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STRESZCZENIE

W ostatnich latach informatyka afektywna zyskuje na popularno"ci ze wzgl#du na
swój ogromny potencja! jako dziedziny nauki. Je$eli uda!oby si# zrealizowa% jej
za!o$enia, doprowadzi!oby to do powstania technologii wnioskuj&cych o ludzkich
emocjach, które by!yby prawdziwym prze!omem w interakcji cz!owiek-komputer i
pot#$nym narz#dziem do zrozumienia procesów rz&dz&cych naszym codziennym
$yciem. W niniejszej rozprawie zaj#li"my si# badaniem metod dla informatyki
afektywnej, koncentruj&c si# g!ównie na personalizowanym rozpoznawaniu stanów
afektywnych w $yciu codziennym.

W pierwszych pracach skupili"my si# na przeprowadzeniu dwóch bada’ literatur-
owych, t.j., krytycznego omówienia artyku!ów realizuj&cych rozpoznawanie emocji
w sposób aplikowalny w $yciu codziennym, oraz przegl&du skupiaj&cego si# na pro-
cedurach spersonalizowanego wnioskowania o stanach afektywnych. Odkryli"my
dzi#ki nim konieczno"% skupienia si# w naszej pracy na rozwi&zaniach gotowych do
u$ycia w $yciu codziennym i na metodach spersonalizowanych. Ponadto, po pod-
sumowaniu g!ównych ró$nic mi#dzy eksperymentami laboratoryjnymi, a badaniami
przeprowadzanymi w $yciu codziennym, zauwa$yli"my nowe wyzwania z którymi
badacze musz& si# mierzy% poza laboratorium. W niniejszej pracy przedstawili"my
te wyzwania wraz z rekomendacjami dotycz&cymi przysz!ych bada’ nad stanami
afektywnymi.

Zaj#li"my si# tak$e zgromadzeniem i przygotowaniem du$ego zbioru danych z $ycia
codziennego (LarField), zawieraj&cego ci&g!e nagrania wielu sygna!ów fizjolog-
icznych i behawioralnych, opatrzonych oznaczeniami stanów emocjonalnych, oraz
kontekstem. Jest to jeden z najwi#kszych nielaboratoryjnych zbiorów danych psy-
chofizjologicznych dotycz&cych emocji, zawieraj&cy nagrania 167 osób, z których
ka$da by!a monitorowana w ci&gu dnia przez jeden miesi&c. Rzeczone dane, wraz
z laboratoryjnym zbiorem Emognition, który równie$ zebrali"my, mog& by% wyko-
rzystane do prowadzenia bada’ nad rozpoznawaniem emocji i innych stanów afek-
tywnych z sygna!ów zebranych za pomoc& ogólnodost#pnych urz&dze’ noszalnych
(ang. wearables).

Opracowali"my i przetestowali"my równie$ nowe metody personalizowanego rozpoz-
nawania stanów afektywnych. Zbadali"my, m.in. mo$liwo"% wykorzystania modeli
spersonalizowanych do rozpoznawania afektu i u$ywania personalizacji grupowej
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do przeciwdzia!ania problemowi zimnego startu (ang. cold start). Ponadto opra-
cowali"my now& metod# dwuaspektowej personalizacji i zbadali"my j& w zadaniu
rozpoznawania emocji z sygna!ów EKG. Poniewa$ przeprowadzane eksperymenty
bada!y ró$ne zjawiska, byli"my zmuszeni dobiera% strategie modelowania, metryki
i procedury walidacji osobno do ka$dego z nich. Nasze badania pokaza!y przewag#
rozwi&za’ spersonalizowanych nad ogólnymi w dok!adno"ci predykcji, zw!aszcza
gdy modele by!y tworzone dla konkretnej osoby, lub gdy wnioskowa!y one w oparciu
o cechy kontekstowe, opisuj&ce osobowo"% i demografi#.

W trakcie prac badawczych mierzyli"my si# tak$e z wieloma wyzwaniami. Najwi#k-
szym z nich by!o radzenie sobie z opó(nieniami w zbieraniu i przetwarzaniu danych z
badania LarField. Z ich powodu, personalizacja dwuaspektowa, która zosta!a zapro-
jektowana z my"l& o danych zebranych w $yciu codziennym, zosta!a przetestowana
wy!&cznie na publicznie dost#pnych laboratoryjnych zbiorach danych. Ponadto w
badaniach nad przeciwdzia!aniem problemowi zimnego startu, ze wzgl#du na nisk&
liczno"% osobistych próbek ka$dego z uczestników badania, nie byli"my w stanie
wytrenowa% w pe!ni spersonalizowanych modeli. Te wyzwania zainspirowa!y nas
do skomentowania problemów w organizacji bada’, nadzorowania ich i zbierania
danych psychofizjologicznych dotycz&cych stanów afektywnych. Szczególn& uwag#
po"wi#cili"my du$ym badaniom realizowanym w $yciu codziennym, poniewa$ nie
s& one jeszcze tak popularne jak badania laboratoryjne. W zwi&zku z tym, wiele
problemów z którymi si# mierzyli"my, mo$e nie by% znanych innym badaczom.

Niniejsza rozprawa ukazuje istotno"% wykorzystywania danych zebranych w $yciu
codziennym i metod personalizowanych w rozpoznawaniu afektu. Pokazuje tak$e
potrzeb# dalszych bada’ nad personalizacj&, szczególnie nad !&czeniem cech indy-
widualnych z wzorcami obecnymi w ca!ej populacji. W przysz!ych eksperymentach
planujemy dalsz& eksploracj# stanów afektywnych oznaczanych przez ludzi, ich
zwi&zków z fizjologi& i sygna!ami behawioralnymi, cech personalnych i ogólnych
dla populacji, które mog& by% wykorzystane do wnioskowania o codziennym $yciu, a
tak$e nowych metod i strategii dla modelowania stanów afektywnych, w tym modeli
bazowych. Wi#kszo"% z tych zagadnie’ jest eksplorowana przez zespó! Emognition,
którego jestem cz!onkiem.
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ABSTRACT

A)ective computing gained much interest in recent years, as its promises, if fulfilled,
would lead to creating emotion-aware technologies – a real breakthrough in human-
computer interaction, and a powerful tool for understanding processes governing our
everyday lives. In this dissertation, we involve ourselves with a)ective computing,
focusing mainly on researching personalized methods for a)ect recognition in real-
life contexts.

Firstly, we performed two literature studies: one critical review of the articles re-
alizing emotion recognition in a manner befitting experiments in everyday life, and
another one delving into the procedures for personalized a)ective computing. They
allowed us to discover the necessity of focusing on real-life-ready solutions and
personalized methods in our research. Also, as we summarized major di)erences
between classical laboratory experiments and novel in-the-field studies, new chal-
lenges introduced by the latter became apparent. We comment on them and give
recommendations regarding future endeavors in a)ective computing.

Other important contributions involve gathering and preparing the LarField dataset,
a large information-rich dataset collected in everyday life, consisting of continuous
recordings of multiple physiological and behavioral signals annotated with emo-
tional states and broad contextual data. It is one of the most extensive datasets on
emotion psychophysiology acquired in real life, containing data from 167 subjects,
each recorded continuously during their day for one month. This dataset and the in-
the-laboratory Emognition dataset that we also produced may be utilized to research
a)ect recognition with o)-the-shelf wearable devices.

We also developed and tested new personalized methods for a)ective computing
studies. Among others, we researched the feasibility of using personalized mod-
els for a)ect recognition, utilizing per-group personalization to handle a cold-start
problem, and developed a new two-fold personalization method and examined it
on emotion recognition from ECG signals. Also, as experiments di)ered from
each other, we had to carefully select modeling strategies, metrics, and validation
procedures for each of them. Key findings from our experiments include the su-
periority of personalized models over general approaches, especially when trained
in a subject-specific manner or equipped with features describing personality and
demography as a context.
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During our research, we experienced several challenges. A major one was handling
the delays in data collection and processing from the large field study. Because
of that, although two-fold personalization was designed mainly for real-life data,
we could only test our methods on laboratory datasets from the literature. Also,
in cold-start experiments, we were unable to train fully personalized models due
to an insu*cient number of per-person samples. These challenges inspired us to
comment on the issues of organizing such studies, supervising them, and collecting
emotional psychophysiology data. In our lessons learned, we especially focused on
extensive outside-the-laboratory studies, as they are still a novelty, and many issues
that we faced and shared may not be known to other researchers.

This dissertation emphasizes the importance of utilizing real-life data and respecting
subjectivity while designing methods for a)ect recognition. Moreover, we highlight
the need for continued investigations on the balance between the general and indi-
vidualized modeling approaches. Our future work will focus on further researching
patterns in self-reported a)ective states, their relationships with physiology and be-
havior, subject-wise and population-wise features that may be utilized for reasoning
about people’s daily lives, and novel methods and strategies for a)ect modeling,
including foundational models. Most of them have recently been being explored by
the Emognition team I am a member of.



ix

RELEVANT SCIENTIFIC PAPERS

[1] K. Avramidis, D. Kunc, B. Perz, K. Adsul, T. Feng, P. Kazienko, S. Saganowski,
and S. Narayanan, “Scaling representation learning from ubiquitous ecg with
state-space models,” IEEE Journal of Biomedical and Health Informatics,
2024, IF 6.7, MEiN 140 pts.

[2] N. A. Coles, B. Perz, M. Behnke, J. C. Eichstaedt, S.-H. Kim, T. N. Vu,
C. Raman, J. Tejada, G. Zhang, T. Cui, S. Podder, R. Chavda, S. Pandey,
A. Upadhyay, J. I. Padilla-Buritica, C. J. Barrera Causil, L. Ji, F. Dollack, K.
Kiyokawa, H. Liu, M. Perusquia-Hernandez, H. Uchiyama, X. Wei, H. Cao,
Z. Yang, A. Iancarelli, K. McVeigh, Y. Wang, I. M. Berwian, J. C. Chiu, M.
Dan-Mircea, E. C. Nook, H. I. Vartiainen, C. Whiting, Y. Won Cho, S.-M.
Chow, Z. F. Fisher, Y. Li, X. Xiong, Y. Shen, E. Tagliazucchi, L. Bugnon,
R. Ospina, N. M. Bruno, T. A. D’Amelio, F. Zamberlan, L. R. Mercado
Diaz, J. O. Pinzon-Arenas, H. F. Posada-Quintero, M. Bilalpur, S. Hinduja,
F. Marmolejo-Ramos, S. Canavan, L. Jivnani, and S. Saganowski, “Big
team science reveals promises and limitations of machine learning e)orts
to model the physiological basis of a)ective experience,” Nature Human
Behaviour, 2024, In reviews. IF 21.4, MEiN 70 pts.

[3] J. Komoszy’ska, D. Kunc, B. Perz, A. Hebko, P. Kazienko, and S. Saganowski,
“Designing and executing a large-scale real-life a)ective study,” in 2024
IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and other A!liated Events (PerCom Workshops), Biarritz,
France, CORE A*, MEiN 200 pts., IEEE, 2024, pp. 505–510.

[4] D. Kunc, J. Komoszy’ska, B. Perz, S. Saganowski, and P. Kazienko, “Emog-
nition system-wearables, physiology, and machine learning for real-life emo-
tion capturing,” in 2023 11th International Conference on A"ective Comput-
ing and Intelligent Interaction Workshops and Demos (ACIIW), MIT Media
Lab, Cambridge, MA, USA, IEEE, 2023, 1–3, CORE C, MEiN 20 pts.

[5] S. Saganowski, B. Perz, A. G. Polak, and P. Kazienko, “Emotion recognition
for everyday life using physiological signals from wearables: A systematic
literature review,” IEEE Transactions on A"ective Computing, vol. 14, no. 3,
pp. 1876–1897, 2023, IF 9.6, MEiN 140 pts. !"#: 10.1109/TAFFC.2022.
3176135.

[6] D. Kunc, J. Komoszy’ska, B. Perz, P. Kazienko, and S. Saganowski, “Real-
life validation of emotion detection system with wearables,” in International
Work-Conference on the Interplay Between Natural and Artificial Computa-
tion (IWINAC), Puerto de la Cruz, Tenerife, Spain, Springer, 2022, 45–54,
CORE C, MEiN 20 pts.

[7] B. Perz, “Personalization of emotion recognition for everyday life using
physiological signals from wearables,” in 2022 10th International Confer-



x

ence on A"ective Computing and Intelligent Interaction Workshops and
Demos (ACIIW), Nara, Japan, IEEE, 2022, 1–5, CORE C, MEiN 20 pts.

[8] S. Saganowski, J. Komoszy’ska, M. Behnke, B. Perz, D. Kunc, B. Klich,
+. D. Kaczmarek, and P. Kazienko, “Emognition dataset: Emotion recogni-
tion with self-reports, facial expressions, and physiology using wearables,”
Scientific data, vol. 9, no. 1, p. 158, 2022, IF 9.8, MEiN 140 pts. !"#:
10.1038/s41597-022-01262-0.

[9] S. Saganowski, D. Kunc, B. Perz, J. Komoszy’ska, M. Behnke, and P.
Kazienko, “The cold start problem and per-group personalization in real-life
emotion recognition with wearables,” in 2022 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops and other
A!liated Events (PerCom Workshops), WristSense 2022 - The Eighth Work-
shop on Sensing Systems and Applications Using Wrist Worn Smart De-
vices, CORE A*, MEiN 200 pts., Best Paper Award, IEEE, 2022, pp. 812–
817. !"#: 10.1109/PerComWorkshops53856.2022.9767233.

[10] S. Saganowski, M. Behnke, J. Komoszy’ska, D. Kunc, B. Perz, and P.
Kazienko, “A system for collecting emotionally annotated physiological
signals in daily life using wearables,” in 2021 9th International Conference
on A"ective Computing and Intelligent Interaction Workshops and Demos
(ACIIW), online, IEEE, 2021, 1–3, CORE C, MEiN 20 pts.



xi

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Streszczenie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Relevant scientific papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions and achievements . . . . . . . . . . . . . . . . . . . . 3
1.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Other remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter II: A)ective computing and physiology . . . . . . . . . . . . . . . . 8
2.1 Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter III: Critical literature review . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Emotion recognition study design . . . . . . . . . . . . . . . . . . . 22
3.3 Study participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Temporal context a)ecting emotion . . . . . . . . . . . . . . . . . . 28
3.5 Collecting physiological signals . . . . . . . . . . . . . . . . . . . . 30
3.6 Emotional models and adjustments . . . . . . . . . . . . . . . . . . 32
3.7 Emotion labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 From theoretical model to reasoning task . . . . . . . . . . . . . . . 37
3.9 Learning case definition . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 Discussion and identified challenges . . . . . . . . . . . . . . . . . . 46

Chapter IV: Personalized emotion recognition review . . . . . . . . . . . . . 55
4.1 Personalization strategies . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Signals for personalized ER . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Validation in personalized ER . . . . . . . . . . . . . . . . . . . . . 65
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter V: In-the-laboratory data collection . . . . . . . . . . . . . . . . . . 73
5.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter VI: Cold start and group personalization . . . . . . . . . . . . . . . 83
6.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 83



xii

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter VII: Emotions in the wild . . . . . . . . . . . . . . . . . . . . . . . 92
7.1 Designing a large real-life psychophysiology study . . . . . . . . . . 92
7.2 Conducting a study . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter VIII: Searching for physiological markers of emotion . . . . . . . . . 117
8.1 Competition as research method . . . . . . . . . . . . . . . . . . . . 118
8.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter IX: Personalized data processing . . . . . . . . . . . . . . . . . . . 132
9.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Chapter X: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1 A)ect recognition literature . . . . . . . . . . . . . . . . . . . . . . 159
10.2 Collecting data for emotion research . . . . . . . . . . . . . . . . . . 160
10.3 Personalization for real-life a)ect recognition . . . . . . . . . . . . . 161
10.4 Limitations of this work and a)ective computing research . . . . . . 162
10.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Appendix A: Critical literature review . . . . . . . . . . . . . . . . . . . . . 188
Appendix B: In-the-laboratory data collection . . . . . . . . . . . . . . . . . 196
Appendix C: Emotions in the wild . . . . . . . . . . . . . . . . . . . . . . . 199

C.1 Questionnaires utilized for experiments . . . . . . . . . . . . . . . . 199
C.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Appendix D: EPiC competition submissions . . . . . . . . . . . . . . . . . . 228
Appendix E: Personalized emotion recognition . . . . . . . . . . . . . . . . 236

E.1 Proof for z-score equality . . . . . . . . . . . . . . . . . . . . . . . 236
E.2 Personalized processing . . . . . . . . . . . . . . . . . . . . . . . . 237



xiii

LIST OF ILLUSTRATIONS

Number Page
2.1 Plutchik’s wheel of emotions. . . . . . . . . . . . . . . . . . . . . . 11
2.2 Circumplex model of emotions. . . . . . . . . . . . . . . . . . . . . 12
2.3 Pleasure-Arousal-Dominance (PAD) emotion model. . . . . . . . . . 12
2.4 Interrelationships between physiological systems and biosignals. . . . 15
3.1 Number of papers in relation to the year of publication and study

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Common and unique research stages (study design) for emotion

recognition in the lab and in the field. . . . . . . . . . . . . . . . . . 23
3.3 Emotion recognition scenarios identified in SLR. . . . . . . . . . . . 26
3.4 Possible ways of labeling physiological signals with emotions in the

lab studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Possible ways of triggering self-assessment in the field studies. . . . . 36
3.6 Transition of original psychological emotional models into machine

learning used in experiments and conversion of 2-dimensional emo-
tional arousal-valence space to machine learning problem. . . . . . . 38

3.7 Selected validation methods used in emotion recognition. . . . . . . 45
5.1 Examples of data available in the Emognition dataset. . . . . . . . . 81
5.2 Distribution of self-reported emotions between and within conditions. 82
6.1 Scenarios considered in cold start and group personalization experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Mean F1 scores for AdaBoost classifier. . . . . . . . . . . . . . . . . 88
7.1 Timeline of the LarField phases: designing and main study. . . . . . 95
7.2 Devices used in the LarField study. . . . . . . . . . . . . . . . . . . 95
7.3 Distributions of Big Five personality model scores in LarField dataset. 104
7.4 Results of morning questionnaire prediction on Larfield dataset. . . . 106
7.5 Results of evening questionnaire prediction on Larfield dataset. . . . 107
7.6 Results of emotion questionnaires regression on Larfield dataset in

daily setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.7 Results of emotion questionnaires classification on Larfield dataset

in daily setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xiv

7.8 Results of emotion questionnaires prediction on Larfield dataset in
momentary setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 Validation scenarios employed in EPiC competition. . . . . . . . . . 121
8.2 Mean absolute prediction error for predictions submitted to EPIC

competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Example of real and simulated random electrocardiography signal

and mean absolute prediction errors for additional testing. . . . . . . 128
9.1 Distribution of annotations in a subset of AMIGOS dataset used in

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 Distribution of annotations in a subset of ASCERTAIN dataset used

in experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3 Distribution of annotations in a subset of CASE dataset used in

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4 Distribution of annotations in a subset of DREAMER dataset used in

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.5 Self-reported arousal and valence of selected subjects from CASE

dataset before and after adjusting. . . . . . . . . . . . . . . . . . . . 141
9.6 Comparison of model training approaches with baselines on classifi-

cation task in group setup. . . . . . . . . . . . . . . . . . . . . . . . 142
9.7 Comparison of model training approaches with baselines on regres-

sion task in group setup. . . . . . . . . . . . . . . . . . . . . . . . . 143
9.8 Comparison of processing methods on AMIGOS dataset in group

training setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.9 Comparison of processing methods on ASCERTAIN dataset in group

training setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.10 Comparison of processing methods on CASE dataset in group train-

ing setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.11 Comparison of processing methods on DREAMER dataset in group

training setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.12 Comparison of model training approaches with baselines on classifi-

cation task in subject-specific setup. . . . . . . . . . . . . . . . . . . 148
9.13 Comparison of model training approaches with baselines on classifi-

cation task in subject-specific setup. . . . . . . . . . . . . . . . . . . 149
9.14 Comparison of processing methods on AMIGOS dataset in subject-

specific training setup. . . . . . . . . . . . . . . . . . . . . . . . . . 150



xv

9.15 Comparison of processing methods on ASCERTAIN dataset in subject-
specific training setup. . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.16 Comparison of processing methods on CASE dataset in subject-
specific training setup. . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.17 Comparison of processing methods on DREAMER dataset in subject-
specific training setup. . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.18 Comparison of experimental designs with baselines on classification
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.19 Comparison of experimental designs with baselines on regression tasks.155
B.1 The original (Polish) version of self-reports used in the Emognition

