DisjointClasses axiom (in accordance with OWL 2 specification [1]).

 .. 42

Figure 4.1 The schema of understanding accepted in this dissertation for the terms validation

and verification in the context of UML class diagram, OWL domain ontology and the domain.

 .. 53

Figure 5.1 The flow diagram for validation of UML class diagrams....................................... 60

Figure 5.2 The simplified diagram for the generation of the result of verification for a single

UML element. .. 63

Figure 5.3 A situation when the UML class diagram is compliant with the domain ontology.

 .. 71

Figure 5.4 Situation when the UML class diagram is not contradictory with the domain

ontology. ... 71

Figure 5.5 Two situations when the UML class diagram is contradictory with the domain

ontology. ... 71

Figure 6.1 Illustration of the proposed process of creation of UML class diagram 76

Figure 6.2 The manual and the tool-supported elements of the proposed method of diagram

creation. .. 77

Figure 6.3 The extraction, modification and verification steps of the proposed process of

diagram creation. .. 78

Figure 6.4 The direct extraction bases fully on the selected ontology. 80

Figure 6.5 The example attributes of the UML class named Student. 84

Figure 6.6 The example generalization between UML classes: Employee and Manager. 86

Figure 6.7 The extended extraction; the OWL-UML transformation should be not

contradictory with the ontology. ... 88

Figure 6.8 The example classes with association between them. .. 91

Figure 6.9 The two binary associations based on the extended extraction. 92

Figure 6.10 The two binary associations based on the extended extraction. 92

Figure 6.11 The two binary associations based on the extended extraction 92

Figure 6.12 The example UML generalization set with {complete, disjoint} constraints. 93

Figure 7.1 The axioms of OWL 2 [1] and the tables which specify the proposed replacement

rules. ... 100

Figure 8.1 Example 1 of UML class diagram .. 153

Figure 8.2 Example 2 of UML class diagram .. 157

Figure 8.3 Example 3 of UML class diagram .. 159

Figure 9.1 The toolbar of the designed plugin. .. 167

13

Figure 9.2 The running server icon. ... 167

Figure 9.3 The "Settings" form. ... 168

Figure 9.4 The example of the server message – here: the normalization is conducted. 168

Figure 9.5 The example of ontology before the normalization. ... 169

Figure 9.6 The example of ontology after the normalization. .. 169

Figure 9.7 The example simple UML class diagram consisting of only 5 UML classes. 170

Figure 9.8 The OWL 2 representation of the simple UML class diagram from Figure 9.7. .. 171

Figure 9.9 Example of running server from CMD with the purpose to confirm the port. 172

Figure 10.1 The example of an auto-generated suggestion on the basis of the example of ID

V1 from Table A.13. .. 174

Figure 10.2 The example of an auto-generated suggestion on the basis of the example of ID

V2 from Table A.13. .. 175

Figure 10.3 The example of an auto-generated suggestion on the basis of the example of ID

V3 from Table A.13. .. 175

Figure 10.4 The example of an auto-generated suggestion on the basis of the example of ID

V4 from Table A.13. .. 175

Figure 10.5 The example of an auto-generated suggestion on the basis of the example of ID

V5 from Table A.13. .. 175

Figure 10.6 The example of an auto-generated suggestion on the basis of the example of ID

V6 from Table A.13. .. 175

Figure 10.7 The example of an auto-generated suggestion on the basis of the example of ID

V7 from Table A.13. .. 176

Figure 10.8 The example of an auto-generated suggestion on the basis of the example of ID

V8 from Table A.13. .. 176

Figure 10.9 The example of an auto-generated suggestion on the basis of the example of ID

V9 from Table A.13. .. 176

Figure 10.10 The example of an auto-generated suggestion on the basis of the example of ID

V10 from Table A.13. ... 176

Figure 10.11 The example of an auto-generated suggestion on the basis of the example of ID

V11 from Table A.13. ... 177

Figure 10.12 The example of an auto-generated suggestion on the basis of the example of ID

V12 from Table A.13. ... 177

Figure 10.13 The example of an auto-generated suggestion on the basis of the example of ID

V13 from Table A.13. ... 177

Figure 10.14 The example of an auto-generated suggestion on the basis of the example of ID

V14 from Table A.13. ... 177

Figure 10.15 The example of an auto-generated suggestion on the basis of the example of ID

V15 from Table A.13. ... 178

Figure 10.16 The example of an auto-generated suggestion on the basis of the example of ID

V16 from Table A.13. ... 178

Figure 10.17 The example of an auto-generated suggestion on the basis of the example of ID

V17 from Table A.13. ... 178

Figure 10.18 The example of an auto-generated suggestion on the basis of the example of ID

V18 from Table A.13. ... 178

Figure 10.19 The example of an auto-generated suggestion on the basis of the example of ID

V19 from Table A.13. ... 179

14

Figure 10.20 The example of an auto-generated suggestion on the basis of the example of ID

V20 from Table A.13. ... 179

Figure 10.21 The example of an auto-generated suggestion on the basis of the example of ID

V21 from Table A.13. ... 179

Figure 10.22 The example of an auto-generated suggestion on the basis of the example of ID

V22 from Table A.13. ... 179

Figure 10.23 The example of an auto-generated suggestion on the basis of the example of ID

V23 from Table A.13. ... 180

Figure 10.24 The example UML class diagram which needs to be verified. 180

Figure 10.25 The "contradictory" result of verification including ontology-based suggestions

for diagram correction. ... 181

Figure 10.26 The detailed information regarding the verification rules which have detected the

incorrectness. .. 182

Figure 10.27 The example UML class diagram from Figure 10.24 after correction. 183

Figure 10.28 The "compliant" result of verification. .. 183

Figure 10.29 The example UML class diagram from Figure 10.24 after additional

modification. .. 184

Figure 10.30 The "not contradictory" result of verification. .. 184

Figure 10.31 The "not contradictory" result of verification with a list of not contradictory

normalized transformation axioms. .. 185

Figure 10.32 The error message shown if the selected ontology has a type not from the OWL

2 datatype map. .. 186

Figure 11.1 All tabs in the "Create Diagram" form. .. 189

Figure 11.2 The example of the first tab content based on the selected domain ontology. 191

Figure 11.3 The example of the selected rows in the first tab. .. 191

Figure 11.4 The example direct extraction of UML classes based on the selected rows from

Figure 11.3. .. 191

Figure 11.5 The example of the appearance of the first tab after extraction of elements from

Figure 11.4. .. 191

Figure 11.6 The example of the second tab content based on the selected domain ontology. 192

Figure 11.7 The example direct extraction of the UML attributes based on content from

Figure 11.6. .. 192

Figure 11.8 The example of the third tab content based on the selected domain ontology. ... 193

Figure 11.9 The example of direct extraction of UML Associations, and UML

AssociationClass based on content from Figure 11.8. .. 193

Figure 11.10 The example of the extended extraction of the UML Association based on

content from Figure 11.8. .. 193

Figure 11.11 The example of the fourth tab content based on the selected domain ontology.194

Figure 11.12 The example direct extraction of UML generalizations between the classes, and

UML generalizations between the associations based on content from Figure 11.11. 194

Figure 11.13 The example of the fifth tab content based on the selected domain ontology. .. 195

Figure 11.14 The example direct extraction of UML generalization sets based on content from

Figure 11.13. .. 195

Figure 11.15 The example of the extended extraction of the UML generalization between the

associations based on content from Figure 11.13.. 195

Figure 11.16 The example of the six tab content based on the selected domain ontology. 195

15

Figure 11.17 The example extracted UML Enumeration based on the selected row from

Figure 11.16. .. 196

Figure 11.18 The example of the last tab content based on the selected domain ontology. ... 196

Figure 11.19 The example extracted UML structured DataType based on the selected row

from Figure 11.18. .. 196

Figure 11.20 The UML classes selected from the monetary ontology based on the assumed

glossary. .. 197

Figure 11.21 The UML classes extracted from the monetary ontology based on Figure 11.20.

 .. 197

Figure 11.22 The list of attributes for the classes from Figure 11.21 is empty on the basis of

the selected ontology. ... 198

Figure 11.23 The UML associations described in the monetary ontology based on selected

classes. .. 198

Figure 11.24 All UML associations which follow the direct extraction are selected by the

modeller. ... 199

Figure 11.25 All UML associations extracted from the ontology based on Figure 11.24. 199

Figure 11.26 The UML generalization described in the monetary ontology based on selected

classes. .. 200

Figure 11.27 All UML generalizations extracted from the ontology based on Figure 11.26. 200

Figure 11.28 The UML association which follow the extended extraction is now selected by

the modeller. ... 201

Figure 11.29 The complete UML class diagram based on the extended extraction. 201

Figure 13.1 Number of correct, missing, incorrect and excessive UML elements in tasks of

diagram creation. .. 214

Figure 13.2 Number of correct, missing, incorrect and excessive UML elements in tasks of

diagram validation. ... 214

Figure 13.3 Histograms for the distribution of the population of difference scores 217

16

List of Tables

Table 3.1 Examples of semantically equivalent axioms. ... 42

Table 3.2 The overview of important characteristics and features of HermiT reasoner (based

on the article [64] from 2011 and the article [65] from 2014, as well as the website of the

producer). ... 44

Table 3.3 The example online databases and libraries with OWL ontologies. 46

Table 4.1 The selected literature definitions of verification and validation. 52

Table 5.1 The example of a transformation rule. ... 66

Table 5.2 Motivating example presenting the need for verification rules. 66

Table 5.3 The example of verification rule defining standard OWL verification axiom. 68

Table 5.4 The example of verification rule defining pattern of OWL verification axiom. 69

Table 5.5 The example of verification query. .. 70

Table 6.1 The important categories of UML elements which cannot be derived from any

OWL ontology. ... 80

Table 6.2 The checking rules for extraction of categories of UML elements from OWL

domain ontology. .. 83

Table 6.3 The set of the OWL transformation axioms for the UML elements from Figure 6.5.

 .. 84

Table 6.4 The set of the OWL verification axioms for the UML elements from Figure 6.5. .. 85

Table 6.5 The set of the OWL checking axioms for the UML elements from Figure 6.5. 85

Table 6.6 The set of the OWL transformation axioms for the UML elements from Figure 6.6.

 .. 86

Table 6.7 The set of the OWL verification axioms for the UML elements from Figure 6.6. .. 86

Table 6.8 The set of the OWL checking axioms for the UML elements from Figure 6.6. 87

Table 6.9 All cases of the incomplete sets of OWL axioms which constitute a premise about

the possibility of being translated into a specific UML elements. ... 89

Table 6.10 The full set of the OWL transformation axioms for the UML elements from Figure

6.8 (based on the direct extraction). .. 91

Table 6.11 The transformation axioms reduced by declaration axioms................................... 91

Table 6.12 The transformation axioms reduced by declaration and inverse object properties

axioms. ... 92

Table 6.13 The maximally reduced transformation axioms, resulting in Figure 6.10. 92

Table 6.14 The maximally reduced transformation axioms, resulting in Figure 6.11. 93

Table 6.15 The full set of the OWL transformation axioms for the UML elements from Figure

6.12 (based on the direct extraction). .. 93

Table 6.16 The transformation axioms reduced by declaration axioms................................... 94

Table 6.17 The maximally reduced transformation axioms, which constitutes a premise of

possibility to translate axioms to UML diagram from Figure 6.12. .. 94

Table 7.1 Replaced and replacing class expression axioms. .. 102

Table 7.2 The replaced and replacing object property axioms... 103

Table 7.3 The replaced and replacing data properties axioms. .. 104

Table 7.4 The replaced and replacing assertion axioms. .. 104

Table 7.5 The replaced and replacing data ranges. .. 105

17

Table 7.6 The replaced and replacing class expressions. ... 106

Table 7.7 The replaced and replacing object property expressions. 108

Table 8.1 Search results versus years of publication. .. 120

Table 8.2 The transformation and verification rules for the category of UML Class. 123

Table 8.3 The transformation and verification rules for the category of UML abstract Class.

 .. 124

Table 8.4 The transformation and verification rules for the category of UML attribute. 125

Table 8.5 The transformation and verification rules for the category of UML multiplicity of

attribute. .. 127

Table 8.6 The transformation and verification rules for the category of UML binary

Association between different Classes. ... 129

Table 8.7 The transformation and verification rules for the category of UML binary

Association from the Class to itself. .. 131

Table 8.8 The transformation and verification rules for the category of UML n-ary

Association. .. 132

Table 8.9 The transformation and verification rules for the category of UML multiplicity of

Association end. ... 134

Table 8.10 The transformation and verification rules for the category of UML

AssociationClass (the Association is between two different Classes). 136

Table 8.11 The transformation and verification rules for the category of UML

AssociationClass (the Association is from a UML Class to itself). 138

Table 8.12 The transformation and verification rules for the category of UML Generalization

between Classes. ... 139

Table 8.13 The transformation and verification rules for the category of UML Generalization

between Associations. .. 140

Table 8.14 The transformation and verification rules for the category of {incomplete, disjoint}

UML GeneralizationSet. .. 141

Table 8.15 The transformation and verification rules for the category of {complete, disjoint}

UML GeneralizationSet. .. 142

Table 8.16 The transformation and verification rules for the category of {incomplete,

overlapping} UML GeneralizationSet. ... 143

Table 8.17 The transformation and verification rules for the category of {complete,

overlapping} UML GeneralizationSet. ... 143

Table 8.18 The transformation and verification rules for the category of UML PrimitiveType.

 .. 144

Table 8.19 The transformation and verification rules for the category of UML structured

DataType. ... 146

Table 8.20 The transformation and verification rules for the category of UML Enumeration.

 .. 148

Table 8.21 The transformation and verification rules for the category of UML Comment to the

Class. .. 149

Table 8.22 Transformational part of UML class diagram from Example 1. 153

Table 8.23 Verificational part of UML class diagram from Example 1. 154

Table 8.24 Transformational part of UML class diagram from Example 2. 157

Table 8.25 Verificational part of UML class diagram from Example 2. 158

Table 8.26 Transformational part of UML class diagram from Example 3. 159

Table 8.27 Verificational part of UML class diagram from Example 3. 160

18

Table 12.1 Types of tasks in the experiment. ... 209

Table 12.2 Domain Ontologies for Group A and Group B. ... 209

Table 13.1 Descriptive statistics for diagram creation with the use of the tool (Task 1). 213

Table 13.2 Descriptive statistics for diagram creation without the use of the tool (Task 3). . 213

Table 13.3 Descriptive statistics for diagram validation with the use of the tool (Task 2). ... 213

Table 13.4 Descriptive statistics for diagram validation without the use of the tool (Task 4).

 .. 213

Table 13.5 The summary of task execution time in minutes for diagram creation tasks. 215

Table 13.6 The summary of task execution time in minutes for diagram validation tasks. ... 215

Table 13.7 Ranking data in the Wilcoxon signed-rank test for GROUP A with the purpose of

comparing correctness of UML Class Diagram creation with versus without the use of the

tool. ... 219

Table 13.8 Ranking data in the Wilcoxon signed-rank test for GROUP B with the purpose of

comparing correctness of UML Class Diagram creation with versus without the use of the

tool. ... 220

Table 13.9 Results of Wilcoxon signed-rank test for diagram creation in GROUP A and

GROUP B. .. 221

Table 13.10 Ranking data in the Wilcoxon signed-rank test for GROUP A with the purpose of

comparing correctness of UML Class Diagram validation with versus without the use of the

tool. ... 221

Table 13.11 Ranking data in the Wilcoxon signed-rank test for GROUP B with the purpose of

comparing correctness of UML Class Diagram validation with versus without the use of the

tool. ... 222

Table 13.12 Results of Wilcoxon signed-rank test for diagram validation in GROUP A and

GROUP B. .. 223

Table A.1 The manually verified axioms with result "0" from "COUNTIF" formula. 237

Table A.2 Test cases for class expression axioms. .. 237

Table A.3. Test cases for object property axioms .. 239

Table A.4. Test cases for data property axioms. .. 240

Table A.5. Test cases for assertion axioms. ... 241

Table A.6. Test cases for data ranges. .. 242

Table A.7. Test cases for class expressions. .. 243

Table A.8. Test cases for object property expressions. .. 246

Table A.9. Additional test cases: axioms with equal normalized and not-normalized form. 247

Table A.10. Additional test cases: more complex axioms or more axioms. 247

Table A.11 The manually verified axiom with result "0" from "COUNTIF" formula. 249

Table A.12 Test Cases for Transformation Rules. ... 249

Table A.13 Test Cases for Verification Rules. ... 258

Table B.1 The Monetary Ontology .. 265

Table B.2 The Air Travel Booking Ontology .. 265

Table B.3 The Smart City Ontology .. 265

Table B.4 The Finance Ontology ... 265

Table B.5 Rules for writing a textual description of UML class with attributes. 271

Table B.6 Rules for writing a textual description of UML generalizations and generalization

sets .. 271

Table B.7 Rules for writing a textual description of UML associations 272

19

20

Conventions and Symbols

All constructs of OWL 2 Web Ontology Language (OWL 2) are written with the use of

Functional-Style Syntax [1]. In this dissertation OWL always means OWL 2 DL if not stated

differently. Additionally, the following convention is used:

 C − indicates a class,

 CE (possibly with an index) − indicates a class expression,

 OP − indicates an object property,

 OPE (possibly with an index) − indicates an object property expression,

 DP − indicates a data property,

 DPE (possibly with an index) − indicates a data property expression,

 DR − indicates a data range,

 a − indicates an individual,

 lt − indicates a literal,

 α = β – means textual identity of α and β OWL 2 constructs,

 α ≠ β – means textual difference of α and β OWL 2 constructs.

If not stated otherwise, all SPARQL queries presented in this research use the following

prefixes:

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX owl: <http://www.w3.org/2002/07/owl#>

 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX : <http://... selected ontology >

21

List of Abbreviations

The following list of abbreviations is used in the dissertation:

BPMN Business Process Model and Notation

CIM Computation Independent Model

CSP Constraint Satisfaction Problem

CWA Closed-world assumption

DL Description Logic

DSL Domain-Specific Language

ERD Entity Relationship Diagram

FOL Frst-Order Logic

HOL Higher-Order Logic

IRI Internationalized Resource Identifier

MDE Model Driven Engineering

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

OUP Ontology UML Profile

OWA Open-world assumption

OWL 2 OWL 2 Web Ontology Language

RAD Rapid application development

SLR Systematic literature review

SRS System (software) requirements specification

SUMO The Suggested Upper Merged Ontology

TR Transformation rule (in the context of mapping UML and OWL)

UML Unified Modeling Language

UNA Unique Name Assumption

W3C World Wide Web Consortium

VOWL Visual Notation for OWL Ontologies

V&V Verification and Validation

VR Verification rule (in the context of mapping UML and OWL)

XMI XML Metadata Interchange

XP Extreme programming

22

Part I

Fundamentals

Part I: Fundamentals

23

24

1. Introduction

Business models are aimed to present complex business realities in a simplified manner [2].

The models support the communication between different stakeholders of the software

development process (e.g. owners, business analysts, IT specialists, organization or company

managers and customers) and provide important information required to develop and maintain

software systems [2]. Due to the fact that business models particularly strongly affect the

quality of the final software, it is expected that the created models adequately represent the

fragment of reality that they describe.

This dissertation deals with models and more precisely their creation and validation in relation

to reality. The validation of models currently requires the involvement of domain specialists

(experts). The domain knowledge can be provided not only by domain specialists but can also

be obtained from other sources of information, e.g. it can be found in various documents or

included in domain ontologies.

In computer and information science, ontology encompasses a representation of a selected

domain of knowledge, which consists of sets of concepts and the relationships between them.

This research will use domain ontologies which reflex and organize information in selected

fields. There are different criteria for classifying ontologies, e.g. based on their degree of

generalization, their formalization or their expressiveness [3]. This classification includes

formal ontologies that are defined in languages with a strict syntax and precisely expressed

semantics. This dissertation is focused only on the formal ontologies expressed with the use of

the OWL 2 Web Ontology Language [4].

There are many online databases and libraries with OWL 2 domain ontologies. This research

uses the existing ontologies, developed for various fields of application. The legitimacy of

reusing the existing ontologies as well as benefits related to them is one of the postulates of

this research.

Currently, ontologies are more and more frequently used as a means of support for modelling

in software development (e.g. [5], [6]), including business [7] and conceptual modelling [8].

A popular and widely used language for modelling the fragments of a domain's reality is

Unified Modeling Language (UML) [9]. The UML standard introduces various types of

diagrams, among which the UML class diagrams are the subject of this dissertation's research.

The UML class diagrams are used in the business modelling phase [2], and their aim is to

present important concepts, their internal structure and the relationships between the concepts,

in a specific domain area. The UML class diagrams describe the static aspect of the system,

and therefore, this research is focused mainly on the static aspect as well.

The assessment of the correctness of models is a key issue to ensure the quality of the final

software system. In accordance with the widely accepted framework for model quality [10]

(see Figure 1.1), the quality of models consists of syntactic quality (adhering to the rules in

the language), semantic quality (describing whether all elements of the model and their

relationships are correct with respect to the problem being described) and pragmatic quality

(comprehensibility for the intended users).

25

Figure 1.1 Aspects of quality in accordance with [10].

It is the semantic quality of models that is researched in this dissertation. Following [10],

there are two semantic goals: validity (which determines whether "all statements made by the

model are correct and relevant to the addressed problem" [10]) and completeness (which

means that "the model contains all the statements about the domain that are correct and

relevant" [10]). The assessment of the model's validity is at the core of this research, while the

model's completeness should be established by domain experts. It should be noted that

assurance of the completeness of models with regard to the domains is not at all achievable in

a formal way.

The subject of this dissertation is creating and validating the UML class diagrams with the use

of the domain ontologies expressed in the OWL 2 language.

The creation is proposed as consisting of two main steps: diagram extraction from the

domain's ontology, and diagram modification (including refactorings or supplementations).

The validation is aimed at stating whether the UML class diagram is compliant or

contradictory to the domain knowledge. The main step of the methods is the verification of

the designed UML class diagram with respect to the OWL 2 domain ontology which serves as

the knowledge base. This research assumes that the selected OWL 2 domain ontology has

been previously validated against the domain (e.g. by a domain specialist). The use of the

term “validation” is additionally justified in this research because in the proposed method the

final decision on the content of the UML class diagram is always left to the modeler, who

while designing, has the domain context in mind.

The proposed approach allows for a semi-automatic validation of UML class diagrams, and a

fully automatic verification of the diagrams if some well-defined requirements are satisfied.

Therefore, the approach highly reduces any need for expensive and time-consuming expertise

provided by domain specialists.

1.1. Thesis of the Doctoral Dissertation

The thesis of this doctoral dissertation is:

The use of domain ontologies favours the faster creation of business models

and increases their semantic quality.

26

1.2. Objectives

Following the posted thesis, the primary objectives of this dissertation are:

1) to develop a method for extracting (selected fragments of) UML class diagrams from

ontologies expressed in OWL 2,

2) to develop a method for automatic verification of the UML class diagrams against

domain ontologies expressed in OWL, which streamlines validation of the diagrams

with respect to the needed domain,

3) to develop and implement a tool which enables

a) the creation of UML class diagrams semantically compatible with selected

domain ontologies in OWL 2, and

b) the automatic verification of the UML class diagrams against domain

ontologies expressed in OWL 2.

1.3. Approach

The presented thesis and objectives are intended to address a practical problem of software

engineering relating to how a modeller can be sure that the developed UML class diagram

being a domain model is semantically correct.

The approach to achieve the first two objectives was the following:

At first, the author proposed a method for the creation and validation of UML class diagrams

with respect to the needed domain. The most important step of the validation method is the

automatic verification of the UML class diagram against the domain ontology expressed in

OWL 2.

The key aspect of the method is the translation of the UML class diagrams into their OWL 2

representation. For this purpose, the author conducted a systematic literature review on the

topic of transformation rules between elements of UML class diagrams and OWL 2

constructs. Next, the author analysed, revised and extended the transformation rules identified

in the literature.

An important and fully original proposition of this research was the proposition of the

verification rules. The verification rules are necessary to check if a UML class diagram is

compliant with the OWL 2 domain's ontology.

Having the transformation and verification rules identified, the author proposed another

original element of this research: the ontology-based suggestions for the correction of the

UML class diagram.

The next step was a more technical aspect. The author proposed a method of normalizing

OWL 2 ontologies, because the intention was to develop a tool to automate the verification of

27

UML class diagrams with respect to the ontologies. The method introduced rules aimed at

refactoring OWL 2 constructs, which enables to present any input OWL 2 ontology in a new

but semantically equivalent form. The need for the method was motivated by the fact that

normalized OWL 2 ontologies have a unified structure of axioms, and thus they can be easily

compared in an algorithmic way.

The approach used to achieve the last objective was the following:

First, the author developed and implemented a tool for the creation and validation of UML

class diagrams. One of the main features of the tool is a possibility to verify the designed

UML class diagram with respect to the selected domain ontology expressed in OWL 2. The

tool was implemented as proof of the concept of the proposed method in order to demonstrate

its feasibility. Additionally, the tool was aimed at verifying the practical potential of the

proposed method.

The final step was to state that the set of objectives meet the posted thesis. For this purpose,

the author conducted an experiment aimed at empirically evaluating the developed tool for the

creation and validation of UML class diagrams. The purpose of the experiment was to check

the practical usefulness of the developed tool for modellers who are not domain experts. After

the experiment was conducted, the experiment data were analysed with the use of statistical

analysis.

1.4. Structure of the Thesis

This dissertation is divided into six interrelated parts, each of which contains a few chapters

built of sections.

Part I presents the fundamentals. Except for the introductory chapter, Chapter 2 clarifies the

basics behind the UML notation with a special focus put on the UML class diagrams used in

business and conceptual modelling. The chapter describes also a wider context of the

considerations, including BPMN language to model business processes and the concept of

compound models of processes. Chapter 3 concentrates on domain ontologies and the

OWL 2, Web Ontology Language, as well as on the most important similarities and

differences between UML and OWL notations.

Part II is devoted to the creation and validation of UML class diagrams supported by OWL 2

ontologies. Chapter 4 presents definitions of validation and verification in the context of

modelling and the understanding of the terms adopted in this dissertation. Chapter 5 outlines

the fully original proposition of this research the method of diagram validation with its

important step of diagram verification against the selected OWL 2 domain ontology. Chapter 6

proposes the ontological-aided process of the creation of UML class diagrams, described in

comparison to other existing approaches which use ontologies for the creation of diagrams.

Part III allows for a closer look at the details of the proposed methods of the creation and

validation of UML class diagrams. Chapter 7 introduces the method of normalizing OWL 2

ontologies, which is also an original proposition of this research. Chapter 8 presents the

28

details of transformation rules of UML class diagrams to their OWL 2 representation

including the analysis of the results of systematic literature review. The identified

state-of-the-art transformation rules were extended and supplemented with some new

propositions. Additionally, the chapter presents the next original proposition of this research

verification rules used to check if a UML class diagram is compliant with the OWL 2 domain

ontology. Appendix A is associated with Part III and presents the conducted test cases for

the normalization, transformation and verification rules.

Part IV describes the developed tool which implements the proposed methods. Chapter 9

presents the architecture of the developed tool. Chapter 10 illustrates tool features for

verifying and Chapter 11 for creating the UML class diagrams. Additionally, Chapter 10

presents another original element of this research the automatically generated

ontology-based suggestions for correction of the UML class diagram based on the detailed

result of the verification.

Part V describes the conducted empirical evaluation of the developed tool. Chapter 12

presents the definition, the design, as well as the conducting of the experiment and

Chapter 13 shows the analysis of the results of the experiment. Appendix B is associated

with Part V and includes the materials used during the experiment, such as selected domain

ontologies and the full text of the experiment forms.

Part VI consists of only one chapter Chapter 14 which constitutes the summary

including the contribution of the dissertation, and it presents some final conclusions.

1.5. Publications

Selected parts of this dissertation have been published as journal articles, a book chapter, a

monograph chapter or a conference paper. Below, the publications are listed with the chapters

covering the respective contributions. In addition, the research work presented in this

dissertation extends and improves the content of the listed publications. It should be noted that

the publications are located between the fields of research on model driven engineering and

ontology engineering.

The context of UML class diagrams in business modelling and the concept of the compound

models of processes has been published as a book chapter in [11]:

Z. Huzar and M. Sadowska, „Towards Creating Complete Business Process Models‟, in

Chapter 5 In: From Requirements to Software: Research and Practice, 2015,

pp. 77–86.

The revised and extended fragments of the publication are described in Sections 2.2, 2.4

and 2.5.

The outline of the proposed method of the semantic validation of UML class diagrams with

the use of OWL 2 domain ontologies has been published as a conference paper [12]:

M. Sadowska and Z. Huzar, „Semantic Validation of UML Class Diagrams with the Use

of Domain Ontologies Expressed in OWL 2‟, Software Engineering: Challenges and

Solutions. Springer International Publishing, pp. 47–59, 2017.

29

The revised and extended version of the paper has been described in Chapter 5.

The proposed method of normalizing OWL 2 DL ontologies has been published as a journal

article [13]:

M. Sadowska and Z. Huzar, „The method of normalizing OWL 2 DL ontologies‟, Global

Journal of Computer Science and Technology, vol. 18, no. 2, pp. 1–13, 2018.

The revised and extended version of the paper has been described in Chapter 7.

Additionally, the revised and extended fragment of the publication is described in

Section 3.3.

The transformation and verification rules of UML class diagrams to their OWL 2

representation have been published as a journal article [14]:

M. Sadowska and Z. Huzar, „Representation of UML class diagrams in OWL 2 on the

background of domain ontologies‟, e-Informatica Software Engineering Journal,

vol. 13, no. 1, pp. 63–103, 2019.

The revised and extended version of the paper has been described in Chapter 8.

Additionally, the revised fragments of the paper are presented in Section 2.3 and

Section 5.3.3.

The prototype version of the developed tool for the semantic validation of UML class

diagrams with the use of OWL 2 domain ontologies has been published as a monograph

chapter [15]:

M. Sadowska, „A Prototype Tool for Semantic Validation of UML Class Diagrams with

the Use of Domain Ontologies Expressed in OWL 2‟, In Towards a Synergistic

Combination of Research and Practice in Software Engineering. Springer, Cham,

pp. 49–62, 2018.

The revised and extended fragments of the paper have been described in Chapter 9,

Chapter 10 and Chapter 11. The article [15] presented the functionality of the

prototype version of the tool, while the chapters describe the current version of the tool

with a much wider functionality. Additionally, some revised and extended fragments of

the paper are presented in Section 3.4 and Section 5.5.

30

2. UML Class Diagrams in Business and Conceptual Modelling

Summary. This chapter shortly explains the importance of Unified Modeling Language

in Model Driven Engineering with a special focus put on the role of UML class diagrams

in business and conceptual modelling. The chapter describes also a wider context of the

considerations presented in this dissertation and places UML class diagrams as part of full

business process models.
1

2.1. Introduction

Model Driven Engineering (MDE) advocates the use of models to represent the most relevant

design decisions in a software development project. Each model is described using a selected

modelling language, for example, the Unified Modeling Language (UML) [9], which is

currently a popular and commonly used modelling standard. UML is a general-purpose

modelling language and currently [5] is the basic modelling paradigm in model-driven

software development. UML has been developed by Object Management Group (OMG)

consortium. This research uses the most current version UML 2.5 [9].

The term “models” can be defined as [16] “simplifications in order to bring clarity and

understanding to some aspect of a problem where there is complexity, uncertainty, change or

assumptions”. Other researchers [17] describe a model as “a description or representation of a

software system or its environment for a certain purpose, developed using modelling language

and thus conforming to a metamodel”. Despite the selected definition, models can be

considered as primary artefacts in software development process.

In graphical modelling in terms of UML, a single model can be built of several “diagrams”,

each of which provides a different view on the described system. In addition, a software

design is typically modelled (e.g. [18], [19]) as a collection of UML diagrams which cover

different aspects of the software system.

The standard of UML in version 2.5 defines 14 not abstract
2
 types of diagrams (page 683 of

[9]), among which the so-called “class diagrams” are in the main focus of this research. The

context of their use is well-explained in [20]: “UML class diagrams allow for modelling, in a

declarative way, the static structure of an application domain in terms of concepts and

relations between them”
3
. The UML class diagrams are structure diagrams [9], which are used

to show the specification of objects in a system. The elements of the class diagram represent

the meaningful concepts of an application.

1
 Sections 2.2, 2.4 and 2.5 contain the revised and extended fragments of the paper: "Towards creating

complete business process models" [11]. Additionally, Section 2.3 contains the revised and extended fragment

of Section 2 from the paper: "Representation of UML class diagrams in OWL 2 on the background of domain

ontologies" [14].
2
 The standard of UML in version 2.5 defines also three abstract types of diagrams: Structure Diagram,

Behavior Diagram and Interaction Diagram.
3
 This citation would be more accurate if the word “between” would be changed into “among”.

31

2.2. Business and Conceptual Modelling

Modelling is a process of extracting knowledge from a selected field, leading to the creation

of a model. In modelling, processes related with the domain are analysed.

Following [21], the process can be defined as a sequence or flow of activities in an

organization with the objective of carrying out work, and is depicted as a graph of flow

elements, which are a set of activities, events, gateways, and sequence flows that adhere to

finite execution semantics. The notion of the process is the most important. The term

“business process” refers to the function (service) performed within the organization and is

related to [22] “a network of graphical objects, which are activities (...) and the flow controls

that define their order of performance”.

There is no single comprehensive and formal definition of the terms of business and

conceptual models. A conceptual model is an abstraction of the concepts and relationships in

a domain. The term conceptual model emphasises the fact that this is a model of the concepts,

and does not reflect a software design. Following [23], the conceptual models are “a high

level abstraction of the represented reality, they constitute a vehicle for communication, provide

a comprehensive documentation, and are the basis for the implementation and evolution of the

developed system”. According to [23], the “business process models are conceptual models

supposed to provide a complete description of the underlying business processes”. The

business models are aimed to present a model of an organization or a company being the

domain of application of a future information system. In [7], the aim of business modelling is

explained as creating “semantically faithful and pragmatically usable representations of

business domain artifacts (e.g. transactions, processes, value chains)”. A business model is

supposed to express intuitive ideas, thus supporting communication among users, and thus

delivering information necessary to specify the requirements for the future software system.

Therefore, a modelling language should have sufficient expression power enabling the

presentation of all interesting structural and behavioural features from the domain of interest.

Additionally, the language should have a satisfactory level of formality that will allow

checking consistency and completeness of a model expressed in this language.

2.3. UML Class Diagrams in Business and Conceptual Modelling

The UML specification [9] does not strictly specify which elements of UML class diagrams

should be included in the diagrams, and this decision is left to modellers. Generally, the

boundaries between various kinds of diagram types are not strictly enforced by the

specification (page 683 of [9]).

What is important, not all model elements are equally useful in the practice of business and

conceptual modelling with UML class diagrams. From the practical point of view, in order to

identify the relevant elements, this research uses the term “category” the category is a set of

32

selected elements of UML class diagram which are of the same type. The type is related to

selected elements from UML metamodel
4
.

Each category contains the elements which are commonly used in business and conceptual

modelling and are important from the point of view of pragmatics. Following the above

understanding, the most important category of elements of UML class diagrams are “classes”

(some other example categories are: attributes, binary associations, n-ary associations, etc.). A

class in UML specifies a set of objects with the common features [24]. The description of a

class includes the name of the class (unique in the whole diagram) and can contain attributes

or operations of the class. The classes can be interrelated by different relationships. Below are

presented some literature recommendations on the elements which are commonly used in

business and conceptual modelling with UML class diagrams, full list of selected categories

can be found in Section 8.3.

In [25], it is suggested that a full variety of UML constructs is not needed until the

implementation phase and it is practiced that a subset of diagram elements useful for

conceptual modelling in the business context is selected. The following categories of static

elements of UML class diagrams are suggested in literature as the most important in business

and conceptual modelling [2], [26]:

 named classes,

 attributes of classes with types (either primitive or structured datatypes),

 associations between the classes (including aggregation) with the specified

multiplicity of the association ends,

 generalization relationships.

The article [26] proposes modelling business processes with UML class, activity and state

machine diagrams. The examples in [26] present a business process at the level of the UML

class diagram as consisting of classes with attributes, class generalizations, associations

between the classes (including aggregation) with a specified multiplicity of the association

ends. The class attributes are typed with either primitive or structured datatypes.

Modelling a complex business requires using several views, each of which focuses on a

particular aspect of business. Following [2], there are four commonly used Business Views:

 Business Vision View (presenting the overall vision of the business),

 Business Process View (presenting the interaction between different processes),

 Business Structure View (presenting the structure among the resources in the

business) and

 Business Behaviour View (presenting the individual behaviour of important resources

and processes).

The UML class diagrams are identified as useful [2] in Business Vision View and Business

Structure View. Section 2.4 presents some types of diagrams which can be used in Business

Process View and Business Behaviour View.

The UML class diagrams in a Business Vision View [2] are used to create conceptual

models which establish a common vocabulary and demonstrate relationships among different

4
 A model always conforms to a unique metamodel. The MOF-based metamodel specifies the abstract syntax

of the UML (some more information can be found in Section 3.9.1.2).

33

concepts used in business. The important elements of UML class diagrams in the conceptual

modelling are named classes and associations between the classes as they define concepts.

The classes can have attributes as well as a textual explanation which together constitute a

catalogue of terms. The textual descriptions may not be necessarily visible on the UML

diagram but should be retrievable with the help of modelling tools. In the conceptual

modelling with UML, attributes and operations of classes are not so much important [2] (can

be defined only if needed) but relationships among the classes should be already correctly

captured in models.

The UML class diagrams in a Business Structure View [2] are focused on presenting a

structure of resources, products, services and information regarding the business including the

organization of the company. The class diagrams in this view often include classes containing

attributes with types and operations, as well as generalizations and associations with the

specified multiplicity.

The author has not found any further recommendations for using additional static UML class

diagram elements in the context of business or conceptual modelling in other reviewed

literature positions. Obviously, if the selected UML class diagram is compliant with the

domain, it is reasonable to examine the diagram further. For example, the question outside the

scope of this research is about the role of Object Constraint Language (OCL) [27] in business

and conceptual modelling with UML class diagrams. Some other works investigate this

aspect, e.g. [28] proposes an approach to translate OCL invariants into OWL 2 DL axioms.

2.4. BPMN as a language to model business processes

There are different languages which can be used to describe behaviour but all of them refer to

the structure. Business Process Model and Notation (BPMN) is one of numerous modelling

standards among e.g. UML Activity Diagrams, XPDL, EPC or others developed in last

two decades with the purpose to model business processes. BPMN seems to be one of the

most popular business modelling languages, which does not mean that it is not the object of

numerous critics and polemics [29], [30], [31]. It seems that the primary cause of disputes is

the lack of a common or, at least, a widely accepted approach for modelling business

processes. There are some currently prepared proposals, e.g. [32], [33], [34], [35], [36], [37],

but they all base on specific assumptions regarding a field of application or modelling

languages.

Considering BPMN as a process modelling language, one should take into account the related

issues such as “Whether it is a good enough modelling language?” and “Do the existing tools

provide an adequate support for the modelling using BPMN?”, etc. In further, some aspects

regarding the first issue are outlined, however, it should be noted that the assessment of

BPMN is out of scope of this research and can be found in other publications, e.g. [29], [30],

[38].

Development of BPMN [21] lies on one of the branches of the Unified Modeling Language

(UML) [9] evolution. Similarly as the UML, the BPMN is a semi-formal language. BPMN is

basically concerned on the behaviour of a system. BPMN models describe private (internal)

business processes in an organization (e.g. a company, a company division), and their

34

collaboration with public (external) business processes in the environment of the organization

(e.g. a consumer, a seller). The models are presented in a graphical notation, easily

understandable by all business stakeholders, i.a. business analysts, IT specialists, and

organization or company managers [21]. The notation is based on a flowcharting technique

similar to the activity diagrams from the UML. A process determines a partially ordered set of

business activities that represent the steps required to achieve a business objective. The order

results from the flow of control and the flow of data among the activities.

Although BPMN is not declared as a data flow language, in fact, there are two forms of data

exchanged between processes and activities: a message flow that depicts the contents of

communication and an object flow that depicts a data object reference with its state. BPMN

does not itself provide a built-in model for describing the structure of data or a querying

language for that data but allows for the co-existence of multiple data structure and querying

languages within the same model. Additionally, tool vendors are encouraged to include such

languages to their products with commitment to keep compliance with the data modelling

defined in the BPMN specification.

BPMN is constrained to support only the concepts of modelling that are applicable to business

processes. Therefore, the following aspects are out of the scope of the BPMN specification

[21]:

 definition of organizational models and resources,

 modelling of functional breakdowns,

 data and information models,

 modelling of strategy,

 business rules models.

Has the BPMN enough expression power? At the beginning, it should be noted that BPMN

enables only partial description of the domain of interest. Namely, BPMN concentrates on a

specification of business participants and the types of processes performed, i.e. the types of

mutually offered services. The BPMN puts stress on the description the structures of

processes with skipping details of the processed data objects.

It should be noted that a very important aspect concerning data and its structure is omitted

from BPMN specification. In spite of BPMN transition from BPMN 1.0 to 2.0, this claim is

still valid [39]. For example, elaboration of the conceptual database model requires

information about data types and their relationships. This observation gives rise to the natural

idea of integration of BPMN diagrams with these UML diagrams that describe the data

structures and methods of their processing. The precise and complete business model plays

the fundamental role for the further system development. Especially, it strongly influences on

a quality of the final software product.

The question: “How to build a good model of a business process?” can be used to properly

define the context of all considerations presented in this dissertation (similar questions were

stated in [17] and [40]). This question entails two more detailed questions: “What is a good

model?” and “Which methodology would be recommended for effective model

construction?”. Unfortunately, up to now, there have been no satisfying answers to these

questions. The conclusion of the paper [41] from 2006 is still valid: there is no

well-established modelling standard in this area. A similar conclusion emerges from the

comprehensive overview of the literature on the quality of business modelling [42] which was

35

published in 2015: there is a lack of an encompassing and generally accepted definition of

business process modelling quality.

2.5. The Compound Model of a Process

The main focuses of this research are UML class diagrams in business and conceptual

modelling. In this context, UML class diagrams play a crucial role. This section shortly

introduces a broader aspect of business modelling, initially proposed in [11], which is based

on the integration of UML class diagrams with BPMN process diagrams and UML state

machine diagrams.

BPMN excludes from its scope precise treatment of data and information models which are

the important aspects in software system development, therefore a compound model of a

process is aimed to integrate BPMN process diagrams with UML class diagrams and UML

state machine diagrams, which describe the behaviour of the system. The three types of

diagrams are interrelated and together constitute the compound model of a process. The added

value of using the compound model approach is a result of linking the well-known standards

of BPMN and UML.

As stated in [43], modelling business processes without modelling the processed objects

would be rather poor. Therefore, it seems to be beneficial to create compound models of

processes that would take into account all the details regarding processed data. To fulfil this

postulate, UML class diagrams can be incorporated into the compound model. In this way

some data objects represented on a process diagram will have references in the class diagram.

More precisely, more information is carried if a data object on the process diagram has an

instance of a respective class on the class diagram. Moreover, data objects may change their

states during the execution of a process. Usually, these changes are subjected to some

constraints. These constraints can be clearly presented by UML state machine diagrams.

The proposed compound model of a BPMN process CMBPMN consists of a set of three types

of diagrams: a process diagram, a class diagram, and a state machine diagram:

CMBPMN = <PDBPMN, CDUML, SMDUML>

where:

 PDBPMN is a set of BPMN 2.0 process diagrams which illustrate a needed business

process.

 CDUML is a set of UML class diagrams whose role is to describe the structure of data

contained in the BPMN diagrams. The diagrams show relevant classes with attributes

as well as relationships between the classes.

 SMDUML is a set of UML state machine diagrams which are aimed at presenting

possible processing of data occurring on UML class diagrams. The diagrams describe

for the given classes transitions between the states of their objects together with the

events that trigger transitions between the states.

The Figure 2.1 presenting relationships between process diagrams, class and state machine

diagrams, components of the compound model, looks like a metamodel of the compound

36

model. However, formally it cannot be treated as a metamodel because the metaclasses:

BPMNProcessDiagram, UMLClassDiagram and UMLStateMachineDiagram are not

formally defined neither in BPMN, nor UML specifications. These specifications define only

components of diagrams. For example, structural constructs (e.g. classes, components) used in

the CDUML are defined in the Classes package in “Subpart I - Structure” section of the UML

Superstructure specification [9]. Similarly, “Subpart II - Behavior” section in [9] specifies the

dynamic behavioural constructs, e.g. state machines used in SMDUML.

Figure 2.1 The structure of the compound model of a process.

The compound model CMBPMN consists of PDBPMN, CDUML and SMDUML diagrams that are

interrelated in a way shown in Figure 2.1. A wider explanation of the structure of the

compound model as well as a simple example illustrating its application can be found in the

article [11].

Based on observation what is often applied in practice, the following ways to create

compound models of processes can be recommend. In one approach, first a class diagram and

then a process diagram is created. This approach starts from UML class diagram which

represents the concepts from the glossary with the relationships among them. In the

alternative approach, first a process diagram and then a class diagram are created. Both

sequences of diagram derivations do justify the usefulness of the class diagrams in the

proposed compound BPMN process models. Attaching state machine diagrams to the model

is a natural consequence of the presence of class diagrams.

2.6. Conclusions

Creating business models is an obligatory step in the software development process. UML

class diagrams are usually not standalone artifacts and for the sake of better software they

should be considered with other types of diagrams. This chapter describes the role of UML

class diagrams as relevant for representation of the static aspects. In order to express the

dynamic aspects, other types of diagrams should be used. For this purpose, this chapter

describes a context of the whole considerations presented in this dissertation and places UML

class diagrams as part of full business process models. For example, the approach to business

modelling illustrated in Section 2.5 bases on the compound model of a processes, which

consists of a set of three types of diagrams: BPMN process diagrams, UML class diagrams

and UML state machine diagrams.

37

The next chapter begins the considerations on creating UML class diagrams based on

ontologies. All ontologies always represent the static aspect and only very few refer to the

behaviour. Taking this argument into account, creation of a UML class diagram at the

beginning of business modelling is strongly justified.

38

3. Domain Ontologies and OWL 2 Web Ontology Language

Summary. This chapter presents the definitions of ontologies with a special focus put on

domain ontologies in accordance with the classification of ontologies based on the

domain scope. The chapter introduces OWL 2 Web Ontology Language, includes some

basic information about reasoning and querying from ontologies, and presents selected

existing online databases and libraries with OWL ontologies. The chapter also

summarises the main similarities and differences of UML and OWL 2 notations.

3.1. Introduction

The term “ontology” originates from philosophy and denotes the philosophical study on the

nature of existence. In computer science, the most well-accepted definition of an “ontology”

is proposed in [44] as: “an explicit specification of a conceptualization”. As described in [44],

an ontology is a knowledge specification of conceptualization, where the objects, concepts

and other entities including the relationships between them are presumed to exist in some area

of interest.

In [45], this definition is further specified: “an ontology is a formal, explicit specification of a

shared conceptualisation”. As explained in [45], in the definition, “formal” refers to the fact

that the ontology should be machine readable, “explicit” means that the type of concepts used

and the constraints on their use are explicitly defined, “shared” reflects the notion that an

ontology captures commonly accepted consensual knowledge, and finally “conceptualisation”

refers to an abstract model of some phenomenon in the world.

Ontologies define a common set of concepts and terms that are used to describe and represent

a domain knowledge [46]. Following [5], ontologies provide shared-domain

conceptualizations representing knowledge through vocabulary and typically logical

definitions. The idea behind working with ontologies is to allow for automatic processing of

information in such a way that it is possible to identify the precise meaning [47].

There are many languages for defining ontologies which allow users to write explicit, formal

conceptualizations of domain models. The main requirements for the ontology languages are

[48]: a well-defined syntax and semantics, efficient reasoning support, sufficient expressive

power and convenience of expression.

Taking the above postulates into account, this research selected OWL 2 Web Ontology

Language (OWL 2) [4]. OWL 2 is a description logic knowledge representation language for

defining ontologies developed by World Wide Web Consortium (W3C) and was launched in

October 2009. The OWL 2 language is an extension of OWL language which was first

published in 2004. In comparison with UML which has been evolving since the second half of

the 1990s, the OWL 2 is a much younger formalism and its initial purpose was to represent

knowledge in the Semantic Internet. Nowadays, OWL is frequently used also in researches

related with modelling (e.g. [19], [49], [50], [51], and many others).

39

In this research the choice of OWL 2 is justified by the fact that there is a wide number of

already developed OWL 2 domain ontologies and this number is still increasing (Section 3.7

presents selected currently available online databases and libraries with the ontologies).

In order to store and exchange OWL 2 ontologies a concrete syntax is needed. OWL 2 offers

several different syntaxes [4]: RDF/XML, OWL/XML, Functional-Style Syntax, Turtle and

Manchester Syntax. In this dissertation, all constructs of OWL 2 are written with the use of

Functional-Style Syntax [1]. This syntax style was selected because it is succinct and human-

readable.

There are two alternative ways of assigning meaning to ontologies in OWL 2 called the Direct

Semantics [52] and the RDF-Based Semantics [53]. The Direct Semantics provides a meaning

for OWL 2 in a Description Logic (DL), while the RDF-Based Semantics is based on viewing

OWL 2 ontologies as RDF graphs.

There are two semantic views of OWL 2 called OWL 2 DL and OWL 2 Full. The OWL 2

ontologies which satisfy syntactic conditions listed in the specification (see Section 3 of [1])

are called OWL 2 DL ontologies. In accordance with OWL 2 Primer [54]: "The Direct

Semantics can be applied to ontologies that are in the OWL 2 DL subset of OWL 2 (...).

Ontologies that are not in OWL 2 DL are often said to belong to OWL 2 Full, and can only be

interpreted under RDF-Based Semantics.". One can see OWL 2 DL as a syntactically

restricted version of OWL 2 Full.

What is very important from practicability of reasoning, following [54], OWL 2 Full (under

the RDF-Based Semantics) is undecidable while for OWL 2 DL there are currently several

different reasoners that cover the entire OWL 2 DL language under the Direct Semantics.

Following [55], the Direct Semantics assigns meaning directly to ontology structures,

resulting in a semantics compatible with the model theoretic semantics of the SROIQ

description logic [4]. The description logic SROIQ is a fragment of first order logic with

useful computational properties. SROIQ offers a satisfactory complexity and what is

important for practicability to guarantee decidability in reasoning (e.g. [56], [57]).

Therefore, OWL 2 DL ontologies are in the main focus of this research. In the rest of this

dissertation OWL always means OWL 2 DL if not stated differently.

The description logic languages allow for capturing the schema in the “terminological box”

(TBox) and the objects and their relationships in the “assertional box” (ABox). Together

ABox and TBox make up a knowledge base. The files with OWL ontologies do not have a

clear division into TBox and ABox parts. In practice, the majority of OWL ontologies contain

either both TBox and ABox parts, or only TBox part. However, it is also possible to create an

ontology containing only the ABox.

3.2. Domain Ontologies in Relation to Other Types of Ontologies

Ontologies are developed in the world of philosophy and computer science. Therefore,

various ontology classifications are proposed - by philosophers and by computer scientists.

Ontologies can be classified in accordance with different criteria such as their degree of

generalization, formalization or expressiveness (e.g. [3], [58], [59], [60]).

40

The classification proposed in [59] is presented on Figure 3.1:

Figure 3.1 Ontology classification based on domain scope from [59] (figure on page 26 from [59]).

This classification distinguishes [59]:

 Foundational Ontologies (also called Top Level Ontologies or Upper Level

Ontologies) are generic ontologies applicable to various domains. They can be viewed

as meta-ontologies that describe the top level concepts or primitives. The top level

ontologies define basic notions like objects, relations, events, processes, etc.

 Core Reference Ontologies contain the fundamental concepts of domains and are the

result of the integration of several domain ontologies. This type of ontology is linked

to a domain but integrates different viewpoints of specific group of users.

 Domain Ontologies are only applicable to a domain with a specific viewpoint. The

domain ontologies have more specific concepts than core reference ontologies.

 Task Ontologies contain knowledge to achieve tasks, while the domain ontologies

describe the knowledge where the tasks are applied.

 Local or Application Ontologies are specializations of domain ontologies where

there could be no consensus or knowledge sharing. This type of ontology refers to a

particular model of a domain according to a single viewpoint of a user. The scope of a

local ontology is narrower than the scope of a domain ontology.

 General Ontologies are not dedicated to a specific domain and contain general

knowledge of a huge area, thus their concepts can be as general as those of core

reference ontologies.

The narrower classification of ontologies based on their level of generality is proposed

in [60]. This classification describes fewer categories: top-level ontologies, domain

ontologies, task ontologies and application ontologies. Analogically, [60] explains that

domain ontologies describe vocabulary related to generic domains (like medicine, or

automobiles) by specializing the terms introduced in the top-level ontologies.

This research is focused exclusively on domain ontologies expressed in OWL 2 language.

Due to the fact that the domain ontologies are expected to provide a knowledge base about

specific application areas, the ontologies need to be syntactically correct, consistent and

adequately describe the notions from the needed domain. This research work puts these

demands on the domain ontologies as requirements. Additionally, this research requires the

41

domain ontologies to be OWL 2 DL ontologies which is important from a practical point of

view as it guarantees decidability in reasoning.

3.3. OWL 2 Ontology as a Set of Axioms
5

The structural specification of OWL 2 [1] is defined with the use of Unified Modeling

Language (UML) [9], and the notation is compatible with Meta-Object Facility (MOF) [61].

The OWL 2 language distinguishes three categories of elements:

 Entities which constitute the vocabulary of an ontology. The OWL defines the

following kinds of entities: classes, datatypes, object properties, data properties,

annotation properties and named individuals.

 Expressions which are used to represent complex notions in the described domain.

Textually, expressions are components of axioms, for example, two or more class

expressions are needed to specify DisjointClasses axiom (see Figure 3.3). OWL

defines three kinds of expressions: class expressions, data and object property

expressions. The example expressions are: ObjectComplementOf and

ObjectIntersectionOf.

 Axioms which specify what is true in a specific domain and are used to provide

information about classes and properties. The example axioms are: DisjointClasses

axiom (see Figure 3.3) and SubClassOf.

The axioms are the main components of OWL 2 ontology (see Figure 3.2). It should be

emphasized that the OWL ontologies are expressed by a set of axioms not by a multiset
6
. This

aspect of seemingly minor importance has its consequences in Chapter 7 introducing a

method of normalizing OWL 2 DL ontologies.

Figure 3.2 A relation between OWL 2 ontology and axioms (extract from Figure 1 in OWL 2 specification [1]).

5
 Section 3.3 contains the revised fragment of the paper: "The method of normalizing OWL 2 DL

ontologies" [13].
6
 The correct OWL 2 ontology cannot contain two axioms that are textually equivalent. The explanation is

presented in Figure 3.2. In accordance with the specification of OWL [1] the association end named "axioms" is

specified with the use of UML MultiplicityElement and a Set collection type (following UML specification, page

34 of [9], the collection type "Set" has isOrdered=false and isUnique=true).

42

Figure 3.3 The example relation between the selected class axiom, relevant expressions and entities

on the basis of DisjointClasses axiom (in accordance with OWL 2 specification [1]).

3.4. Syntactically Different but Semantically Equivalent OWL Axioms
7

An important aspect of OWL axioms that matters in the context of this research is that it is

possible to create syntactically different axioms which cover the same semantics. Table 3.1

presents three examples of semantically equivalent axioms.

Table 3.1 Examples of semantically equivalent axioms.

 Axioms in the example

Example 1 DisjointUnion(:Child :Boy :Girl)

Example 2 EquivalentClasses(:Child ObjectUnionOf (:Boy :Girl))

DisjointClasses(:Boy :Girl)

Example 3 DisjointUnion(:Child

 ObjectComplementOf(ObjectComplementOf(:Boy)) :Girl)

The Example 1 presents an OWL DisjointUnion axiom. The DisjointUnion(C CE1 CE2) [1]

axiom states that a class C (here :Child) is a disjoint union of the class expressions CE1 and

CE2 (here :Boy and :Girl), all of which are pairwise disjoint. Following specification of OWL 2

[1], DisjointUnion axiom can be seen as a syntactic shortcut for the two axioms presented in the

Example 2. Following definitions of OWL 2 constructs (Section 13.2 of [1]), one could modify

the axiom further, even if it will not change the semantics. For example, OWL offers a class

expression ObjectComplementOf(CE) [1], which contains all individuals that are not instances

of the class expression CE. Double use of the expression is equal to CE. This is shown in the

Example 3.

In the context of automatic processing of OWL ontology, this aspect is of the great

importance. It will be further explained in the method of normalizing OWL 2 DL ontologies

(Chapter 7). The normalization process is aimed to bring the ontologies written with the use

of various OWL constructs to the unified form which can be easily compared without the

need of transforming axioms to the constructions in description logic.

7
 Section 3.4 contains the revised and extended fragment of the paper: "A Prototype Tool for Semantic

Validation of UML Class Diagrams with the Use of Domain Ontologies Expressed in OWL 2" [15].

43

3.5. Reasoning in OWL Ontologies

According to [48], using formal semantics allows humans to reason about the knowledge. As

described in [19]: "a reasoner is a utility that automatically infers the logical consequences

from a set of logical facts".

The reasoners provide services [62]. The standard reasoning services for TBox are [63]:

satisfiability and subsumption, and for ABox are [63]: instance checking, consistency,

realization and retrieval:

 consistency check verifies if every individual is an instance of only satisfiable classes,

 satisfiability checking is useful for verifying if an ontology is meaningful (i.e., if all

classes are instantable),

 subsumption is useful to hierarchically organize classes according to their generality,

 instance checking is used to check if a given individual belongs to the set described

by the given class,

 realization identifies the most specific class a given individual belongs to,

 retrieval identifies individuals that belong to a given concept.

The above mentioned reasoning services are conducted by OWL reasoners (reasoning

engines) [4]. There are different semantic reasoners designed to work with OWL ontologies.

The detailed comparison of eight popular OWL 2 EL and tableau-based reasoners: CB
8
,

CEL
9
, FaCT++

10
, HermiT

11
, Pellet

12
, RacerPro

13
, Snorocket

14
 and TrOWL

15
 can be found in

the article [64] from 2011. This link: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

presents a wide list of other currently available OWL reasoners, including the less popular one

(the webpage has been last updated in June 2018).

This research has selected HermiT reasoner due to the fact that it has many benefits important

from the perspective of this research (the overview of its main characteristics is presented in

Table 3.2).

8
 CB website: https://www.cs.ox.ac.uk/isg/tools/CB/.

9
 CEL website: https://github.com/julianmendez/cel.

10
 FaCT++ website: https://code.google.com/archive/p/factplusplus/.

11
 HermiT OWL Reasoner website: http://www.hermit-reasoner.com/.

12
 Pellet website: https://github.com/Complexible/pellet.

13
 RacerPro website: http://www.ifis.uni-luebeck.de/~moeller/racer/.

14
 Snorocket website: https://aehrc.com/snorocket/.

15
 TrOWL website: http://trowl.org/.

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
https://www.cs.ox.ac.uk/isg/tools/CB/
https://github.com/julianmendez/cel
https://code.google.com/archive/p/factplusplus/
http://www.hermit-reasoner.com/
https://github.com/Complexible/pellet
http://www.ifis.uni-luebeck.de/~moeller/racer/
https://aehrc.com/snorocket/
http://trowl.org/

44

Table 3.2 The overview of important characteristics and features of HermiT reasoner

(based on the article [64] from 2011 and the article [65] from 2014, as well as the website of the producer).

System for reasoning Hypertableau
16

Soundness and

completeness in theory

Yes, based on [64]. Following [65], HermiT

supports all features of OWL 2 language

including all OWL 2 datatypes

ABox reasoning Yes

Accessible via OWL API
17

 Yes

Platforms Windows, Linux and MAC OS X

Programming language the

reasoner is implemented in

Java language
18

Open source Yes

Licence GNU Lesser General Public License

Institution Academic: University of Oxford

In the developed tool (see Part IV), HermiT is used for reasoning service of checking the

consistency of ontologies. Domain ontologies are expected to provide a knowledge base about

specific application areas, therefore they have to be consistent. As explained in [66],

inconsistency can occur both in the TBox and the ABox, due to several reasons such as

modelling errors, migration from other formalisms, merging ontologies or ontology evolution.

Following [67], inconsistencies can also be the result of automated ontology construction

techniques. Resolving inconsistency in the input domain ontologies is out of scope of this

research. However, the inconsistency can also appear if the previously consistent ontology is

modified by adding some new axioms. For example, in this research the input domain

ontologies are required to be syntactically correct and consistent but later the ontology is

iteratively modified with some additional knowledge included in the UML class diagram so it

requires consistency checking.

3.6. Querying the OWL ontologies with the SPARQL Language

SPARQL 1.1 Query Language [68] is currently a standard RDF query language. It can serve

as OWL query language because OWL can be serialized as RDF (SPARQL bases on the fact

that an ontology can be seen as a set of triples). The current version of SPARQL is SPARQL

1.1 (launched in 2013), which supersedes the older version SPARQL 1.0 (published in 2008).

Except for SPARQL, there are also other languages to query OWL ontologies, for example,

SQWRL [69] (proposed in 2009).

16
 From the website of producer of HermiT: "HermiT is based on (...) “hypertableau” calculus which provides

much more efficient reasoning than any previously-known algorithm. Ontologies which previously required

minutes or hours to classify can often by classified in seconds by HermiT, and HermiT is the first reasoner able

to classify a number of ontologies which had previously proven too complex for any available system to handle".
17

 The OWL API is a Java API for creating, manipulating and serialising OWL Ontologies. The OWL API

website: https://github.com/owlcs/owlapi/.
18

 Java is a general-purpose, concurrent, strongly typed, class-based object-oriented language. The Java

website: https://www.java.com/pl/.

https://github.com/owlcs/owlapi/
https://www.java.com/pl/

45

SPARQL is a declarative query language, in many aspects similar to SQL. Like SQL,

SPARQL selects data from the query data set with the use of SELECT query. Other query

types: DESCRIBE, CONSTRUCT and ASK are not further explained because they are out

of scope of this research.

SPARQL variables start with a ? and can match any node (resource or literal) in the RDF

dataset. SELECT query [68] returns all, or a subset of, the variables bound in a query pattern

match. The query consists of the following main parts: PREFIX which designates the

selected data namespace, the SELECT clause which identifies the variables to appear in the

query results and the WHERE clause which provides the basic graph pattern to match against

the data graph. The SELECT result clause returns a table of variables and values that satisfy

the query. Additional commands or phrases are not required but are useful depending on the

needs, for example: DISTINCT modifier eliminates duplicate rows from the query results,

COUNT counts the solutions, and many others.

The following basic example of SELECT query comes from the specification [68]:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

 { ?x foaf:name ?name .

 ?x foaf:mbox ?mbox }

The result of the above query is:

name mbox

"Johnny Lee Outlaw" <mailto:jlow@example.com>

"Peter Goodguy" <mailto:peter@example.org>

This webpage: https://www.w3.org/wiki/SparqlImplementations lists different implementations

of SPARQL. It shows that currently there are many different tools available. This research,

however, uses own implementation for asking SPARQL queries due to the fact that here only

SELECT queries with a well-defined structure are needed. In addition, the preliminary tests

have shown some difficulties in linking the existing tools with the rest of the needed

implementation (the designed tool is described in Part IV).

3.7. Online Databases and Libraries with OWL ontologies

The publication [58] has estimated the total number of the available ontologies written in

RDF, DAML+OIL and OWL languages on 10
5
 different ontologies in the year 2011. This

estimated number bases on the analysis of the Swoogle project and does not include:

 ontologies which were not available through Swoogle search engine in 2011,

 ontologies which are not published on the Internet,

 ontologies published after year 2011.

This huge number of the existing OWL ontologies legitimates further research. For example,

this dissertation uses existing ontologies expressed in OWL, developed for various fields of

application. There are many Internet sources providing OWL domain ontologies. The

ontology databases (or libraries) are systems that collect ontologies from different sources and

facilitate the tasks of their finding and exploring.

https://www.w3.org/wiki/SparqlImplementations

46

Some example online databases with OWL ontologies are listed in Table 3.3 (all links have

been re-checked and verified on 10.08.2019). The article [70] from 2011 conducted a survey

on some online ontology libraries (however in 2019 not all of the presented links are still

working).

Table 3.3 The example online databases and libraries with OWL ontologies.

Online database or library Link to the website

Protégé Ontology Library http://protegewiki.stanford.edu/wiki/Protege_Ontology

_Library

Ontohub repositories https://ontohub.org/ontologies

Linked Open Vocabularies LOV https://lov.linkeddata.es/dataset/lov/

The OBO Foundry database http://www.obofoundry.org/

List of ontologies from W3C wiki https://www.w3.org/wiki/Good_Ontologies

Information Systems Group

Ontologies

http://www.cs.ox.ac.uk/isg/ontologies/

BioPortal library of biomedical

ontologies developed by the

National Center for Biomedical

Ontology

http://bioportal.bioontology.org/

Additionally, there is a huge number of websites dedicated to only one or a small number of

related OWL domain ontologies, such as:

 The orbital space set of ontologies

(http://rrovetto.github.io/Orbital-Space-Ontology-Project/),

 MarineTLO, the top-level ontology for the marine domain, also applicable to the

terrestrial domain (https://www.ics.forth.gr/isl/MarineTLO/),

 The barley plant protection ontology

(https://sites.google.com/site/ppontology/download),

 and many others.