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
C.1 Personality questionnaire used in the Emognition study. . . . . . . . 200
C.2 Morning questionnaire used in the Emognition study. . . . . . . . . . 203
C.3 Morning questionnaire used in the Emognition study. . . . . . . . . . 203
C.4 Emotion questionnaire used in the Emognition study. . . . . . . . . . 204



xvi

LIST OF TABLES

Number Page
2.1 Stages of a)ective computing development. . . . . . . . . . . . . . . 8
2.2 Categories of emotional cues for a)ective research. . . . . . . . . . . 13
3.1 A number of articles excluded from SLR with respect to particular

inclusion or exclusion criteria. . . . . . . . . . . . . . . . . . . . . . 21
3.2 Main di)erences between laboratory and real-life emotion recogni-

tion studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Participants’ metadata surveyed in studies. . . . . . . . . . . . . . . 27
3.4 Context surveyed or considered in reviewed studies. . . . . . . . . . 30
3.5 Physiological signals used for emotion recognition. . . . . . . . . . . 31
3.6 The most popular physiology-measuring devices in SLR. . . . . . . . 31
3.7 Trigger times, types of self-assessment, and emotional models uti-

lized in studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Methods of emotion labeling (ground truth). . . . . . . . . . . . . . 36
3.9 Possible ways of collecting self-assessment. . . . . . . . . . . . . . . 37

3.10 Approaches, methods, and measures used at particular machine learn-
ing stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 Validation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1 Personalization approaches in reviewed studies. . . . . . . . . . . . . 56
4.2 Machine learning approaches in reviewed studies. . . . . . . . . . . . 62
4.3 A)ective states researched in reviewed studies. . . . . . . . . . . . . 63
4.4 Signals and devices used for a)ect recognition in reviewed studies. . 64
4.5 Approaches to validation in reviewed studies. . . . . . . . . . . . . . 66
5.1 Measures available in the Emognition dataset. . . . . . . . . . . . . . 75
5.2 Signal-to-noise ratios (SNRs) statistics computed for raw physiolog-

ical signals recorded during the study. . . . . . . . . . . . . . . . . . 77
6.1 Distribution of data used in the research. . . . . . . . . . . . . . . . 84
6.2 Features extracted from the physiological signals. . . . . . . . . . . . 86
6.3 Results for investigated scenarios - classifiers using only cardiac data

as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Results for investigated scenarios - classifiers using cardiac data and

acceleration (ACC) as input. . . . . . . . . . . . . . . . . . . . . . . 90
7.1 Signals and measures collected during the LarField study. . . . . . . 94
7.2 Main aspects validated in pilot studies. . . . . . . . . . . . . . . . . 99



xvii

7.3 Results for emotion measure regression from personality trait scores. 105
7.4 Selected challenges encountered during the design and execution of

the study, along with the suggested solutions. . . . . . . . . . . . . . 113
A.1 Emotional models, ground truth, and machine learning (ML) problems.189
A.2 Main di)erences in emotion recognition between lab study and field

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.3 Machine learning-related techniques and measures applied in SLR

studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.1 Results of Repeated Measures Analysis of Variance for Di)erences

Between Conditions in Self-reported Emotions. . . . . . . . . . . . . 197
B.2 Results of Repeated Measures Analysis of Variance for Di)erences

Within Conditions in Self-reported Emotions. . . . . . . . . . . . . . 197
B.3 P-values from repeated measures analysis of variance (rANOVA) for

di)erences between conditions . . . . . . . . . . . . . . . . . . . . . 198
B.4 P-values from repeated measures analysis of variance (rANOVA) for

di)erences within conditions . . . . . . . . . . . . . . . . . . . . . . 198
C.1 Results for regression of next day morning sleep quality questionnaire.205
C.2 Results for regression of next day morning rest questionnaire. . . . . 206
C.3 Results for regression of next day morning stress questionnaire. . . . 206
C.4 Results for regression of next day morning composure questionnaire. 207
C.5 Results for classification of next day morning sleep quality question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.6 Results for classification of next day morning rest questionnaire. . . . 208
C.7 Results for classification of next day morning stress questionnaire. . . 208
C.8 Results for classification of next day morning composure questionnaire.209
C.9 Results for regression of same day evening health questionnaire. . . . 209

C.10 Results for regression of same day evening mood questionnaire. . . . 210
C.11 Results for regression of same day evening overwhelm questionnaire. 210
C.12 Results for regression of same day evening unpredictability question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.13 Results for classification of same day evening health questionnaire. . 211
C.14 Results for classification of same day evening mood questionnaire. . . 212
C.15 Results for classification of same day evening overwhelm questionnaire.212
C.16 Results for classification of same day evening unpredictability ques-

tionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
C.17 Results for regression of daily emotions morning valence questionnaire.213



xviii

C.18 Results for regression of daily emotions morning arousal questionnaire.214
C.19 Results for regression of daily emotions afternoon valence question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
C.20 Results for regression of daily emotions afternoon arousal questionnaire.215
C.21 Results for regression of daily emotions evening valence questionnaire.215
C.22 Results for regression of daily emotions evening arousal questionnaire.216
C.23 Results for classification of daily emotions morning valence ques-

tionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.24 Results for classification of daily emotions morning arousal question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.25 Results for classification of daily emotions afternoon valence ques-

tionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
C.26 Results for classification of daily emotions afternoon arousal ques-

tionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.27 Results for classification of daily emotions evening valence question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.28 Results for classification of daily emotions evening arousal question-

naire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.29 Results for regression of momentary emotions valence questionnaire. 219
C.30 Results for regression of momentary emotions arousal questionnaire. 220
C.31 Results for classification of momentary emotions intense emotions

questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
C.32 Results for classification of momentary emotions valence questionnaire.221
C.33 Results for classification of momentary emotions arousal questionnaire.221
C.34 Pairwise comparisons of modeling strategies for regression of next

day morning questionnaires. . . . . . . . . . . . . . . . . . . . . . . 223
C.35 Pairwise comparisons of modeling strategies for classification of next

day morning questionnaires. . . . . . . . . . . . . . . . . . . . . . . 223
C.36 Pairwise comparisons of modeling strategies for regression of same

day evening questionnaires. . . . . . . . . . . . . . . . . . . . . . . 224
C.37 Pairwise comparisons of modeling strategies for classification of

same day evening questionnaires. . . . . . . . . . . . . . . . . . . . 224
C.38 Pairwise comparisons of modeling strategies for regression of daily

emotions questionnaires. . . . . . . . . . . . . . . . . . . . . . . . . 225
C.39 Pairwise comparisons of modeling strategies for classification of daily

emotions questionnaires. . . . . . . . . . . . . . . . . . . . . . . . . 226



xix

C.40 Pairwise comparisons of modeling strategies for regression of mo-
mentary emotions questionnaires. . . . . . . . . . . . . . . . . . . . 226

C.41 Pairwise comparisons of modeling strategies for classification of mo-
mentary emotions questionnaires. . . . . . . . . . . . . . . . . . . . 227

D.1 Details of submissions to Emotion Physiology and Experience Col-
laboration (EPiC) challenge. . . . . . . . . . . . . . . . . . . . . . . 228

D.2 Competition results in across-time validation scenario. . . . . . . . . 231
D.3 Competition results in across-subject validation scenario. . . . . . . . 232
D.4 Competition results in across-emotion validation scenario. . . . . . . 233
D.5 Competition results in across-induction validation scenario. . . . . . 234
D.6 Results for the three teams selected to partake in additional testing. . 235
E.1 Classification results in subject-dependent (group) experimental setup 238
E.2 Regression results in subject-dependent (group) experimental setup . 239
E.3 Results of Friedman’s test between processing methods in subject-

dependent (group) experimental design. . . . . . . . . . . . . . . . . 240
E.4 Comparison of processing methods in subject-dependent (group) ex-

perimental design. AMIGOS dataset, classification, majority baseline. 241
E.5 Comparison of processing methods in subject-dependent (group) ex-

perimental design. AMIGOS dataset, regression, average baseline. . . 242
E.6 Results of Conover’s post-hoc test between processing methods in

subject-dependent (group) experimental design. AMIGOS dataset,
arousal classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 243

E.7 Comparison of processing methods in subject-dependent (group) ex-
perimental design. ASCERTAIN dataset, classification, majority
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

E.8 Comparison of processing methods in subject-dependent (group) ex-
perimental design. ASCERTAIN dataset, regression, average baseline.245

E.9 Results of Conover’s post-hoc test between processing methods in
subject-dependent (group) experimental design. ASCERTAIN dataset,
arousal classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 246

E.10 Results of Conover’s post-hoc test between processing methods in
subject-dependent (group) experimental design. ASCERTAIN dataset,
valence classification. . . . . . . . . . . . . . . . . . . . . . . . . . 247

E.11 Results of Conover’s post-hoc test between processing methods in
subject-dependent experimental design. ASCERTAIN dataset, va-
lence regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248



xx

E.12 Comparison of processing methods in subject-dependent (group) ex-
perimental design. CASE dataset, classification, majority baseline. . 249

E.13 Comparison of processing methods in subject-dependent (group) ex-
perimental design. CASE dataset, regression, average baseline. . . . 250

E.14 Results of Conover’s post-hoc test between processing methods in
subject-dependent experimental design. CASE dataset, arousal re-
gression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

E.15 Comparison of processing methods in subject-dependent (group) ex-
perimental design. DREAMER dataset, classification, majority base-
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

E.16 Comparison of processing methods in subject-dependent (group) ex-
perimental design. DREAMER dataset, regression, average baseline. 253

E.17 Classification results in subject-dependent (subject) experimental setup.255
E.18 Regression results in subject-dependent (subject) experimental setup. 256
E.19 Results of Friedman test between processing methods in subject-

dependent (subject) experimental design. . . . . . . . . . . . . . . . 257
E.20 Comparison of processing methods in subject-dependent (subject) ex-

perimental design. AMIGOS dataset, classification, majority baseline. 258
E.21 Comparison of processing methods in subject-dependent (subject)

experimental design. AMIGOS dataset, regression, average baseline. 259
E.22 Results of Conover’s post-hoc test between processing methods in

subject-dependent (subject) experimental design. AMIGOS dataset,
arousal regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

E.23 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. AMIGOS dataset,
valence regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

E.24 Comparison of processing methods in subject-dependent (subject)
experimental design. ASCERTAIN dataset, classification, majority
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

E.25 Comparison of processing methods in subject-dependent (subject) ex-
perimental design. ASCERTAIN dataset, regression, average baseline.263

E.26 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. ASCERTAIN dataset,
arousal classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 264



xxi

E.27 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. ASCERTAIN dataset,
valence classification. . . . . . . . . . . . . . . . . . . . . . . . . . 265

E.28 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. ASCERTAIN dataset,
arousal regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

E.29 Comparison of processing methods in subject-dependent (subject)
experimental design. CASE dataset, classification, majority baseline. 267

E.30 Comparison of processing methods in subject-dependent (subject)
experimental design. CASE dataset, regression, average baseline. . . 268

E.31 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. CASE dataset,
arousal classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 269

E.32 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. CASE dataset,
arousal regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

E.33 Comparison of processing methods in subject-dependent (subject)
experimental design. DREAMER dataset, classification, majority
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

E.34 Comparison of processing methods in subject-dependent (subject)
experimental design. DREAMER dataset, regression, average baseline.272

E.35 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. DREAMER dataset,
arousal classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 273

E.36 Results of Conover’s post-hoc test between processing methods in
subject-dependent (subject) experimental design. DREAMER dataset,
arousal regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

E.37 Comparison of results in experimental setups (designs) with respec-
tive baselines. Arousal classification, majority baseline. . . . . . . . 276

E.38 Comparison of results in experimental setups (designs) with respec-
tive baselines. Valence classification, majority baseline. . . . . . . . 277

E.39 Comparison of results in experimental setups (designs) with respec-
tive baselines. Arousal regression, average baseline. . . . . . . . . . 278

E.40 Comparison of results in experimental setups (designs) with respec-
tive baselines. Valence regression, average baseline. . . . . . . . . . 279

E.41 Results of Friedman test between experimental designs. . . . . . . . 280



xxii

E.42 Results of Conover’s post-hoc test between experimental designs.
AMIGOS dataset, Arousal classification. . . . . . . . . . . . . . . . 280

E.43 Results of Conover’s post-hoc test between experimental designs.
AMIGOS dataset, Valence classification. . . . . . . . . . . . . . . . 281

E.44 Results of Conover’s post-hoc test between experimental designs.
AMIGOS dataset, Valence regression. . . . . . . . . . . . . . . . . . 281

E.45 Results of Conover’s post-hoc test between experimental designs.
ASCERTAIN dataset, Arousal classification. . . . . . . . . . . . . . 281

E.46 Results of Conover’s post-hoc test between experimental designs.
ASCERTAIN dataset, Valence classification. . . . . . . . . . . . . . 282

E.47 Results of Conover’s post-hoc test between experimental designs.
ASCERTAIN dataset, Arousal regression. . . . . . . . . . . . . . . . 282

E.48 Results of Conover’s post-hoc test between experimental designs.
ASCERTAIN dataset, Valence regression. . . . . . . . . . . . . . . . 282

E.49 Results of Conover’s post-hoc test between experimental designs.
CASE dataset, Arousal classification. . . . . . . . . . . . . . . . . . 283

E.50 Results of Conover’s post-hoc test between experimental designs.
CASE dataset, Valence classification. . . . . . . . . . . . . . . . . . 283

E.51 Results of Conover’s post-hoc test between experimental designs.
CASE dataset, Arousal regression. . . . . . . . . . . . . . . . . . . . 283

E.52 Results of Conover’s post-hoc test between experimental designs.
CASE dataset, Valence regression. . . . . . . . . . . . . . . . . . . . 284

E.53 Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Arousal classification. . . . . . . . . . . . . . . 284

E.54 Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Valence classification. . . . . . . . . . . . . . . 284

E.55 Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Valence regression. . . . . . . . . . . . . . . . 285



xxiii

NOMENCLATURE

Accuracy (general term). The degree to which predictions or results match the
correct values.

Accuracy (metric). A fraction of correctly classified instances (true positives +
true negatives) to all predictions.

Adjacent sliding windows. Signal windows shifted by the whole window length or
more between. As a result, obtained parts do not contain common samples.

Arousal. Emotional dimension describing how energized or soporific a person
feels.

AUC. Area under curve, usually calculated for Receiver Operating Characteristic
(ROC) curve.

CCC. Concordance correlation coe*cient.

CNN. Convolutional Neural Network.

DT. Decision Tree.

Emotional stimulus. Any event (or object) that elicits emotional experience.

F1-measure (score). A harmonic mean of precision and recall.

KNN. K-nearest neighbors.

LO(k)SO. Leave One (or k) Subjects Out cross validation.

LSTM. Long short-term memory network.

Macro averaging (-macro). Computing arithmetic mean across classes, i.e., first
computing performance metric values per class (for instance, high class and
low class precision), and afterwards averaging the class-wise scores..

MAE. Mean absolute error.

MLP. Multilayer Perceptron.

MSE. Mean squared error.

Overfitting. A situation where trained model does not capture relationships be-
tween input and output data, but learns to mimick the exact input-output
pairs seen during training.

Overlaping sliding windows. Signal windows shifted by fewer samples than win-
dow length. As a result, obtained parts contain common samples.
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Precision. A fraction of correctly classified positive class instances (true positives)
to all instances classified as positive class (true positives + false positives).

Recall. A fraction of correctly classified positive class instances (true positives) to
all of positive class instances in the dataset (true positives + false negatives).

RMSE. Square root of mean squared error.

Sliding windows. A method where an operation is executed within a predefined
window (or range) that is shifted across the input data. Often used to per-
form computations over input signals, or to divide signal into parts for later
processing..

SMS. Short Message Service, a service for text messaging implemented in most
telephones.

SVM. Support Vector Machine.

Timestamp. A number coding a specific moment in time, usually representing the
amount of seconds elapsed since midnight on 1 January 1970 UTC (the Unix
Epoch).

Valence. Emotional dimension describing how positive or negative a person feels
(or how pleasant or unpleasant a stimulus is).
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C h a p t e r 1

INTRODUCTION

In the span of our lives, we people experience countless occurrences of phenomeno-
logical states that we call “emotions” [1]. Those states drive most of our decisions,
not only those intuitive but also the seemingly logical ones, and also impact per-
ception and cognitive functions [2–4]. It is thus not surprising that technological
companies pursue, among others, emotion recognition technologies and that the
emotion AI industry was recently valued at over 20 billion USD [5], with some
sources predicting its further growth [6].

To realize emotion recognition, several obstacles have to be overcome first. One
of them regards finding patterns that allow discerning between di)erent emotional
states. Although it is well-known that a)ective experience impacts various sys-
tems within the human body, the existence of universal links between experienced
emotions and nonverbal cues, such as behavior or physiology, is still subject to
debate [7–10]. Di)erent authors point out personal di)erences in both physiology
and emotion perception, along with the impact of context on experience [11–14].
The lack of consensus is best expressed by the fact that most researchers still work
on models for the general population while others focus on creating personalized
solutions.

It leads to another set of issues regarding the relatively low amounts of personal data
that can be collected, as people tend to become tired if asked about their emotions
too often [15]. Not only that, but not having any data on a person for whom one
wants to predict emotions does not allow adjusting and improving models, and it
is called the cold start problem. This issue does not a)ect general models, but in
personalization research, one can also find ways to mitigate it by, e.g., modeling
patterns within groups of similar people or utilizing procedures for low-data regimes,
such as creating unsophisticated models or using transfer learning.

Emotion recognition systems may benefit the general population in a variety of ways,
by, e.g., improving human-computer interaction, helping teachers in the classroom,
helping diagnose patients and provide custom treatments, assisting in decision mak-
ing processes, or improving people’s wellbeing and longetivity [16]. It could also
improve computational reasoning, similar to that of humans, by learning to opti-



2

mize repetitive tasks or by learning how to make decisions when problems cannot
be fully explored [10]. However, there is also an ongoing discussion about harms
that unwarranted emotion recognition or inaccurate predictions may cause [17, 18].

Possibly helpful and destructive at the same time, algorithms for emotion recognition
should not only be precise but also created with respect to people’s privacy in mind.
While multimodal systems would probably work best, as people express emotions
in various ways, modalities di)er in terms of their (1) susceptibility to noise and
(2) privacy. For example, body gestures and facial expressions can be suppressed
or changed [19], and many researchers perceive them as impacted by context,
such as culture or specific situations [20–23]. Moreover, facial, behavioral, and
vocal expressions can be tracked without a person’s consent through cameras and
microphones, which are becoming increasingly ubiquitous. Unlike those, recording
physiological data, such as skin temperature or heart rate, typically requires direct
contact with the person’s body and has to be realized, e.g., by using wearable
sensors. Picard [10] raised similar concerns in her book and pointed out that
general and ubiquitous methods may not be the holy grail of emotion recognition,
as some people may prefer only their trusted devices and closest ones to access their
emotional information.

Although those issues cannot be ignored, such ethical considerations are not in the
scope of this thesis, and therefore, we do not delve deeply into them. However, hav-
ing all of the concerns in mind, in this dissertation, we mostly focus on methods for
a)ect recognition that (1) may be applied in everyday life and (2) utilize signals that
are di*cult to measure without a person’s knowledge. While in review sections, the
reader can find information about a vast range of methods, in our own research, we
focus solely on physiological signals and their application for emotion recognition.
Additionally, because during our research, we found many issues with commensu-
rability, we also explored di)erent validation and training procedures suitable for
emotion recognition studies. Specifically, this thesis tries to answer the following
fundamental questions:

• Is there a necessity for a)ective studies to be transferred from controlled
laboratory conditions to real life? What are the main di)erences between the
laboratory and field studies, and what new challenges does the latter introduce?
(Chap. 3)
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• Can everyday life a)ective states be recognized from physiological signals?
(Chaps. 7)

• Does a personalized approach to a)ect recognition improve the quality of
inference of emotional states from physiological signals over the commonly
utilized generalized methods and baselines? (Chaps. 7, 6, and 9)

1.1 Contributions and achievements
While a substantial amount of work still needs to be done in a)ective comput-
ing and emotion recognition fields, in this dissertation, we provide the following
contributions and achievements:

1. To explore methods and issues in emotion recognition research, we performed
a critical systematic review, focusing on studies performed in or applicable to
real life ([16], Chap. 3).

2. Additionally, we reviewed the literature regarding personalized a)ect recogni-
tion, starting from personalized context impacting emotional experience ([16]
- Appendix, Secs. 3.3 and 3.4). Finally, we structured the topic, identified
research components that may be subject to personalization, and critically
revised possible approaches (Chap. 4).

3. We also identified key between-people di)erences that have an impact on
the quality of a)ect recognition methods, and underlined the importance of
developing personalized solutions ([16], Secs. 3.3 and 3.4). These dissimilar-
ities can be seen, among others, in people’s (1) perception and understanding
of a)ective states, (2) physiological reactions to stimuli, (3) engagement and
attitude towards the data collection process, (4) personalities, which impact
emotional reactions, and (5) lifestyle and everyday habits.

4. We collected a laboratory dataset utilizing o)-the-shelf devices suitable for
use in real-life studies ([24], Chap. 5). In particular, a new lessons learned
section (Sec. 5.3.2) was added in this thesis!.

5. The above dataset served as preliminary work before running a large real-life
psychophysiology study (LarField), for which we provide descriptions and

1Although our own experiments did not yield satisfactory results, other researchers found the
dataset valuable, and at the time of writing (August 29, 2024) it was cited 50 times according to
google scholar and 33 times according to Scopus (with self-citations excluded).
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recommendations based on the lessons learned ([25], Chap. 7). Data from
this study (LarField dataset) was collected using using the Emognition system
that we personally contributed to ([15, 26, 27], Sec. 7.1.2).

6. On the LarField dataset, we performed initial experiments focused on studying
the feasibility of including personal context when modeling real-life a)ective
states. Utilized methods, albeit simple, allowed us to draw some conclusions
about personalized approaches to recognition of daily a)ective states and
momentary emotions, which we present together with identified limitations
(Secs. 7.3 and 7.4.2).

7. Moreover, using data collected during in-the-field pilot studies preceding the
collection of the LarField dataset, we researched di)erent strategies of training
models for emotion detection and the usefulness of group-personalization as
a means of addressing the cold-start problem in emotion recognition studies
([28], Chap. 6).

8. For the above research on group-personalization and the conference paper
describing it [28], we were granted the Best Paper Award at WristSense 2022
- The Eighth Workshop on Sensing Systems and Applications Using Wrist
Worn Smart Devices, co-located with 2022 IEEE International Conference
on Pervasive Computing and Communications (CORE A*, MEIN 200 pts.).

9. We researched the properties of the WildECG, a pre-trained state-space (S4)
model for representation learning from ECG signals, in collaboration with
the University of Southern California [29]. We used this pre-trained model
in our research of two-fold personalization to generate signal representations
(Sec. 9.1.4).

10. We researched di)erent methods of personalization for emotion recognition
from ECG, using new two-fold personalization strategies and the WildECG
model. They focused mainly on personalized standardization of input signals
and collected emotion measures. We present the results of our research and
provide conclusions about the impact that di)erent normalization methods
have on emotion recognition quality (Chap. 9).

11. Additionally, on the same datasets, we analyzed the e)ect of personalized
training on results and compared two personalized experimental designs with
non-personalized models (Chap. 9).
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12. We co-leaded a Big Team Science e)ort in the form of a competition and a
workshop at the 2023 A)ective Computing and Intelligent Interaction Confer-
ence (ACII 2023, MIT, Boston, USA)",#,$, aimed to evaluate the possibilities
and restrictions that utilizing machine learning methods to model theorized
links between PNS activity and emotion self-reports with researchers from
Stanford University (California) and Adam Mickiewicz University (Pozna’,
Poland) ([32], Chap. 8).

13. After the above challenge concluded, we ranked the submissions of competi-
tion participants and investigated the best-performing methods, by reviewing
them and rerunning the submitted code to assess their replicability ([32],
Chap. 8).

14. Additionally, we investigated the challenge’s results and drew observations
and conclusions regarding the comparability of di)erent machine learning
algorithms and methods, and further, we provide comments regarding con-
straints on generalizability imposed by a chosen approach. This work was
done with researchers from, among others: Adam Mickiewicz University
(Poland), Chonnam National University (South Korea), Delft University of
Technology (Netherlands), Federal University of Sergipe (Brazil), FPT Uni-
versity (Vietnam), Indian Institute of Science Education and Research (India),
Indian Institute of Technology (India), Instituto Tecnologico Metropolitano
(Colombia), Montana State University (MA, US), Nara Institute of Science
and Technology (Japan), New York Institute of Technology (NY, US), North-
eastern University (MA, US), Princeton University (NJ, US), The Pennsylva-
nia State University (PA, US), Stanford University (CA, US), Tilberg Univer-
sity (Netherlands), Universidad Adolfo Ibañez (Chile), Universidad Nacional
del Litoral (Argentina), Universidade Federal da Bahia (Brazil), University
of Buenos Aires (Argentina), University of Connecticut (CT, US), Univer-
sity of Pittsburgh (PA, US), University of South Australia Online (Australia),
University of South Florida (FL, US), and one independent researcher ([32],
Chap. 8).

15. In total, research that we published was cited%: 156 times, with an h-index of
2https://epic-collab.github.io/acii/
3During the event, we personally delivered a speech describing the challenge structure [30], which

we later presented in an extended version during 2023 Big Team Science Conference (BTSCON) [31]
4Also, during the workshop we had an honor to host Lisa Feldman Barrett as a keynote speaker
5Search performed on September 26, 2024.
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5, according to Google Scholar; or 103 times (72 times without autocitations),
with an h-index of 2, according to Scopus.

1.2 Dissertation outline
Chapter 2 gives the core background and definitions necessary to understand the
rest of this dissertation and the a)ective computing literature in general.

Chapter 3 contains the literature research focused on emotion recognition for every-
day life.

Chapter 4 contains the literature research focused on personalized methods for a)ect
recognition.

Chapter 5 describes procedures, results, and lessons learned from collecting labo-
ratory emotion psychophysiology dataset.

Chapter 6 describes our research on per-group personalization and its use to mitigate
the cold start problem in emotion recognition studies.

Chapter 7 describes procedures, results, and lessons learned from collecting real-life
emotion psychophysiology dataset.

Chapter 8 provides details of the Emotion Physiology and Experience Collaboration
(EPiC) challenge, together with obtained results and conclusions regarding Big Team
Science in a)ective computing, commensurability and generalizability challenges,
and observation regarding the multiplicative nature of constraints on generalizability.

Chapter 9 contains details of conducted research on two-fold personalization for
emotion recognition.

Chapter 10 summarizes the thesis and comments on obtained results. We also discuss
future work that could be conducted to improve upon the presented methods.

1.3 Other remarks
This dissertation was prepared using a Caltech thesis template [33].

Figures and tables indexed with numbers only are located in the main body of
this dissertation. The ones indexed with a letter first, are located in the respective
appendixes (e.g., Tab A.1 is located in Appendix A).

Contents of this dissertation should be treated as our own work (mine with support
from my supervisors) unless otherwise noted.
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The dissertation’s text was written with the assistance of programs employing artifi-
cial intelligence, which supported us in spellchecking, correcting language mistakes,
and improving readability while preserving the original sense of sentences.
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C h a p t e r 2

AFFECTIVE COMPUTING AND PHYSIOLOGY

When talking about a)ective computing, many researchers cite Picard [10], stating
that a)ective computing "relates to, arises, or deliberately influences emotions." In
practice, a)ect is used as an umbrella term for many di)erent feelings and internal
states, e.g., mood (long-lasting feelings) [34, 35], or any basic feelings [36, 37].
Additionally, a)ect is heavily influenced by other internal states of a person, e.g.,
stress, well-being, and health [38]. Consequently, a)ective computing is a term and
a research field encompassing di)erent calculations concerning people’s subjective
experiences, aimed at introducing a)ective (or emotional) intelligence to computers,
along with abilities to recognize or express a)ect (Tab. 2.1). However, despite the
great e)ort researchers have poured into the field for over two decades, we have yet to
reach any significant milestone (expressing or perceiving emotions in a human-like
fashion).

Table 2.1: Stages of a)ective computing development, relative to computers’ a)ec-
tive abilities (based on [10]).

Computer abilities
regarding a!ect

Cannot express Can express

Cannot perceive I II

Can perceive III IV

Schmidt et al. [12] described a)ect recognition as an interdisciplinary research
field, utilizing knowledge from psychology, neuroscience, machine learning, and
signal processing to find patterns connecting a)ective states with its indicators. In
this work, we focus mainly on a subfield of a)ective computing, i.e., recognition
of short-lasting intense a)ective states called emotions! [8]. Since the goal of
a)ect recognition is to identify a person’s a)ective state (e.g., emotion, mood,
stress) based on some observable indicators [12], emotion recognition restricts
this scope to recognizing only emotional states. Building on the view presented by
Schmidt et al. [12], who described a)ect recognition as an interdisciplinary research
field aiming to find patterns connecting a)ective states with its indicators, we can

1Although some parts of this dissertation consider a)ect in its broader meaning.
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define emotion recognition as a problem of finding links between input consisting of
some observable indicators of a person’s internal state and target emotional states.

Some contents of this chapter originate from a larger article published in a peer-
reviewed journal:

[16] S. Saganowski, B. Perz, A. G. Polak, and P. Kazienko, “Emotion recogni-
tion for everyday life using physiological signals from wearables: A system-
atic literature review,” IEEE Transactions on A"ective Computing, vol. 14,
no. 3, pp. 1876–1897, 2023. !"#: 10 . 1109 / TAFFC . 2022 . 3176135.

In the original article [16], descriptions of topics related to physiological signals
(referenced in Sec. 2.2) were mainly inspired by Prof. Adam Polak with support
from the dissertation’s author and his supervisors. All other sections in this chapter
(and in the original article [16]) should be treated as our own work unless otherwise
noted.

2.1 Emotions
Although emotions are not observable per se (one cannot enter another person’s
mind), for years, researchers focused their e)orts on trying to measure and under-
stand them by creating various theoretical models, and observing when and how
emotions influence our state and impact our daily lives.

2.1.1 Theories of emotion
Emotions are complex psychophysiological states involving interplays between in-
ternal feelings, external behaviors, and physiological reactions. They shape our
perception, preferences, reactions, and relations, influencing our conduct and deci-
sions, both minor and major ones [3, 4]. Because of their vital role, psychologists
approach them very seriously and have yet to come to a conclusion about their
nature. However, researchers trying to explain the character of emotions created
some theories and perspectives regarding them.

One of the most well-known and influential theories is basic emotion theory. Models
proposed by researchers like Ekman [39] or Izard [40] postulate the inherence of
basic emotional states, biologically innate and thus present in all cultures. Most
models assume six such basic states, namely anger, disgust, fear, happiness, sadness,
and surprise, with slight variations possible. These emotions are believed to be
unique and relatively constant in their causes, functions, and expressions. It implies
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that emotions serve purely evolutionary purposes, such as reinforcing behaviors
beneficial to social life (happiness) or triggering a fight-or-flight response (fear).

Appraisal theory provides a di)erent view on the process of emotion induction.
Proposed by Richard Lazarus [41], this theory posits that people first interpret
events and situations regarding their goals, desires, and well-being, and emotions
are a product of such appraisal. Contrary to basic emotion theory, it implies that
external stimuli do not determine emotions in a distinct manner but are subject to
interpretation. Therefore, the same event may evoke di)erent feelings, depending
on the situation or the person conducting the a)ective evaluation.

Next, we can outline the group of psychological construction models. They posit that
emotions and other mental states are actively constructed and modified in the mind
in reaction to sensory inputs instead of being predefined and hard-wired in the brain.
These models emphasize the role of experiences and cognitive processes, such as
memory and attention, in shaping emotion and indicate that variables like context,
culture, knowledge, beliefs, perception, and other personal factors all influence the
emotional response. It implies that generated mental representations of reality, and
therefore a)ect, can change over time as a result of gaining new knowledge and
experiences.

Finally, models that bring special attention to social and cultural factors are called
social constructivist models. They are similar to psychological construction models
in their assumption that emotions depend on an individual who interprets reality
and gives it meaning. However, social constructivist models mainly focus on social
norms, roles, and interactions in creating a)ect, while psychological construction
models focus on cognitive processes and constructed mental representations.

2.1.2 Models of emotions
While theories from previous sections provide valuable insights into the processes
that lead to emotion and the emotional experience itself, it’s important to recognize
their limitations. These theories, by themselves, are not su*cient to accurately
measure and predict a person’s emotions. Researchers have addressed this challenge
by developing specific models within these theories, which could be used to study
emotions by conducting experiments and analyzing obtained data.

One of the common ways of classifying emotional models is their division into two
basic types: discrete and dimensional. Discrete models assume emotions that are
precisely defined and independent from each other. A person may experience one
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Figure 2.1: Plutchik’s wheel of emotions (from [42]).

or many such states simultaneously, each with varying intensity. These assumptions
restrict the number of possible emotions that can be felt, but models di)er in the
amount and naming of these states. Examples of well-known discrete emotion
models include Ekman-Friesen [39] (anger, contempt, disgust, fear, happiness,
sadness, and surprise), or Plutchik’s wheel of emotions [45] (Fig. 2.1).

On the other hand, multi-dimensional models of emotion assume several orthog-
onal dimensions, each describing di)erent component of a)ect using continu-
ous values. The most well-known are the 2-dimensional Circumplex (valence-
arousal, Fig. 2.2) [46] and the 3-dimensional PAD (pleasure-arousal-dominance,
Fig. 2.3) [47] models. Typically, arousal denotes a)ective intensity or energy felt
while experiencing emotion; valence/pleasure – emotional pleasure or polarization,
a range from sad to happy; and dominance a sense of control over the situation,
useful when di)erentiating between, e.g., states of anger and fear.

As all such models try to explain a)ect, we can move from one model to another,
even between discrete and dimensional models. Dimensional models are often
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Figure 2.2: Circumplex model of emotions (from [43]).

Figure 2.3: Pleasure-Arousal-Dominance (PAD) emotion model (from [44]).
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described using discrete emotions to make understanding them easier, as terms such
as arousal, valence, or dominance are rarely used in everyday language. Moreover,
Russel proposed the Circumplex model [46] after asking people to place 28 discrete
emotions in di)erent positions relative to each other and analyzing their responses.

2.1.3 Communicating emotions
Suppose we want computers to employ emotion intelligence in a way that is natural
to humans. In that case, we have to design them to use primarily bodily reactions to
changes in emotional states (or sentic modulation as Picard [10] calls it), instead of
relying on people explicitly naming their feelings. Not only would it be unnatural
always to describe how we feel, but also, not many people can articulate their
emotions well.

Some types of emotional expressions are easily visible to others and (often sub-
consciously) serve as primary means of communicating emotions in everyday life.
They are so important in everyday communication that some emotion theorists posit
the existence of unique somatic response patterns, characteristic of emotion (e.g.,
unique facial expressions [48]). Other signals, such as changes in physiological
signals, are hard for another person to perceive, but machines can easily perceive
them using specialized sensors (e.g., heart rate from a smartwatch). Emotion recog-
nition systems could utilize signals both easily and hardly (if at all) apparent to other
people (Tab 2.2), or di)erent combinations thereof [16, 49, 50].

Table 2.2: Categories of emotional cues for a)ective research (based on [10]).

Observability by other
people

Signals revealing emotional state

Apparent to others • Facial expressions [49, 51]
• Voice and speech (e.g., intonation) [52]
• Body language and gestures (e.g.,

movements, posture) [49]
• Gaze and eye movements (e.g.,

pupilary dilation, gaze aversion) [49,
53]

• Written text [54]
Hardly or not apparent to
others

• Physiological signals (e.g., respiration,
heart rate, perspiration, blood
pressure) [16, 49]
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2.1.4 Applications of emotion recognition
Near the end of the 20th century, people started to realize the potential of a)ective
computing. One of the first use-cases mentioned in the literature, and still valid to
this day, is to use a)ect recognition for improving human-computer interaction [10,
55–57], e.g., by adapting interfaces or system’s reactions to better suit user’s emo-
tions, e.g., by adjusting game di*culty or design [58, 59], or providing better
recommendation of music or movies [60]. Over the years, researchers have been
finding new possibilities for utilizing systems capable of recognizing a)ective states.
Such systems could help people su)ering from panic attacks [61], increase people’s
resilience and productivity [62], assist teachers in the classroom [63], help doctors
diagnose patients and provide custom treatments [64], improve people’s wellbeing
and longetivity [65], or even support the emotional development of children with
autism spectrum disorder (ASD) [66, 67].

However, computerized emotional intelligence could be used for more than directly
improving people’s daily lives. Contrary to what many people believe (or would
like to believe), emotions play an essential role in decision-making (also the rational
one), perception, and other cognitive functions [2–4]. Emotional machines could
benefit from human-like decision-making processes. Learned emotional biases (or
so-called "gut feeling") could be used by computers in situations where available
options cannot be fully explored, either due to the nature of the problem or high
computational cost [10, 68]. It could lead to good results in certain situations,
although not always would they be explainable.

Seeing such a vast range of benefits, one could easily forget about the possible
dangers that a)ective computing introduces. Data about people’s emotions could
be used against them, especially when emotion recognition systems become more
accurate [69]. Inaccurate predictions about emotions, on the other hand, could
lead to misunderstandings and possible harm for a subject of recognition, such
as career opportunity loss in a work environment or mental health degradation
in a social situation [70]. For example, incorporating facial emotion recognition
(FER) algorithms, known for their questionable quality and reliability [18, 71],
into systems monitoring people at work, could lead to severe consequences based
solely on wrongful predictions. Also, in a more sinister scenario, some totalitarian
state could utilize universally adapted emotion recognition to punish troublesome
individuals or to control the populace and its feelings [10].
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2.2 Physiology
Biological indicators of emotions [8] have been a topic of research for years. In
1954, Schlosberg asserted that electrical skin conductance is a reliable measure of
the intensity of emotional arousal [72]. Ekman, Levenson, and Friesen demon-
strated during the 1980s and 1990s that the autonomic nervous system’s response to
deliberately produced emotions can be discerned through physiological signals [7,
73]. Specifically, they identified correlations between six primary emotions and
metrics, such as heart rate, finger temperature, and skin conductance, attributing
these connections to the functional specificity of the autonomic nervous system
(ANS). These associations serve as the primary driver for the a)ect recognition
from physiological signals.

2.2.1 Biosignals

Figure 2.4: Interrelationships between physiological systems and biosignals. From
Saganowski et al. [16].
The human body can be seen as a sophisticated system, dynamic and nonlinear
in its nature, characterized by complex feedback mechanisms between individual
organs and entire physiological systems. It is designed to maintain internal stabil-
ity (homeostasis) and orchestrate appropriate responses to changes in the external
environment (see Fig. 2.4). In the presence of external stimuli, signals passed from
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sensory organs to the brain cause the activation of the central nervous system (CNS).
The processing of information about stimuli is mainly done by the cerebral cortex.
This activity can be monitored using the electroencephalogram (EEG) and seen
as distinct brainwave patterns across EEG frequency subbands (delta, theta, alpha,
beta, and gamma).

The CNS, together with the peripheral nervous system (PNS), predominantly regu-
lates skeletal muscles, including the respiratory ones. Its activity can be monitored
using muscle electrical activity via electromyogram (EMG) or body movements via
accelerometers (ACC). The same muscle activity can interfere with measurements
of other biological signals, especially electrical ones, e.g., EEG or electrocardio-
gram (ECG). The action of the aforementioned respiratory muscle impacts airflow,
thus shaping the respiratory waveform (Resp) and governing gas exchange in the
lungs. It determines oxygen saturation and blood pH, which are monitored by
chemoreceptors and analyzed by the autonomic nervous system (ANS) and the
central nervous system. Nervous systems respond by regulating cardiac activity,
causing depolarization and repolarization of atria and ventricles, prominently repre-
sented in the electrocardiogram (ECG) waveform and its QRS complex showing the
ventricles’ depolarization. Heart rate and stroke volume dictate the pulsatile blood
flow. Together with arterial smooth muscle tone, controlled by the ANS, they also
influence temporary blood pressure. These e)ects can be monitored noninvasively
using photoplethysmogram (PPG) or blood volume pulse (BVP) signal.