Finally, there are also search engines dedicated to find ontologies (still in the experimental

phase), such as:

 Swoogle: the Semantic Web Search Engine, last updated in 2007

(http://swoogle.umbc.edu/2006/),

 Watson (http://kmi.open.ac.uk/technologies/name/watson/).

3.8. Validation and Evaluation of OWL Domain Ontologies

The postulate of this research is that the selected OWL domain ontology is already validated

against the domain. As previously mentioned, this research is not focused on validating OWL

domain ontologies.

In practice, the problem of ontology validation is often described together with the problem of

ontology evaluation. Currently there are three major approaches developed with the purpose

to aid in evaluating and validating ontologies [71]: evolution-based approaches, logical (rule-

based) approaches, and metric-based (feature-based) approaches.

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
https://ontohub.org/ontologies
https://lov.linkeddata.es/dataset/lov/
http://www.obofoundry.org/
https://www.w3.org/wiki/Good_Ontologies
http://www.cs.ox.ac.uk/isg/ontologies/
http://bioportal.bioontology.org/
http://rrovetto.github.io/Orbital-Space-Ontology-Project/
https://www.ics.forth.gr/isl/MarineTLO/
https://sites.google.com/site/ppontology/download
http://swoogle.umbc.edu/2006/
http://kmi.open.ac.uk/technologies/name/watson/

47

The evolution-based approaches [71] track changes in characteristics of ontologies. The

ontologies change over time mainly due to changes in the domain, changes in

conceptualization (which can result from changing a usage perspective) or changes in the

explicit specification (which can occur when an ontology is translated from one knowledge

representation language to another). The approaches from this group detect and possibly

recover any invalid changes which may appear in the ontologies.

The logical (rule-based) approaches [71] use rules which are built in the ontology languages

and rules users provided to detect conflicts in ontologies. In case of OWL language the

example of such a rule is specifying both DifferentIndividuals axiom and SameIndividual

axiom for the same individuals.

The metric-based (feature-based) approaches [71] offer a quantitative perspective of ontology

quality achieved through scanning the ontology with the purpose to gather different types of

statistics about the knowledge presented in the ontology. The metric-based approaches are

widely researched and there exist many tools offering different options.

Validation and evaluation of OWL domain ontologies is not trivial and should be conducted

by domain specialists. The need for ontology evaluation appears e.g. if there exist several

ontologies with similar area of interest. For example, many ontologies have been created for

biomedical field. If more than one ontology covers a similar content it may be difficult to find

one most suitable ontology without making time-consuming insight into the ontologies.

A good practice is to always read the additional information attached to the selected ontology

(such as included annotations, webpages or included files) with the purpose to find

information about its validation. The information may help to assess if the ontology is suitable

for the user's needs or to select the ontology among different ontologies which best fit to a

certain application.

3.9. Similarities and Differences of UML and OWL 2 Notations

In spite of existing differences, many similar or equivalent elements between UML 2.5 and

OWL 2 notations justify the research focused on creating transformation between the

notations. Following [72], the similarities allow for translating UML class diagrams into

description logic, which gives UML modelling a model-theoretic semantic. The below

summary presents major similarities and differences which have significant impact on the

research presented in this dissertation.

3.9.1. Major Similarities Between UML and OWL 2 Notations

3.9.1.1. Similarities in Semantics

UML [9] modelling language is semi-formal because it has a formally defined syntax using a

subset of UML and informally defined semantics in natural language. The semantics in UML

class diagrams have a reference to a selected reality and describes meaning of the used terms

48

(classes and their relationships). OWL 2 [1] is a formal language with a model-theoretic

semantics. The semantics of ontologies expressed in OWL 2 have a relation to the entities in

the specific domain, similarly as it is in case of UML class diagrams.

In this research, the concept of semantics refers to the elements from both descriptions

(UML class diagram and OWL 2 ontology) with respect to the same domain of application.

3.9.1.2. Compatibility with MOF

The Meta-Object Facility (MOF) [61] is an OMG standard for model-driven engineering.

MOF defines a four-layer structure. The top level (M3 layer) defines meta-meta model, which

is used to build metamodels (M2 layer), the model level (M1) contains concrete models and

(M0) describes real-world objects.

The current version of the MOF specification is 2.5.1 and this version of the specification is

aligned with the UML 2.5 specification [9]. Also, the structural specification of OWL 2 [1] is

defined using UML, and the notation used is compatible with MOF.

The article [51] expounds that both UML and OWL 2 language definitions refer to

comparable meta-models laid down in terms of MOF, but in contrast to UML, OWL 2 is fully

built upon formal logic which allows logical reasoning on OWL 2 ontologies.

3.9.1.3. Similar Constructs in OWL 2 and UML

Many researchers (e.g. [5], [73], [74], [75]) point out that UML and OWL share similar

constructs. What is the most important, and was highlighted e.g. in [76], both UML and OWL

make an equal distinction between “Classes” and “Instances” (or “Individuals” respectively).

Both languages use many other similar or equivalent terms, e.g.

 OWL “SubClassOf” class axiom has the reflection in UML “Generalization” between

the classes,

 OWL “Cardinality” has the correspondence in UML “Multiplicity”,

 the concept of “Enumeration” in UML, and “DatatypeDefinition” axiom and

enumeration of literals with the use of DataOneOf data range in OWL,

 and many others - please refer to Chapter 3.9 which analyses the similar constructs

of OWL and UML in great detail.

3.9.2. Major Differences Between UML and OWL 2 Notations

3.9.2.1. The Word Assumptions

UML and OWL languages operate on the opposite assumptions (e.g. [5], [51], [77]). The

UML models follow the so-called “closed-world assumption” and OWL 2 ontologies the

“open-world assumption”.

The closed-world assumption (CWA) requires the complete knowledge to be provided and

what is not known is assumed false, or in other words, all statements that have not been

mentioned explicitly are false (e.g. [5], [51], [77]).

49

The open-world assumption (OWA) does not consider to provide complete knowledge [77],

and it does not assume falsity for the unknown [5]. In this assumption, the missing

information is treated as undeclared [51]. This assumption is used in OWL 2 (e.g. [51], [77]).

As it is reminded in [51], these different semantics require us to add various restrictions

during the transformation process from UML models to OWL 2 ontologies in order to

preserve the semantics of the models.

3.9.2.2. Name Assumption

UML follows a Unique Name Assumption (UNA), which states that two elements with

different names are treated as different (e.g. [74]). OWL 2 follows No Unique Name

Assumption, which means that in OWL 2 one have to explicitly mark elements as being

different (e.g. [74], [78]). For example, OWL 2 does not assume unique names for

individuals.

Additionally, OWL 2 uses Internationalized Resource Identifier (IRI) to name elements of an

ontology. What is important, all assigned names have global scope, regardless of the context

in which they are used.

3.9.2.3. Different Constructs in OWL 2 and UML

Some researchers point out that there are UML elements which do not have the equivalence in

OWL 2 constructs, for example: ordering (e.g. [19]), non-unique properties (e.g. [19]), OCL

constructs (e.g. [19]), abstract class (e.g. [51]), visibility of model elements (e.g. [51]),

operations (e.g. [51], [62]), and others. These elements, however, appeared to be not

frequently used in business and conceptual modelling with UML class diagrams

(Section 2.3).

On the other hand, there are many OWL 2 constructs which do not have the equivalence in

UML elements, for example, EquivalentClasses axiom, ObjectHasSelf class expressions, and

many others. Another example of different constructs is presented in [51]: OWL 2 allows to

use the complement of classes and datatypes, in UML this is not generally possible. What is

more, OWL 2 provides a wide list of primitive datatypes in comparison with only five

predefined in UML (see Section 8.3.4).

3.10. Conclusions

Using OWL 2 ontologies in the phase of business and conceptual modelling with UML class

diagrams is justified in terms of improving the quality of UML class diagrams and by the

aspect of reduction of costs associated with the required assessments of diagrams by domain

specialists. In order to benefit from these advantages, a precise mapping between the UML

and OWL notation taking into account the semantics of both languages is first required. The

differences between OWL 2 and UML 2.5 languages presented in this chapter have their

impact on the form of transformation between UML class diagrams and OWL 2

representation of the diagrams. It is further explained in Section 8.4.

50

Part II

Creation and Validation of UML Class

Diagrams Supported by OWL 2 Ontologies

Part II: Creation and Validation of UML Class

Diagrams Suported by OWL 2 Ontologies

51

52

4. The Problem of Validation and Verification of

UML Class Diagrams

Summary. This chapter presents definitions of validation and verification in the context

of modelling and the understanding of the terms adopted in this dissertation. Additionally,

the chapter outlines some state of the art approaches to validation and verification of

UML class diagrams.

4.1. Introduction

There has not been yet accepted a single definition of “model validation”, therefore, there are

different attempts to describe and solve the problem of validation of models. Along with the

concept of validation, the concept of verification is often considered. In software engineering,

verification and validation are very often described together. Even in the English language, an

appropriate acronym: V&V appeared for addressing both verification and validation.

The paper [79], paraphrases a slogan from software engineering that “model validation

ensures that one is building the right model”, in opposition to model verification which

“ensures that one is building the model right”. The slogan may be slightly imprecise, therefore

the below table gathers some literature definitions of verification and validation:

Table 4.1 The selected literature definitions of verification and validation.

Source of citation Validation Verification

BABOK [80] “Validation: The process of checking

that a deliverable is suitable for its

intended use”

“Verification: The process of

determining that a deliverable or

artifact meets an acceptable standard

of quality.”

The book [81] “Validation ensures that the software

meets the user‟s needs”

“Verification focuses on ascertaining

that the software functions correctly”

The article [82] “Validation is (...) the process of

determining the degree to which a

model or simulation is an accurate

representation of the real-world from

the perspective of the intended uses of

the model or simulation”

“Verification is (...) the process of

determining that a model or

simulation implementation accurately

represents the developer's conceptual

description and specification”

Wikipedia [83] “Validation is the process of

determining the degree to which a

model, simulation, or federation of

models and simulations, and their

associated data are accurate

representations of the real world from

the perspective of the intended use(s)”

“Verification is the process of

determining that a computer model,

simulation, or federation of models

and simulations implementations and

their associated data accurately

represent the developer's conceptual

description and specifications”

53

4.2. Verification and Validation in this Research

In this research, it was accepted that “verification” is suitable for checking the compliance of

two formally defined entities, systems or models; and “validation” occurs when at least one of

them is informally defined. The proposed understanding of “verification” and “validation” is

aligned with the definitions from Table 4.1 and only states the terms more precisely.

The term “validation”, outlined in the title of this dissertation, is related to checking UML

class diagrams with respect to the selected domains. Formally, this research will present the

verification of the UML class diagrams against OWL domain ontologies, which were

previously validated (e.g. by experts) against the domain. The use of the term “validation” is

additionally justified in this research because in the proposed method (and in the tool which

implements the method) the final decisions are always left to the modeller. Depending on the

stage of diagram development, the modeller having the domain context in mind decides

on which elements of the diagram should be extracted from the ontology, what modifications

the diagram requires, or how the result of validation should be addressed. For example the

modeller can accept or reject the automatically suggested diagram corrections, and based on

own decision the modeller can modify the UML class diagram.

Figure 4.1 presents relation between the terms “validation” and “verification” adopted in this

research in the context of software development process.

Figure 4.1 The schema of understanding accepted in this dissertation for the terms validation and verification in

the context of UML class diagram, OWL domain ontology and the domain.

The approach assumes that as a first step the OWL domain ontology is created as a result of

problem-driven extraction of information from the domain. Next, the ontology is validated

with respect to the domain, e.g. by a specialist in the field.

The validated domain ontology can be used for different purposes. The purpose proposed in

this research is creation and verification of UML class diagram. The method of creating UML

class diagrams based on OWL domain ontologies and the concepts of extraction and

modification are explained in Chapter 6. The UML class diagram should be verified against

the ontology whenever needed (it is explained in Chapter 5) and validated with respect to the

54

domain. As already mentioned the aspect of validation of UML class diagrams their relation

to user requirements specification is out of scope of this research.

4.3. The Literature Approaches to Verification of UML Class Diagrams

This section presents selected literature approaches to verification of UML class diagrams.

The existing methods for verification of UML class diagrams can be divided into two main

groups: the methods of complete verification and the methods of partial verification:

 The complete verification methods rely on logical proving whether one model satisfies

all properties expressed by another model. The method of verification proposed in this

dissertation belongs to this group the designed UML class diagrams are verified against

OWL domain ontologies.

 The partial verification methods are practical approaches which involve testing, for

example by generating UML object diagrams that are test cases for a selected UML class

diagram.

There are many publications which formalize UML class diagrams with the use of

mathematical approaches and the works are often a starting point for methods of verification

of UML class diagrams. Just to provide an example: the paper [84] formalizes UML class

diagrams with the use of description logics, the paper [85] mathematically defines UML class

diagram and its semantics, and many others. The paper [86] from 2014, lists 48 resources as a

result of systematic literature review on topic of formal verification of static models, and it

draws a conclusion that the most typical formal methods employed in the model verification

approaches are:

a) formalization by means of logical representation such as First-Order Logic (FOL),

Description Logic (DL), Higher-Order Logic (HOL) or others,

b) the use of specialization languages like B or Object-Z,

c) encode the problem of model verification as Constraint Satisfaction Problem (CSP),

d) by means of other mathematical notations.

A wide group of literature approaches on verification of UML class diagrams is focused on

techniques examining the diagrams with OCL constraints. The article [87] presents guidelines

for future UML and OCL models verification methods (the proposed guidelines may be

considered as functional requirements for new verification methods and tools). The paper [88]

proposes a method for verification of UML class diagrams with OCL. In the method the class

diagram is first transformed into the OWL ontology and OCL constraints are transformed into

the SPARQL ASK
19

. The translation of the diagram includes UML classes with attributes of

primitive type and binary associations between the classes. In the next step, the correctness of

the diagram is verified against the constraints and the feedback is returned to the user. The

method has been implemented in a prototype tool, planned for further development. Similar

approach is proposed in the article [89], which describes a tool called MOVA for drawing

UML class and object diagrams with OCL invariants, queries and operations. The tool offers

features for checking OCL constraints over instances of UML class diagrams. Another

19
 SPARQL ASK query is used to test if a query pattern has a solution:

https://www.w3.org/TR/rdf-sparql-query/#ask.

https://www.w3.org/TR/rdf-sparql-query/#ask

55

approach is presented in the article [90], which describes an automatic method for formal

verification of UML class diagrams extended with OCL constraints, which uses the paradigm

of constraint programming. In the prototype tool, both class diagrams and OCL constraints are

translated into a constraint satisfaction problem. Then, compliance of the diagram with

respect to several correctness properties such as weak and strong satisfiability or absence of

constraint redundancies is verified.

The article [88] from 2018, proposes an OWL ontology-based verification method for UML

class diagram with OCL invariants. The method proposes transformation of three selected

types of UML elements: UML classes, attributes and associations into OWL. The verification

analysis is based on running the reasoner after creating a large number of instances of the

classes from the UML class diagram. What has to be noted, the UML-OWL transformation

proposed in [88] is not wider explained and may be not fully clear.

4.4. The Literature Approaches to Validation of UML Class Diagrams

This section presents selected literature approaches to validation of UML class diagrams,

divided into two groups: manual and supported by tool. The commonly used approaches for

model validation are manual. Much fewer propositions can be found for the tool-based model

validation but please note that they also require expert's analysis and decision.

4.4.1. The Manual Approaches to Validation of UML Class Diagrams

Three traditional quality techniques used for validation of UML models are [81]:

walkthroughs, inspections and reviews, each of which requires judgement of domain

experts. As is suggested in [91], the quality techniques help users to carry out checks from

elements of diagrams (e.g. single classes) to complete models. More than one quality

technique can be used in combination, in order to accomplish the quality goals of the models.

Following [91], a walkthrough is a relatively informal technique as it is a simple look

through a UML diagram. A modeller can do a walkthrough himself, however, it is important

to treat the walkthrough as a separate activity from the activity of modelling. In accordance

with [91], the intention with walkthrough is not to locate errors formally, but to simply ensure

that no major gaps have been left in the model. In [81], a walkthrough is assessed as more

helpful to detect syntax rather than semantic errors.

In [91], an inspection is described as more formal and more robust in ensuring the quality of

a particular artefact than a walkthrough. It is advisable that the inspection is done by someone

other than the one who has produced the model. In [81], an inspection is explained as a

method that can be used to identify both syntax and semantic errors. Also [10] and [92],

indicate that validation if the model correctly captures the intended domain knowledge mostly

entails its manual inspection.

In accordance with [91] and [81], a review is a technique that ensures that a particular

deliverable is meeting its syntax, semantics, and aesthetics criteria. In a UML-based project, a

review can be carried out on an entire model. It especially makes sense at the level of a model

or a collection of diagrams, because the inconsistencies or incompleteness are not apparent

56

when only a single artefact is inspected. Each review should end with a follow-up task list,

including brief meetings to ensure that all errors and criticisms have been addressed by the

modellers.

4.4.2. The Tool-Supported Approaches to Validation of UML Class Diagrams

The tool-supported approaches to validation of UML class diagrams vary a lot on their scope

of possibilities. The following are some selected literature approaches.

The article [92] presents a method and a tool called MOTHIA for model validation. The tool

generates a set of yes/no questions to the model and for each question the automatically

generated answer is produced. The approach requires judgement of the domain expert in

every case but the validation process is partially automated.

Some literature approaches assume that the static aspect is correct, and aim at constructing a

prototype with the purpose of researching its behaviour. These approaches focus mainly on

validation of behaviour of the diagrams. For example, the paper [93] proposes a method of

validation of UML classes through animation and presents a tool supporting the method

through generating a prototype from the conceptual model and executing scenarios obtained

from stakeholders (in this approach the stakeholders express their requirements as scenarios,

the analyst builds the conceptual model and by means of an animation environment a

prototype is generated automatically). When the prototype is started the behaviour of objects

may be examined by observing the occurring actions and the reached states. As a result, the

expected behaviour from the scenarios is compared with the obtained result and the initial

model is corrected if needed.

The paper [79], proposes a framework for validation and execution of UML diagrams such as

class, object or interaction diagrams. With the use of the framework the modeller can map

UML diagrams into programs in a modelling object language called MOL (the authors present

syntax and semantics for MOL). Thus obtained MOL programs can be executed and

debugged in an integrated development environment called iMOL.

The article [94] introduces a grammar-based approach to validation of UML class diagrams.

The approach involves representing the diagram with the use of Domain-Specific Language

(DSL), which is a language designed specifically for a particular domain. The authors propose

to conduct an XSLT transformation in order to convert an XML representation of a UML

class diagram to its DSL representation. The class diagram is validated by using use case

scenarios to test whether the current class diagram can generate the particular scenario. For

this purpose, the modeller should introduce some positive and negative use cases in the form

of strings. Finally, a string similarity measure is employed in order to provide feedback to the

user regarding validation.

The literature also describes a more narrow understanding of validation as checking the

consistency between the versions of UML class diagrams or checking the consistency

between different diagrams. For example, the paper [19] transforms the selected elements of

UML models containing multiple UML class, object and statechart diagrams into OWL in

order to analyze consistency of the models. A similar approach is presented in [95], which is

focused on detecting inconsistency in models containing UML class diagrams and UML

statechart diagrams. The article [18] proposes an approach to detect and resolve

57

inconsistencies between different versions of a UML model, specified as a collection of UML

class diagrams, UML sequence diagrams and UML statechart diagrams.

4.5. Conclusions

The literature describes different approaches to V&V of UML class diagrams which base on

different understanding of terms: validation and verification. By the term “validation”, this

dissertation understands checking the designed UML class diagram with respect to the

selected domain. The essential step of the checking bases on automatic verification of the

diagram against selected OWL domain ontology.

58

5. Outline of the Process of Validation of UML Class Diagrams

Summary. This chapter outlines a method for semantic validation of UML class

diagrams with respect to the selected domains. The method checks the semantic

compliance of the diagrams with respect to the domains they describe. An important step

in the method is the manual analysis of the automatically generated results of verification

of the designed UML class diagram against the selected domain ontology expressed in

OWL. In more detail, the automatic verification checks if all diagram elements and their

relationships are contained or at least are not contradictory with the domain knowledge

extracted from the selected ontology. With the use of the method, providing that some

well-defined requirements are satisfied, verification of UML class diagrams can be

conducted without involving domain experts in the process, therefore validation is also

semi-automated.
20

5.1. Introduction

The aim of this chapter is to present an outline of the method for validation of UML class

diagrams. In this dissertation, the term “validation” is related to checking UML class diagram

with respect to the selected domain (Section 4.2). The important step in the method is an

automatic verification of the designed UML class diagram against the domain ontology

expressed in OWL, which has been previously validated against the domain (see Section 3.8).

In the proposed method the final validation decision is always left to the modeller. At any

time of diagram creation, the modeller decides on the diagram content keeping in mind its

intended use (see Chapter 6). Additionally, on the basis of the automatically generated result

of verification the modeller decides if he or she accepts or rejects the suggested diagram

corrections and how he or she would like to modify the UML class diagram.

The proposed approach is concerned on verifying if all diagram elements and relationships

among the elements are contained (or not) in the field described by an OWL domain ontology

selected by the modeller. In other words, the method is designed to automatically verify the

semantics of a designed diagram and it states whether the diagram is correct in accordance

with the domain.

The proposed method has the advantage that it allows to check UML class diagrams

whenever needed, in any stage of development, even if the diagrams are not yet complete.

However, it should be underlined that the relevance of the diagram with respect to the user

needs is left to the modeller and is out of scope of this research.

This chapter is organized as follows: Section 5.2 lists requirements for the proposed method

of semantic validation of UML class diagrams, Section 5.3 introduces necessary definitions

and gives the outline of the method, Section 5.4 presents possible results of verification,

20
 Chapter 5 contains the revised and extended version of the paper: "Semantic validation of UML class

diagrams with the use of domain ontologies expressed in OWL 2" [12].

59

Section 5.5 discusses limitations of the method and final Section 5.6 concludes the chapter.

The details of the validation method are presented in the following Part III.

5.2. Requirements for the Method of Validation

The method assumes that the following three requirements are satisfied:

Requirement 1: The UML class diagram and the OWL domain ontology must follow one

agreed domain vocabulary. This requirement will be automatically satisfied if the

UML class diagram is directly extracted from the ontology (as further explained in

Chapter 6). Alternatively, if the designed diagram is not based on any ontology, the

requirement can be assured by a domain expert.

Requirement 2: The designed UML class diagram is expected to be syntactically correct,

in accordance with the UML specification
21

. Additionally, All class attributes and all

association ends in one UML class diagram need to be uniquely named. If there were

the same names e.g. for attributes in one diagram, they would be mapped to one OWL

element which would cause loss of information (semantics) after the transformation. If

such a situation happens, the modeller can be dealt with it by renaming names of

attributes or association ends in the diagram.

Requirement 3: The method requires the OWL domain ontology selected by the

modeller to be syntactically correct and consistent. Moreover, the ontology has to be

validated (e.g. by domain specialist), due to the fact that it has to adequately describe

the selected domain as it will serve as knowledge base for the application area.

5.3. Description of the Method of Validation

5.3.1. Outline of the Method of Validation

The proposed method of semantic validation of UML class diagrams, at first requires a

translation of the diagram to its OWL representation. Both the domain ontology and the class

diagram need to be presented in the same notation – in the form of a set of OWL axioms.

There are two input elements to the method: the OWL 2 domain ontology selected by the

modeller () and the UML class diagram ().

The validation method is graphically illustrated in Figure 5.1 in the flow diagram. The figure

at the top shows inputs to the validation method and at the bottom presents an output. The

rectangles symbolize artefacts and the rounded rectangles stand for transition procedures

supported by the developed tool described in Chapter 9.

21
 The proposed method and the developed tool do not verify syntactic correctness of the UML class diagrams. It is

assumed that the diagrams are syntactically correct before they are semantically verified with respect to their

compliance with the OWL domain ontologies. The assessment of the syntactic correctness should be fully carried

out automatically in the tools used for drawing UML class diagrams, such as Visual Paradigm for UML.

60

Figure 5.1 The flow diagram for validation of UML class diagrams.

Steps in the proposed method of validation of UML class diagrams

The method of validation has four steps which have to be conducted in the following order:

STEP 1. Normalization of the domain ontology

STEP 2. Transformation of the UML class diagram with the use of normalized

transformation rules and verification rules

STEP 3. Generation of the result of verification

STEP 4. Manual validation of the diagram

61

STEP 1. Normalization of the domain ontology

The first step in the process is bringing the OWL 2 domain ontology () to its

normalized form (). The process of normalization is an original element of

this research. With the use of the normalization it is much easier to algorithmically compare

ontologies with the unified vocabulary (see Requirement 1 from Section 5.2).

The normalization is necessary to be conducted not only for the domain ontology ()

but also for the OWL representation of the UML class diagram.

The details of the process of normalization are introduced in Chapter 7.

STEP 2: Transformation of the UML class diagram with the use of normalized

transformation rules and verification rules

The transformation of the UML class diagram () is double track and is conducted with the

use of normalized transformation rules, as well as verification rules. Therefore, the OWL

representation of UML class diagram consists of two parts: transformational part ()

and verificational part ().

The transformational part () consists of sets of normalized transformation axioms

(), which preserve semantics of elements of the UML class diagram.

The normalized transformation axioms result from transformation of the UML class

diagram with the use of normalized transformation rules. The goal of using the

transformation rules is to compare the information from the UML class diagram with the

information from the domain ontology.

The state of the art transformation rules for elements of UML class diagrams are presented

in Chapter 8.3, where they are not in the normalized form. However, for the purpose of the

proposed method, in the process all transformation axioms are always normalized. The

normalized form is the internal language of the tool implementing the method.

The verificational part () is the result of transformation of UML class diagram ()

conducted with the use of verification rules. It contains the verification axioms ()

and verification SPARQL queries ().

Every element of UML class diagram has the assigned set of normalized transformation

axioms () and the assigned set of verification axioms and queries.

The verification axioms and verification queries play two interrelated roles. The first role is

to detect if the semantics of the transformed diagram is compliant with the axioms included in

the domain ontology. The second role relates to the assurance of the correctness of the

transformation itself. Considering the inverse transformation (from the ontology to the

diagram), the presence of verification axioms in the domain ontology means that the

reengineering transformation would remain in conflict with the semantics of the UML class

diagram. Therefore, the verification axioms assure that the diagram obtained as a result of

62

reengineering from the modified domain ontology still preserves the semantics of the original

UML class diagram. Therefore, the verificational part is crucial for a correct assessment of the

diagram's compliance with the ontology.

The verification rules are the original element of this research. The verification rules have

two forms: the verification axioms and the verification queries.

The verification axioms used in the process are always normalized.

The verification queries are complementing to the results of comparison of UML class

diagram against the domain ontology conducted with the use of verification axioms. The

necessity to use verification queries results from the need to check the relationship between

classes and instances on the side of the ontology and if the relationship is

compliant with the information in the diagram. Technically, the queries are defined with the

use of SPARQL language. The verification queries are run if the diagram element has not

been evaluated as contradictory on the basis of comparison conducted with the use of

verification axioms. In the method, the verification queries are used for:

a) checking if the classes denoted as abstract in the UML class diagram do not have any

individuals assigned in the OWL domain ontology,

b) verifying if the multiplicity of the attributes is not violated on the side of the OWL

domain ontology,

c) verifying if the multiplicity of the association ends is not violated on the side of the OWL

domain ontology, and

d) checking if the user-defined list of literals of the specified enumerations on the UML

class diagram is compliant with those defined in the OWL domain ontology.

The next subsections (5.3.2 and 5.3.3) present definitions of transformation and verification

rules with some simple examples. All transformation and verification rules are listed and

explained in Chapter 8.3.

STEP 3. Generation of the result of verification

Now, the process of verification is outlined.

The process of verification operates on a working artefact called modified normalized

domain ontology (). Initially, the modified normalized domain ontology

is equal to the normalized domain ontology (). Later, the

 is modified and becomes a union of the axioms from

and the axioms from the transformational part of UML class diagram, provided that it does

not make the inconsistant. The modified normalized domain ontology is used

to check the compliance of the model with the original ontology. In particular, the finding that

the modified domain ontology is not consistent means that the element of UML class

diagram is not compliant with the domain ontology.

The Figure 5.2 outlines the simplified process of generating the result of verification for a

single UML element (a single UML element is an input to the process). The process is

iteratively repeated for all elements from UML class diagram.

63

Figure 5.2 The simplified diagram for the generation of the result of verification for a single UML element.

In Figure 5.2 the rectangles symbolize artefacts and the rounded rectangles present

procedures. The more complex procedure has other procedures nested. The diamonds evaluate

the specified conditions and based on the results, they break the flow into one of the two

mutually exclusive paths. The solid lines with arrowheads show the flows of operations. The

dashed lines with arrowheads show the flows of data. The circles with narrow borders are

64

process triggers and the circles with bold borders represent the results of the process. The

circle with bold border and a black circle inside immediately breaks the iterative operation in

the more complex procedure.

The results of iterations are gathered together and as an output the collective result is

presented for the whole diagram. In case of the result of not compliant diagram, a list of

diagram elements that are not compliant is presented for the modeller (including the suggested

corrections of the UML elements in accordance with Section 10.3).

The method iteratively analyses all individual elements of the UML class diagram. Each

UML element has the assigned set of normalized transformation axioms (it is denoted by

). Every set of the normalized transformation axioms has the assigned

set of verification axioms (it is denoted by) and the assigned set of

verification SPARQL queries (it is denoted by).

The process of verification starts from analysing the sets of verification axioms and queries

for the given UML element. If any verification axiom is found in the modified normalized

domain ontology or any verification query fails, it means that the verified element of the

UML class diagram is contradictory to the knowledge from the ontology. In such case the

relevant result of contradiction is generated and the set of the normalized transformation

axioms does not need to be further analysed. The process continues with taking the next

UML element.

If none of the verification axioms for the given UML element is found in the modified

normalized domain ontology and none of its verification queries fails, the process continues

with analysing the assigned set of the normalized transformation axioms

(). In this step, two sets of OWL axioms are compared: the modified

normalized domain ontology () and the set of the normalized

transformation axioms (). The comparison is conducted iteratively,

independently considering each axiom from the set of normalized transformation axioms. If

the modified normalized domain ontology () does not contain the

checked axiom, the ontology is modified by adding the axiom.

Please note that each new axiom added to the ontology entails a risk of making the modified

normalized domain ontology inconsistent. Therefore, always after adding each new axiom, a

reasoner is run in order to check consistency of the ontology. If the axiom makes the

modified normalized domain ontology () inconsistent, it is removed from

the ontology and a relevant result of contradictory is generated. Later, the process continues

with adding the next axioms.

It can be noticed that the modified normalized domain ontology at some point may contain

not only the domain knowledge but also the knowledge from the new source of information

i.e. the UML class diagram being validated. Such a result is obtained if the diagram refines

some elements of the domain described by the ontology or if the ontology does not fully cover

the domain described by the class diagram.

Finally, after checking all elements of UML class diagram, the validated diagram can appear

as compliant or not compliant with the domain ontology. If the diagram is not compliant it

65

can be either contradictory or not contradictory. The definitions and illustrations of each

case are included in Section 5.4.

STEP 4. Manual validation of the diagram

This step bases on the assumption (Requirement 3 in Section 5.2) that the selected domain

ontology was previously validated so it adequately describes the domain. At any time, the

modeller has an influence on the content of the designed UML class diagram. Additionally,

on the basis of the automatically generated result of verification the modeller manually

conducts the validation. The modeller decides if he or she accepts or rejects the suggested

diagram corrections and how he or she would like to modify the UML class diagram.

5.3.2. Transformation Rules

The transformation rules convert any UML class diagram to its equivalent OWL 2

representation. A number of publications (e.g. [19], [74], [76], [96] and many others) present

transformation rules for selected elements of UML diagrams. A systematic literature review

of the state of the art transformation rules for UML class diagrams has been conducted. The

revision and extension of its results are presented in Chapter 8.3.

5.3.2.1. Definition of Transformation Rule

Definition: Transformation rule. For a given element of UML class diagram , the

transformation rule converts the element to a set () of OWL axioms preserving

semantics of the UML element, where is the category of the UML element.

The set defined by formula (5.1) is called a not yet normalized transformational

part of OWL representation of UML class diagram. The constitutes a union of sets

of results of applying transformation rules to all elements of the UML class diagram .

 ⋃ ()

()

 (5.1)

The normalized set is denoted by .

Every set of normalized transformation axioms contains the assigned set of verification

axioms () and the assigned set of verification queries ().

5.3.2.2. The Example of a Transformation Rule

A full list of transformation rules is presented in Section 8.3. The below examples are only

intended to depict the idea behind the transformation rules:

66

Table 5.1 The example of a transformation rule.

Category of UML element Generalization between the Classes

Drawing of the category

Transformation rule SubClassOf(:A :B)

Example instance

of the category

UML element:

Transformation axiom:

SubClassOf(:Manager :Employee)

5.3.3. Verification Rules
22

The method of semantic validation, in the part of verification of UML class diagram requires

the so called verification rules. The verification rules are the original contribution of this

dissertation.

5.3.3.1. Motivating Example for Verification Rules

The below examples aim to present the intention behind introducing verification rules. The

examples show that transformation rules themselves are not enough to validate UML class

diagrams with the use of domain ontology.

Table 5.2 contains two extracts from UML class diagrams and an extract from a domain

ontology. The same domain ontology is used for both example diagrams. The last row in

Table 5.2 presents a result of reengineering of the modified domain ontologies to UML class

diagrams. The row is not a part of the method but is aimed to illustrate, what verification rules

are and why they are needed in the proposed approach.

Table 5.2 Motivating example presenting the need for verification rules.

Example extract from

domain ontology

 ...

SubClassOf(:Manager :Employee)

 ...

Example ID Example 1 Example 2

Example extract from

UML class diagram

Result of applying

transformation rules

from Table 5.1:

Generalization

between the Classes

SubClassOf(:Manager :Employee) SubClassOf(:Employee :Manager)

22
 Section 5.3.3 contains the revised and extended fragment of "Introduction" from the paper: "Representation

of UML class diagrams in OWL 2 on the background of domain ontologies" [14].

67

Modified domain

ontology (after adding

the axiom from the

transformation)

SubClassOf(:Manager :Employee)

 ...

(no new elements added)

SubClassOf(:Manager :Employee)

SubClassOf(:Employee :Manager)

 ...

(one new element added)

Result of consistency

check of the modified

domain ontology

Result: The modified domain

ontology is consistent because no

axioms were added.

Result: The modified domain

ontology is also consistent.

Reengineering of the

modified domain

ontology to UML class

diagram

Result: The reengineered UML

class diagram is correct.

Result: The reengineered UML

class diagram is incorrect with

respect to the semantics of the

generalization relationship in UML.

In the first example from Table 5.2, Manager class is generalized by Employee class. The

transformation rule applied to this diagram results in the axiom:

SubClassOf(Manager Employee)

The axiom, after being added to the domain ontology, does not change the ontology due to the

fact that the ontology already contained this axiom. The consistency check conducted by

OWL reasoner shows that the ontology is consistent.

In the second example from Table 5.2, Employee class is generalized by Manager class. The

transformation rule applied to this diagram results in the axiom:

SubClassOf(Employee Manager)

The axiom, after being added to the domain ontology, changes the ontology but the

consistency check conducted by OWL reasoner would also indicate that the ontology is

consistent. The ontology is indeed still consistent because the reasoner only marks that

 and entities are equivalent. UML follows a Unique Name Assumption

[74], unlike the OWL [78] and such a result would change the original meaning contained in

the UML class diagram. This means that the reverse transformation (reengineering) from the

modified domain ontology to the UML class diagram may result in obtaining a contradiction

with UML semantics, what was shown in the second example.

A conclusion from the motivating example is that relying only on the transformation rules,

may result in an incorrect UML diagram after reengineering from the modified domain

ontology to UML class diagram. The information obtained from the reasoner that the

modified domain ontology is still consistent is not enough to state that the original UML class

diagram is compliant with the domain ontology. If the domain ontology is consistent the

verification rules are required to check if the axioms from transformation rules after being

added to the ontology have not changed the original UML semantics, and hence the final

interpretation of the obtained result.

The observation that the transformation rules are not enough to validate UML class diagrams,

and the verification rules are needed, is a major contribution of this dissertation, initially

published in the article [12]. This observation constitutes an important complement to the

transformation rules described in the literature. The literature presents a transformation of

selected elements of UML class diagrams to OWL representation and for this purpose the

68

verification rules are not needed, but they are very important in verification if the UML class

diagram (and its OWL representation) is compliant with the OWL domain ontology.

5.3.3.2. Definition of Verification Rule

Definition: Verification rule. For a given element of UML class diagram , the

verification rules convert the element to a set () of OWL axioms and a set of

SPARQL queries, where is the category of the UML element. The role of verification

axioms is to assure that the reengineering transformation (from the ontology to the diagram)

would not be in conflict with the semantics of UML class diagram. Analogically, if the

verification SPARQL query fails, the element of the diagram is contradictory with the domain

described by the ontology.

The is defined by equation (5.2) is called a verificational part of UML class diagram.

 ⋃ ()
()

 (5.2)

The sets () and () are always disjoint.

The definitions are presented in Section 5.3.3.3, the categories of UML elements are

introduced in Chapter 2.3 and the full list of verification rules is presented in Section 8.3.

5.3.3.3. Forms of OWL verification axioms

The OWL verification axioms () are divided into two groups: standard OWL

verification axioms and patterns of OWL verification axioms. With the patterns, the

concretization is associated. After concretization, a pattern of OWL verification axiom

becomes a standard OWL verification axiom. The relevant definitions are as follows:

A1. Standard OWL verification axioms

Definition: Standard OWL verification axiom. The standard OWL verification axiom is

axiom in accordance with the OWL 2 specification [1].

Table 5.3 The example of verification rule defining standard OWL verification axiom.

Category of UML element Generalization between the Classes

Drawing of the category

Verification rule SubClassOf(:B :A)

Example instance

of the category

Verification axiom:

SubClassOf(:Employee :Manager)

69

Comments

The method of verification searches for the existence of the

SubClassOf(Employee Manager) axiom in the normalized modified domain

ontology. If the axiom is found, the UML element is contradictory with the

ontology.

A2. Patterns of OWL verification axioms

Definition: Pattern of OWL verification axiom. The pattern of OWL verification axiom is a

text defined in accordance with syntax described in the specification of OWL 2 but it contains

some nonterminal symbols: CE, DPE, OPE, DR. After concretization of the nonterminal

symbols with the terminal symbols, the pattern becomes a standard OWL verification axiom.

The patterns are defined on the basis of the selected UML class diagram and will become

standard OWL axioms after concretization on the basis of the domain ontology (see example

in Table 5.4). The proposed method of verification searches for the existence of the pattern in

the ontology. If any axiom matching the pattern is found in the domain ontology, the UML

element is contradictory with the modified normalized domain ontology.

Table 5.4 The example of verification rule defining pattern of OWL verification axiom.

Category of UML element Attribute

Drawing of the category

Selected verification rule

of the category

The rule consists of two patterns:

 ObjectPropertyRange(:a CE), where CE ≠ :T if T is of structure DataType

 DataPropertyRange(:a DR), where DR ≠ :T if T is of PrimitiveType

Example instance

of the category

Verification axioms:

ObjectPropertyRange(:name CE), where CE ≠

:FullName

DataPropertyRange(:index DR), where DR ≠ xsd:string

Comments

The method of verification searches the normalized modified domain ontology

with the purpose of finding any concretization of the patterns. If the

concretization of the pattern is found, the UML element is contradictory with

the ontology.

5.3.3.4. Verification queries

The example in Table 5.5 presents a selected verification query, expressed in SPARQL

language. The main reason for introducing the queries was to allow examining the

relationship between classes and their instances in the ontology, and whether this information

is consistent with the information included in the verified UML class diagram.

Every verification query aims to answer a specific question. If this answer is satisfied, correct

with the expectations, then the query automatically indicates that the verified element of UML

class diagram is indeed correct.

70

Table 5.5 The example of verification query.

Category of UML element Abstract Class

Drawing of the category

Pattern for

verification query

Check if domain ontology contains any individual specified for the Class denoted as

abstract:

SELECT (COUNT (DISTINCT ?ind) as ?count)

WHERE { ?ind rdf:type :A }

Expected result:

If the verified Class does not have any individual specified in the ontology, the

query returns zero: "0"^^<http://www.w3.org/2001/XMLSchema#integer>.

Example instance

of the category

Verification query:

SELECT (COUNT (DISTINCT ?ind) as ?count)

WHERE { ?ind rdf:type :BankAccount }

Comments

The method of verification searches the normalized modified domain ontology

with the use of the verification SPARQL query. If the result of the query differs

from the expected result, the UML element is contradictory with the ontology.

5.4. Result of the Verification

The definitions below specify three possible results of the verification: compliant diagram,

not contradictory diagram and contradictory diagram. The results are in particular

dependent on the Consistent or Inconsistent results from the OWL reasoner
23

.

Definition: Compliant diagram. A UML class diagram is compliant with the domain

ontology, if all axioms from the transformational part of OWL representation of UML class

diagram are contained in the axioms from the normalized domain ontology and the

normalized domain ontology does not contain any verification axioms and none verification

query fails, i.e.:

() () (5.3)

23
 The consistency checks are used in the validation method in order to verify the UML class diagram against the

domain ontology. Following W3C recommendation [97], a consistency checker takes an ontology as input and

returns a decision as either Consistent, Inconsistent or Unknown, however as stated in [97], an Unknown result

should not be returned by OWL 2 consistency checker. In the practical realizations of OWL 2 reasoners the

Unknown value is frequently omitted. For example, HermiT and Pellet reasoners return a Boolean value as a result

of a method for checking consistency. Therefore, in the proposed method of validation, the results are stated on the

basis of only Consistent or Inconsistent results from the reasoner and the Unknown value is also omitted.

71

The below figures present Venn diagrams consisting of overlapping shapes, each representing

a set of axioms. Figure 5.3 depicts a situation when the UML class diagram is compliant:

Figure 5.3 A situation when the UML class diagram is compliant with the domain ontology.

Definition: Not contradictory diagram. A UML class diagram is not contradictory with the

domain ontology, if after adding all axioms from the transformational part of OWL

representation of UML class diagram to the normalized domain ontology, the normalized

domain ontology is consistent and the normalized domain ontology does not contain any

verification axioms and none verification query fails, i.e.:

() () (5.4)

Figure 5.4 presents a situation when the UML class diagram is not contradictory:

Figure 5.4 Situation when the UML class diagram is not contradictory with the domain ontology.

Definition: Contradictory diagram. A UML class diagram is contradictory with the domain

ontology, if at least one axiom from the transformational part of OWL representation of UML

class diagram after being added to the normalized domain ontology, causes the ontology to be

inconsistent or the normalized domain ontology contains at least one verification axiom or at

least one verification query fails, i.e.:

() () (5.5)

Figure 5.5 presents two situations, when the UML class diagram is contradictory:

Figure 5.5 Two situations when the UML class diagram is contradictory with the domain ontology.

72

UML class diagram is always contradictory with the ontology if the diagram and the ontology

describe two different realities or the vocabulary between the ontology and the model has not

been initially agreed, what is a preliminary requirement to the method.

5.5. Limitations of the Validation Method
24

The method is aimed to validate the UML class diagrams in accordance with the domain

knowledge included in the domain ontologies. The method does not validate domain

ontologies. In general, the problem of validating ontologies requires a comparison of the

ontologies with an expert knowledge, either provided by domain experts, or included in

another source of domain knowledge.

The proposed method of semantic validation of UML class diagrams has some limitations:

 The method is limited to validate only static aspects of UML class diagrams, and the

behavioural features, such as class operations, are omitted. This limitation is motivated

by the fact that the OWL 2 ontologies contain classes, properties, individuals, data

values, etc. but does not allow to define any operations that may be directly invoked

e.g. on the individuals.

 Some elements of UML class diagrams are not fully translatable into OWL 2, for

example n-ary associations, compositions (the full list is presented in Chapter 8.3).

This limitation is caused by the fact that UML and OWL standards differ from each

other and e.g. the properties in OWL 2 are only binary relations, or OWL 2 does not

offer some semantically equivalent axioms. However, the partial translation is still

justified for the purpose of diagram verification (e.g. transformation of composition as

simple associations).

 The method has a limitation which requires all class attributes and all association ends

in one UML class diagram to be uniquely named. This limitation is also caused by the

fact that the notations have differences and for example two different UML attributes

of the same name would be mapped to one OWL property, which should change the

UML semantics (analogically with association ends). This limitation can be mitigated

by renaming names of some attributes and/or association ends in the UML class

diagram by domain expert.

5.6. Conclusions

This chapter is introductory to Part III which presents the details of the proposed method of

validation of semantic correctness of UML class diagrams with respect to the relevant

domains. The crucial step in the proposed method is an automatic verification of the designed

24
 Section 5.5 contains the revised and extended "Limitations of the Validation Method" section from the

paper: "A Prototype Tool for Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies

Expressed in OWL 2" [15].

73

UML class diagram against the selected domain ontology expressed in OWL. In the method,

at any time the modeller decides on the diagram content as well as how to incorporate the

changes in the diagram based on the automatically generated result of diagram verification.

A major contribution of this chapter is an observation that the transformation rules are not

enough to validate UML class diagrams, and the additional rules (here called verification

rules) are needed. The verification rules as well as the process of normalization are the

original elements of this research.

The verification rules are used to check if specific axioms (here called verification axioms)

exist in the domain ontology. The existence of any axiom indicated by the verification rules in

the ontology means that the reengineering transformation (from the ontology to the diagram)

would remain in conflict with the semantics of UML class diagram. The example of such a

conflict is presented in Example 2 from Table 5.2, where a reengineered transformation

resulted in an incorrect cross generalization between the UML classes. For a more complete

verification of diagrams in addition to verification rules the verification queries have been

introduced.

The proposed verification method bases on changing the domain ontology by adding new

axioms – one by one from the transformational part of OWL representation of UML class

diagram − and on subsequent verification if the modified domain ontology is still consistent. A

revision and extension of the state of the art transformation rules and a full list of verification

rules and queries for UML class diagrams are presented in Chapter 8.3. The proposed method

of verification of UML class diagrams is implemented in the developed tool, described in

Part IV.

74

6. Outline of The Process of the Creation of UML Class Diagrams

Summary. This chapter describes the ontology driven process of creation of UML class

diagrams. The proposed process consists of four steps: normalization of the selected

OWL domain ontology, extraction of UML class diagram from the ontology,

modification of the extracted diagram, and verification of the diagram against the

ontology. This chapter proposes checking rules which assure that the elements of UML

class diagram are correctly extracted from the selected OWL domain ontology.

6.1. Introduction

The initial step in business modelling is getting acquaintance with the needed business

domain and understanding the needs (the requirements) of different stakeholders of future

software system. As explained in [98], a system (software) requirements specification

(SRS) is a document or set of documentation that describes the features and behaviour of a

system or software application. The needs on the future software can be expressed in a

various ways and formats. The level of formality of SRS highly depends on the methodology

selected for developing the software system. Not describing the possible graphical or

mathematical specifications, some methods of expressing the user needs are as follows:

 The requirements can be described in the natural language in the form of a textual

description (e.g. [99], [100], [101]). The example is presented in page 10 of [100].

 The requirements can be described with the use of the so called structured natural

language (e.g. [99], [101]). Structured natural language requirements are written in a

template; the example is presented in page 124 of [99].

 The requirements can be described in the form of a more lightweight documentation

by means of user stories and acceptance tests. Following [98] and [102], such a

form of SRS is more preferred in some agile methodologies such as extreme

programming (XP), SCRUM or Kanban. A popular approach to write user stories is

to use the template: “As a (type of user), I want (some function) so that (some

reason)”. The example of the use of this template is presented in page 80 of [103].

 Following [98], the detailed requirements can be embodied in prototypes and

mock-ups of the planned system. The prototypes are a visual way to represent the

requirements and help the customer more easily comprehend what is planned to be

implemented. Such a form of SRS is more used in rapid application development

(RAD) methodologies such as DSDM or Unified Process (RUP, AUP).

After system requirements are better understand, the business analyst alone, or together with

domain expert, analyses business processes within the domain. There is a variety of ways to

present the domain information, which could be the basis for business modelling with UML.

Usually the domain information is provided in the form of written or electronic documents in a

variety of formats associated with the described area. On the one hand, the documents may

75

contain information irrelevant to the modelled area, on the other hand they may not contain all

the necessary information.

Among the possible sources of domain knowledge, the integration of UML modelling with

OWL ontologies provides new opportunities. As explained in Chapter 3, the domain ontologies

ensure a common understanding of information and make explicit domain assumptions. What is

very important, the domain ontologies enable reusing of domain knowledge for different

purposes. In practice, there are some well-known challenges in working with ontologies, such

as: assessment of completeness of the ontologies [103], dealing with realities in which several

ontologies together describe the needed domain [100], problems of merging ontologies,

problems of validating the ontologies, etc.

The development of a software system which starts from an existing domain ontology, and

continues with adding more details from system modelling languages such as UML, is called

“ontology-aware system development” (e.g. [5]) or “ontology-driven (software)

development” (e.g. [104], [105]). In [5], it is suggested that the ontology-aware system

development requires two essential features: the possibility of querying and navigation of the

ontology and the possibility of having transformation between the model and the ontology.

This chapter details the aspect of ontology driven development in the context of creating

UML class diagrams from OWL domain ontologies, and presents several original

propositions.

In this chapter, regardless of which SRS method is used, first an overview of important

domain concepts is conducted, and the user needs to extract a list of terms which will be the

basis for creating the UML diagrams. This overview forms a glossary of terms representing

the domain terms used within the requirements specification. The quality of the glossary has a

great impact on the quality of the created UML class diagram.

6.2. Creation of the UML Class Diagram Supported by the OWL Domain

Ontology

The following are the steps in the proposed process of semi-automatic creation of the UML

class diagrams from OWL domain ontologies. It is an original proposition of this research.

STEP 1. Normalization of the selected OWL domain ontology,

STEP 2. Extraction of a UML class diagram from the normalized OWL domain ontology,

STEP 3. Modification of the UML class diagram (if needed),

STEP 4. Verification of the UML class diagram against the normalized OWL domain

ontology (only needed if the modification step is conducted).

76

Figure 6.1 visualizes the proposed process:

Figure 6.1 Illustration of the proposed process of creation of UML class diagram

on the basis of the selected OWL domain ontology.

STEP I - Normalization: The normalization of the OWL ontologies is automatic and is

explained in Chapter 7.

STEP II - Extraction: The extraction step consists of three sub-steps:

A. the tool automatically proposes a list of all domain concepts extracted from the domain

ontology,

B. the modeller selects the needed terms from the proposed list of domain concepts, bearing

in mind the glossary of concepts which needs to be represented on the UML class

diagram,

C. after the modeller makes the selection, the tool automatically creates the UML class

diagram.

In the beginning of creating a UML class diagram, the modeller knows the domain problem

and the process of creation is driven by the glossary extracted from the user requirements

specification. On this basis, the modeller can decide which notions should be extracted from

the selected domain ontology. Therefore, the step of extraction of the UML class diagram

from the ontology is automatic but managed by the modeller. An attempt to automate sub-step

B is difficult due to the fact that there are many different methods to specify system

requirements. The details of the extraction process are explained in Section 6.3.

STEP III - Modification: The modification of the diagram is manual. The main reasons for

the needs of the modification of the extracted UML class diagram are presented in

Section 6.2.1.

STEP IV - Verification: The verification of the UML class diagram is only needed if the

diagram is manually modified. The verification of the extracted diagram is not needed

because the proposed method and the construction of the transformation rules assure that the

extracted diagram is always compliant with the normalized OWL domain ontology. This is

an important feature of the proposed method. The verification of the modified UML class

diagram against the ontology is automatic. Section 6.2.2 presents some additional comments

on verification.

77

Figure 6.2 summarizes which steps of the proposed method of diagram creation are manual or

automatic:

Figure 6.2 The manual and the tool-supported elements of the proposed method of diagram creation.

6.2.1. Need for the Modification of the Extracted UML Class Diagram

The UML class diagram extracted from the selected OWL domain ontology may not be

complete from the perspective of user requirements. Therefore, the extracted diagram may

require some modifications: some refinement or some supplementations.

The main reasons for the need of the modification of the extracted UML class diagrams are as

follows:

 First of all, there may be a difference in level of abstraction the ontology may

describe very general terms and the diagram needs to be more application oriented. In

practise, OWL ontologies usually represent the abstraction level higher than respective

UML class diagrams, but one can also imagine the opposite situation when the OWL

ontology (especially if it would be an application ontology) has the abstraction level

lower then designed UML class diagram.

 Another reason is that often only a fragment of a given domain ontology is relevant to

the problem which is expected to be covered by a future software. Having the

fragment defined it is possible to construct respective UML class diagram which

represents the knowledge from the ontology fragment. The rest of the diagram should

present the information at least not contradictory with the selected ontology. The

analogous situation occurs when more than one ontology is needed to be combined in

order to reflect the given field. For example, the requirements for the diagram may

express an area which is described in parts in several domain ontologies or some

important aspects of the domain are not covered in any ontology. Sometimes in such

cases the extracted diagram is required to be compliant with the merged ontology.

 The OWL and UML languages have similar but not identical expression power. There

are some categories of elements of UML class diagram which cannot be derived from

OWL ontology because OWL does not offer some equivalent constructs, e.g. UML

n-ary associations, compositions, etc. (refer to Chapter 8.3).

 Sometimes the user requirements evolve and the previously extracted diagram is no

more sufficient, or even no more correct. For example, the domain of finance or

domain of law changes quite often. Due to the fact that some fields changes often, the

modeller needs to improve his or her diagram, and as a result the software engineers

also need to change the final software.

78

Summarizing, the typical modifications of the extracted UML class diagram are:

 refining the diagram (e.g. by changing "*" multiplicity of the association end into

multiplicity of at least M but no more than N instances),

 supplementing the diagram with some new UML elements (e.g. by adding additional

classes or attributes not described in the selected domain ontology),

 removing some UML elements from the diagram (e.g. removing UML Thing class

extracted on the basis of owl:Thing which represents a set of all individuals in OWL).

6.2.2. Need for the Verification of the Modified UML Class Diagram

As explained, the manual modifications of the extracted UML class diagram are often needed,

but they always involve a risk of introducing some semantic errors. Especially, the modified

diagram may have elements which are not included in the OWL domain ontology, and may

appear as contradictory with the OWL domain ontology. Therefore, the verification is always

needed if the diagram is manually modified. This is illustrated in Figure 6.3:

Figure 6.3 The extraction, modification and verification steps of the proposed process of diagram creation.

The normalized domain sub-ontology ONTNORM-SUB is a subset of the normalized domain

ontology ONTNORM, consisting of axioms which can be transformed into UML elements. All

other OWL axioms do not take part in the extraction step because their semantics cannot be

expressed in the form of elements of UML class diagram. After the extracted diagram is

manually modified, it is verified against full normalized domain ontology (ONTNORM).

It is important to observe that the whole process of creation requires two directed

OWL-UML transformation:

 The extraction step requires OWL to UML transformation. The transformation

takes axioms from the normalized OWL domain sub-ontology ONTNORM-SUB, and

transforms them into UML class diagram.

 The verification step requires UML to OWL transformation for the purpose of

analysis of the compliance of the diagram with the ontology ONTNORM, and for the

purpose of identifying any potential violations of the UML elements with the

semantics from the selected ontology. The transformation maps all UML elements into

a set of OWL axioms. It is described in Section 5.

79

In this research the two-directed OWL-UML transformation is narrowed only to the OWL

axioms which can be expressed in UML without changing semantics. This chapter does not

discuss any OWL axioms which have no counterparts in the elements of UML class diagrams.

6.3. Extraction of UML Elements from the OWL Domain Ontology

This section is specific because it has several references to Section 8.3 which describes all

transformation rules used to translate single elements of UML class diagram into sets of OWL

axioms. The transformation rules are two-directed what means that they are also applied in the

transformation from OWL to UML. Each rule has a form such that it transforms a UML

element of category into a set of OWL axioms , and vice versa it transforms a set of

OWL axioms into a UML element of category (see Figure 6.4).

The transformations may be presented in the forms (6.1), in which there are premises in the

numerators and conclusions in the denominators. The forms (6.1) are not complete, because the

UML to OWL transformation requires the verification rules and OWL to UML transformation

requires the checking rules which are specified further in the following section.

where is the category of the UML element

(6.1)

The below two subsections present the details of the process of extraction of UML elements

from the selected OWL domain ontology:

 Section 6.3.1 presents details of the direct extraction. The direct extraction bases

fully on the selected domain ontology, and extracts all sets of axioms which can be

translated into the elements of UML class diagram with the equivalent semantics. The

proposed method and the construction of the transformation rules assure that the direct

extraction of UML class diagram is always compliant with the normalized OWL

domain ontology.

 Section 6.3.2 presents another original proposition of this research: the extended

extraction. It is a proposition to extract some additional UML elements which are only

partly based on the selected domain ontology. This proposal is justified based on

observing the practical modelling needs and real OWL ontologies. The extended

extraction always requires verification. The diagram which bases on the extended

extraction is at most not contradictory with the OWL domain ontology.

For a better clarity, tables in this section follow the following convention:

 the elements of UML meta-model are written with the use of italic font,

 the OWL 2 constructs are written in bold font.

80

6.3.1. The Direct Extraction

Figure 6.4 illustrates the direct extraction. The normalized domain sub-ontology

(ONTNORM-SUB) consists of axioms (denoted by a1 ... aN). A single UML element e : E is

extracted from the ONTNORM-SUB based on the full set of OWL axioms denoted by .

In the direct extraction there is no need for verification, hence no need for UML to OWL

transformation, because every extracted UML element is compliant with the ontology.

Figure 6.4 The direct extraction bases fully on the selected ontology.

In the beginning, it has to be noted that a few important categories of elements of UML class

diagram cannot be derived from any OWL ontology (see Table 6.1).

Table 6.1 The important categories of UML elements which cannot be derived from any OWL ontology.

Category of

UML elements
Explanation

Abstract Class

OWL 2 does not offer any axiom for specifying that a Class must not

contain any individuals. It is possible to extract only the not-abstract

Classes from the ontology.

Differently is from the perspective of the diagram verification, it is

impossible to confirm that the UML abstract Class is correctly defined

with respect to the OWL 2 domain ontology but it can be detected if it is

not (see Table 8.3).

Aggregation and

composite aggregation

(composition)

From OWL ontology one can extract only regular binary Associations.

Please note that in UML a composite aggregation can be unambiguously

transformed to OWL in accordance with definition of regular binary

Association but its semantics related to lifecycle of objects is not

transformed. Due to the fact that the specific semantics related to the

aggregation or composition is untranslatable to OWL, it cannot be found

in the ontology and the opposite transformation from OWL to UML may

only deriver a regular binary Association.

81

N-ary Association The current version of OWL 2 offers only binary relations.

Table 8.8 presents a pattern to transform UML n-ary Association to OWL,

however, it is only a partial solution. The pattern allows transforming the

Association unambiguously, however, at the end the semantics in OWL is

not exact to UML in case of n-ary Association. Therefore it is not a

suggested approach to extract UML n-ary Associations from OWL.

GeneralizationSet with

{incomplete, disjoint}

or with {incomplete,

overlapping}

constraints

OWL 2 does not offer any axiom for specifying incompleteness as the

incompleteness in ontology is assumed by default (open world

assumption). Table 8.14 only presents axioms which assure disjointness of

more specific Classes in the Generalization.

Table 8.16 presents no transformation rules.

Regarding the possibilities, the following categories of UML elements can be extracted from

OWL ontologies:

 Class,

 attributes of the Class,

 multiplicity of the attributes,

 binary Associations,

 multiplicity of the Association ends,

 Generalization between Classes,

 Generalization between Associations,

 GeneralizationSet with {complete, disjoint} or {complete, overlapping} constraints,

 Integer and Boolean primitive types (Please note that: UML String and Real primitive

types have similar but not equivalent corresponding OWL 2 types. If a modeller

chooses either xsd:float, or xsd:double for UML Real, and accepts xsd:string for

UML String and differs, the UML-OWL transformation will also be unambiguous and

equivalent.)

 structured DataTypes,

 Enumerations,

 Comments to the Class (UML Comments add no semantics, nevertheless the UML-

OWL transformation of UML Comments is technically possible and two-directed).

As mentioned before, the transformation rules for the categories of UML elements are

presented in Section 8.3.

The transformation rules are two-directed, so they are needed in the transformation from

UML to OWL, as well as in the transformation from OWL to UML.

In UML to OWL transformation, the transformation rules are accompanied with the

verification rules, denoted by (see Section 8.3). As explained in Section 5.3.3, the role

of verification rules is to detect if the semantics of a diagram is not in conflict with the

knowledge included in the domain ontology. The UML to OWL transformation can be

described by (6.2):

82

where is the category of the UML element

(6.2)

Interpretation:

Each element of the UML class diagram is of one category of UML elements

(see Section 2.3).

For each category of UML elements , Section 8.3 defines a set of transformation

rules and a set of verification rules .

In the context of the transformation from UML to OWL, each UML element is

transformed into a set of OWL axioms , providing that the assigned set of

verification rules is checked.

A single verification rule in the context of the transformation from UML to OWL have

the form of either OWL axiom (either standard OWL verification axiom, or pattern of

OWL verification axiom, see Section 5.3.3.3), or verification query (see Section 5.3.3.4).

The set of verification axioms and patterns, denoted by , cannot be found in the

ontology (this is), because if they are found, the selected UML

element is contradictory with the ontology (see Section 5.3.3.1).

Each verification query has the form of predicates, and consists of the SPARQL query

and the expected result. The expected result is compared to the actual result, which is a

result of applying the query to the ontology. If the result of comparison is not equal,

the selected UML element is contradictory with the ontology. In such cases the result

of verification of UML class diagram against the OWL domain ontology is shown as

contradictory.

Analogically, the rules here called checking rules need to accompany the transformation

rules for the purpose of correct OWL to UML transformation.

The checking rules, denoted by , in the context of the transformation from OWL to

UML have only the form of OWL axioms, so-called checking axioms. For each category of

UML elements . The OWL to UML transformation can be can be described by (6.3):

where is the category of the UML element

(6.3)

Interpretation:

For each category of UML elements , this section defines a set of checking rules

 . For many categories of UML elements this set is empty.

In the context of the transformation from OWL to UML, a set of OWL axioms

is transformed into an element of the UML class diagram, providing that the

assigned set of checking axioms is checked.

83

The checking axioms are OWL axioms which cannot be found in the ontology (this is

), because if they are found, the selected UML element cannot be

extracted to the UML class diagram. It is further explained in Table 6.2.

The checking rules are only needed for the categories of UML elements listed in Table 6.2, all

other categories of UML elements do not require checking rules. The full examples of the

direct extraction are presented below Table 6.2.

Table 6.2 The checking rules for extraction of categories of UML elements from OWL domain ontology.

Category of

UML elements
checking rules (CR) Explanation

Class

CR1: Equivalent to VR1 from Table

8.2:

HasKey(:A (OPE1 ... OPEm) (DPE1 ...

DPEn))

The HasKey axiom turned out to be

the most important axiom in the

difference between the definitions of

the transformations of UML Class

(Table 8.2) and UML structured

DataType (Table 8.19). Therefore the

UML Class cannot be derived from

the ontology if it contains the

HasKey axiom specified for the

element.

AssociationClass

CR1: Equivalent to VR1 from Table

8.10:

HasKey(:C (OPE1 ... OPEm) (DPE1 ...

DPEn))

The explanation is analogues as for the

UML Class. The same verification rule

is applicable for the AssociationClass

in the case when the Association is

between two different Classes (

Table 8.10) and is from a UML Class

to itself (Table 8.11).

Generalization

between the

Classes

CR1: Equivalent to VR1 from Table

8.12:

SubClassOf(:B :A)

The explanation is presented in

Section 5.3.3.1.

Generalization

between

Associations

CR1: Equivalent to VR1 from Table

8.13:

SubObjectPropertyOf(:a1 :a2)

SubObjectPropertyOf(:b1 :b2)

The explanation is analogues as for

the Generalization between the

Classes.

84

GeneralizationSet

with {complete,

disjoint}

constraints

CR1: Equivalent to VR1 from

Table 8.15:

SubClassOf(:B :C)

SubClassOf(:C :B)

Following

Table 8.15, the verification rule

checks if the domain ontology

contains SubClassOf axioms

specified for any pair of more

specific Classes in the

Generalization.

GeneralizationSet

with {complete,

overlapping}

constraints

CR1: Equivalent to VR1 from Table

8.17:

DisjointClasses(:B :C)

Following Table 8.17, the verification

rule checks if the domain ontology

contains DisjointClasses axioms

specified for any pair of more

specific Classes in the

Generalization.