The ANS is also responsible for modulating airway smooth muscle tone and impact-
ing respiratory mechanics. This relationship can be seen, for example, in a sudden
lack of breath during a panic attack. Additionally, blood flow intensity influences the
regulation of body temperature and hormone transport speed, reflected in measures
such as body temperature (BT), skin temperature (SKT), and electrodermal activity
(EDA), characterized by tonic skin conductance level (SCL, slower) and phasic skin
conductance response (SCR, faster).

2.2.2 Signal processing
When working with physiology, signal preprocessing is an essential first step of any
analysis. It is essential to remove noise that contains no information on emotional
reactions but is present in data, thus obfuscating a)ect-relevant information. Such
distortions originate from both external and internal sources, such as (1) external
electromagnetic fields influencing measurements, (2) noise generated inside elec-
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tronic circuits, (3) movements of the body and changes in positions of sensors on
the body surface, (4) overlapping of signals from di)erent organs (e.g., brainwaves
and facial muscles), (5) or temporary malfunctions of sensors. The methods used
to retrieve the original form of the signal are either based on its known properties
or are data-driven.

Before converting the voltage a sensor registers into a digital signal, it is necessary to
perform initial anti-aliasing filtering (Nyquist-Shannon sampling theorem). Next,
further filtration is typically used (analog or digital) with additional smoothing
(reducing high-frequency components) to emphasize desired frequency components
and limit others. To distinguish desired and undesired components, one may use
decompositions, e.g., wavelet transform representing a nonstationary signal using
di)erent scales related to frequencies. Another tool is independent component
analysis (ICA), which can be used to distinguish independent source signals that
overlap while being recorded by di)erent sensors.

Normalization is often used to ensure comparable levels of signal energies and
extracted features, especially when data is collected using di)erent devices. If
extreme values are present in the data, one can consider using winsorization to reduce
their e)ect. Finally, if the signal consists of disrupted fragments, interpolation may
be used to replace altered fragments with values estimated using statistical properties
of adjacent data.

2.2.3 Signal features
Many studies follow the classical approach to machine learning, requiring extraction
and selection of hand-crafted signal features. Such features represent the specific
properties of analyzed data and are often extracted using a sliding window over the
signal. Such features are primarily computed within three domains: (1) time, (2)
frequency, and (3) time-frequency or time-scale (for nonstationary signals). The
most commonly used transformations include Fourier and wavelet transforms, along
with the decomposition of EDA into tonic and phasic components.

Additionally, specific scalar metrics are computed from these signals or transforma-
tions, resulting in the ultimate set of extracted features. These metrics encompass
various categories, including (1) morphological properties, (2) dynamic properties
as defined by Hjorth parameters, (3) energetic parameters such as root mean square
(RMS) and power spectral density (PSD), as well as (4) statistical indices like mean
value, median, and standard deviation (SD). Moreover, due to the nature of phys-
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iological signals, measures for nonlinear systems are often employed to represent
them, such as Poincare plots or entropy.

After computing descriptive features, some of them may be irrelevant. Often,
only their subset is selected for experiments to reduce the dimensionality of the
feature space. If done correctly, feature selection helps increase the e*ciency and
performance of a machine learning model. As testing all possible combinations of
features is usually infeasible, researchers use a few schemes for feature selection.
The first is transformation, where features are projected onto some arbitrary space,
using, e.g., PCA, and later selected. Another one is filtering, which uses a criterion
such as information gain (IG) and a threshold to select relevant features. Wrapper
methods use a classification algorithm (e.g., SVM) as a proxy to check features
relevancy for a given task (for instance, classification of emotions). Embedded
methods rely on the ability of deep learning algorithms to process the input in
a nonlinear fashion and generate alternative feature spaces. Typically, the above
approaches are complemented by adding the most beneficial features (sequential
forward selection, SFS) or eliminating the least favorable ones (sequential backward
selection, SBS).
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C h a p t e r 3

CRITICAL LITERATURE REVIEW

The previous chapter introduced knowledge essential for understanding this disser-
tation and the broader field of a)ective computing. In this chapter we present the
results of our systematic literature review that was focused on methods suitable for
real-life emotion recognition, i.e., experiments that were either conducted in the
wild, or were done in the controlled setup that resembles real life.

When designing emotion recognition systems for real life, one needs to consider
many factors impacting its capabilities. Some of them are well-known to researchers,
as they also appear in laboratory studies. Others are unique to uncontrolled envi-
ronment and, therefore, new for a)ective computing scientists. With this in mind,
we not only describe methods used in a)ective computing for real life. We also
highlight similarities and di)erences between experiments conducted inside and
outside the laboratory by contrasting them across several study components that we
identified.

Contents of this chapter originate from the co-authored article, published in a peer-
reviewed journal:

[16] S. Saganowski, B. Perz, A. G. Polak, and P. Kazienko, “Emotion recogni-
tion for everyday life using physiological signals from wearables: A system-
atic literature review,” IEEE Transactions on A"ective Computing, vol. 14,
no. 3, pp. 1876–1897, 2023. !"#: 10 . 1109 / TAFFC . 2022 . 3176135.

In the original article [16], descriptions of topics related to data processing were
mainly inspired by Prof. Adam Polak with my and my supervisors’ support. All
other sections should be treated as our own work unless otherwise noted, with the
special contribution of myself to descriptions of the used methodology, participant-
specific data, emotional stimuli, context a)ecting emotion experience, emotion
self-assessment and labeling, windowing and learning case definitions, and utilized
reasoning models.
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3.1 Methodology
This literature review belongs to the category of Systematic Literature Review [74]
(SLR), and its main task was to answer the following question:

Can wearables be used to recognize emotions in everyday life?

We researched the question using three databases of scientific literature, namely
Scopus, Web of Science, and Google Scholar (via Publish or Perish). The search
terms were designed to capture a wide range of literature related to the intersection
of emotions and wearable technology. We asked the following query:

[emotion* or a"ective] and [wearable* or (smart watch) or iot or (personal device*)
or (ambient intelligence) or (smart device*) or (smart band*)].

The search was performed in three iterations on August 30, 2019, August 30, 2020,
and March 4, 2021. The first round resulted in 2,993 records found, out of which
2,384 remained after removing duplicates, patents, and non-English resources. In
the second search, we limited the investigated time span to years 2019 and 2020 (to
skip articles that we already knew of), and obtained 577 papers, out of which 313
were left after initial filtering. During the third round, we restricted results to the
years 2020 and 2021. It returned 553 papers, out of which 327 qualified for further
review. Additionally, 27 papers were added manually after reviewing references in
relevant articles and analyzing other works authored by the same researchers as the
already included studies. In total, we evaluated 3,051 papers using the following
set of inclusion and exclusion criteria to compile a set of articles relevant to our
question:

Inclusion 1 Personal devices/wearables were used to recognize (classify) various
emotions. Device/wearable should enable emotion recognition in ev-
eryday life;

Inclusion 2 Personal device/wearable was described, or the description was avail-
able elsewhere;

Inclusion 3 At least one physiological signal was monitored and utilized to emotion
recognition;

Exclusion 1 The study was performed on a population less than five subjects;

Exclusion 2 Only a single emotion or its levels was considered;
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Table 3.1: A number of articles excluded from SLR with respect to particular
inclusion (In) or exclusion (Ex) criteria (from [16]).

Criterion In1 In2 In3 Ex1 Ex2 Ex3 Ex4

No. of excluded articles 857 20 265 99 181 113 118

Exclusion 3 None of the exploited devices was personal/wearable/ portable;

Exclusion 4 The device had modules interconnected with cables, e.g., BioPac sys-
tem where sensors were wired to the development board.

Out of all reviewed articles, 1,398 studies were discarded solely based on their titles
and abstracts, as their irrelevancy was evident. A summary of the other excluded
articles rejected due to particular SLR criteria can be found in Tab. 3.1. For inclusion
criteria, we report the number of papers failing to satisfy the particular statement.
Numbers for exclusion denote how many papers were removed because of a given
criterion.

When excluding articles, we focused on solutions, systems, and devices that are ap-
plicable across all daily-life situations, rather than specific scenarios. No constraints
should limit their applicability, e.g., webcam-based emotion recognition systems,
as they require subjects to be seated in front of the camera, or articles utilizing only
EEG signals, as existing brain-measuring devices are too susceptible to everyday-
life noise to be applicable outside the laboratory. Even small movements can alter
recorded brainwaves due to (1) electrical signals caused by muscle activity, (2)
movement of electrodes, or (3) activation of di)erent brain areas overlapping each
other. Moreover, we focused only on emotions, i.e., a)ective states spanning and
influencing physiology only for a short time [8], as literature considers long-lasting
states as moods rather than emotions [34].

We also excluded articles focusing only on a single emotion, e.g., only anger, as
they do not provide insights about recognizing di)erent emotions, or only arousal
as by itself arousal does not correspond to any emotion. On the other hand, we
included articles recognizing only valence levels, as this dimension divides the
emotion spectrum into positive and negative states, e.g., happy vs. sad. At last,
we discarded articles that did not perform emotion recognition, e.g., focusing solely
on correlations obtained from statistical analysis [75]. As they did not provide any
reasoning about the viability of emotion recognition, they were also irrelevant to our



22

research question. A total of 34 articles passed the above process and were included
in the SLR.

Figure 3.1: Number of papers in relation to the year of publication and study
environment (from [16]).

We noticed that the number of publications passing our criteria was growing during
the last five years of the search, Fig. 3.1, with the oldest relevant article published
in 2002 and eight papers published by 2016. Also, a significant increase in relevant
articles is visible starting in the year 2017, with 11 articles published solely in the
most fertile year – 2018. Moreover, the research environment changed across the
years, as no field study was conducted between 2002 and 2015, and at least one field
study a year since 2016, when Exler et al. [76] carried out their research outside
the laboratory. Out of those studies, five took place in a constrained environment !.
A total of 25 studies were conducted in the laboratory, eight studies took place in
real life, and in one paper, the authors failed to specify the environment. In our
opinion, this shift is driven by the need for solutions suitable for real-life setups
and enabled by improvements in wearable technology and sensors over the years,
making measuring devices more practical, portable, and convenient. Unfortunately,
no article published between January 1 and March 4, 2021, passed our research
criteria.

3.2 Emotion recognition study design
When studying the designs of studies focused on emotion recognition, it is hard not to
notice some commonalities between them. We identified nine such research stages,

1We derived from the description that Dao et al. [63] measured emotions only in a classroom,
i.e., a field study with constraints.
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Figure 3.2: Common and unique research stages (study design) for emotion recog-
nition in the lab and in the field (from [16]).

similar between examined studies (Fig. 3.2). However, each of the components may
require di)erent implementation depending on the target environment, as laboratory
and field studies di)er in terms of (1) experienced emotions, (2) emotional stimuli,
(3) labeling procedures, (4) acquisition of emotion assessments and (5) physiology,
and (6) other factors such as the amount of collected data or battery life problems
(Tab. 3.2). Therefore, designing an a)ective study requires careful consideration of
each research stage.

First is a decision about the emotional model assumed. It influences other compo-
nents, in particular the choice of stimuli and self-assessments, and shapes the final
reasoning and conclusions. Also, the wrong choice of the emotional model may
result in an applicable but complicated procedure, e.g., finding stimuli eliciting two
emotions - happy vs. sad is easier than finding stimuli for 27 di)erent emotions,
which are also likely to co-occur.

Second is the recruitment and training of study participants. Since people may have
conditions that influence collected measures, like heart problems disrupting cardiac
signals, researchers have to prepare appropriate exclusion criteria. For subjects that
pass preselection for a lab study, a simple explanation of the experiment is usually
su*cient, as researchers set up the experiment and can assist subjects during the
procedure. Conversely, in field studies, participants have to be trained to put on
measuring devices, manage them, and solve simple problems arising during the
study. Additionally, researchers should always be available for help (e.g., via phone
call, ideally 24/7) [16].

The next component concerns collecting physiological data with wearables. In the
laboratory, researchers typically utilize precise and reliable medical-grade equip-
ment. In addition to devices that provide high-quality data by themselves, artifacts
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Table 3.2: Main di)erences between laboratory and real-life emotion recognition
studies. Advantages are marked with ’+’, disadvantages with ’→’, and points falling
in-between with ’±’ (from [16]).

Category Laboratory study Real-life study

Emotions
experienced

→ In a controlled environment
→ Impacted by unnatural
conditions
→ Limited by chosen stimuli

+ In natural environment
+ Full range of emotions
→ Di*cult to capture

Stimuli ± Well-known, fully planned
and controlled
+ No distractions or interfence
with other situations
+ Known context

+ Real, immersive
→ Unknown / uncrontrolled
→ Reaction possibly impacted
by context or life conditions
(drugs, fatigue)

Labeling
(ground
truth)

+ Self-assessment
+ Expert-annotated stimuli
+ Observed and derived by
external experts

→ Mainly self-assessment
+ Observed by a nearby person
(relative, friend)

Self-
assessments

+ Detailed
+ In precisely controlled
moments

→ Limited in scope
→ Sparse
→ Response usually delayed [76]

Measuring
physiology /
devices

+ Precise, medical-grade
devices, giving high-quality data
+ Unrestricted number and type
of devices
+ Small number of artifacts
(stationary position, well-known
conditions)

± Personal, convenient
wearables, giving signals of
lower quality [77]
→ Only few devices feasible
+ Convenient and unnoticeable
measuring
→ Artifacts from movements and
in-the-field conditions

Additional
factors

+ Static environment
(temperature, lighting, etc.)
+ Participants require only basic
training
+ No problems with battery life
or data synchronization
± Results in relatively small
amount of data

→ Device charging and data
synchronization required
→ Participants require extensive
training
→ Hotline to technical support
required
± Results in a large amount of
data
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are further limited by the stationary position of a subject during an experiment.
These methods are not suitable for in-the-wild studies where people are performing
all kinds of activities, and it is best when devices are unobtrusive and comfortable
to wear. Unfortunately, sensors in such devices are of lower quality [77], often
resulting in inaccurate and noisy signals. Additionally, these studies require more
engagement from subjects because of additional responsibilities, e.g., charging de-
vices, putting them on according to some instructions, or uploading their data to the
cloud.

Concurrently with physiological signals, their emotional annotations have to be col-
lected. Triggering questionnaires in the laboratory can be done based on consumed
stimuli, usually right after they end. Moreover, questionnaires can be designed to
match selected stimuli and expected reactions precisely. In real life, in turn, trigger-
ing self-assessments poses a great challenge. Accurately determining moments of
emotional reactions is challenging, and researchers typically utilize self-triggered
or at-random questionnaires". Additionally, because emotional moments are the
most valuable in such research, utilized questionnaires should be short and simple
to make filling them out easy for participants experiencing strong emotions [76].

Collected signals have to be processed to allow the creation of reasoning models.
These signals or features describing them are next combined with ground truth labels
and used to model the psychophysiology of emotions. To create reliable reasoning
models and make them ready for use in real life, researchers should carefully consider
employed validation methods, and ideally perform hyper-parameter optimization.
Reasoning models created using data from laboratory experiments may achieve
good accuracy on data collected in another controlled study but prove useless when
applied outside the lab. On the other hand, models created on lower-quality data
from the field may exhibit lower accuracy on a single task, but better generalize
between di)erent real-life conditions.

Reviewing included articles also revealed seven major scenarios for emotion recog-
nition (Fig. 3.3). The first five are the in-the-lab scenarios, whereas the last two refer
to outside-the-lab research. The main di)erences between them are (1) labeling
strategy, i.e., obtaining emotional label (ground truth), and (2) stimuli, i.e., emotion
elicitors. Identified scenarios were used as follows (’?’ denotes that it was not
provided by authors but deduced by us):

2Later in the thesis (Chap. 7) we describe experiments conducted with pre-trained models for
emotion detection that may help in addressing this issue.
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Figure 3.3: Emotion recognition scenarios identified in SLR (from [16]).
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Table 3.3: Participants’ metadata surveyed in studies (from [16]).

Characteristics References

Age [11, 76, 78–86, 88–94, 96–104, 106,
107]

Gender [11, 76, 78–85, 87–94, 96, 99–101,
103–107]

Profile [11, 63, 76, 78, 79, 82–91, 93, 99,
100, 102, 105, 107]

Health condition [11, 78–80, 82–84, 92, 93, 97–101]

• Scenario 1 was used in 11 articles [78–86], and probably in [87]?, [88]?

• Scenario 2 in 7 articles [80, 89–93], [94]?

• Scenario 3 in 7 articles [95–100], [87]?

• Scenario 4 in 1 article [101]

• Scenario 5 in 2 articles [102], [88]?

• Scenario 6 in 4 articles [63, 103–105]

• Scenario 7 in 4 articles [11, 76, 106], [107]?

Unfortunately, we were unable to identify a scenario in one article [108]. Further
details on individual papers, such as used emotional models or machine learning
problems defined from these models, can be found in Tab. A.1.

3.3 Study participants
At first thought, participant recruitment does not seem like a hard task – advertise
the study, and some volunteers will come. However, even similar individuals (e.g.,
all of one nationality) may di)er in their emotional responses to the same situation
or stimulus, e.g., women are often perceived as more emotional than men [109],
with their reactions being more intense [110]. Moreover, it was emphasized that
gender di)erences in any particular modality of emotional expression are culturally
and situationally specific [111]. Such response-impacting factors are not limited
to gender, and they include biological or cultural traits such as age [112], subject’s
profile [113] and their health [79, 82] (Tab. 3.3).
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Among many factors that can influence study results, age was the one reported most
often (Tab. 3.3). In the studied articles, most of them focused on a relatively young
population, two on a group of people who were 28 years old on average [103, 104],
and 20 on people between 18 and 40 years of age. In two studies, subjects could be
older than 40 [82, 101], and one study focused solely on infants and toddlers (up to
30 months old) [102].

Another usually reported factor is the gender of participants. In 12 papers, the
subjects were mostly or exclusively males; in 12, they were mostly or exclusively
females, and in three genders of participants were balanced. In 20 articles, par-
ticipants were described in more detail, i.e., their occupation, nationality, or other
group that they identified with. Often (14 papers), the experiments were conducted
at least partially on students. Subjects’ ethnicity or nationality was reported in four
works [82, 89, 90, 93].

Subjects’ condition was studied in 14 papers, with researchers requiring participants
to be in good health [11, 78, 80, 92, 97, 98, 101]. Conditions that were examined in
more detail include mental health or emotion understanding problems [11, 82, 84,
92, 93, 97, 98, 101], cardiovascular diseases [79, 84, 101], neurological diseases [79,
83], vision di*culties or its correction [82, 99, 100], or excessive sweating [101].

3.4 Temporal context a!ecting emotion
Features such as gender, age, ethnicity, or disease are not the only ones that can
impact the results of a study on emotion. Other factors shaping emotional experi-
ences and physiological responses, like specific drugs or activities, often have more
immediate e)ects. Therefore, we name them temporal context.

Although the temporal context is known to be important, only ten studies collected
data about it (Tab. 3.4). Participants were asked about the use of medication or non-
medical drugs (e.g., alcohol, ca)eine, tobacco) in six studies, and in all of them,
subjects had to be free from these substances. Similarly, Zhao et al. [79] required
that experiment subjects refrain from consuming ca)eine, fat or salty food for an
hour before the experiment; Shu et al. [92] asked people to abstain from alcohol
and medications for 72 hours before the study; and Ragot et al. [82] subjects did not
use medication on the experiment day. Dao et al. [63] and Schmidt et al. [11], who
performed outside-the-laboratory studies, collected data about subjects’ lifestyle and
activities [63], the intensity of physical activity, and sleep quality [11].

Specific categories of temporal context should be considered in relation to the
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procedure employed in the conducted study. Substances or activities a)ecting
subjects’ perception are especially important if researchers focus on self-reported
subjective emotions, usually collected using self-assessment questionnaires. On
the other hand, if emotions are labeled extrinsically, annotations are not strongly
impacted by the individual context. However, even if psychological assessments are
not a)ected by the context, people’s physiology may still be a)ected, making the
acquired data useless. Also, the two types of context are often a)ected together, e.g.,
ca)eine may increase a person’s arousal [114], heart rate, and blood pressure [115].