The difference between the verification and the checking rules is explained on examples. The

first example (Example 3.3.1.1) explains that checking rules are not needed for all categories

of UML elements. The second example (Example 3.3.1.2) shows situation in which the

checking rules (used in the OWL to UML transformation) and the verification rules (used in

the UML to OWL transformation) are the same.

Example 3.3.1.1: The example of a direct extraction when no checking rules are needed,

based on UML attributes

The first example describes UML class with attributes, see Figure 6.5. This example

illustrates the UML class named Student with two attributes: name (of FullName structure

datatype) and index (of String primitive type).

Figure 6.5 The example attributes of the UML class named Student.

Table 6.3 presents the set of the OWL transformation axioms, in accordance with definitions

from Section 8.3 which can be transformed into the example class from Figure 6.5. Referring

to fig.2, the transformation relates to two categories of UML elements: the class and the

attribute.

Table 6.3 The set of the OWL transformation axioms for the UML elements from Figure 6.5.

ID Transformation axioms

related to the UML class

TA1 Declaration(Class(:Student))

related to the UML attributes

TA2 Declaration(ObjectProperty(:name))

85

TA3 Declaration(DataProperty(:index))

TA4 ObjectPropertyDomain(:name :Student)

TA5 DataPropertyDomain(:index :Student)

TA6 ObjectPropertyRange(:name :FullName)

TA7 DataPropertyRange(:index xsd:string)

Table 6.4 presents the set of the OWL verification axioms (in accordance with Section 8.3).

Table 6.4 The set of the OWL verification axioms for the UML elements from Figure 6.5.

ID Verification axioms

related to the UML class

VA1 HasKey(:Student (OPE1 ... OPEm) (DPE1 ... DPEn))

related to the UML attributes

VA2 ObjectPropertyDomain(:name CE), where CE ≠ :Student

VA3 DataPropertyDomain(:index CE), where CE ≠ :Student

VA4 ObjectPropertyRange(:name CE), where CE ≠ :FullName

VA5 DataPropertyRange(:index DR), where DR ≠ xsd:string

In the context of only the UML class, there is one verification rule VA1. The HasKey axiom

turned out to be the most important axiom in the difference between the definitions of the

transformations of UML Class and UML structured DataType (see Table 8.2 and Table 8.19).

The UML Class cannot be derived from the ontology if it contains the HasKey axiom

specified for the element. Therefore, the checking rule is the same as the verification rule

because in the extraction process it is important to know if the element is indeed the UML

class.

The main focus of this example are UML attributes. In the context of only the UML

attributes, there are four verification rules VA2-VA5 for the UML to OWL transformation:

 two rules VA2-VA3 which check if the ontology defines for the attributes a domain

different that it is defined on the UML class diagram,

 two rules VA4-VA5 which check if the ontology defines for the attributes a range

different that it is defined on the UML class diagram.

There are no checking rules for OWL to UML transformation of UML attribute. From the

perspective of ontology we do not need to check if the ontology defines something differently

that it is defined on the UML class diagram, because there is no diagram yet. Therefore, such

rules are not applicable in the transformation from OWL to UML.

To summarize the above elaboration, Table 6.5 presents all checking axioms for the UML

diagram from Figure 6.5.

Table 6.5 The set of the OWL checking axioms for the UML elements from Figure 6.5.

ID Checking axioms

related to the UML class

CA1 HasKey(:Student (OPE1 ... OPEm) (DPE1 ... DPEn))

related to the UML attributes

 No checking axioms

86

Example 3.3.1.2: The example of the direct extraction when checking rules are needed,

based on UML generalization

The second example describes UML generalization between the classes, see Figure 6.6. This

example illustrates two UML classes − Employee and Manager − with the generalization

relationship between them.

Figure 6.6 The example generalization between UML classes: Employee and Manager.

Table 6.6 presents the set of the OWL transformation axioms, in accordance with definitions

from Section 8.3 which can be transformed into the example class from Figure 6.6.

Table 6.6 The set of the OWL transformation axioms for the UML elements from Figure 6.6.

ID Transformation axioms

related to the UML classes

TA1 Declaration(Class(:Manager))

TA2 Declaration(Class(:Employee))

related to the UML generalization

TA3 SubClassOf(:Manager :Employee)

Table 6.7 presents the set of the OWL verification axioms (in accordance with Section 8.3).

Table 6.7 The set of the OWL verification axioms for the UML elements from Figure 6.6.

ID Verification axioms

related to the UML classes

VA1 HasKey(:Employee (OPE1 ... OPEm) (DPE1 ... DPEn))

VA2 HasKey(:Manager (OPE1 ... OPEm) (DPE1 ... DPEn))

related to the UML generalization

VA3 SubClassOf(:Employee :Manager)

In the context of only the UML class, there are two verification rules VA1-VA2. The

explanation is equivalent as presented in the Example 3.3.1.1.

The main focus of this example is UML generalization. In the context of only the UML

generalization, there is one verification rule VA3 for the UML to OWL transformation:

 the rule that checks if the ontology defines also a reverse relationship for the

generalization.

There is also one (the same) checking rule for OWL to UML transformation of UML

generalization between classes. Before extracting a generalization relationship from the

ontology, it is necessary to check if the ontology also defines a reverse relationship. It is

possible in OWL, and expresses that two class expressions are semantically equivalent one to

another.

87

To summarize, Table 6.8 presents all checking axioms for the UML class diagram from

Figure 6.6.

Table 6.8 The set of the OWL checking axioms for the UML elements from Figure 6.6.

ID Checking axioms

related to the UML class

CA1 HasKey(:Employee (OPE1 ... OPEm) (DPE1 ... DPEn))

CA2 HasKey(:Manager (OPE1 ... OPEm) (DPE1 ... DPEn))

related to the UML generalization

CA3 SubClassOf(:Employee :Manager)

Summary

The checking rules assure that the UML elements are correctly and unambiguously extracted

from the selected OWL domain ontology, and that the extracted diagram is always compliant

with the ontology. The checking rules exclude the possibility to extract the UML elements that

have semantics contradictory to OWL domain ontology.

The checking rules are a subset of verification rules defined in Section 8.3. Many verification

rules are needed in the context of diagram verification, and only a few checking rules are

needed for a proper diagram extraction. The number of checking rules is much smaller. The

checking rules only have the form of standard OWL axioms, while the verification rules have

the form of standard OWL axioms, patterns of OWL axioms, or verification queries.

Additionally, all verification rules which are used to examine the ontology from the

perspective of what is exactly drown on the UML class diagram are not needed. After a

complete review of checking rules listed in Table 6.2 and verification rules from Section 8.3,

it can be stated that for each category of UML elements, the is contained in ,

see (6.4)

 (6.4)

To the best knowledge of the author, the proposition of checking rules for a diagram

extraction, as well as verification rules for diagram verification, has not be yet discussed in

the literature in the context of OWL - UML transformation. The rules appeared to be

important for the sake of correct OWL - UML transformation.

6.3.2. The Extended Extraction

Many categories of UML elements require more than one axiom in the transformation. Not

always all axioms needed for the selected category are included in the ontology. Therefore, it

is worth to consider extracting some additional UML elements which are only partly based on

the selected domain ontology. This is illustrated in Figure 6.7.

88

Figure 6.7 The extended extraction; the OWL-UML transformation should be not contradictory

with the ontology.

In the example in Figure 6.7, the full set of OWL axioms for the selected UML element

consists of three axioms: a2, a5 and a4. The example ontology contains a2 and a5 axioms. In the

extended transformation, a4 axiom is added. The extended transformation allows adding more

than one axiom.

What should be underlined, such considerations are highly justified from the point of view of

real ontologies. This research has analysed a number of real ontologies. The real ontologies

often contain sets of axioms which are directly not translatable into elements of UML class

diagram. Instead, some of such sets of axioms can constitute a premise or suggestion about

the possibility of being translated into specific elements of UML. This is possible despite the

fact that some axioms were missing from the ontology in accordance with definitions for a

selected category of UML elements. The suggestion is to add a missing axiom to the

incomplete set of axioms. In this way, the obtained set is complete and translatable into the

UML element. All in all, the extended transformation from OWL to UML is excessive

because it bases on adding some additional information to UML which is not explicitly

defined in the ontology. In other words, the extracted UML element will be semantically

richer than the domain ontology.

Such extracted UML element is expected to be not contradictory with the ontology, therefore

it requires verification. In many cases, the verification indeed confirms that the verified UML

element is not contradictory with the ontology.

The real OWL domain ontologies are often underspecified. Such transformation, even though

justified from the perspective of the open world assumption in OWL, always makes the UML

class diagram not compliant, and at most not contradictory with the domain ontology

(in accordance with the definitions from Section 5.4).

Table 6.9 presents all cases of the incomplete sets of OWL axioms which constitute a premise

or suggestion about the possibility of being translated into specific UML elements not

contradictory with the ontology. As explained above, such transformation will always require

89

conducting verification. The full examples of the extended extraction are presented below

Table 6.9.

Table 6.9 All cases of the incomplete sets of OWL axioms which constitute a premise

about the possibility of being translated into a specific UML elements.

Category of

UML elements

The possible incomplete sets of OWL axioms which constitutes a premise

about the possibility of being translated into a specific UML elements

Attribute Following Table 8.4, a single attribute is transformed to OWL with the use of

three different transformation rules, always resulting in three transformation

axioms in total.

The first transformation rule from Table 8.4 (TR1) results in a declaration

axiom. If a declaration axiom is missing from the ontology, it can be retrieved

based on the usage of the entities. The normalized domain ontology always

retrieves all declaration axioms despite the fact if they are included in the input

domain ontology. Therefore, if declaration axioms are missing it has no

influence in the two-direction OWL-UML transformation.

The second transformation rule TR2 from Table 8.4 is necessary and without it

one cannot consider the set of axioms as UML attribute.

The third rule TR3 from Table 8.4 if is missing from the ontology, the element

can be transformed to UML as an attribute of the unspecified type.

IMPORTANT: the inverse transformation (from UML to OWL) of the attribute

of the unspecified type is ambiguous because in this case it is unknown if the

UML element should be transformed to OWL as data property or object

property.

Binary

Association

between two

different Classes

Following Table 8.6, a single binary Association between two different Classes

is transformed to OWL with the use of four different transformation rules,

always resulting in seven transformation axioms in total.

The first transformation rule from Table 8.6 (TR1) results in two declaration

axioms. If a declaration axiom is missing from the ontology, it can be retrieved

based on the usage of the entities. The normalized domain ontology always

retrieves all declaration axioms despite the fact if they are included in the input

domain ontology. Therefore, if declaration axioms are missing it has no

influence on the two-direction OWL-UML transformation.

Next transformation axioms resulting from TR2 and TR3 from Table 8.6 are

necessary and without them one cannot consider the set of axioms as UML

binary Association between two different Classes.

The last axiom resulting from TR4 from Table 8.6 if is missing from the

domain ontology can constitute a premise about the possibility of translating the

set of axioms as two binary Associations not one Association. For example:

Please note that such examples of incomplete sets of axioms which can

constitute a premise about the possibility of being translated into an Association

with just one role name pre-defined can be very often found in real OWL

ontologies.

90

Binary

Association from

a Class to itself

Comments related to TR1-TR4 are presented above.

The transformation rule TR5 from

Table 8.7 can be seen as supplementary. Without the two

AsymmetricObjectProperty axioms, the set of axioms can constitute a

premise about the possibility of being translated into a binary Association from

a Class to itself.

Multiplicity of

the Association

ends

The second transformation rule TR2 from

Table 8.9 is needed only in one specific case – if multiplicity of the Association

ends equals 0..1. In this case, both rules TR1 or TR2 (resulting in one axiom

each) make each other more specific, therefore, if the ontology has only one

such axiom, it can constitute a premise about the possibility of being translated

into multiplicity equal 0..1.

In all other cases TR1 is the only rule needed to be specified for transforming

multiplicity of the Association ends.

AssociationClass The transformation axioms resulting from TR1, TR4 and TR5 from Table 8.10

(or Table 8.11 respectively) are necessary and without them one cannot consider

the set of axioms as UML AssociationClass.

The TR2 and TR3 transformation rules from Table 8.10 results in the

declaration axioms. Analogically as explained above, if they are missing in the

domain ontology it has no influence in the two-direction OWL-UML

transformation.

GeneralizationSet

with {complete,

disjoint}

constraints

Difference between the transformation of GeneralizationSet {complete,

overlapping} and GeneralizationSet {complete, disjoint} is related with

DisjointClasses(CE1 .. CEN) axiom (please refer to normalization rules of

DisjointUnion axiom presented in Table 7.1). If ontology defines

EquivalentClasses(:C ObjectUnionOf(CE1 .. CEN)) axiom in accordance

with the definition of GeneralizationSet {complete, overlapping}, and defines

DisjointClasses axiom(s) only partially (for not full list of the specific Classes

of the GeneralizationSet), it constitutes a premise about the possibility of being

translated into Generalization with {complete, disjoint} constraints.

Structured

DataType

The transformation axiom resulting from TR5 from Table 8.19 is crucial and

without it one cannot consider the set of axioms as UML structured DataType.

If the data type has any attributes, the transformation axioms resulting from

TR3 and TR4 from Table 8.19 are also necessary.

The axioms resulting from TR1 and TR2 from Table 8.6 and Table 8.19 are

declaration axioms. If they are missing in the domain ontology it has no

influence in the two-direction OWL-UML transformation.

The Examples 3.3.2.1-3.3.2.2 present the extended transformations. The examples start from

presenting the full set of transformation axioms based on the direct extraction. Next, the

number of axioms is reduced, and the examples present all possible incomplete sets of OWL

axioms which constitute a premise about the possibility of being translated into the selected

UML elements. Such incomplete sets of axioms can be very often found in real OWL

ontologies.

91

Example 3.3.2.1: The example of the extended extraction based on UML Association

The first example describes UML binary association, see Figure 6.8. This example illustrates

the two UML classes with the binary association between them.

Two UML classes with the binary association between them based on the direct extraction

can be transformed to OWL with the use of five different transformation rules, always

resulting in nine transformation axioms in total (see Section 8.3).

Table 6.10 presents the set of the full set of OWL transformation axioms, based on the direct

extraction, which can be transformed into the UML elements from Figure 6.8.

Table 6.10 The full set of the OWL transformation axioms for the UML elements from Figure 6.8

(based on the direct extraction).

ID Transformation axioms

related to the UML classes

A1 Declaration(Class(:Passenger))

A2 Declaration(Class(:Reservation))

related to the UML association

A3 Declaration(ObjectProperty(:isReservationOf))

A4 Declaration(ObjectProperty(:hasReservation))

A5 ObjectPropertyDomain(:hasReservation :Passenger)

A6 ObjectPropertyDomain(:isReservationOf :Reservation)

A7 ObjectPropertyRange(:hasReservation :Reservation)

A8 ObjectPropertyRange(:isReservationOf :Passenger)

A9 InverseObjectProperties(:isReservationOf :hasReservation)

Figure 6.8 The example classes with association between them.

The first two transformation rules result in four declaration axioms A1-A4. If a declaration

axiom is missing from the ontology, it can be retrieved based on the usage of the entities. The

normalized domain ontology always retrieves all declaration axioms despite the fact if they

are included in the input domain ontology. Therefore, even if declaration axioms are missing

in the OWL domain ontology (see Table 6.11), it has no influence on the transformation and

the resulting diagram will be as presented on Figure 6.8 (it will be still a direct extraction).

Table 6.11 The transformation axioms reduced by declaration axioms.

ID Transformation axioms

related to the UML association

A5 ObjectPropertyDomain(:hasReservation :Passenger)

A6 ObjectPropertyDomain(:isReservationOf :Reservation)

A7 ObjectPropertyRange(:hasReservation :Reservation)

A8 ObjectPropertyRange(:isReservationOf :Passenger)

A9 InverseObjectProperties(:isReservationOf :hasReservation)

92

The extended transformation bases on not full set of the transformation axioms. The starting

point is Table 6.11. The meaningful sets in case of UML association are: {A5, A6, A7, A8},

{A5, A6, A7, A9}, {A5, A7, A8, A9}, {A5, A6, A8, A9}, {A6, A7, A8, A9}, {A5, A7, A9},

{A6, A8, A9}, {A5, A7}, {A6, A8}. The below explanation shows selected possible

incomplete sets of OWL axioms which constitute a premise about the possibility of being

translated into a UML association.

The extended extraction is possible if next four transformation axioms A5-A8 are included

but the axiom A9 if is missing from the domain ontology, it constitutes a premise about the

possibility of translating the set of axioms as two binary associations (not one association). It

is presented on Figure 6.9 and Table 6.12.

Figure 6.9 The two binary associations based on the extended extraction.

Table 6.12 The transformation axioms reduced by declaration and inverse object properties axioms.

ID Transformation axioms

related to the UML association

A5 ObjectPropertyDomain(:hasReservation :Passenger)

A6 ObjectPropertyDomain(:isReservationOf :Reservation)

A7 ObjectPropertyRange(:hasReservation :Reservation)

A8 ObjectPropertyRange(:isReservationOf :Passenger)

The extended extraction is also possible if the ontology does not contain axiom A9, and does

not contain either axioms A5 and A7, or A6 and A8, it constitutes a premise about the

possibility of translating the set of axioms as a single binary association presented on

Figure 6.10 and Table 6.13, or Figure 6.11 and Table 6.14 respectively.

Figure 6.10 The two binary associations based on the extended extraction.

Table 6.13 The maximally reduced transformation axioms, resulting in Figure 6.10.

ID Transformation axioms

related to the UML association

A5 ObjectPropertyDomain(:hasReservation :Passenger)

A7 ObjectPropertyRange(:hasReservation :Reservation)

Figure 6.11 The two binary associations based on the extended extraction

93

Table 6.14 The maximally reduced transformation axioms, resulting in Figure 6.11.

ID Transformation axioms

related to the UML association

A6 ObjectPropertyDomain(:isReservationOf :Reservation)

A8 ObjectPropertyRange(:isReservationOf :Passenger)

The axioms A5 and A7 (and respectively axioms A6 and A8) are necessary and without them

one cannot consider the set of axioms as UML binary association.

Please note that examples from Figure 6.10 and Figure 6.11 base only on two OWL axioms

each. It means that at least two axioms (of nine from Table 6.10) are needed to state that the

example describes UML association.

Example 3.3.2.2: The example of the extended extraction based on UML generalization

set with {complete, disjoint} constraints

The second example describes UML generalization set with {complete, disjoint} constraints,

see Figure 6.12. The generalization set with {complete, disjoint} constraints which includes

two specific classes can be transformed to OWL with the use of three different transformation

rules, resulting in six transformation axioms in total (see Section 8.3).

Table 6.15 presents the set of the full set of OWL transformation axioms, based on the direct

extraction, which can be transformed into the UML elements from Figure 6.12.

Table 6.15 The full set of the OWL transformation axioms for the UML elements from Figure 6.12

(based on the direct extraction).

ID Transformation axioms

related to the UML classes

A1 Declaration(Class(:Person))

A2 Declaration(Class(:Man))

A3 Declaration(Class(:Woman))

related to the UML generalization

A4 SubClassOf(:Man :Person)

A5 SubClassOf(:Woman :Person)

related to the UML generalization set

A6 DisjointUnion(:Person :Man :Woman)

Figure 6.12 The example UML generalization set with {complete, disjoint} constraints.

94

Analogically as in the Example 3.3.2.1, the normalization method assures that is the

declaration axioms A1-A3 are missing it has no influence on the transformation. The diagram

resulting from Table 6.16 is Figure 6.12.

Table 6.16 The transformation axioms reduced by declaration axioms.

ID Transformation axioms

related to the UML generalization

A4 SubClassOf(:Man :Person)

A5 SubClassOf(:Woman :Person)

related to the UML generalization set

A6 DisjointUnion(:Person :Man :Woman)

The axioms A4 and A5 are necessary and without them one cannot consider the set of axioms

as UML generalization.

Based on the normalization method (see Table 7.1), the axiom:

A6 DisjointUnion(:Person :Man :Woman)

is equivalent to two axioms:

A6a EquivalentClasses(:Person ObjectUnionOf(:Man :Woman))

A6b DisjointClasses(:Man :Woman)

If an ontology defines A6a axiom instead of A6 axiom, the resulting UML element is

generalization set with {complete, overlapping} instead of {complete, disjoint} constraints, as

explained in Table 6.9.

If the ontology has the transformation axioms according to Table 6.17, it constitutes a premise

of possibility to translate the axioms to the UML diagram from Figure 6.12.

Table 6.17 The maximally reduced transformation axioms, which constitutes a premise of possibility

to translate axioms to UML diagram from Figure 6.12.

ID Transformation axioms

related to the UML generalization

A4 SubClassOf(:Man :Person)

A5 SubClassOf(:Woman :Person)

related to the UML generalization set

A6b DisjointClasses(:Man :Woman)

6.4. Conclusions

This chapter presented a proposition of creating UML class diagrams based on the selected

OWL domain ontology. The two most important steps of the proposed method are: derivation

of UML elements from the ontology, and modification of the extracted diagram. If the

diagram is modified it always requires its verification against the ontology, just in case it

95

contains any elements contradictory with the ontology. The method assures that the extracted

UML class diagram if it is based only on the complete sets of axioms is always compliant

with the normalized OWL domain ontology.

In addition to the refinement of the process of diagram creation, this chapter presented two

original elements of this research. The first one is the proposition of the checking rules which

assure that the OWL-UML transformation is correct with respect to other axioms from the

selected OWL domain ontology. The checking rules are required to be applied before any

UML element is derived from the ontology. The second one is related to allow extracting

some UML elements which are only partly based on the ontology, which is justified from the

point of view of the practical modelling needs and real OWL ontologies.

96

Part III

Details of the Proposed Method of the Creation

and Validation of UML Class Diagrams

Part III: Details of the Proposed Method of

Creation and Validation of UML Class Diagrams

97

98

7. The Method of Normalizing OWL 2 DL Ontologies

Summary. In this chapter a method of normalizing OWL 2 DL ontologies is proposed.

The normalization method introduces rules aimed at refactoring OWL 2 constructs what

enables to present any input OWL 2 ontology in a new but semantically equivalent form.

The need for normalization is motivated by the fact that normalized OWL 2 DL

ontologies have a unified structure of axioms, therefore, they can be easily compared in

an algorithmic way.
25

7.1. Introduction

In this approach it is assumed that the selected OWL 2 DL domain ontology is syntactically

correct, consistent and adequately describes the notions from the needed domain.

It is not obvious or conclusive how to effectively process useful operations on the ontology,

for example, how to compare it with another one. The problem of comparing two ontologies

with the agreed vocabulary was already mentioned in Chapter 5 which describes the method

of semantic validation of UML class diagrams. In the verification step of the method, the

UML class diagram is transformed into an ontology expressed in OWL 2. Next, the two

ontologies − the domain ontology and the ontological representation of the UML diagram −

need to be compared against each other.

The question arises:

How to correctly and automatically find out whether one ontology

is compliant or contradictory concerning another one?

For the purpose of answering the question, such a form of normalization is introduced that

allows for unifying the structure of axioms in the ontologies so that it is possible to

automatically compare them.

The ontology normalization is defined as a process of transforming the input ontology into

the ontology in its refactored form. The process is defined through a group of OWL 2

construct replacements. Section 7.3 presents all replacing and replaced OWL 2 constructs

used in the process of normalizing OWL 2 DL ontologies. The details of the ontology

normalization algorithm are presented in Section 7.6. The normalization method has been

implemented in the tool (described in Chapter 9).

The output ontology obtained as a result of conducting the algorithm is considered as

normalized. Due to the fact that all transformations (of the replaced OWL 2 constructs to the

replacing OWL 2 constructs) preserve semantics, the semantics of the normalized ontology is

the same as the semantics of the input ontology.

25
 Chapter 7 contains the revised and extended version of the paper: "The method of normalizing OWL 2 DL

ontologies" [13].

99

This section presents the details of conducting the transformation of any OWL 2 ontology to

its normalized form. The important fact is that the presented transformations only change the

structure but do not affect the semantics of axioms (or expressions within the axioms) in the

OWL 2 ontology. The proposed transformations will always result is a subset of all possible

OWL 2 constructs (it is explained in Section 7.4).

In the normalization process, the following six groups of transformations of OWL 2

constructs are proposed:

Group I. Extraction of declarations of entities. An OWL declaration associates an entity

with its type. If a declaration axiom for the selected entity is missing from the

ontology, it can be retrieved based on the usage of the entity. In OWL 2, the

declaration axiom can be specified for all types of entities: Class, Datatype,

ObjectProperty, DataProperty, AnnotationProperty and NamedIndividual.

Group II. Removal of duplicates in data ranges, expressions, and axioms. Following [1],

sets written in one of the exchange syntaxes (e.g. XML or RDF/XML) may

contain duplicates. Therefore, duplicates (if applicable) are eliminated from:

(1) axioms (e.g. EquivalentClasses),

(2) data ranges (e.g. DataUnionOf), and

(3) expressions (e.g. DataUnionOf).

Group III. Restructuration of data ranges and expressions. The proposed restructurations are

intended:

(1) to flatten the nested structures of the data ranges and expressions,

(2) to eliminate the weakest cardinality restrictions included in the data ranges or

expressions, and

(3) to refactor the data ranges and expressions which are connected with union,

intersection and complement constructors, based on the rules of the De Morgan's

laws.

Group IV. Removal of syntactic sugar in axioms and expressions. The OWL 2 offers the

so-called syntactic sugar [57] which makes some axioms or expressions easier to

write and read for humans (e.g. DisjointUnion axiom). The removal of syntactic

sugar allows, for example, for much easier comparison of axioms expressing the

same semantics but written with a different syntax, as presented in Section 3.4.

Group V. Restructuration of axioms. Most of OWL 2 axioms which contain several class

expressions can be restructured into several axioms containing only two class

expressions each, e.g. DisjointClasses and EquivalentClasses axioms. It is only

applied for axioms whose order of internal expressions is not important.

Group VI. Removal of duplicated axioms. A correctly specified OWL 2 ontology cannot

contain two identical axioms. However, duplicated axioms may appear as a result

of applying transformations from Group IV and Group V. Therefore, the last step

of the normalization algorithm is to remove all duplicate axioms from the output

ontology.

A correct OWL 2 ontology cannot contain two axioms that are textually equivalent (it has

been explained in Section 3.3). In the normalization method, it is assured through applying

100

the transformations from Group VI. In spite of that, the ontology may have axioms which

contain the same information. For example, it may include the following two axioms:

DisjointUnion(:Child :Boy :Girl)

and

DisjointClasses(:Boy :Girl).

The semantics of DisjointUnion [1] states that Child class is a disjoint union of Boy and Girl

class expressions which are pairwise disjoint. Therefore, the additional information specified

by DisjointClasses can be seen as redundant and will be refactored with the transformation

rules from Group II and Group IV.

The structural specification of OWL 2 [1] defines an abstract class Axiom (see Figure 7.1).

The abstract class Axiom is specialized by the following classes: ClassAxiom (abstract),

ObjectPropertyAxiom (abstract), DataPropertyAxiom (abstract), Declaration,

DatatypeDefinition (abstract), HasKey, Assertion (abstract) and AnnotationAxiom (abstract).

Figure 7.1 The axioms of OWL 2 [1] and the tables which specify the proposed replacement rules.

Declaration [1] axioms specify that entities are part of the vocabulary in ontology and are of a

specific type, e.g. class, datatype, etc. OWL 2 DL ontology must [1] explicitly declare all

datatypes that occur in datatype definition, although in general, it is advisable to declare all

entities for verification of the correctness of the usage of the entity based on its type. In the

normalization method, if a declaration axiom is missing from the ontology, it is automatically

retrieved based on the entity usage (transformation from the Group I). This is applied to all

types of entities but AnnotationProperty, because AnnotationProperty is only used to provide

annotation and has no effect on the semantics.

ClassAxioms are axioms that allow relationships to be established between class expressions.

The replacement rules for ClassAxioms are presented in Section 7.3.1.

101

DataPropertyAxioms [1] and ObjectPropertyAxioms [1] are axioms that can be used to

characterize and establish relationships between data and object property expressions. The

replacement rules for ObjectPropertyAxioms are presented in Section 7.3.2, and for

DataPropertyAxioms in Section 7.3.3.

HasKey [1] axiom states that each named instance of the specified class expression is

uniquely identified by the specified object property and/or data property expressions. It is

useful in querying about individuals which are uniquely identified. The HasKey axiom itself

is defined in the form that does not need to be restructured, but the internal structure of the

axiom is restructured with the use of transformations from Group II, Group III and Group IV

presented in Section 7.3.6 (for class expression) and Section 7.3.7 (for object property

expressions).

Assertion [1] are axioms about individuals that are often also called facts. The replacement

rules for Assertion axioms are presented in Section 7.3.4.

DatatypeDefinition [1] axiom defines a new datatype as being semantically equivalent to a

unary data range. The DatatypeDefinition axiom is defined in the form that does not need to

be restructured. Nonetheless, the data ranges included in other axioms or expressions may

require refactoring (see transformations from Group II and Group III).

AnnotationAxiom [1] axioms do not affect the semantics and are mainly used to improve

readability for humans. Therefore, they are not further restructured in the normalization

process.

Besides axioms, the replacement rules for data ranges are presented in Section 7.3.5, for class

expression in Section 7.3.6 and for object property expressions Section 7.3.7.

To sum up, the process of normalization consists of the following phases:

1. extraction of declarations (Group I),

2. refactorization of expressions and data ranges through applying transformations from

Group II and Group IV, and restructuration of expressions and data ranges through

applying transformations from Group III,

3. refactorization of axioms through applying transformations from Group II, Group IV,

Group V and Group VI.

7.2. Related Works

To the best knowledge of the author, a similar concept of normalization of OWL ontologies

has not yet been proposed. Here, the normalization is aimed at unifying the structure of

axioms in the ontologies allowing for automatic processing of the ontologies. A different

purpose as well as a different kind of ontology normalization has been proposed in [107],

[108] and [109].

In [107], the notion of ontology normalization is suggested to be a pre-processing step that

aligns structural metrics with intended semantic measures. The goal of the article is to present

guidelines for creating ontology metrics allowing assessment of the ontologies and tracking

their subsequent evolution.

102

In [108] and [109], a normalization has been proposed as an aspect of ontology design that

provides support for ontology reuse, maintainability and evolution. In [108] and [109], the

criteria for normalization are focused on engineering issues that make ontologies modular and

understandable for knowledge engineers.

7.3. OWL 2 Construct Replacements

This section presents the details of the normalization through replacing and replaced OWL 2

constructs. The replacing constructs (right columns of the tables) are semantically equivalent

to the replaced constructs (left columns).

Most of the proposed transformations are our original proposals published in [13], and the rest

come from the OWL 2 specification [1]. The origin of each transformation is cited separately

before each table. The tables additionally contain the number of the transformation group

(Groups I-VI). All transformations from Group III are marked with the sub-number (1)-(3)

which defines a concrete type of refactorization within the group (in accordance with the

definitions from Section 7.1).

7.3.1. Class Expression Axioms

The OWL 2 ClassAxiom abstract class is specified by the following concrete classes:

SubClassOf, EquivalentClasses, DisjointClasses and DisjointUnion. In Table 7.1,

transformations of IDs: 3, 6 and 8 are defined in [1], all other transformations are our original

propositions published in [13]. In ID 6, the replacing axioms are semantically equivalent and

are both presented to preserve symmetry.

Table 7.1 Replaced and replacing class expression axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II EquivalentClasses(CE1 ... CEi ... CEj ...

CEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

EquivalentClasses(CE1 ... CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

2 V EquivalentClasses(CE1 ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

EquivalentClasses (CEi CEj)

and i,j {1,N} and i j and N ≥ 2

3 IV EquivalentClasses(CE1 CE2) SubClassOf(CE1 CE2)

SubClassOf(CE2 CE1)

4 II DisjointClasses(CE1 ... CEi ... CEj ... CEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointClasses(CE1 ... CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

5 V DisjointClasses(CE1 ... CEN)

and N ≥ 2

DisjointClasses(CEi CEj)

and i,j {1,N} and i j and N ≥ 2

6 IV DisjointClasses(CE1 CE2) SubClassOf(

 CE1 ObjectComplementOf(CE2))

SubClassOf(

 CE2 ObjectComplementOf(CE1))

7 II DisjointUnion(C CE1 ... CEi ... CEj ...

CEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointUnion(C CE1 ... CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

103

8 IV DisjointUnion(C CE1 ... CEN)

and N ≥ 2

EquivalentClasses(C

 ObjectUnionOf (CE1 ... CEN))

DisjointClasses(CE1 ... CEN)

and N ≥ 2

7.3.2. Object Property Axioms

The OWL 2 ObjectPropertyAxiom abstract class is specified by the following concrete

classes: SubObjectPropertyOf, EquivalentObjectProperties, DisjointObjectProperties,

InverseObjectProperties, ObjectPropertyDomain, ObjectPropertyRange,

ReflexiveObjectProperty, IrreflexiveObjectProperty, FunctionalObjectProperty,

InverseFunctionalObjectProperty, SymmetricObjectProperty, AsymmetricObjectProperty and

TransitiveObjectProperty. In Table 7.2, transformations of IDs: 3 and 6-14 are defined in [1],

all other transformations are our original propositions published in [13]. In ID 6, the replacing

axioms are semantically equivalent and are both presented to preserve symmetry.

Table 7.2 The replaced and replacing object property axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II EquivalentObjectProperties(OPE1 ...

OPEi ... OPEj ... OPEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi =

OPEj

EquivalentObjectProperties(OPE1 ...

OPEi ... OPEN)

and 1 ≤ i ≤ N and N ≥ 2

2 V EquivalentObjectProperties(OPE1 ...

OPEN)

and 1 ≤ i ≤ N and N ≥ 2

EquivalentObjectProperties(OPEi OPEj)

and i,j {1,N} and i j and N ≥ 2

3 IV EquivalentObjectProperties(OPE1 OPE2)

SubObjectPropertyOf(OPE1 OPE2)

SubObjectPropertyOf(OPE2 OPE1)

4 II DisjointObjectProperties(OPE1 ... OPEi ...

OPEj ... OPEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi =

OPEj

DisjointObjectProperties(OPE1 ... OPEi ...

OPEN)

and 1 ≤ i ≤ N and N ≥ 2

5 V DisjointObjectProperties(OPE1 ... OPEN)

and 1 ≤ i ≤ N and N ≥ 2

DisjointObjectProperties(OPEi OPEj)

and i,j {1,N} and i j and N ≥ 2

6 IV InverseObjectProperties(OPE1 OPE2)

EquivalentObjectProperties(OPE1

 ObjectInverseOf(OPE2))

EquivalentObjectProperties(OPE2

 ObjectInverseOf(OPE1))

7 IV ObjectPropertyDomain(OPE CE) SubClassOf(ObjectSomeValuesFrom(

 OPE owl:Thing) CE)

8 IV ObjectPropertyRange(OPE CE) SubClassOf(owl:Thing

 ObjectAllValuesFrom(OPE CE))

9 IV FunctionalObjectProperty(OPE) SubClassOf(owl:Thing

 ObjectMaxCardinality(1 OPE))

10 IV InverseFunctionalObjectProperty(OPE) SubClassOf(

 owl:Thing ObjectMaxCardinality(

 1 ObjectInverseOf(OPE)))

11 IV ReflexiveObjectProperty(OPE) SubClassOf(owl:Thing

 ObjectHasSelf(OPE))

12 IV IrreflexiveObjectProperty(OPE) SubClassOf(ObjectHasSelf(OPE)

 owl:Nothing)

13 IV SymmetricObjectProperty(OPE) SubObjectPropertyOf(OPE

 ObjectInverseOf(OPE))

104

14 IV TransitiveObjectProperty(OPE) SubObjectPropertyOf(

 ObjectPropertyChain(OPE OPE) OPE)

7.3.3. Data Property Axioms

The OWL 2 DataPropertyAxiom abstract class is specified by the following concrete classes:

SubDataPropertyOf, EquivalentDataProperties, DisjointDataProperties,

DataPropertyDomain, DataPropertyRange, and FunctionalDataProperty. In Table 7.3,

transformations of IDs: 3 and 6-8 are defined in [1], the remaining transformations are our

original propositions published in [13].

Table 7.3 The replaced and replacing data properties axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II EquivalentDataProperties(

 DPE1 ... DPEi ... DPEj ... DPEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi =

DPEj

EquivalentDataProperties(

 DPE1 ... DPEi ... DPEN)

and 1 ≤ i ≤ N and N ≥ 2

2 V EquivalentDataProperties(DPE1 ... DPEN

)

and 1 ≤ i ≤ N and N ≥ 2

EquivalentDataProperties(DPEi DPEj)

and i,j {1,N} and i j and N ≥ 2

3 IV EquivalentDataProperties(DPE1 DPE2) SubDataPropertyOf(DPE1 DPE2)

SubDataPropertyOf(DPE2 DPE1)

4 II DisjointDataProperties(

 DPE1 ... DPEi ... DPEj ... DPEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi =

DPEj

DisjointDataProperties(

 DPE1 ... DPEi ... DPEN)

and 1 ≤ i ≤ N and N ≥ 2

5 V DisjointDataProperties(DPE1 ... DPEN)

and 1 ≤ i ≤ N and N ≥ 2

DisjointDataProperties(DPEi DPEj)

and i,j {1,N} and i j and N ≥ 2

6 IV DataPropertyDomain(DPE CE) SubClassOf(DataSomeValuesFrom(

 DPE rdfs:Literal) CE)

7 IV DataPropertyRange(DPE DR) SubClassOf(owl:Thing

 DataAllValuesFrom(DPE DR))

8 IV FunctionalDataProperty(DPE) SubClassOf(owl:Thing

 DataMaxCardinality(1 DPE))

7.3.4. Assertion Axioms

The OWL 2 Assertion abstract class is specified by the following concrete classes:

SameIndividual, DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion,

NegativeObjectPropertyAssertion, DataPropertyAssertion and NegativeDataPropertyAssertion.

In Table 7.4, all transformations are our original propositions published in [13].

Table 7.4 The replaced and replacing assertion axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II SameIndividual(a1 ... ai ... aj ... aN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj

SameIndividual(a1 ... ai ... aN)

and 1 ≤ i ≤ N and N ≥ 2

2 V SameIndividual(a1 ... aN)

and 1 ≤ i ≤ N and N ≥ 2

SameIndividual(ai aj)

and i,j {1,N} and i j and N ≥ 2

3 II DifferentIndividuals(a1 ... ai ... aj ... aN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj

DifferentIndividuals(a1 ... ai ... aN)

and 1 ≤ i ≤ N and N ≥ 2

105

4 V DifferentIndividuals(a1 ... aN)

and 1 ≤ i ≤ N and N ≥ 2

DifferentIndividuals(ai aj)

and i,j {1,N} and i j and N ≥ 2

7.3.5. Data Ranges

The OWL 2 DataRange abstract class is specified by the following concrete classes:

DataComplementOf, DataIntersectionOf, DataUnionOf, DataOneOf, DatatypeRestriction and

Datatype. In Table 7.5, all transformations are our original propositions published in [13].

Table 7.5 The replaced and replacing data ranges.

ID Group Replaced data range Replacing data range(s)

1 III (3) DataComplementOf (

 DataComplementOf(DR))

DR

2 II DataUnionOf(DR1 ... DRi ... DRj ... DRN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi =

DRj

DataUnionOf(DR1 ... DRi ... DRN)

and 1 ≤ i ≤ N and N ≥ 2

3 III (1) DataUnionOf(

 DataUnionOf(DR1 ... DRAi ... DRAN)

 ... DRBj ... DRBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

DataUnionOf(

 DR1 ... DRAi ... DRAN ... DRBj ... DRBM)

)

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

4 II DataIntersectionOf(

 DR1 ... DRi ... DRj ... DRN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi =

DRj

DataIntersectionOf(DR1 ... DRi ... DRN)

and 1 ≤ i ≤ N and N ≥ 2

5 III (1) DataIntersectionOf(

 DataIntersectionOf(DR1 ... DRAi ...

DRAN)

 ... DRBj ... DRBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

DataIntersectionOf(

 DR1 ... DRAi ... DRAN ... DRBj ... DRBM)

)

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

6 III (3) DataIntersectionOf(

 DataComplementOf(DR1)

 ... DataComplementOf(DRN))

and 1 ≤ i ≤ N and N ≥ 2

DataComplementOf(

 DataUnionOf(DR1 ... DRN))

and 1 ≤ i ≤ N and N ≥ 2

7 III (3) DataUnionOf(

 DataComplementOf(DR1)

 ... DataComplementOf(DRN))

and 1 ≤ i ≤ N and N ≥ 2

DataComplementOf(

 DataIntersectionOf(DR1 ... DRN))

and 1 ≤ i ≤ N and N ≥ 2

8 II DataOneOf(lt1 ... lti ltj ... ltN)

and 1 ≤ i ≤ j ≤ N and N ≥ 1 and lti = ltj

DataOneOf(lt1 ... lti ... ltN)

and 1 ≤ i ≤ N and N ≥ 1

7.3.6. Class Expressions

The OWL 2 ClassExpression abstract class is specified by the following concrete classes:

Class, ObjectIntersectionOf, ObjectUnionOf, ObjectComplementOf, ObjectOneOf,

DataHasValue, ObjectSomeValuesFrom, ObjectAllValuesFrom, ObjectHasValue,

ObjectHasSelf, ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality,

DataSomeValuesFrom, DataAllValuesFrom, DataMinCardinality, DataMaxCardinality and

106

DataExactCardinality. In Table 7.6, the transformations of IDs: 9-14 and 19 are defined in

[1], all other transformations are our original propositions published in [13].

Important notice: The two general cases of existential and universal class expressions are

excluded from further considerations:

 DataSomeValuesFrom(DPE1 ... DPEN DR), where N ≥ 2

 and DataAllValuesFrom(DPE1 ... DPEN DR), where N ≥ 2.

The reason is that in both class expressions, the data range DR arity MUST be N (N ≥ 2).

However, the current version of OWL 2 specification [1] does not provide any constructor,

which may be used to define data ranges of arity more than one (see section 7 of [1]). If a

future version of the specification provided such a constructor, one could consider removal of

duplicates and further restructuration of the mentioned class expressions.

Table 7.6 The replaced and replacing class expressions.

ID Group Replaced class expression Replacing class expression(s)

1 III (3) ObjectComplementOf(

 ObjectComplementOf(CE))

CE

2 II ObjectUnionOf(CE1 ... CEi ... CEj ... CEN

)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectUnionOf(CE1 ... CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

3 III (1) ObjectUnionOf(

 ObjectUnionOf(CE1 ... CEAi ... CEAN)

 ... CEBj ... CEBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

ObjectUnionOf(

 CE1 ... CEAi ... CEAN ... CEBj ... CEBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

4 II ObjectIntersectionOf(

 CE1 ... CEi ... CEj ... CEN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectIntersectionOf(CE1 ... CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

5 III (1) ObjectIntersectionOf(

 ObjectIntersectionOf(

 CE1 ... CEAi ... CEAN)

 ... CEBj ... CEBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

ObjectIntersectionOf(

 CE1 ... CEAi ... CEAN ... CEBj ... CEBM))

and 1 ≤ i ≤ N and N ≥ 2

and 1 ≤ j ≤ M and M ≥ 2

6 III (3) ObjectIntersectionOf(

 ObjectComplementOf(CE1)

 ... ObjectComplementOf(CEN))

and 1 ≤ i ≤ N and N ≥ 2

ObjectComplementOf(

 ObjectUnionOf(CE1 ... CEN))

and 1 ≤ i ≤ N and N ≥ 2

7 III (3) ObjectUnionOf(

 ObjectComplementOf(CE1)

 ... ObjectComplementOf(CEN))

and 1 ≤ i ≤ N and N ≥ 2

ObjectComplementOf(

 ObjectIntersectionOf(CE1 ... CEN))

and 1 ≤ i ≤ N and N ≥ 2

8 II ObjectOneOf(a1 ... ai ... aj ... aN)

and 1 ≤ i ≤ j ≤ N and N ≥ 1 and ai = aj

ObjectOneOf(a1 ... ai ... aN)

and 1 ≤ i ≤ N and N ≥ 1

9 IV ObjectSomeValuesFrom(OPE CE) ObjectMinCardinality(1 OPE CE)

10 IV ObjectAllValuesFrom(OPE CE) ObjectMaxCardinality(

 0 OPE ObjectComplementOf(CE))

11 IV ObjectHasValue(OPE a) ObjectSomeValuesFrom(

 OPE ObjectOneOf(a))

12 IV DataSomeValuesFrom(DPE DR) DataMinCardinality(1 DPE DR)

13 IV DataAllValuesFrom(DPE DR) DataMaxCardinality(

 0 DPE DataComplementOf(DR))

107

14 IV DataHasValue(DPE lt) DataSomeValuesFrom(

 DPE DataOneOf(lt))

15 III (2) ObjectUnionOf(

 ObjectMinCardinality(n1 OPE CE)

 ObjectMinCardinality(n2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and n1 ≥ 0 and n2 ≥ 0 and n1 ≤ n2

ObjectUnionOf(

 ObjectMinCardinality(n1 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and n1 ≥ 0

16 III (2) ObjectIntersectionOf(

 ObjectMinCardinality(n1 OPE CE)

 ObjectMinCardinality(n2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and n1 ≥ 0 and n2 ≥ 0 and n1 ≤ n2

ObjectIntersectionOf(

 ObjectMinCardinality(n2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and n2 ≥ 0

17 III (2) ObjectUnionOf(

 ObjectMaxCardinality(m1 OPE CE)

 ObjectMaxCardinality(m2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and m1 ≥ 0 and m2 ≥ 0 and m1 ≤ m2

ObjectUnionOf(

 ObjectMaxCardinality(m2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and m2 ≥ 0

18 III (2) ObjectIntersectionOf(

 ObjectMaxCardinality(m1 OPE CE)

 ObjectMaxCardinality(m2 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and m1 ≥ 0 and m2 ≥ 0 and m1 ≤ m2

ObjectIntersectionOf(

 ObjectMaxCardinality(m1 OPE CE)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

and m1 ≥ 0

19 IV ObjectExactCardinality(n OPE CE)

and n ≥ 0

ObjectIntersectionOf(

 ObjectMinCardinality(n OPE CE)

 ObjectMaxCardinality(n OPE CE))

20 III (2) ObjectUnionOf(

 DataMinCardinality(n1 DPE DR)

 DataMinCardinality(n2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3 and n1 ≤ n2

and n1 ≥ 0 and n2 ≥ 0

ObjectUnionOf(

 DataMinCardinality(n1 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and n1 ≥ 0

21 III (2) ObjectIntersectionOf(

 DataMinCardinality(n1 DPE DR)

 DataMinCardinality(n2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and n1 ≥ 0 and n2 ≥ 0 and n1 ≤ n2

ObjectIntersectionOf(

 DataMinCardinality(n2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2

and n2 ≥ 0

22 III (2) ObjectUnionOf(

 DataMaxCardinality(m1 DPE DR)

 DataMaxCardinality(m2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and m1 ≥ 0 and m2 ≥ 0 and m1 ≤ m2

ObjectUnionOf(

 DataMaxCardinality(m2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and m2 ≥ 0

23 III (2) ObjectIntersectionOf(

 DataMaxCardinality(m1 DPE DR)

 DataMaxCardinality(m2 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 3

and m1 ≥ 0 and m2 ≥ 0 and m1 ≤ m2

ObjectIntersectionOf(

 DataMaxCardinality(m1 DPE DR)

 CEi ... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and m1 ≥ 0

108

24 IV DataExactCardinality(n DPE DR)

and n ≥ 0

ObjectIntersectionOf(

 DataMinCardinality(n DPE DR)

 DataMaxCardinality(n DPE DR))

7.3.7. Object Property Expressions

The OWL 2 ObjectPropertyExpression abstract class is specified by the following concrete

classes: ObjectProperty and InverseObjectProperty. In Table 7.7, the transformation is our

original proposition published in [13].

Table 7.7 The replaced and replacing object property expressions.

ID Group Replaced object property expression Replacing object property expression

1 III (3) ObjectInverseOf(

 ObjectInverseOf (OP))

OP

7.4. Remarks Regarding the Normalization of OWL Ontologies

1. The resulting ontology may contain fewer kinds of axioms and expressions than the input

ontology. The fewer number of axioms facilitates any implementation and it is related to

the goal of the normalization process, i.e. enabling the effective algorithmic processing of

domain ontologies. In particular, the normalized ontology will not contain the below-

mentioned list of axioms and expressions because they are refactored and reduced in

accordance with the presented transformations:

 class axioms: EquivalentClasses, DisjointClasses, DisjointUnion,

 object property axioms: EquivalentObjectProperties, InverseObjectProperties,

ObjectPropertyDomain, ObjectPropertyRange, InverseFunctionalObjectProperty,

FunctionalObjectProperty, ReflexiveObjectProperty, IrreflexiveObjectProperty,

SymmetricObjectProperty, TransitiveObjectProperty,

 data property axioms: EquivalentDataProperties, DataPropertyDomain,

DataPropertyRange, FunctionalDataProperty,

 class expressions: ObjectSomeValuesFrom, ObjectAllValuesFrom, ObjectHasValue,

ObjectExactCardinality, DataSomeValuesFrom, DataAllValuesFrom,

DataHasValue, DataExactCardinality.

2. The sequence of the conducted transformations is not important because the resulting

ontology will always be semantically equivalent. However, depending on the selected

sequence, the resulting ontology may have a different textual form. The possible textual

differences in the output ontology include: (1) the order of axioms in the ontology and (2)

the order of expressions in axioms (only if the order of expressions in the selected axiom

is not important).

3. The method of normalization and the defined transformations are unidirectional. It means

that the inverse transformation from the normalized form is not possible to be

unambiguous but, of course, it is also not necessary. The retrieval of the original ontology

109

from the normalized ontology is not needed in this research, but could be seen as a

limitation of the approach in the general case.

4. It is worth to notice that the normalization process causes the lower readability of the

normalized ontologies for human readers which should not be considered as a limitation

because it was not the goal of the process. This is caused mainly through the

transformations from the Group IV which removes the syntactic sugar from the

ontology.

7.5. Proofs of the Correctness of the OWL 2 Construct Replacements

This section presents selected proofs of correctness of the OWL 2 construct replacements

defined in Section 7.3. The proofs are based on direct model-theoretic semantics [52] for

OWL 2, which is compatible with the description logic SROIQ. Proving equivalence comes

down to the use of the interpretation definition and the rules of set theory. Two replacement

rules were selected for the proofs. All other ones could be proved analogically.

In the proofs the following convention is used:

 VC is a set of classes containing at least the owl:Thing and owl:Nothing classes.

 VOP is a set of object properties containing at least the object properties

owl:topObjectProperty and owl:bottomObjectProperty

 ΔI is a nonempty set called the object domain

 ()
C
 is the class interpretation function that assigns to each class C VC a subset

(C)
C
 ΔI such that (owl:Thing)

C
 = ΔI and (owl:Nothing)

C
 =

 ()
OP

 is the object property interpretation function that assigns to each object property OP

 VOP a subset (OP)
OP

 ΔI × ΔI such that (owl:topObjectProperty)
OP

 = ΔI × ΔI and

(owl:bottomObjectProperty)
OP

 =

 means semantic equivalence of and sets

 means that formula is the semantic consequence of set of formulas

Proof 1: For construct replacements of ID 6 from Table 7.1

It should be proved that the interpretation of

 DisjointClasses(CE1 CE2)

is equivalent to the interpretation of

 SubClassOf(CE1 ObjectComplementOf(CE2))

The interpretation of

 DisjointClasses(CE1 CE2)

is (7.1) [52]:

()
 ()

 (7.1)

110

The interpretation of

 ObjectComplementOf(CE2)

is (7.2) [52]:

 ()
 (7.2)

The interpretation of

 SubClassOf(CE1 CE3)

is (7.3) [52]:

()
 ()

 (7.3)

Based on (7.2) and (7.3) the interpretation of

 SubClassOf(CE1 ObjectComplementOf(CE2))

is (7.4):

()
 ()

 (7.4)

It has to be shown that (7.4) is correct. If (7.4) was false, it would mean that (7.5) is true:

()
 ()

 (7.5)

It means that there exist:

 ()
 ()

 ()
 ()

Then:

 ()
 ()

 ()
 ()

It means that:

 ()
 ()

We have received contradiction, which had to be proved.

Proof 2: for construct replacements of ID 7 from Table 7.6

It should be proved that the interpretation of

 ObjectUnionOf(

 ObjectComplementOf(CE1)

 ...

 ObjectComplementOf(CEN))

111

where 1 ≤ i ≤ N and N ≥ 2 is equivalent to the interpretation of

 ObjectComplementOf(ObjectIntersectionOf(CE1 ... CEN))

where 1 ≤ i ≤ N and N ≥ 2.

The interpretation of

 ObjectUnionOf(CE1 ... CEN)

is (7.6) [52]:

()
 () (7.6)

The interpretation of

 ObjectIntersectionOf(CE1 ... CEn)

is (7.7) [52]:

()
 () (7.7)

De Morgan's law for sets (7.8):

() (7.8)

Based on (7.2) and (7.6), the interpretation of

 ObjectUnionOf(

 ObjectComplementOf(CE1)

 ...

 ObjectComplementOf(CEN))

is (7.9):

(()
) (()) (7.9)

(7.10) is a result of application of (7.8) to (7.9):

 (()
 ()) (7.10)

Based on (7.2) and (7.7) interpretation of

 ObjectComplementOf(ObjectIntersectionOf(CE1 ... CEN))

is (7.11):

 (()
 ()) (7.11)

The equations (7.10) and (7.11) are equal, which had to be proved.

112

7.6. Outline of the Ontology Normalization Algorithm

The following is an outline of the algorithm which transforms the syntactically correct and

consistent OWL 2 DL ontology selected by the user − denoted by OWLONT − into the

normalized ontology. The OWLONT', OWLONT'' and OWLONT''' are intermediate ontologies

required to process the input ontology into the output ontology. In the beginning, OWLONT',

OWLONT'' and OWLONT''' are empty. On completion of the algorithm, the OWLONT'''

represents the normalized ontology.

Algorithm: Outline of the ontology normalization algorithm

Input: Syntactically correct and consistent OWL 2 DL ontology

Output: Normalized OWL 2 DL ontology

BEGIN

STEP I: Extraction of declaration axioms

1. Take the first axiom from OWLONT.

2. Take the first entity from the selected axiom.

3. If the entity is declared, add the declaration axiom to OWLONT'. If the entity is not declared, extract the

declaration axiom for the entity based on its usage and add the new declaration axiom to OWLONT'.

4. Take the next entity from the selected axiom.

5. Repeat steps 3-4 until no more entities in the selected axiom are available.

STEP II: Transformation of expressions and data ranges in axioms as well as in other expressions or

data ranges

6. Apply to the selected axiom all applicable replacement rules defined in Table 7.5, Table 7.6 and Table 7.7,

receiving a modified axiom.

7. Add the modified axiom to OWLONT'.

8. Take the next axiom from OWLONT.

9. Repeat steps 2-8 until no more axioms in OWLONT are available.

STEP III: Transformation of axioms

10. Take the first axiom from OWLONT'.

11. Apply to the axiom all applicable replacement rules defined in Table 7.1, Table 7.2, Table 7.3 and Table 7.4.

12. If transformations result in only one axiom, add the axiom to OWLONT''. Otherwise, if as a result of

transformations the axiom splits into two or more axioms, repeat step 11 for each split axiom

independently.

13. Take the next axiom from OWLONT'.

14. Repeat steps 11-13 until no more axioms in OWLONT' are available.

STEP IV: Additional minor normalization of the internal structure of expressions and data ranges

15. Take the first axiom from OWLONT''.

16. Apply to the selected axiom all applicable replacement rules defined in Table 7.5, Table 7.6 and Table 7.7,

receiving a finally modified axiom.

17. Add the modified axiom to OWLONT'''.

18. Take the next axiom from OWLONT''.

19. Repeat steps 16-18 until no more axioms in OWLONT'' are available.

STEP V: Removal of duplicated axioms.

20. Eliminate any of the duplicated axioms from OWLONT''' ontology.

21. Return the OWLONT''' as a normalized ontology.

END

113

Comments on the outline of the algorithm:

1. It is important to notice that the class expressions are contained in some axioms (e.g.

EquivalentClasses, DisjointClasses, etc.) and in some expressions (e.g.

ObjectAllValuesFrom, ObjectComplementOf, etc.). Also, data ranges are contained in two

axioms (DatatypeDefinition and DataPropertyRange) and in some expressions

(e.g. DataAllValuesFrom, DataMinCardinality, etc.). Therefore, in order to perform

significantly fewer iterations of the normalization algorithm, STEP II which organizes the

internal structure of axioms is conducted before the transformation of axioms (STEP III).

2. STEP IV results from the observation that some axioms after the transformation

(STEP III) require some additional minor normalization of the internal structure. In this

step, the transformation of expressions and data ranges is re-conducted. For example:

ObjectPropertyDomain(OPE CE) axiom is replaced by

SubClassOf(ObjectSomeValuesFrom(OPE owl:Thing) CE) axiom, but

ObjectSomeValuesFrom expression requires the additional normalization.

7.7. The Example of a Normalization of a Single Axiom

The below example presents transformations conducted with the use of the normalization

algorithm on an input ontology which contains just one axiom:

EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(3 :hasLeaf :Leaf) ObjectMaxCardinality(7 :hasLeaf :Leaf)

 ObjectExactCardinality(4 :hasLeaf :Leaf)))

(0)

Steps 1-5 of the algorithm extract declarations of entities:

Declaration(Class (:FourLeafClover)) (1)

Declaration(Class (:Leaf)) (2)

Declaration(ObjectProperty (:hasLeaf)) (3)

Steps 6-9 of the algorithm result in the following transformations:

Rule of ID 19 from Table 7.6 applied on the given axiom (0)

EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(3 :hasLeaf :Leaf) ObjectMaxCardinality(7 :hasLeaf :Leaf)

 ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)

 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(4)

Rule of ID 5 from Table 7.6 applied on (4)

EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(3 :hasLeaf :Leaf) ObjectMaxCardinality(7 :hasLeaf :Leaf)

 ObjectMinCardinality(4 :hasLeaf :Leaf) ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(5)

Rule of ID 20 from Table 7.6 applied on (5)

EquivalentClasses(:FourLeafClover :FourLeafClover

 ObjectIntersectionOf(ObjectMaxCardinality(7 :hasLeaf :Leaf)

 ObjectMinCardinality(4 :hasLeaf :Leaf) ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(6)

114

Rule of ID 23 from Table 7.6 applied on (6)

EquivalentClasses(:FourLeafClover :FourLeafClover

 ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)

 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(7)

Steps 10-14 of the algorithm result in the following transformations:

Rule of ID 1 from Table 7.1 applied on (7)

EquivalentClasses(:FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(4 :hasLeaf :Leaf) ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(8)

Rule of ID 2 from Table 7.1 applied on (8)

SubClassOf(:FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(4 :hasLeaf :Leaf) ObjectMaxCardinality(4 :hasLeaf :Leaf)))

SubClassOf(ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)

 ObjectMaxCardinality(4 :hasLeaf :Leaf)) :FourLeafClover)

(9)

Steps 15-19 of the algorithm make no changes in the transformations.

Steps 20-21 of the algorithm return the normalized ontology:

Declaration(Class (:FourLeafClover)) (1)

Declaration(Class (:Leaf)) (2)

Declaration(ObjectProperty (:hasLeaf)) (3)

SubClassOf(:FourLeafClover ObjectIntersectionOf(

 ObjectMinCardinality(4 :hasLeaf :Leaf) ObjectMaxCardinality(4 :hasLeaf :Leaf)))

SubClassOf(ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)

 ObjectMaxCardinality(4 :hasLeaf :Leaf)) :FourLeafClover)

(9)

7.8. Conclusions

This chapter introduced the concept of ontology normalization as a process of transforming

the input OWL 2 ontology into the output ontology in its refactored form. The process is

defined through OWL 2 construct replacements. Due to the fact that all individual replacing

constructs preserve the semantics of the replaced constructs, the resulting ontology does not

change the semantics of the original ontology. With the use of the presented approach, it is

possible to automate the processing of ontologies because the normalized ontologies have the

unified structure of axioms. The presented algorithm has been implemented in a tool

(described in Chapter 9).

115

116

8. Representation of UML Class Diagrams in OWL 2

Summary. UML class diagrams can be automatically validated if they are compliant with

a domain knowledge specified in a selected OWL 2 domain ontology. The method

requires translation of the UML class diagrams into their OWL 2 representation. The aim

of this chapter is to present transformation and verification rules of UML class diagrams

to their OWL 2 representation. For this purpose, the systematic literature review on the

topic of transformation rules between elements of UML class diagrams and OWL 2

constructs has been conducted and analysed. The purpose of the analysis was to present

the extent to which state-of-the-art transformation rules cover the semantics expressed in

class diagrams. On the basis of the analysis, new transformation rules expressing the

semantics not yet covered but expected from the point of view of domain modelling

pragmatics have been defined. The first result presented in this chapter is the revision and

extension of the transformation rules identified in the literature. The second original result

is a proposition of verification rules necessary to check if a UML class diagram is

compliant with the OWL 2 domain ontology.
26

8.1. Introduction

Chapter 8 is a continuation and extension of Chapter 5 which presented the outline of the

method for semantic validation of UML class diagrams with the use of OWL 2 domain

ontologies. The proposed approach requires a transformation of a UML class diagram

constructed by a modeller into its semantically equivalent OWL 2 representation. In order to

identify which transformation rules of UML class diagrams into OWL constructs have already

been proposed, a systematic review of literature has been performed. The extracted rules have

been analysed, compared and extended. The resulting findings of how to conduct the

transformation of UML class diagram to its OWL 2 representation are described in this

chapter.

Despite the fact that there are many publications which define some UML to OWL 2

transformations, to the best of knowledge of the author, no study has investigated a complete

mapping covering all diagram elements emphasized by pragmatic needs. This chapter seeks to

contribute in this field with a special focus on providing a full transformation of elements of

an UML class diagram which are commonly used in business and conceptual modelling (such

elements are listed in Section 2.3). The presented transformations are limited to static

elements of UML class diagrams − the behavioural aspect represented by class operations is

omitted. This is due to the fact that the semantics of UML operations cannot be effectively

expressed with the use of OWL 2 constructs, which do not represent behaviour.

In the rest of the chapter OWL domain ontology is understood as OWL domain ontology after

normalization. For the purpose of being compliant with the literature and for the potential use

of transformation rules for other purposes, all transformation rules presented in this chapter

26
 Chapter 8 contains the revised and extended version of the paper: "Representation of UML class diagrams in

OWL 2 on the background of domain ontologies" [14].

117

are not normalized. On the other hand, due to the fact that the verification rules are the

original proposition of this research, some verification rules are already defined in the

normalized form in order to reduce the number of unnecessary redundant verifications. The

rest verification rules are also not yet normalized for the purpose of clarity for readers. Please

note that in the verification method, before making comparison of axioms, all transformation

and verification axioms are always normalized. This operation is conducted automatically

with the use of the designed tool implementing the method. The tool is described in Part IV,

the process of normalization is explained in Chapter 7.

In practical use of UML to OWL transformation, the initial phase involving modeller's

attention is required. The modeller has to assure that all class attributes and association end

names in one UML class are uniquely named. Otherwise, the transformation rules may

generate repeating OWL axioms which may lead to inconsistencies or may be semantically

incorrect. This is explained in Requirement 2 for the proposed validation method

(Section 5.2, page 59).

The remainder of this chapter is organized as follows. Section 8.2 describes the process and

the results of the conducted systematic literature review which was focused on identifying the

state-of-the-art transformation rules for translating UML class diagrams into their OWL

representation. The section presents in details the review process including research question

for systematic literature review, data sources and search queries, inclusion and exclusion

criteria, study quality assessment, study selection, threats to validity and summary of the

identified literature. Section 8.3 presents the revised and extended transformation rules and

proposes the verification rules. Section 8.4 summarises the important differences between

OWL 2 and UML languages and their impact on the form of transformation. Section 8.5

illustrates application of transformation and verification rules to example UML class

diagrams. Finally, Section 8.6 concludes the chapter.

8.2. Review Process

Kitchenham and Charters in [99] provide guidelines for performing systematic literature

review (SLR) in software engineering. Following [99], a systematic literature review is a

means of evaluating and interpreting all available research relevant to a particular research

question, and aims at presenting a fair evaluation of a research topic by using a rigorous

methodology. This section describes the carried out review aimed at identifying studies

describing mappings of UML class diagrams to their OWL representations.

8.2.1. Research Question

The research question is:

RQ: "What transformation rules between elements of UML class diagrams and OWL

constructs have already been proposed?"

118

8.2.2. Data Sources and Search Queries

In order to make the process repeatable, the details of our search strategy are documented

below. The search was conducted in the following online databases: IEEE Xplore Digital

Library, Springer Link, ACM Digital Library and Science Direct. These electronic databases

were chosen because they are commonly used for searching literature in the field of Software

Engineering. Additional searches with the same queries were conducted through

ResearchGate and Google scholar in order to discover more relevant publications. These

publication channels were searched to find papers published in all the available years until

May 2018. The earliest primary study actually included was published in 2006.

For conducting the search, the following keywords were selected: "transformation",

"transforming", "mapping", "translation", "OWL", "UML" and "class diagram". The

keywords are alternate words and synonyms for the terms used in the research question,

which aimed to minimize the effect of differences in terminologies. Pilot searches showed

that the above keywords were too general and the results were too broad. Therefore, in order

to obtain more relevant results, the search queries were based on the Boolean AND to join

terms:

 "transformation" AND "OWL" AND "UML"

 "transforming" AND "OWL" AND "UML"

 "mapping" AND "OWL" AND "UML"

 "translation" AND "OWL" AND "UML"

 "transformation" AND "OWL" AND "class diagram"

 "transforming" AND "OWL" AND "class diagram"

 "mapping" AND "OWL" AND "class diagram"

 "translation" AND "OWL" AND "class diagram"

8.2.3. Inclusion and Exclusion Criteria

The main inclusion criterion was that a paper provides some transformation rules between

UML class diagrams and OWL constructs. Additionally, the study had to be written in

English and be fully accessible through the selected online libraries. Additionally, there was a

criterion for excluding a paper from the review results if the study described transformation

rules between other types of UML diagrams to OWL representation or described

transformation rules to other ontological languages.

8.2.4. Study Quality Assessment

The final acceptance of the literature was done by applying the quality criteria. The criteria

were assigned a binary "yes"/"no" answer. In order for a work to be selected, it needed to

provide "yes" answer to both questions from the checklist:

1. Are the transformation rules explicitly defined? For example, a paper could be excluded

if it only reported on a possibility of specifying transformation rules for the selected UML

elements, but such transformations were not provided.

2. Do the proposed transformation rules preserve the semantics of the UML elements? For

example, a paper (or some selected transformation rules within the paper) could be excluded

119

if the proposed rules in the transformation to OWL 2 did not preserve the semantics of the

UML elements.

8.2.5. Study Selection

During the search, the candidate papers for full text reading were identified by evaluating

their titles and abstracts. The literature was included or excluded based on the selection

criteria. The goal was to obtain the literature that answered the research question. The

candidate papers, after eliminating duplicates, were fully read. After positive assessment of

the quality of the literature items, they were added to the results of the systematic literature

review.

Next, if the paper was included, its reference list was additionally scanned in order to identify

potential other relevant papers (backward search). Later, the paper selection has additionally

been extended by forward search related to works citing the included papers. In both

backward search and forward search the papers for full text reading were identified based on

reading title and abstract.

8.2.6. Threats to Validity

The conducted SLR has some threats to its validity, described in categories defined in [110].

Wherever applicable, some mitigating factors corresponding to the identified threats were

applied.

Construct Validity: The specified search queries may not be able to completely cover all

adequate search terms related to the research topic. As a mitigating factor, the alternate words

and synonyms for the terms were used in the research question.

Internal Validity: The identified treats to internal validity relate to search strategy and further

steps of conducting the SLR, such as selection strategy and quality assessment:

1. A threat to validity was caused by lack of assurance that all papers relevant to answering

the research question were actually found. A mitigating factor to this threat was conducting a

search with several search queries and analyzing the references of the primary studies with the

aim of identifying further relevant studies.

2. Another threat was posed by the selected research databases. The threat was reduced by

conducting the search with the use of six different electronic databases.

3. A threat was caused by the fact that one researcher conducted SLR. A mitigating factor to

the search process and the study selection process was that the whole search process was

twice reconducted in April 2018 and May 2018. The additional procedures did not change the

identified studies.

External Validity: External validity concentrates on the generalization of findings derived

from the primary studies. The carried search was aimed at identifying transformation rules of

elements of UML class diagram to their OWL 2 representation. Some transformation rules

could be formulated analogically in some other ontological languages, e.g. DAML+OIL, etc.

Similarly, some transformation rules could be formulated analogically in some modelling

languages or notations different then UML class diagrams, e.g. in Entity Relationship

120

Diagram (ERD), EXPRESS-G graphical notation for information models, etc.

A generalization of findings is out of scope of this research.

Conclusion Validity: The search process was twice reconducted and the obtained results have

not changed. However, non-determinism of some database search engines is a threat to the

reliability of this and any other systematic review because the literature collected through

non-deterministic search engines might not be repeatable by other researchers with exactly the

same results. In particular it applies to the results obtained with the use of Google scholar and

ResearchGate.

8.2.7. Search Results

In total, the systematic literature review identified 18 studies. 15 literature positions were

found during the search: [19], [20], [50], [51], [73], [74], [77], [95], [111], [112], [113], [114],

[115], [116], [117]. Additional 3 studies were obtained through the analysis of the references

of the identified studies (the backward search): [76], [96], [118].

The forward search has not resulted in any paper included. The majority of papers had already

been examined during the main search and had already been either previously included or

excluded. In the forward search, three papers describing transformation rules have been

excluded because they were not related to UML. Most other papers have been excluded

because they have not described transformation rules. Two papers have been excluded

because the transformation rules were only mentioned but not defined. A relatively large

number (approximately 20%) of articles has been excluded based on the language criterion –

they had not been written in English (the examples of the observed repetitive languages:

Russian, French, Turkish, Chinese, and Spanish). Additionally, 30 studies were excluded

based on the quality assessment exclusion criterion.

The results of the search with respect to data sources are as follows (data source number

of selected studies): ResearchGate 6; Springer Link 3; IEEE Xplore Digital Library 2;

Google Scholar 2; ACM Digital Library 1; Science Direct 1. In order to eliminate

duplicates that were found in more than one electronic database, the place where a paper was

first found was recorded.

To summarize, the identified studies include: 3 book chapters, 8 papers published in journals,

5 papers published in the proceedings of conferences, 1 paper published in the proceedings of

a workshop and 1 technical report. The identified primary studies were published in the years

between 2006-2016 (see Table 8.1). What can be observed is that the topic has been gaining

greater attention since 2008. It should not be a surprise because OWL became a formal W3C

recommendation in 2004.

Table 8.1 Search results versus years of publication.

Year of

publication

Resulting papers

2006 [115]

2008 [96], [111], [112], [113]

2009 [50]

2010 [77]

121

2012 [20], [51], [74], [114], [117]

2013 [95], [116], [118]

2014 [76]

2015 [19]

2016 [73]

8.2.8. Summary of the Identified Literature

Most of the identified studies described just a few commonly used diagram elements

(i.e. UML class, binary association and generalization between the classes or associations)

while some other diagram elements obtained less attention in the literature (i.e. multiplicity of

attributes, n-ary association or generalization sets). For some class diagram elements the

literature offers incomplete transformations. Some of the transformation rules defined in the

selected papers are excluded from the findings based on the quality criteria defined in

Section 8.2.4. The state-of-the-art transformation rules were revised and extended.

Section 8.3 contains detailed references to the literature related to relevant transformations.

The following is a short description of the included studies:

The paper [19] transforms into OWL some selected elements of UML models containing

multiple UML class, object and statechart diagrams in order to analyze consistency of the

models. A similar approach is presented in [95], which is focused on detecting inconsistency

in models containing UML class and statechart diagrams.

The work presented in [73], [74], [76] investigate the differences and similarities between

UML and OWL in order to present transformations of selected (and identified as useful)

elements of UML class diagram. In [76], the need for UML-OWL transformation is

additionally motivated by not repeating the modelling independently in both languages.

In [111], a possible translation of few selected elements of several UML diagrams to OWL is

presented. The paper takes into account a set of UML diagrams: use case, package, class,

object, timing, sequence, interaction overview and component. The behavioural elements in

UML diagrams in [111] are proposed to be translated to OWL with annotations.

The work of [77] focuses on representing UML and MOF-like metamodels with the use of

OWL 2 language. The approach includes proposition of transforming Classes and Properties.

The paper [96] compares OWL abstract syntax elements to the equivalent UML features and

appropriate OCL statements. The analysis is conducted in the direction from OWL to UML.

For every OWL construct its UML interpretation is proposed.

The article [51] describes transformation rules for UML data types and class stereotypes

selected from UML profile defined in ISO 19103. A full transformation for three stereotypes

is proposed. The article describes also some additional OWL-UML mappings. The focus of

[118] is narrowed to transformation of data types only.

Some works are focused on UML-OWL transformations against the single application

domain. The paper [113] depicts the applicability of OWL and UML in the modelling of

disaster management processes. In [112], transportation data models are outlined and the

122

translation of UML model into its OWL representation is conducted for the purpose of

reasoning.

The works presented in [20], [50], [115] are focused on extracting ontological knowledge

from UML class diagrams and describe some UML-OWL mappings with the aim to reuse the

existing UML models and stream the building of OWL domain ontologies. The paper [20]

from 2012 extends and enhances the conference paper [50] from 2009. Both papers were

analysed during the process of collecting the data in case of detection of any significant

differences in the description of transformation rules.

In [114], UML classes are translated into OWL. Finally, [116] and [117] present a few

transformations of class diagram elements to OWL.

8.3. Representation of Elements of the UML Class Diagram in OWL 2

This section presents transformation rules (TR) which seek to transform the elements of UML

class diagrams to their equivalent representations expressed in OWL 2 (for more information

about TR please refer to Section 5.3.2). Some of the transformation rules come from the

literature identified in the review (e.g. TR1 in Table 8.2). Another group of rules have their

archetypes in the state-of-the-art transformation rules but the author has refined them in order to

clarify their contexts of use (e.g. TRA, TRC in Section 8.4), or extend their application to a

broader scope (e.g. TR1 in Table 8.5). The remaining transformation rules are new propositions

(e.g. TR5 in Table 8.7).

In contrast to the approaches available in the literature, together with the transformation rules

the verification rules (VR) are defined for all elements of a UML class diagram wherever

applicable. The need for specifying verification rules implies from the need to check the

compliance of the OWL representation of UML class diagram with the OWL domain

ontology. The role of verification rules is to detect if the semantics of a diagram is not in

conflict with the knowledge included in the domain ontology, as explained in Section 5.3.3.

All the static elements of UML class diagrams, which are important from the point of view of

pragmatics (see Section 2.3) were considered. To summarize the results, most of the

categories of the UML elements which are recommended (e.g. [2], [26]) for business or

conceptual modelling with UML class diagrams are fully transformable to OWL 2 constructs:

 Class (Table 8.2),

 attributes of the Class (Table 8.4),

 multiplicity of the attributes (Table 8.5),

 binary Association – both between two different Classes (Table 8.6) as well as from a

Class to itself (Table 8.7),

 multiplicity of the Association ends (Table 8.9),

 Generalization between Classes (Table 8.12)

 Integer, Boolean and UnlimitedNatural primitive types (Table 8.18),

 structured DataType (Table 8.19),

 Enumeration (Table 8.20),

 Comments to the Class (Table 8.21).

123

Additionally the following UML elements which have not been identified among

recommended for business or conceptual modelling but can be used in further stages of

software development were fully translated into OWL 2:

 Generalization between Associations (Table 8.13)

 GeneralizationSet with constraints (Table 8.14, Table 8.15, Table 8.16 and Table 8.17),

 AssociationClass (Table 8.10 and Table 8.11).

The UML and OWL languages have different expressing power. This research considers also

the partial transformation which is possible for:

 String and Real primitive types because they have only similar but not equivalent to

OWL 2 types (Table 8.18),

 aggregation and composition can be transformed only as simple associations

(Table 8.6 and Table 8.7)

 n-ary Association − OWL 2 offers only binary relations, a pattern to mitigate the

problem of transforming n-ary Association is presented (Table 8.8),

 AbstractClass − OWL 2 does not offer any axiom for specifying that a class must not

contain any individuals. Although, it is impossible to confirm that the UML abstract

class is correctly defined with respect to the OWL 2 domain ontology, it can be

detected if it is not (Table 8.3).

The tables in Sections 8.3.1-8.3.5 present for each category of UML element its drawing,

short description, transformation rules, verification rules, explanations or comments,

limitations of the transformations (if any), works related for the transformation rules and

example instance of the category. Additionally, some tables include references to Section 8.5,

where some more complex examples of UML-OWL transformations are presented. For a

better clarity, the tables follow the following convention:

 The elements of UML meta-model, UML model, and OWL entities or literals named

in the UML model are written with the use of italic font.

 The OWL 2 constructs (axioms, expressions and datatypes) and SPARQL queries are

written in bold.

Additionally, every verification rule is explicitly marked as:

 (axiom) standing for standard OWL verification axiom (see Section 5.3.3.3, point A1),

 (pattern) standing for pattern of OWL verification axiom (see Section 5.3.3.3, point A2) or

 (query) standing for verification query (see Section 5.3.3.4).

8.3.1. Transformation of UML Classes with Attributes

Table 8.2 The transformation and verification rules for the category of UML Class.

Category of

UML element
Class

Drawing of the

category

In UML, a Class [9] is purposed to specify

a classification of objects.

Transformation

rule

TR1: Specify declaration axiom for UML Class as OWL Class:

 Declaration(Class(:A))

124

Verification

rule

VR1 (pattern): Check if given Class (here: A) has HasKey axiom defined in the

domain ontology:

 HasKey(:A (OPE1 ... OPEm) (DPE1 ... DPEn))

Comments to VR1: If the ontology contains the axiom of this form, it means that

A is not the UML Class but the structured DataType. The OWL HasKey axiom

assures [1], [119] that if two named instances of a class expression contain the

same values of all object and data property expressions, then these two instances

are the same. This axiom is in contradiction with the semantics of UML class

because UML specification allows for creating different objects with exactly the

same properties.

Related works
TR1 axiom has been proposed as a transformation of UML class in [19], [20],

[50], [51], [73], [74], [77], [95], [96], [111], [112], [113], [114], [115], [117].

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(Class(:Student))

Verification axioms:

VR1:

 HasKey(:Student

 (OPE1 ... OPEm) (DPE1 ... DPEn))

Additional examples:

 Section 8.5 Example 1, 2 and 3

Table 8.3 The transformation and verification rules for the category of UML abstract Class.

Category of

UML element
Abstract Class

Drawing of the

category

In UML, an abstract Class [9] cannot have

any instances and only its subclasses can

be instantiated.

Transformation

rules

Not possible. The UML abstract classes cannot be translated into OWL because

OWL does not offer any axiom for specifying that a class must not contain any

individuals.

Verification

rule

VR1 (query) : Check if domain ontology contains any individual specified for the

Class denoted as abstract:

 SELECT (COUNT (DISTINCT ?ind) as ?count)

 WHERE { ?ind rdf:type :A }

Expected result: If the verified Class does not have any individual specified in

the ontology, the query returns zero:

 "0"^^<http://www.w3.org/2001/XMLSchema#integer>.

Comments to VR1: OWL follows the Open World Assumption [1], therefore,

even if the ontology does not contain any instances for a specific class, it is

unknown whether the class has any instances. I cannot be confirmed that the UML

abstract class is correctly defined with respect to the OWL domain ontology, but it

can detected if it is not (VR1 checks if the class specified as abstract in the UML

class diagram is indeed abstract in the domain ontology).

125

Related works

In [51], [74], [76], UML abstract class is stated as not transformable into OWL.

In [51], [74], it is proposed that DisjointUnion is used as an axiom which covers

some semantics of UML abstract class. However, UML specification does not

require an abstract class to be a union of disjoint classes, and the DisjointUnion

axiom does not prohibit creating members of the abstract superclass, therefore, it

is insufficient.

Example

instance

of the category

Verification query:

VR1:

 SELECT (COUNT (DISTINCT ?ind)

 as ?count)

 WHERE { ?ind rdf:type :BankAccount }

Table 8.4 The transformation and verification rules for the category of UML attribute.

Category of

UML element
Attribute

Drawing of the

category

The UML attributes [9] are Properties that are

owned by a Classifier, e.g. Class.

For transformation of UML PrimitiveTypes refer

to Table 8.18 and UML structure DataTypes to

Table 8.19.

Comments to

the

transformation

Both UML attributes and associations are represented by one meta-model

element – Property. OWL also allows one to define properties. The

transformation of UML attribute to OWL data property or OWL object property

bases on its type. If the type of the attribute is PrimitiveType it should be

transformed into OWL DataProperty. If the type of the attribute is a structured

DataType, it should be transformed into an OWL ObjectProperty.

Transformation

rules

TR1: Specify declaration axiom(s) for attribute(s) as OWL data or object

properties:

 Declaration(DataProperty(:a)), if T is of PrimitiveType

 Declaration(ObjectProperty(:a)), if T is of structure DataType

TR2: Specify data (or object) property domains for attribute(s):

 DataPropertyDomain(:a :A), if T is of PrimitiveType

 ObjectPropertyDomain(:a :A), if T is of structure DataType

TR3: Specify data (or object) property ranges for attribute(s):

 DataPropertyRange(:a :T), if T is of PrimitiveType

 ObjectPropertyRange(:a :T), if T is of structure DataType

Verification

rules

VR1 (pattern): Check if the domain ontology contains ObjectPropertyDomain

(or DataPropertyDomain) axiom specified for given OPE (or DPE) (here:

attribute a) where CE is specified for a different than given UML Class

(here: class A):

 DataPropertyDomain(:a CE), where CE ≠ :A and T is of PrimitiveType

 ObjectPropertyDomain(:a CE),

 where CE ≠ :A and T is of structure DataType

126

Comments to VR1: The rule checks whether or not the object properties (or

respectively data properties) indicate that the UML attributes are specified for the

given UML Class.

VR2 (pattern): Check if domain ontology contains ObjectPropertyRange (or

DataPropertyRange) axiom specified for given OPE (or DPE) (here: attribute

a) where CE (or DR) is specified for a different than given UML structure

DataType (or UML PrimitiveType) (here: type T):

 DataPropertyRange(:a DR), where DR ≠ T and T is of PrimitiveType

 ObjectPropertyRange(:a CE), where CE ≠ T and T is of structure

DataType

Comments to VR2: The rule checks whether or not the object properties (or

respectively data properties) indicate that the UML attributes of the specified

UML Class have specified given types, either PrimitiveTypes or structured

DataTypes.

Related works
TR1-TR3 are proposed in [51], [73], [74], [112]. In [19], [20], [50], [95], [111],

[113], [114], [115], [116], all UML attributes are translated into data properties

only.

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(ObjectProperty(:name))

 Declaration(DataProperty(:index))

 Declaration(DataProperty(:year))

 Declaration(ObjectProperty(:faculty))

TR2:

 ObjectPropertyDomain(:name :Student)

 DataPropertyDomain(:index :Student)

 DataPropertyDomain(:year :Student)

 ObjectPropertyDomain(:faculty :Student)

TR3:

 ObjectPropertyRange(:name :FullName)

 DataPropertyRange(:index xsd:string)

 DataPropertyRange(:year xsd:integer)

 ObjectPropertyRange(:faculty :Faculty)

Verification axioms:

VR1:

 ObjectPropertyDomain(:name CE),

 where CE ≠ :Student

 DataPropertyDomain(:index CE),

 where CE ≠ :Student

 DataPropertyDomain(:year CE),

 where CE ≠ :Student

 ObjectPropertyDomain(:faculty CE),

 where CE ≠ :Student

VR2:

 ObjectPropertyRange(:faculty CE),

 where CE ≠ :Faculty

 DataPropertyRange(:index DR),

 where DR ≠ xsd:string

 DataPropertyRange(:year DR),

 where DR ≠ xsd:integer

 ObjectPropertyRange(:name CE),

 where CE ≠ :FullName

Additional examples:

 Section 8.5 Example 2 and 3

127

Table 8.5 The transformation and verification rules for the category of UML multiplicity of attribute.

Category of

UML element
Multiplicity of attribute

Drawing of the

category

In [9], multiplicity bounds of

MultiplicityElement are specified in the

form of <lower-bound> '..' <upper-

bound>. The lower-bound is of a non-

negative Integer type and the upper-bound

is of an UnlimitedNatural type.

Comments to

the

transformation

The strictly compliant specification of UML in version 2.5 defines only a single

value range for MultiplicityElement. However, in practical examples it is

sometimes useful not limit oneself to a single interval. Therefore, the below

UML to OWL mapping covers a wider case − a possibility of specifying more

value ranges for a multiplicity element. Nevertheless, if the reader would like to

strictly follow the current UML specification, the particular single lower..upper

bound interval is therein also comprised.

In comparison to UML, the specification of OWL [1] defines three class

expressions: ObjectMinCardinality, ObjectMaxCardinality and

ObjectExactCardinality for specifying the individuals that are connected by an

object property to at least, at most or exactly to a given number (non-negative

integer) of instances of the specified class expression. Analogically,

DataMinCardinality, DataMaxCardinality and DataExactCardinality class

expressions are used for data properties.

It should be noted that upper-bound of UML MultiplicityElement can be

specified as unlimited: "*". In OWL, cardinality expressions serve to restrict the

number of individuals that are connected by an object property expression to a

given number of instances of a specified class expression [1]. Therefore, the

UML unlimited upper-bound does not add any information to OWL ontology,

hence it is not transformed.

Transformation

rule

TR1: If UML attribute is specified with the use of OWL ObjectProperty, its

multiplicity should be specified analogously to TR1 from

Table 8.9 (multiplicity of association ends). If UML attribute is specified with the

use of OWL DataProperty, its multiplicity should be specified with the use of

the axiom:

 SubClassOf(:A multiplicityExpression)

 The multiplicityExpression is defined as one of class expressions: 1, 2, 3 or 4:

1. a DataExactCardinality class expression if UML MultiplicityElement has

lower-bound equal to its upper-bound (e.g. "1..1", which is semantically

equivalent to "1"):

 SubClassOf(:A DataExactCardinality(m1 :a1 :T1))

2. a DataMinCardinality class expression if UML MultiplicityElement has

lower-bound of Integer type and upper-bound of unlimited upper-bound

(e.g. "2..*"):

SubClassOf(:A DataMinCardinality(m2 :a2 :T2))

3. an ObjectIntersectionOf class expression consisting of

DataMinCardinality and DataMaxCardinality class expressions if UML

MultiplicityElement has lower-bound of Integer type and upper-bound of

128

Integer type (e.g. "4..6"):

SubClassOf(:A ObjectIntersectionOf(

 DataMinCardinality(m31 :a3 :T3)

 DataMaxCardinality(m32 :a3 :T3)))

4. an ObjectUnionOf class expression consisting of a combination of

ObjectIntersectionOf class expressions (if needed) or

DataExactCardinality class expressions (if needed) or one

DataMinCardinality class expression (if the last range has unlimited

upper-bound), if UML MultiplicityElement has more value ranges specified

(e.g. "2, 4..6, 8..9, 15..*").

SubClassOf(:A ObjectUnionOf(ObjectIntersectionOf(

 DataMinCardinality(m41 :a4 :T4)

 DataMaxCardinality(m42 :a4 :T4))

 ObjectIntersectionOf(DataMinCardinality(m43 :a4 :T4)

 DataMaxCardinality(m44 :a4 :T4))

 DataExactCardinality(m45 :a4 :T4)))

Comments to TR1: The rule relies on the SubClassOf(CE1 CE2) axiom, which

restricts CE1 to necessarily inherit all the characteristics of CE2, but not the other

way around. The difference of using EquivalentClasses(CE1 CE2) axiom is

that the relationship is implied to go in both directions (and the reasoner would

infer in both directions).

Verification

rule(s)

VR1 (query): Regardless of whether or not the UML attribute is specified with the

use of OWL DataProperty or ObjectProperty, the verification rule is defined

with the use of SPARQL query (only applicable for multiplicities with maximal

upper-bound not equal "*").

 SELECT ?vioInd (count (?range) as ?n)

 WHERE { ?vioInd :attr ?range } GROUP BY ?vioInd

 HAVING (?n > maxUpperBoundValue)

where :attr is attribute and maxUpperBoundValue is a maximal upper-bound

value of the multiplicity range.

Expected result: Value 0. If the query returns a number greater than 0, it means

that UML multiplicity is in contradiction with the domain ontology (?vioInd lists

individuals that cause the violation).

Comments to VR1: As motivated in [74], reasoners that base on Open World

Assumption can detect a violation of an upper limit of the cardinality restrictions

only. This is caused by the fact that in Open World Assumption it is assumed that

there might be other individuals beyond those that are already presented in the

ontology. The verification rules for the cardinality expressions are defined with

the use of SPARQL queries, which are aimed to verify whether or not the domain

ontology does have any individuals that are contradictory to TR1 axiom.

Therefore, the VR1 verifies the existence of individuals that are connected to the

selected object property a number of times that is greater than the specified UML

multiplicity.

VR2 (pattern): Check if domain ontology contains SubClassOf axiom, which

specifies CE with different multiplicity of attributes than it is derived from the

UML class diagram:

 SubClassOf(:A CE),

 where CE ≠ derived multiplicity of the diagram element

129

Comments to VR2: The rule verifies if the ontology contains any axiom which

describes multiplicity of the attribute different than one specified in the UML

class diagram.

Related works

TR1 is proposed in this research as an important extension of other literature

propositions. The related works present partial solutions for multiplicity of

attributes. In [76], a solution for a single value interval is proposed. In [74],

multiplicity associated with class attributes is transformed to a single expression

of exact, maximum or minimum cardinality. In [116], multiplicity is transformed

only into maximum or minimum cardinality.

Example

instance

of the category

Transformation axioms:

TR1:

 SubClassOf(:ScrumTeam

 ObjectExactCardinality(

 1 :scrumMaster :Employee))

 SubClassOf(:ScrumTeam

 ObjectIntersectionOf(

 ObjectMinCardinality(

 3 :developer :Employee)

 ObjectMaxCardinality(

 9 :developer :Employee)))

Additional examples:

 Section 8.5 Example 2

Verification axioms:

VR1:

maxUpperBoundValue for scrumMaster: 1

SPARQL query for scrumMaster:

 SELECT ?vioInd (count (?range) as ?n)
 WHERE { ?vioInd :scrumMaster ?range }

 GROUP BY ?vioInd

 HAVING (?n > 1)

maxUpperBoundValue for developer: 9

SPARQL query for developer:

 SELECT ?vioInd (count (?range) as ?n)

 WHERE { ?vioInd :developer ?range }

 GROUP BY ?vioInd HAVING (?n > 9)

VR2:

SubClassOf(:ScrumTeam CE),

where CE ≠ derived multiplicity of diagram

element

8.3.2. Transformation of UML Associations

Table 8.6 The transformation and verification rules for the category of UML binary Association

between different Classes.

Category of

UML element
Binary Association (between two different Classes)

Drawing of the

category

Following [9], a binary Association

specifies a semantic relationship between

two memberEnds represented by Properties.

For transformation of UML multiplicity of

the association ends, refer to Table 8.9.

Comments to

the

transformation

Please note that in accordance with UML specification [9], the association end

names are not obligatory. For that reason, in the method of verification the same

convention is followed which is adopted for all metamodel diagrams throughout

the specification ([2], page 61):

"If an association end is unlabeled, the default name for that end is the name of

the class to which the end is attached, modified such that the first letter is a

lowercase letter.".

130

Due to the fact that the proposed method of verification additionally requires the

unique names of all association ends in one diagram, the modeller has to assure

renaming names in such case (see Requirement 2 in Section 5.2)

Transformation

rules

TR1: Specify declaration axiom(s) for object properties:

 Declaration(ObjectProperty(:a))

 Declaration(ObjectProperty(:b))

TR2: Specify object property domains for association ends (if the association

contains an AssociationClass, the domains should be transformed following TR1

from Table 8.10)

 ObjectPropertyDomain(:a :B)

 ObjectPropertyDomain(:b :A)

TR3: Specify object property ranges for association ends:

 ObjectPropertyRange(:a :A)

 ObjectPropertyRange(:b :B)

TR4: Specify InverseObjectProperties axiom for the association:

 InverseObjectProperties(:a :b)

Comments to TR4: The rule states that both resulting object properties are part of

one UML Association.

Verification

rules

VR1 (axiom): Check if AsymetricObjectProperty axiom is specified for any of

UML association ends:

 AsymmetricObjectProperty(:a)

 AsymmetricObjectProperty(:b)

Comments to VR1: A binary Association between two different Classes is not

asymmetric.

VR2 (pattern): Check if the domain ontology contains ObjectPropertyDomain

specified for the same OPE but different CE than it is derived from the UML

class diagram.

 ObjectPropertyDomain(:b CE), where CE ≠ :A

 ObjectPropertyDomain(:a CE), where CE ≠ :B

Comments to VR2: If the domain ontology contains ObjectPropertyDomain

specified for the same OPE but different CE than it is derived from the UML

class diagram, the Association is defined in the ontology but between different

Classes.

VR3 (pattern): Check if the domain ontology contains ObjectPropertyRange

axiom specified for the given OPE but different CE than it is derived from the

UML class diagram.

 ObjectPropertyRange(:a CE), where CE ≠ :A

 ObjectPropertyRange(:b CE), where CE ≠ :B

Comments to VR3: If the domain ontology contains ObjectPropertyRange

axiom specified for the given OPE but different CE than it is derived from the

UML class diagram, the Association is defined in the ontology but between

different Classes.

131

Limitations of

the mapping

1. UML Association has two important aspects. The first is related to its

existence and it can be transformed to OWL. It should be noted that UML

introduces an additional notation related to communication between objects. The

second one concerns navigability of the association ends which is untranslatable

because OWL does not offer any equivalent concept.

2. Both UML aggregation and composition can be only transformed to OWL as

regular Associations. This approach loses the specific semantics related to the

composition or aggregation, which is untranslatable to OWL.

Related works

TR1-TR3 rules for the transformation of UML binary association to object

property domain and range are proposed in [19], [51], [73], [74], [95], [96],

[111], [112], [113], [114], [117].

TR4 rule is proposed in [51], [73], [77].

Moreover, in [51], [74], a unidirectional association is transformed into one

object property and a bi-directional association into two object properties (one

for each direction). This interpretation does not seem to be sufficient because if

an association end is not navigable, in UML 2.5, access from the other end may

be possible but might not be efficient ([9], page 198).

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(ObjectProperty(:team))

 Declaration(ObjectProperty(:goalie))

TR2:

 ObjectPropertyDomain(:team :Player)

 ObjectPropertyDomain(:goalie :Team)

TR3:

 ObjectPropertyRange(:team :Team)

 ObjectPropertyRange(:goalie :Player)

TR4:

 InverseObjectProperties(:team :goalie)

Verification axioms:

VR1:

 AsymmetricObjectProperty(:goalie)

 AsymmetricObjectProperty(:team)

VR2:

 ObjectPropertyDomain(:team CE),

 where CE ≠ :Player

 ObjectPropertyDomain(:goalie CE),

 where CE ≠ :Team

VR3:

ObjectPropertyRange(:team CE),

 where CE ≠ :Team

ObjectPropertyRange(:goalie CE),

 where CE ≠ :Player

Additional examples:

 Section 8.5 Example 1 and 3

Table 8.7 The transformation and verification rules for the category of UML binary Association

 from the Class to itself.

Category of

UML element
Binary Association from a Class to itself

Drawing of the

category

A binary Association [9] contains two

memberEnds represented by Properties.

For transformation of multiplicity of the

association ends, refer to Table 8.9.

Transformation

rules

TR1-TR4: The same as TR1-TR4 from Table 8.6.

Comments to TR2-TR3: In the rules, domain and range is the same UML class for

binary association.

132

TR5: Specify AsymetricObjectProperty axiom for each UML association end

 AsymmetricObjectProperty(:a1)

 AsymmetricObjectProperty(:a2)

Comments to TR5: In the rule, the object property OPE is defined as asymmetric.

The AsymmetricObjectProperty axioms states that if an individual x is

connected by OPE to an individual y, then y cannot be connected by OPE to x.

Verification

rules

VR1 is the same as VR2 from Table 8.6.

VR2 is the same as VR3 from Table 8.6.

Limitations of

the mapping
The same as presented in Table 8.6.

Related works

For TR1-TR4 related works are analogous as in Table 8.6.

TR5 is a new proposition of this research.

In [73], the UML binary association from the Class to itself is converted to OWL

with the use of two ReflexiveObjectProperty axioms. The author of this

research does not share this approach because a specific association may be

reflexive but in the general case it is not true. The ReflexiveObjectProperty

axiom states that each individual is connected by OPE to itself. In consequence,

it would mean that every object of the class should be connected to itself. The

UML binary Association has a different meaning where the association ends have

different roles.

Example

instance

of the category

Transformation axioms:

TR1-TR4: analogical to the example TR1-

TR4 in Table 8.6.

TR5:

 AsymmetricObjectProperty(:isPartOf)

 AsymmetricObjectProperty(:isDividedInto)

Verification axioms:

VR1-VR2: analogical to the example

VR2-VR3 in Table 8.6.

Additional example:

 Section 8.5 Example 2

Table 8.8 The transformation and verification rules for the category of UML n-ary Association.

Category of

UML element
N-ary Association

Drawing of the

category

UML n-ary Association [9] specifies the

relationship between three or more

memberEnds represented by Properties.

For transformation of UML multiplicity of

the association ends refer to Table 8.9.

Comments to

the

transformation

It is not possible to directly represent UML n-ary associations in OWL 2.

The following is a partial transformation based on the pattern presented in [120]. The

pattern requires creating a new class N and n new properties to represent the n-ary

association. The figure below shows the corresponding classes and properties.

133

Transformation

rules

TR1: Specify declaration axiom for the new class which represent the n-ary

association (declaration axioms for other classes are transformed in accordance

with Table 8.2):

 Declaration(Class(:N))

TR2: Specify declaration axiom(s) for n (here: 3) new object properties:

 Declaration(ObjectProperty(:a))

 Declaration(ObjectProperty(:b))

 Declaration(ObjectProperty(:c))

TR3: Specify object property domains for n (here: 3) new object properties:

 ObjectPropertyDomain(:a :A)

 ObjectPropertyDomain(:b :B)

 ObjectPropertyDomain(:c :C)

TR4: Specify object property ranges for n (here: 3) new object properties:

 ObjectPropertyRange(:a :N)

 ObjectPropertyRange(:b :N)

 ObjectPropertyRange(:c :N)

TR5: Specify SubClassOf(CE1 ObjectSomeValuesFrom(OPE CE2)) axioms,

where CE1 is a newly added class (here :N), OPE are properties representing the

UML Association (here :a, :b, :c) and CE2 are corresponding UML Classes (here

:A, :B, :C):

 SubClassOf(N ObjectSomeValuesFrom(:a :A))

 SubClassOf(N ObjectSomeValuesFrom(:b :B))

 SubClassOf(N ObjectSomeValuesFrom(:c :C))

Verification

rules
None

Limitations of

the mapping

It should be emphasized that the presented transformation rules apply only to one

simplified diagram. This research does not exclude other ideas for the future. In

particular the future versions of OWL (e.g. OWL 3) might allow creating n-ary

properties. Currently, properties in OWL 2 are only binary relations. Three

solutions to represent an n-ary relation in OWL are presented in W3C Working

Group Note [120] in a form of ontology patterns. Among the proposed solutions

for n-ary association, the author selected one the most appropriate to UML and

supplemented it by adding unlimited "*" multiplicity at every association end of

the UML n-ary association.

Related works

The TR1, TR2 and TR5 transformation rules for a n-ary association base on the

pattern proposed in [120].

TR3 and TR4 are proposed in this research to complement the rules of the selected

pattern, analogically as it is in binary associations.

134

In [73], a partial transformation for n-ary association is proposed, but one rule

should be modified because an object property expression is used in the place of

a class expression.

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(Class(:Schedule))

TR2:

 Declaration(ObjectProperty(:student))

 Declaration(ObjectProperty(:course))

 Declaration(ObjectProperty(:lecturer))

TR3:

 ObjectPropertyDomain(:student :Student)

 ObjectPropertyDomain(:course :Course)

 ObjectPropertyDomain(:lecturer :Lecturer)

TR4:

 ObjectPropertyRange(:student :Schedule)

 ObjectPropertyRange(:course :Schedule)

 ObjectPropertyRange(:lecturer :Schedule)

TR5:

 SubClassOf(:Schedule

 ObjectSomeValuesFrom(:student :Student))

 SubClassOf(:Schedule

 ObjectSomeValuesFrom(:course :Course))

 SubClassOf(:Schedule

 ObjectSomeValuesFrom(

 :lecturer :Lecturer))

Table 8.9 The transformation and verification rules for the category of UML multiplicity of Association end.

Category of

UML element
Multiplicity of Association ends

Drawing of the

category

Description of multiplicity is

presented in Table 8.5 (multiplicity

of attributes).

If no multiplicity of association end

is defined, the UML specification

implies a multiplicity of 1.

Transformation

rules

TR1: For each association end with the multiplicity different than "*" specify

axiom:

 SubClassOf(:A multiplicityExpression)

 We define multiplicityExpression as one of class expressions: 1, 2, 3 or 4:

1. an ObjectExactCardinality class expression if UML MultiplicityElement

has lower-bound equal to its upper-bound (e.g. "1..1", which is semantically

equivalent to "1"):

 SubClassOf(:B ObjectExactCardinality(m1 :a :A))

2. an ObjectMinCardinality class expression if UML MultiplicityElement has

lower-bound of Integer type and upper-bound of unlimited upper-bound

 (e.g. "2..*").

 SubClassOf(:A ObjectMinCardinality(m2 :b :B))

3. an ObjectIntersectionOf consisting of ObjectMinCardinality and

ObjectMaxCardinality class expressions if UML MultiplicityElement has

lower-bound of Integer type and upper-bound of Integer type (e.g. "4..6"):

135

 SubClassOf(:D ObjectIntersectionOf(

 ObjectMinCardinality(m3 :c :C)

 ObjectMaxCardinality(m4 :c :C)))

4. an ObjectUnionOf consisting of a combination of ObjectIntersectionOf

class expressions (if needed) or ObjectExactCardinality class expressions

(if needed) or one ObjectMinCardinality class expression (if the last range

has an unlimited upper-bound), if UML MultiplicityElement has more value

ranges specified (e.g. "2, 4..6, 8..9, 15..*"):

 SubClassOf(:C ObjectUnionOf(ObjectExactCardinality(m5 :d :D)

 ObjectIntersectionOf(

 ObjectMinCardinality(m6 :d :D)

 ObjectMaxCardinality(m7 :d :D))))

TR2: Specify FunctionalObjectProperty axiom if a multiplicity of the association

end equals 0..1.

 FunctionalObjectProperty(:a), if m1 = 0..1

Comments to TR2: The FunctionalObjectProperty axiom states that each

individual can have at most one outgoing connection of the specified object

property expression.

Verification

rules

VR1 (query): The rule is defined with the use of the SPARQL query (only

applicable for multiplicities with maximal upper-bound not equal "*").

 SELECT ?vioInd (count (?range) as ?n)

 WHERE { ?vioInd :assocEnd ?range } GROUP BY ?vioInd

 HAVING (?n > maxUpperBoundValue)

where :assocEnd is association end and maxUpperBoundValue is a maximal

upper-bound value of the multiplicity range.

Expected result: Value 0. If the query returns a number greater than 0, it means

that UML multiplicity is in contradiction with the domain ontology (?vioInd lists

individuals that cause the violation).

VR2 (pattern): Check if the domain ontology contains SubClassOf axiom,

which specifies CE with different multiplicity of association ends than is derived

from the UML class diagram.

 SubClassOf(:A CE),

 where CE ≠ derived multiplicity of the diagram element

 SubClassOf(:B CE),

 where CE ≠ derived multiplicity of the diagram element

Comments to VR2:.The rule verifies whether or not the ontology contains

axioms which describe multiplicity of association ends different than multiplicity

from the diagram.

Additional comments to verification rules: The author has considered one

additional verification rule for checking if the domain ontology contains

FunctionalObjectProperty axiom specified for the association end which

multiplicity is different then 0..1:

 FunctionalObjectProperty(:b),

 where multiplicity of :b is different then 0..1

However, after analyzing of this rule, it would never be triggered. This is caused

by the fact that the violation of cardinality is checked by TR1 rule.

136

Related works

TR1 is proposed in this research as an important extension of other literature

propositions. The related works present partial solutions for multiplicity of

association ends. In [19], [77], [95], [111], the multiplicity of an association end

is mapped to SubClassOf axiom containing a single ObjectMinCardinality or

ObjectMaxCardinality class expression. In [74], ObjectExactCardinality

expression is also considered and TR2 rule is additionally proposed. In [20],

[50], [73], [113], [114], [116], multiplicity is only suggested to be transformed

into OWL cardinality restrictions.

Example

instance

of the category

Transformation axioms:

TR1:

 SubClassOf(:Leaf

 ObjectExactCardinality(

 1 :flower :Flower))

 SubClassOf(:Flower ObjectUnionOf(

 ObjectExactCardinality(2 :leaf :Leaf)

 ObjectIntersectionOf(

 ObjectMinCardinality(4 :leaf :Leaf)

 ObjectMaxCardinality(6 :leaf :Leaf))))

Additional examples:

 Section 8.5 Example 1, 2 and 3

Verification axioms and queries:

VR1:

maxUpperBoundValue for flower: 1

SPARQL query for flower:

 SELECT ?vioInd (count (?range)

 as ?n)
 WHERE { ?vioInd :flower ?range }

 GROUP BY ?vioInd

 HAVING (?n > 1)

maxUpperBoundValue for leaf: 6

SPARQL query for leaf:

 SELECT ?vioInd (count (?range)

 as ?n)

 WHERE { ?vioInd :leaf ?range }

 GROUP BY ?vioInd

 HAVING (?n > 6)

VR2:

 SubClassOf(:Leaf CE),

 where CE ≠ derived multiplicity of

 the diagram element

 SubClassOf(:Flower CE),

 where CE ≠ derived multiplicity of the

 diagram element

Table 8.10 The transformation and verification rules for the category of UML AssociationClass

(the Association is between two different Classes).

Category of

UML element
AssociationClass (the Association is between two different Classes)

Drawing of the

category

AssociationClass [9] is both an

Association and a Class, and

preserves the semantics of both.

Table 8.11 presents AssociationClass

in the case when association is from a

UML Class to itself.

Transformation

rules

The binary association between A and B UML classes should be transformed to

OWL in accordance with the transformations TR1, TR3-TR4 from Table 8.6.

The object property ranges should be specified in accordance with TR2 from

Table 8.6. The transformation of object property domains between A and B UML

classes should be transformed with TR1 rule below. Transformation of

multiplicity of the association ends are specified in Table 8.9. The attributes of the

137

UML association class :C should be specified in accordance with the

transformation rules presented in Table 8.4. If multiplicity of attributes is specified,

it should be transformed in accordance with the guidelines from Table 8.5.

TR1: Specify object property domains for Association ends

 ObjectPropertyDomain(:a ObjectUnionOf(:B :C))

 ObjectPropertyDomain(:b ObjectUnionOf(:A :C))

TR2: Specify declaration axiom for UML association class as OWL Class:

 Declaration(Class(:C))

TR3: Specify declaration axiom for object property of UML AssociationClass

 Declaration(ObjectProperty(:c))

TR4: Specify object property domain for UML AssociationClass

 ObjectPropertyDomain(:c ObjectUnionOf(:A :B))

TR5: Specify object property range for UML association class

 ObjectPropertyRange(:c :C)

Verification

rules

VR1 (pattern): Check if :C class has the HasKey axiom defined in the domain

ontology.

 HasKey(:C (OPE1 ... OPEm) (DPE1 ... DPEn))

Comment to VR1: Explanation of VR1 is analogous to VR1 from Table 8.2.

VR2 (pattern): Check if the domain ontology contains ObjectPropertyDomain

axiom specified for a given OPE (from Association ends and AssociationClass)

but different CE than is derived from the UML class diagram.

 ObjectPropertyDomain(:a CE), where CE ≠ ObjectUnionOf(:B :C)

 ObjectPropertyDomain(:b CE), where CE ≠ ObjectUnionOf(:A :C)

 ObjectPropertyDomain(:c CE), where CE ≠ ObjectUnionOf(:A :B)

Comments to VR2: VR2 checks if the UML Association and AssociationClass is

specified correctly with respect to the domain ontology.

VR3 (pattern): Check if the domain ontology contains ObjectPropertyRange

axiom specified for the same object property of UML association class but

different CE than it is derived from the UML class diagram.

 ObjectPropertyRange(:c CE), where CE ≠ :C

Comments to VR3: VR3 checks if the domain ontology does not specify a

different range for the AssociationClass.

Comments to

the rules

1. The proposed transformation of UML association class covers both the

semantics of the UML class (TR1-TR2, plus the transformation of attributes

possibly with multiplicity), as well as UML Association (TR3-TR5, plus the

transformation of multiplicity of Association ends).

2. Regarding TR1 and TR4: The domain of the specified property is restricted

to those individuals that belong to the union of two classes.

Related works
TR1, TR3-TR5 transformation rules of the UML association class to OWL are

the original propositions of this research. The proposed transformations to OWL

cover full semantics of the UML AssociationClass.

138

The [73], [111], [117] present only partial solutions for transforming UML

association classes. In [111], it is only suggested that UML AssociationClass be

transformed with the use of the named class (here: C) and two functional

properties that demonstrate associations (here: C-A and C-B). In [73], [117] some

rules are with an unclear notation, more precisely AssociationClass is

transformed to OWL with the use of TR2 rule and a set of mappings which base

on a specific naming convention.

Example

instance

of the category

Transformation axioms:

TR1:

 ObjectPropertyDomain(:person

 ObjectUnionOf(:Company :Job))

 ObjectPropertyDomain(:company

 ObjectUnionOf(:Person :Job))

TR2:

 Declaration(Class(:Job))

TR3:

 Declaration(ObjectProperty(:job))

TR4:

 ObjectPropertyDomain(:job

 ObjectUnionOf(:Person :Company))

TR5:

 ObjectPropertyRange(:job :Job)

Verification axioms:

VR1:

 HasKey(:Job (OPE1 ... OPEm) (DPE1 ...

 DPEn))

VR2:

 ObjectPropertyDomain(:person CE),

 where CE

 ≠ ObjectUnionOf(:Company :Job)

 ObjectPropertyDomain(:company CE),

 where CE

 ≠ ObjectUnionOf(:Person :Job)

 ObjectPropertyDomain(:job CE), where

 CE ≠ ObjectUnionOf(:Person :Company)

VR3:

 ObjectPropertyRange(:job CE),

 where CE ≠ :Job

Additional example:

 Section 8.5 Example 3

Table 8.11 The transformation and verification rules for the category of UML AssociationClass

(the Association is from a UML Class to itself).

Category of

UML element
AssociationClass (the Association is from a UML Class to itself)

Drawing of the

category

AssociationClass [9] is both an

Association and a Class, and preserves the

semantics of both.

Table 8.10 presents AssociationClass in

the case when association is between two

different classes.

Transformation

rules

All comments presented in in Table 8.10 in TR section are applicable also for

AssociationClass where association is from a UML Class to itself. Additionally,

TR5 from Table 8.7 has to be specified.

Transformation rules TR1, TR2, TR3 and TR5 are the same as TR1, TR2, TR3

and TR5 from in Table 8.10. Except for TR4, which has form:

TR4: Specify object property domain for UML AssociationClass

 ObjectPropertyDomain(:c :A)

139

Verification

rules

VR1 and VR3: The same as VR1 and VR3 from in Table 8.10.

VR2 (pattern): Check if the domain ontology contains ObjectPropertyDomain

axiom specified for a given OPE (from Association ends and AssociationClass)

but different CE than is derived from the UML class diagram.

 ObjectPropertyDomain(:a1 CE), where CE ≠ ObjectUnionOf(:A :C)

 ObjectPropertyDomain(:a2 CE), where CE ≠ ObjectUnionOf(:A :C)

 ObjectPropertyDomain(:c CE), where CE ≠ :C

Related works The same as presented in Table 8.10.

Example

instance

of the category

Transformation axioms:

TR1, TR2, TR3 and TR5: analogical

to the example TR1, TR2, TR3 and

TR5 in in Table 8.10.

TR4:

 ObjectPropertyDomain(

 :employment :Job)

Verification axioms:

VR1 and VR3: analogical to the

example VR1 and VR3 in Table 8.10.

VR2:

 ObjectPropertyDomain(:boss CE),

where

 CE ≠ ObjectUnionOf(:Job

:Employment),

 ObjectPropertyDomain(:worker CE

), where CE ≠ ObjectUnionOf(

 :Job :Employment)

 ObjectPropertyDomain(:employment

CE),

 where CE ≠ :Job

8.3.3. Transformation of UML Generalization Relationship

Table 8.12 The transformation and verification rules for the category of UML Generalization between Classes.

Category of

UML element
Generalization between the Classes

27

Drawing of the

category

Generalization [9] defines specialization

relationship between Classifiers. In case of

UML Classes it relates a more specific Class

to a more general Class.

27
 In the article introducing the concept of verification rules [12], some additional verification rules were

proposed for Generalization between Classes and Associations. This is because the rules were before

normalization.

A) Verification rules for Generalization between Classes [12]:

1) SubClassOf(:B :A) 2) EquivalentClasses(:A :B)

Due to the fact that the domain ontology is normalized the rule: 2) can be reduced and only the rule: 1) remains

for checking. Explanation: equation of ID 3 from Table 7.1 in Section 7.3.1.

B) Verification rules for Generalization between the Associations [12]:

1) SubObjectPropertyOf(:a1 :a2) 2) SubObjectPropertyOf(:b1 :b2)

3) EquivalentObjectProperties(:a1 :a2) 4) EquivalentObjectProperties(:b1 :b2)

Due to the fact that the domain ontology is normalized the rules: 3) and 4) can be reduced and only the rules: 1)

and 2) remain for checking. Explanation: equation of ID 3 from Table 7.2 in Section 7.3.2.

140

Transformation

rule

TR1: Specify SubClassOf(CE1 CE2) axiom for the generalization between

UML Classes, where CE1 represents a more specific and CE2 a more general

UML Class.

 SubClassOf(:A :B)

Verification

rule

VR1 (axiom): Check if the domain ontology contains SubClassOf(CE2 CE1)

axiom specified for classes, which take part in the generalization relationship,

where CE1 represents a more specific and CE2 a more general UML Class.

 SubClassOf(:B :A)

Related works
TR1 has been proposed in [19], [73], [74], [76], [77], [95], [96], [113], [114],

[115], [117]. In [20], [50], generalizations are only suggested to be transformed

to OWL with the use of SubClassOf axiom.

Example

instance

of the category

Transformation axiom:

TR1:

SubClassOf(:Manager :Employee)

Verification axiom:

VR1:

SubClassOf(:Employee :Manager)

Additional examples:

 Section 8.5 Example 1 and 2.

Table 8.13 The transformation and verification rules for the category of UML Generalization

between Associations.

Category of

UML element
Generalization between the Associations

Drawing of the

category

Generalization [9] defines specialization

relationship between Classifiers. In case

of the UML Associations it relates a more

specific Association to more general

Association.

Transformation

rule

TR1: Specify two SubObjectPropertyOf(OPE1 OPE2) axioms for the

generalization between UML Association, where OPE1 represents a more

specific and OPE2 a more general association end connected to the same UML

Class.

 SubObjectPropertyOf(:a2 :a1)

 SubObjectPropertyOf(:b2 :b1)

Verification

rule

VR1 (axiom): Check if the domain ontology contains SubObjectPropertyOf(

OPE2 OPE1) axiom specified for associations, which take part in the

generalization relationship, where OPE1 represents a more specific and OPE2 a

more general UML Association end connected to the same UML Class.

 SubObjectPropertyOf(:a1 :a2)

 SubObjectPropertyOf(:b1 :b2)

Related works

In [19], [73], [74], [76], [77], [96], TR1 rule is proposed additionally with two

InverseObjectProperties axioms (one for each association). This table does not

add a transformation rule for InverseObjectProperties axioms because the

axioms were already added while transforming binary associations (see Table 8.6

and Table 8.7).

141

Example

instance

of the category

Transformation axioms:

TR1:

SubObjectPropertyOf(:manages :works)

SubObjectPropertyOf(:boss :employee)

Verification axioms:

VR1:

SubObjectPropertyOf(:works

:manages)

SubObjectPropertyOf(:employee

:boss)

Additional example:

 Section 8.5 Example 1

 Table 8.14 The transformation and verification rules for the category of {incomplete, disjoint}

UML GeneralizationSet.

Category of

UML element
GeneralizationSet with {incomplete, disjoint} constraints

Drawing of the

category

UML GeneralizationSet [9] groups

generalizations; incomplete and disjoint

constraints indicate that the set is not

complete and its specific Classes have no

common instances.

Transformation

rule

TR1: Specify DisjointClasses axiom for every pair of more specific Classes in

the Generalization.

 DisjointClasses(:B :C)

Comments to TR1: DisjointClasses(CE1 CE2) axiom states that no individual

can be at the same time an instance of both CE1 and CE2 for CE1 ≠ CE2.

Verification

rule

VR1 (axiom): Check if the domain ontology contains any of SubClassOf(CE1

CE2) or SubClassOf(CE2 CE1) axioms specified for any pair of more specific

Classes in the Generalization.

 SubClassOf(:B :C)

 SubClassOf(:C :B)

Related works TR1 rule has been proposed in [73], [74], [76].

Example

instance

of the category

Transformation axiom:

TR1:

 DisjointClasses(:Dog :Cat)

Verification axioms:

VR1:

 SubClassOf(:Dog :Cat)

 SubClassOf(:Cat :Dog)

142

Table 8.15 The transformation and verification rules for the category of {complete, disjoint}

UML GeneralizationSet.

Category of

UML element
GeneralizationSet with {complete, disjoint} constraints

Drawing of the

category

UML GeneralizationSet [9] is used to

group generalizations; complete and

disjoint constraints indicate that the

generalization set is complete and its

specific Classes have no common

instances.

Transformation

rule

TR1: Specify DisjointUnion axiom for UML Classes within the

GeneralizationSet.

 DisjointUnion(:A :B :C)

Verification

rules

VR1 (axiom): Check if the domain ontology contains SubClassOf(CE1 CE2) or

SubClassOf(CE2 CE1) axioms specified for any pair of more specific Classes in

the Generalization.

 SubClassOf(:B :C)

 SubClassOf(:C :B)

VR2 (pattern): Check if the domain ontology contains DisjointUnion(C CE1 ..

CEN) axiom specified for the given more general UML Class and at least one

more specific UML Class different than those specified on the UML class

diagram.

 DisjointUnion(:A CE1 .. CEN)

Related works TR1 has been proposed in [73], [74], [76].

Example

instance

of the category

Transformation axiom:

TR1:

 DisjointUnion(:Person :Man :Woman)

Verification axioms:

VR1:

 SubClassOf(:Man :Woman)

 SubClassOf(:Woman :Man)

VR2:

 DisjointUnion(:Person CE1 .. CEN)

Additional example:

 Section 8.5 Example 2

143

Table 8.16 The transformation and verification rules for the category of {incomplete, overlapping}

UML GeneralizationSet.

Category of

UML element
GeneralizationSet with {incomplete, overlapping} constraints

Drawing of the

category

UML GeneralizationSet [9] is used to

group generalizations; incomplete and

overlapping constraints indicate that the

generalization set is not complete and its

specific Classes do share common

instances. If no constraints of

GeneralizationSet are specified,

incomplete, overlapping are assigned as

default values ([9] p.119).

Transformation

rules

None

Explanation: OWL follows Open World Assumption and by default incomplete

knowledge is assumed, hence the UML incomplete and overlapping constraints

of GeneralizationSet do not add any new knowledge to the ontology, so no TR

are specified.

Verification

rule

VR1 (axiom): Check if the domain ontology contains DisjointClasses(CE1 CE2)

axiom specified for any pair of more specific Classes in the Generalization.

 DisjointClasses(:B :C)

Comments to VR1: UML overlapping constraint states that specific UML

Classes in the Generalization do share common instances. Therefore, the

DisjointClasses axiom is a verification rule VR1 for the constraint (the axiom

assures that no individual can be at the same time an instance of both classes).

Related works None

Example

instance

of the category

Verification axiom:

VR1:

 DisjointClasses(

 :ActionMovie :HorrorMovie)

Table 8.17 The transformation and verification rules for the category of {complete, overlapping}

UML GeneralizationSet.

Category of

UML element
GeneralizationSet with {complete, overlapping} constraints

Drawing of the

category

UML GeneralizationSet [9] is used to

group generalizations; complete and

overlapping constraints indicate that the

generalization set is complete and its

specific Classes do share common

instances.

144

Transformation

rule

TR1: Specify EquivalentClasses axiom for UML Classes within the

GeneralizationSet.

 EquivalentClasses(:A ObjectUnionOf(:B :C))

Verification

rules

VR1 (axiom): Check if the domain ontology contains DisjointClasses(CE1 CE2)

axiom specified for any pair of more specific Classes in the Generalization.

 DisjointClasses(:B :C)

VR2 (pattern): Check if the domain ontology contains EquivalentClasses

axiom specified for the given more general UML Class and ObjectUnionOf

containing at least one UML Class different than specified on the UML class

diagram for the more specific classes.

 EquivalentClasses(:A ObjectUnionOf(CE1 .. CEN)),

 where ObjectUnionOf(CE1 .. CEN) ≠ ObjectUnionOf(:B :C)

Related works
In [73], TR1 rule is defined with additional DisjointClasses(:Dog :Cat) axiom.

However, the DisjointClasses axiom should not be specified for the UML

Classes which may share common instances.

Example

instance

of the category

Transformation axiom:

TR1:

 EquivalentClasses(:User

 ObjectUnionOf(
 :Root :RegularUser))

Verification axioms:

VR1:

 DisjointClasses(:Root :RegularUser)

VR2:

 EquivalentClasses(:User

 ObjectUnionOf(CE1 .. CEN)),

 where ObjectUnionOf(CE1 .. CEN)

 ≠ ObjectUnionOf(:Root :RegularUser)

8.3.4. Transformation of UML Data Types

Table 8.18 The transformation and verification rules for the category of UML PrimitiveType.

Category of

UML element
PrimitiveType

Description of

the category

The UML PrimitiveType [9] defines a predefined DataType without any

substructure. The UML specification [9] predefines five primitive types: String,

Integer, Boolean, UnlimitedNatural and Real.

Comments to

the

transformation

The UML specification [9] on page 717 defines the semantics of five predefined

PrimitiveTypes. The specification of OWL 2 [1] also offers predefined datatypes

(many more than UML).

It is impossible to define unambiguously the transformation of UML String and

UML Real type, therefore, the decision on the final transformation is left to the

modeller. The proposed transformations for the two types base on their similarity

in UML 2.5 and OWL 2 languages.

145

Transformation

rules

The transformation between UML predefined primitive types and OWL 2 datatypes:

UML String PrimitiveType

Drawing of the

category:

TR1: UML String has only a similar OWL 2 type: xsd:string

Comments to TR1: String types in the sense of UML and OWL are countable

sets. It is possible to define an infinite number of equivalence functions, which is

left to the user, wherein, the UML is imprecise as to what the accepted characters

are. An instance of UML String [9] defines a sequence of characters. Character

sets may include non-Roman alphabets. On the other hand, OWL 2 supports

xsd:string defined in XML Schema [121]. The value space of xsd:string [121]

is a set of finite-length sequences of zero or more characters that match the Char

production from XML, where Char is any Unicode character, excluding the

surrogate blocks, FFFE, and FFFF. The cardinality of xsd:string is defined as

countably infinite. Due to the fact that the ranges of characters differ, UML

String and OWL 2 xsd:string are only similar datatypes.

UML Integer PrimitiveType

Drawing of the

category:

TR2: UML Integer has an equivalent OWL 2 type: xsd:integer

Comments to TR2: An instance of UML Integer [9] is a value in the infinite set

of integers (… -2, -1, 0, 1, 2 …). OWL 2 supports xsd:integer defined in XML

Schema [121]. The value space of xsd:integer is an infinite set {... -2, -1, 0, 1, 2

...}. The cardinality is defined as countably infinite. The UML Integer and

OWL 2 xsd:integer types can be seen as equivalent.

UML Boolean PrimitiveType

Drawing of the

category:

TR3: UML Boolean has an equivalent OWL 2 type: xsd:boolean

Comments to TR3: An instance of UML Boolean [9] is one of the predefined

values: true and false. OWL 2 supports xsd:boolean defined in XML Schema

[121], which represents the values of two-valued logic:{true, false}. The lexical

space of xsd:boolean is a set of four literals: 'true', 'false', '1' and '0' but the

lexical mapping for xsd:boolean returns true for 'true' or '1' , and false for 'false'

or '0'. Therefore the UML Boolean and xsd:boolean types can be seen as

equivalent.

UML Real PrimitiveType

Drawing of the

category:

146

TR4: UML Real has two similar OWL 2 types: xsd:float and xsd:double

Comments to TR4: Both UML and OWL 2 languages describe types that are

subsets of the set of real numbers. The subsets are countable. If one accepts a 32

or 64-bit precision of UML Real type, they will obtain an appropriate

compatibility with OWL 2 xsd:float or xsd:double types. An instance of UML

Real [9] is a value in the infinite set of real numbers. Typically [9] an

implementation will internally represent Real numbers using a floating point

standard such as ISO/IEC/IEEE 60559:2011, whose content is identical [9] to

the predecessor IEEE 754 standard. On the other hand, OWL 2 supports

xsd:float and xsd:double, which are defined in XML Schema [121]. The

xsd:float [121] is patterned after the IEEE single-precision 32-bit floating point

datatype IEEE 754-2008 and the xsd:double [121] after the IEEE double-

precision 64-bit floating point datatype IEEE 754-2008. The value space contains

the non-zero numbers m × 2
e
 , where m is an integer whose absolute value is less

than 2
53

for xsd:double (or less than 2
24

 for xsd:float), and e is an integer

between −1074 and 971 for xsd:double (or between −149 and 104 for xsd:float),

inclusive. Due to the fact that the value spaces differ, UML Real and OWL 2

xsd:double (or xsd:float) are only similar datatypes.

UML UnlimitedNatural PrimitiveType

Drawing of the

category:

TR5: UML UnlimitedNatural can be explicitly defined in OWL 2 as:

 DatatypeDefinition(:UnlimitedNatural

 DataUnionOf(xsd:nonNegativeInteger

 DataOneOf("*"^^xsd:string)))

Comments to TR5: An instance of UML UnlimitedNatural [9] is a value in the

infinite set of natural numbers (0, 1, 2…) plus unlimited. The value of unlimited

is shown using an asterisk („*‟). UnlimitedNatural values are typically used [9]

to denote the upper-bound of a range, such as a multiplicity; unlimited is used

whenever the range is specified as having no upper-bound. The UML

UnlimitedNatural can be defined in OWL and added to the ontology as a new

datatype.

Verification

rules
None

Related works
The related works are not precise with respect to the transformation of UML

primitive types. In [74], [76], [96], [118], some mappings of UML and OWL

types are only mentioned.

Table 8.19 The transformation and verification rules for the category of UML structured DataType.

Category of

UML element
Structured DataType

Drawing of the

category

The UML structured DataType [9] has

attributes and is used to define complex

data types.

147

Transformation

rules

TR1: Specify declaration axiom for UML data type as OWL class:

 Declaration(Class(:D))

TR2: Specify declaration axiom(s) for attributes – as OWL data or object

properties respectively (see Table 8.4 for more information regarding attributes)

 Declaration(DataProperty(:a))

TR3: Specify data (or object) property domains for attributes

 DataPropertyDomain(:a :D)

TR4: Specify data (or object) property ranges for attributes (OWL 2 datatypes

for UML primitive types are defined in Table 8.18)

 DataPropertyRange(:a T),

 where T is of PrimitiveType, e.g. xsd:string

TR5: Specify HasKey axiom for the UML data type expressed in OWL with the

use of a class uniquely identified by the data and/or object properties.

 HasKey(:D () (:a))

Explanation of TR5: UML DataType [9] is a kind of Classifier, whose instances

are identified only by their values. All instances of a UML DataType with the

same value are considered to be equal [9]. A similar meaning can be assured in

OWL with the use of HasKey axiom. The HasKey axiom [1] assures that each

instance of the class expression is uniquely identified by the object and/or data

property expressions.

Verification

rules

VR1 (pattern): Check if the domain ontology contains DataPropertyDomain

axiom specified for DPE where CE is different than given UML structured

DataType

 DataPropertyDomain(:a CE), where CE ≠ :D

Explanation of VR1: checks whether the data properties indicate that the UML

attributes are correct for the specified UML structured DataType.

VR2 (pattern): Check if the domain ontology contains DataPropertyRange

axiom specified for DPE where CE is different than given UML PrimitiveType

 DataPropertyRange(:a DR), where DR ≠ T (e.g. xsd:string)

Explanation of VR2: checks whether the data properties indicate that the UML

attributes of the specified UML structured DataType have correctly specified

PrimitiveTypes.

Limitations of

the mapping

Due to the fact that the author defines the UML structure DataType as an OWL

Class and not as an OWL Datatype (see Section 8.4 for further explanation), the

presented transformation results in some consequences. A limitation is posed by

the fact that the instances of the UML DataType are identified only by their value

[9], while the TR1 rule opens a possibility of explicitly defining the named

instances for the Entity in OWL.

Related works

In [76], [118], TR1-TR5 rules and in [73] TR2-TR5 rules are proposed for the

transformation of UML structured DataType. In [74], it is only noted that UML

DataTypes can be defined in OWL with the use of DatatypeDefinition axiom

but no example is provided.

The related works specify exclusively the data properties as attributes of the

structured data types in TR2. This research extends the state-of-the-art TR2

148

transformation rule by the possibility of defining also object properties, if needed

(see Table 8.4).