In the laboratory, it is easy to detect and control temporal context. Not only
may researchers ask about the amount of time since the last ingestion, but it is
also impossible for subjects to consume any substances without the researcher’s
knowledge. This way, when analyzing signals from in-the-lab experiments, it is
possible to measure and account for the context. Field studies are fundamentally
di)erent in this aspect, as it is practically impossible to force people to refrain from
consuming various substances, and gathering contextual data is much more di*cult
due to subjects forgetting to report relevant information or having trouble providing
exact data on the context, e.g., time that passed since drug consumption.

Out of the reviewed studies conducted in real life, only two papers collected contex-
tual information. Schmidt et al. [11] gathered physical activities and sleep quality
data, but they did not account for context at the reasoning stage. Dao et al. [63]
did not clearly state that they utilized data on physical activities for recognizing
emotions, but they stated that they used it for finding lifestyle-mood patterns that
were sometimes associated with emotions. Hu et al. [88] and Majumder et al. [94]
approached context di)erently and decided to create it by making participants sit or
walk during the experiment. Although neither of them compared these approaches,
performing such studies and searching for di)erences in emotions between various
contexts may be a good idea.

Almost every reviewed paper (91%) included some information about people’s traits
that may influence emotions (e.g., age, health condition); only about a quarter of
studies considered temporary context (e.g., drugs taken), and none accounted for
them during analysis. If utilized at all, questionnaires about di)erent factors were
used only to exclude participants who took undesired substances.
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Table 3.4: Context surveyed or considered in reviewed studies. Only [11, 63] are
field studies (from [16]).

Context Details: used by

Medication [78, 79, 82, 92, 101]
Food [79]
Drugs alcohol: [84], ca)eine: [79], tobacco: [84]
Lifestyle sleep quality: [11], activity: [11, 63]
Activity rest vs walking: [88, 94]

3.5 Collecting physiological signals
In this dissertation, we focus on research where collected measures involve both
physiological signals and questionnaires on emotions. For monitoring physiology,
most in-laboratory setups utilize medical-grade devices, giving very high-quality
signals. To be suitable for real life, devices measuring physiology have to be in
the form of wearables - they have to be comfortable to wear and inconspicuous.
However, signals recorded with such devices are of lower quality than their in-the-
laboratory counterparts [77] because of various artifacts and other daily mistakes,
such as forgetting about charging devices or synchronizing data (Tab. 3.2).

The most popular physiological signals that can be collected in real life and used
for emotion recognition are electrodermal activity (EDA), body temperature (BT),
photoplethysmography (PPG), and body acceleration, (Tab. 3.5). For lab studies,
BioPac MP160 or ProComp Infiniti can be used, but such devices are usually large
and sophisticated and use a lot of wired connections, making them unsuitable for
real life. However, there are more than 50 wearables that measure signals useful in
emotion recognition and are small enough to use them in real-life studies [116]. In
this review, we focused on studies using such real-life ready tools (Tab. 3.6).

Among the devices chosen in the reviewed papers, Empatica E4 was the most popular
due to its many advantages, such as high-frequency sensors, raw signal availability,
long battery life (compared to others), and simple-to-use API. In stationary condi-
tions, signals provided by Empatica have quality comparable to the ones provided
by ambulatory devices, but they are also prone to motion artifacts [117]. It also
has several downsides, the major ones being its high cost, lack of non-measuring
features, and relatively non-attractive appearance. Additionally, Borrego et al. [118]
investigated the EDA signal collected with Empatica E4 and obtained much worse
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Table 3.5: Physiological signals used for emotion recognition (from [16]).

Physiological measure References

Electroencephalography (EEG) [81, 85]

Electrocardiography (ECG) [76, 88, 95–98]

Electromyography (EMG) [11, 83]

Electrodermal activity (EDA) or
response (EDR) /
Galvanic Skin Response (GSR) /
Skin conductance (SC)

[11, 63, 78–80, 82–87, 89, 90, 93, 94,
101–105, 108]

Photoplethysmography (PPG) /
Blood volume pulse (BVP)

[11, 63, 79, 81–83, 86]

Body temperature (BT) /
Skin temperature (SKT)

[11, 63, 78–80, 83, 84, 87, 89, 90, 94,
101, 103, 104]

Respiration rate (Resp) [11]

Acceleration (ACC) [11, 63, 99, 100, 103–105]

Table 3.6: The most popular physiology-measuring devices in SLR (from [16]).

Device Type Sensors and signals Used by

Emotiv
Insight

Headband EEG, ACC, GYRO, MAG [81, 85]

Empatica
E4

Wristband PPG/BVP, EDA, ACC, SKT,
tags

[11, 63, 78–82, 84,
86, 91, 94, 101]

Microsoft
Band 2

Smartband PPG / BVP, EDA, ACC,
GYRO, SKT, BAR, ALT,
AL, UV, STP, CAL, UV

[83, 85, 93,
103–105, 108]

BodyMedia
SenseWear

Armband EDA, ACC, SKT [87, 89, 90]

measures than with a laboratory-grade device.

Microsoft Band 2 smart band was another popular device, o)ering sensors similar
to Empatica’s together with other functions, such as activity and sleep monitoring,
smartphone integration, and watch functions. Also, it was found to give precise
measurements in stationary conditions [119]. Simple EEG headbands, e.g., Emotiv
Insight, could be very useful for precise emotion recognition, but because they are
prone to artifacts and not very comfortable, their applications are limited to specific,
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stationary setups – in the lab or at home.

Other devices included: Polar H7 [99, 100] or H10 [84], or ekgMove [76] chest
straps; Samsung Gear 2 [99, 100] or Algoband F8 [92] smartwatches; smart clothing
(XYZlife Bio-Clothing) [97, 98] or a self made device [88]; Q-sensors [102];
wristbands Silmee W20 [107] or Mio Link [106]; Wacom Bamboo Ink stylus,
Shimmer GSR+, and PPG ring [84]; BodyMedia SenseWear [87, 89, 90]; Biopac
BioNomadix MP150 [82]; or RF-ECG biosensor kit [95, 96].

With the improvements in sensor quality, the popularity of smartwatches should
increase in the coming years, as they are the most ubiquitous and unobtrusive out
of the above devices, can o)er features other than signal measurement, and can
collect multiple measures (acceleration of the human body, plethysmography, and
sometimes electrocardiography or electrodermal activity).

3.6 Emotional models and adjustments
One of the most important decisions during the study design phase is the choice of
the emotional model, as it impacts other parts of the study, particularly the selection
of stimuli, self-assessment, and final reasoning. While current models of emotions
can be applied to both lab and field studies, they may not be equally convenient. In
lab studies, the outcomes of the experiment greatly depend on the chosen stimuli,
and this choice is a)ected by the selected model of emotions. For example, choosing
stimuli for eliciting two very distinct emotions, such as joy and grief, is simpler than
invoking many di)erent emotions, where multiple of them may co-occur during
a single stimulation. On the other hand, a limited choice of stimuli results in an
equally (or even more) limited number of emotions occurring during the experiment.

In real-life studies, daily situations act as stimuli. They are often unpredictable and
invoke emotions that are more diverse and intense than in a controlled environment,
but they di)er between subjects and can be neither controlled nor studied in detail
by researchers. Although a chosen model of emotions does not restrict experienced
emotions, it dictates the questionnaires used in the study, therefore impacting the
amount of collected information (registered emotions) and a)ective states that can
be studied using the data.

Our analysis shows that most of the considered papers utilized discrete emotion
models, often with custom emotion categories (Tab. 3.7). Researchers usually
create a model of interest by modifying already-known models, e.g., by choosing a
subset of five emotions from Plutchik’s model [45]: anger, fear, disgust, sadness,
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Table 3.7: Trigger times, types of self-assessment, and emotional models utilized
in studies (from [16]).

Study
Environment

Trigger type Questionnaire
type

Model of
emotions

References

Laboratory After stimulus Standardized Discrete [78, 80, 95,
96,
99–101]

Standardized Dimensional [82–84]

Own Discrete [86, 87, 89,
90, 97, 98]

Own Dimensional [79, 81]

Time-dependent Own Dimensional [85]
Constrained
field

After stimulus* Standardized Dimensional [105]

Quasi
continuous

Standardized Dimensional [103, 104]

Voluntary Own Discrete [63]

Not specified Own? Discrete [107]

Real life At random,
EMA, Voluntary

Standardized Dimensional [11]

On events,
Time-dependent,
Voluntary

Standardized Dimensional [76]

Not specified Own? Discrete [106]

joy + neutral [95, 96], or by ignoring surprise state [106] from Ekman-Friesen
model [39].

Most papers utilized models of four emotions such as anger, fear, sadness, hap-
piness [97, 98, 120], with neutral, relax, or peace added [97, 98] as a fifth state.
Other modifications included replacing one of these four emotions depending on
authors’ focus, e.g., replacing anger with love [101]; fear with calm [93], pain [78]
or relax [107], and happiness with frustration [87]. Di)erent four-emotion models
consisted of cheer, sadness, erotic, horror + neutral [80] and joy, sadness, stress,
calmness [108].

More emotional models included: (1) grouping emotions into classes – positive and
negative [98] or positive, negative, and neutral [86]; or (2) choosing three or four
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emotions from Circumplex model [46] with one of them treated as a neutral state:
joy, boredom, and acceptance treated as neutral [102]; happiness, sadness, and
neutral [99, 100]; or anger, happiness, sadness, and neutral [94]. Dao et al. [63]
tested six discrete emotions, namely: boredom, excitement, happiness, relax, stress,
serenity.

Saxena et al. [86] also considered reducing their initial four dominant emotions
anger, disgust, fear, and sad into negative state and confronted it against positive
(amusement), anxiety and neutral state.

Contrary to discrete models, dimensional emotional models assume the existence
of multiple orthogonal dimensions describing a)ect (Sec. 2.1), with the circumplex
(arousal-valence) model being the most popular. It occurs that the more complex
nature of dimensional emotional models makes them less prone to modifications.

Out of articles utilizing dimensional models, in nine papers, the circumplex model
was utilized [11, 79–84, 91, 108], and one paper used PAD (pleasure, arousal,
dominance) model [105] without any modifications. In case of adjustments, the
most popular approach was to utilize just the valence dimension [76, 92, 103, 104].
The only article introducing uncommon dimensions was written by Martens et
al. [85] with interest, energy, valence, focus, tension used.

An interesting observation is that the same emotional model, e.g., Russell’s Cir-
cumplex [46], can be used in its 2-dimensional [91] or treated as a discrete model
with three [102] or four [107] emotions + neutral. Overall, the initial psychological
models are often modified to suit the needs of researchers.

3.7 Emotion labeling
Before modeling human emotions, researchers have to collect emotional annota-
tions, which are later associated with collected signals and used as ground truth.
Depending on the study design, one can choose from di)erent labeling strategies,
e.g., labeling physiology with stimuli labels is easy in laboratory studies but impos-
sible in field studies. Methods for labeling are detailed in Tab. 3.8 and in Tab. A.1
(Ground truth column), with methods for lab studies depicted in Fig. 3.4, and for
field in Fig. 3.5.

The aforementioned labeling using stimulus type requires relatively little e)ort,
but inductions have to be assigned with expected emotion. It can be done either
by experts or by regular people. Twelve of the reviewed papers utilized such a
method (Tab. 3.8), with six of them using additional self-assessment for validating



35

experienced emotions. Rattanyu et al. [95, 96] discarded samples where preassigned
labels and self-reported emotions did not match.

Another way of assessing emotions externally, is to employ experts, e.g., psychol-
ogists. These experts can recognize emotional states based on subjects’ facial
expression [102]. Other works decided to utilize emotion recognition systems [63,
101, 107]. Dao et al. [63] trained their own model using self-assessments col-
lected during the first part of the study and allowed participants to validate these
predictions.

The most popular way of obtaining emotional labels was through self-assessments.
Using this method of labeling is natural in field studies, where it is virtually impos-
sible to find another source of labels, but it was also popular in lab studies. In total,
it was used in 23 papers (68%, eight field studies, Tab. 3.8) and served as the source
of labels in 17 of them.

In the laboratory setup, subjects filled out self-assessments either on a computer, a
mobile device, or on paper (Tab. 3.9). We deduced from the context that Lisetti et
al. [89, 90] and Zhao et al. [79] used paper questionnaires in their experiments, as
the information was not provided clearly. Similarly, for two other articles [80, 101],
we deduced from the experimental setup that authors utilized mobile devices, like
phones or tablets, to collect questionnaire data.

As many as 72% of papers utilizing laboratory scenarios presented questionnaires
right after the emotion induction. Another approach was shown by Martens et
al. [85]. Their participants participated in an hour-long study session, where an-
notating once at the end would be impractical, so researchers decided to interrupt
the stimulation every 270 seconds with a questionnaire. In laboratory studies, as
researchers know the types of stimuli, answers to questionnaires were used either
to directly label physiological signals (10 papers, Tab. 3.8) or to validate if targeted
emotions were successfully induced (6 papers).

In several papers, the authors failed to explain the labeling procedure clearly. Seti-
awan et al. [108] did not describe emotion labeling. Hu et al. [88] provided no such
information in their paper, but the content suggests that emotions were labeled either
based on an expert’s assessment or by the subjects themselves. Annotation proce-
dure and ground truth source are similarly unclear in Nasoz et al. [87] paper. They
used self-assessment questionnaires during the study but provided no information
regarding physiological signal labeling.



36

Table 3.8: Methods of emotion labeling (ground truth); ’?’ – deduced by us (from
[16]).

Method Used by

Labels assigned to stimuli Expert-annotated: [89–91]
Crowd-annotated:[94]?, [80,
89, 90, 92, 93]

Labels assigned by system [63, 101]
Labels assigned by experts [102]

Stimuli labels validated
with self-assessment

Expert-annotated: [97, 98]
Crowd-annotated: [95, 96,
99, 100]

Self-assessment [107]?, [11, 63, 76, 78–86,
103–106]

No info [87, 88, 108]

Figure 3.4: Possible ways of labeling physiological signals with emotions in the lab
studies (from [16]).

Figure 3.5: Possible ways of triggering self-assessment in the field studies (from
[16]).
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Table 3.9: Possible ways of collecting self-assessment (from [16]).

Environment Tool Used by

Lab Paper [89]?, [90]?, [79]?
Computer [95, 96]
Mobile device Tablet: [84]

Phone: [85]
Not specified: [80]?, [101]?

No info [78, 81–83, 87, 97, 98]
Constrained field Mobile device Phone: [63, 103–105]

No info [107]
Field Mobile device Phone: [11, 76, 106]

Watch: [76]

3.8 From theoretical model to reasoning task
Discrete psychological models often provide sophisticated dependencies between
emotions, e.g., the position of the emotional states relative to other emotions in
Russel’s Circumplex model, or Plutchik’s wheel of emotions, e.g., joy and sadness
are opposite to one another, and anger is equally close to disgust and anticipation.
When translated to simple binary or multiclass classification problem, all of those
psychological relations are lost, and emotion categories become just an unordered set
of distinct elements. Likewise, multidimensional models also have to be converted
to discrete values, e.g., by grouping them in quadrants later treated as independent
classes, and leading to a 4-class classification problem [79, 81, 91] (Fig. 3.6).

On the other hand, in some cases, authors respected the orthogonality of emotional
dimensions and predicted each of them using a separate predictive model. It re-
sulted in either two binary models [79, 82, 83, 108], one for each dimension; or
two 3-class models [11, 80]. Another approach to addressing multiple discrete
emotions was to create binary machine learning models for a given emotion in
a one-against-all setup, e.g., a model predicting 1={sadness} vs 0={anger, fear,
happiness, relaxed} [98]. Other methods included predicting one category against
another for every combination of emotions. This approach was regardless of the
initial models of emotion, discrete [102] or dimensional [92]. Lastly, Schmidt et
al. [11] gathered self-assessments for arousal, valence, stress and anxiety and trained
multi-task models with separate classification heads for each problem within one
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Figure 3.6: (A) Transition of original psychological emotional models into machine
learning used in experiments; and (B) the 2-dimensional emotional space arousal-
valence converted to four quadrants, next exploited as (1) 4-class classification or
(2) two binary models, one for each dimension (from [16]).
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machine learning model.

Regression was rarely considered in reviewed studies, with only three papers pre-
dicting continuous values [85, 86, 105] and one article using regression to measure
the e)ect that a)ect has on productivity [107].

All in all, initial models of emotion were usually converted into simple machine
learning problems, either discrete or binary. These simplifications may be caused by
the relatively small sizes of psychophysiology datasets, making harder tasks, such
as multiclass classification with a big number of dimensions, rather unfeasible.

3.9 Learning case definition
We define the learning case as the basic unit of knowledge provided to a machine
learning model. In lab studies, knowledge about the study procedure can be used
to, e.g., use signals collected during a whole emotion induction [97], its part [79],
or combine signals from several stimuli of one type [93] (we assume using the
whole recording, as signal splitting was not mentioned). In field studies signals are
collected without break for a long periods of time. Therefore, dividing them into
fragments is necessary, but extracting proper learning cases is challenging, as exact
time of stimulation is at best uncertain, or even unknown.

In the emotion recognition field, dividing collected signals into segments is often
called windowing. It is often used to extract many many learning cases from one
registered signal to increase number of possible learning cases. Windows are often
all labeled with the same label as the original signal [99, 100]. This method may
be especially useful when working with deep learning models, as in general they
require large datasets for training, e.g., Schmidt et al. [11] extracted up to 240 cases
for each labeled a)ective state. Divided signals may also be treated as a time series
and fed as such into a neural network with recurrent layer [104].

Papers that used windowing (41%) also considered di)erent aspects of the process.
In five of them [85, 92, 96–98], authors utilized windows spanning the whole
recorded signal. In papers that divided recordings, window sizes varied from one
second [81] up to 180s or more [92, 106]. Additionally, used windows could be
adjacent [79, 104], or overlapping [11, 81, 83, 99, 100, 105]. Also, it is possible
to use di)erent window sizes depending on the type of signal, e.g., Wampfler et
al. [84] extracted features from two sources using a ten-second-long window for
physiological signals and the whole stimulus length for data from a stylus.
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3.10 Machine learning models
Usually, in what we call a classical feature-based approach, the collected raw signals
must be preprocessed and synchronized before training emotion recognition models,
and descriptive features must be derived. After that, researchers train and optimize
simple classifiers or deep neural networks. Extracting meaningful and informative
features requires expert, domain-specific knowledge about utilized sensors and col-
lected signals. On the other hand, in an end-to-end approach, acquired signals are
directly passed to the deep learning architectures. It requires careful consideration
of model design and a training procedure to ensure that the essential patterns will
be found automatically. The end-to-end approach is a promising direction [11, 121,
122]; however, in the reviewed papers, the authors rarely applied it.

In Tab. 3.10, we summarize the approaches used at di)erent stages of the ML model
training process. Utilizing classifiers, such as decision tree (DT), k-nearest neigh-
bors algorithm (KNN), support vector machine (SVM), or simple Neural Networks
to solve a multiclass problem was the most popular among reviewed articles (88%
of papers). In total, only 21% of studies applied deep learning algorithms, with
only four papers using more sophisticated deep neural network architectures (con-
volutional neural networks, CNN; or long short-term memory, LSTM). Multilayer
perceptrons (MLP) were utilized in the earliest deep learning experiments [89, 90]
but remained used in later years. Some authors used MLP in later years despite also
experimenting with more advanced architectures like convolutional (CNN) or long
short-term memory (LSTM) networsk [81, 104]. Moreover, Saxena et al. [86] used
MLP to address a regression task. Other approaches were presented by (1) Schmidt
et al. [11] that experimented with training CNNs in the end-to-end fashion, and (2)
Tizzano et al. [100] that trained an LSTM model using transfer learning.

Although most of included papers (56%) analyzed performance of multiple classi-
fiers or deep learning architectures [11, 76, 79, 81, 83–87, 89, 90, 92, 93, 99, 100,
102, 103, 106, 108], only Kanjo et al. [103] and Schmidt et al. [11] compared di)er-
ent ML training methods – feature-based approach vs. end-to-end deep learning. In
both cases, deep learning provided better outcomes, but the authors did not provide
statistical tests to confirm this.

Out of assumed machine learning tasks, the multiclass classification was the most
common approach (74% of papers, Tab. 3.10). In eight papers, the ML problem was
defined as binary classification, often reducing the complexity of the initial model of
emotions assumed in the study (Sec. 3.8). Only three papers defined the problem as
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a regression [85, 86, 105], and only Schmidt et al. [11] defined a multi-task problem,
which they later classified using a single ML model giving multiple classification
outputs. Comparisons of di)erent ML problem types, e.g., binary classification and
multiclass classification separately [11, 79, 80, 84, 92, 99–102] were performed in
nine papers (26%).

3.10.1 Analyzed approaches
When searching for the best-performing approach, one has to consider many factors
other than ML models and tasks, among others, the number of windows origi-
nating from one learning case [83], the or amount of overlap between windows
and their sizes [83, 104, 106]. Tizzano et al. [100] investigated the feasibility of
transfer learning for creating the personal model but failed to achieve any valuable
conclusions.

Other factors analyzed in reviewed papers included di)erences between devices [82]
and signals (e.g., physiological vs. environmental) [76, 84, 103, 104]. Setiawan et
al. [93] showed that modality fusion at the feature level performed better than the
one at the decision level. Similarly, other authors studied impact of di)erent feature
sets [86, 99, 102, 106], cardinalities of these sets [92, 95, 96, 98], or methods for
feature selection [79]. Feng et al. [102] focused on feature generation for time-
frequency analysis of the EDA signal, and after analyzing four mother (prototype)
wavelet shapes, they concluded that Complex Morlet was the best.

Also, experimental setups and the impact of ground truth choice can be analyzed.
Albraikan et al. [80] compared results from using ground truth of di)erent origins,
i.e., annotations with self-assessment vs. expected emotion, and achieved better
model accuracy using the latter. They suggested that annotations provided by
subjects may be biased and that stimuli types are more objective as ground truth,
but they did not report any statistical analysis. Quiroz et al. [99] designed multiple
experimental setups: (1) walking after watching a movie; (2) walking after listening
to music; and (3) walking while listening to music, classified emotions in those
setups, and achieved the best results in the third setup. Two other papers utilized
multiple datasets when performing emotion recognition [80, 83].

3.10.2 Hyperparameter tuning
In machine learning, hyperparameters include di)erent attributes or methods used
when training a model, e.g., learning rate or activation function in neural network
training or a number of trees in a Random Forest. Hyperparameter tuning can be
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used to find a combination of parameters that result in the best-performing model.
It can be done manually (e.g., grid search), semi-automatically (e.g., Bayesian
optimization), or by using fully automated tools like auto-sklearn [123].

Hyperparameter testing is used to find the best parameters for the model model
while maintaining its generalizability and avoiding overfitting. However, model
optimization introduces bias for the dataset used, often a validation set. Thus,
to reliably measure model performance on unseen data, such an optimized model
should always undergo final verification on a previously unseen test set. Also,
optimized performance metrics should be chosen with the problem and data profile
in mind, e.g., data imbalance.

Only a few of the reviewed papers utilized hyperparameter optimization (Tab. A.3).
Some authors conducted simple model tuning, i.e., adjusting the number of trees
in Random Forest [83], analyzing di)erent SVM kernels [98, 102], or perform-
ing randomized parameter search [84]. Only Nakisa et al. [81] compared several
optimization algorithms and selected an approach based on optimization results.

3.11 Model validation
To obtain a machine learning model that is ready for real-world inference, one needs
to perform thorough testing and optimization. They are crucial to avoid situations
where models trained on data from one source, e.g., own laboratory dataset, fail to
generalize to data from another source, e.g., real-life signals. This testing should be
performed in relation to the assumed emotional ground truth (reported emotions),
relations that are present in the data, and a final goal.

3.11.1 Quality measures
Training predictive models include optimization of a chosen quality measure. This
measure not only impacts the model but is often used to evaluate the model’s
performance. Most of the reviewed papers (82%, Tab. 3.10) utilized accuracy
measure defined as a ratio of correct predictions (consistent with the ground truth) to
all model predictions (sum of correct and incorrect). Accuracy is easy to understand
and interpret but also ignores imbalance in the data, e.g., a model predicting only
majority class on a dataset consisting of 90 samples of anger and 10 cases of joy
achieves 90% accuracy. Such a model may be mistakenly seen as well-performing
when looking at the metric alone, even though without the ability to discern between
di)erent emotional states, it would be useless in practice.
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Six papers (18%) [76, 78, 80, 81, 88, 102] used only accuracy despite having
unequally distributed classes A.3. Four papers (12%) utilized quality measures
that, to some degree, account for the distribution of classes: macro F-measure [11,
83], macro-avg AUC [84], or confusion matrix [104]. Only three (27%) out of 11
papers using imbalanced datasets considered implementing training techniques for
imbalanced data, such as balanced class weights [84], equal size sampling [98], or
binning values of Likert scales (adjusted ranges) [11]. Finally, only eight papers
(24%) validated their results using statistical tests [11, 81, 83, 85, 95, 96, 101, 105].

3.11.2 Validation procedures
We can group validation scenarios used in emotion recognition studies into six
approaches, based on the focus on particular dataset components over which the
split into train and test examples is performed (Tab. 3.11):

1. Non-specialized validation, which is a standard method used in machine learn-
ing. Splitting is done over the entire dataset without accounting for subject- or
stimulus-specific properties. It can take form of (a) simple train-test split [86,
95, 96, 103, 106], (b) stratified split relative to the output class distribution [98],
or (c) k-fold cross-validation [89, 90, 92, 108] (Fig. 3.7A).

2. Intra(within)-subject validation, where the data of a particular subject is split
into train and test sets. In this approach, ML models are trained on the part
of subjects’ cases and tested on the rest of the data. Such validation is needed
when researchers assume the necessity of having subject-related data for training
so it does not measure the model’s reasoning abilities toward new subjects.
It can be performed as (a) simple one-time split [88, 104]; (b) within-subject
cross-validation [91, 99]; (c) leave-k-cases-out for each subject [85]; or (d) leave-
target-questionnaires-out (LTQO) [11].

3. Inter(between)-subject validation is an approach specific for modeling human-
related data, as it emphasizes the need for user-independent validation and assigns
all data of a particular subject to either train or test set. This approach tests the
model’s ability to generalize for unknown people, and can be done as a one-time
split [97], or cross-validation over subjects [11, 79–81, 83–85, 91, 93, 99, 102]
(Fig. 3.7C).

4. Inter-intra-subject validation suitable for finding the model’s capabilities for
generalized predictions and its potential for further personalized adjustment. In
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the studied literature, it was done as cross-validation (one subject at a time,
LOSO) combined with the repeated random split on the test subject’s data [100].

5. Between-stimuli validation. Models are trained on data from a set of stimuli
and tested on another set of stimuli. It can take the form of a split based on stimuli
(a) such as videos [83] (Fig. 3.7B), or performed activities [84] (Fig. 3.7D).

6. Across time validation test models’ ability to generalize between periods in
time. Training is performed on examples from earlier periods, and testing on
samples collected later in time [63, 76] (Fig. 3.7E).

The choice of the validation method a)ects the machine learning model’s qualities
that are being tested, e.g., its generalizability relative to (a) subjects in between-
subject validation or (b) stimuli in between-stimuli approach (Tab. 3.11). Depending
on the experiment setup, domain-specific validation approaches may be better suited
than classical cross-validation, thanks to their context-respecting properties [124],
e.g., training on a subset of stimuli and testing on the rest [83] (between-stimuli
validation). Moreover, researchers should consider if, in their setup, it is better
to train general or personalized classifiers - a question considered only in two
studies [100, 104].

Drawing conclusions in emotion recognition studies requires careful consideration of
di)erent relationships present in the data. Usually, handling inter-subject variability
proves di*cult, with some researchers abandoning between-subject validation due
to the subpar performance of their models [83]. Overall, this validation scheme
appears to best reflect a scenario where models should perform well on previously
unseen people, therefore reflecting a cold-start problem present in the real world.

Combining between-subject and within-subject validation is an interesting approach,
which allows utilizing general models trained on data from known subjects (between-
subject validation) and adjusting these models training for previously unseen people,
for example, by training new layers on data from the subject excluded from training
(within-subject validation). In this case, the final testing is performed on the re-
maining data of the test subject. The remaining subject’s data can be split using the
monte-carlo approach [100] or k-fold cross-validation (not considered in any paper),
or across-time validation (also not considered).

A proper choice of validation procedure leads to good insights into the trained
model’s properties and its generalization or personalization ability. It can be mea-
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Figure 3.7: Selected validation methods used in emotion recognition; 𝐿𝑀 denotes
the ith assessment, 𝑁 𝑂 – the jth subject. The matrix may not be fully filled out, since
some examples may be removed or uncollected (from [16]).
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sured, e.g., using standard deviation calculated over cross-validation folds. In the
case of between-subject validation, e.g., leave-one-subject-out, it provides a margin
of the model’s ability to predict a previously unseen person’s emotions. Unfortu-
nately, not many articles report information about the generalization performance
of their methods. For example, 5 out of 12 papers that utilized between-subject
cross-validation failed to report any information related to di)erences between data
splits, e.g., individual error values, mean absolute error, or standard deviation [79,
80, 93, 100, 102]. Additionally, authors commonly failed to consider the data im-
balance (88% of papers) while applying imbalance-sensitive quality measures, such
as accuracy (82% of papers). Furthermore, a minority of articles (24%) investigated
their results using statistical tests.

Four papers went beyond using a signle validation procedure, and analyzed their
models in multiple setups: LOSO vs. intra-subject 10-fold cross-validation [91, 99,
100] and LOSO vs. LTQO [11]. In all of those, validation setups where models
could learn from data of specific subjects resulted in higher F-measure values than
the subject agnostic validation (LOSO).

3.12 Discussion and identified challenges
In this work, we investigated the possibility of utilizing signals collected with wear-
ables to recognize real-life emotions. During the review, we realized that most of the
authors applied similar procedures in their studies, i.e., they recruited participants,
prepared stimuli and annotation methods, collected signals and processed them
while also collecting self-assessments, and finally, trained and validated machine
learning models. Moreover, we identified seven scenarios of emotion recognition
and how researchers converted psychological models to machine learning tasks.

3.12.1 Study Design
No article reviewed in SLR was exhaustive with respect to all research components.
In particular, (1) only five studies (15%) considered more than four emotions (five/six
discrete ones or six emotional regions); (2) in nine papers (26%), authors obtained
ethical committee approval; (3) in 14 papers (41%) written consent was collected
from participants; (4) in ten papers (29%), context data was considered, e.g., alcohol
consumption, physical exercises; (5) in 14 papers (41%), subjects’ health conditions
were checked, e.g., personality disorders or cardiovascular diseases; (6) in three
papers (9%), the labeling procedure was not described at all, and in seven papers
(21%), inductions were not verified by self-assessment; (7) out of 11 papers using
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imbalanced data, only three treated it utilizing appropriate techniques; (8) only
seven studies (21%), performed any adjustment to models’ parameters, and only
three optimized them; (9) inter-subject validation procedure (subject-independent
validation) was used in only 12 papers (35%); (10) in only nine papers (26%),
results were tested for their statistical significance; (11) no authors using their own
dataset shared it; (12) only one paper had an accompanying source code published.
Additionally, most studies are relatively small in scale, with only four papers (12%)
conducting research on groups of over 50 subjects and none investigating more than
100 people.

Most of reviewed studies were carried out in laboratory conditions. Only eight
papers considered real-life environment with its unique challenges (Tab. A.2). In
particular, data collection in the field has to employ convenient and non-annoying
labeling methods. Additionally, as some emotions are rare in everyday life (e.g.,
fear or disgust), researchers can expect a high imbalance of classes in collected data.

3.12.2 Emotional models and ML problems
The reviewed articles extensively utilized simple models of a)ect, such as low
arousal-high arousal or no stress-low stress-high stress. It was mainly driven by
strong correlations between arousal or stress and some biological signals – BVP or
EDA [12, 125]. However, emotions are complex states with a multidimensional na-
ture. Respecting all aspects of emotion still remains a challenge. Most of the studies
considered up to six basic emotions (Tab. A.1), despite the fact that researchers
postulate much more extensive models of emotion. For example, Du et al. [126]
identified 21 states from facial expressions, while Cowen and Keltner [127] observed
27 distinct categories in self-reports. Nevertheless, distinguishing a large number
of categories would also make the recognition problem much more di*cult.

The assumed model of emotions directly impacts the design of the detection model.
We would expect to treat multidimensional models as a multi-label classification
problem. However, a large number of training cases would be required to train such
a classifier, and none of the papers approached reasoning in such a way. It was
only partially addressed in seven papers utilizing dimensional emotional models
and multiple independent regressors [85] or classifiers [11, 79, 82, 83, 92, 108].

Another challenge lies in creating models combining general and personal knowl-
edge [100]. Such models (preferably deep learning architectures) would need to
learn from the whole population of subjects and from the personal signals of a
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targeted individual. Moreover, the specificity of human physiology and subjectivity
of a)ect require careful consideration when designing solutions and validation pro-
cedures. For example, subject-dependent (i.e., non-inter-subject) validation usually
results in relatively high metric values because data from the same subjects are used
for both training and testing [100].

3.12.3 Data collecting
Collecting data is challenging, especially when done in real life. When collecting
large amounts of data for training machine learning models (especially the deep
learning ones), using unobtrusive multipurpose devices and novel triggering meth-
ods [15, 128] may prove useful.

We observed that most studies utilized similar hardware devices (Tab. 3.6). It may be
caused by the fact that provided signals di)er between o)-the-shelf wearables, and in
most of them, getting raw physiological recordings is impossible. Additionally, most
wearable sensors provide signals sampled with low frequency and quality, causing
their quality to be much worse than respective medical-level devices, especially
when recording in motion [117].

In the review, we focused on studies potentially applicable in the field, so they
had to utilize portable wireless wearables. Apart from those, other complementary
signals and data may be collected in real life, e.g., our activity [129], voice [130], or
face recording [131] (if smartwatch has a built-in camera), and potentially improve
emotion recognition accuracy. However, each new device adds to the complexity of
the data synchronization process. Moreover, collecting some modalities in real life
may be challenging, e.g., facial expressions when a person moves or their voice in
a loud environment. Also, continuous monitoring consumes much energy. Thus, it
may be necessary to charge devices frequently [128].

3.12.4 Data processing
Typically, physiological signals recorded with wearable sensors contain a lot of
artifacts that mask a)ective information. It necessitates using various methods
to reduce distortions, e.g., filtration, winsorization, interpolation, or their various
combinations.

Feature extraction methods in analyzed articles utilize only a small part of all
available approaches present in the wider literature. For example, out of di)erent
signal decomposition methods, only wavelet transform was used, ignoring methods
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such as empirical mode decomposition (EMD), Hilbert-Huang transform (HHT),
matching pursuit algorithm (MPA), or variational mode decomposition (VMD).

Surprisingly, no article performed feature selection, although it may reduce machine
learning models’ complexity and increase their accuracy. In future studies, authors
could consider methods such as relief algorithms, analysis of variance (ANOVA),
or minimal redundancy maximal relevance procedure (MRMR). Also, as it is still
debated how long emotions last, the proper length of signal windows remains
undefined, and authors have to rely on their own experience when choosing window
size.

3.12.5 Machine learning
The majority of studies (76%) utilize simple machine learning methods based on
decision trees or hyperplanes (for instance, SVM, LDA), which can achieve good
quality when solving simple problems. However, several works showed that more
complex deep learning architectures better model complex relations, especially in
multimodal emotional data [11, 81, 100, 104]. Overall, deep learning models,
especially end-to-end ones [11, 104, 121] were rarely employed despite their great
potential.

Many papers failed to address imbalance in learning samples, even when it was
apparent [76, 78, 80, 81, 88, 102]. Moreover, they often utilized accuracy mea-
sure (fraction of correct classifications) as the only metric to assess classification
algorithm quality, leading to (most probably) overestimated results.

Furthermore, model e*ciency is often evaluated in terms of quality measures. While
practical, numerical measures only provide information about predictive abilities on
test data, which can be heavily dependent on the particular dataset or validation
strategy. Such a measure does not assess model performance in real life, where
some necessary conditions may be violated, or even new or co-occurring emotions
may be present, e.g., fear and anger after dropping a smartphone into water. In such
a case, a model trained on well-discernible emotions may not be able to determine
the correct class (emotion) accurately or will wrongly suggest the most probable
emotion.

3.12.6 Research replicability and comparability
It is well-known that many issues with commensurability can be found in research
utilizing artificial intelligence. It is also true for the reviewed articles because:
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1. authors utilize di)erent emotional models (discrete emotions or emotional di-
mensions) that are not equivalent, e.g., Hu et al. [88] and Pollreisz et al. [78]
utilized four discrete emotions, but one included fear [88] in their model, while
the other used pain [78] (Sec. 3.6)

2. same emotional models were transformed to di)erent machine learning problems
(Sec. 3.8)

3. di)erent kinds of data were used in experiments – researchers utilized various
modalities, gathered using di)erent hardware di)ering quality and sampling
frequency (Sec. 3.5)

4. used quality measures and validation procedures are incomparable (Sec. 3.11)

5. utilized data and code are often not available for other researchers – only
Romeo et al. [83] utilized publicly available dataset (lab, DEAP [132]) and
published their code

To improve commensurability of a)ective research, authors could use in their pub-
lications (1) well-established emotional models without unnecessary modifications
(e.g., Ekman-Friesen [39], Plutchik [133], or dimensional arousal-valence), (2) pop-
ular validation procedures (e.g., LOSO), and (3) suitable and widely used quality
measures (e.g., F-measure, ROC AUC, accuracy). We advocate for including al-
ready established methods and models in conducted experiments instead of only
focusing on own designs and experiments. Also, to improve replicability, authors
should publish their data and code whenever possible.

3.12.7 New arising challenges
Emotions in real life are usually complex, and people may experience di)erent com-
binations of basic emotions at the same time [86]. In an uncontrolled environment,
they are impacted by the context that a person experiences at the time [134] (e.g., a
specific situation, such as a job interview). Therefore, questionnaires for in-the-field
studies should not rely on predefined emotions but rather try to gather more general
a)ect measures and accompanying contextual metadata, ideally using free-text re-
sponses. In the research that considers distinct emotional states (categories), they
should be treated as multi-label classification or multivariate regression [86] and
return estimates for all possible states at the same time, e.g., separate probabilities
for all emotional states, because in real life multiple of them may occur at the same
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time. Also, additional personal context, such as knowledge about other a)ective
states (e.g., stress, anxiety, or mood) or personal traits (e.g., personality), may help in
discovering meaningful patterns and relationships in data, therefore improving pre-
diction quality. It may be realized using, e.g., multi-task deep learning models [11,
135].

Also, novel deep learning methods may also be useful for signal processing sig-
nals and generating their representations. One of most promising methods is self-
supervised learning, which allows using unlabeled data for model training models,
as collecting emotion annotation is a long, di*cult, and noisy process. Autoen-
coders could be used to impute missing measurements, therefore improving signal
quality. Transformer networks could be used to better tackle multimodal data and
improve reasoning about emotions. Also, new developments in AI explainability
may allow us to better research the nature of emotions by identifying specific links
and patterns between emotions and input data.

We believe that personalization of reasoning is necessary, especially the develop-
ment of methods that would respect di)erences between people in their physiology
and subjectivity of emotional experience. Also, combining knowledge about in-
dividual subjects (personal) with population-wise (general) patterns [100] seems
promising. Furthermore, as time impacts people’s behavior, physiology, and per-
ception, researching methods that would allow updating models using incoming data
from an individual and a general population, e.g., incremental and active learning
methods. Also, together with the development of new methods for emotion model-
ing, new validation procedures also have to be researched, as such models require
procedures for testing both their generalization and personalization abilities, e.g.,
new inter-intra-subject methods.

Due to many di)erences between laboratory and real-life conditions, reasoning in
everyday life using models created with data from laboratory studies will probably
show poor accuracy. Therefore, researchers should focus their e)orts on collecting
datasets with annotated emotional events from real life. However, it requires precise,
reliable, and unobtrusive sensing devices suited for everyday use. Ideally, they would
allow collecting multimodal data, e.g., BVP together with ECG, EDA, acceleration,
or speech data, all of excellent quality and high sampling frequency. Although
measuring devices have become more unobtrusive and provide signals of better
quality than in the past, they have yet to reach the quality resembling that of their
laboratory counterparts.
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Lastly, we believe that for a)ective research to advance, the community has to focus
on conducting large-scale studies in real life (with many participants measured
over long periods of time) and promoting open science. Recorded data should
contain contextual information so more factors can be included in analyses, such
as physical activity (e.g., hiking vs sitting on a couch) or other temporal context.
Such studies should be designed in multidisciplinary teams, with experts from
a wide range of research fields involved. Also, monopolizing collected datasets
and not publishing the code for developed solutions hinders progress in a)ective
computing. Such practices not only slow down progress due to fewer resources
available for researchers but also make developed solutions impossible to recreate
and verify.