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(Class(:FullName))

TR2:

 Declaration(DataProperty(

 :firstName))

 Declaration(DataProperty(

 :secondName))

TR3:

 DataPropertyDomain(

 :firstName :FullName)

 DataPropertyDomain(

 :secondName :FullName)

TR4:

 DataPropertyRange(

 :firstName xsd:string)

 DataPropertyRange(

 :secondName xsd:string)

TR5:

 HasKey(:FullName ()

 (:firstName :secondName))

Verification axioms:

VR1:

 DataPropertyDomain(

 :firstName CE),

 where CE ≠ :FullName

 DataPropertyDomain(

 :secondName CE),

 where CE ≠ :FullName

VR2:

 DataPropertyRange(

 :firstName DR),

 where DR ≠ xsd:string

 DataPropertyRange(

 :secondName DR),

 where DR ≠ xsd:string

Additional example:

 Section 8.5 Example 2

Table 8.20 The transformation and verification rules for the category of UML Enumeration.

Category of

UML element
Enumeration

Drawing of the

category

UML Enumerations [9] are kinds of

DataTypes, whose values correspond to

one of user-defined literals.

Transformation

rules

TR1: Specify declaration axiom for UML Enumeration as OWL Datatype:

 Declaration(Datatype(:E))

TR2: Specify DatatypeDefinition axiom including the named Datatype

(here :VisibilityKind) with a data range in a form of a predefined enumeration of

literals (DataOneOf).

 DatatypeDefinition(:E DataOneOf("e1" "e2"))

Verification

rule

VR1 (query): Check if the list of user-defined literals in the Enumeration on the

class diagram is correct and complete with respect to the OWL datatype

definition for :E included in the domain ontology.

149

The SPARQL query:

 SELECT ?literal {

 :E owl:equivalentClass ?dt .

 ?dt a rdfs:Datatype ;

 owl:oneOf/rdf:rest*/rdf:first ?literal

 }

Expected result: The query returns a list of literals of the enumeration from the

domain ontology. The list of literals should be compared with the list of user-

defined literals on the class diagram if the UML Enumeration includes a correct

and complete list of literals.

Limitations of

the mapping

Enumerations [9] in UML are specializations of a Classifier and therefore can

participate in generalization relationships. OWL has no construct allowing for

generalization of datatypes. See Section 8.4.3 for further explanation.

Related works TR1-TR2 rules have been proposed in [51], [74], [76], [118].

Example

instance

of the category

Transformation axioms:

TR1:

 Declaration(

 Datatype(:VisibilityKind))

TR2:

 DatatypeDefinition(:VisibilityKind

 DataOneOf("public" "private"

 "protected" "package"))

Verification axioms:

VR1:

 SELECT ?literal {

 :VisibilityKind owl:equivalentClass ?dt .

 ?dt a rdfs:Datatype ;

 owl:oneOf/rdf:rest*/rdf:first ?literal

 }

8.3.5. Transformation of UML Comments

Table 8.21 The transformation and verification rules for the category of UML Comment to the Class.

Category of

UML element
Comment to the Class

Drawing of the

category

In accordance with [9], every kind of UML

Element may own Comments which add no

semantics but may represent information

useful to the reader. In OWL it is possible to

define the annotation axiom for OWL Class,

Datatype, ObjectProperty, DataProperty,

AnnotationProperty and NamedIndividual.

The textual explanation added to UML Class

is identified as useful for conceptual

modelling [2], therefore the Comments that

are connected to UML Classes are taken into

consideration in the transformation.

150

Transformation

rule

TR1: Specify annotation axiom for UML Comment

 AnnotationAssertion(rdfs:comment :A "D"^^xsd:string)

Comments to TR1: As UML Comments add no semantics, they are not used in

the method of verification [122]. In OWL the AnnotationAssertion [1] axiom

does not add any semantics either, and it only improves readability.

Verification

rules
Not applicable

Related works
The transformation of UML Comments in the context of mapping to OWL has

not been found in literature.

Example

instance

of the category

Transformation axiom:

TR1:

 AnnotationAssertion(

 rdfs:comment :Class

 "Class description"^^xsd:string)

The transformation rules presented in Sections 8.3.1-8.3.5 have important properties:

 The same transformation rule applied to different UML elements from the UML class

diagram, results in different instances of OWL axioms.

 The set of transformation axioms concerning one UML element from the UML class

diagram, and the set of axioms concerning any other UML element from the UML

class diagram, are always disjoint.

8.4. Influence of UML-OWL Differences on Transformation

Section 3.9 presents the main differences between OWL 2 and UML 2.5 languages. The

differences have their impact on the form of transformation between UML and OWL. This

section focuses on the differences which has the major impact on the transformation.

8.4.1. Instances

OWL 2 defines several kinds of axioms: declarations, axioms about classes, axioms about

objects and data properties, datatype definitions, keys, assertions (used to state that

individuals are instances of e.g. class expressions) and axioms about annotations. What can be

observed is that the information about classes and their instances (in OWL called individuals)

coexists within a single ontology.

On the other hand, in UML two different kinds of diagrams are used in order to present the

classes and objects. UML defines object diagrams which represent instances of class diagrams

at a certain moment in time. The object diagrams focus on presenting attributes of objects and

relationships between objects. In UML, the division into different types of diagrams results

from tradition and practice. A single business model can consist of e.g. a class diagram and

object diagrams associated with it.

151

Despite the fact that information about the objects is not present in UML class diagrams,

verification rules in the form of SPARQL queries take advantage of the knowledge about

individuals in the domain ontology. The rules are useful in verification of class diagrams

against the selected domain ontologies as they can check, for example, if an abstract class is

indeed abstract (does not have any direct instances in ontology) or if multiplicity restrictions

are specified correctly.

8.4.2. Disjointness in OWL 2 and UML

In OWL 2 an individual can be an instance of several classes [54]. It is also possible to state

that no individual can be an instance of selected classes, which is called class disjointness.

The information that some specific classes are disjoint is part of domain knowledge which

serves a purpose of reasoning.

OWL specification emphasises [54]: "In practice, disjointness statements are often forgotten

or neglected. The arguable reason for this could be that intuitively, classes are considered

disjoint unless there is other evidence. By omitting disjointness statements, many potentially

useful consequences can get lost.".

What can be observed in typical existing OWL ontologies, axioms of disjointness

(DisjointClasses, DisjointObjectProperties and DisjointDataProperties) are stated for

classes, object properties or data properties only for the most evident situations. If disjointness

is not specified, the semantics of OWL states that the ontology does not contain enough

information that disjointness takes place. For example, it is possible that the information is

actually true but it has not been included in the ontology.

On the other hand, in a UML class diagram every pair of UML classes (which are not within

one generalization set with an overlapping constraint) is disjoint, where disjointness is

understood in the way that the classes have no common instances. This aspect of UML

semantics could be mapped to OWL with the use of an extensive set of additional

transformations. The transformations would not be intuitive from the perspective of OWL and

should add a lot of unnecessary information which might never be useful due to the fact that

e.g. one should consider every pair of classes on the diagram and add additional axioms for it.

For the purpose of completeness of the presented revision, the following are the

transformation rules also for disjointness:

a) Transformation rule for disjointness of UML classes (TRA): Specify DisjointClasses

axiom for every pair of UML Classes: CE1, CE2 where CE1 ≠ CE2 and the pair is not

in the generalization relation or within one generalization set with an overlapping
constraint.

Comment: The TRA rule for classes within a generalization relationship was originally

proposed in [19], [51], [74]. In this research, this rule has been refined in order to cover only

the pairs of classes which are not only in a direct generalization relation but also not within

one GeneralizationSet with an overlapping constraint. This is caused by the fact that the

GeneralizationSet with the overlapping constraint (see Table 8.16 and Table 8.17) defines

specific Classes, which do share common instances. Please note that UML GeneralizationSet

with disjoint constraint adds DisjointClasses axioms – either directly or indirectly through

DisjointUnion axiom (see Table 8.14 and Table 8.15).

152

b) Transformation rule for disjointness of UML attributes (TRB): Specify

DisjointObjectProperties axiom for every pair OPE1, OPE2 where OPE1 ≠ OPE2 of object

properties within the same UML Class (domain of both OPE1 and OPE2 is the same

OWL Class) and specify DisjointDataProperties axiom for every pair DPE1, DPE2

where DPE1 ≠ DPE2 of object properties within the same UML Class (domain of both

DPE1 and DPE2 is the same OWL Class)

Comment: The TRB rule is an original proposition of this research.

c) Transformation rule for disjointness of UML associations (TRC): Specify

DisjointObjectProperties axiom for every pair of association ends OPE1 and OPE2

where OPE1 ≠ OPE2 and OPE1 is not generalized by OPE2 and OPE2 is not generalized

by OPE1 and domain and range of OPE1 and OPE2 are the same classes.

Comment: In [51], [74], it is suggested that DisjointObjectProperties and

DisjointDataProperties axioms for all properties that are not in a generalization

relationship should be specified. In a general case this suggestion is not clear,

therefore in this research the rule is modified to be applicable for UML associations

which are not in generalization relationship.

Even though the TRA, TRB and TRC rules are reasonable from the point of view of covering

semantics of a class diagram to OWL, they have not been implemented in the proposed tool

for validation of UML class diagram due to their questionable usefulness from the perspective

of pragmatics. This is caused by the fact that including these rules would lead to a large

increase in the number of axioms in the ontology, which would increase the computational

complexity.

8.4.3. Concepts of Class and DataType in UML and OWL

OWL 2 allows specifying declaration axioms for datatypes:

 Declaration(Datatype(:DatatypeName))

However, the current specification of OWL 2 [1] does not offer any constructs neither to

specify the internal structure of the datatypes, nor the possibility to define generalization

relationships between the datatypes. Both are available in UML 2.5.

Please note that the OWL HasKey, DataPropertyDomain and ObjectPropertyDomain

axioms can only be defined for the class expressions (not for the data ranges). Therefore the

TR2-TR5 rules in Table 8.19 can only be specified if the UML structured DataType is

declared as an OWL Class. This transformation has its consequences, which are presented in

Table 8.19.

If future extensions of the OWL language allow one to precisely define the internal structure

of datatypes, by analogy, as it is possible in UML, the proposed transformation of UML

structured DataType presented in Table 8.19 should then be modified. Additionally, if future

extensions of the OWL language allow one to define generalization relationships between

datatypes, the currently valid limitation of the transformation of UML Enumeration presented

in Table 8.20 will no longer be applicable.

153

8.5. Examples of UML-OWL Transformations

This section presents three examples of transformations of UML class diagrams to their

equivalent OWL representations. The example diagrams are relatively small but cover a

number of different UML elements. For clarity of reading, the examples include references to

tables from Section 8.3.

The order of transformations is arbitrary (the resulting set of axioms will always be the same

despite the order). The presented results are in the order of transformations starting from

Table 8.2 to Table 8.21. In this way, all the classes with attributes are be mapped to OWL

first, then the associations and generalization relationships and finally data types and

comments.

Each example includes two tables – one containing transformational part and one

verificational part of UML class diagram. Each verificational part should be considered in the

context of the selected domain ontology. For example, Table 8.23 which presents

verificational part of the diagram from Example 1 has been supplemented with additional

comments of how each verificational axiom or verificational query should be interpreted. The

comments and the ontological background presented for Table 8.23 is also applicable to other

examples.

Example 1:

Figure 8.1 Example 1 of UML class diagram

Table 8.22 Transformational part of UML class diagram from Example 1.

Set of transformation axioms Transformation

rules

Transformation of UML Classes

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

Table 8.2: TR1

154

Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

Declaration(ObjectProperty(:cR1))

Declaration(ObjectProperty(:dR1))

Declaration(ObjectProperty(:cR2))

Declaration(ObjectProperty(:dR2))

Table 8.6: TR1

ObjectPropertyDomain(:b :C)

ObjectPropertyDomain(:c :B)

ObjectPropertyDomain(:cR1 :D)

ObjectPropertyDomain(:dR1 :C)

ObjectPropertyDomain(:cR2 :D)

ObjectPropertyDomain(:dR2 :C)

Table 8.6: TR2

ObjectPropertyRange(:b :B)

ObjectPropertyRange(:c :C)

ObjectPropertyRange(:cR1 :C)

ObjectPropertyRange(:dR1 :D)

ObjectPropertyRange(:cR2 :C)

ObjectPropertyRange(:dR2 :D)

Table 8.6: TR3

InverseObjectProperties(:b :c)

InverseObjectProperties(:cR1 :dR1)

InverseObjectProperties(:cR2 :dR2)

Table 8.6: TR4

Transformation of UML multiplicity of Association ends

SubClassOf(:C ObjectExactCardinality(5 :b :B))

SubClassOf(:B ObjectUnionOf(

 ObjectExactCardinality(7 :c :C)

 ObjectIntersectionOf(ObjectMinCardinality(10 :c :C)

 ObjectMaxCardinality(12 :c :C))))

SubClassOf(:C ObjectExactCardinality(1 :dR1 :D))

SubClassOf(:D ObjectExactCardinality(1 :cR1 :C))

SubClassOf(:C ObjectExactCardinality(1 :dR2 :D))

SubClassOf(:D ObjectExactCardinality(1 :cR2 :C))

Table 8.9: TR1

Transformation of UML Generalization between Classes

SubClassOf(:B :A) Table 8.12: TR1

Transformation of UML Generalization between Associations

SubObjectPropertyOf(:cR2 :cR1)

SubObjectPropertyOf(:dR2 :dR1)

Table 8.13: TR1

Table 8.23 Verificational part of UML class diagram from Example 1.

Verificational part of UML class diagram Verification

rules

Transformation of UML Classes

If the domain ontology contains any HasKey axiom with any internal Table 8.2: VR1

155

structure (OPE1 ... DPE1 ...) defined for :A, :B, :C or :D UML Class, the

element should be UML structured DataType not UML Class.

HasKey(:A (OPE1 ... OPEmA) (DPE1 ... DPEnA))

HasKey(:B (OPE1 ... OPEmB) (DPE1 ... DPEnB))

HasKey(:C (OPE1 ... OPEmC) (DPE1 ... DPEnC))

HasKey(:D (OPE1 ... OPEmD) (DPE1 ... DPEnD))

Transformation of UML binary Associations between two different Classes

If the domain ontology contains any of below defined

AsymmetricObjectProperty axioms, the defined UML Association is

incorrect.

AsymmetricObjectProperty(:b)

AsymmetricObjectProperty(:c)

AsymmetricObjectProperty(:cR1)

AsymmetricObjectProperty(:dR1)

AsymmetricObjectProperty(:cR2)

AsymmetricObjectProperty(:dR2)

Table 8.6: VR1

If the domain ontology contains any of the below-defined

ObjectPropertyDomain axioms where class expression is different

than the given UML Class, the Association is defined in the ontology

but between different Classes, than it is specified on the diagram.

ObjectPropertyDomain(:b CE), where CE ≠ :C

ObjectPropertyDomain(:c CE), where CE ≠ :B

ObjectPropertyDomain(:cR1 CE), where CE ≠ :D

ObjectPropertyDomain(:dR1 CE), where CE ≠ :C

ObjectPropertyDomain(:cR2 CE), where CE ≠ :D

ObjectPropertyDomain(:dR2 CE), where CE ≠ :C

Table 8.6: VR2

If the domain ontology contains any of below-defined

ObjectPropertyRange axioms where the class expression is different

than the given UML Class, the Association is defined in the ontology

but between different Classes.

ObjectPropertyRange(:b CE), where CE ≠ :B

ObjectPropertyRange(:c CE), where CE ≠ :C

ObjectPropertyRange(:cR1 CE), where CE ≠ :C

ObjectPropertyRange(:dR1 CE), where CE ≠ :D

ObjectPropertyRange(:cR2 CE), where CE ≠ :C

ObjectPropertyRange(:dR2 CE), where CE ≠ :D

Table 8.6: VR3

Transformation of UML multiplicity of Association ends

If the verification query returns a number greater than 0, it means that

UML multiplicity is in contradiction with the domain ontology

(?vioInd lists individuals that cause the violation).

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :b ?range } GROUP BY ?vioInd

HAVING (?n > 5)

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :c ?range } GROUP BY ?vioInd

HAVING (?n > 12)

Table 8.9: VR1

156

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :dR1 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :cR1 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :dR2 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :cR2 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

If the domain ontology contains SubClassOf axiom, which specifies

class expression with different multiplicity of the association ends than

is derived from the UML class diagram, the multiplicity is incorrect.

SubClassOf(:C CE), where CE ≠ ObjectExactCardinality(5 :b :B)

SubClassOf(:B CE), where

CE ≠ ObjectUnionOf(ObjectExactCardinality(7 :c :C)

 ObjectIntersectionOf(ObjectMinCardinality(10 :c :C)

 ObjectMaxCardinality(12 :c :C)))

SubClassOf(:C CE), where CE ≠ ObjectExactCardinality(1 :dR1 :D)

SubClassOf(:D CE), where CE ≠ ObjectExactCardinality(1 :cR1 :C)

SubClassOf(:C CE), where CE ≠ ObjectExactCardinality(1 :dR2 :D)

SubClassOf(:D CE), where CE ≠ ObjectExactCardinality(1 :cR2 :C)

Table 8.9: VR2

Transformation of UML Generalization between Classes

If the domain ontology contains the defined SubClassOf axiom

specified for Classes, which take part in the generalization

relationship, the generalization relationship should be inverted on the

diagram.

SubClassOf(:A :B)

Table 8.12: VR1

Transformation of UML Generalization between Associations

If the domain ontology contains the defined SubObjectPropertyOf

axioms specified for Association, which take part in the generalization

relationship, the generalization relationship should be inverted on the

diagram.

SubObjectPropertyOf(:cR1 :cR2)

SubObjectPropertyOf(:dR1 :dR2)

Table 8.13: VR1

157

Example 2:

Figure 8.2 Example 2 of UML class diagram

Table 8.24 Transformational part of UML class diagram from Example 2.

Set of transformation axioms Transformation

rules

Transformation of UML Classes

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

Table 8.2: TR1

Transformation of UML attributes

Declaration(DataProperty(:a1))

Declaration(ObjectProperty(:a2))

Table 8.4: TR1

DataPropertyDomain(:a1 :A)

ObjectPropertyDomain(:a2 :A)

Table 8.4: TR2

DataPropertyRange(:a1 xsd:integer)

ObjectPropertyRange(:a2 :T)

Table 8.4: TR3

Table 8.18: TR2

Transformation of UML multiplicity of attributes

SubClassOf(:A ObjectExactCardinality(2 :a2 :T)) Table 8.5: TR1

Transformation of UML binary Association from the Class to itself

Declaration(ObjectProperty(:aR1))

Declaration(ObjectProperty(:aR2))

Table 8.7: TR1

ObjectPropertyDomain(:aR1 :A)

ObjectPropertyDomain(:aR2 :A)

Table 8.7: TR2

ObjectPropertyRange(:aR1 :A)

ObjectPropertyRange(:aR2 :A)

Table 8.7: TR3

InverseObjectProperties(:aR1 :aR2) Table 8.7: TR4

AsymmetricObjectProperty(:aR1)

AsymmetricObjectProperty(:aR2)

Table 8.7: TR5

Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectExactCardinality(1 :aR1 :A))

SubClassOf(:A ObjectExactCardinality(1 :aR2 :A))

Table 8.9: TR1

Transformation of UML Generalization between Classes

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

Table 8.12: TR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

DisjointUnion(:A :B :C :D) Table 8.15: TR1

Transformation of UML structured DataType

Declaration(Class(:T)) Table 8.19: TR1

158

Declaration(DataProperty(:t1))

Declaration(DataProperty(:t2))

Table 8.19: TR2

DataPropertyDomain(:t1 :T)

DataPropertyDomain(:t2 :T)

Table 8.19: TR3

DataPropertyRange(:t1 xsd:string)

DataPropertyRange(:t2 xsd:boolean)

Table 8.19: TR4

Table 8.18: TR1

Table 8.18: TR3

HasKey(:T () (:t1 :t2)) Table 8.19: TR5

Table 8.25 Verificational part of UML class diagram from Example 2.

Verificational part of UML class diagram Verification

rules

Transformation of UML Classes

HasKey(:A (OPE1 ... OPEmA) (DPE1 ... DPEnA))

HasKey(:B (OPE1 ... OPEmB) (DPE1 ... DPEnB))

HasKey(:C (OPE1 ... OPEmC) (DPE1 ... DPEnC))

HasKey(:D (OPE1 ... OPEmD) (DPE1 ... DPEnD))

Table 8.2: VR1

Transformation of UML attributes

DataPropertyDomain(:a1 CE), where CE ≠ A

ObjectPropertyDomain(:a2 CE), where CE ≠ A

Table 8.4: VR1

DataPropertyRange(:a1 DR), where DR ≠ xsd:integer

ObjectPropertyRange(:a2 CE), where CE ≠ :T

Table 8.4: VR2

Table 8.18: TR2

Transformation of UML multiplicity of attributes

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :a2 ?range } GROUP BY ?vioInd

HAVING (?n > 2)

Table 8.5: VR1

SubClassOf(:A CE),

where CE ≠ ObjectExactCardinality(2 :a2 :T)

Table 8.5: VR2

Transformation of UML binary Association from the Class to itself

ObjectPropertyDomain(:aR1 CE), where CE ≠ :A

ObjectPropertyDomain(:aR2 CE), where CE ≠ :A

Table 8.7: VR1

ObjectPropertyRange(:aR1 CE), where CE ≠ :A

ObjectPropertyRange(:aR2 CE), where CE ≠ :A

Table 8.7: VR2

Transformation of UML multiplicity of Association ends

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :aR1 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

SELECT ?vioInd (count (?range) as ?n)

WHERE { ?vioInd :aR2 ?range } GROUP BY ?vioInd

HAVING (?n > 1)

Table 8.9: VR1

SubClassOf(:A CE), where CE ≠ ObjectExactCardinality(1 :aR1 :A)

SubClassOf(:A CE), where CE ≠ ObjectExactCardinality(1 :aR2 :A)

Table 8.9: VR2

159

Transformation of UML Generalization between Classes

SubClassOf(:A :B)

SubClassOf(:A :C)

SubClassOf(:A :D)

Table 8.12: VR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

SubClassOf(:B :C)

SubClassOf(:C :B)

SubClassOf(:C :D)

SubClassOf(:D :C)

SubClassOf(:B :D)

SubClassOf(:D :B)

Table 8.15: VR1

Transformation of UML structured DataType

Check if the :T class is specified in the domain ontology as a subclass

(SubClassOf axiom) of any class expression, which does not have

HasKey axiom defined.

Table 8.19: VR1

Example 3:

Figure 8.3 Example 3 of UML class diagram

Table 8.26 Transformational part of UML class diagram from Example 3.

Set of transformation axioms Transformation

rules

Transformation of UML Classes

Declaration(Class(:A))

Declaration(Class(:B))

Table 8.2: TR1

Transformation of UML attributes

Declaration(ObjectProperty(:d)) Table 8.4: TR1

ObjectPropertyDomain(:d :C) Table 8.4: TR2

ObjectPropertyRange(:d :D) Table 8.4: TR3

Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Table 8.6: TR1

ObjectPropertyDomain(:a ObjectUnionOf(:B :C))

ObjectPropertyDomain(:b ObjectUnionOf(:A :C))

Table 8.6: TR2

Table 8.10: TR1

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

Table 8.6: TR3

InverseObjectProperties(:a :b) Table 8.6: TR4

Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectMinCardinality(2 :b :B)) Table 8.9: TR1

160

Transformation of UML AssociationClass

Declaration(Class(:C)) Table 8.10: TR2

Declaration(ObjectProperty(:c)) Table 8.10: TR3

ObjectPropertyDomain(:c ObjectUnionOf(:A :B)) Table 8.10: TR4

ObjectPropertyRange(:c :C) Table 8.10: TR5

Table 8.27 Verificational part of UML class diagram from Example 3.

Verificational part of UML class diagram Verification

rules

Transformation of UML Classes

HasKey(:A (OPE1 ... OPEm) (DPE1 ... DPEn))

HasKey(:B (OPE1 ... OPEm) (DPE1 ... DPEn))

Table 8.2: VR1

Transformation of UML attributes

ObjectPropertyDomain(:d CE), where CE ≠ :C Table 8.4: VR1

ObjectPropertyRange(:d CE), where CE ≠ :D Table 8.4: VR2

Transformation of UML binary Associations between two different Classes

AsymmetricObjectProperty(:a)

AsymmetricObjectProperty(:b)

Table 8.6: VR1

Transformation of UML multiplicity of Association ends

SubClassOf(:A CE), where CE ≠ ObjectMinCardinality(2 :b :B)

SubClassOf(:B CE), where CE = any explicitly specified multiplicity

Table 8.9: VR2

Transformation of UML AssociationClass

HasKey(:C (OPE1 ... OPEm) (DPE1 ... DPEn)) Table 8.10: VR1

ObjectPropertyDomain(:a CE), where CE ≠ ObjectUnionOf(:B :C)

ObjectPropertyDomain(:b CE), where CE ≠ ObjectUnionOf(:A :C)

ObjectPropertyDomain(:c CE), where CE ≠ ObjectUnionOf(:A :B)

Table 8.10: VR2

ObjectPropertyRange(:c CE), where CE ≠ :C Table 8.10: VR3

8.6. Conclusions

This chapter presents the transformation rules of UML class diagrams to their OWL 2

representation. The definitions of the rules have been developed on the basis of in-depth

analysis of the results of systematic literature review on the topic of transformation rules

between elements of UML class diagrams and OWL 2 constructs. The identified state-of-the-

art transformation rules were extended and supplemented with some new propositions. To

summarize the numbers, in total, 41 transformation rules have been described in this chapter.

This research has proposed 16 either completely new, or extended to a broader context

transformation rules. Other literature additionally defines 25 transformation rules.

Additionally, this chapter presented a fully original proposition of this research - verification

rules used to check if a UML class diagram is compliant with the OWL 2 domain ontology. In

total, 26 verification rules have been proposed.

161

The transformation and verification rules are used for automatic verification of compliance of

UML class diagrams with respect to OWL 2 domain ontologies. All rules described in this

chapter have been implemented in a tool presented in Part IV.

162

Part IV

Tool Support

Part IV: Tool Support

163

164

9. Description of the Tool

Summary. This chapter presents the developed tool allowing for creating UML class

diagrams from selected OWL domain ontologies, and verifying if the diagrams are

compliant with the ontologies. The tool was implemented as a proof of concept of the

proposed method in order to demonstrate its usability. Additionally, the tool was aimed at

verifying that the proposed method has its practical application.
28

9.1. Introduction

The methods proposed in Chapter 5 and 6 have been implemented in the tool. The tool has

features for semi-automatic creation of UML class diagrams semantically compatible with

selected domain ontologies in OWL 2, and automatic verification of UML class diagrams

against domain ontologies expressed in OWL 2. Furthermore, on the basis of the result of

verification, the tool automatically generates ontology-based suggestions for corrections of

diagrams so it streamlines their validation.

For the best knowledge of the author, currently no other tool allows for automatic verification

of UML class diagrams with the use of domain ontologies expressed in OWL 2. The

developed tool is aimed to contribute to this field.

This chapter describes the architecture of the developed tool and summarizes its features. It

explains the installation procedure, the user interface, and initial tool functions, i.e. the

settings form and the normalization form. In addition, it presents the complementary tool

functions: possibility of calculating on-fly the OWL 2 representation of any designed UML

class diagram, and possibility to change the default port of client-server configuration. The

main tool features are described in the following Chapters 10 and 11.

All transformation and verification rules defined in Chapter 8 have been implemented in the

tool. Therefore, all defined rules are proved to be fully implementable.

The tool has been tested with a number of test cases aimed to determine whether it fully and

correctly implemented the normalization, transformation and verification rules. At least one test

case has been prepared for every normalization, transformation and verification rule.

Additionally, a number of test cases have been prepared to cover popular assemblies of UML

elements, e.g. an association from a class to itself, an association between two classes, two

associations between two classes, two associations between three classes, etc. Each rule has

been independently checked if it returns the expected result.

28
 Chapter 9 contains the revised and extended fragments of the paper: "A prototype tool for semantic

validation of UML class diagrams with the use of domain ontologies expressed in OWL 2" [15]. The article [15]

presented the functionality of the prototype version of the tool while this chapter describes the current version of

the tool with a wider functionallity.

165

In total, the number of test cases was as follows (see Appendix A):

d) 80 test cases for ontology normalization rules,

e) 40 test cases for transformation rules and

f) 23 test cases for verification rules.

The tool passed all test cases.

9.2. Architecture of the Tool

The developed tool has been implemented in Java language and consists of two parts, the

server and the client, which communicate through a socket. The tool is designed for Windows

operating system.

The first part of the tool is the server which is a runnable JAR file. The server performs

operations on demand which are called by the client part. The implementation of the server

includes two external libraries: OWL API
29

 and HermiT

OWL reasoner (see Section 3.5). The

OWL API is a Java API for creating and modifying OWL 2 ontologies. HermiT reasoner is

used to determine whether or not the modified OWL ontology is consistent in every iteration

of the verification algorithm.

The second part of the tool is the client which has been developed as a plugin to Visual

Paradigm for UML
30

. The plugin has been developed and tested on Visual Paradigm

Community Edition in the version 14.1. With the use of the plugin the user can perform

operations on demand from the server.

9.3. A Summary of Features of the Server Part

The server part of the tool is aimed to perform the operations on the OWL 2 domain ontology,

selected by the modeller, and on the designed UML class diagram. The server has the following

features:

a) the possibility of normalizing any input OWL 2 domain ontology

(as explained in Chapter 7),

b) the possibility of normalizing the OWL 2 representation of UML class diagram

(conducted also in accordance with Chapter 7),

c) the possibility of comparing two sets of axioms: the normalized domain ontology and

the normalized OWL 2 representation of UML class diagram

(It is a necessary part of the verification feature, as explained in Chapter 5.

Additionally, the comparison is used for the purpose of generating some helpful hints of

which diagram elements are already extracted from the ontology to the diagram, while

29
 The OWL API website: http://owlapi.sourceforge.net/.

30
 The website of the producer of Visual Paradigm for UML: https://www.visual-paradigm.com/features/.

http://owlapi.sourceforge.net/
https://www.visual-paradigm.com/features/

166

UML class diagrams are created with the use of the domain ontologies, as described in

Chapter 6),

d) the possibility of checking the consistency of the OWL domain ontology

(It is a necessary part of the verification feature, as explained in Chapter 5. Moreover,

the detected axioms that have caused inconsistency in the modified domain ontology

are used for the purpose of generating the suggested corrections in the diagram,

following Chapter 10.3),

e) the possibility of calculating the result of the verification of UML class diagram

(It is a crucial part of the proposed method, as explained in Chapter 5),

f) the possibility of generating the suggested corrections of UML class diagram on the

basis of the selected OWL 2 domain ontology

(If the UML class diagram appears to be not compliant, i.e. it is a not contradictory or

contradictory diagram, the feature is used for the purpose of generating the suggested

corrections in the diagram, as explained in Chapter 10.3).

9.4. A Summary of Features of the Client Part

The client part of the tool is aimed to process the designed UML class diagram, to pass the

data to the tool server and to display the results calculated by the server.

The plugin has the following two main features:

a) the possibility of conducting the verification of the designed UML class diagram on

the basis of the OWL 2 domain ontology selected by the user. The verification is

conducted on demand, at any stage of the diagram development, even if the diagram is

not yet complete (the option is presented in Chapter 10).

b) the possibility of creating UML class diagrams on the basis of the OWL 2 domain

ontology selected by the user (the option is presented in Chapter 11),

9.5. Installation

The developed tool is included on the CD enclosed to this dissertation.

Additionally, the tool is available online:

https://sourceforge.net/projects/uml-class-diagrams-validation/

The following is the installation procedure of the tool plugin to Visual Paradigm Community

Edition in the version 14.1:

1. Enter in "C:\Users\UserName\AppData\Roaming\VisualParadigm"

2. Create "plugins" folder (it does not exist by default)

Please note that some older versions of Visual Paradigm may have a different place

for setting the "plugins" folder.

https://sourceforge.net/projects/uml-class-diagrams-validation/

167

3. Upload the full folder with the plugin's files ("pwr.vp.plugin.uml.validation" folder) to

the "plugins" folder

4. Enter in "C:\Program Files\Visual Paradigm CE 14.1\bin" and upload the

"plugin.uml.validation.properties" file and the tool server: UMLClassDiagramServer.jar

to this folder

5. Run executable JAR file of the tool server: UMLClassDiagramServer.jar

Please note that in some cases, it is necessary to add an exception in the antivirus

software, due to the fact that the tool works on the client-server socket communication

and not every antivirus software allows running such software.

6. Run "Visual Paradigm.exe"

By default, the developed tool works on port number 9876. The default port can be changed;

it is explained in Section 9.6.3 B.

9.6. The User Interface

At the beginning of the work, the modeller should run the executable JAR file with the tool

server and should create in Visual Paradigm the new blank project for UML class diagram.

The correctly installed plugin will be visible in the "Plugin" tab in the toolbar (see Figure 9.1),

and the running server is visible as an icon in the Window's notification area (see Figure 9.2).

Figure 9.1 The toolbar of the designed plugin.

Figure 9.2 The running server icon.

9.6.1. The Settings Form

The "Settings" form is the first option available in the plugin toolbar (see Figure 9.3). In this

form, the modeller should indicate the path to the selected OWL 2 domain ontology which

will serve as a knowledge base. For this purpose, the modeller should click the "Search"

button, find the proper path, and then click "Save Settings" button.

168

Figure 9.3 The "Settings" form.

The filed with the name of file with OWL 2 representation of UML class diagram is only used

in the "Diagram to OWL 2" form, which is explained in Section 9.6.3.

9.6.2. The Normalization Form

The "Normalization" form is the second option available in the plugin toolbar. The

normalized ontology is used as a necessary input to the algorithms for creation or verification

of UML class diagram.

The modeller should use the normalization option always when he or she inputs new or

changes the previously selected OWL 2 domain ontology. The normalization algorithm

should only be run once for each ontology.

After the normalization is conducted (see Figure 9.4), the normalized ontology is saved to two

files with the extensions: "*.norm" and "*.norm2", in the folder with the input ontology.

Although both files have the ontology saved in the functional-style syntax format, the

"*.norm" file is the file with the formatting written by the author of this dissertation, while

"*.norm2" file is created with the original formatting by OWL API. The original formatting

by OWL API, in the version used in the tool, appeared to have some minor problems related

to some repetitions of axioms, therefore, the author of this dissertation provided also own

formatting. The "*.norm" file is always used for all further analysis, therefore, if the modeller

would like to use the original formatting by OWL API, he or she needs to manually change its

extension from "*.norm2" to "*.norm".

Figure 9.4 The example of the server message – here: the normalization is conducted.

Figure 9.5 presents a simple example of the OWL 2 domain ontology consisting of 22 axioms

before the normalization. Figure 9.6 presents this ontology after the normalization, please note

that in this case the normalized ontology consists of 32 axioms.

169

Prefix(:=<http://www/tourists.owl#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(

Declaration(Class(:Campground))

SubClassOf(:Campground :Accommodation)

Declaration(Class(:Accommodation))

ObjectPropertyDomain(:hasActivity :Destination)

ObjectPropertyRange(:hasActivity :Activity)

ObjectPropertyDomain(:isOfferedAt :Activity)

ObjectPropertyRange(:isOfferedAt :Destination)

SubClassOf(:Hotel :Accommodation)

Declaration(ObjectProperty(:hasAccommodation))

ObjectPropertyDomain(:hasAccommodation :Destination)

ObjectPropertyRange(:hasAccommodation :Accommodation)

Declaration(ObjectProperty(:atDestination))

ObjectPropertyDomain(:atDestination :Accommodation)

ObjectPropertyRange(:atDestination :Destination)

InverseObjectProperties(:hasAccommodation :atDestination)

Declaration(ObjectProperty(:hasActivity))

InverseObjectProperties(:hasActivity :isOfferedAt)

DataPropertyDomain(:hasRating :Accommodation)

DataPropertyRange(:hasRating :AccommodationRating)

Declaration(ObjectProperty(:isOfferedAt))

InverseObjectProperties(:hasActivity :isOfferedAt)

Declaration(Class(:Activity))

)

Figure 9.5 The example of ontology before the normalization.

Figure 9.6 The example of ontology after the normalization.

170

9.6.3. The Complementary Tool Functions

a) "Diagram to OWL 2" form

The "Diagram to OWL 2" form is used for calculating (on demand) the OWL representation

of the designed UML class diagram. In the calculations for verification, the OWL

representation of the UML class diagram is calculated in the background, but at any time it

can also be viewed by the modeller and saved to file for any other needs.

As an example, Figure 9.8 presents the OWL 2 representation of a simple UML class diagram

consisting of only 5 UML classes, which is shown in Figure 9.7.

Figure 9.7 The example simple UML class diagram consisting of only 5 UML classes.

171

Figure 9.8 The OWL 2 representation of the simple UML class diagram from Figure 9.7.

The question of why transformation of UML diagrams to OWL format is needed was asked

and answered in [123]. The author of [123] motivated that there is at least one sufficient

reason for such a function: many enterprise models that serve as either standards, or enterprise

schemas, are specified in UML. Increasingly, there is interest in having content of UML

models re-purposed in RDF/OWL and there is a need for RDF/OWL to interoperate with

systems built from UML models.

Another reason to convert UML class diagrams to OWL ontology is that UML notation may

serve as a language to create very simple OWL ontologies. Despite the limitations of UML

language for being used as a visual syntax for knowledge representation is possible to use

UML to create OWL ontology including axioms for defining OWL classes and properties,

SubClassOf and SubObjectPropertyOf axioms, ObjectPropertyDomain and

ObjectPropertyRange axioms, DataPropertyDomain and DataPropertyRange axioms, etc.

Such ontology will of course not cover the full spectrum of all possible OWL constructs but

can be fully usable for some typical needs. As suggested in [20], the manual development of

ontology using current OWL editors is a tedious and cumbersome task.

172

b) Modification of the default port of the client-server configuration

The number of port has to be the same in the plugin (client part) and in the server.

The default port number is set to 9876. If this port has to be changed, the server's executable

JAR file has to be placed in the "plugins" folder, where it has access to the

"pwr.vp.plugin.uml.validation" file. For example:

C:\Program Files\Visual Paradigm CE 14.1\bin\UMLClassDiagramServer.jar

In order to modify the port, first the server needs to be turned off. The new port, for example

9100, should be written in the "Port" filed of the Settings form (see Figure 9.3). Next, "Save

Settings" button should be clicked. This setting changes the port for both the client, and the

server. After port is modified, the server can be turned on.

Sometimes it is useful to check on what port the server is running. For this purpose the server

should be turned on from Windows' command line: java -jar PATH_TO_SERVER_JAR. The

example is shown on Figure 9.9.

Figure 9.9 Example of running server from CMD with the purpose to confirm the port.

9.7. Conclusions

This chapter outlined the architecture of the developed tool, installation procedures and the

user interface. The details of the tool features are presented in Chapter 10 and 11

respectively. Additionally, Chapter 10 presents tool features for generating automatically the

ontology-based suggestions for correction of the validated UML class diagram.

173

10. Tool Features for Verification of UML Class Diagrams

Summary. This chapter presents the tool features for an automatic verification of the

designed UML class diagram against the OWL domain ontology selected by the

modeller. On the basis of the result of verification, the tool automatically generates

ontology-based suggestions for making corrections of the diagram. The suggestions are

automatically reported to the modeller always after the verification is conducted with

the aim to help him make the necessary improvements on the diagram, and to

streamline the validation of the diagram. The use of the verification feature is illustrated

on an example.
31

10.1. Introduction

Sections 4.3 and 4.4 present selected existing approaches for verification and validation of

UML class diagrams with different purposes and scopes of possibilities. For the best

knowledge of the author, currently no tool allows for automatic verification of UML class

diagrams with the use of domain ontologies expressed in OWL 2. The developed tool is

aimed to contribute to this field.

In the proposed tool the choice of the UML class diagram which needs to be verified and the

OWL 2 domain ontology which serves as a knowledge base is made by the modeller.

For the purpose of verifying the UML class diagram, the tool analyses the elements of the

diagram, such as attributes of classes (with the multiplicity), associations (with the multiplicity

of the association ends), and generalizations between classes and between associations,

generalization sets, structured datatypes and enumerations. As a result of verification, the tool

automatically recognises if the diagram is compliant, not contradictory or contradictory to the

selected domain ontology. The result of the validation is communicated to the modeller.

Additionally, the tool presents a set of suggestions what and how should be corrected in the

UML class diagram.

10.2. Tool Features for Diagram Verification

The "Verify Diagram" form is the fourth option available in the plugin toolbar

(see Figure 9.1).

The result of verification is visible in the bottom of the form (see example in Section 10.4), and

can be stated as "compliant", "not contradictory", or "contradictory".

31
 Chapter 10 contains the revised and extended fragments of the paper: "A prototype tool for semantic

validation of UML class diagrams with the use of domain ontologies expressed in OWL 2" [15]. The article [15]

presented the functionality of the prototype version of the tool while this chapter describes the current version of

the tool with a wider functionallity.

174

The verification form consists of three tabs:

g) The first tab presents the result of verification including the ontology-based

suggestions for diagram correction (see Section 10.3). The example of the first tab is

presented in Figure 10.25.

h) The second tab (supplementary) lists all normalized transformation axioms from the

designed UML class diagram with the detailed information if they are compliant, not

contradictory or contradictory to the selected domain ontology. The example of the

second tab is presented in Figure 10.31.

i) The third tab (also supplementary) lists the detailed information regarding the

incorrectness with respect to the information if all verification rules passed, and all

transformation axioms were not contradictory to the ontology. The example of the

third tab is presented in Figure 10.26.

10.3. Types of Ontology-based Suggestions for Diagram Corrections

The designed tool has the built-in mechanism for interpreting the results of verification. It

proposes the suggested corrections and provides the relevant explanations. In total,

23 different types of suggestions are implemented, one for each verification rule.

The below figures are examples illustrating all types of the automatically generated

suggestions. The examples base on the subsequent test cases for verification rules listed in

Appendix A.3 in Table A.13. The presented figures are fragments of print screens from the

"Verify Diagram" button of the developed tool.

For a better clarity, the suggestion patterns in this section follow the following convention:

 italic font is used to write the elements of UML class diagram,

 normal font is used for the fixed text of the suggestion pattern,

 " | " char is used if there is an alternative in the suggestion pattern.

The following are the defined types of the ontology-based suggestions:

a) The element defined as UML class should be UML structured data type

The suggestion pattern:

 NameOfClass is structured DataType

Figure 10.1 The example of an auto-generated suggestion on the basis of the example of ID V1 from Table A.13.

b) The element defined as abstract class should not be abstract

The suggestion pattern:

 NameOfClass Class is not abstract

175

Figure 10.2 The example of an auto-generated suggestion on the basis of the example of ID V2 from Table A.13.

c) The element defined as an attribute (of primitive type) assigned to the class, should not be the

attribute of the class

The suggestion pattern:

 Remove nameOfAttribut attribute

Figure 10.3 The example of an auto-generated suggestion on the basis of the example of ID V3 from Table A.13.

d) The element defined as an attribute (of structured data type) assigned to the class, should not

be the attribute of the class

The suggestion pattern:

 Remove nameOfAttribut attribute

Figure 10.4 The example of an auto-generated suggestion on the basis of the example of ID V4 from Table A.13.

e) The class attribute of one primitive type should be of a different primitive type

The suggestion pattern:

 Change type of nameOfAttribut into: PrimitiveType

Figure 10.5 The example of an auto-generated suggestion on the basis of the example of ID V5 from Table A.13.

f) The class attribute of one structured data type should be of a different structured data type

The suggestion pattern:

 Change type of nameOfAttribut into: DataType

Figure 10.6 The example of an auto-generated suggestion on the basis of the example of ID V6 from Table A.13.

176

g) The multiplicity of a class attribute of primitive type should be different than specified

(the analysis bases on OWL individuals that violate the restriction)

The suggestion pattern:

 Incorrect multiplicity incorrectMultiplicity of nameOfAttribut element

Figure 10.7 The example of an auto-generated suggestion on the basis of the example of ID V7 from Table A.13.

h) The multiplicity of a class attribute of structured data type should be different than specified

(the analysis bases on OWL individuals that violate the restriction)

The suggestion pattern:

 Incorrect multiplicity incorrectMultiplicity of nameOfAttribut element

Figure 10.8 The example of an auto-generated suggestion on the basis of the example of ID V8 from Table A.13.

i) The multiplicity of a class attribute should be different than specified (the analysis bases on

the fact that the ontology defines a different multiplicity of the attribute)

The suggestion pattern:

 Change multiplicity from incorrectMultiplicity to correctMultiplicity

Figure 10.9 The example of an auto-generated suggestion on the basis of the example of ID V9 from Table A.13.

j) The binary association between two different classes should be defined from the class to itself

The suggestion pattern:

 AssociationEnd: associationEnd is incorrect. The association is defined from NameOfClass

 Class to itself

Figure 10.10 The example of an auto-generated suggestion on the basis of the example of ID V10

 from Table A.13.

177

k) The defined binary association is incorrect (the domain is incorrect)

The suggestion pattern:

 Modify domain or range of the Association

Figure 10.11 The example of an auto-generated suggestion on the basis of the example of ID V11

 from Table A.13.

l) The defined binary association is incorrect (the range is incorrect)

The suggestion pattern:

 Modify domain or range of the Association

Figure 10.12 The example of an auto-generated suggestion on the basis of the example of ID V12

 from Table A.13.

m) The defined multiplicity of association end is incorrect (the analysis bases on OWL

individuals that violate the restriction)

The suggestion pattern:

 Incorrect multiplicity incorrectMultiplicity of nameOfAssociationEnd element

Figure 10.13 The example of an auto-generated suggestion on the basis of the example of ID V13

 from Table A.13.

n) The defined multiplicity of association end is incorrect (the analysis bases on the fact that the

ontology defines a different multiplicity of the attribute)

The suggestion pattern:

 Change multiplicity from incorrectMultiplicity to correctMultiplicity

Figure 10.14 The example of an auto-generated suggestion on the basis of the example of ID V14

 from Table A.13.

178

o) The association and the association class is incorrect (the domain is incorrect)

The suggestion pattern:

 Change domain of the AssociationClass: AssociationClassName from

IncorrectAssociationFrom - IncorrectAssociationTo to CorrectAssociationFrom -

CorrectAssociationTo

Figure 10.15 The example of an auto-generated suggestion on the basis of the example of ID V15

 from Table A.13.

p) The generalization between the classes is inversed

The suggestion pattern:

 Inverse the generalization relationship: CorrectChildOfGeneralization ►

 CorrectParentOfGeneralization

Figure 10.16 The example of an auto-generated suggestion on the basis of the example of ID V16

 from Table A.13.

q) The generalization between the associations is inversed

The suggestion pattern:

 Inverse the generalization relationship between the Associations

Figure 10.17 The example of an auto-generated suggestion on the basis of the example of ID V17

 from Table A.13.

r) The disjoint constraint of the generalization set is incorrect

The suggestion pattern:

 GeneralizationSet is not disjoint. Change constraint into overlapping

Figure 10.18 The example of an auto-generated suggestion on the basis of the example of ID V18

 from Table A.13.

179

s) The generalization set with {complete, disjoint} constraint has incorrect list of specific classes

The suggestion pattern:

 Class(es) required to be removed: NamesOfClassesToRemove

 | Class(es) not included: NamesOfClassesToAdd

Figure 10.19 The example of an auto-generated suggestion on the basis of the example of ID V19

 from Table A.13.

t) The overlapping constraint of {incomplete, overlapping} generalization set is incorrect

The suggestion pattern:

 GeneralizationSet is not overlapping. Change constraint into disjoint

Figure 10.20 The example of an auto-generated suggestion on the basis of the example of ID V20

 from Table A.13.

u) The overlapping constraint of {complete, overlapping} generalization set is incorrect

The suggestion pattern:

 GeneralizationSet is not overlapping. Change constraint into disjoint

Figure 10.21 The example of an auto-generated suggestion on the basis of the example of ID V21

 from Table A.13.

v) The generalization set with {complete, overlapping} constraint has incorrect list of

specific classes

The suggestion pattern:

 Class(es) required to be removed: NamesOfClassesToRemove

 | Class(es) not included: NamesOfClassesToAdd

Figure 10.22 The example of an auto-generated suggestion on the basis of the example of ID V22

 from Table A.13.

180

w) The list of the defined literals of Enumeration is incorrect

The suggestion pattern:

 Literal(s) required to be removed: NamesOfLiteralsToRemove

 | Literal(s) not included: NamesOfLiteralsToAdd

Figure 10.23 The example of an auto-generated suggestion on the basis of the example of ID V23

 from Table A.13.

10.4. The Example Verification of the UML Class Diagram

The following example presents the use of the developed tool in the context of verification the

designed UML class diagram. In order to present this functionality, the existing OWL domain

ontology describing a library management system of an educational organization was selected

from the Internet source
32

 (the description of the ontology can be found in the article [124]).

Figure 10.24 presents the example UML class diagram which needs to be verified against the

selected domain ontology.

Figure 10.24 The example UML class diagram which needs to be verified.

32
 The OWL domain ontology for library management by Ayesha Banu: https://github.com/ayesha-banu79/Owl-

Ontology/blob/master/Library%20Ontology.owl (accessed: 17.09.2019).

https://github.com/ayesha-banu79/Owl-Ontology/blob/master/Library%20Ontology.owl
https://github.com/ayesha-banu79/Owl-Ontology/blob/master/Library%20Ontology.owl

181

At first, the domain ontology is loaded to the tool and normalized in accordance with the

description from Section 9.6.1 and 9.6.2. Next, with the use of "Verify Diagram" button the

diagram is automatically verified.

The result of verification of the UML class diagram from Figure 10.24 is "contradictory", as

presented in Figure 11.25. The figure shows axioms that have caused inconsistency and the

suggested corrections to the diagram with the additional explanations. The auto-generated

corrections are instances of the selected types of suggestions presented in Section 10.3.

Figure 10.25 The "contradictory" result of verification including ontology-based suggestions

for diagram correction.

Figure 10.26 presents the third tab of the verification form which is additional and lists the

detailed information regarding the verification rules which have detected the incorrectness.

182

Figure 10.26 The detailed information regarding the verification rules which have detected the incorrectness.

183

Let us assume that the diagram from Figure 10.24 is corrected by the modeller by

incorporating changes marked in green in Figure 10.27. In such a case, the result of

verification will be "compliant", as presented in Figure 10.28, and the list of incorrect

elements will be empty.

Figure 10.27 The example UML class diagram from Figure 10.24 after correction.

Figure 10.28 The "compliant" result of verification.

However, if the modeller will include an additional change to the diagram from Figure 10.27,

marked in the blue in Figure 10.29, the overall result of verification will be "not

contradictory", as presented in Figure 10.30. This is caused by the fact that the added element

is not described in the selected ontology.

The diagram elements which are not contradictory to the domain ontology should be verified

by the domain expert, because the axioms were not defined in the ontology. In the diagram in

Figure 10.30, the libraryCardNumber attribute is such an element.

184

Figure 10.29 The example UML class diagram from Figure 10.24 after additional modification.

Figure 10.30 The "not contradictory" result of verification.

For easier verification, all normalized transformation axioms not defined in the domain

ontology are presented in the second (supplementary) tab of verification form, presented on

Figure 10.31.

185

Figure 10.31 The "not contradictory" result of verification with a list of not contradictory normalized

transformation axioms.

10.5. Limitations of the Tool in the Context of Diagram Verification

The tool, analogically as the proposed method (see Section 5.5), is limited to analyse the

static elements of UML class diagrams, therefore, e.g. operations are not verified.

The method, and so the tool, has a limitation which requires all class attributes and all

association ends in one UML class diagram to be uniquely named. Moreover, the tool

assumes that all elements in the UML class diagram are explicitly written, in particular all

role names are named and the multiplicity is explicitly written.

The verification feature of the designed tool has a limitation which results from the selected

OWL 2 reasoner, named HermiT, which supports all and only the datatypes of the OWL 2

datatype map
33

. This limitation is important, because it stops calculations, if a modeller

selects a domain ontology which contains the datatypes which are not part of the OWL 2

datatype map and no custom datatype definition is given. For example, the real ontologies

sometimes have the type called "date", and the OWL 2 datatype map for the representation of

time instants uses either "xsd:dateTime", or "xsd:dateTimeStamp". HermiT cannot handle

such datatype. In such cases the tool will only show relevant information on the screen

(example reason on Figure 10.32).

33
 OWL 2 Datatype Maps website: http://www.w3.org/TR/owl2-syntax/#Datatype_Maps.

http://www.w3.org/TR/owl2-syntax/#Datatype_Maps

186

Figure 10.32 The error message shown if the selected ontology has a type not from the OWL 2 datatype map.

The tool is designed to work on a single file with OWL ontology. This design decision was

dictated by the fact that most of OWL ontologies available in the Internet consist of only one

file. However, if the selected ontology consists of a larger number of files, the modeller will

need to first combine them with the use of some other tool, or manually.

Finally, the tool follows a naming convention that requires all names of UML elements to be a

single word (no spaces are allowed). The tool is prepared for handling Latin characters, and

may not work properly if the ontology or the diagram contains any dialectical characters.

10.6. Conclusions

This chapter presented the verification functionality of the designed tool and its limitations. In

the presented tool, if the UML class diagram is modified, the modeller may re-do the

verification whenever needed. The ontology-based suggestions for diagram corrections are

generated automatically on the basis of the selected OWL 2 domain ontology and the current

result of diagram verification.

187

188

11. Tool Features for Creation of UML Class Diagrams

Summary. This chapter presents the tool features for a semi-automatic creation of the

UML class diagram on the basis of the OWL domain ontology selected by the modeller.

The use of the creation feature is illustrated on an example.
34

11.1. Introduction

This chapter presents tool features which support creation of UML class diagrams. The main

intention behind this functionality is to guarantee the semantic correctness of UML class

diagrams.

The developed tool in the context of diagram creation allows extracting the categories of

elements of UML class diagrams presented in Section 10.

The developed tool, analogically as other available tools, support visualization of (a selected

part of) OWL ontology in the form of UML class diagram. There are several related works in

this context. The visual modelling of OWL ontologies with UML has been proposed for

example in: [20], [46], [62], [125], [126]. The literature presents some tools designed with the

purpose of visualizing OWL ontologies. For example, OWL2UML
35

 is a Protégé plugin

which automatically generates UML diagram for an active OWL ontology with the use of

OMG's Ontology Definition Metamodel. The paper [126], describes tool called AToM3

which makes a transformation of selected elements of UML class diagrams to the OWL

representations based on graph transformation. ProtégéVOWL
36

 is a plugin for Protégé tool

for visualization of OWL ontologies based on Visual Notation for OWL Ontologies (VOWL)

[127]. OWLGrEd
37

, wider described in [125], is a UML style graphical editor for OWL, in

which the UML class diagram notation is extend with Manchester-like syntax for the missing

OWL features. The UMLtoOWL tool
38

 converts extended Ontology UML Profile (OUP)

models in XML Metadata Interchange (XMI) format to OWL ontologies. There are also tools

for visualizing other ontology languages, e.g. the paper [128] proposes a tool for creating

UML class diagrams from SUMO ontology.

In comparison to other available tools, the proposed tool in the context of creation of UML

class diagram has the following functionalities:

34
 Chapter 11 contains the revised and extended fragments of the paper: "A prototype tool for semantic

validation of UML class diagrams with the use of domain ontologies expressed in OWL 2" [15]. The article [15]

presented the functionality of the prototype version of the tool while this chapter describes the current version of

the tool with a wider functionallity.
35

OWL2UML tool website: http://apps.lumii.lv/owl2uml/.
36

ProtégéVOWL tool website: http://vowl.visualdataweb.org/protegevowl.html.

37
OWLGrEd tool website: http://OWLGrEd.lumii.lv.

38
UMLtoOWL tool website: http://www.sfu.ca/~dgasevic/projects/UMLtoOWL/.

http://www.w3.org/TR/2004/REC-owl-ref-20040210
http://apps.lumii.lv/owl2uml/
http://vowl.visualdataweb.org/protegevowl.html
http://www.sfu.ca/~dgasevic/projects/UMLtoOWL/

189

a) The range of the available categories of the UML elements possible to be extracted

from OWL ontology is greater in the designed tool than it is described in the literature

or implemented in other tools. As already mentioned, the state-of-the-art

transformation rules were extended and supplemented with several new propositions

by the author of this research, which were also implemented in the tool. For example,

the possibilities to extract UML AssociationClasses preserving its semantics, or

multiplicity without any limits of multiplicity intervals, are the original proposition of

this research.

b) The designed tool takes into account the checking rules which accompany the

transformation rules for the purpose of correct OWL to UML transformation

(see Section 6.3). This is an important functionality from a pragmatic point of view.

For the best knowledge of the author, this aspect has not yet been discussed in the

literature in the context of OWL to UML transformation.

c) The proposed tool offers to conduct both the direct extraction (see Section 6.3.1), as

well as the extended extraction (see Section 6.3.2), up to modeller's decision. The tool

offers verification of the created UML class diagrams at any stage of diagram

development (see Section 10).

11.2. Tool Features for the Creation of UML Class Diagrams

The "Create Diagram" form is the third option available in the plugin toolbar (see Figure 9.1).

The form consists of seven tabs (see Figure 11.1).

Figure 11.1 All tabs in the "Create Diagram" form.

The tool adopts a general rule that it is suggested to use tabs from left to right, because in this

order the tabs are interrelated with each other. Of course, the modelling person can freely

switch between the tabs, as many times as needed.

The general characteristics of the options in each tab are as follows:

 Each tab offers a possibility to extract some categories of UML elements based on the

selected OWL domain ontology. The elements which can be extracted are listed in the

tables. Each row of the table represents a single UML element or a set of UML

elements (depending on the tab).

 The table's row with the user's cursor is highlighted on green colour (see example on

Figure 11.3). The user can select as many rows as needed by pressing CTRL key and

selecting some additional rows. The CTRL + A shortcut highlight all available rows in

the selected table.

 The row or rows with the UML elements highlighted by the modeller can be extracted to

the UML class diagram by clicking the "Add to the diagram" button.

190

 All table's rows which represent UML elements not yet selected by the modeller are

white (see Figure 11.2). In other words, the white rows list all UML elements which

can be extracted to the UML class diagram because such elements are described in the

ontology.

 All table's row which represent UML elements already selected by the modeller are

grey (see Figure 11.5). The tool ensures that the same UML element will not be placed

twice on the diagram. Therefore, if the modeller selects more lines (even including the

grey lines) this is not a problem for the correct extraction of the elements to the

diagram.

 Every table contains the last column representing if the row offers the standard or the

extended extraction. It is distinguished by colour:

 represents the direct extraction (see Section 6.3.1),

 represents the extended extraction (see Section 6.3.2).

It is up to modeller's decision, if he or she accepts the extended extraction. The

extended extraction requires validation, in accordance with Chapter 10.

 All tabs refresh their content on fly after relaunch of the tab, or relaunch of the form.

If any element is added or removed from the UML class diagram, the tab after relaunch

will present the refreshed content.

Each tab is characterized in one of the following subsections. The examples illustrating each

tab in Sections 11.2.1-11.2.7, are based on the own sample ontology, which is purposed to

present full spectrum of options (the sample ontology is included on the CD enclosed to

this dissertation). The example, presented in Section 11.3, bases on a real ontology.

11.2.1. Tab 1: UML Classes

The first tab (see Figure 10.12), presents all UML classes defined in the selected domain

ontology. If the ontology contains any additional comments or class descriptions, the table lists

them as well.

The UML classes which are selected by the modeller are the input nodes for the other tabs. The

list of the available attributes (Tab 2), associations (Tab 3), and generalizations (Tab 4) highly

depends on the list of the selected classes.

191

Figure 11.2 The example of the first tab content based on the selected domain ontology.

Figure 11.3 The example of the selected rows in the first tab.

Figure 11.4 The example direct extraction of UML classes based on the selected rows from Figure 11.3.

Figure 11.5 The example of the appearance of the first tab after extraction of elements from Figure 11.4.

All UML classes follow only the direct extraction, therefore, the verification of the extracted

UML classes is not needed.

192

11.2.2. Tab 2: UML Attributes

The second tab (see Figure 11.6), presents all UML attributes defined in the selected domain

ontology for the classes which are currently designed on the UML class diagram.

The attributes are presented with the defined types (primitive types, structure data types, or

enumerations), and with the multiplicity if is defined in the ontology. As described in

Section 6.3.1, the proposed tool accepts xsd:string for the transformation of UML String, and

xsd:double for the transformation of UML Real.

Figure 11.6 The example of the second tab content based on the selected domain ontology.

Figure 11.7 The example direct extraction of the UML attributes based on content from Figure 11.6.

In case of UML attributes, the extended extraction is available in two cases: an attribute has the

OWL type undefined in UML (for example often used WOL xsd:dateTime type), or an attribute

has no defined type in OWL.

11.2.3. Tab 3: UML Binary Associations and UML AssociationClasses

The third tab (see Figure 11.8), presents all UML binary associations defined in the selected

domain ontology between the classes which are currently designed on the UML class diagram.

The extracted associations can be either between two different UML classes, or from a UML

class to itself. OWL does not allow defining n-ary associations, which has been explained in

Table 8.8, so extraction of n-ary associations is not available in the tool.

Additionally, the tab presents the defined UML AssociationClasses. The tab includes the role

names and the multiplicity of the association ends, if they are defined in the ontology.

193

Figure 11.8 The example of the third tab content based on the selected domain ontology.

Figure 11.9 The example of direct extraction of UML Associations, and UML AssociationClass

based on content from Figure 11.8.

In case of UML associations, the extended extraction is available in the case if the association

which has one role name defined in the domain ontology and the other role name is not defined.

The tool proposes the second role name as the name of the class to which the association end is

attached, with the first lowercase letter (it is the same convention which is used in UML

specification, please refer to Table 8.6 for more information). The example is presented in

Figure 11.10.

Figure 11.10 The example of the extended extraction of the UML Association based on content

 from Figure 11.8.

194

11.2.4. Tab 4: UML Generalizations Between the Classes or Between the Associations

The fourth tab (see Figure 11.11), presents all UML generalizations between the classes,

defined in the selected domain ontology between the classes which are currently designed on

the UML class diagram (see Tab 2), and additionally all UML generalizations between the

associations, defined in the selected domain ontology between the associations which are

currently designed on the UML class diagram (see Tab 3).

Figure 11.11 The example of the fourth tab content based on the selected domain ontology.

Figure 11.12 The example direct extraction of UML generalizations between the classes, and UML

generalizations between the associations based on content from Figure 11.11.

All UML generalizations follow only the direct extraction, therefore, the verification of the

extracted UML generalizations is not needed.

11.2.5. Tab 5: UML GeneralizationSets with Constraints

The fifth tab (see Figure 11.13), lists all available generalization sets with constraints, defined

in the selected domain ontology between the extracted generalizations which are currently

designed on the UML class diagram (see Tab 2).

195

Figure 11.13 The example of the fifth tab content based on the selected domain ontology.

Figure 11.14 The example direct extraction of UML generalization sets based on content from Figure 11.13.

In case of UML GeneralizationSets, the extended extraction is available for a GeneralizationSet

with {complete, disjoint} constraints. The example is presented on Figure 11.15.

Figure 11.15 The example of the extended extraction of the UML generalization between the associations

based on content from Figure 11.13.

11.2.6. Tab 6: UML Enumerations

The last but one tab (see Figure 11.16), lists of all UML Enumerations defined in the domain

ontology, with the additional comments if available.

Figure 11.16 The example of the six tab content based on the selected domain ontology.

196

Figure 11.17 The example extracted UML Enumeration based on the selected row from Figure 11.16.

All UML enumerations follow only the direct extraction, therefore, the verification is not

needed.

11.2.7. Tab 7: UML Structured DataTypes

The last tab (see Figure 11.18), lists of all UML structured data types defined in the domain

ontology, with the attributes (of either primitive types, or structured data types), and the

additional comments if available.

Figure 11.18 The example of the last tab content based on the selected domain ontology.

Figure 11.19 The example extracted UML structured DataType based on the selected row from Figure 11.18.

All UML structured data types follow only the direct extraction, therefore, the verification is

not needed.

11.3. The Example Creation of the UML Class Diagram

The following example presents the use of the developed tool in the context of creation the

designed UML class diagram. In order to present this functionality, the existing OWL domain

197

ontology describing the monetary domain
39

 for payment and currency systems was selected

from the Internet source.

Having a glossary of terms, the modeller first analyses the available UML classes described in

the selected monetary domain. For this purpose, the modeller browses the first tab of the

creation form (Figure 11.20).

Figure 11.20 The UML classes selected from the monetary ontology based on the assumed glossary.

Figure 11.20 presents some UML classes from the monetary ontology, which are selected and

placed on the UML class diagram by the modeller (the list is scrolled, therefore, the rest of the

selected classes are not visible in the figure).

After clicking "Add to the diagram" button, the modeller obtains the diagram presented on

Figure 11.21 which includes only the selected UML classes.

Figure 11.21 The UML classes extracted from the monetary ontology based on Figure 11.20.