We are not alone in our findings, as other researchers provided similar observa-
tions. Larradet et al. [136] commented that the majority of studies are conducted in
laboratory conditions and that utilizing such data may cause issues when creating
reasoning models for real life. They also created a method for assessing if emotional
datasets can be used in developing methods for in-the-field reasoning about emo-
tions, and most of the examined datasets performed poorly (their charts occupied a
relatively small area).
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Table 3.10: Approaches, methods, and measures used at particular machine learning
stage. ’?’ means it was not described but inferred by us (from [16]).

Stage Approach Used by
Classifica-
tion type

multiclass [11, 76, 78–81, 84, 86–90, 92, 94, 97,
99–104], [95]?, [96]?, [106]?, [63]?, [91]?,
[93]?, [107]?

binary [79, 82, 83, 98–100, 102], [108]?
regression [85, 86, 105]

ML models classical (KNN,
SVM, etc.)

[11, 76, 78, 79, 81–84, 86–100, 102, 103,
106, 108]

deep (CNN, LSTM,
etc.)

[11, 81, 100, 104]

Quality
measures

accuracy [76, 78, 80–84, 86–104, 106, 108]
F-measure [11, 80, 83, 99, 103, 104]
Other [78] – conf. level; [102] – AUC, precision,

recall; [79] – correct classif. ratio; [104] –
precision, recall, error rate, RMSE,
confusion matrix; [83] – ROC curves,
confusion matrices; [84] – micro-avg AUC,
macro-avg AUC; [85] – MAE, RMSE,
Pearson correlation coe*cient

Imbalance
in learning
samples

not considered [63, 76, 78–83, 85–97, 99–108]
considered [98] – equal size sampling; [84] – RF with

balanced class weights, macro-avg AUC;
[11] – converting Likert scales into bins
(adjustment of ranges)

balanced data [86, 89, 90, 92, 97, 99, 100, 106], [87]?,
[80]?, [91]?, [94]?

imbalanced data [11, 76, 78, 80, 83, 84, 88, 98, 102, 107],
[81]?

Statistical
tests on
results

none [63, 76, 78–80, 82, 84, 86–94, 97, 98, 100,
102–104, 106–108]

applied [95, 96] – ANOVA, LSD; [105] – p-value,
analysis of beta coe*cient; [99] – p-value;
[101] – McNemar’s test (within- subjects
chi-squared test); [81] – ANOVA; [83] –
Wilcoxon’s signed-rank; [11] – Pearson
correlation coe*cient; [85] – student’s
t-tests
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Table 3.11: Reasoning model validation methods and strategies for dividing data
into training and test sets (from [16]). The number of ’-’ or ’+’ denotes the ability to
estimate generalization level of the considered models. ’?’ means we had to deduce
it.

Subject
to split

Validation type Genera-
lizability

References and details

Whole set Validation on the
whole set

- - - - [101]

One-time split over
all cases

- - - train and test [86, 95, 96, 103,
106]; train, validation and test
[86]

Stratified one-time
split over cases

- - train and test [98]

Cross-validation over
cases

- k-fold [82, 89, 90, 92, 108];
Monte Carlo [100]

Within-
subject

One-time split over
each subject’s cases

- - train and test [88, 104]

Within-subject
cross-validation

+ 10-fold, independently for each
subject [91, 99]; leave-one-out
(LOO) –
leave-one-observation-out of a
given subject [85]

Leave-k-
assessment(stimuli)-
out

+ Leave-One-Video-Out (LOVO),
10-fold cross validation over
video [83];
leave-target-questionnaires-out
(LTQO), a stratified N-fold split
over classes and questionnaires
(train/test/validation) [11]

Tasks Between the di)erent
tasks performed

++ train and test [84]

Time Across time
validation

++ train and test [63, 76]

Between-
subject

One-time split over
subjects

++ train and test [97]

Leave-one(k)-
subject-out (LOSO)
cross validation

+++ [11, 80, 81, 83–85, 91, 93, 99,
100], [79]?, [102]?;

Between-
within-
subject

LOSO + intra-subject
repeated random split

+++ [100]

No info No info N/A [63, 78, 87, 94, 105, 107]
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C h a p t e r 4

PERSONALIZED EMOTION RECOGNITION REVIEW

Calls for respecting individual di)erences between people when working on emotion
recognition are as old as a)ective computing itself. In one of her early works,
Picard [10] stressed the importance of within-person analyses and deemed universal
emotion recognition unnecessary. She reasoned that not only do people di)er in
their perception and expressions of emotions, making training universal models
problematic, but also that personal ER may be preferred by people who would
like to share their emotions only with trusted devices and people. To this day,
researchers tend to explore individual di)erences between people [137]. It seems
especially important for emotion recognition from physiological signals, as inter-
subject variability occurs in both physiology and a)ect measures [11].

Researchers understand personalization of a)ect recognition in various ways, e.g.,
Tizzano et al. [100] trained separate model for each subject, whereas Yu et al. [138]
introduced a personalized component to an already trained general model. In this
chapter, we describe and categorize approaches to a personalization of emotion
recognition. Moreover, we provide a short analysis of signals, ML tasks and algo-
rithms, and validation approaches found in the literature.

While machine learning algorithms require large amounts of data to capture general
patterns and dependencies, personalization may benefit researchers working on a
small sample size, as it focuses on capturing person-specific information in place of
general patterns. Most of the reviewed articles performed experiments on relatively
small datasets of up to 40 subjects. The biggest dataset utilized for experiments
with personalization was data from the SNAPSHOT study [139], which contains
data from about 255 participants but remains unpublished.

We decided to include literature that considers not only emotions but also a)ective
states such as mood or stress in this chapter. At the time of the search, we could find
only a few articles focusing on personalized emotion recognition. Thus, we found
it necessary to broaden the scope of the review to cover a larger number of methods
used in personalized a)ective computing.
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Table 4.1: Personalization approaches in reviewed studies. Legend: ? - deduced by
us.

Personalization
subject

Subject
aggregation

Personalized
procedure

Personalized
model

Used by

Individuals - New model for
each subject

- [61, 76, 99,
100,
140–152],
[153]?

Transfer
learning

Personalized
layers

[138]

- [64, 100]
Multitask
training

Personalized
layers

[62,
154–156]

Groups of
people

- New model for
each group

- [138, 144,
152, 157,
158]; [62,
159]?

Question-
naires

New model for
each group

- [154, 155,
160–162];

Multitask
training

Personalized
layers or
parameters

[154–156,
160]

Tasks New model for
each group?

- [151]

Random Transfer
learning

- [64, 65]

Retraining - [65]
Physiology New model for

each group
- [142, 150,

163]

Hybrid
approach

- New model for
each subject

Personalized
parameters

[164]

Mapping input
into general
domain

- [165]

Physiology Weighing
samples

Personalized
parameters

[150]

Adding
samples

- [166]
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4.1 Personalization strategies
In general, personalization can be understood as creating a machine learning model
for a specific domain. It can be achieved in many ways, e.g., by training domain-
specific models or by adapting existing models to a domain of interest. The very
nature of this problem is not specific to a)ective computing, and researchers from
other fields (e.g., natural language processing [167] or computer vision [168]) focus
their e)orts on inventing and improving model training strategies. Even a reader
who is new to the subject may be already familiar with one of the most well-known
methods for adjusting the model – transfer learning [169, 170].

However, a)ective computing is strictly focused on people’s a)ective states and
always utilizes human-related features for reasoning. Therefore, in a)ective com-
puting, we use the term personalization to describe a family of methods for targeting
an individual or their traits. It can be done in di)erent machine learning stages,
from data processing to model adjusting.

4.1.1 Subject of personalization
The first dimension of personalization is the choice of a subject. When creating
personalized models, di)erent people can be treated as distinct individuals or as
members of a larger group who share similar traits. If we utilize group similarities
or knowledge to improve the created model, the group essentially becomes a new
subject, and we treat models as group-personalized. We treat the model as group-
personalized even if people are simply treated as a part of a larger population with
no regard to their similarities, as such models can still learn specifics of people
included in the training.

Approaches to choosing personalization subjects di)er between articles (Tab. 4.1).
Although the most common approach was to treat participants individually, person-
alization performed on groups of people is also often used. Also, we classified three
of the reviewed articles as a mix of individual and group approaches.

The most straightforward approach to group personalization considered all people
as a part of a population, and their training and test datasets contained data from
the same subjects. Similarly, Yu and Sano [65], and Wu et al. [64] focused on
randomly created groups of participants. Although such approaches are not based
on similarities between subjects, it may be possible for models (especially deep ones)
to capture particular subjects’ specificity and use it for reasoning. The drawback,
however, is that such a setup cannot be used for previously unseen people. This is
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also the case in an article by Dessai and Virani [151], where authors focused on
groups sharing an emotional experience (assuming a synchrony between them).

Knowing that personality may influence emotional experience, some authors decided
to use it to aggregate subjects. In four papers [154–156, 160], authors clustered par-
ticipants with k-means or k-prototypes algorithm based on their gender and answers
to a Big Five Personality Model questionnaire [171]. Similarly, Tian et al. [161]
used only the Big Five model together with the k-means algorithm to form groups.
Can et al. [162] presented a slightly di)erent approach and divided participants
based on their Perceived Stress Scale (PSS) into three groups: low, medium, and
high stress.

Similarities between subjects can also be found in their physiology. In four ar-
ticles [142, 150, 163], researchers grouped people based on their physiological
measures to create models for them. These similarities were also utilized in what
we described as hybrid approaches, with Hernandez et al. [150] creating general
models weighed using similarity between the general population and a person, or
Bang et al. [166] enhancing expanding personal datasets with data from similar
people.

4.1.2 Personalized procedures
The next stage that can be personalized is the procedure used to create the machine
learning model. In reviewed articles, we identified seven di)erent approaches to
personalize training procedure: training a new model for each subject or group,
transfer learning, retraining the model with personal data, multitask training, map-
ping personal data to a general domain, and weighing or adding training samples
(Tab. 4.1).

The simplest strategy, i.e., training the machine learning model for each subject
or group separately, was the most common approach. Although most researchers
simply trained models on personal data, some utilized more sophisticated strate-
gies. Exler et al. [76] considered not only separate training for each participant
but also di)erent types of decision trees. Lotfalinezhad and Maleki [148] and
Muaremi et al. [143] performed separate feature selection for each participant be-
fore training personalized models. Hernandez et al. [150] trained models in two
such settings: (1) a separate model for each subject, (2) weighing loss during the ML
model training, and e)ectively creating a model for a group of similar participants.

Some authors utilized general models in their works, either in a transfer learning
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or retraining scenario. In transfer learning, authors first trained general models and
later fine-tuned them to fit target data better [64, 65, 100, 138]. Wu et al. [64]
also explored another variant of this procedure, where they used a fine-tuned group
model and performed further tuning to create individual models. On the other
hand, Yu et al. [65] additionally considered retraining the deep learning model on
the personalized data but did not provide much explanation of this approach. We
deduce that they probably followed the same approach as in transfer learning and
further trained the general model they already had.

Another type of personalized procedure was using multitask learning, where models
were trained to learn reasoning for di)erent people or groups simultaneously. It
requires algorithms or architectures designed to provide multiple predictions (tasks)
at the same time but allows common parts of models to gain more knowledge during
training. In this review, four articles utilized such approach [62, 154–156].

Researchers who treated subjects in a hybrid manner, as a part of a population and as
individuals at the same time, utilized di)erent approaches than the ones described
above. Shi et al. [164] trained general models with subject-specific parameters,
and Hernandez et al. [150] created a general model but used a distribution of
specific participant’s labels to model parameters during inference, thus creating a
personalized model using non-personal data. Bang et al. [166] created personal
models, but if subjects did not have enough data, they used samples of a similar
participant for training (either by expanding or replacing personal dataset), thus
treating subjects as a part of a group. Unfortunately, there was no information on
whether it was used for expanding only the training or both training and testing sets.
Lastly, Gasparini et al. [165] mapped each participant’s data to a general subject-
normalized domain, common for everyone. They achieved it by resampling each
person’s data to match the desired heart rate frequency based on their heart rate
during rest.

4.1.3 Personalized algorithms and deep architectures
Despite the recent popularity of deep learning models, classical machine learn-
ing still constitutes the majority of approaches in the literature on personalized
a)ect recognition. Often, algorithms such as Random Forest (RF), Support Vector
Machine (SVM), or simple neural networks (multilayer perceptrons, MLP) were
used. Although classical approaches were most often trained on personal data,
some authors decided to perform interesting modifications to standard algorithms.
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Shi et al. [164] introduced person-specific parameters to SVM, which is responsible
for personalized feature mapping. Rubin et al. [61] utilized an approach that dif-
fered from other classification approaches, as they performed the outlier detection.
They fitted the Gaussian to the data of each subject and considered samples with
low probability values as outliers (the threshold was fitted based on training data).
Yu et al. [154] and Taylor et al. [160] utilized multitask learning (MTL) versions
of classical machine learning models such as lasso regression, linear regression,
support vector machines (SVM), or Bayesian hierarchical logistic regression.

In 17 papers, deep learning models were utilized, such as neural networks with
convolutional (CNN, eight papers) or long short-term memory layers (LSTM, eight
papers). Also, attention mechanism was utilized in three articles, either to improve
recurrent networks [161] or in a transformer-inspired [172] solutions [138, 158].
Out of less commonly known approaches, multitask learning was utilized in four
articles, either with fully connected (MLP) [62, 154, 160], convolutional [62, 154],
or recurrent [154–156] networks. Zhang et al. [159] used a system consisting of a
CNN network for mapping input to a low-dimensional feature space, followed by
correlation-based feature extraction and Broad Learning System [173] for arousal
and valence classification.

When creating a deep learning architecture, modifications can be applied in the
form of person-specific layers (Tab. 4.1), which can be utilized for personalized data
processing or reasoning. Yu et al. [138] first trained the general model and later
added personalized layers parallel to the pre-trained (frozen) ones. By concatenating
tensors obtained from the two streams, they created a representation containing
both personal and general features and used personalized final layers for reasoning.
Subject-specific layers can also be introduced at a later stage, only for personalized
reasoning from data processed in a general way [62, 154–156].

Some articles researched interesting qualities and behaviors of deep learning algo-
rithms, in addition to their accuracy in classifying a)ective states. Cheah et al. [140]
conducted experiments on 1- and 2-path architecture to explore potential di)erences
between them. Yu et al. [138] developed the modality fusion network, capable of
stress classification using two physiological signals together or only one of them in
case of a sensor malfunction. Li and Sano [155] researched whether it is better to fuse
di)erent modalities before or after feature extraction with an autoencoder. In another
paper [156], they also researched di)erent parameters a)ecting model quality, such
as the number of clusters used for personalization, prediction quality in subject-
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dependent and subject-independent scenarios, as well as the impact that utilized
architecture has on autoencoder’s reconstruction loss. Finally, Zhang et al. [159]
conducted an ablation study and explored the impact of learning intra-modality fea-
tures, using correlation-based features and Broad Learning System on classification
results.

Although they were not used in any of the reviewed articles, other approaches to
personalized architectures exist. Such methods are widely used, e.g., in natural
language processing, and they may be a great source of inspiration for a)ective
computing scientists working with time series. They are often implemented as
simple modifications to deep learning architectures, such as trainable variables or
embeddings modeling human bias (tendency to experience certain emotions) [174],
or low-rank adapters (LoRA, [175]) learning personal adaptation functions [176].

4.1.4 Personalized tasks
In researched articles, authors most commonly studied stress and emotion recogni-
tion (Tab 4.3). Stress recognition was typically performed on its general definition,
although Can et al. [162] focused on frustration, and Gasparini et al. [165] focused
on cognitive load. We also include panic attacks [61] in this category, as we see them
as abrupt and intense stressful episodes. Emotions, on the other hand, were divided
into arousal, valence, and categorical ones. Out of articles utilizing arousal and
valence, in three articles, authors decided to interpret the original labels in terms
of emotion categories [76, 100, 141, 152]. Moreover, in three papers, emotion
categories could be directly transformed into axes or quadrants of arousal-valence
space [64, 99, 146]. Some other studies also researched mood [65, 154–156, 160]
(all of them used data from the SNAPSHOT study [139]).

A)ective states were obtained in reviewed articles using one of three types of
annotations: self-assessments, stimuli labels, or external annotations (Tab 4.3). Out
of them, self-assessments were used the most, either as a direct source of ground truth
or to validate if stimuli induced expected emotions. Only in two cases researchers
used annotations provided by external observers [157, 166].

Regardless of the origin, data also had to be translated into problems solvable using
machine learning. Problems present in relevant articles can be divided into three
main categories: binary classification, multiclass classification, and regression. The
most commonly used (23 papers) was the binary classification problem. A unique
(for this review) approach was presented by Rubin et al. [61], who treated binary
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Table 4.2: Machine learning approaches in reviewed studies. Legend: *anomaly
detection, ML - machine learning, SA - self-assessment, RF - random forest, SVM -
support vector machine, MLP - multilayer perceptron, CNN - convolutional neural
network, LTSM - long short-term memory, ? - deduced by us.

Category Approach Details Used by

Machine
learning
problem

Binary
classification

SA labels [138, 141, 142, 144, 145,
148, 150, 158–162,
164][61]*[64]?

Stimuli labels [62, 147, 151–153, 162,
165]

Stimuli labels
verified with SA

[99, 100]

Multiclass
classification

SA labels [76, 100, 140, 143, 148,
154, 158, 159, 162]

Stimuli labels [142, 145, 147, 149,
151–153, 165]

Stimuli labels
verified with SA

[99, 100, 146]

External
annotation

[166]

Regression SA labels [65, 154–156, 163]
External
annotation

[157]

Machine
learning
model

Classical E.g., RF, SVM,
1-layer neural
network

[61, 76, 99, 100, 141–146,
148–150, 152–154,
157–166]

Deep MLP [62, 154, 160, 162]
Convolutional
models

[62, 64, 65, 140, 147, 151,
157, 159]

Recurrent models [100, 154, 157–159, 161];
[155, 156] - autoencoders
[154] - CNN + LSTM
[138, 158] -
transformer-based models
[159] - CNN +
correlation-based features +
Broad Learning System
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Table 4.3: A)ective states researched in reviewed studies.

Category A!ective state
details

Used by

Emotions Valence [64, 76, 99, 100, 140, 141, 144, 145, 148,
151, 152, 157–159, 161]

Arousal [64, 140, 144, 145, 148, 151, 152,
157–159, 161]

Categorical [64, 99, 146, 153, 166]

Stress - [62, 65, 138, 143, 147, 149, 150,
154–156, 160, 163, 164]

Frustration [162]
Cognitive load [165]
Panic [61]

Other Mood [65, 154–156, 160]

classification (namely pre-panic vs. non-pre-panic states) as an anomaly detection
problem. Next was the multiclass classification problem (to either three or four
classes), which was considered in 20 papers. Regression of di)erent levels of
a)ective states was considered in five papers, out of which two performed it using
MTL regression models [154–156].

4.2 Signals for personalized ER
Most of the reviewed articles conducted their research using physiological signals
(Tab. 4.4). Out of these, heart activity and electrodermal activity measures were the
most commonly used, with 15 and 14 cases of use, respectively. The least popular
was a)ect recognition using speech and muscle electric activity (both used in only
one case). Overall, signals used in personalized emotion recognition do not di)er
from those used in general emotion recognition (Chap. 2).

In 12 articles (35%) authors focused only on a single modality, choosing either
cardiac activity [145, 146, 165], EDA [147, 150], EEG [64, 140, 148, 153, 161],
or audio signals [166]. In articles where multiple modalities were explored, the
most popular combinations included: (1) cardiac and electrodermal activity, to-
gether with body temperature [149, 158, 159, 164]; (2) cardiac and electrodermal
activity [62, 138, 144, 151, 152, 157, 162, 163]; (3) electrodermal activity and
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Table 4.4: Signals used for a)ect recognition in reviewed studies. Legend: * - also
activity recognition from phone.