39
 The OWL ontology for monetary domain by Martin "Hasan" Bramwell:

protegewiki.stanford.edu/images/d/de/Monetary_ontology_0.1d.zip (accessed: 2018.11.08).

198

As a next step, the modeller clicks the second tab, and checks if the ontology describes any

attributes for the selected classes. Figure 11.22 presents that there are no available attributes

for the selected classes.

 Figure 11.22 The list of attributes for the classes from Figure 11.21 is empty on the basis of

the selected ontology.

Next step is to extract the associations. Figure 11.23 presents all UML associations described

in the ontology between the selected UML classes.

Figure 11.23 The UML associations described in the monetary ontology based on selected classes.

It is assumed that the modeller follows the direct extraction, therefore he or she should select

only the associations marked as green in the last column (see Figure 10.24).

199

Figure 11.24 All UML associations which follow the direct extraction are selected by the modeller.

Figure 11.25 presents the updated UML class diagram.

Figure 11.25 All UML associations extracted from the ontology based on Figure 11.24.

Figure 11.26 presents all UML generalizations described in the ontology between the selected

UML classes. The ontology does not describe any generalizations between the associations.

200

Figure 11.26 The UML generalization described in the monetary ontology based on selected classes.

All generalizations are selected, and Figure 11.24 presents the designed UML class diagram.

Figure 11.27 All UML generalizations extracted from the ontology based on Figure 11.26.

The ontology does not describe any generalization sets for the selected generalization

relationships. Also, the ontology does not describe any structure data types or enumerations.

Therefore, the UML class diagram presented on Figure 11.27 can be assumed as complete.

If the modeller would like to extend the diagram, and follow the extended extraction, he or she

can include the association marked with the blue colour, which means that it is the extended

extraction (see Figure 11.28).

201

Figure 11.28 The UML association which follow the extended extraction is now selected by the modeller.

Figure 11.29 presents the complete UML class diagram based on the extended extraction.

Figure 11.29 The complete UML class diagram based on the extended extraction.

11.4. Limitations of the Tool in the Context of Diagram Creation

The proposed method of creation of UML class diagrams (see Section 6), and so the tool

which implements the method, is limited to extract only static elements of UML class

diagrams (e.g. operations are not extracted).

The ontology visualization possibilities with the presented tool are limited to a subset of all

possible OWL axioms. The full spectrum of OWL constructs is not possible to be visualized

with the use of UML class diagram without losing or changing the semantics. The semantics

202

of UML and OWL notations differ one from another (some examples are presented in

Section 3.9). Therefore, if the modeller's purpose is to visualize all types of constructs from

OWL ontology, it is worth not to use UML but other language dedicated for this purpose, for

example the previously mentioned VOWL. However, if the goal is to create the correct UML

class diagram for the software development purposes, the proposed tool will be a preferable

solution.

The tool is designed to work on a single file with OWL ontology. This design decision was

dictated by the fact that most of OWL ontologies available in the Internet consist of only one

file. However, if the selected ontology consists of a larger number of files, the modeller will

need to first combine them with the use of some other tool, or manually.

The tool is prepared for handling Latin characters, and may not work properly if the ontology

contains any dialectical characters.

11.5. Conclusions

This chapter presented the functionalities of the designed tool for creation of UML class

diagrams on the basis of OWL ontologies. The tool offers to conduct both the direct

extraction, and the extended extraction, depending on the needs of the modeller. The

functionality allows extracting all important categories of elements of UML class diagrams

from OWL domain ontologies (see Section 8.3).

The creating form allows the modeller to browse what is already drawn on the UML class

diagram, and what elements are not yet included in the diagram but worth considering. Based

on the specific requirements, the additional elements may be incorporated in the diagram.

Depending on the context, sometimes it might be useful not to present unnecessary details in

the UML class diagram. Some UML elements such as attributes or associations are sometimes

purposely omitted from the diagram, because the modeller may not want to present some

unneeded details.

203

204

Part V

Empirical Evaluation

Part V: Empirical Evaluation

205

206

12. Description of the Experiment

Summary. This chapter describes the definition, the design, as well as the conduction of

the experiment aimed to empirically evaluate the developed tool.

12.1. Introduction

The designed experiment aimed to answer the following research question:

Is the developed tool for creation and validation of UML class diagrams useful for

modellers?

The purpose of the experiment was to check the practical usefulness of the developed tool for

modellers who are not domain experts. The goal of the experiment was defined in accordance

with the goal template [110]:

Analyse the created and validated UML class diagrams

for the purpose of evaluation of the practical usefulness of the developed tool

with respect to correctness of created or validated UML class diagrams

from the point of view of the researcher

in the context of Bachelor's and Master's students involved in creating and validating

UML class diagrams with and without the use of the developed tool.

12.2. Subjects

The subjects of the experiment were students who study computer science and took courses in

UML modelling for software engineering. The minimum assumption of the experiment was

that its participants had knowledge of UML notation at least in the context of drawing and

reading of UML class diagrams. The second assumption was that participants of experiment

must know how to use Visual Paradigm for UML. Students were not expected to have any

knowledge of ontologies.

In fact, four groups of students from Wrocław University of Science and Technology took

part in the experiment: two groups of software engineering students of bachelor's studies (31

students) and two of master's studies (26 students). In total, 57 students took part in the

experiment. Each group had already had at least two courses on modelling with the use of

UML notation and during the courses had some practice on Visual Paradigm for UML.

207

12.3. Objects

The objects of the study were UML class diagrams. During the experiment, the diagrams were

created and validated by subjects with and without the use of the developed tool (the tasks are

described in section 12.7).

Due to the short time frame assumed for the experiment (for more details please refer to

section 12.8.3), the UML class diagrams were of limited size. More precisely:

 the UML class diagrams that students were asked to create, consisted of 4-7 UML

classes,

 the UML class diagrams that students were asked to validate, consisted of 7-11 UML

classes.

Each diagram in the task for validation had 5-6 semantic errors, intentionally made by the

experimenter, which students were supposed to mark and correct.

The difficulty level of the diagrams had been balanced. The diagrams with a fewer number of

classes had more connections between them (associations, generalizations), or more complex

internal structure (more attributes). In this way, the complexity of the diagrams was similar in

all tasks for creation, and accordingly, for validation.

12.4. Domain Ontologies

The developed tool uses given OWL 2 domain ontologies as a knowledge base. The tool

automatically processes the input domain ontology and allows the modeller to extract the

needed elements of a UML class diagram directly from the ontology, or to validate the whole

diagram with respect to the selected ontology.

The OWL domain ontologies selected for the purpose of the experiment were rather complex

and intentionally were not related to software engineering, computer science or common

knowledge in order to minimize the risk of knowing the relationships within the domains by

IT students. The selected OWL domain ontologies came from the Internet sources. Due to the

assumed time needed for conducting the experiment (described in section 12.8.3) and a

significant number of axioms in some of the selected ontologies, the number of axioms in the

ontologies had been reduced so that the sub-ontologies had no more than 350 axioms

(including no less than 40 and no more than 45 axioms for class declarations). More

information about the selected domain ontologies and the detailed information about the

conducted modifications including especially reduction of selected axioms can be found in

Appendix B.1.

The diagrams created without the tool were modelled on the basis of the textual description of

the domains written in natural language. Both OWL 2 domain ontologies processed by the

tool and the textual descriptions of the domains in natural language were semantically

equivalent. The textual descriptions were created by the author of the dissertation but the

correctness and equivalence of both formats was expertly verified by dr inż. Bogumiła

Hnatkowska. More information about the textual descriptions of the domains can be found in

Appendix B.2.

208

12.5. Variables

Independent variables of the experiment:

There was one independent variable in the experiment, the UML class diagram was created or

validated with the use of the designed tool (with the tool) or was created or validated without

the use of the designed tool (no tool).

Dependent variables of the experiment:

Usefulness of the developed tool for the purpose of supporting creation and validation of

UML class diagrams was measured by two dependent variables:

I. Correctness – the correctness of the created or validated UML class diagrams,

II. Time – the time needed to fill in each task, measured in minutes (each subject was

asked to write starting time and ending time of each task).

The main measure was correctness of the diagrams. The details of how correctness was

calculated are presented in section 13.1. The measure of time was a supportive measure which

would be particularly useful if the results of correctness would appear similar, despite the fact

if the tool was or was not used.

12.6. Hypotheses

Having in mind that:

 the UML class diagrams created and validated with the support of the tool were based on

the OWL domain ontologies processed by the tool, and

 the UML class diagrams created and validated without the support of the tool were based

on the textual descriptions of the domains written in natural language,

the following hypotheses are to be tested:

a) For diagram creation:

Null hypotheses (H0DC): The correctness of UML class diagrams created with the use of the

tool is lower or equal to the correctness of diagrams created without the use of the tool.

Alternative hypotheses (H1DC): The correctness of UML class diagrams created with the use

of the tool is higher than the correctness of diagrams created without the use of the tool.

b) For diagram validation:

Null hypotheses (H0DV): The correctness of UML class diagrams validated with the use of

the tool is lower or equal to the correctness of diagrams validated without the use of the tool.

Alternative hypotheses (H1DV): The correctness of UML class diagrams validated with the use

of the tool is higher than the correctness of diagrams validated without the use of the tool.

209

12.7. Description of Tasks in the Experiment

All subjects were assigned randomly to two groups: GROUP A and GROUP B. The types of

tasks were the same for both groups of students. Each student was given four tasks:

 Task 1: Creation of UML class diagram with the use of the tool

 Task 2: Validation of UML class diagram with the use of the tool

 Task 3: Creation of UML class diagram without the use of the tool

 Task 4: Validation of UML class diagram without the use of the tool

The domain ontologies were provided in two formats: files with domain ontologies expressed

in OWL (for Task 1 and Task 2) and textual descriptions of the domains in natural language

(for Task 3 and Task 4). The summary of tasks is presented in Table 12.1.

Table 12.1 Types of tasks in the experiment.

Task Task Topic Realization Format of Domain Ontology

Task 1 Creation with the tool File with ontology expressed in OWL

Task 2 Validation with the tool File with ontology expressed in OWL

Task 3 Creation no tool Textual description of the domain in natural language

Task 4 Validation no tool Textual description of the domain in natural language

To avoid a learning effect, each task was related to a different domain, this means that four

different OWL domain ontologies were selected for the experiment. Additionally, in order to

reduce the influence of domains on the performance of tasks, the domains were swapped in

GROUP A and GROUP B in tasks with and without the use of tool (it is shown in Table

12.2). The details of domains are presented in 0.1. For the full text of tasks for GROUP A

and GROUP B please refer to 0.3.

Table 12.2 Domain Ontologies for Group A and Group B.

Task Group A Group B

Task 1: Creation

(with the tool)

Domain ontology 1:

 The Monetary Ontology

Domain ontology 3:

 The Smart City Ontology

Task 2: Validation

(with the tool)

Domain ontology 2:

 The Air Travel Booking Ontology

Domain ontology 4:

 The Finance Ontology

Task 3: Creation

(no tool)

Domain ontology 3:

 The Smart City Ontology

Domain ontology 1:

 The Monetary Ontology

Task 4: Validation

(no tool)

Domain ontology 4:

 The Finance Ontology

Domain ontology 2:

 The Air Travel Booking Ontology

12.8. Operation of the Experiment

12.8.1. Instrumentation

The instruments and materials for the experiment have been prepared in advance, and

consisted of a video tutorial for the developed tool (including the instructions of how to use

210

the experiment infrastructure, etc.) and artefacts: UML class diagrams for the tasks of diagram

validation (in the file format for Visual Paradigm for UML), four domain ontologies in the

format of OWL files, as well as four textual descriptions of the domains written in natural

language.

Due to the fact that the OWL domain ontologies were rather complex (what has been

motivated in section 12.4) and students participating in the experiment were Polish-speaking

students, in order for the language not to influence the results, all materials for the experiment

had been prepared in the Polish language. In particular, the experiment tasks, the domain

ontologies (both in the format of OWL files and textual descriptions) and video tutorial were

prepared in Polish. Only the interface of the tool was in English.

12.8.2. Preparation of the Laboratory Room

The laboratory room has been prepared in advance for conducting the experiment. The

experimenter herself installed on all computers the virtual machines with Visual Paradigm for

UML and the developed tool (the installation procedure is explained in Chapter 9.5).

12.8.3. Time Frame for the Experiment

The time frame for the experiment was rather narrow. The experiment took place during

90 minutes laboratory courses. The experiment was preceded with a short introduction in

which in particular the developed tool was discussed.

The total time has been divided into the following parts:

 10 minutes for a short introduction to the experiment, including presentation of the

purpose of the experiment and the types of tasks.

 5 minutes for watching a video tutorial of the tool. The students came across the

proposed tool for the first time while watching this tutorial.

 15 minutes for performing a simple exercise task with the use of the tool under the

supervision of the experimenter. The exercise included extracting a few UML classes

with associations and generalizations directly from example OWL domain ontology.

Next, students were asked to introduce one-two semantic errors to the diagram

(e.g. modify the type of attribute into incorrect one) and validate the diagram with the

support of the tool.

 60 minutes for conducting the experiment. Each experiment task was estimated for 15

minutes.

12.8.4. Date of the Experiment and Number of Subjects

The experiment was carried out in Wrocław University of Science and Technology in 14 and

16 January 2019.

211

In total, 57 students participated in the experiment, 31 of bachelor's studies and 26 of master's

studies. 29 students were assigned to GROUP A and 28 students to GROUP B. Students

were assigned to groups alternately.

The next section presents the results of the experiment.

212

13. Analysis of the Results of the Experiment

Summary. This chapter presents the results of analysis of the experiment data. The data

were first analysed with the use of descriptive analysis (section 13.2) and next with the

use of Wilcoxon signed ranks test for the median difference (section 13.3).

13.1. Measures and Scores of Tasks

As mentioned in section 12.5, two aspects of tasks were measured: the main measure was the

correctness of the created or validated UML class diagrams, and the supportive measure was

the time needed to fill in each task.

How the correctness of tasks was calculated:

a) In tasks for creating of UML class diagrams: for each correctly drawn element of the

diagram (e.g. UML class, attribute of class, multiplicity, role name, etc.) one point was

awarded, regardless of the type of the UML element.

b) In tasks for validating of UML class diagrams: one point was awarded for each

correctly marked semantic error and additional point for its correcting.

This measure of correctness takes into account only the elements correctly drawn (or correctly

validated) on the diagrams.

The calculated results have been normalized to values in the range between 0 and 1. The

normalized values of the answers allow to easily comparing the data obtained by each subject

in each task.

13.2. Descriptive Statistics

The descriptive statistics of measures in tasks with the use of the tool are summarized in

Table 13.1 (for diagram creation) and Table 13.3 (for diagram validation). In comparison,

Table 13.2 presents the measures for diagram creation and Table 13.4 for diagram validation

in tasks without the use of the tool.

The first impression is that the differences between the results obtained by students in

GROUP A and students in GROUP B are not large. Moreover, the results obtained by

students of bachelor studies and students of master studies are rather similar.

However, rather large difference can be observed in correctness of created and validated

diagrams with the use of the tool in comparison with much worse results obtained without the

use of the tool. Particularly high is the value of median equal 1 for all groups of students in

both tasks for diagram creation and diagram validation with the use of the tool (Table 13.1

and Table 13.3).

213

Table 13.1 Descriptive statistics for diagram creation with the use of the tool (Task 1).

Group of students
Mean

(M)

Standard

deviation

(SD)

Minimum
Median

(Mdn)
Maximum

GROUP

A

Bachelor's students 0,9606 0,0696 0,7778 1 1

Master's students 0,9658 0,1031 0,6296 1 1

All students 0,9630 0,0846 0,6296 1 1

GROUP

B

Bachelor's students 0,9354 0,1310 0,6364 1 1

Master's students 0,8974 0,1435 0,5455 1 1

All students 0,9177 0,1357 0,5455 1 1

Table 13.2 Descriptive statistics for diagram creation without the use of the tool (Task 3).

Group of students
Mean

(M)

Standard

deviation

(SD)

Minimum
Median

(Mdn)
Maximum

GROUP

A

Bachelor's students 0,8185 0,1906 0,3548 0,8710 1

Master's students 0,7097 0,1697 0,3548 0,7742 0,9355

All students 0,7697 0,1867 0,3548 0,7742 1

GROUP

B

Bachelor's students 0,6756 0,2099 0,2333 0,6667 1

Master's students 0,6923 0,1811 0,4667 0,6667 0,9333

All students 0,6833 0,1936 0,2333 0,6667 1

Two participants of GROUP B have not filled either Task 2, or Task 4, therefore the missing

results are excluded from Table 13.3 and Table 13.4.

Table 13.3 Descriptive statistics for diagram validation with the use of the tool (Task 2).

Group of students
Mean

(M)

Standard

deviation

(SD)

Minimum
Median

(Mdn)
Maximum

GROUP

A

Bachelor's students 0,9688 0,1250 0,5 1 1

Master's students 0,9692 0,0751 0,8 1 1

All students 0,9690 0,1039 0,5 1 1

GROUP

B

Bachelor's students 0,9429 0,0938 0,7 1 1

Master's students 0,9154 0,1676 0,4 1 1

All students 0,9296 0,1325 0,4 1 1

Table 13.4 Descriptive statistics for diagram validation without the use of the tool (Task 4).

Group of students
Mean

(M)

Standard

deviation

(SD)

Minimum
Median

(Mdn)
Maximum

GROUP

A

Bachelor's students 0,4688 0,3027 0,2 0,4 1

Master's students 0,4154 0,1819 0,1 0,5 0,6

All students 0,4448 0,2530 0,1 0,4 1

GROUP

B

Bachelor's students 0,5333 0,2436 0,0833 0,5 0,8333

Master's students 0,6111 0,1479 0,4167 0,6250 0,8333

All students 0,5679 0,2068 0,0833 0,5833 0,8333

In accordance with section 13.1, the measure of counting only the correct responses was the

basis for the above analysis (and the basis to calculate Wilcoxon signed ranks tests for the

median differences [129] in section 13.3). Taking into account only the elements correctly

drawn (or correctly validated) on the UML class diagrams means that the measure does not

214

count any elements incorrectly drawn (in the tasks for creation), or incorrectly marked (in

tasks for validation), or any excessive elements in relation to the purpose of the task. When

analyzing the data of the experiment, it was observed that the diagrams created and validated

without the use of the tool had quite a lot of such elements. The diagrams in Figure 13.1 and

Figure 13.2, present how many incorrect and excessive elements were drawn by students on

the diagrams, especially when they answered the tasks without the use of the tool. The figures

additionally present the number of missing elements on the diagrams which is also much

lower on the diagrams created and validated with the tool support. Such a large discrepancy

additionally argues in favour of the proposed tool.

Figure 13.1 Number of correct, missing, incorrect and excessive UML elements in tasks of diagram creation.

Figure 13.2 Number of correct, missing, incorrect and excessive UML elements in tasks of diagram validation.

215

Next two tables present a summary of time, measured in minutes, needed to fill in each task.

The tables present the minimum, maximum and mean time of solving each task. What can be

observed, both tasks for creation and validation of diagrams with the use of the tool were

nearly twice as fast in comparison with tasks realised without the tool, despite the fact that

subjects had to rewrite all answers obtained with the support of the tool from the computer

screen onto paper.

Table 13.5 The summary of task execution time in minutes for diagram creation tasks.

Group of

students
Task

Mean

Time

Minimum

Time

Maximum

Time

GROUP A

(All students)

Task 1: Creation

(with the tool)
9,3448 6 15

Task 3: Creation

(no tool)
17,6897 11 28

GROUP B

(All students)

Task 1: Creation

(with the tool)
11,8214 8 20

Task 3: Creation

(no tool)
18,8571 10 30

Table 13.6 The summary of task execution time in minutes for diagram validation tasks.

Group of

students
Task

Mean

Time

Minimum

Time

Maximum

Time

GROUP A

(All students)

Task 2: Validation

(with the tool)
6,2414 3 10

Task 4: Validation

(no tool)
15,3929 6 28

GROUP B

(All students)

Task 2: Validation

(with the tool)
8,7407 4 16

Task 4: Validation

(no tool)
12,0370 4 20

13.3. Wilcoxon Signed Ranks Test for the Median Difference

To answer the question whether the correctness of diagrams created and validated with the

use of the tool is significant, or not, statistical test is performed. The nonparametric Wilcoxon

signed ranks test for the median difference is selected because the collected data are not

normally distributed. The analysis is related to the comparison of the results of correctness of

solving tasks by students with versus without the use of a tool, in GROUP A and GROUP B

independently.

216

13.3.1. Assumptions of Wilcoxon Signed-Ranks Test

The data meet the assumptions of Wilcoxon signed ranks test [129]:

1. The data are a random sample of independent difference scores. The difference

scores result from repeated measures or matched pairs. In this experiment the

difference scores result from the matched pairs:

a. in case of tasks for diagram creation: results of Task 1 are paired with results of

Task 3 for each student independently (see subsection 13.3.2.2), and

b. in case tasks for of diagram validation: results of Task 2 are paired with results

of Task 4, also for each student independently (see subsection 13.3.2.3).

2. The underlying variable is continuous. This assumption is not directly fulfilled. In this

experiment the measured correctness of the answers provided by each student has

been normalized to values in the range between 0 and 1 (see subsection 13.1). The

distribution of differences is discreet on the -1..1 range. Every discrete distribution

can be approximated with a continuous distribution, but not vice versa. Therefore, the

obtained discrete distribution could be approximated by continuous distribution. This

approximation would become less and less important moving from the experiment

towards practice. In practice, when the UML diagrams would be composed of not

approximately 30 (as in the experiment) but, for example, of 300 UML elements, this

distribution would be even more accurate to approximated, but still would be discreet.

3. The data are measured on an ordinal, interval, or ratio scale. In this experiment the

data are measured on a ratio scale.

4. The distribution of the population of difference scores is approximately symmetric.

The two top histograms in Figure 13.3, present the population of difference scores in

tasks for diagram creation. The two bottom histograms present the population of

difference scores in tasks for diagram validation. The top left histogram is

approximately symmetric and in its case it is especially sensible to perform the

Wilcoxon signed ranks test. Here, the symmetry is understood as any distribution of

the values on both sides of value zero. The remaining three histograms are not

symmetric in this sense and they explicitly show a huge advantage of the results

obtained with the use of the tool in comparison with the results with no tool. Even if

the obtained results would be intentionally worsen by reducing the difference values

on the right side of the histograms, the Wilcoxon signed ranks test would also give a

positive result for the worsen data set. For the sake of completeness, the full

calculation has been performed for each case.

217

Figure 13.3 Histograms for the distribution of the population of difference scores

13.3.2. Computations in Wilcoxon Signed-Ranks Test

The Wilcoxon Signed-Ranks Test uses the test statistic which is calculated as follows

[129]:

1. For each item in a sample of items, compute a difference score | |, between the two

paired values.

2. Neglect the and signs and list the set of absolute differences | |.
3. Omit any absolute difference score of zero from further analysis, thereby yielding a set

of nonzero absolute difference scores, where . After removal values with

absolute difference scores of zero, becomes the actual sample size.

4. Assign ranks , from 1 to to each of the | | such that the smallest absolute

difference score gets rank 1 and the largest gets rank . If two or more | | are equal,

assign each of them the mean of the ranks they would have been assigned individually

had ties in the data not occurred.

5. Reassign the symbol and to each of the ranks, depending on whether was

originally positive or negative.

6. Compute the Wilcoxon test statistic as the sum of the positive ranks in accordance

with formula (13.1):

 ∑
()

(13.1)

For samples of , the test statistic is approximatelly normally distributed with mean

 and standard deviation .

218

Mean of the test statistic is calculated as:

 ()

(13.2)

Standard deviation of the test statistic is calculated as:

 √
 ()()

(13.3)

Large-sample Wilcoxon signed-ranks test formula is used for testing the hypothesis

when sample sizes are greater than 20. For smaller samples (usually when is less then or

equal 20) the critical values for Wilcoxon signed ranks test can be found in the mathematical

tables. test statistic is calculated in accordance with (13.4) formula:

 ()

√ ()()

(13.4)

Following [130], the effect size , which is magnitude of observed effect for the Wilcoxon

signed-rank test, can be calculated with (13.5) formula:

√

(13.5)

where is the size of the study, i.e. the number of total observations

The interpretation of the effect size in accordance with Cohen's benchmark [130]: for

small effect, for medium effect, and for large effect.

13.3.2.1. Hypothesis Formulation for the Wilcoxon Signed Ranks Test

The Wilcoxon signed ranks test is used to detect if there is a significant difference between

the results obtained by students creating and validation the UML class diagrams with the use

of the developed tool (Task 1 and Task 2) versus the results obtained without the proposed

tool (Task 3 and Task 4).

For the analysis of the results of the experiment the Wilcoxon signed ranks test has been

calculated four times:

 twice for diagram creation, independently for GROUP A and GROUP B

(see subsection 13.3.2.2), and

 twice for diagram validation, also independently for GROUP A and GROUP B

(see subsection 13.3.2.3),

219

In each of the cases, the positive difference scores and the median difference () greater

than 0 show that creating diagrams (or validating diagrams respectively) with the use of the

tool provides more correct results. Therefore, in each of the four cases the test is one-tailed

in the positive direction.

The hypotheses are formulated as follows:

The null hypothesis shows that results obtained without the tool are better or equal to the

results obtained with the use of the tool, while the alternative hypothesis shows that better

results are obtained with the use of the tool.

Given (5% significance level), the decision rule is to reject if ,

otherwise do not reject .

13.3.2.2. Results of Wilcoxon Signed-Rank Tests for Creation of UML Class Diagrams

The set of difference scores will tend to be positive values (and will be rejected), if the

created diagrams are more correct with the use of the proposed tool. On the other hand, if the

tool is not effective and the correctness is much lower, will not be rejected.

Table 13.7 presents the achieved results for GROUP A and Table 13.8 for GROUP B.

Table 13.7 Ranking data in the Wilcoxon signed-rank test for GROUP A with the purpose of comparing

correctness of UML Class Diagram creation with versus without the use of the tool.

ID

Correctness of

diagram creation

with the tool

(Task 1)

Correctness of

diagram creation

without the tool

(Task 3)

Sign

of

Difference

 =

Rank

Positive

Ranks

Negative

Ranks

1 1 1 excluded 0 excluded

2 0,8889 0,7419 + 0,1470 5 5

3 1 0,9032 + 0,0968 3,5 3,5

4 1 0,7097 + 0,2903 18 18

5 0,8519 0,6129 + 0,2389 16 16

6 0,7778 1 - - 0,2222 8 8

7 1 0,8387 + 0,1613 6,5 6,5

8 1 0,6774 + 0,3226 19 19

9 1 0,5806 + 0,4194 21 21

10 1 0,9032 + 0,0968 3,5 3,5

11 1 1 excluded 0 excluded

12 0,9630 0,9355 + 0,0275 1 1

13 1 1 excluded 0 excluded

14 0,8889 0,3548 + 0,5341 24 24

15 1 1 excluded 0 excluded

16 1 0,8387 + 0,1613 6,5 6,5

220

17 1 0,6129 + 0,3871 20 20

18 1 0,7742 + 0,2258 12 12

19 1 0,7742 + 0,2258 12 12

20 1 0,7742 + 0,2258 12 12

21 0,6296 0,9032 - 0,2736 17 17

22 1 0,7742 + 0,2258 12 12

23 0,9259 0,4516 + 0,4743 23 23

24 1 0,9355 + 0,0645 2 2

25 1 0,3548 + 0,6452 25 25

26 1 0,7742 + 0,2258 12 12

27 1 0,5484 + 0,4516 22 22

28 1 0,7742 + 0,2258 12 12

29 1 0,7742 + 0,2258 12 12

Total = 300 25

Table 13.8 Ranking data in the Wilcoxon signed-rank test for GROUP B with the purpose of comparing

correctness of UML Class Diagram creation with versus without the use of the tool.

ID

Correctness of

diagram creation

with the tool

(Task 1)

Correctness of

diagram creation

without the tool

(Task 3)

Sign

of

Difference

 =

Rank

Positive

Ranks

Negative

Ranks

1 1 0,5333 + 0,4667 25,5 25,5

2 1 0,9333 + 0,0667 2,5 2,5

3 1 0,9333 + 0,0667 2,5 2,5

4 1 0,6667 + 0,3333 19,5 19,5

5 1 0,9333 + 0,0667 2,5 2,5

6 0,9697 0,7333 + 0,2364 13 13

7 1 0,5667 + 0,4333 23,5 23,5

8 1 0,7 + 0,3 17 17

9 0,7576 0,5 + 0,2576 14,5 14,5

10 1 1 excluded 0 excluded

11 1 0,7333 + 0,2667 16 16

12 0,6667 0,2333 + 0,4333 23,5 23,5

13 1 0,5333 + 0,4667 25,5 25,5

14 0,6364 0,5333 + 0,1030 7 7

15 1 0,6 + 0,4 21,5 21,5

16 0,9394 0,8 + 0,1394 10 10

17 1 0,9333 + 0,0667 2,5 2,5

18 0,8485 0,9333 -0,0848 6 6

19 1 0,8667 + 0,1333 8,5 8,5

20 1 0,8667 + 0,1333 8,5 8,5

21 0,7576 0,5 + 0,2576 14,5 14,5

22 1 0,8 + 0,2 12 12

221

23 0,5455 0,4667 + 0,0788 5 5

24 0,7576 0,6 + 0,1576 11 11

25 1 0,6667 + 0,3333 19,5 19,5

26 0,8182 0,5 + 0,3182 18 18

27 1 0,6 + 0,4 21,5 21,5

28 1 0,4667 + 0,5333 28 28

Total = 373 6

Table 13.9 Results of Wilcoxon signed-rank test for diagram creation in GROUP A and GROUP B.

Formula Value of GROUP A GROUP B

 25

(29 minus 4 excluded)

27

(28 minus 1 excluded)

(13.1) 300 372

(13.2) 162,5 189

(13.3) 37,1652 41,6233

(13.4) 3,6997 4,3966

(13.5) 0,4858 0,5875

Result

 1,645

3,6997 1,645

reject

 1,645

4,3966 1,645

reject

For both GROUP A and GROUP B, the value is much bigger than 1,645, as presented

in Table 13.9. Therefore, hypothesis is rejected for both groups (the test statistic has

fallen into the region of rejection). There is a significant difference between the results of

correctness of UML Class Diagram created with versus without use of the proposed tool, in

favour of diagrams created with the use of the tool. This represents a large effect for

GROUP B (it is above Cohen's benchmark of 0,5) and medium effect for GROUP A (it is

between Cohen's criteria of 0,3 and 0,5 for a medium and large effect respectively).

13.3.2.3. Results of Wilcoxon Signed-Rank Tests for Validations of UML Class Diagrams

The set of difference scores will tend to be positive values (and will be rejected), if the

validated diagrams are more correct with the use of the proposed tool. On the other hand, if

the tool is not effective and the correctness is much lower, will not be rejected.

Table 13.10 presents the achieved results for GROUP A and Table 13.11 for GROUP B.

In GROUP B two participants were completely excluded from the calculations because they

have not filled either Task 2 or Task 4, and their results were not paired, what is an

assumption for the Wilcoxon signed ranks test.

Table 13.10 Ranking data in the Wilcoxon signed-rank test for GROUP A with the purpose of comparing

correctness of UML Class Diagram validation with versus without the use of the tool.

222

ID

Correctness of

diagram

validation with

the tool

(Task 2)

Correctness of

diagram

validation

without the tool

(Task 4)

Sign

of

Difference

 =

Rank

Positive

Ranks

Negative

Ranks

1 1 1 excluded 0 excluded excluded

2 1 0,8 + 0,2 2,5 2,5

3 1 0,8 + 0,2 2,5 2,5

4 1 0,2 + 0,8 23 23

5 1 0,4 + 0,6 14,5 14,5

6 1 0,7 + 0,3 4 4

7 1 0,4 + 0,6 14,5 14,5

8 1 1 + 0 excluded excluded

9 1 0,2 + 0,8 23 23

10 1 0,2 + 0,8 23 23

11 1 0,2 excluded 0,8 23 23

12 1 0,2 + 0,8 23 23

13 1 0,4 excluded 0,6 14,5 14,5

14 1 0,2 + 0,8 23 23

15 1 0,2 excluded 0,8 23 23

16 0,5 0,6 - - 0,1 1 1

17 1 0,6 + 0,4 6,5 6,5

18 1 0,6 + 0,4 6,5 6,5

19 1 0,5 + 0,5 10 10

20 1 0,6 + 0,4 6,5 6,5

21 0,8 0,2 + 0,6 14,5 14,5

22 1 0,2 + 0,8 23 23

23 1 0,4 + 0,6 14,5 14,5

24 1 0,5 + 0,5 10 10

25 1 0,2 + 0,8 23 23

26 1 0,6 + 0,4 6,5 6,5

27 0,8 0,1 + 0,7 18 18

28 1 0,5 + 0,5 10 10

29 1 0,4 + 0,6 14,5 14,5

Total = 377 1

Table 13.11 Ranking data in the Wilcoxon signed-rank test for GROUP B with the purpose of comparing

correctness of UML Class Diagram validation with versus without the use of the tool.

ID

Correctness of

diagram

validation with

the tool

(Task 2)

Correctness of

diagram

validation

without the tool

(Task 4)

Sign

of

Difference

 =

Rank

Positive

Ranks

Negative

Ranks

1 0,8 0,4167 + 0,3833 14 14

2 1 0,4167 + 0,5833 22 22

223

3 1 0,8333 + 0,1667 6 6

4 1 0,8333 + 0,1667 6 6

5 1 0,4167 + 0,5833 22 22

6 1 0,8333 + 0,1667 6 6

7 1 0,75 + 0,25 10,5 10,5

8 1 0,5 + 0,5 17,5 17,5

9 0,9 0,8333 + 0,0667 2,5 2,5

10 1 0,1667 + 0,8333 25 25

11 0,9 0,5833 + 0,3167 12 12

12 0,9 0,3333 + 0,5667 19 19

13 0,7 0,5 + 0,2 8 8

14 1 0,0833 + 0,9167 26 26

15 0,9 0,6667 + 0,2333 9 9

16 0,9 0,75 + 0,15 4 4

17 0,8 0,75 + 0,05 1 1

18 1 0,75 + 0,25 10,5 10,5

19 0,9 0,8333 + 0,0667 2,5 2,5

20 1 0,6667 + 0,3333 13 13

21 1 0,4167 + 0,5833 22 22

22 1 0,4167 + 0,5833 22 22

23 1 0,4167 + 0,5833 22 22

24 1 0,5833 + 0,4167 15,5 15,5

25 1 0,5833 + 0,4167 15,5 15,5

26 1 0,5 + 0,5 17,5 17,5

Total = 351 0

Table 13.12 Results of Wilcoxon signed-rank test for diagram validation in GROUP A and GROUP B.

Formula Value of GROUP A GROUP B

 27

(29 minus 2 excluded)

26

(13.1) 377 351

(13.2) 189 175,5

(13.3) 41,6233 39,3732

(13.4) 4,5167 4,4573

224

(13.5) 0,5931 0,5956

Result

 1,645

4,5167 1,645

reject

 1,645

4,4573 1,645

reject

For both GROUP A and GROUP B, the value is much bigger than 1,645, as presented

in Table 13.12. Therefore, hypothesis is rejected for both groups (the test statistic

has fallen into the region of rejection). There is a significant difference between the results of

correctness of UML Class Diagram validated with versus without use of the proposed tool, in

favour of diagrams created with the use of the tool. This represents a large effect for both

GROUP A and GROUP B (it is above Cohen's benchmark of 0,5).

13.4. Evaluation of Validity

As any empirical study, this experiment has several threats to its validity. The identified

threats to the validity are grouped in accordance with the categories presented in [110].

If possible, some mitigating factors were applied.

The identified threats to construct validity:

 Mono-operation bias. In the experiment there were four tasks, two for creating and

validating of diagrams with the use of the tool, and two without the use of the tool.

There was a strong threat that the selected domain ontologies could influence the

obtained results. This threat was highly reduced by conducing experiment in two

groups, each of which had the same but swapped ontologies for tasks of creation with

versus without the use of the tool (and analogically also swapped ontologies for the

tasks of validation, see Table 12.2 in section 12.7).

 The complexity of ontologies. A threat is related with the fact if the complexity of

selected domain ontologies was similar. The experimenter made every effort to ensure

that ontologies were of similar complexity, i.e. the selected ontologies contained a

similar number of classes, and in general, similar number of axioms (see 0). The threat

related to the differences in the complexity was also reduced by the fact of using two

groups and swapping the ontologies in tasks between the groups, and measuring the

groups independently, as presented in Table 12.2 in section 12.7.

 Experimenter expectancies. The experimenters can bias the results of a study both

consciously and unconsciously based on what they expect from the experiment. The

threat can be reduced by involving different people which have no or different

expectations to the experiment. Therefore, during construction of this experiment the

mitigating factors to this threat have been applied. The correctness and equivalence of

the OWL and the natural language formats of domain ontologies have been expertly

verified by dr inż. Bogumiła Hnatkowska. Additionally, the correctness of translation

of English versions of domain ontologies into Polish was verified with the English

language expert.

225

The identified threats to internal validity:

 Positive and negative effect of maturation. This is the effect of related to the

observation that the subjects may react differently as time passes. Due to the fact that

there were four tasks in the experiment which had to be filled within one hour, there is

a threat that the subjects might have been more tired with each subsequent task.

Therefore, the subjects could be affected negatively (could get tired or bored) and

answer the later tasks (without the use of the tool) with less focus. However, the

subjects could also be affected positively during the course of the experiment, and

could learn how to solve tasks of creation or validation of UML class diagrams on the

basis of previous tasks (with the use of the tool) and provide better answers on the

later tasks (without the use of the tool).

 Too short training. There was a strong threat that the subjects had too short training

on the new tool, and almost immediately they had to use it during the experiment. Just

after seeing a short video tutorial, students did only one short and simple warm-up

exercise during which they had the first and only opportunity to familiarize themselves

with the new tool before the experiment started. A longer training on the use of the

tool could significantly improve the results. Despite this strong threat, as a result of the

experiment, it turned out that working with the tool was not problematic for most of

students.

 Rewriting UML class diagrams. In order not to favour tasks solved with the use of the

tool in comparison with the tasks solved without the use of the tool, subjects were

expected to write all answers manually in paper (on the experiment form). There was a

threat for tasks solved with the use of the tool that they had to be rewritten from the

computer screen onto paper. This entails some additional time and the possibility of

making a mistake when rewriting the data. Indeed, during the experiment, the

experimenter observed two situations when subjects made errors while rewriting the

data, even though they had correct answers on the screen. In the two observed cases,

the students were asked to check the provided answers on paper.

 Knowledge of selected domains by students. Because the students' knowledge of

domains selected for the experiment may influence the results of the experiment, the

selected domain ontologies were not related to IT studies, i.e. software engineering or

computer science, or common knowledge. The selected ontologies were rather

difficult in order to minimize the risk of knowing the relationships within the domains

by IT students.

 The knowledge of UML and/or knowledge of Visual Paradigm for UML. This threat

was related to the fact that the subjects were students, most of whose experience in

UML modelling was rather theoretical supported with some practice during the

university courses. Each group of students had at least two courses on UML.

Nevertheless, during the experiment it turned out that a few students had some basic

problems with the UML notation or with Visual Paradigm for UML tool.

The identified threat to conclusion validity:

 Heterogeneity of subjects. Subjects were software engineering students of bachelor's

studies (two groups of students) and of master's studies (also two groups of students).

226

Therefore, subjects were heterogeneous as they had slightly different background and

experience.

The identified threat to external validity:

 Generalizing the findings. The experiment was designed to check the practical

usefulness of the tool for modellers who are not experts in specific domains. It was not

assumed that the modellers have to be professional. Due to the fact that the results of

the experiment carried out with students proved to be promising, it can be assumed

that the tool could be useful also for professional modellers.

13.5. Conclusions

This section summarized the results of the conducted experiment aimed to check the practical

usefulness of the developed tool, which proved to be promising. Following the results of

statistical analysis, there is a significant difference between the correctness of created and

validated UML class diagrams in favour of the diagrams created and validated with the

support of the proposed tool. While observing the course of the experiment, it turned out that

working with the tool was not problematic for most of students. In spite of very short training,

the participants were able to use the tool quite fluently.

227

228

Part VI

Final

Part VI: Final

229

230

14. Conclusions

14.1. Thesis Contributions

Nowadays, UML class diagrams are the indispensable elements of business models. The

modellers require domain information when designing the diagrams. For this purpose, the

domain ontologies can be used because their purpose is to reflex and organize information in

different domains. This research has selected OWL for defining ontologies, which is justified

by the growing number of the already created domain ontologies in this language. The

selection of domain ontologies has a practical justification but the presented approaches are

applicable not only to domain ontologies but also to top level ontologies or even application

ontologies expressed in OWL.

Using ontologies allows creating models without the necessity of having the expertise

provided by domain experts. The ontology driven development of a software system starts

from an existing domain ontology, and continues with creating a model in a selected

modelling language (Chapter 6.1). This dissertation details the aspect of ontology driven

development in the context of creating UML class diagrams from OWL domain ontologies.

The scope of this research includes both the creation and the validation of UML class

diagrams. In this research, validation is used to check the UML class diagrams with respect to

the given OWL domain ontologies representing the needed domains (Chapter 4.2). There are

two stages in diagram validation: the formal verification which is conducted automatically in

the proposed tool, and the formal acceptance of the results by the modeller who ultimately

decides about the validation.

Developing semantically correct UML class diagrams is a practical problem of software

engineering. This dissertation proposes:

 a method for the semi-automatic extraction of UML class diagrams from OWL domain

ontologies (Chapter 6), and

 a method for automatic verification of the UML class diagrams against ontologies

expressed in OWL (Chapter 5).

The proposed methods, as a proof of concept, have been implemented in the tool (Part IV).

The tool has been tested with the test cases (Appendix A), and empirically evaluated (Part V,

Appendix B) through conducting an experiment with the students from Wrocław University

of Science and Technology (Chapter 12). As a result, the proposed methods have proven

their practical potential and demonstrated their usability (Chapter 13).

The posed objectives were achieved, and hence, the thesis of this dissertation: "the use of

domain ontologies favours the faster creation of business models and increases their semantic

quality" can be accepted as proven.

231

14.1.1. Thesis Contributions in the Context of Validation of UML Class Diagrams

The method of the semantic validation of UML class diagrams with respect to the selected

domains is the original proposition of this research (Section 5). A key step in the method of

validation, is the automatic generation of the result of verification (Section 10). To the best

knowledge of the author, currently no other method or tool allows for the automatic

verification of UML class diagrams against the domain ontologies expressed in OWL.

The proposed method of validation checks the semantic compliance of the diagrams with

respect to the domains described by the underlying ontology. The method uses the automatic

verification if all diagram elements and their relationships are compliant (or not) with the

selected ontology. The verification of UML class diagrams can be conducted without

involving domain experts in the process. The validation is semi-automated because the

modeller receives the automatically generated results of verification with the suggested

corrections to the designed diagram.

The verification inference bases on the axiomatic system, which uses the so-called

transformation and verification rules:

 The transformation rules (Section 5.3.2) convert any UML class diagram to its

equivalent OWL representation. The author of this research has conducted a systematic

literature review on the topic of the transformation rules between elements of UML class

diagrams and OWL constructs, which is also a contribution of this research (Section 8).

The identified state-of-the-art transformation rules were extended with several new

propositions. Summarizing the numbers, 41 transformation rules were identified: 25 came

directly from the literature, and 16 rules were either completely new propositions or were

extended to a broader context by the author of this dissertation.

 The verification rules (Section 5.3.3) are a fully original contribution of this research.

The verification rules are aimed at checking the compliance of the OWL representation of

the UML class diagram with the given OWL domain ontology.

The OWL language allows to define different axioms which are semantically equivalent, as

well as to define the axioms of the same type which have a different internal structure and the

same semantic meaning. For the purpose of implementing the intended functionality of the tool

 in the context of both creation, as well as validation this dissertation proposes a method of

normalizing OWL ontologies (Section 7). The normalization enables to present any input

OWL ontology in a new but semantically equivalent form; in a unified structure of axioms. The

normalized ontologies have a unified structure of axioms, therefore, they can be easily

compared in an algorithmic way. The tool allows normalizing on-demand any syntactically

correct and consistent ontology expressed in OWL. The normalization method is a

contribution of this research which can be used also in other future projects. For example, it

can be used in the context of merging ontologies. Nevertheless, it has to be noted that the

normalized ontologies are intended to be analysed by tool (not human) readers.

232

14.1.2. Thesis Contributions in the Context of the Creation of UML Class Diagrams

The topic of extracting UML elements from OWL ontologies is not new, and has already been

described in the literature. There are several tools, with different range of possibilities, which

offer a transformation from OWL ontologies to UML class diagrams (Section 9.1).

The original proposition of this research is the process of the semi-automatic creation of UML

class diagrams from OWL domain ontologies (Section 6.2). The process defines the direct

extraction and the extended extraction:

 The direct extraction (Section 6.3.1) bases fully on the selected domain ontology. The

proposed method assures that the direct extraction of the UML class diagram is always

compliant with the ontology.

 The extended extraction (Section 6.3.2) is another original proposition of this research. It

allows extracting additional UML elements which are only partly based on the selected

domain ontology. Such a transformation from OWL to UML adds some additional

information to the UML elements, which is not explicitly defined in the ontology, but is

also not contradictory with the ontology. This proposal was formulated after observing a

number of real ontologies which often contain incomplete sets of axioms in accordance

with the definitions for the subsequent categories of UML elements. This approach is

justified based on observing the practical modelling needs.

To summarize, the developed method (and the tool) in the context of diagram creation has

three original features:

1. The method assures the compliance of the extracted UML class diagram with the

underlying OWL ontology. The OWL to UML extraction takes into account the checking

rules (Section 6.3.1) for the purpose of correct OWL to UML transformation.

2. The method allows extracting from OWL ontologies all categories of elements of UML

class diagrams which are important from the point of view of pragmatics (Section 2.3).

The proposed extraction is more complex in comparison with the related works.

3. The method offers to conduct both the direct extraction and the extended extraction, as

left up to the modeller's decision.

14.1.3. Additional Thesis Contributions

A) Development of OWL ontologies:

The literature describes approaches focused on reusing the knowledge from (existing) UML

class diagrams in order to develop new OWL ontologies (e.g. [20], [115], [126], [131]). The

works argue that developing OWL ontologies is a difficult and time-consuming task, and the

visual notation, such as well-known UML, may highly accelerate the process of building

ontologies.

The complementary function of the developed tool presents all the axioms which are

described by the semantics of the UML class diagram but are not included in the OWL

233

domain ontology. The listed axioms can be manually added to the OWL domain ontology

with the purpose of extending the ontology with the new knowledge described by the

diagram.

The complementary function of the developed tool allows converting the designed UML class

diagrams into OWL ontologies of a simple structure (simple in terms of the number of

different OWL constructs). What has to be noted, the tool presents the axioms in a standard

form (not in the normalized form), which means that they are easy to be read by human

readers.

OWL and UML languages differ with respect to their expression power. Not every type of

OWL axiom has its equivalence in an element of the UML class diagram. On the other hand,

the majority of elements of the UML class diagram have their equivalence in OWL axioms.

Despite the limitations of UML language for being used as a visual syntax for knowledge

representation, this approach can be used to enhance writing some fragments of ontologies.

Such ontologies will of course not cover the full spectrum of all possible OWL constructs, but

will be fully usable for some typical needs.

B) Visualization of OWL ontologies:

The literature describes approaches aimed at addressing a problem of providing a visual

method for OWL ontologies. Some approaches (e.g. [46], [132]) propose UML as a visual

method for OWL ontologies with the purpose of accelerating the process of human

familiarization with the ontologies, as well as to accelerate the maintenance of the ontologies.

The developed tool allows the modeller to also visualize the whole OWL ontology, with the

restriction that the visualization will include only those OWL axioms which have semantic

equivalents in the elements of the UML class diagrams. However, for the purpose of a

comprehensive visualization of OWL ontologies, it is better not to use UML, but a language

dedicated for this purpose, such as VOWL.

14.2. Future Works

The works presented in this dissertation can be the subject of further research. There are

several directions of future research worth considering, for example:

One area of possible future works is to focus on the role of OCL language in business and

conceptual modelling with UML class diagrams. The OCL is a complement of the UML

notation with the goal to overcome the limitations of UML in terms of precisely specifying

detailed aspects of a system design. It is possible to transform at least some OCL constructs

into OWL axioms.

The possible future works can also develop a method to extract UML object diagrams based

on the extracted UML class diagrams and the OWL individuals defined in the OWL ontology.

During the business analysis phase, the UML object diagrams are used to show a structure of

a modelled system at a specific time. The UML object diagrams depict instances of the

classes and can be also used to confirm the accuracy and completeness of the UML class

diagram.

234

Another area of possible future works concerns the analysis of the natural language in the

context of the OWL domain ontologies, and the selected formats of system requirements

specification. The analysis can result in the automatization of extracting the relevant glossary

of terms representing the domain terms used within the requirements specification. The

quality of the glossary has a great impact on the quality of the final UML class diagrams. For

example, the use of a large lexical database such as WordNet [133] may result in a network of

meaningfully related words and concepts.

235

236

Appendix A. Test Cases

This appendix presents the test cases used to determine whether the developed tool satisfies

the intended requirements. The aim of the test cases is to check if the expected results

(manually created on the basis of the provided definitions) and the actual results

(automatically obtained with the use of the developed tool) are equal, which would confirm

the correctness of the implementation.

The next subsections present test cases for:

 normalization (80 test cases, Appendix A.1), in accordance with definitions of

normalization from Section 7.3,

 transformation rules (40 test cases, Appendix A.2), according to definitions of

transformation rules from Section 8.3,

 verification rules (23 test cases, Appendix A.3), following definitions of verification

rules also from Section 8.3.

The designed test cases cover all situations at least once. All test cases resulted in "Pass".

Please note that the order of axioms in the expected and the actual results is in some cases

different, but the order of the axioms in OWL 2 DL ontology is not important, therefore the

order of axioms does not influence the status (Pass or Fail).

All test cases uses the standard prefix names and IRIs for rdf:, owl:, xsd: and rdfs:, as well as

the declared default ontology prefix:

Prefix(:=<http://www.test.cases/normalization.owl#>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(<http://www.test.cases/normalization.owl>

Tested axiom(s)

)

Appendix A.1. Test Cases for Normalization

This appendix presents the conducted test cases for OWL 2 DL ontology normalization rules

(defined in Section 7.3).

RESULTS:

All test cases for normalization resulted in "Pass".

ANALYSIS OF RESULTS:

The expected and the actual results were first compared manually and next were compared

automatically with the use of Microsoft Excel and the "COUNTIF" formula, which was used

to count the number of cells that meet a criterion of the number of times a particular axiom

from "Actual result" appeared in a list with "Expected result" for each axiom in each test case

independently. The result "1" means that the selected axiom from "Actual result" was

237

textually identical to one another axiom from "Expected result" in test case of selected ID.

The result "1" was obtained for the majority of axioms. In some cases, all listed in Table A.1,

the obtained result was "0" which means that the selected axiom from "Actual result" was not

textually identical to any other axiom from "Expected result" in test case of selected ID. The

axioms with results "0" were manually verified if they are semantically equivalent

(see Table A.1).

Table A.1 The manually verified axioms with result "0" from "COUNTIF" formula.

Test case ID Explanation of semantic identity of axioms

(in accordance with the OWL 2 specification)

N13 The order of object properties expressions OPEi, 1 ≤ i ≤ n in DisjointObjectProperties(OPE1

... OPEn) is not important

N17 and N18

and N79

In ObjectMaxCardinality(n OPE CE) if CE is not present, it is taken to be owl:Thing.

N30 In DataMaxCardinality(n DPE DR) if DR is not present, it is taken to be rdfs:Literal.

N39 The order of data ranges DRi, 1 ≤ i ≤ n in DataIntersectionOf(DR1 ... DRn) is not important

N45 and N76 The order of class expressions CEi, 1 ≤ i ≤ n in ObjectUnionOf(CE1 ... CEn) is not

important

N47 The order of class expressions CEi, 1 ≤ i ≤ n in ObjectIntersectionOf(CE1 ... CEn) is not

important

TEST CASES:

The below tables contain columns: IDs of test cases, short description of the tested OWL

construct, tested rule(s) in accordance with Section 7.3, tested OWL axiom(s) with respect to

selected tested rule(s), expected result (created manually), actual result (generated

automatically by the tool), and status (Pass, Fail).

Table A.2 Test cases for class expression axioms.

ID Tested OWL

construct(s)

Tested rule(s) Tested axiom(s) Expected result Actual result Status

N1 EquivalentClass

es axiom with

duplicated class
expressions

Tested rule:

Table 7.1: ID 1

Other rule
called:

Table 7.1: ID 3

EquivalentClasses(:A

:A :B)

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:A :B)
SubClassOf(:B :A)

SubClassOf(:A :B)

Declaration(Class(:A))

SubClassOf(:B :A)
Declaration(Class(:B))

Pass

N2 EquivalentClass
es axiom with

three class

expressions

Tested rule:
Table 7.1: ID 2

Other rule

called:
Table 7.1: ID 3

EquivalentClasses(:A
:B :C)

Declaration(Class(:A))
Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:A :B)
SubClassOf(:B :A)

SubClassOf(:A :C)

SubClassOf(:C :A)
SubClassOf(:C :B)

SubClassOf(:B :C)

SubClassOf(:A :B)
SubClassOf(:B :C)

SubClassOf(:A :C)

Declaration(Class(:A))
SubClassOf(:B :A)

SubClassOf(:C :B)

Declaration(Class(:B))
SubClassOf(:C :A)

Declaration(Class(:C))

Pass

N3 EquivalentClass
es axiom with

two class

expressions

Tested rule:
Table 7.1: ID 3

EquivalentClasses(:A
:B)

Declaration(Class(:A))
Declaration(Class(:B))

SubClassOf(:A :B)

SubClassOf(:B :A)

SubClassOf(:A :B)
Declaration(Class(:A))

SubClassOf(:B :A)

Declaration(Class(:B))

Pass

238

N4 DisjointClasses
axiom with

duplicated class

expressions

Tested rule:
Table 7.1: ID 4

Other rule

called:
Table 7.1: ID 6

DisjointClasses(:A
:A :B)

Declaration(Class(:A))
Declaration(Class(:B))

SubClassOf(:A

ObjectComplementOf(:B))
SubClassOf(:B

ObjectComplementOf(:A))

SubClassOf(:B
ObjectComplementOf(:A))

Declaration(Class(:A))

SubClassOf(:A
ObjectComplementOf(:B))

Declaration(Class(:B))

Pass

N5 DisjointClasses

axiom with

three class
expressions

Tested rule:

Table 7.1: ID 5

Other rule
called:

Table 7.1: ID 6

DisjointClasses(:A

:B :C)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))
SubClassOf(:A

ObjectComplementOf(:B))

SubClassOf(:B
ObjectComplementOf(:A))

SubClassOf(:A

ObjectComplementOf(:C))
SubClassOf(:C

ObjectComplementOf(:A))

SubClassOf(:C
ObjectComplementOf(:B))

SubClassOf(:B

ObjectComplementOf(:C))

SubClassOf(:A

ObjectComplementOf(:C))

SubClassOf(:B
ObjectComplementOf(:A))

Declaration(Class(:A))

SubClassOf(:C
ObjectComplementOf(:B))

SubClassOf(:A

ObjectComplementOf(:B))
Declaration(Class(:B))

SubClassOf(:B

ObjectComplementOf(:C))
SubClassOf(:C

ObjectComplementOf(:A))

Declaration(Class(:C))

Pass

N6 DisjointClasses

axiom with two
class

expressions

Tested rule:

Table 7.1: ID 6

DisjointClasses(:A

:B)

Declaration(Class(:A))

Declaration(Class(:B))
SubClassOf(:A

ObjectComplementOf(:B))

SubClassOf(:B
ObjectComplementOf(:A))

SubClassOf(:B

ObjectComplementOf(:A))
Declaration(Class(:A))

SubClassOf(:A

ObjectComplementOf(:B))
Declaration(Class(:B))

Pass

N7 DisjointUnion

axiom with
duplicated class

expressions

Tested rule:

Table 7.1: ID 7

Other rules

called:

Table 7.1: ID 8
Table 7.1: ID 3

Table 7.1: ID 6

DisjointUnion(:C

:A1 :A1 :A2)

Declaration(Class(:C))

Declaration(Class(:A1))
Declaration(Class(:A2))

SubClassOf(:C

ObjectUnionOf(:A1 :A2))
SubClassOf(ObjectUnionOf(

:A1 :A2) :C)

SubClassOf(:A1
ObjectComplementOf(:A2))

SubClassOf(:A2
ObjectComplementOf(:A1))

SubClassOf(:C

ObjectUnionOf(:A1 :A2))
SubClassOf(:A1

ObjectComplementOf(:A2))

Declaration(Class(:A2))
SubClassOf(:A2

ObjectComplementOf(:A1))

SubClassOf(ObjectUnionOf(
:A1 :A2) :C)

Declaration(Class(:A1))
Declaration(Class(:C))

Pass

N8 DisjointUnion

axiom with a
class that is a

disjoint union

of three class
expressions

Tested rule:

Table 7.1: ID 8

Other rules

called:

Table 7.1: ID 8
Table 7.1: ID 3

Table 7.1: ID 5

Table 7.1: ID 6

DisjointUnion(:C

:A1 :A2 :A3)

Declaration(Class(:C))

Declaration(Class(:A1))
Declaration(Class(:A2))

Declaration(Class(:A3))

SubClassOf(:C
ObjectUnionOf(:A1 :A2 :A3))

SubClassOf(ObjectUnionOf(

:A1 :A2 :A3) :C)
SubClassOf(:A1

ObjectComplementOf(:A2))

SubClassOf(:A2
ObjectComplementOf(:A1))

SubClassOf(:A1

ObjectComplementOf(:A3))
SubClassOf(:A3

ObjectComplementOf(:A1))

SubClassOf(:A3
ObjectComplementOf(:A2))

SubClassOf(:A2

ObjectComplementOf(:A3))

SubClassOf(:A3

ObjectComplementOf(:A2))
SubClassOf(:A1

ObjectComplementOf(:A2))

SubClassOf(:A1
ObjectComplementOf(:A3))

Declaration(Class(:A2))

SubClassOf(:A2
ObjectComplementOf(:A1))

Declaration(Class(:A3))

SubClassOf(:A3
ObjectComplementOf(:A1))

SubClassOf(ObjectUnionOf(

:A1 :A2 :A3) :C)
SubClassOf(:A2

ObjectComplementOf(:A3))

Declaration(Class(:A1))
SubClassOf(:C

ObjectUnionOf(:A1 :A2 :A3))

Declaration(Class(:C))

Pass

239

Table A.3. Test cases for object property axioms

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N9 EquivalentObjectPr

operties axiom with
duplicated object

property expressions

Tested rule:

Table 7.2:

ID 1

Other rule

called:

Table 7.2:

ID 3

EquivalentObjectPropertie

s(:A :A :B)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:A :B)

SubObjectPropertyOf(:B :A)

SubObjectPropertyOf(:A :B)

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:B :A)

Declaration(

ObjectProperty(:A))

Pass

N10 EquivalentObjectPr

operties axiom with
three object property

expressions

Tested rule:

Table 7.2:

ID 2

Other rule

called:

Table 7.2:
ID 3

EquivalentObjectPropertie

s(:A :B :C)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

Declaration(

ObjectProperty(:C))

SubObjectPropertyOf(:A :B)

SubObjectPropertyOf(:B :A)

SubObjectPropertyOf(:A :C)

SubObjectPropertyOf(:C :A)

SubObjectPropertyOf(:C :B)

SubObjectPropertyOf(:B :C)

SubObjectPropertyOf(:A :B)

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:B :C)

SubObjectPropertyOf(:C :A)

Declaration(

ObjectProperty(:C))

SubObjectPropertyOf(:B :A)

SubObjectPropertyOf(:A :C)

SubObjectPropertyOf(:C :B)

Declaration(

ObjectProperty(:A))

Pass

N11 EquivalentObjectPr

operties axiom with

two object property
expressions

Tested rule:

Table 7.2:

ID 3

EquivalentObjectPropertie

s(:A :B)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:A :B)

SubObjectPropertyOf(:B :A)

SubObjectPropertyOf(:A :B)

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:B :A)

Declaration(

ObjectProperty(:A))

Pass

N12 DisjointObjectPrope
rties axiom with

duplicated object

property expressions

Tested rule:

Table 7.2:

ID 4

DisjointObjectProperties(
:A :A :B)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

DisjointObjectProperties(

:A :B)

Declaration(

ObjectProperty(:B))

DisjointObjectProperties(

:A :B)

Declaration(

ObjectProperty(:A))

Pass

N13 DisjointObjectPrope

rties axiom with
three object property

expressions

Tested rule:

Table 7.2:
ID 5

DisjointObjectProperties(

:A :B :C)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

Declaration(

ObjectProperty(:C))

DisjointObjectProperties(:A :B

)

DisjointObjectProperties(:A :C

)

DisjointObjectProperties(:C :B

)

Declaration(

ObjectProperty(:B))

DisjointObjectProperties(:A :C

)

Declaration(

ObjectProperty(:C))

DisjointObjectProperties(:A :B

)

DisjointObjectProperties(:B :C

)

Declaration(

ObjectProperty(:A))

Pass

N14 InverseObjectProper

ties axiom

Tested rule:

Table 7.2:

ID 6

Other rule

called:

Table 7.2:

ID 3

InverseObjectProperties(

:A :B)

Declaration(

ObjectProperty(:A))

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:A

ObjectInverseOf(:B))

SubObjectPropertyOf(

ObjectInverseOf(:B) :A)

SubObjectPropertyOf(:B

ObjectInverseOf(:A))

SubObjectPropertyOf(

ObjectInverseOf(:A) :B)

SubObjectPropertyOf(

ObjectInverseOf(:B) :A)

Declaration(

ObjectProperty(:B))

SubObjectPropertyOf(:B

ObjectInverseOf(:A))

SubObjectPropertyOf(:A

ObjectInverseOf(:B))

SubObjectPropertyOf(

ObjectInverseOf(:A) :B)

Declaration(

ObjectProperty(:A))

Pass

240

N15 ObjectPropertyDom
ain axiom

Tested rule:

Table 7.2:

ID 7

Other rule

called:

Table 7.6:

ID 9

ObjectPropertyDomain(
:A :C)

Declaration(Class(:C))

Declaration(

ObjectProperty(:A))

SubClassOf(

ObjectMinCardinality(1 :A

owl:Thing) :C)

SubClassOf(

ObjectMinCardinality(1 :A

owl:Thing) :C)

Declaration(Class(:C))

Declaration(

ObjectProperty(:A))

Pass

N16 ObjectPropertyRang
e axiom

Tested rule:

Table 7.2:

ID 8

ObjectPropertyRange(:A
:C)

Declaration(Class(:C))

Declaration(

ObjectProperty(:A))

SubClassOf(owl:Thing

ObjectMaxCardinality(0 :A

ObjectComplementOf(:C)))

SubClassOf(owl:Thing

ObjectMaxCardinality(0 :A

ObjectComplementOf(:C)))

Declaration(Class(:C))

Declaration(

ObjectProperty(:A))

Pass

N17 FunctionalObjectPro

perty axiom

Tested rule:

Table 7.2:
ID 9

FunctionalObjectProperty(

:A)

Declaration(

ObjectProperty(:A))

SubClassOf(owl:Thing

ObjectMaxCardinality(1 :A))

SubClassOf(owl:Thing

ObjectMaxCardinality(1 :A

owl:Thing))

Declaration(

ObjectProperty(:A))

Pass

N18 InverseFunctionalO

bjectProperty axiom

Tested rule:

Table 7.2:

ID 10

InverseFunctionalObjectP

roperty(:A)

Declaration(

ObjectProperty(:A))

SubClassOf(owl:Thing

ObjectMaxCardinality(1

ObjectInverseOf(:A)))

SubClassOf(owl:Thing

ObjectMaxCardinality(1

ObjectInverseOf(:A)

owl:Thing))

Declaration(

ObjectProperty(:A))

Pass

N19 ReflexiveObjectPro
perty axiom

Tested rule:

Table 7.2:

ID 11

ReflexiveObjectProperty(
:A)

Declaration(ObjectProperty(:A)

)

SubClassOf(owl:Thing

ObjectHasSelf(:A))

SubClassOf(owl:Thing

ObjectHasSelf(:A))

Declaration(ObjectProperty(:A)

)

Pass

N20 IrreflexiveObjectPro

perty axiom

Tested rule:

Table 7.2:

ID 12

IrreflexiveObjectProperty(

:A)

Declaration(

ObjectProperty(:A))

SubClassOf(ObjectHasSelf(:A

) owl:Nothing)

SubClassOf(ObjectHasSelf(:A

) owl:Nothing)

Declaration(

ObjectProperty(:A))

Pass

N21 SymmetricObjectPr

operty axiom

Tested rule:

Table 7.2:

ID 13

SymmetricObjectProperty

(:A)

Declaration(

ObjectProperty(:A))

SubObjectPropertyOf(:A

ObjectInverseOf(:A))

SubObjectPropertyOf(:A

ObjectInverseOf(:A))

Declaration(

ObjectProperty(:A))

Pass

N22 TransitiveObjectPro
perty axiom

Tested rule:

Table 7.2:
ID 14

TransitiveObjectProperty(
:A)

Declaration(

ObjectProperty(:A))

SubObjectPropertyOf(

ObjectPropertyChain(:A :A) :A

)

SubObjectPropertyOf(

ObjectPropertyChain(:A :A) :A

)

Declaration(

ObjectProperty(:A))

Pass

Table A.4. Test cases for data property axioms.

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N23 EquivalentDataProp
erties axiom with

duplicated data

property expressions

Tested rule:

Table 7.3:

ID 1

Other rule

called:

Table 7.3:

ID 3

EquivalentDataProperties(
:A :A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :A)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :A)

Pass

241

N24 EquivalentDataProp
erties axiom with

three data property

expressions

Tested rule:

Table 7.3:

ID 2

Other rule

called:

Table 7.3:

ID 3

EquivalentDataProperties(
:A :B :C)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

Declaration(DataProperty(:C))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :A)

SubDataPropertyOf(:A :C)

SubDataPropertyOf(:C :A)

SubDataPropertyOf(:C :B)

SubDataPropertyOf(:B :C)

SubDataPropertyOf(:C :A)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :C)

SubDataPropertyOf(:A :C)

SubDataPropertyOf(:B :A)

SubDataPropertyOf(:C :B)

Declaration(DataProperty(:C))

Pass

N25 EquivalentDataProp

erties axiom with
two data property

expressions

Tested rule:

Table 7.3:
ID 3

EquivalentDataProperties(

:A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :A)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

SubDataPropertyOf(:B :A)

Pass

N26 EquivalentDataProp
erties axiom with

duplicated data

property expressions

Tested rule:

Table 7.3:

ID 4

DisjointDataProperties(:A
:A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

DisjointDataProperties(:A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

DisjointDataProperties(:A :B)

Pass

N27 EquivalentDataProp
erties axiom with

three data property

expressions

Tested rule:

Table 7.3:

ID 5

DisjointDataProperties(:A
:B :C)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

Declaration(DataProperty(:C))

DisjointDataProperties(:A :B)

DisjointDataProperties(:A :C)

DisjointDataProperties(:B :C)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

DisjointDataProperties(:B :C)

DisjointDataProperties(:A :C)

DisjointDataProperties(:A :B)

Declaration(DataProperty(:C))

Pass

N28 DataPropertyDomai

n axiom

Tested rule:

Table 7.3:

ID 6

Other rule

called:

Table 7.6:
ID 9

DataPropertyDomain(:A

:C)

Declaration(Class(:C))

Declaration(DataProperty(:A))

SubClassOf(

DataMinCardinality(1 :A

rdfs:Literal) :C)

Declaration(DataProperty(:A))

SubClassOf(

DataMinCardinality(1 :A

rdfs:Literal) :C)

Declaration(Class(:C))

Pass

N29 DataPropertyRange

axiom

Tested rule:

Table 7.3:

ID 7

Other rule

called:

Table 7.6:
ID 10

DataPropertyRange(:A :D

)

Declaration(DataProperty(:A))

Declaration(Datatype(:D))

SubClassOf(owl:Thing

DataMaxCardinality(0 :A

DataComplementOf(:D)))

Declaration(Datatype(:D))

Declaration(DataProperty(:A))

SubClassOf(owl:Thing

DataMaxCardinality(0 :A

DataComplementOf(:D)))

Pass

N30 FunctionalDataProp

erty axiom

Tested rule:

Table 7.3:

ID 8

FunctionalDataProperty(

:A)

Declaration(DataProperty(:A))

SubClassOf(owl:Thing

DataMaxCardinality(1 :A))

Declaration(DataProperty(:A))

SubClassOf(owl:Thing

DataMaxCardinality(1 :A

rdfs:Literal))

Pass

Table A.5. Test cases for assertion axioms.

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N31 SameIndividual

axiom with

duplicated
individuals

Tested rule:

Table 7.4:

ID 1

SameIndividual(:A :A :B

)

Declaration(NamedIndividual(

:A))

Declaration(NamedIndividual(

:B))

SameIndividual(:A :B)

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:A))

SameIndividual(:A :B)

Pass

242

N32 SameIndividual
axiom with three

individuals

Tested rule:

Table 7.4:

ID 2

SameIndividual(:A :B :C
)

Declaration(NamedIndividual(

:A))

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:C))

SameIndividual(:A :B)

SameIndividual(:A :C)

SameIndividual(:B :C)

SameIndividual(:A :C)

SameIndividual(:B :C)

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:A))

Declaration(NamedIndividual(

:C))

SameIndividual(:A :B)

Pass

N33 DifferentIndividuals

axiom with
duplicated

individuals

Tested rule:

Table 7.4:
ID 3

DifferentIndividuals(:A

:A :B)

Declaration(NamedIndividual(

:A))

Declaration(NamedIndividual(

:B))

DifferentIndividuals(:A :B)

DifferentIndividuals(:A :B)

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:A))

Pass

N34 DifferentIndividuals

axiom with three

individuals

Tested rule:

Table 7.4:

ID 4

DifferentIndividuals(:A

:B :C)

Declaration(NamedIndividual(

:A))

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:C))

DifferentIndividuals(:A :B)

DifferentIndividuals(:A :C)

DifferentIndividuals(:B :C)

DifferentIndividuals(:A :B)

DifferentIndividuals(:A :C)

Declaration(NamedIndividual(

:B))

Declaration(NamedIndividual(

:A))

DifferentIndividuals(:B :C)

Declaration(NamedIndividual(

:C))

Pass

Table A.6. Test cases for data ranges.

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N35 Nested
DataComplementOf

data range in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:

ID 1

DatatypeDefinition(:A
DataComplementOf(

DataComplementOf(:D)

))

Declaration(Datatype(:A))

Declaration(Datatype(:D))

DatatypeDefinition(:A :D)

Declaration(Datatype(:D))

DatatypeDefinition(:A :D)

Declaration(Datatype(:A))

Pass

N36 DataUnionOf data

range with

duplicated data

ranges in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:

ID 2

DatatypeDefinition(:A

DataUnionOf(:D1 :D1

:D2))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

DatatypeDefinition(:A

DataUnionOf(:D1 :D2))

Declaration(Datatype(:D2))

Declaration(Datatype(:D1))

Declaration(Datatype(:A))

DatatypeDefinition(:A

DataUnionOf(:D1 :D2))

Pass

N37 Nested
DataUnionOf data

ranges in
DatatypeDefinition

axiom

Tested rule:

Table 7.5:

ID 3

DatatypeDefinition(:A
DataUnionOf(:D1 :D2

DataUnionOf(:E1 :E2)
:D3))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

Declaration(Datatype(:D3))

Declaration(Datatype(:E1))

Declaration(Datatype(:E2))

DatatypeDefinition(:A

DataUnionOf(:D1 :D2 :D3 :E1

:E2))

Declaration(Datatype(:D2))

Declaration(Datatype(:E2))

Declaration(Datatype(:D1))

DatatypeDefinition(:A

DataUnionOf(:D1 :D2 :D3 :E1

:E2))

Declaration(Datatype(:A))

Declaration(Datatype(:D3))

Declaration(Datatype(:E1))

Pass

N38 DataIntersectionOf

data range with
duplicated data

ranges in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:
ID 4

DatatypeDefinition(:A

DataIntersectionOf(:D1
:D1 :D2))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

DatatypeDefinition(:A

DataIntersectionOf(:D1 :D2))

DatatypeDefinition(:A

DataIntersectionOf(:D1 :D2))

Declaration(Datatype(:D2))

Declaration(Datatype(:D1))

Declaration(Datatype(:A))

Pass

243

N39 Nested
DataIntersectionOf

data ranges in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:

ID 5

DatatypeDefinition(:A
DataIntersectionOf(:D1

DataIntersectionOf(:E1

:E2) :D2 :D3))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

Declaration(Datatype(:E1))

Declaration(Datatype(:E2))

Declaration(Datatype(:D3))

DatatypeDefinition(:A

DataIntersectionOf(:D1 :E1 :E2

:D2 :D3))

Declaration(Datatype(:D2))

Declaration(Datatype(:D1))

Declaration(Datatype(:E2))

Declaration(Datatype(:A))

DatatypeDefinition(:A

DataIntersectionOf(:D1 :D2

:D3 :E1 :E2))

Declaration(Datatype(:D3))

Declaration(Datatype(:E1))

Pass

N40 DataIntersectionOf

data range of
DataComplementOf

data ranges in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:
ID 6

DatatypeDefinition(:A

DataIntersectionOf(
DataComplementOf(:D1)

DataComplementOf(:D2)

))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

DatatypeDefinition(:A

DataComplementOf(

DataUnionOf(:D1 :D2)))

Declaration(Datatype(:D2))

Declaration(Datatype(:D1))

Declaration(Datatype(:A))

DatatypeDefinition(:A

DataComplementOf(

DataUnionOf(:D1 :D2)))

Pass

N41 DataUnionOf data

range of
DataComplementOf

data ranges in

DatatypeDefinition
axiom

Tested rule:

Table 7.5:

ID 7

DatatypeDefinition(:A

DataUnionOf(
DataComplementOf(:D1)

DataComplementOf(:D2)

))

Declaration(Datatype(:A))

Declaration(Datatype(:D1))

Declaration(Datatype(:D2))

DatatypeDefinition(:A

DataComplementOf(

DataIntersectionOf(:D1 :D2))

)

Declaration(Datatype(:D2))

Declaration(Datatype(:D1))

Declaration(Datatype(:A))

DatatypeDefinition(:A

DataComplementOf(

DataIntersectionOf(:D1 :D2))

)

Pass

N42 DataOneOf data

range in
DatatypeDefinition

axiom

Tested rule:

Table 7.5:
ID 8

DatatypeDefinition(:A

DataOneOf("L1" "L1"
"L2"))

Declaration(Datatype(:A))

DatatypeDefinition(:A

DataOneOf("L1" "L2"))

DatatypeDefinition(:A

DataOneOf("L1" "L2"))

Declaration(Datatype(:A))

Pass

Table A.7. Test cases for class expressions.

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N43 Nested
ObjectComplementO

f class expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 1

SubClassOf(
ObjectComplementOf(

ObjectComplementOf(:A

)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:A :B)

SubClassOf(:A :B)

Declaration(Class(:A))

Declaration(Class(:B))

Pass

N44 ObjectUnionOf class
expression with

duplicated class

expressions in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 2

SubClassOf(
ObjectUnionOf(:A1 :A1

:A2) :B)

Declaration(Class(:A1))

Declaration(Class(:A2))

Declaration(Class(:B))

SubClassOf(ObjectUnionOf(

:A1 :A2) :B)

SubClassOf(ObjectUnionOf(

:A1 :A2) :B)

Declaration(Class(:A2))

Declaration(Class(:B))

Declaration(Class(:A1))

Pass

N45 Nested

ObjectUnionOf class
expressions in

SubClassOf axiom

Tested rule:

Table 7.6:
ID 3

SubClassOf(

ObjectUnionOf(:A1
ObjectUnionOf(:B1 :B2

:B3) :A2) :C)

Declaration(Class(:A1))

Declaration(Class(:B1))

Declaration(Class(:B2))

Declaration(Class(:B3))

Declaration(Class(:A2))

Declaration(Class(:C))

SubClassOf(ObjectUnionOf(

:A1 :B1 :B2 :B3 :A2) :C)

Declaration(Class(:A2))

Declaration(Class(:B3))

Declaration(Class(:B1))

SubClassOf(ObjectUnionOf(

:A1 :A2 :B1 :B2 :B3) :C)

Declaration(Class(:A1))

Declaration(Class(:B2))

Declaration(Class(:C))

Pass

N46 ObjectIntersectionOf
class expression with

duplicated class

expressions in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 4

SubClassOf(
ObjectIntersectionOf(:A1

:A1 :A2) :B)

Declaration(Class(:A1))

Declaration(Class(:A2))

Declaration(Class(:B))

SubClassOf(

ObjectIntersectionOf(:A1 :A2)

:B)

Declaration(Class(:A2))

Declaration(Class(:B))

SubClassOf(

ObjectIntersectionOf(:A1 :A2)

:B)

Declaration(Class(:A1))

Pass

244

N47 Nested
ObjectIntersectionOf

class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 5

SubClassOf(
ObjectIntersectionOf(:A1

:A2 ObjectIntersectionOf(

:B1 :B2) :A3) :C)

Declaration(Class(:A1))

Declaration(Class(:A2))

Declaration(Class(:B1))

Declaration(Class(:B2))

Declaration(Class(:A3))

Declaration(Class(:C))

SubClassOf(

ObjectIntersectionOf(:A1 :A2

:B1 :B2 :A3) :C)

SubClassOf(

ObjectIntersectionOf(:A1 :A2

:A3 :B1 :B2) :C)

Declaration(Class(:A2))

Declaration(Class(:B1))

Declaration(Class(:A3))

Declaration(Class(:A1))

Declaration(Class(:B2))

Declaration(Class(:C))

Pass

N48 ObjectIntersectionOf

class expression of
ObjectComplementO

f class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:
ID 6

SubClassOf(

ObjectIntersectionOf(
ObjectComplementOf(

:A1)

ObjectComplementOf(
:A2)

ObjectComplementOf(

:A3)) :C)

Declaration(Class(:A1))

Declaration(Class(:A2))

Declaration(Class(:A3))

Declaration(Class(:C))

SubClassOf(

ObjectComplementOf(

ObjectUnionOf (:A1 :A2 :A3)

) :C)

SubClassOf(

ObjectComplementOf(

ObjectUnionOf(:A1 :A2 :A3))

:C)

Declaration(Class(:A2))

Declaration(Class(:A3))

Declaration(Class(:A1))

Declaration(Class(:C))

Pass

N49 ObjectUnionOf class
expression of

ObjectComplementO

f class expressions in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 7

SubClassOf(
ObjectUnionOf(

ObjectComplementOf(

:A1)
ObjectComplementOf(

:A2)

ObjectComplementOf(
:A3)) :C)

Declaration(Class(:A1))

Declaration(Class(:A2))

Declaration(Class(:A3))

Declaration(Class(:C))

SubClassOf(

ObjectComplementOf(

ObjectIntersectionOf(:A1 :A2

:A3)) :C)

Declaration(Class(:A2))

SubClassOf(

ObjectComplementOf(

ObjectIntersectionOf(:A1 :A2

:A3)) :C)

Declaration(Class(:A3))

Declaration(Class(:A1))

Declaration(Class(:C))

Pass

N50 ObjectOneOf class

expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 8

SubClassOf(

ObjectOneOf(:I1 :I1 :I2)

:B)

Declaration(Class(:B))

Declaration(NamedIndividual(

:I1))

Declaration(NamedIndividual(

:I2))

SubClassOf(ObjectOneOf(:I1

:I2) :B)

Declaration(NamedIndividual(

:I2))

Declaration(NamedIndividual(

:I1))

Declaration(Class(:B))

SubClassOf(ObjectOneOf(:I1

:I2) :B)

Pass

N51 ObjectSomeValuesFr

om class expression

in SubClassOf axiom

Tested rule:

Table 7.6:

ID 9

SubClassOf(

ObjectSomeValuesFrom(

:P :C) :A)

Declaration(Class(:A))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(

ObjectMinCardinality(1 :P :C)

:A)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

SubClassOf(

ObjectMinCardinality(1 :P :C)

:A)

Declaration(Class(:C))

Pass

N52 ObjectAllValuesFro

m class expression in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 10

SubClassOf(

ObjectAllValuesFrom(:P
:C) :A)

Declaration(Class(:A))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(

ObjectMaxCardinality(0 :P

ObjectComplementOf(:C)) :A

)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

SubClassOf(

ObjectMaxCardinality(0 :P

ObjectComplementOf(:C)) :A

)

Declaration(Class(:C))

Pass

N53 ObjectHasValue class
expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 11

Other rule

called:

Table 7.6:

ID 9

SubClassOf(
ObjectHasValue(:P :I) :A

)

Declaration(Class(:A))

Declaration(ObjectProperty(:P

))

Declaration(NamedIndividual(

:I))

SubClassOf(

ObjectMinCardinality(1 :P

ObjectOneOf(:I)) :A)

Declaration(NamedIndividual(

:I))

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

SubClassOf(

ObjectMinCardinality(1 :P

ObjectOneOf(:I)) :A)

Pass

N54 DataSomeValuesFro

m class expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 12

SubClassOf(

DataSomeValuesFrom(:P

:D) :A)

Declaration(Class(:A))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(

DataMinCardinality(1 :P :D) :A)

Declaration(Datatype(:D))

SubClassOf(

DataMinCardinality(1 :P :D) :A)

Declaration(Class(:A))

Declaration(DataProperty(:P)

)

Pass

N55 DataAllValuesFrom

class expression in

Tested rule:

Table 7.6:

SubClassOf(

DataAllValuesFrom(:P :D)

Declaration(Class(:A))

Declaration(DataProperty(:P)

Declaration(Datatype(:D))

Declaration(Class(:A))

Pass

245

SubClassOf axiom ID 13 :A))

Declaration(Datatype(:D))

SubClassOf(

DataMaxCardinality(0 :P

DataComplementOf(:D)) :A)

SubClassOf(

DataMaxCardinality(0 :P

DataComplementOf(:D)) :A)

Declaration(DataProperty(:P)

)

N56 DataHasValue class

expression in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 14

Other rule

called:

Table 7.6:
ID 9

SubClassOf(

DataHasValue(:P "L") :A
)

Declaration(Class(:A))

Declaration(DataProperty(:P)

)

SubClassOf(

DataMinCardinality(1 :P

DataOneOf("L")) :A)

Declaration(Class(:A))

SubClassOf(

DataMinCardinality(1 :P

DataOneOf("L")) :A)

Declaration(DataProperty(:P)

)

Pass

N57 ObjectUnionOf class

expression containing

ObjectMinCardinality
class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 15

SubClassOf(

ObjectUnionOf(:A

ObjectMinCardinality(3
:P :C)

ObjectMinCardinality(6
:P :C)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(ObjectUnionOf(
:A ObjectMinCardinality(3 :P

:C)) :B)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

SubClassOf(ObjectUnionOf(

:A ObjectMinCardinality(3 :P

:C)) :B)

Declaration(Class(:B))

Declaration(Class(:C))

Pass

N58 ObjectIntersectionOf

class expression
containing

ObjectMinCardinality
class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:
ID 16

SubClassOf(

ObjectIntersectionOf(:A
ObjectMinCardinality(3

:P :C)
ObjectMinCardinality(6

:P :C)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(

ObjectIntersectionOf(:A

ObjectMinCardinality(6 :P :C)
) :B)

SubClassOf(

ObjectIntersectionOf(:A

ObjectMinCardinality(6 :P :C)

) :B)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Pass

N59 ObjectUnionOf class

expression containing

ObjectMaxCardinalit
y class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 17

SubClassOf(

ObjectUnionOf(:A

ObjectMaxCardinality(3
:P :C)

ObjectMaxCardinality(6

:P :C)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(ObjectUnionOf(

:A ObjectMaxCardinality(6 :P

:C)) :B)

SubClassOf(ObjectUnionOf(

:A ObjectMaxCardinality(6 :P

:C)) :B)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Pass

N60 ObjectIntersectionOf

class expression
containing

ObjectMaxCardinalit

y class expressions in
SubClassOf axiom

Tested rule:

Table 7.6:
ID 18

SubClassOf(

ObjectIntersectionOf(:A
ObjectMaxCardinality(3

:P :C)

ObjectMaxCardinality(6
:P :C)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(
ObjectIntersectionOf(:A

ObjectMaxCardinality(3 :P :C)

) :B)

SubClassOf(

ObjectIntersectionOf(:A

ObjectMaxCardinality(3 :P :C)

) :B)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Pass

N61 ObjectExactCardinali

ty class expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 19

SubClassOf(

ObjectExactCardinality(2

:P :C) :A)

Declaration(Class(:A))

Declaration(Class(:C))

Declaration(ObjectProperty(:P

))

SubClassOf(

ObjectIntersectionOf(

ObjectMinCardinality(2 :P :C)

ObjectMaxCardinality(2 :P :C)

) :A)

Declaration(ObjectProperty(:P

))

Declaration(Class(:A))

SubClassOf(

ObjectIntersectionOf(

ObjectMinCardinality(2 :P :C)

ObjectMaxCardinality(2 :P :C)

) :A)

Declaration(Class(:C))

Pass

246

N62 ObjectUnionOf class
expression containing

DataMinCardinality

class expressions in
SubClassOf axiom

Tested rule:

Table 7.6:

ID 20

SubClassOf(
ObjectUnionOf(:A

DataMinCardinality(4 :P

:D) DataMinCardinality(
7 :P :D)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(ObjectUnionOf(

:A

DataMinCardinality(4 :P :D)) :B
)

Declaration(Datatype(:D))

SubClassOf(ObjectUnionOf(

:A DataMinCardinality(4 :P :D)

) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Pass

N63 ObjectIntersectionOf
class expression

containing

DataMinCardinality
class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 21

SubClassOf(
ObjectIntersectionOf(:A

DataMinCardinality(4 :P

:D) DataMinCardinality(
7 :P :D)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(

ObjectIntersectionOf(:A

DataMinCardinality(7 :P :D)) :B
)

Declaration(Datatype(:D))

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(

ObjectIntersectionOf(:A

DataMinCardinality(7 :P :D)) :B

)

Declaration(DataProperty(:P)

)

Pass

N64 ObjectUnionOf class

expression containing
DataMaxCardinality

class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 22

SubClassOf(

ObjectUnionOf(:A
DataMaxCardinality(4 :P

:D) DataMaxCardinality(

7 :P :D)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(ObjectUnionOf(
:A

DataMaxCardinality(7 :P :D))

:B)

Declaration(Datatype(:D))

Declaration(Class(:A))

SubClassOf(ObjectUnionOf(

:A DataMaxCardinality(7 :P :D)

) :B)

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Pass

N65 ObjectIntersectionOf

class expression

containing
DataMaxCardinality

class expressions in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 23

SubClassOf(

ObjectIntersectionOf(:A

DataMaxCardinality(4 :P
:D) DataMaxCardinality(

7 :P :D)) :B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(

ObjectIntersectionOf(:A
DataMaxCardinality(4 :P :D))

:B)

Declaration(Datatype(:D))

SubClassOf(

ObjectIntersectionOf(:A

DataMaxCardinality(4 :P :D))

:B)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:P)

)

Pass

N66 DataExactCardinality
class expression in

SubClassOf axiom

Tested rule:

Table 7.6:

ID 24

SubClassOf(
DataExactCardinality(5

:P :D) :A)

Declaration(Class(:A))

Declaration(DataProperty(:P)

)

Declaration(Datatype(:D))

SubClassOf(
ObjectIntersectionOf(

DataMinCardinality(5 :P :D)

DataMaxCardinality(5 :P :D))
:A)

SubClassOf(

ObjectIntersectionOf(

DataMinCardinality(5 :P :D)

DataMaxCardinality(5 :P :D))

:A)

Declaration(Datatype(:D))

Declaration(Class(:A))

Declaration(DataProperty(:P)

)

Pass

Table A.8. Test cases for object property expressions.

ID Tested OWL

construct(s)

Tested

rule(s)

Tested axiom(s) Expected result Actual result Status

N67 Nested
ObjectInverseOf

object property

expression in
SubObjectPropert

yOf axiom

Tested rule:

Table 7.7: ID

1

SubObjectPropertyOf
(ObjectInverseOf(

ObjectInverseOf (:P1

)) :P2)

Declaration(ObjectProperty(

:P1))

Declaration(ObjectProperty(

:P2))

SubObjectPropertyOf(:P1 :P2)

Declaration(ObjectProperty(

:P2))

Declaration(ObjectProperty(

:P1))

SubObjectPropertyOf(:P1 :P2)

Pass

247

Table A.9. Additional test cases: axioms with equal normalized and not-normalized form.

ID Tested OWL

construct(s)

Tested axiom(s) Expected result Actual result Status

N68 SubClassOf axiom SubClassOf(:A :B) Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:A :B)

SubClassOf(:A :B)

Declaration(Class(:A))

Declaration(Class(:B))

Pass

N69 SubObjectPropertyOf

axiom

SubObjectPropertyOf(:A :B) Declaration(ObjectProperty(:B))

Declaration(ObjectProperty(:A))

SubObjectPropertyOf(:A :B)

SubObjectPropertyOf(:A :B)

Declaration(ObjectProperty(:B))

Declaration(ObjectProperty(:A))

Pass

N70 DisjointObjectPropert

ies axiom with two

object properties

DisjointObjectProperties(:A :B

)

Declaration(ObjectProperty(:A))

Declaration(ObjectProperty(:B))

DisjointObjectProperties(:A :B)

Declaration(ObjectProperty(:B))

DisjointObjectProperties(:A :B)

Declaration(ObjectProperty(:A))

Pass

N71 AsymmetricObjectPr

operty axiom

AsymmetricObjectProperty(:A

)

Declaration(ObjectProperty(:A))

AsymmetricObjectProperty(:A)

AsymmetricObjectProperty(:A)

Declaration(ObjectProperty(:A))

Pass

N72 SubDataPropertyOf

axiom

SubDataPropertyOf(:A :B) Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

SubDataPropertyOf(:A :B)

Pass

N73 DisjointDataPropertie
s axiom with two data

properties

DisjointDataProperties(:A :B) Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

DisjointDataProperties(:A :B)

Declaration(DataProperty(:A))

Declaration(DataProperty(:B))

DisjointDataProperties(:A :B)

Pass

N74 SameIndividual
axiom with two

individuals

SameIndividual(:A :B) Declaration(NamedIndividual(:A)

)

Declaration(NamedIndividual(:B)

)

SameIndividual(:A :B)

Declaration(NamedIndividual(:B)

)

Declaration(NamedIndividual(:A)

)

SameIndividual(:A :B)

Pass

N75 DifferentIndividuals

axiom with two

individuals

DifferentIndividuals(:A :B) Declaration(NamedIndividual(:A)

)

Declaration(NamedIndividual(:B)

)

DifferentIndividuals(:A :B)

DifferentIndividuals(:A :B)

Declaration(NamedIndividual(:B)

)

Declaration(NamedIndividual(:A)

)

Pass

Table A.10. Additional test cases: more complex axioms or more axioms.

ID Tested axiom(s) Expected result Actual result Status

N76 DisjointUnion(:A

ObjectUnionOf(
:C1ObjectUnionOf(:B1 :B1 :B2)

:C2) :E1 ObjectComplementOf(

ObjectComplementOf(:D1)) :E2)

Declaration(Class(:A))

Declaration(Class(:B1))

Declaration(Class(:B2))

Declaration(Class(:C1))

Declaration(Class(:C2))

Declaration(Class(:D1))

Declaration(Class(:E1))

Declaration(Class(:E2))

SubClassOf(:A ObjectUnionOf(:C1 :B1 :B2

:C2 :E1 :D1 :E2))

SubClassOf(ObjectUnionOf (:C1 :B1 :B2

:C2 :E1 :D1 :E2) :A)

SubClassOf(ObjectUnionOf(:C1 :B1 :B2 :C2

) ObjectComplementOf(:E1))

SubClassOf(:E1 ObjectComplementOf(

ObjectUnionOf(:C1 :B1 :B2 :C2)))

SubClassOf(ObjectUnionOf(:C1 :B1 :B2 :C2

) ObjectComplementOf(:D1))

SubClassOf(:D1 ObjectComplementOf(

ObjectUnionOf(:C1 :B1 :B2 :C2)))

SubClassOf(ObjectUnionOf(:C1 :B1 :B2 :C2

) ObjectComplementOf(:E2))

SubClassOf(:E2 ObjectComplementOf(

ObjectUnionOf(:C1 :B1 :B2 :C2)))

SubClassOf(:E1 ObjectComplementOf(:D1)

SubClassOf(ObjectUnionOf(:B1 :B2 :C1 :C2

) ObjectComplementOf(:D1))

SubClassOf(ObjectUnionOf(:B1 :B2 :C1 :C2

) ObjectComplementOf(:E2))

SubClassOf(ObjectUnionOf(:B1 :B2 :C1 :C2

) ObjectComplementOf(:E1))

SubClassOf(:E2 ObjectComplementOf(:E1)

)

SubClassOf(:D1 ObjectComplementOf(:E1)

)

Declaration(Class(:E1))

SubClassOf(:E1 ObjectComplementOf(

ObjectUnionOf(:B1 :B2 :C1 :C2)))

Declaration(Class(:E2))

Declaration(Class(:D1))

Declaration(Class(:A))

SubClassOf(:D1 ObjectComplementOf(:E2)

)

SubClassOf(:E2 ObjectComplementOf(:D1)

)

Declaration(Class(:C1))

SubClassOf(ObjectUnionOf(:B1 :B2 :C1 :C2

:D1 :E1 :E2) :A)

Declaration(Class(:C2))

Declaration(Class(:B1))

Pass

248

)

SubClassOf(:D1 ObjectComplementOf(:E1)

)

SubClassOf(:E1 ObjectComplementOf(:E2)

)

SubClassOf(:E2 ObjectComplementOf(:E1)

)

SubClassOf(:D1 ObjectComplementOf(:E2)

)

SubClassOf(:E2 ObjectComplementOf(:D1)

)

SubClassOf(:D1 ObjectComplementOf(

ObjectUnionOf(:B1 :B2 :C1 :C2)))

SubClassOf(:E2 ObjectComplementOf(

ObjectUnionOf(:B1 :B2 :C1 :C2)))

SubClassOf(:E1 ObjectComplementOf(:D1)

)

SubClassOf(:E1 ObjectComplementOf(:E2)

)

Declaration(Class(:B2))

SubClassOf(:A ObjectUnionOf(:B1 :B2 :C1

:C2 :D1 :E1 :E2))

N77 EquivalentClasses(:A :A

ObjectIntersectionOf(

ObjectMinCardinality(3 :P :B)
ObjectMaxCardinality(7 :P :B)

ObjectExactCardinality(4 :P :B)))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:P))

SubClassOf(:A ObjectIntersectionOf(

ObjectMinCardinality(4 :P :B)

ObjectMaxCardinality(4 :P :B)))

SubClassOf(ObjectIntersectionOf(

ObjectMinCardinality(4 :P :B)

ObjectMaxCardinality(4 :P :B)) :A)

SubClassOf(:A ObjectIntersectionOf(

ObjectMinCardinality(4 :P :B)

ObjectMaxCardinality(4 :P :B)))

Declaration(ObjectProperty(:P))

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(ObjectIntersectionOf(

ObjectMinCardinality(4 :P :B)

ObjectMaxCardinality(4 :P :B)) :A)

Pass

N78 Declaration(ObjectProperty(:P))

AsymmetricObjectProperty(:P)

Declaration(ObjectProperty(:P))

AsymmetricObjectProperty(:P)

AsymmetricObjectProperty(:P)

Declaration(ObjectProperty(:P))

Pass

N79 InverseObjectProperties(:P1 :P2)

ObjectPropertyDomain(:P1 :A)

ObjectPropertyRange(:P1 :B)

FunctionalObjectProperty(:P2)

Declaration(ObjectProperty(:P1))

Declaration(ObjectProperty(:P2))

Declaration(Class(:A))

Declaration(Class(:B))

SubObjectPropertyOf(:P1 ObjectInverseOf(:P2)

)

SubObjectPropertyOf(ObjectInverseOf(:P2) :P1

)

SubObjectPropertyOf(:P2 ObjectInverseOf(:P1)

)

SubObjectPropertyOf(ObjectInverseOf(:P1) :P2

)

SubClassOf(ObjectMinCardinality(1 :P1

owl:Thing) :A)

SubClassOf(owl:Thing

ObjectMaxCardinality(0 :P1

ObjectComplementOf(:B)))

SubClassOf(owl:Thing

ObjectMaxCardinality(1 :P2))

SubObjectPropertyOf(:P1 ObjectInverseOf(:P2)

)

SubClassOf(owl:Thing ObjectMaxCardinality(

1 :P2 owl:Thing))

Declaration(ObjectProperty(:P2))

SubClassOf(ObjectMinCardinality(1 :P1

owl:Thing) :A)

SubObjectPropertyOf(:P2 ObjectInverseOf(:P1)

)

Declaration(Class(:A))

SubObjectPropertyOf(ObjectInverseOf(:P1) :P2

)

SubClassOf(owl:Thing

ObjectMaxCardinality(0 :P1

ObjectComplementOf(:B)))

Declaration(Class(:B))

Declaration(ObjectProperty(:P1))

SubObjectPropertyOf(ObjectInverseOf(:P2) :P1

)

Pass

N80 Declaration(NamedIndividual(:A)

)

Declaration(NamedIndividual(:B)

)

Declaration(NamedIndividual(:C)

)

Declaration(NamedIndividual(:D))

SameIndividual(:A :B :C)

DifferentIndividuals(:A :D)

Declaration(NamedIndividual(:A))

Declaration(NamedIndividual(:B))

Declaration(NamedIndividual(:C))

Declaration(NamedIndividual(:D))

SameIndividual(:A :B)

SameIndividual(:A :C)

SameIndividual(:B :C)

DifferentIndividuals(:A :D)

SameIndividual(:A :C)

SameIndividual(:B :C)

Declaration(NamedIndividual(:B))

Declaration(NamedIndividual(:D))

DifferentIndividuals(:A :D)

Declaration(NamedIndividual(:A))

Declaration(NamedIndividual(:C))

SameIndividual(:A :B)

Pass

249

Appendix A.2. Test Cases for Transformation Rules

This appendix presents the conducted test cases for transformation rules between elements of

UML class diagrams and OWL 2 constructs (defined in Section 8.3).

RESULTS:

All test cases for transformation rules resulted in "Pass".

ANALYSIS OF RESULTS:

The expected and actual results were first compared manually and next compared

automatically with the use of Microsoft Excel and the "COUNTIF" formula (for wider

explanation of calculations please refer to Appendix A.1).

The result "1" was obtained for all but one axiom. In one case (see Table A.11) the obtained

result was "0" which means that the selected axiom from "Actual result" was not textually

identical to any another axiom from "Expected result". The test case was manually verified,

and is semantically identical (see Table A.11).

Table A.11 The manually verified axiom with result "0" from "COUNTIF" formula.

Test case ID Explanation of semantic identity of axioms

(in accordance with the OWL 2 specification)

T39 The order of literals Li, 1 ≤ i ≤ n, in DataOneOf(L1 ... Ln) is not important

TEST CASES:

The below table contains columns: IDs of the test case, short description of the tested UML

element, tested rule(s) in accordance with tables and IDs presented in Section 8.3, symbol of

tested UML element(s), expected result (created manually), actual result (generated

automatically by the tool), and status (Pass, Fail).

Table A.12 Test Cases for Transformation Rules.

ID Tested UML

element(s)

Tested

rule(s)

Symbol of tested

UML element(s)

Expected result Actual result Status

T1 Transformation

of a class with

no attributes

Table 8.2:
TR1

Declaration(Class(:A)) Declaration(Class(:A)) Pass

T2 Transformation
of a class with

an attribute of

String primitive
type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.18:

TR1

Declaration(Class(:B))

Declaration(DataProperty(:b1))

DataPropertyDomain(:b1 :B)

DataPropertyRange(:b1

xsd:string)

Declaration(Class(:B))

Declaration(DataProperty(:b1))

DataPropertyDomain(:b1 :B)

DataPropertyRange(:b1

xsd:string)

Pass

250

T3 Transformation
of a class with

an attribute of

Integer primitive
type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.18:
TR2

Declaration(Class(:B))

Declaration(DataProperty(:b2))

DataPropertyDomain(:b2 :B)

DataPropertyRange(:b2

xsd:integer)

Declaration(Class(:B))

Declaration(DataProperty(:b2))

DataPropertyDomain(:b2 :B)

DataPropertyRange(:b2

xsd:integer)

Pass

T4 Transformation

of a class with
an attribute of

Boolean

primitive type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.18:

TR3

Declaration(Class(:B))

Declaration(DataProperty(:b3))

DataPropertyDomain(:b3 :B)

DataPropertyRange(:b3

xsd:boolean)

Declaration(Class(:B))

Declaration(DataProperty(:b3))

DataPropertyDomain(:b3 :B)

DataPropertyRange(:b3

xsd:boolean)

Pass

T5 Transformation
of a class with

an attribute of

Real primitive
type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.18:

TR4

Declaration(Class(:B))

Declaration(DataProperty(:b4))

DataPropertyDomain(:b4 :B)

DataPropertyRange(:b4 xsd:float)

Declaration(Class(:B))

Declaration(DataProperty(:b4))

DataPropertyDomain(:b4 :B)

DataPropertyRange(:b4 xsd:float)

Pass

T6 Transformation

of user-defined

structured data
type with no

internal

structure

Table 8.19:

TR1, TR5

Declaration(Class(:D))

HasKey(:D () ())

Declaration(Class(:D))

HasKey(:D () ())

Pass

T7 Transformation

of user-defined

structured data
type with an

attribute

Table 8.19:

TR1, TR2,

TR3, TR4,
TR5

Declaration(Class(:D))

Declaration(DataProperty(:d))

DataPropertyDomain(:d :D)

DataPropertyRange(:d xsd:string)

HasKey(:D () (:d))

Declaration(Class(:D))

Declaration(DataProperty(:d))

DataPropertyDomain(:d :D)

DataPropertyRange(:d xsd:string)

HasKey(:D () (:d))

Pass

T8 Transformation

of a class with

an attribute of

user-defined

structured

data type with
no internal

structure

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.19:

TR1, TR5

Declaration(Class(:B))

Declaration(ObjectProperty(:b5))

ObjectPropertyDomain(:b5 :B)

ObjectPropertyRange(:b5 :D)

Declaration(Class(:D))

HasKey(:D () ())

Declaration(Class(:D))

Declaration(Class(:B))

Declaration(ObjectProperty(:b5))

ObjectPropertyDomain(:b5 :B)

ObjectPropertyRange(:b5 :D)

HasKey(:D () ())

Pass

T9 Transformation

of a class with

an attribute of

user-defined

structured

data type

with an attribute

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.19:

TR1, TR2,

TR3, TR4,

TR5

Declaration(Class(:B))

Declaration(ObjectProperty(:b5)

)

ObjectPropertyDomain(:b5 :B)

ObjectPropertyRange(:b5 :D)

Declaration(Class(:D))

Declaration(DataProperty(:d))

DataPropertyDomain(:d :D)

DataPropertyRange(:d xsd:string

)

HasKey(:D () (:d))

Declaration(Class(:D))

Declaration(Class(:B))

Declaration(DataProperty(:d))

DataPropertyDomain(:d :D)

DataPropertyRange(:d xsd:string

)

Declaration(ObjectProperty(:b5)

)

ObjectPropertyDomain(:b5 :B)

ObjectPropertyRange(:b5 :D)

HasKey(:D () (:d))

Pass

251

T10 Transformation

of a class with

an attribute of

primitive type

and multiplicity

of lower-bound

equal to upper-

bound

(here: 2..2)

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

DataExactCardinality(2 :c1

xsd:integer))

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

DataExactCardinality(2 :c1

xsd:integer))

Pass

T11 Transformation

of a class with
an attribute of

primitive type

and multiplicity
with lower-

bound of Integer

type and
unlimited upper-

bound

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

DataMinCardinality(2 :c1

xsd:integer))

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

DataMinCardinality(2 :c1

xsd:integer))

Pass

T12 Transformation

of a class with

attribute of
primitive type

and multiplicity

with both lower
and upper bound

of Integer type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

ObjectIntersectionOf(

DataMinCardinality(4 :c1

xsd:integer) DataMaxCardinality(

6 :c1 xsd:integer)))

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C

ObjectIntersectionOf(

DataMinCardinality(4 :c1

xsd:integer) DataMaxCardinality(

6 :c1 xsd:integer)))

Pass

T13 Transformation

of a class with
an attribute of

primitive type

and multiplicity
of several value

ranges

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C ObjectUnionOf(

ObjectIntersectionOf(

DataMinCardinality(2 :c1

xsd:integer) DataMaxCardinality(

6 :c1 xsd:integer))

ObjectIntersectionOf(

DataMinCardinality(8 :c1

xsd:integer) DataMaxCardinality(

12 :c1 xsd:integer))

DataMinCardinality(16 :c1

xsd:integer)))

Declaration(Class(:C))

Declaration(DataProperty(:c1))

DataPropertyDomain(:c1 :C)

DataPropertyRange(:c1

xsd:integer)

SubClassOf(:C ObjectUnionOf(

ObjectIntersectionOf(

DataMinCardinality(2 :c1

xsd:integer) DataMaxCardinality(

6 :c1 xsd:integer))

ObjectIntersectionOf(

DataMinCardinality(8 :c1

xsd:integer) DataMaxCardinality(

12 :c1 xsd:integer))

DataMinCardinality(16 :c1

xsd:integer)))

Pass

T14 Transformation

of a class with

an attribute of

user-defined

structured

data type and

multiplicity of

lower-bound

equal to upper-

bound

(here: 4..4)

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Table 8.19:

TR1, TR5

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

Declaration(Class(:D))

HasKey(:D () ())

SubClassOf(:E

ObjectExactCardinality(4 :e1 :D)

)

Declaration(Class(:D))

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

SubClassOf(:E

ObjectExactCardinality(4 :e1 :D)

)

HasKey(:D () ())

Pass

252

T15 Transformation

of a class with

an attribute of

user-defined

structured

data type and

multiplicity with

lower-bound of
Integer type and

unlimited upper-

bound

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Table 8.19:

TR1, TR5

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

Declaration(Class(:D))

HasKey(:D () ())

SubClassOf(:E

ObjectMinCardinality(3 :e1 :D))

Declaration(Class(:D))

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

SubClassOf(:E

ObjectMinCardinality(3 :e1 :D))

HasKey(:D () ())

Pass

T16 Transformation

of a class with

an attribute of

user-defined

structured

data type and

multiplicity of

both lower and
upper bound of

Integer type

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Table 8.19:

TR1, TR5

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

Declaration(Class(:D))

HasKey(:D () ())

SubClassOf(:E

ObjectIntersectionOf(

ObjectMinCardinality(1 :e1 :D)

ObjectMaxCardinality(3 :e1 :D))

)

Declaration(Class(:D))

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

SubClassOf(:E

ObjectIntersectionOf(

ObjectMinCardinality(1 :e1 :D)

ObjectMaxCardinality(3 :e1 :D))

)

HasKey(:D () ())

Pass

T17 Transformation

of a class with

an attribute of

user-defined

structured

data type and

multiplicity of

several value
ranges

Table 8.2:

TR1

Table 8.4:

TR1, TR2,

TR3

Table 8.5:

TR1

Table 8.19:

TR1, TR5

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

Declaration(Class(:D))

HasKey(:D () ())

SubClassOf(:E ObjectUnionOf(

ObjectIntersectionOf(

ObjectMinCardinality(1 :e1 :D)

ObjectMaxCardinality(4 :e1 :D)

) ObjectMinCardinality(8 :e1 :D)

))

Declaration(Class(:D))

Declaration(Class(:E))

Declaration(ObjectProperty(:e1))

ObjectPropertyDomain(:e1 :E)

ObjectPropertyRange(:e1 :D)

SubClassOf(:E ObjectUnionOf(

ObjectIntersectionOf(

ObjectMinCardinality(1 :e1 :D)

ObjectMaxCardinality(4 :e1 :D)

) ObjectMinCardinality(8 :e1 :D)

))

HasKey(:D () ())

Pass

T18 Transformation
of a binary

association

between two
classes with

unlimited

multiplicity of
both association

ends

Table 8.2:

TR1

Table 8.6:

TR1, TR2,
TR3, TR4

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:b :A)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

Pass

253

T19 Transformation

of a binary

association

between two

classes with

multiplicity of

both association

ends equal 0..1

Table 8.2:

TR1

Table 8.6:

TR1,

TR2,

TR3, TR4

Table 8.9:

TR1, TR2

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:b :A)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

SubClassOf(:B SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :b :B)

ObjectMaxCardinality(1 :b :B))

)

SubClassOf(:B

ObjectIntersectionOf(

ObjectMinCardinality(0 :a :A)

ObjectMaxCardinality(1 :a :A))

)

FunctionalObjectProperty(:a)

FunctionalObjectProperty(:b)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

SubClassOf(:A SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :b :B)

ObjectMaxCardinality(1 :b :B))

)

SubClassOf(:B

ObjectIntersectionOf(

ObjectMinCardinality(0 :a :A)

ObjectMaxCardinality(1 :a :A))

)

FunctionalObjectProperty(:a)

FunctionalObjectProperty(:b)

InverseObjectProperties(:a :b)

Pass

T20 Transformation
of a binary

association

between two
classes with

multiplicity of

both association
ends with lower

and upper bound

of Integer type

Table 8.2:

TR1

Table 8.6:

TR1,

TR2,

TR3, TR4

Table 8.9:

TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:b :A)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(2 :b :B)

ObjectMaxCardinality(4 :b :B))

)

SubClassOf(:B

ObjectIntersectionOf(

ObjectMinCardinality(3 :a :A)

ObjectMaxCardinality(5 :a :A))

)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(2 :b :B)

ObjectMaxCardinality(4 :b :B))

)

SubClassOf(:B

ObjectIntersectionOf(

ObjectMinCardinality(3 :a :A)

ObjectMaxCardinality(5 :a :A))

)

InverseObjectProperties(:a :b)

Pass

T21 Transformation

of a binary

association
between two

classes with

multiplicity of
one association

end with two

value ranges and
the other

association end

with its lower-
bound of Integer

type and

unlimited upper-
bound

Table 8.2:

TR1

Table 8.6:

TR1,

TR2,

TR3, TR4

Table 8.9:

TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:b :A)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

SubClassOf(:B

ObjectMinCardinality(3 :a :A))

SubClassOf(:A ObjectUnionOf(

ObjectIntersectionOf(

ObjectMinCardinality(2 :b :B)

ObjectMaxCardinality(4 :b :B))

ObjectIntersectionOf(

ObjectMinCardinality(6 :b :B)

ObjectMaxCardinality(8 :b :B)))

)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

SubClassOf(:A ObjectUnionOf(

ObjectIntersectionOf(

ObjectMinCardinality(2 :b :B)

ObjectMaxCardinality(4 :b :B))

ObjectIntersectionOf(

ObjectMinCardinality(6 :b :B)

ObjectMaxCardinality(8 :b :B)))

)

SubClassOf(:B

ObjectMinCardinality(3 :a :A))

InverseObjectProperties(:a :b)

Pass

254

T22 Transformation
of a binary

association from

a class to itself
with unlimited

multiplicity of

both association
ends

Table 8.2:

TR1

Table 8.7:

TR1,

TR2,
TR3,

TR4, TR5

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

ObjectPropertyDomain(:a1 :A)

ObjectPropertyDomain(:a2 :A)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

ObjectPropertyDomain(:a2 :A)

ObjectPropertyDomain(:a1 :A)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

Pass

T23 Transformation
of a binary

association from

a class to itself
with

multiplicity of

both association
ends with lower

and upper bound

of Integer type

Table 8.2:

TR1

Table 8.7:

TR1,

TR2,

TR3,

TR4, TR5

Table 8.9:
TR1

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

ObjectPropertyDomain(:a1 :A)

ObjectPropertyDomain(:a2 :A)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :a1 :A)

ObjectMaxCardinality(2 :a1 :A)

))

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :a2 :A)

ObjectMaxCardinality(1 :a2 :A)

))

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

ObjectPropertyDomain(:a2 :A)

ObjectPropertyDomain(:a1 :A)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :a2 :A)

ObjectMaxCardinality(1 :a2 :A)

))

SubClassOf(:A

ObjectIntersectionOf(

ObjectMinCardinality(0 :a1 :A)

ObjectMaxCardinality(2 :a1 :A)

))

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

Pass

T24 Transformation

of a binary
association

between two

classes with an
association class

attached

Table 8.2:

TR1

Table 8.6:

TR1,

TR3, TR4

Table

8.10:

TR1,

TR2,

TR3,

TR4, TR5

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

Declaration(Class(:C))

ObjectPropertyDomain(:a

ObjectUnionOf(:B :C))

ObjectPropertyDomain(:b

ObjectUnionOf(:A :C))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:c

ObjectUnionOf(:A :B))

ObjectPropertyRange(:c :C)

Declaration(Class(:C))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:c

ObjectUnionOf(:A :B))

ObjectPropertyDomain(:a

ObjectUnionOf(:B :C))

ObjectPropertyDomain(:b

ObjectUnionOf(:A :C))

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

ObjectPropertyRange(:c :C)

InverseObjectProperties(:a :b)

Pass

T25 Transformation
of a binary

association

between two
classes with an

association class

with an attribute
attached

Table 8.2:

TR1

Table 8.4:

TR1,

TR2, TR3

Table 8.6:

TR1,

TR3, TR4

Table

8.10:

TR1,

TR2,

TR3,

TR4, TR5

Table

8.18: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b)

Declaration(Class(:C))

ObjectPropertyDomain(:a

ObjectUnionOf(:B :C))

ObjectPropertyDomain(:b

ObjectUnionOf(:A :C))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:c

ObjectUnionOf(:A :B))

ObjectPropertyRange(:c :C)

Declaration(DataProperty(:c))

DataPropertyDomain(:c :C)

DataPropertyRange(:c xsd:string

)

Declaration(Class(:C))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(DataProperty(:c))

DataPropertyDomain(:c :C)

DataPropertyRange(:c xsd:string

)

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:c

ObjectUnionOf(:A :B))

ObjectPropertyDomain(:a

ObjectUnionOf(:B :C))

ObjectPropertyDomain(:b

ObjectUnionOf(:A :C))

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

ObjectPropertyRange(:c :C)

InverseObjectProperties(:a :b)

Pass

255

T26 Transformation

of a binary

association

from a class to
itself with an

association class

attached

Table 8.2:

TR1

Table 8.7:

TR1,

TR2,

TR3,

TR4, TR5

Table

8.10:

TR1,

TR2,

TR3,

TR4, TR5

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

Declaration(Class(:B))

ObjectPropertyDomain(:a1

ObjectUnionOf(:A :B))

ObjectPropertyDomain(:a2

ObjectUnionOf(:A :B))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyRange(:b :B)

Declaration(Class(:B))

Declaration(Class(:A))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:a2))

Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a1

ObjectUnionOf(:A :B))

ObjectPropertyDomain(:a2

ObjectUnionOf(:A :B))

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:a2 :A)

ObjectPropertyRange(:b :B)

InverseObjectProperties(:a1 :a2)

AsymmetricObjectProperty(:a1)

AsymmetricObjectProperty(:a2)

Pass

T27 Transformation

of a n-ary

association

between three

classes

Table 8.2:

TR1

Table 8.8:

TR1,
TR2,

TR3,

TR4, TR5

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:N))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:a :A)

ObjectPropertyDomain(:b :B)

ObjectPropertyDomain(:c :C)

ObjectPropertyRange(:a :N)

ObjectPropertyRange(:b :N)

ObjectPropertyRange(:c :N)

SubClassOf(:N

ObjectSomeValuesFrom(:a :A))

SubClassOf(:N

ObjectSomeValuesFrom(:b :B))

SubClassOf(:N

ObjectSomeValuesFrom(:c :C))

Declaration(Class(:N))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:c))

ObjectPropertyDomain(:b :B)

ObjectPropertyDomain(:a :A)

ObjectPropertyDomain(:c :C)

ObjectPropertyRange(:b :N)

ObjectPropertyRange(:a :N)

ObjectPropertyRange(:c :N)

SubClassOf(:N

ObjectSomeValuesFrom(:b :B))

SubClassOf(:N

ObjectSomeValuesFrom(:a :A))

SubClassOf(:N

ObjectSomeValuesFrom(:c :C))

Pass

T28 Transformation
of generalization

between classes

Table 8.2:

TR1

Table

8.12: TR1

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:B :A)

Declaration(Class(:A))

Declaration(Class(:B))

SubClassOf(:B :A)

Pass

T29 Transformation

of generalization

between classes

Table 8.2:

TR1

Table

8.12: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

Pass

T30 Transformation

of generalization

between
associations

Table 8.2:

TR1

Table 8.6:

TR1,

TR2,

TR3, TR4

Table 8.9:

TR1, TR2

Table

8.13: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:b1))

Declaration(ObjectProperty(:a2))

Declaration(ObjectProperty(:b2))

ObjectPropertyDomain(:b1 :A)

ObjectPropertyDomain(:a1 :B)

ObjectPropertyDomain(:b2 :A)

ObjectPropertyDomain(:a2 :B)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:b1 :B)

ObjectPropertyRange(:a2 :A)

ObjectPropertyRange(:b2 :B)

SubClassOf(:A

ObjectExactCardinality(3 :b2 :B))

InverseObjectProperties(:a1 :b1)

InverseObjectProperties(:a2 :b2)

SubObjectPropertyOf(:a2 :a1)

SubObjectPropertyOf(:b2 :b1)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(ObjectProperty(:a1))

Declaration(ObjectProperty(:b1))

Declaration(ObjectProperty(:a2))

Declaration(ObjectProperty(:b2))

ObjectPropertyDomain(:b1 :A)

ObjectPropertyDomain(:a1 :B)

ObjectPropertyDomain(:b2 :A)

ObjectPropertyDomain(:a2 :B)

ObjectPropertyRange(:a1 :A)

ObjectPropertyRange(:b1 :B)

ObjectPropertyRange(:a2 :A)

ObjectPropertyRange(:b2 :B)

SubClassOf(:A

ObjectExactCardinality(3 :b2 :B))

InverseObjectProperties(:a1 :b1)

InverseObjectProperties(:a2 :b2)

SubObjectPropertyOf(:a2 :a1)

SubObjectPropertyOf(:b2 :b1)

Pass

256

T31 Transformation

of generalization

between
associations

Table 8.2:

TR1

Table 8.6:

TR1,

TR2,

TR3, TR4

Table 8.9:

TR1,

TR2Table

8.12:

TR1

Table
8.13:

TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

Declaration(ObjectProperty(:d))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:c :D)

ObjectPropertyDomain(:d :C)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

ObjectPropertyRange(:c :C)

ObjectPropertyRange(:d :D)

SubClassOf(:D

ObjectExactCardinality(2 :c :C))

SubClassOf(:C

ObjectExactCardinality(2 :d :D))

InverseObjectProperties(:a :b)

InverseObjectProperties(:c :d)

SubClassOf(:C :A)

SubClassOf(:D :B)

SubObjectPropertyOf(:c :a)

SubObjectPropertyOf(:d :b)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

Declaration(ObjectProperty(:a))

Declaration(ObjectProperty(:b))

Declaration(ObjectProperty(:c))

Declaration(ObjectProperty(:d))

ObjectPropertyDomain(:b :A)

ObjectPropertyDomain(:a :B)

ObjectPropertyDomain(:d :C)

ObjectPropertyDomain(:c :D)

ObjectPropertyRange(:a :A)

ObjectPropertyRange(:b :B)

ObjectPropertyRange(:c :C)

ObjectPropertyRange(:d :D)

SubClassOf(:C

ObjectExactCardinality(2 :d :D))

SubClassOf(:D

ObjectExactCardinality(2 :c :C))

InverseObjectProperties(:a :b)

InverseObjectProperties(:c :d)

SubClassOf(:C :A)

SubClassOf(:D :B)

SubObjectPropertyOf(:c :a)

SubObjectPropertyOf(:d :b)

Pass

T32 Transformation

of a

generalization
set with

{incomplete,
disjoint}

constraint

Table 8.2:

TR1

Table

8.12: TR1

Table
8.14: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

DisjointClasses(:B :C)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:C :A)

SubClassOf(:B :A)

DisjointClasses(:B :C)

Pass

T33 Transformation

of generalization
set with

{incomplete,

disjoint}
constraint

Table 8.2:

TR1

Table

8.12: TR1

Table

8.14: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

DisjointClasses(:B :C)

DisjointClasses(:B :D)

DisjointClasses(:C :D)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

DisjointClasses(:B :C)

DisjointClasses(:B :D)

DisjointClasses(:C :D)

Pass

T34 Transformation

of generalization

set with
{complete,

disjoint}

constraint

Table 8.2:

TR1

Table

8.12: TR1

Table

8.15:

TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

DisjointUnion(:A :B :C)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:C :A)

SubClassOf(:B :A)

DisjointUnion(:A :B :C)

Pass

T35 Transformation

of generalization
set with

{complete,

disjoint}
constraint

Table 8.2:

TR1

Table

8.12: TR1

Table

8.15:

TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

DisjointUnion(:A :B :C :D)

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

DisjointUnion(:A :B :C :D)

Pass

257

T36 Transformation
of generalization

set with

{complete,
overlapping}

constraint

Table 8.2:

TR1

Table

8.12: TR1

Table

8.17: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:B :A)

SubClassOf(:C :A)

EquivalentClasses(:A

ObjectUnionOf(:B :C))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

SubClassOf(:C :A)

SubClassOf(:B :A)

EquivalentClasses(:A

ObjectUnionOf(:B :C))

Pass

T37 Transformation

of generalization

set with
{complete,

overlapping}

constraint

Table 8.2:

TR1

Table

8.12: TR1

Table

8.17: TR1

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

EquivalentClasses(:A

ObjectUnionOf(:B :C :D))

Declaration(Class(:A))

Declaration(Class(:B))

Declaration(Class(:C))

Declaration(Class(:D))

SubClassOf(:B :A)

SubClassOf(:C :A)

SubClassOf(:D :A)

EquivalentClasses(:A

ObjectUnionOf(:B :C :D))

Pass

T38 Transformation
of enumeration

with two literals

Table

8.20:

TR1, TR2

Declaration(Datatype(:E))

DatatypeDefinition(:E

DataOneOf("e1" "e2"))

Declaration(Datatype(:E))

DatatypeDefinition(:E

DataOneOf("e1" "e2"))

Pass

T39 Transformation

of enumeration

with five literals

Table

8.20:

TR1, TR2

Declaration(Datatype(:E))

DatatypeDefinition(:E

DataOneOf("e1" "e2" "e3" "e4"))

Declaration(Datatype(:E))

DatatypeDefinition(:E

DataOneOf("e4" "e1" "e3" "e2"))

Pass

T40 Transformation
of a class with a

comment

attached

Table

8.21: TR1

Declaration(Class(:A))

AnnotationAssertion(

rdfs:comment :A

"Note"^^xsd:string)

AnnotationAssertion(

rdfs:comment :A

"Note"^^xsd:string)

Declaration(Class(:A))

Pass

258

Appendix A.3. Test Cases for Verification Rules

This appendix presents the conducted test cases for verification rules for UML class diagrams

(defined in Section 8.3).

RESULTS:

All test cases for verification rules resulted in "Pass".

ANALYSIS OF RESULTS:

The expected and actual results were manually compared due to the fact that they were

textual.

TEST CASES:

The below table contains columns: IDs of the test case, short description of the tested UML

element, tested rule(s) in accordance with tables and IDs presented in Section 8.3, symbol of

tested UML element(s), expected result (created manually), actual result (generated

automatically by the tool), additional explanation if any (also automatically generated by the

tool), and status (Pass, Fail).

Table A.13 Test Cases for Verification Rules.

ID Description Tested rule Symbol of tested

UML element(s)

Applicable fragment of

the domain ontology

Expected result

and actual result

Status

V1 Verification if

UML element

defined as
Class is

indeed a

Class, not a

structured

DataType

Table 8.2:

VR1

analogical test

is applicable

for

Table 8.10:

VR1

Declaration(Class(:Address))

HasKey(:Address () (:street

:houseNumber :city
:postalCode :country))

Expected result:
The UML element is incorrect.

It should be a structured
DataType

Actual result:

Address is structured

DataType

Pass

V2 Verification if

Class is
indeed

abstract

Table 8.3:

VR1

Declaration(Class(:Town))

ClassAssertion(:Town :Madrid)
Expected result:
The Class is not abstract

Actual result:

Town Class is not abstract

Auto-generated comments:
Individual(s) of the class:

Madrid

Pass

V3 Verification if

attribute of

PrimitiveType
is assigned to

correct Class

Table 8.4:

VR1

analogical test

is applicable

for Table
8.19: VR1

Declaration(Class(:Activity))

Declaration(Class(:Contact))

Declaration(DataProperty(
:hasCity))

DataPropertyDomain(:hasCity

:Contact)
DataPropertyRange(:hasCity

xsd:string)

Expected result:
The attribute of PrimitiveType

is not assigned to correct
Class, thus it should be

removed

Actual result:
Remove hasCity attribute

Auto-generated explanation:

Incorrect element: hasCity is
not attribute of Activity Class

Pass

259

V4 Verification if
Attribute of

structured

DataType is
assigned to

correct Class

Table 8.4:
VR1

Declaration(Class(:Activity))
Declaration(Class(:Attraction))

Declaration(Class(:Destination))

ObjectPropertyDomain(
:hasAttraction :Destination)

ObjectPropertyRange(

:hasAttraction :Attraction)
HasKey(:Attraction () ())

Expected result:
The attribute of structured

DataType is not assigned to

correct Class, thus it should be
removed

Actual result:

Remove hasAttraction attribute

Auto-generated explanation:

Incorrect element:

hasAttraction is not attribute of
Activity Class

Pass

V5 Verification
of correctness

of specified

PrimitiveType
of Class

attribute

Table 8.4:

VR2

analogical test

is applicable

for

Table 8.19:

VR2

Declaration(Class(:Contact))
Declaration(DataProperty(

:zipCode))

DataPropertyDomain(:zipCode
:Contact)

DataPropertyRange(:zipCode

xsd:string)

Expected result:
The specified PrimitiveType of

Class attribute is incorrect,

change type into type defined
in the domain ontology (here:

String)

Actual result:
Change type of xipCode into:

String

Auto-generated comments:
Attribute: zipCode is of

incorrect type

Pass

V6 Verification

of correctness

of specified
structured

DataType of

Class attribute

Table 8.4:

VR2

Declaration(Class(:Contact))

Declaration(Class(:FullName))

HasKey(:FullName () (
:firstName :secondName))

ObjectPropertyDomain(

:person :FullName)
ObjectPropertyRange(:person

:FullName)

DataPropertyDomain(
:firstName :FullName)

DataPropertyDomain(

:secondName :FullName)

Expected result:

The specified structured

DataType of Class attribute is
incorrect, change type into

type defined in the domain

ontology (here: FullName)

Actual result:

Change type of person into:

FullName

Auto-generated explanation:

Attribute: person is of incorrect

type

Pass

V7 Verification

of correctness
of specified

multiplicity of

PrimitiveType
of Class

attribute

Table 8.5:

VR1

Declaration(Class(:Attraction))

DataPropertyDomain(
:attractionWebsite :Attraction)

DataPropertyRange(

:attractionWebsite xsd:string)
Declaration(DataProperty(

:attractionWebsite))

ClassAssertion(:Attraction
:EiffelTower)

DataPropertyAssertion(

:attractionWebsite :EiffelTower
"website_1"^^xsd:string)

DataPropertyAssertion(

:attractionWebsite :EiffelTower
"website_2"^^xsd:string)

Expected result:

The specified multiplicity of
PrimitiveType of Class

attribute is incorrect, due to the

fact that the ontology defines
individuals that violate this

restriction

Actual result:
Incorrect multiplicity 0..1 of

attractionWebsite element

Auto-generated explanation:
Individuals that violate

restrictions:

2 attractionWebsite of
EiffelTower (Attraction)

Pass

V8 Verification

of correctness

of specified

multiplicity of

structured

DataType of

Class attribute

Table 8.5:

VR1

Declaration(Class(

:TourAgency))
Declaration(Class(:Address))

HasKey(:Address () (:street

:houseNumber :city
:postalCode :country))

Declaration(ObjectProperty(

:addressOfTourAgency))
ObjectPropertyDomain(

:addressOfTourAgency

:TourAgency)
ObjectPropertyRange(

:addressOfTourAgency
:Address)

ObjectPropertyAssertion(

:addressOfTourAgency

Expected result:

The specified multiplicity of
structured DataType of Class

attribute is incorrect, due to the

fact that the ontology defines
individuals that violate the

restriction

Actual result:
Incorrect multiplicity 1 of

addressOfTourAgency element

Auto-generated explanation:
Individuals that violate

restrictions:
2

addressOfTourAgency

Pass

260

:SeaAndLakesAgency
:SeaAndLakesAgency_HeadOf

ficeAddress)

ObjectPropertyAssertion(
:addressOfTourAgency

:SeaAndLakesAgency

:SeaAndLakesAgency_Barcelo
naAddress)

at SeaAndLakesAgency

(TourAgency)

V9 Verification

of correctness

of specified

multiplicity of

Class attribute

Table 8.5:

VR2

Declaration(Class(:Guide))

Declaration(DataProperty(
:certificate))

DataPropertyDomain(

:certificate :Guide)
DataPropertyRange(:certificate

xsd:string)

SubClassOf(:Guide
DataMinCardinality(1

:certificate))

Expected result:

The multiplicity of Class
attribute is incorrect, due to the

fact that the ontology defines a

different multiplicity of the
attribute

Actual result:

Change multiplicity from 3..5
to 1..*

Auto-generated explanation:

Incorrect multiplicity 3..5 of
certificate element

Pass

V10 Verification if
binary

Association

defined on
diagram

between two

different
Classes

should not be

defined as
from the Class

to itself

Table 8.6:

VR1

Declaration(Class(:Attraction))
Declaration(ObjectProperty(

:isPartOfAttraction))

Declaration(ObjectProperty(
:containsAttraction))

InverseObjectProperties(

:isPartOfAttraction
:containsAttraction)

AsymmetricObjectProperty(

:isPartOfAttraction)
AsymmetricObjectProperty(

:containsAttraction)

ObjectPropertyDomain(
:containsAttraction :Attraction)

ObjectPropertyRange(

:isPartOfAttraction :Attraction
)

Expected result:
The binary Association defined

on diagram between two

different Classes should be
defined as from the Class to

itself

Actual result:
AssociationEnd:

isPartOfAttraction is incorrect.

The association is defined from
Attraction Class to itself

Pass

V11 Verification if

binary
Association is

correctly

specified
(domain

verification)

Table 8.6:

VR2

analogical test

is applicable

forTable 8.11:
VR2

Declaration(Class(:Attraction))

Declaration(Class(:Destination))
Declaration(Class(:Place))

Declaration(ObjectProperty(

:hasAttraction))
ObjectPropertyDomain(

:hasAttraction :Destination)

ObjectPropertyRange(
:hasAttraction :Attraction)

Declaration(ObjectProperty(

:atDestination))
ObjectPropertyDomain(

:atDestination :Attraction)

ObjectPropertyRange(
:atDestination :Destination)

InverseObjectProperties(

:atDestination :hasAttraction)

Expected result:

The binary Association is
incorrect in accordance with

the ontology (domain is

incorrect)

Actual result:

Remove the association

Auto-generated explanation:
AssociationEnd:hasAttraction

is incorrect. The association is

defined but between
Destination Class (not to Place

Class)

Pass

V12 Verification if

binary

Association is

correctly

specified

(range

verification)

Table 8.6:

VR3

analogical test

is applicable

for

Table 8.10:

VR3

Declaration(Class(:Activity))
Declaration(Class(:Contact))

Declaration(Class(:Schedule)

)
Declaration(ObjectProperty(

:isAssignedTo))

ObjectPropertyDomain(

:isAssignedTo :Contact)

ObjectPropertyRange(

:isAssignedTo :Activity)
Declaration(ObjectProperty(

:hasSchedule))
ObjectPropertyDomain(

:hasSchedule :Activity)

ObjectPropertyRange(
:hasSchedule :Schedule)

InverseObjectProperties(

:isAssignedTo :hasSchedule)

Expected result:
The binary Association is

incorrect in accordance with

the ontology (domain is
incorrect)

Actual result:

Remove the association

Auto-generated explanation:

AssociationEnd:hasSchedule is

incorrect. The association is
defined but between Activity

and Schedule Classes

Pass

261

V13 Verification if
multiplicity of

Association

end is correct

Table 8.9:

VR1

Declaration(Class(:Attraction))
Declaration(Class(:Destination))

Declaration(ObjectProperty(

:hasAttraction))
ObjectPropertyDomain(

:hasAttraction :Destination)

ObjectPropertyRange(
:hasAttraction :Attraction)

ClassAssertion(:Destination

:Paris)
ClassAssertion(:Attraction

:EiffelTower)

ClassAssertion(:Attraction
:Louvre)

ClassAssertion(:Attraction
:SeineCruise)

ObjectPropertyAssertion(

:hasAttraction :Paris
:EiffelTower)

ObjectPropertyAssertion(

:hasAttraction :Paris :Louvre)
ObjectPropertyAssertion(

:hasAttraction :Paris

:SeineCruise)

Expected result:
The multiplicity of Association

end is incorrect, due to the fact

that the ontology defines
individuals that violate the

restriction

Actual result:
Incorrect multiplicity 1..2 of

hasAttraction element

Auto-generated explanation:
Individuals that violate

restrictions:

3 hasAttraction at Paris

(Destination)

Pass

V14 Verification

of correctness

of specified

multiplicity of

association

end

Table 8.9:

VR2

Declaration(Class(:Schedule)
)

Declaration(Class(:Activity))

ObjectPropertyDomain(
:hasSchedule :Activity)

ObjectPropertyRange(

:hasSchedule :Schedule)
SubClassOf(:Activity

ObjectIntersectionOf(

ObjectMinCardinality(1
:hasSchedule :Schedule)

ObjectMaxCardinality(5

:hasSchedule :Schedule)))

Expected result:
The multiplicity of association

end is incorrect, due to the fact

that the ontology defines a
different multiplicity of the

association end

Actual result:
Change multiplicity

from * to: 1..5

Auto-generated explanation:
AssociationEnd:

activity is incorrect.

The association is

defined from Activity

Class to itself

Pass

V15 Verification if

Association
and

AssociationCl

ass is
correctly

specified
(domain

verification)

Table 8.10:

VR2

Declaration(ObjectProperty(

:schedule))
Declaration(ObjectProperty(

:tour))

Declaration(ObjectProperty(
:tourist))

ObjectPropertyDomain(
:schedule ObjectUnionOf(

:Tour :Tourist))

ObjectPropertyRange(
:schedule :Schedule)

ObjectPropertyRange(:tourist

:Tourist)
ObjectPropertyRange(:tour

:Tour)

ObjectPropertyRange(:trip
:Trip)

InverseObjectProperties(:tour

:tourist)
InverseObjectProperties(:trip

:tourist)

Expected result:

The Association and
AssociationClass is incorrect

in accordance with the

ontology
(domain is incorrect)

Actual result:
Change domain of the

AssociationClass:

from Tourist – Trip to Tour –
Tourist

Pass

V16 Verification if

Generalizatio
n between

Classes is not

inversed

Table 8.12:

VR1

Declaration(Class(:Hotel))

Declaration(Class(
:LuxuryHotel))

SubClassOf(:LuxuryHotel

:Hotel)

Expected result:

The Generalization
relationship between Classes

is inversed

Actual result:
Inverse the generalization

relationship:

LuxuryHotel → Hotel

Pass

262

V17 Verification if

Generalization

between

Associations

is not inversed

Table 8.13:

VR1

Declaration(Class(:Guide))
Declaration(Class(

:TourAgency))

Declaration(ObjectProperty(
:tourGuide))

Declaration(ObjectProperty(

:works))
Declaration(ObjectProperty(

:tourGuideManager))

Declaration(ObjectProperty(
:manages))

ObjectPropertyDomain(:works

:Guide)
ObjectPropertyDomain(

:tourGuide :TourAgency)
ObjectPropertyDomain(

:manages :Guide)

ObjectPropertyDomain(
:tourGuideManager

:TourAgency)

ObjectPropertyRange(
:tourGuide :Guide)

ObjectPropertyRange(:works

:TourAgency)
ObjectPropertyRange(

:tourGuideManager :Guide)

ObjectPropertyRange(
:manages :TourAgency)

InverseObjectProperties(

:tourGuide :works)
InverseObjectProperties(

:tourGuideManager :manages)

SubObjectPropertyOf(
:tourGuideManager :tourGuide)

SubObjectPropertyOf(

:manages :works)

Expected result:
The Generalization between

Associations is inversed

Actual result:
Inverse the generalization

relationship between the

Associations

Pass

V18 Verification if
disjoint

constraint of
Generalizatio

nSet is correct

Table 8.15:

VR1

analogical test

is applicable

for

Table 8.14:
VR1

Declaration(Class(:UrbanArea)
)

Declaration(Class(:City))
Declaration(Class(

:Conurbation))

Declaration(Class(:Town))
SubClassOf(:City :UrbanArea

)

SubClassOf(:Conurbation
:UrbanArea)

SubClassOf(:Town :UrbanArea)

SubClassOf(:City :Conurbation)

Expected result:
The GeneralizationSet is not

disjoint but overlapping

Actual result:

GeneralizationSet is not

disjoint.

Change constraint into

overlapping.

Pass

V19 Verification if
Generalizatio

nSet with

{complete,
disjoint}

constraint has

correct list of
specific

Classes

Table 8.15:

VR2

Declaration(Class(:Destination))
Declaration(Class(:UrbanArea)

)

Declaration(Class(:RuralArea))
Declaration(Class(:Village))

Declaration(Class(:UrbanArea)

)
SubClassOf(:RuralArea

:Destination)

SubClassOf(:UrbanArea
:Destination)

DisjointUnion(:Destination

:UrbanArea :RuralArea)

Expected result:
The GeneralizationSet with

{complete, disjoint} constraint

has incorrect list of specific
Classes

Actual result:

Class(es) required to be
removed: Village

Class(es) not included:

UrbanArea

Auto-generated explanation:

GeneralizationSet is complete

but list of its specific Classes is
incorrect.

Pass

V20 Verification

of correctness
of overlapping

constraint of

{incomplete,
overlapping}

Generalizatio

nSet

Table 8.16:
VR1

Declaration(Class(:Sport))

Declaration(Class(:Surfing))
Declaration(Class(:Hiking))

Declaration(Class(:Volleyball))

SubClassOf(:Hiking :Sport)
SubClassOf(:Volleyball :Sport

)

SubClassOf(:Surfing :Sport)
DisjointClasses(:Hiking :Surfing

)

DisjointClasses(:Hiking
:Volleyball)

Expected result:

The GeneralizationSet is not
overlapping but disjoint

Actual result:

GeneralizationSet is not
overlapping.

Change constraint into disjoint.

Pass

263

DisjointClasses(:Volleyball
:Surfing)

V21 Verification if

overlapping
constraint of

Generalizatio

nSet is correct

Table 8.17:

VR1

Declaration(Class(:Destination))

Declaration(Class(:UrbanArea)
)

Declaration(Class(:RuralArea))

Declaration(Class(:UrbanArea)
)

SubClassOf(:RuralArea

:Destination)
SubClassOf(:UrbanArea

:Destination)

DisjointUnion(:Destination
:UrbanArea :RuralArea)

Expected result:

The GeneralizationSet is not
overlapping but disjoint

Actual result:

GeneralizationSet is not
overlapping.

Change constraint into disjoint.

Pass

V22 Verification if

Generalizatio
nSet with

{complete,

overlapping}
constraint has

correct list of

specific

Classes

Table 8.17:

VR2

Declaration(Class(:Guide))

Declaration(Class(:TourGuide)
)

Declaration(Class(

:MountainGuide))
Declaration(Class(

:WildernessGuide))

Declaration(Class(:SafariGuide)

)

EquivalentClasses(:Guide

ObjectUnionOf(:TourGuide
:MountainGuide

:WildernessGuide :SafariGuide)

)
SubClassOf(:TourGuide :Guide

)

SubClassOf(:MountainGuide
:Guide)

SubClassOf(:WildernessGuide

:Guide)
SubClassOf(:SafariGuide

:Guide)

Expected result:

The GeneralizationSet with
{complete, overlapping}

constraint has incorrect list of

specific Classes

Actual result:

Class(es) not included:

WildernessGuide

Auto-generated explanation:

GeneralizationSet is complete

but list of its specific Classes is
incorrect.

Pass

V23 Verification if

list of literals
of

Enumeration
is correct

Table 8.20:

VR1

DatatypeDefinition(

:AccommodationRating
DataOneOf("OneStarRating"

"TwoStarRating"
"ThreeStarRating"

"FourStarRating"

"FiveStarRating"))

Expected result:

List of literals of Enumeration
is incorrect

Actual result:
Literal(s) required to be

removed: Unranked

Literal(s) not included:
FiveStarRating

Auto-generated explanation:

Incorrect list of literals of:
AccommodationRating

Enumeration

Pass

264

Appendix B. Materials for the Experiment

Appendix B.1. Selected Domain Ontologies

This appendix describes the method of selecting and preparing domain ontologies for the

purpose of the experiment.

Appendix B.1.1. Postulates for Selection of Domain Ontologies

Taking into account the goal of the experiment, the experimenter posed several postulates for

domain ontology so that it could be considered as being relevant to the experiment:

 The ontology is expressed in OWL notation.

 The ontology is syntactically correct.

 The ontology is NOT related to common knowledge, as well as IT studies including

software engineering or computer science. The matter of semantic completeness of the

ontology was left open. However, the experimenter made efforts to ensure that the

selected ontologies depicted the relevant aspects of the reality in a clear way and as

complete as possible.

 Each selected ontology should describe a different domain.

 The ontology is consistent. The consistence was checked by experimenter with the use

of Protégé tool.

 The ontology contains no less than 40 OWL classes and includes axioms describing

relationships between the classes which could be translated into UML as

generalizations and associations, in accordance with Chapter 8. The final versions of

domain ontologies after modifications (described in Appendix B.1.3) were of

approximately 40-45 OWL classes. This number of classes was chosen in purpose,

because on the one hand the ontology should be expressive and complex enough to be

useful for the purpose of the experiment, but on the other hand the equivalent textual

description of the domain ontology should fit into the length of maximally 1-1.5 page

of A4 size so that it is easy to read during the experiment.

 The ontology is written in English.

 The license of the ontology allows for its free usage for scientific purposes.

Appendix B.1.2. Internet Sources of the Selected Domain Ontologies

Four different domain ontologies have been selected from Internet sources. The original files

with the OWL ontologies and the modified versions explained in Appendix B.1.3 are

included on the CD enclosed to this dissertation.

265

Table B.1 The Monetary Ontology

Domain Monetary domain

Short

description

The monetary ontology is oriented towards designers of payment systems and

community currency systems. It provides a description of different forms of money:

from barter to clearing systems, from precious metal coinage to debt-based fiat.

Internet

source

http://protegewiki.stanford.edu/images/d/de/Monetary_ontology_0.1d.zip

(Accessed: 2018.11.08)

Author Martin "Hasan" Bramwell

License Not specified

Number of

axioms

The original ontology contains 316 axioms. After modifications (see Appendix

B.1.3), the ontology has been reduced so that it contains 267 axioms in total.

Number of

classes

The ontology contains 40 UML classes.

Table B.2 The Air Travel Booking Ontology

Domain Air travel booking domain

Short

description

The ontology describes an air travel booking service and contains some information

about the scheduled flights.

Internet

source

http://students.ecs.soton.ac.uk/cd8e10/airtravelbookingontology.owl

(Accessed: 2018.11.08)

Author Chaohai Ding

License Not specified

Number of

axioms

The original ontology contains 814 axioms. After modifications (see Appendix

B.1.3), the ontology has been reduced so that it contains 224 axioms in total.

Number of

classes

After modifications, it contains 42 UML classes.

Table B.3 The Smart City Ontology

Domain Smart city domain

Short

description

The ontology describes a smart city and its services on the basis of Florence, and

more widely the Tuscan region. It includes the aspects such as e.g. administration,

local public transport and city services.

Internet

source

http://ci.emse.fr/opensensingcity/ns/wp-

content/plugins/smartcities/survey_files/vocabs/project_8_2

(Accessed: 2018.12.12)

Author Nadia Rauch, Paolo Nesi, Pierfrancesco Bellini

License Creative Commons Attribution-ShareAlike 3.0 Unported license

Number of

axioms

The original ontology contains 3 794 axioms. After modifications (see Appendix

B.1.3), the ontology has been reduced so that it contains 251 axioms in total.

Number of

classes

After ontology modification, it contains 43 UML classes.

Table B.4 The Finance Ontology

Domain Finance domain

Short

description

The finance ontology describes financial instruments including credit rating

information.

Internet

source

http://mlstoslo.uio.no/java/treebolic-2.0.3/data/import/Finance.owl

(Accessed: 2018.12.05)

Author Eddy Vanderlinden

License 2008-2009 All rights reserved by creator but free for non-commercial usage

http://protegewiki.stanford.edu/images/d/de/Monetary_ontology_0.1d.zip
http://students.ecs.soton.ac.uk/cd8e10/airtravelbookingontology.owl
http://ci.emse.fr/opensensingcity/ns/wp-content/plugins/smartcities/survey_files/vocabs/project_8_2
http://ci.emse.fr/opensensingcity/ns/wp-content/plugins/smartcities/survey_files/vocabs/project_8_2
http://mlstoslo.uio.no/java/treebolic-2.0.3/data/import/Finance.owl

266

Number of

axioms

The original ontology is quite extensive and contains approximately 19 122 axioms.

After modifications (see Appendix B.1.3), the ontology has been reduced so that it

contains 340 axioms in total.

Number of

classes

After ontology modification, it contains 41 UML classes.

Appendix B.1.3. The Modifications of the Selected Domain Ontologies

The modifications carried out on the selected domain ontologies include:

 transformation from the original RDF/XML syntax to Functional-Style Syntax

(conducted with the use of Protégé tool),

 reduction of axioms in the ontology,

 translation of the reduced ontology from English to Polish.

The general procedure of how the reductions in the domain ontologies were conducted:

 In order to obtain a level of abstraction of domains containing approximately

40-45 OWL classes, the first step was a significant reduction of OWL axioms in the

ontologies. The intention was to extract a meaningful subset of axioms (sub-ontology)

from the original domain ontology. When an axiom describing selected OWL class

was removed, all other axioms referring to the OWL class were additionally removed

from the ontology. For larger ontologies, the process of obtaining the relevant sub-

ontology was performed in several iterations, consisting of "analysis of the ontology"

step and "reduction of axioms" step.

 The second step was the reduction of all standalone data and object property axioms

(the axioms were not related through other axioms to any OWL class). The reason is

that the intention is creation of a UML class diagram and these OWL elements would

not have any equivalence.

 The third step was a huge reduction in the number of instances. Almost all instances

were removed from the ontology because leaving at most several instances was

enough for the needs of the experiment (the instances of classes are not present in

UML class diagrams but they can be used, for example, to confirm that the class

marked as abstract is indeed abstract).

 The next step was a reduction of OWL axioms that have no counterparts in UML class

diagrams (on the basis of UML-OWL transformations, the details are in Chapter 8). It

would not make a difference for a tool to process more axioms, but the not needed

axioms would considerably and unnecessarily increase the size of the textual

descriptions of the ontologies.

 The developed tool uses HermiT reasoner which supports all and only the datatypes of

the OWL 2 datatype map
40

. Therefore, the last but one step was to remove all

datatypes which are not part of the OWL 2 datatype map and no custom datatype

definition is given. This particularly applies to removal of "xsd:date" which was used

in the selected ontologies and is not a built-in datatype for OWL 2 so that HermiT

could not handle it.

40
 The datatypes of the OWL 2 datatype map: http://www.w3.org/TR/owl2-syntax/#Datatype_Maps

267

 The final step was removal or shortening of a significant number of

AnnotationAssertion axioms which are human-readable comments. For the purpose of

the experiment, there were too many comments in the original domain ontologies and

the comments were too long.

The full list of executed reductions in the monetary ontology:

1. Removal of FunctionalObjectProperty or InverseFunctionalObjectProperty axioms related to:

hasRepute, hasReciprocity, isADescriptionOf, isBorrowedBy, isBorrowerOf, isCommissionedBy, isCommissionerOf,

isDescribedBy, isExecutedBy, isExecutorOf, isGiverOfObligationValue, isGiverOfPhysicalValue, isIssuedBy,

isIssuerOf, isIssuerOfSymbols, isLenderOf, isLentBy, isMintedBy, isMinterOf, isReceiverOfObligationValue,

isReputeOf, isReceiverOfPhysicalValue, isReciprocityOf, isTransportedBySymbol, isTransporterOfSymbolicValue

2. Removal of a number of AnnotationAssertion axioms

The full list of executed reductions in the air travel booking ontology:

1. All axioms related to the following OWL classes have been removed from the ontology:

AirlineDirectFlightBetweenLHRAndJFK, AirlineFromOrToSouthamptonInternational, AirlineOperateA380-800,

AirportServedByA380-800, AmericanAirlinesFlight, BritishAirwaysFlight, EmiratesFlight, FlybeFlight, GulfAirFlight,

QantasAirwaysFlight, SwissInternationalAirlinesFlight, Country, BusinessClassSeat, EconomyClassSeat,

FirstClassSeat, PremiumEconomyClassSeat, BusinessReservation, EconomyReservation,

BusinessClassReservationPassenger, AirBooking, PassengerHaveFirstReservationBA0117_20110401,

FirstClassReservation, PremiumEconomyReservation, FirstClassReservationPassenger,

PremiumEconomyClassReservationPassenger, EconomyClassReservationPassenger, DomainConcept, ValuePartition,

CodesharingFlight, OperatingFlight

2. All instances related to the following OWL classes have been removed from the ontology:

Airline, Airport, Manufacturer, Flight, AA1514, AA6138, BE880, EK003, QF4795, BA0003, BA0117, EK003,

QF4795, BA0003_1, BA0003_2, LX22, LX359, GF671, LX359ConnectLX22, Passenger, Reservation, FirstClassSeat

3. All axioms related to the following OWL object properties have been removed from the

ontology:

hasSegment, hasNextSegment, hasPreviousSegment, isCodesharing, isCodesharedBy, isCodesharedBy, isCodesharing,

isConnectedAt, hasCountry, isCountryOf, isPartSegmentOf, hasSameSegment

4. Reduction of some additional axioms:

a) Removal of FunctionalObjectProperty and/or InverseFunctionalObjectProperty axioms related

to: isICAOCodeOf, isOperatedBy, isManufacturedBy, isSeatOf, hasSeat, isManufacturerOf, isReservating,

isReservatedBy, isDepaturedFrom, isArrivedAt, hasReservation, isReservationOf

b) Removal of FunctionalDataProperty axioms related to: hasSeatNumber, isDeparturedOn

5. Removal of a number of AnnotationAssertion axioms

The full list of executed reductions in the smart city ontology:

1. All axioms related to the following OWL classes have been removed from the ontology:

FinancialService (and all its subclasses), MiningAndQuarrying (and all its subclasses), Event, WineAndFood (and all

its subclasses), Wholesale (and all its subclasses), Observation (and all its subclasses), StreetNumber, StatisticalData,

Lot, Entertainment, Maneuver, Feature, Organization, Geometry, Line, Place, Instant, Route, RouteSection, Ride,

RouteJunction, RouteLink, SensorSiteTable, BusinessEntity, GoodsYard, Entry, Path, BeaconObservation,

AVMRecord, SensorSiteTable, BusStopForecast

268

2. All axioms related only to the subclasses of the following OWL classes and the asserted

descendent classes have been removed from the ontology:

Emergency, GovernmentOffice, TransferServiceAndRenting, CulturalActivity, Face, TourismService,

Accommodation, AgricultureAndLivestock, HealthCare, EducationAndResearch, IndustryAndManufacturing,

ShoppingAndService, UtilitiesAndSupply, SpatialThing, CivilAndEdilEngineering, Environment, Advertising

3. All axioms related to the following OWL object properties have been removed from the

ontology:

atBusStop, belongToRoad, hasInternalAccess, hasFirstStop, hasGeometry, hasFirstSection, hasForecast, hasFirstElem,

hasRoute, arrangedOnRoad, beginsAtJunction, concerningNode, concernLine, correspondToJunction, endsAtStop,

finishesAtJunction, formsTable, hasAccess, hasAVMRecord, hasBObservation, hasExpectedTime, hasExternalAccess,

hasLastStop, hasLastStopTime, hasManeuver, hasObservation, hasRouteLink, hasSecondElem, hasSection, location,

hasStatistic, hasStreetNumber, hasThirdElem, includeForecast, instantAVM, updateTime, instantBObserv, lastStop,

instantForecast, instantObserv, instantParking, instantWReport, isInMunicipality, isInRoad, isPartOfLot, startsAtStop,

measuredByBeacon, measuredBySensor, measuredDate, measuredTime, observationTime, onRoute, refersToRide,

placedInElement, placedOnRoad, scheduledOnLine, correspondsTo, coincideWith

4. All axioms related to the following OWL data properties have been removed from the

ontology:

adminClass, alterCode, atecoCode, automaticity, averageDistance, averageSpeed, averageTime, perTemp, axialMass,

capacity, classCode, day, elementClass, elementType, elemLocation, entryType, eventCategory, eventTime, exitRate,

expectedTime, exponent, fillRate, firenzeCard, free, freeEvent, gauge, lat, long, heightHour, hour, humidity, juncType,

lastStopTime, lastTriples, lastUpdate, length, lineNumber, lunarPhase, major, managingAuth, managingBy,

maneuverType, maxTemp, minor, minTemp, moonrise, moonset, multimediaResource, period, number, numTrack,

occupied, overtime, owner, parkOccupancy, porteCochere, power, primaryType, processType, public, railDepartment,

railwaySiding, recTemp, rideState, text, routeLength, routePosition, snow, speedLimit, speedPercentile, sunHeight,

sunrise, sunset, supply, thresholdPerc, composition, time, timestamp, trackType, trafficDir, type, typeLabel,

typeOfResale, underpass, uuid, uv, validityStatus, value, vehicle, vehicleFlow, width, wind, yardType, year,

extendName, restrictionType, restrictionValue, abbreviation, accessType, areaCode, areaName, automaticity, state,

combinedTraffic, concentration, direction, distance, districtCode, elemLocation, entryType, extendNumber,

houseNumber, occupancy, operatingStatus, placeName, routeCode, stopNumber

7. Removal of a number of AnnotationAssertion axioms

The full list of executed reductions in the finance ontology:

1. All axioms related to the following OWL classes and the asserted descendent classes have been

removed from the ontology (including all assigned instances):

ISO10962-ClassificationOfFinancialInstruments, YearlyAccount, ISICCode, RiskProfile, ImpactOfRiskOccurence,

RiskSymptom, Account, Risk, PartyType, XNStatus, PartyValues, Temporal

2. All axioms related to the following OWL classes have been removed from the ontology

(including all assigned instances):

ISO10383-MarketIdentifierCodes, ISO3166-CountryCode, ISO4217-Currencycodes, ValuePartition, InstrumentStatus,

ISOCodes

3. All instances related to the following OWL classes have been removed from the ontology:

ValidPeriod, ValidInstant, Granularity, Party (and all its subclasses), FinancialInstrument, Moodys (and all its

subclasses), StandardAndPoors (and all its subclasses), TargetOfLoan, NationalBank, InstrumentlNature,

CapitalizationType, MonitoringStatus, PostingUnit

4. All axioms related to the following OWL object properties have been removed from the

ontology:

269

isRelatedSeriesOf, hasAsRelatedSeries, isRestrictedVersionOf, hasAsRestrictedVersion, isStripForEntitlement,

hasStripForEntitlement, isBondConvertibleTo, hasPostingUnit, hasCFIGroupCode, hasAsBondConvertibleFrom,

hasAMutualRelationWithInstrument, hasFINature, hasPartyRange, hasCFICategoryCode, hasValuePartitionRelation,

isMutuallyRelatedToInstrument, isOldISINVersionOf, hasPartyRelation, hasInstrumentXNStatus,

hasAsOldISINVersion, hasISOClassificationOfFinancialInstrumentsRelation, isNationalBankFor, hasXNStatus,

isBrokerOnMarket, isFractionOf, isPartOfIndex, hasCFIAttribute1Code, hasCFIAttribute2Code,

hasCFIAttribute3Code, hasCFIAttribute4Code, hasAsNationalCurrency, hasAsFacialCurrency, hasCFIGroupAttribute1

(and all its subproperties), hasCFINature, hasCFIGroupAttribute2 (and all its subproperties), hasCFIGroupAttribute3

(and all its subproperties), hasAsFraction, hasCFIGroupAttribute4 (and all its subproperties),

isReferencedAsAttribute1 (and all its subproperties), isReferencedAsAttribute2 (and all its subproperties),

isReferencedAsAttribute3 (and all its subproperties), isEntitlementFor, isReferencedAsAttribute4 (and all its

subproperties), isReferencedByCFICategory (and all its subproperties), refersToCFIGroupCode (and all its

subproperties), hasQuotationOnMarket, hasBroker, hasRiskRole (and all its subproperties), hasAsNationalBank,

hasAsEntitlement, isLegalSalesEntityFor, hasAsLegalSalesEntity, isPartyCustodianForFinancialInstrument,

hasPartyCustodian, hasTemporalDomainRelation (and all its subproperties), hasTemporalRangeRelation (and all its

subproperties), isPartySubCustodianOf, hasAsUnderyingValue, isUnderlyingValueFor, hasAsIndexPart,

isRenamedInstrumentFrom, hasBeenRenamedTo, hasAsFiscalResidence, hasAsFiscalResident, hasAsLegalResidence,

hasAsLegalResident, hasFinancialInstrumentRelation

5. All axioms related to the following OWL data properties have been removed from the

ontology:

ISICDescription, ISICCode, hasRiskSymptomSource, hasCouponDomain, hasFinancialInstrumentDomain,

isDematerializedFromDate, isMaterializedTillDate, ISO3166-CountryCodes (and all its subproperties), ISOCurrency

(and all its subproperties), ISO10383-MICcodes (and all its subproperties), hasTemporalDomain (and all its

subproperties), hasExCouponDate, asPartOfTotalIssueAmounting, hasProcentualIssuePrice, hasAsDenomination,

isSubjectToSafekeepingFeesMarketSide, hasDateOfBeneficiary, isSubjectToSafekeepingFeesStreetSide,

isExemptedFromTaxesInCountryOfEmittor, hasCreationDateInInformationSystems, hasCouponCapitalizationRate,

hasCouponDate, hasIssueDate

6. Reduction of some additional axioms:

a) Removal of SubObjectPropertyOf axioms related to: hasFinancialInstrumentRelation,

isInvolvedPartyForFinancialInstrument

b) Removal of FunctionalObjectProperty axioms related to: hasMonitoringStatus,

hasCapitalizationType

c) Removal of FunctionalDataProperty axioms related to: hasISINcode, hasNominalValue,

isAllowedForSecuritiesHandling, hasNominalIssuePrice, hasDateOfBeneficiary,

hasCreationDateInInformationSystems, isAFungibleInstrument

7. Removal of a number of AnnotationAssertion axioms

270

Appendix B.2. Textual Descriptions of the Domain Ontologies

The full textual descriptions of the four domain ontologies selected for the experiment

are recorded on the CD enclosed to this doctoral dissertation.

This section is aimed to explain the applied procedure of preparing the textual descriptions of

the domain ontologies in natural language. Both OWL 2 domain ontologies and descriptions

of the domains in natural language had to be semantically equivalent. Therefore, both formats

have been expertly verified by dr inż. Bogumiła Hnatkowska.

Due to the fact that all materials for the experiment were prepared in the Polish language,

which is explained in section 12.8.1, the procedure of preparing textual descriptions of the

domain ontologies with the examples is explained below with the Polish examples (the

relevant English translation is also included).

For better readability of resulting descriptions, the following naming convention was applied:

 Names of UML classes: every word with a capital letter, combined into one word

without spaces, written in bold. For example:

InstrumentFinansowy (eng.: FinancialInstrument)

WartośćFizyczna (eng.: PhysicalValue)

 Names of UML attributes: the first word with a lowercase letter, every other word

with a capital letter, combined into one word without spaces, written in bold. For

example:

statusParkingu (eng.: carParkStatus)

typWęzła (eng.: nodeType)

 Names of UML association ends: the first word with a lowercase letter, every other

word with a capital letter, combined into one word without spaces, written in bold. For

example:

maRatingStandardAndPoors (eng.: hasStandardAndPoorsRating)

maAgentaTransferowego (eng.: hasPartyTransferAgent)

 Names of UML instances: capitalization in accordance with the original naming

convention in the ontology, combined into one word without spaces, written in bold.

For example, the following are few selected instances of the class called KodICAO

(eng.: ICAOCode):

EGHI, EGLL, EGPF, EINN

The general procedure of writing a textual description of the domain ontology in the natural

language (here: Polish) is presented in Table B.5 (for UML class with attributes), Table B.6

(for UML generalizations and generalization sets) and Table B.7 (for UML associations).

In the below tables, the square brackets ("[" and "]") in the translation patterns indicate the not

mandatory elements of the pattern. The slash ("/") indicates the alternative elements used

depending on the context.

271

Table B.5 Rules for writing a textual description of UML class with attributes.

UML element Class with Attributes

Translation pattern

(Polish)

A <czasownik>

[wartością logiczną / tekstową] / [liczbą naturalną / rzeczywistą] b1

[, ... oraz

[wartością logiczną / tekstową] / [liczbą naturalną / rzeczywistą] bN] .

Translation pattern

(English translation)

A <verb> [by]

b1 [logical / text value] / [integer /real number]

[, ... and

bN [logical / text value] / [integer /real number]] .

Example of

textual description

(Polish)

InstrumentFinansowy charakteryzuje się wartością logiczną

jestInstrumentemZamiennym, wartością tekstową kodISIN oraz liczbą

naturalną nominalnaWartość.

Example of

textual description

 (English

translation)

FinancialInstrument is characterized by isAFungibleInstrument logical

value, hasISINcode text value and hasNominalValue integer number.

Example of

UML element

(English)

Table B.6 Rules for writing a textual description of UML generalizations and generalization sets

UML element Generalization and Generalization Set with Constraints

Translation pattern

(Polish)

1) B jest A

LUB

2) A są [rozłączne / pokrywające się] [i]

[[<czasownik>] kompletnie / niekompletnie przez] : B1, B2, ... i BN

[, rozłączne między sobą]

Translation pattern

(English translation)

1) B is A

OR

2) A są [disjoint / overlapping] [and]

[[<verb>] complete / incomplete] : B1, B2, i BN

[, disjoint between each other]

Example of

textual description

(Polish)

1) NazwanyLot jest Lotem

2) Wartościami są: WartośćReputacji, WartośćFizyczna i

WartośćSymboliczna

Example of

textual description

 (English

translation)

1) NamedFlight is Flight

2) Values are: ReputeValue, PhysicalValue and SymbolicValue

Example of

UML element

(English) 1)

272

2)

Table B.7 Rules for writing a textual description of UML associations

UML element Associations with Multiplicity of Association Ends

Translation pattern

(Polish)

1) A jest <czasownik> przez

[przynajmniej / co najwyżej / dokładnie <liczba>]

 B (a), który jest b

[przynajmniej / co najwyżej / dokładnie <liczba>] A

LUB

2) A [jest] a [przynajmniej / co najwyżej / dokładnie <liczba>] B,

który [jest] b [przynajmniej / co najwyżej / dokładnie <liczba>] A

Translation pattern

(English translation)

1) A is <verb> by

[at least / at most / exactly <number>]

 B (a), który jest b

[at least / at most / exactly <number>] A

OR

2) A [is] a [at least / at most / exactly <number>] B,

which [is] b [at least / at most / exactly <number>] A

Important remark

regarding

multiplicity

Important is a different interpretation of a multiplicity in OWL and UML

notations. It has been assumed that the textual description will present only the

cardinality restrictions explicitly imposed by the OWL ontology. The subjects

of the experiment were informed that the default is unlimited multiplicity in

OWL which should be transformed to UML as "*".

Examples of

textual description

(Polish)

1) InstrumentFinansowy jest obsługiwany przez AgentaPłatniczego

(maAgentaPłatniczego), który jestAgentemPłatniczym przynajmniej jednego

InstrumentuFinansowego

2) ProducentSamolotów jestProducentem przynajmniej jednego

Samolotu, który jestWyprodukowanyPrzez ProducentaSamolotów.

Examples of

textual description

 (English

translation)

1) FinancialInstrument is served by PartyPayingAgent

(hasPartyPayingAgent), who isPartyPayingAgent of at least one

FinancialInstrument
2) Manufacturer isManufacturerOf at least one Aircraft, which

isManufacturedBy Manufacturer.

Examples of

UML elements

(English) 1)

2)

273

Appendix B.3. The Full Text of the Experiment Forms

The next pages present the experiment forms for GROUP A and GROUP B. The experiment

was conducted in the Polish language but for better readability in this Appendix the English

translation of the forms is enclosed. The full text of the experiment tasks in the original

Polish version are recorded on the CD enclosed to this doctoral dissertation.

274

Date of the experiment:

Year of study: The course name: ...

Experiment Group A

PART I: Using the tool to create and validate UML class diagrams

Task 1. Creating fragments of UML class diagram based on commands

Task start time:

Task completion time:

Data: (1) The tool (Visual Paradigm + plugin),

 (2) The file with the ontology: Monetary_Ontology.owl

a) Please draw all generalization and association relationships (including role names and

multiplicities) which directly occur between the following classes: Trader, Seller, Mint,

Buyer, Role.

b) Please draw all derived classes that occur in direct or indirect generalization relationship

with the base class: Agreement.

275

Task 2. Validation of the correctness of UML class diagram with the domain ontology

Task start time:

Task completion time:

Data: (1) The tool (Visual Paradigm + plugin),

 (2) The file with the ontology: AirTravelBooking_Ontology.owl

 (3) The file with UML class diagram: AirTravelBooking_Diagram.vpp

Please mark and correct all semantic errors in the following UML class diagram, so that this

diagram is COMPLIANT with the indicated domain ontology:

276

PART II: Using descriptions of the domains to create and validate UML class diagrams

Task 3. Creating fragments of UML class diagram based on commands

Task start time:

Task completion time:

Data: (1) Textual description of the domain: Smart City Ontology

a) Please draw all generalization and association relationships (including role names and

multiplicities) which directly occur between the following classes: RailwayElement,

RailwayDirection, RailwaySection and RailwayLine. Additionally, if it is defined in the

ontology, please include the attributes.

b) Please draw PublicAdministration class and all its derived classes that are in the

generalization relationship with the class. Please draw all association relationships that occur

between the drawn classes (including role names and multiplicities).

277

Task 4. Validation of the correctness of UML class diagram with the domain description

Task start time:

Task completion time:

Data: (1) Textual description of the domain: Finance ontology

Please mark and correct all semantic errors in the following UML class diagram, so that this

diagram is COMPLIANT with the indicated domain ontology:

278

Date of the experiment:

Year of study: The course name: ...

Experiment Group B

PART I: Using the tool to create and validate UML class diagrams

Task 1. Creating fragments of UML class diagram based on commands

Task start time:

Task completion time:

Data: (1) The tool (Visual Paradigm + plugin),

 (2) The file with the ontology: SmartCity_Ontology.owl

a) Please draw all generalization and association relationships (including role names and

multiplicities) which directly occur between the following classes: AdministrativeRoad,

Road, EntryRule and RoadElement. Additionally, if it is defined in the ontology, please

include the attributes.

b) Please draw PublicAdministration class and all its derived classes that are in the

generalization relationship with the class. Please draw all association relationships that occur

between the drawn classes (including role names and multiplicities).

279

Task 2. Validation of the correctness of UML class diagram with the domain ontology

Task start time:

Task completion time:

Data: (1) The tool (Visual Paradigm + plugin),

 (2) The file with the ontology: Finance_Ontology.owl

 (3) The file with UML class diagram: Finance_Diagram.vpp

Please mark and correct all semantic errors in the following UML class diagram, so that this

diagram is COMPLIANT with the indicated domain ontology:

280

PART II: Using descriptions of the domains to create and validate UML class diagrams

Task 3. Creating fragments of UML class diagram based on commands

Task start time:

Task completion time:

Data: (1) Textual description of the domain: Monetary Ontology

a) Please draw all generalization and association relationships (including role names and

multiplicities) which directly occur between the following classes: Mint, Debtor, Guarantor,

MintingAgreement, Issuer.

b) Please draw all derived classes that occur in direct or indirect generalization relationship

with the base class: Value.

281

Task 4. Validation of the correctness of UML class diagram with the domain description

Task start time:

Task completion time:

Data: (1) Textual description of the domain: Air travel booking Ontology

Please mark and correct all semantic errors in the following UML class diagram, so that this

diagram is COMPLIANT with the indicated domain ontology:

282

References

[1] OWL 2 Web Ontology Language. Structural Specification and Functional-Style Syntax
(Second Edition). W3C Recommendation 11 December 2012,
http://www.w3.org/TR/owl2-syntax/. 2012.

[2] H.-E. Eriksson and M. Penker, Business modeling with UML. Business Patterns at Work.
New York, USA: John Wiley & Sons, 2000.

[3] K. Goczyła, Ontologie w systemach informatycznych. Warszawa: Akademicka Oficyna
Wydawnicza EXIT, 2011.

[4] OWL 2 Web Ontology Language Document Overview (Second Edition). W3C
Recommendation 11 December 2012. https://www.w3.org/TR/owl2-overview/.

[5] Parreiras et al., ‘Semantics of Software Modeling’, in Semantic Computing, 2010, pp.
229–247.

[6] D. Ga, D. Djuric, and V. Deved, Model driven architecture and ontology development.
Springer Science & Business Media, 2006.

[7] F. Gailly and G. Poels, ‘Ontology-driven business modelling: improving the conceptual
representation of the REA ontology’, in Conceptual Modeling-ER 2007, Springer Berlin
Heidelberg, 2007, pp. 407–422.

[8] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and L. Tuzinkiewicz, ‘Problems of SUMO-like
ontology usage in domain modelling’, in Intelligent Information and Database Systems,
Springer International Publishing., 2014, pp. 352–363.

[9] OMG, Unified Modeling Language,Version 2.5, Doc. No.: ptc/2013-09-05,
http://www.omg.org/spec/UML/2.5. 2015.

[10] O. I. Lindland, G. Sindre, and A. Solvberg, ‘Understanding quality in conceptual
modeling’, Software IEEE, vol. 11, no. 2, pp. 42–49, 1994.

[11] Z. Huzar and M. Sadowska, ‘Towards Creating Complete Business Process Models’,
From Requirements to Software: Research and Practice, pp. 77–86, 2015.

[12] M. Sadowska and Z. Huzar, ‘Semantic Validation of UML Class Diagrams with the Use of
Domain Ontologies Expressed in OWL 2’, Software Engineering: Challenges and
Solutions. Springer International Publishing, pp. 47–59, 2017.

[13] M. Sadowska and Z. Huzar, ‘The method of normalizing OWL 2 DL ontologies’, Global
Journal of Computer Science and Technology, vol. 18, no. 2, pp. 1–13, 2018.

[14] M. Sadowska and Z. Huzar, ‘Representation of UML class diagrams in OWL 2 on the
background of domain ontologies’, e-Informatica Software Engineering Journal, vol. 13,
no. 1, pp. 63–103, 2019.

[15] M. Sadowska, ‘A Prototype Tool for Semantic Validation of UML Class Diagrams with
the Use of Domain Ontologies Expressed in OWL 2’, In Towards a Synergistic
Combination of Research and Practice in Software Engineering. Springer, Cham, pp. 49–
62, 2018.

[16] A. Lindsay, D. Downs, and K. Lunn, ‘Business processes – attempts to find a definition’,
Information and Software Technology, vol. 45, no. 15, pp. 1015–1019, 2003.

[17] P. Mohagheghi, V. Dehlen, and T. Neple, ‘Definitions and approaches to model quality
in model-based software development – A review of literature’, Information and
Software Technology, pp. 1646–1669, 2009.

283

[18] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers, ‘Using description logic to
maintain consistency between UML models’, International Conference on the Unified
Modeling Language, pp. 326–340, 2003.

[19] A. H. Khan and I. Porres, ‘Consistency of UML class, object and statechart diagrams
using ontology reasoners’, Journal of Visual Languages & Computing 26, pp. 42–65,
2015.

[20] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan, ‘Automatic extraction of OWL ontologies from
UML class diagrams: a semantics-preserving approach’, World Wide Web 15.5-6, pp.
517–545, 2012.

[21] Business Process Model and Notation (BPMN), Version 2.0, OMG. 2011.
[22] S. A. White, ‘Introduction to BPMN’. Ibm Cooperation,

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf (Accessed:
27.07.2019), 2004.

[23] S. S.-S. Cherfi, S. Ayad, and I. Comyn-Wattiau, ‘Improving business process model
quality using domain ontologies’, Journal on Data Semantics 2, vol. 2, no. 3, pp. 75–87,
2013.

[24] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini, ‘A formal framework for
reasoning on UML class diagrams’, International Symposium on Methodologies for
Intelligent Systems, Springer, Berlin, Heidelberg, pp. 503–513, 2002.

[25] A. Korthaus, ‘Using UML for business object based systems modeling’, in In The Unified
Modeling Language, Physica-Verlag HD, 1998, pp. 220–237.

[26] E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta, ‘Deriving
executable process descriptions from UML’, In Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on. IEEE, pp. 155-165., 2002.

[27] Object Constraint Language, Version 2.4, https://www.omg.org/spec/OCL/2.4/PDF.
2014.

[28] C. Fu, D. Yang, X. Zhang, and H. Hu, ‘An approach to translating OCL invariants into OWL
2 DL axioms for checking inconsistency’, Automated Software Engineering, vol. 24, no.
2, pp. 295–339, 2017.

[29] E. Börger, ‘Approaches to model business processes: a critical analysis of BPMN,
workflow patterns and YAWL’, Software Systems Modeling, vol. 11, pp. 305–318, 2012.

[30] W. Reisig, ‘Remarks on Egon Börger: Approaches to model business processes: a critical
analysis of BPMN, workflow patterns and YAWL’, Software Systems Modeling, vol. 12,
pp. 5–9, 2013.

[31] D. Gagné, ‘Addressing some BPMN 2.0 misconceptions, fallacies, errors, or simply bad
practices’, in BPMN 2.0 Handbook. Methods, Concepts, Case Studies and Standards in
Business Process Modeling Notation, Future Strategies Inc., 2012, pp. 113–124.

[32] T. Allweyer, ‘Human-Readable BPMN Diagrams’, in BPMN 2.0 Handbook. Methods,
Concepts, Case Studies and Standards in Business Process Modeling Notation, Future
Strategies Inc., 2012, pp. 217–232.

[33] M. Cortes-Cornax, A. Matei, S. Dupuy-Chessa, D. Rieu, N. Mandran, and E. Letier, ‘Using
intensional fragments to bridge the gap between organizational and intensional levels’,
Information and Software Technology, vol. 58, pp. 1–19, 2015.

[34] F. Heidari and P. Loucopoulos, ‘Quality evaluation framework (QEF): Modeling and
evaluating quality of business processes’, International Journal of Accounting
Information Systems, vol. 15, pp. 193–223, 2014.

284

[35] J. Kotremba, S. Raβ, and R. Singer, ‘Distributed Business Process – A Framework for
Modeling and Execution’, arXiv:1309.312v2 [csMA], 18 May 2014.

[36] G. Navarro-Suarez, J. Freund, and M. Schrepfer, ‘Best Practice Guidelines for BPMN
2.0.’, in BPMN 2.0 Handbook First Edition, Future Strategies Inc., 2010, pp. 151–165.

[37] Pillat R. M., T. C. Oliveira, P. S. Alencar, and D. D. Cowan, ‘BPMNt: A BPMN extension
for specifying software process tailoring’, Information and Software Technology, vol.
57, pp. 95–115, 2015.

[38] G. Aagesen and J. Krogstie, ‘Analysis and design of business processes using BPMN’,
Handbook on Business Process Management 1. Springer Berlin Heidelberg, pp. 213–
235, 2010.

[39] L. Fischer (ed.), BPMN 2.0 Handbook. Methods, Concepts, Case Studies and Standards
in Business Process Modeling Notation. Future Strategies Inc., 2012.

[40] J. Pitschke, ‘Business Vocabulary, Business Rules and Business Process – How to
Develop an Integrated Business Model?’, Presentation at the Business Rules Forum
2010, Washington, DC.

[41] W. Wang, ‘A Comparison of Business Process Modeling Methods’, 2006 IEEE
International Conference on Service Operations and Logistics, and Informatics, IEEE, pp.
1136–1141, 2006.

[42] I. M.-M. de Oca, M. Snoeck, H. A. Reijers, and A. Rodríguez-Morffi, ‘A systematic
literature review of studies on business process modeling quality’, Information and
Software Technology, vol. 58, pp. 187–205, 2015.

[43] S. Drejewicz, Zrozumied BPMN modelowanie procesów biznesowych. Wydawnictwo
Helion, 2012.

[44] T. R. Gruber, ‘A translation approach to portable ontology specifications’, Knowledge
acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[45] R. Studer, V. R. Benjamins, and D. Fensel, ‘Knowledge engineering: Principles and
methods’, Data & Knowledge Engineering, vol. 25, no. 1–2, pp. 161–197, Mar. 1998.

[46] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler, ‘Visual modeling of OWL DL
ontologies using UML’, International Semantic Web Conference. Springer Berlin
Heidelberg, pp. 198–213, 2004.

[47] K. X. S. de Souza and J. Davis, ‘Expanding Queries in Knowledge Management Systems’,
in Radoslaw Piotr Katarzyniak (Eds.), Ontologies and Soft Methods in Knowledge
Management, Australia: Advanced Knowledge International Pty Ltd., 2005, pp. 3–18.

[48] G. Antoniou and F. van Harmelen, ‘Web Ontology Language: OWL’, in Staab S., Studer
R. (eds), Handbook on ontologies. International Handbooks on Information Systems.,
Springer, Berlin, Heidelberg, 2004.

[49] D. de Almeida Ferreira and A. M. R. da Silva, ‘UML to OWL Mapping Overview An
analysis of the translation process and supporting tools’, 2007.

[50] Z. Xu, Y. Ni, L. Lin, and H. Gu, ‘A Semantics-Preserving Approach for Extracting OWL
Ontologies from UML Class Diagrams’, Database Theory and Application. Springer Berlin
Heidelberg, pp. 122–136, 2009.

[51] J. Zedlitz and N. Luttenberger, ‘Transforming Between UML Conceptual Models And
OWL 2 Ontologies’, Terra Cognita 2012 Workshop, vol. 6, 2012.

[52] OWL 2 Web Ontology Language Direct Semantics (Second Edition) W3C
Recommendation 11 December 2012, https://www.w3.org/TR/2012/REC-owl2-direct-
semantics-20121211/. 2012.

285

[53] OWL 2 Web Ontology Language RDF-Based Semantics (Second Edition). W3C
Recommendation 11 December 2012, https://www.w3.org/TR/2012/REC-owl2-rdf-
based-semantics-20121211/. 2012.

[54] OWL 2 Web Ontology Language Primer (Second Edition) W3C Recommendation 11
December 2012. https://www.w3.org/TR/owl2-primer/. 2012.

[55] OWL 2 Web Ontology Language Document Overview (Second Edition). W3C
Recommendation 11 December 2012. https://www.w3.org/TR/owl2-overview/. 2012.

[56] I. Horrocks, O. Kutz, and U. Sattler, ‘The Even More Irresistible SROIQ’, Proc. of the 10th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006). AAAI
Press, pp. 57–67, 2006.

[57] OWL 2 Web Ontology Language New Features and Rationale (Second Edition) W3C
Recommendation 11 December 2012, https://www.w3.org/TR/owl2-new-features/.
2012.

[58] P. Garbacz and R. Trypus, ‘Ontologie poza filozofią. Studium metafilozoficzne u podstaw
informatyki’, 2011. [Online]. Available: http://trypuz.pl/wp-content/papercite-
data/pdf/opf-ver10.pdf. [Accessed: 12-Nov-2019].

[59] C. Roussey, F. Pinet, M. A. Kang, and O. Corcho, ‘An Introduction to Ontologies and
Ontology Engineering’, in Ontologies in Urban Development Projects, vol. 1, London:
Springer London, 2011, pp. 9–38.

[60] N. Guarino, ‘Formal Ontology in Information Systems.’, Proceedings of FOIS’98, Trento,
Italy, 6-8 June 1998. Amsterdam, IOS Press, pp. 3–15.

[61] Meta Object Facility (MOF) Core Specification, Version 2.0. Object Management Group,
OMG, http://www.omg.org/spec/MOF/2.0/PDF/. 2006.

[62] F. S. Parreiras and S. Staab, ‘Using ontologies with UML class-based modeling: The
TwoUse approach’, Data & Knowledge Engineering, vol. 69, no. 11, pp. 1194–1207,
2010.

[63] F. S. Parreiras, Marrying model-driven engineering and ontology technologies: the
TwoUse approach. Ph. Degree Thesis. Koblenz-Landau University. 2011.

[64] D. Kathrin, C. Ronald, ten T. Annette, and de K. Nicolette, ‘Comparison of reasoners for
large ontologies in the OWL 2 EL profile’, Semantic Web, no. 2, pp. 71–87, 2011.

[65] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, ‘HermiT: An OWL 2 Reasoner’,
Journal of Automated Reasoning, vol. 53, no. 3, pp. 245–269, 2014.

[66] P. Haase and G. Qi, ‘An analysis of approaches to resolving inconsistencies in DL-based
ontologies’, In Proceedings of the International Workshop on Ontology Dynamics
(IWOD-07), pp. 97–109, 2007.

[67] M. Horridge, B. Parsia, and U. Sattler, ‘Explaining inconsistencies in OWL ontologies’,
Scalable Uncertainty Management. Springer Berlin Heidelberg, pp. 124–137, 2009.

[68] SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013,
https://www.w3.org/TR/sparql11-query/. 2013.

[69] M. J. O’Connor and A. K. Das, ‘SQWRL: A Query Language for OWL’, OWLED, vol. 529,
2009.

[70] M. d’Aquin and N. F. Noy, ‘Where to publish and find ontologies? A survey of ontology
libraries’, Journal of Web Semantics, vol. 11, pp. 96–111, Mar. 2012.

[71] S. Tartir, I. B. Arpinar, and A. P. Sheth, ‘Ontological Evaluation and Validation’, in Theory
and Applications of Ontology: Computer Applications, Dordrecht: Springer Netherlands,
2010, pp. 115–130.

286

[72] F. Silva Parreiras, S. Staab, and A. Winter, ‘On marrying ontological and metamodeling
technical spaces’, Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 2007.

[73] O. El Hajjamy, K. Alaoui, L. Alaoui, and M. Bahaj, ‘Mapping UML To OWL2 Ontology’,
Journal of Theoretical and Applied Information Technology, 90(1), 126., 2016.

[74] J. Zedlitz, J. Jörke, and N. Luttenberger, ‘From UML to OWL 2’, Knowledge Technology,
Springer Berlin Heidelberg, pp. 154–163, 2012.

[75] J. Zedlitz and N. Luttenberger, ‘Transforming Between UML Conceptual Models And
OWL 2 Ontologies’, Terra Cognita 2012 Workshop, vol. 6, 2012.

[76] Z. Jesper and N. Luttenberger, ‘Conceptual Modelling in UML and OWL-2’, International
Journal on Advances in Software, vol. 7, no. 1 & 2, 2014.

[77] S. Höglund, A. H. Khan, Y. Liu, and I. Porres, ‘Representing and Validating Metamodels
using OWL 2 and SWRL’, In Proceedings of the 9th Joint Conference on Knowledge-
Based Software Engineering JCKBSE, 2010.

[78] OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation 11
December 2012. https://www.w3.org/TR/owl2-profiles/.

[79] F. Steimann and H. Vollmer, ‘Exploiting practical limitations of UML diagrams for model
validation and execution’, Software & Systems Modeling, vol. 5, no. 1, pp. 26–47, 2006.

[80] BABOK v3 A Guide To The Business Analysis Body Of Knowledge. Toronto, Ontario,
Canada: International Institute of Business Analysis, 2015.

[81] B. Unhelkar, Verification and validation for quality of UML 2.0 models, vol. 42. John
Wiley & Sons, 2005.

[82] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi, ‘Formal
Verification and Validation of UML 2.0 Sequence Diagrams using Source and
Destination of Messages’, Electronic Notes in Theoretical Computer Science, vol. 254,
pp. 143–160, 2009.

[83] ‘Software verification and validation’, Wikipedia, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Software_verification_and_validation. [Accessed: 23-Oct-
2019].

[84] D. Berardi, D. Calvanese, and G. De Giacomo, ‘Reasoning on UML class diagrams’,
Artificial Intelligence, vol. 168, no. 1, pp. 70–118, 2005.

[85] M. Szlenk, ‘Formal Semantics and Reasoning about UML Class Diagram’, presented at
the 2006 International Conference on Dependability of Computer Systems, Szklarska
Poreba, 2006, pp. 51–59.

[86] C. A. González and J. Cabot, ‘Formal verification of static software models in MDE: A
systematic review’, Information and Software Technology, vol. 56, no. 8, pp. 821–838,
2014.

[87] M. Gogolla, F. Büttner, and J. Cabot, ‘Initiating a benchmark for UML and OCL analysis
tools’, In International Conference on Tests and Proofs, pp. 115–132, 2013.

[88] A. Hafeez, S. H. A. Musavi, and A. U. Rehman, ‘Ontology-based verification of UML
class/OCL model’, Mehran University Research Journal of Engineering and Technology,
vol. 37, no. 4, pp. 521–534, 2018.

[89] M. Clavel, M. Egea, and V. T. Silva, ‘MOVA: A Tool for Modeling, Measuring and
Validating UML Class Diagrams’. Academic Posters and Demonstrations Session of
MODELS 2007, 2007.

287

[90] J. Cabot, R. Claris, and D. Riera, ‘Verification of UML/OCL class diagrams using
constraint programming’, In 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pp. 73–80, 2008.

[91] B. Unhelkar, Process Quality Assurance for UML-Based Projects. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[92] A. Bertolino, G. De Angelis, A. Di Sandro, and A. Sabetta, ‘Is my model right? Let me ask
the expert’, Journal of Systems and Software, vol. 84, no. 7, pp. 1089–1099, 2011.

[93] P. Letelier and P. Sánchez, ‘Validation of UML classes through animation’, in Advanced
Conceptual Modeling Techniques, Springer Berlin Heidelberg, 2002, pp. 300–311.

[94] J. Faizan, M. Mernik, B. R. Bryant, and J. Gray, ‘A Grammar-Based Approach to Class
Diagram Validation’, In Fourth International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools (SCESM), St. Louis, MO, 2005.

[95] A. H. Khan, I. Rauf, and I. Porres, ‘Consistency of UML Class and Statechart Diagrams
with State Invariants’, Modelsward, pp. 14–24, 2013.

[96] C. Atkinson and K. Kiko, A detailed comparison of UML and OWL. Technischer Bericht 4,
Dep. for Mathematics and C.S., University of Mannheim, 2008.

[97] OWL Web Ontology Language. Test Cases. W3C Recommendation 10 February 2004.
https://www.w3.org/TR/owl-test/#consistencyChecker.

[98] Inflectra, ‘What are System Requirements Specifications/Software (SRS)?’, 2018.
[Online]. Available: https://www.inflectra.com/ideas/topic/requirements-
definition.aspx. [Accessed: 16-Oct-2019].

[99] B. Kitchenham and S. Charters, ‘Guidelines for performing Systematic Literature
Reviews in Software Engineering, v2.3’, EBSE Technical Report EBSE-2007-01, pp. 1–65,
2007.

[100] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and L. Tuzinkiewicz, ‘Domain modeling in the
context of ontology’, Foundations of Computing and Decision Sciences, vol. 40, no. 1,
pp. 3–15, 2015.

[101] V. Sládeková, ‘Methods used for requirements engineering’, 2007. [Online]. Available:
http://www.dcs.fmph.uniba.sk/diplomovky/obhajene/getfile.php/diplomovka.pdf?id=1
66&fid=271&type=application%2Fpdf. [Accessed: 16-Oct-2019].

[102] M. Rouse, ‘Definition: user story’, 2019. *Online+. Available:
https://searchsoftwarequality.techtarget.com/definition/user-story. [Accessed: 16-Oct-
2019].

[103] B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz, and I. Dubielewicz, ‘A New Ontology-Based
Approach for Construction of Domain Model’, Asian Conference on Intelligent
Information and Database Systems, Springer, Cham, pp. 75–85, 2017.

[104] H. Bogumiła, H. Zbigniew, T. Lech, and I. Dubielewicz, ‘Conceptual Modeling Using
Knowledge of Domain Ontology’, in Intelligent Information and Database Systems, vol.
9622, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 554–564.

[105] H. Knublauch, ‘Ontology-driven software development in the context of the semantic
web: an example scenario with with Protege/OWL’, Annex XVII (7), 2004.

[106] OMG, Unified Modeling Language,Version 2.5, Doc. No.: ptc/2013-09-05,
http://www.omg.org/spec/UML/2.5. 2015.

[107] V. Denny and Y. Sure, ‘How to design better ontology metrics’, The Semantic Web:
Research and Applications, pp. 311–325, 2007.

[108] A. L. Rector, ‘Normalisation of ontology implementations: Towards modularity, re-
use, and maintainability’, Proceedings Workshop on Ontologies for Multiagent Systems

288

(OMAS) in conjunction with European Knowledge Acquisition Workshop, pp. 1–16,
2002.

[109] A. L. Rector, ‘Modularisation of domain ontologies implemented in description logics
and related formalisms including OWL’, Proceedings of the 2nd international
conference on Knowledge capture. ACM, pp. 121–128, 2003.

[110] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering. Springer, 2012.

[111] M. Mehrolhassani and E. Atilla, ‘Developing Ontology Based Applications of Semantic
Web Using UML to OWL Conversion’, World Summit on Knowledge Society. Springer
Berlin Heidelberg, pp. 566–577, 2008.

[112] C. Zhang, Z.-R. Peng, T. Zhao, and W. Li, ‘Transformation of transportation data
models from unified modeling language to web ontology language’, Transportation
Research Record: Journal of the Transportation Research Board, vol. 2064, pp. 81–89,
2008.

[113] X. Wei, A. Dilo, S. Zlatanova, and P. van Oosterom, ‘Modelling emergency response
processes: comparative study on OWL and UML’, Information systems for crisis
response and management, Harbin Engineering University, pp. 493–504, 2008.

[114] N. Gherabi and M. Bahaj, ‘A New Method for Mapping UML Class into OWL Ontology’,
Special Issue of International Journal of Computer Applications (0975 – 8887) on
Software Engineering, Databases and Expert Systems – SEDEXS, pp. 5–9, 2012.

[115] H.-S. Na, O.-H. Choi, and J.-E. Lim, ‘A method for building domain ontologies based on
the transformation of UML models’, In Software Engineering Research, Management
and Applications, 2006. Fourth International Conference on. IEEE, pp. 332–338, 2006.

[116] M. Bahaj and J. Bakkas, ‘Automatic Conversion Method of Class Diagrams to
Ontologies Maintaining Their Semantic Features’, International Journal of Soft
Computing and Engineering (IJSCE) 2, p. 2013.

[117] A. Belghiat and M. Bourahla, ‘Transformation of UML models towards OWL
ontologies’, Sciences of Electronics, Technologies of Information and
Telecommunications (SETIT), 2012 6th International Conference on, IEEE, pp. 840–846,
2012.

[118] J. Zedlitz and N. Luttenberger, ‘Data Types in UML and OWL-2’, presented at the
SEMAPRO 2013: The Seventh International Conference on Advances in Semantic
Processing, 2013.

[119] OWL 2 Web Ontology Language New Features and Rationale (Second Edition) W3C
Recommendation 11 December 2012, https://www.w3.org/TR/owl2-new-features/.
2012.

[120] N. Noy and A. Rector, Defining N-ary Relations on the Semantic Web, W3C Working
Group Note 12 April 2006, http://www.w3.org/TR/swbp-n-aryRelations/. 2006.

[121] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C
Recommendation 5 April 2012. 2012.

[122] M. Sadowska and Z. Huzar, ‘Semantic Validation of UML Class Diagrams with the Use
of Domain Ontologies Expressed in OWL 2’, Software Engineering: Challenges and
Solutions. Springer International Publishing, pp. 47–59, 2017.

[123] R. Hodgson, ‘Converting UML Models to OWL – Part 1: The Approach’, 2011. *Online+.
Available: https://www.topquadrant.com/2011/02/04/converting-uml-models-to-owl-
part-1-the-approach/. [Accessed: 21-Sep-2019].

289

[124] A. Banu, S. S. Fatima, and K. U. R. Khan, ‘Building OWL Ontology: LMSO-Library
Management System Ontology’, Advances in Computing and Information Technology,
pp. 521-530. Springer, Berlin, Heidelberg, 2013.

[125] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sproģis, ‘OWLGrEd: a UML Style
Graphical Editor for OWL’, Proceedings of ORES-2010, CEUR Workshop Proceedings,
vol. 596, 2010.

[126] A. Belghiat and M. Bourahla, ‘Automatic generation of OWL ontologies from UML
class diagrams based on meta-modelling and graph grammars’, World Academy of
Science, Engineering and Technology, International Journal of Computer and
Information Engineering, vol. 6, no. 8, pp. 967–972, 2012.

[127] VOWL: Visual Notation for OWL Ontologies. Specification of Version 2.0.
http://vowl.visualdataweb.org/v2/. 2014.

[128] H. Bogumiła, ‘Towards automatic SUMO to UML translation’, From Requirements to
Software, Research and Practice, pp. 87–100, 2015.

[129] M. L. Berenson, D. M. Levine, and T. C. Krehbiel, ‘“Wilcoxon Signed Ranks Test:
Nonparametric Analysis for Two Related Populations” online topic for the book’, in
Basic Business Statistics: Concepts and Applications, Twelfth Edition., Prentice Hall,
2012.

[130] A. Field, Discopering Statistics Using SPSS, Thrid Edition. SAGE, 2009.
[131] S. Cranefield and M. Purvis, ‘UML as an Ontology Modelling Language’, IJCAI-99

Workshop on Intelligent Information Integration, 1999.
[132] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sproģis, ‘UML Style Graphical

Notation and Editor for OWL 2’, in Perspectives in Business Informatics Research, vol.
64, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 102–114.

[133] G. A. Miller, ‘WordNet: A Lexical Database for English’, Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