Signal
category

Signal type Used by

Physiological Heart activity (among
others ECG, PPG)

[61, 62, 76, 99, 100, 138, 142–146,
149, 151, 152, 157–159, 162–165]

Electrodermal activity
(EDA)

[62, 65, 138, 141, 144, 147,
149–152, 154–160, 162–164]

Brain electric activity
(EEG)

[64, 140, 141, 148, 153, 161, 163]

Muscle electric activity
(EMG)

[163]

Respiration [61, 163, 164]
Temperature [61, 65, 149, 154, 155, 158, 159,

164]

Behavioral Accelerometer, gyroscope [65, 99, 100, 142, 154–156, 162]
Audio Speech [166]
Other Mobile phone data [142, 143, 154, 160]; [76]*

body temperature [65, 154–156]; or (4) electrodermal activity and accelerometer
signal [65, 154–156, 162].

We also noticed that utilized physiology and activity measures depended on a task of
interest. In emotion recognition studies, authors often utilized heart activity together
with electrodermal activity [144, 151, 152, 157–159], accelerometer data [99, 100],
or by itself [76, 145, 146]. Also, brain electric activity was often used [64, 140, 141,
148, 153, 161]. Additionally, the only article that used speech features also focused
on ER [166]. Although in stress recognition combining cardiac and electrodermal
activity data was no less common than in emotion recognition [62, 138, 149, 162–
164], studies that utilized EDA without heart activity were much more common [65,
147, 150, 154–156, 160], and only one article researched it using solely heart
function features [165]. As mood-focused studies always researched it alongside
stress [65, 154–156, 160], utilized signals were similar between the two tasks,
although authors never utilized cardiac features, and in two out of five studies used
mobile phone data [154, 160]. Note that this variation may be explained by the fact
that all articles researching mood used the same SNAPSHOT study [139] in their
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research, and none used cardiac features!.

4.3 Validation in personalized ER
Assessing the quality of machine learning models for personalized a)ect recognition
requires properly designed validation. Procedures and metrics should always be
selected in regards to the solved problem and assumed approach. In personalized
machine learning validation should be designed very carefully, as it is easy to cause
data leaks from test to trainig set, resulting in incorrect (overestimated) results.

In reviewed papers we identified three validation components that were further di-
vided into specific approaches, namely: (1) three categories of validation procedure,
(2) six commonly used metrics and seven less popular quality measures, and (3)
an information if authors compared performance of their personalized models with
that of general ones. Out of all articles, one did not provide any clear explanation
of used validation procedure [164].

4.3.1 Validation procedures
Most of the reviewed articles (26) utilized strategies where data was split over
collected samples (Tab. 4.5). In five articles, authors utilized a simple holdout
split, in 10 k-fold cross validation, in six a combination of both, with a holdout
set used for final testing, and in two monte-carlo cross-validation. Also, some
authors presented their own unique approaches, with Rubin et al. [61] who created
holdout train-validation-test splits and swapped validation and test sets to perform
experiments twice, and Wu et al. [64] who in one of their experiments divided
the dataset into multiple non-overlapping sets on which algorithm was trained, and
tested it on randomly selected subset of remaining data (we call it cross-training
with random validation).

Although cross-validation typically produces more robust measures of the model’s
abilities to generalize than using just a holdout test, doing a simple split over
data samples may result in knowledge leaks, regardless of the specific method
used. In reviewed articles, examples of such incorrect methods include (to our
best understanding) articles by (1) Tian et al. [161] who created clusters based on
personality before splitting subjects into di)erent datasets; (2) Quiroz et al.[99] using
10-fold cross-validation (random split) on already windowed data with overlapping
windows, which probably caused a serious knowledge leak from the validation

1Also, in dataset description provided by Li and Sano [156], no heart-related signal is mentioned
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Table 4.5: Approaches to validation in reviewed studies. Legend: CV - cross
validation, LkDO - leave k days out, LkSO - leave k subjects out, ARI - adjusted
random index, PCC - pearson correlation coe*cient, val - validation ↑ - R understood
as an average residual value in regression task, 𝑃 - validation strategy used only for
model optimization; ? - deduced by us.

Validation
component

Approach Used by

Validation
procedure

Split over samples [61, 62, 64, 140, 142, 147, 148, 151, 152,
157, 160] - holdout, train-(val)-test split
[99, 100, 141, 143, 145, 146, 153, 159,
161, 162]; [61, 62, 65, 140, 148, 157,
160]𝑃;[158]? - k-fold CV;
[149, 166] - monte carlo CV;
[64] - cross-training + random validation

Split over subjects
(people)

[65, 99, 142, 144, 146, 147, 150, 152,
155, 156, 161, 163, 165] - LkSO CV

Split over time [76, 138] - holdout
[142, 150, 156]; [155]? - LkDO CV
[144] - Leave-k-sessions-out CV
[154]? - LkDO monte-carlo CV

No info [164]

Quality
measures

Accuracy [64, 76, 99, 100, 140–147, 149, 151–153,
159–162, 165, 166]

F1-measure [61, 99, 138, 142, 147, 151, 154, 158,
159, 165, 166]

Precision [61, 147, 151, 164, 166]
Recall [61, 147, 151, 158]; [164] - fixed recall
AUC [62, 99, 145, 160]
MAE [65, 154–156]
Other [61, 138] - Confusion matrices; [62] -

Cohen’s Kappa?; [142] - ARI; [163] -
1-R↑; [157] - RMSE, PCC, CCC

Comparison
with general
models

- [64, 65, 99, 100, 141–144, 146, 147, 150,
152, 159, 162, 164–166]
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sets; (3) Sah and Ghasemzadeh [147] who most probably normalized data before
creating training and test sets, thus violating the assumption of training and test
set independence; and (4) Gupta et al. [141] who performed model tuning using
10-fold cross-validation despite not having a separate test set (possibly resulting in a
test set overfit). In total, 15 of reviewed articles utilize methods that could result in
knowledge leak and provided descriptions do not allow rejecting such possibility [62,
64, 99, 100, 140, 141, 147, 149–151, 157, 158, 161–163].

Splitting datasets over subjects (people) is often used to avoid knowledge leaks. Al-
though it is not flawless, it can be used and understood easily, especially when creat-
ing general models for the population (as done by 11 out of 17 articles comparing per-
sonalized and general models). Out of the articles that employed leave-k-subjects-out
(LkSO) cross-validation, it may be utilized in a group-personalized setting based on
similarities between people, as shown by, e.g., Hernandez et al. [150] who weighted
model parameters based on subject similarities (although, they probably calculated
weights incorrectly, leading to knowledge leak), or Tervoren et al. [142] who created
reasoning models for groups of similar participants (based on questionnaires) and
validated them by testing their ability to generalize to a new person belonging to the
group.

Another method used to avoid knowledge leaks, used in five articles, was to perform
data split over time, using either a holdout split [76, 138], leave-k-sessions-out cross-
valudation [144], or leave-k-days-out (LkDO) cross-validation [142, 150, 156], with
Yu et al [154] probably using its monte-carlo version. If on-subject dependence is
allowed (e.g., using personal models), validation based on time, especially when
respecting data sequentiality, is a good way of measuring the model’s prediction
capabilities for new data. Because it controls for the day-wise specificity, this
approach is suited only for data collected from repeated observations of people over
a period of time (typically field studies), though when modified to shorter time
periods, it may accommodate other factors, e.g., in a study with multiple stimuli
presented in sequential order, or multiple sessions of experiment, validation over
time of the study will be similar or even synonymous to leave-k-stimuli out (leave-
k-sessions-out) validation procedure.

4.3.2 Metrics
The most commonly used metric was accuracy, utilized in 22 papers. Also, in
some articles, it was the only used metric, despite a clear imbalance present in the
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data [76, 152]. In three papers [147, 162, 166], although metrics other than accuracy
were also used, they were provided only for some cases. F1-measure was used in 11
articles, precision and recall in five (in one [164] precision was evaluated at the fixed
value of recall). Three papers utilized area under receiver operating characteristic
curve (AUC), two papers used confusion matrices in addition to other metrics [61,
138], and Saeed et al. [62] as the only ones used Kappa coe*cient (we deduce that
it is the same as Cohen’s Kappa).

Mean absolute error (MAE) was provided in three out of five articles trying to
solve regression tasks. Xu et al. [163] provided regression accuracy understood
as 1 - R, with R being the average di)erence between ground truth and predicted
value in regression task (possibly MAE). Other metrics used for regression included
root mean square error, Pearson correlation coe*cient, and concordance correlation
coe*cient [157].

4.4 Discussion
This review focused on reviewing methods for personalized a)ect recognition. Dur-
ing the study, we found three main areas in which the articles di)ered: (1) used
strategies of personalization, (2) utilized input data (signals), and (3) employed
strategies of validation. We further divided personalization strategies into subfields
regarding (a) the subject of personalization, (b) personalization procedures, (c) algo-
rithms and deep architectures used, and (d) task solved. Also, validation strategies
di)ered between articles in terms of: (a) used procedures and (b) employed metrics.

4.4.1 Personalization subjects
Making a decision about a personalization subject requires some careful consid-
erations. Its choice influences further decisions regarding utilized personalization
procedures, models, and, possibly, validation. If research is focused on creating
individualized solutions, training big models may be impossible, as, in general,
it is hard to collect enough per-person data. Although some articles tried to uti-
lize multitasking or transfer learning to alleviate low-data problems, utilizing such
models in real life would prove hard, as they still require retraining entire models
or some of their layers for each person. Although most group models are usually
not concerned with those problems, they require knowledge and research on fac-
tors that impact emotions experienced by participants. In the reviewed articles,
the authors utilized factors such as gender, answers to Big Five Personality Model
questionnaires, Perceived Stress Scale, or even physiology to form groups of similar
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people. In our opinion, further research is needed, as those methods do not seem
to exhaust the scope of possible factors (e.g., those described in Sec. 3.4). Also,
some articles created groups at random or based on the experimental group they
belonged to. These methods may prove useful but are a)ected by the same problems
as fully-personalized ones.

4.4.2 Training procedures and machine learning models
Among procedures used to create machine learning models, the most common was
to train separate models for each personalization subject from scratch, either for a
person or a group. Shi et al. [164] improved such models by adding personalized
parameters to Other approaches also utilizing general knowledge about patterns
present in the data were much less popular, with four articles using transfer learning,
and personalizing some existing general models; one retraining previously created
model; five using multitask learning to expand the amount of data used for training
while designating task-specific heads to predict personal or group a)ect. The
most unique was the approach described by Gasparini et al. [165], which focused
on processing personal data to eliminate personal specificity from physiology and
create general models using such data.

Despite much progress in deep learning, most of the research utilized classical ma-
chine learning algorithms, such as SVM, Random Forest, or multilayer perceptrons.
It may be caused by the fact that most recent deep learning algorithms require vast
amounts of training samples to achieve good accuracy, and in a)ective computing,
the number of per-person samples is usually low. It would also explain why some of
the works trained deep learning algorithms using transfer learning (learning using
some previous knowledge as a foundation) or multitask learning procedures (using
data from all subjects to train a general part of a model while also fitting personalized
layers or parameters). Out of articles that used deep learning models, algorithms
based on convolutional and recurrent layers were similarly popular. Also, two more
recent articles achieved promising results using transformer-like models, showing
that although they, in general, require large amounts of data, personalization of deep
learning models is a promising direction.

4.4.3 A!ective tasks
Most of the reviewed articles focused on emotions, either as levels of arousal or
valence or as discrete named states, such as anger or joy. Other research focused
on stress and mood. In most cases, participants’ inner feelings annotated using
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questionnaires were used as a source of ground truth, followed by some articles
using stimuli categories, and two studies [157, 166] employing external experts to
annotate emotions of experiment subjects. Before using them as output variables,
these a)ective states had to be transformed into categories (classification) or levels
(regression). Most commonly, researchers used binary categories, and multiclass
classification was slightly less popular. Regression was considered in only six
papers.

The popularity of binary classification may suggest, especially if we consider the
general unwillingness to publish negative results [177–179], that a)ective state
recognition is a di*cult task, regardless of its nature (short- or long-lasting states).
Additionally, we observed that the proportion of studies utilizing self-reported emo-
tion, as opposed to stimuli labels, is noticeably higher for binary classification than
for the multiclass problems (15 to 9 vs. 9 to 11). This may suggest, even more so
if we consider all of the subjectivity that people’s emotions and mental processes
exhibit, that recognition of self-rated emotions is more di*cult than recognition of
emotions targeted in an experiment. For example, if a stimulus was prepared to
induce fear or anger, it may cause elevated arousal, which some participants may re-
gard as the targeted emotion, while others may associate with, e.g., excitement. The
low popularity of regression adds to this conclusion, as regression of precise emotion
values requires more precise links between annotated values and input signals. If
those links di)er between conditions because of momentary subjective perception,
it may be di*cult or impossible to precisely model levels of emotion. However,
these observations further add to the importance of person-focused processing, as
opposed to the generalized one.

4.4.4 Utilized signals
In reviewed articles, the most popular signals were those of physiological origin.
Out of them, the most common among di)erent cases were signals coming from
heart activity and electrodermal activity, with 16 and 15 cases of use, respectively.
The least popular was recognition using speech and muscle electric activity, both
used in only one case. Also, the signals di)ered between the di)erent tasks that
the researchers focused on. In emotion recognition studies, popular signals or
their combinations included: (1) heart activity together with electrodermal activity
(6 articles), accelerometer data (2 articles), or by itself (3 articles), and (2) brain
electric activity (6 articles). Moreover, speech features were only used for ER [166].
In stress recognition, combining cardiac and electrodermal activity data was as
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popular as in emotion recognition (6 articles), but studies that utilized EDA without
heart activity were much more common (7 articles), and only one article used only
features from cardiac signal [165]. Mood was always researched alongside stress (5
articles), but authors never utilized cardiac features which were common in stress
research. This di)erence is probably caused by characteristics of SNAPSHOT
study [139], which was a source of data for all of those articles.

4.4.5 Validation for personalized emotion recognition
In general, the assumed training procedure and the amount of subject dependence
are two main factors restricting the possible scope of validation procedures. The
validation procedure should control all factors that may impact the model results, but
specifics can di)er between experimental designs. If research focuses on creating
general or group-specific (e.g., personality- or gender-aware ones) models, testing
them on an unseen set of subjects, or unseen stimuli for laboratory data, may be a
preferred approach. In reviewed articles, the popular leave-k-subjects out (LkSO,
often k=1) validation strategy was used for training general models in 11 out of 17 of
them, and for training personalized (group) models in 11 out of 19 articles (including
the hybrid approach to subject personalization). Out of articles considering time-
based validation, one used splits based on sessions in laboratory [144], two utilized
holdout test sets [76, 138], and others used leave-k-days-out (LkDO) procedure (all
of them were studies conducted outside the laboratory).

Most reviewed studies used simple splits based on data samples, with the holdout,
k-fold, or monte-carlo validation procedures. Such procedures may be correct if
splitting is done on independent samples, but if performed on dependent samples,
high accuracies of obtained models may be caused by too-far-reaching dependencies
in collected data rather than the validity of the personalization procedure. An
extreme example of such an approach would be dividing a short annotated recording
(of a few seconds or minutes) into overlapping windows and randomly dividing
it into training and test sets, resulting (most probably) in a non-independent test
set and yielding misleading results (as Quiroz et al.[99] probably did). Of course,
samples collected from one person will always exhibit some dependencies, but if
the samples themselves were not collected during one short-lasting trial, one could
assume that all dependencies are coming from general tendencies and patterns
in this person’s signals rather than from a particular momentary state. Validation
misconduct leading to overestimated generalizability of methods may also take other
forms, e.g., adjusting models using test set resulting in overfitting [141], creating
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clusters of similar people before splitting data into training and test sets [161], or
normalizing data using statistics from the whole dataset [147]". Therefore, each
study requires careful consideration of the validation procedure, which should be
precisely stated and explained together with a rationale. Unfortunately, most authors
ignored this aspect in their articles, either providing very high-level descriptions or
not providing any details at all [164].

The use of classification metrics in reviewed studies with accuracy often used as the
only metric is worrisome, as it shows that many authors did not consider the e)ect
that imbalanced datasets may have on trained algorithms and how obtained results
may be misleading. When combined with a binary classification problem and a
simple holdout or k-fold split, in the event of a high imbalance between classes,
it is easy for the algorithm to fit the majority class and achieve high accuracy,
leading to overestimated model capabilities. This further adds to the conclusion
that the importance of proper validation is often underestimated. An example of
well-considered imbalance are articles by Yu et al. [138, 154], where they not only
used the focal loss to account for imbalance during training but also reported F1
measure as well.

2Note that all of those examples are based on our understanding of reviewed articles, and our
understanding may be a)ected by insu*cient descriptions of validation procedures.
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C h a p t e r 5

IN-THE-LABORATORY DATA COLLECTION

To perform analyses and train machine learning models, one needs data - generally,
the more, the better. Collecting this data poses many di*culties, especially when
its quality depends on answers provided by people. The complicated process of
obtaining data may become really arduous when employed people are not fully
capable of providing certain and reliable answers or annotations. Emotion research
is one of the fields that are most a)ected by such factors, as emotions are not only
subjective but can also be very confusing and hard to accurately estimate, not to
mention annotating them in a precise and repetitive manner.

There are many issues with existing datasets for emotion research, the main one
being the lack of open datasets collected in everyday life. Laboratory datasets still
dominate the field because of their signal quality, known study conditions, and the
cost of such study. However, recently, portable devices suitable for everyday life have
improved to the point where collected physiological measures are accurate enough
to be useful. Because of that, researchers started conducting emotion research in
real life, but the number of available datasets is still very limited. With all of that in
mind, we (Emognition) decided to collect our own psychophysiology datasets, first
in the laboratory and later in real life.

Aware of our limited experience, we decided to first carry out a laboratory study
with devices suitable for real-life use. This way, we could face at least some of
the di*culties occurring when collecting a)ective data, learn from them, and better
prepare for in-the-wild experiments that we later conducted. This chapter focuses
on collecting data from people and on the issues that arise during the process.

Contents of this chapter originate from the co-authored article, published in a peer-
reviewed journal:

[24] S. Saganowski, J. Komoszy’ska, M. Behnke, B. Perz, D. Kunc, B. Klich,
+. D. Kaczmarek, and P. Kazienko, “Emognition dataset: Emotion recogni-
tion with self-reports, facial expressions, and physiology using wearables,”
Scientific data, vol. 9, no. 1, p. 158, 2022. !"#: 10.1038/s41597-022-
01262-0.
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In the original article [24], I contributed mainly to data curation, its investigation,
and technical validation. Additionally, I personally wrote the lessons learned section
(Sec. 5.3.2) solely for this dissertation.

5.1 Experimental procedure
Once seated in the laboratory, participants were instructed about their role in the
experiment and asked to abstain from performing excessive movements (e.g., swing-
ing on the chair) and to ensure that their faces were visible to the camera. We also
informed them that if they felt uncomfortable during the experiment, at any moment,
they could skip any stimulus or quit the experiment. For the experiment, participants
were not directly watched by the researcher. However, they could ask for help at any
moment.

First, participants watched a black screen with dots and lines displayed (washout)
for 5 minutes. During that time, we collected their physiological baseline and
self-reported emotions after the clip ended (emotional baseline). For the actual ex-
periment, participants were exposed to 10 videos inducing emotions of amusement,
anger, awe, disgust, enthusiasm, fear, liking, surprise, and sadness, and one video
targeting a neutral state, with durations ranging from 49s to 121s. Videos were
organized in the randomized circular queue order, and for each of the participants,
they were displayed starting at one item later in the queue than for the previous
participant. Also, each stimulation was preceded by the washout video lasting two
minutes.

After watching a stimulus, they were tasked to provide ratings of their emotional
experience using two types of self-assessments: ratings of discrete emotion items
and levels of emotion components. Additionally, at the end of the experiment,
we asked participants to fill out an additional questionnaire and provide us with
(1) details about video clips they were familiar with before the study and (2) any
remarks they had about the experiment. After completing the whole procedure, each
participant received a 50 PLN voucher for the online store.

5.1.1 Physiologial data
During all inductions, multiple measures of subjects’ PNS activity were collected
using three unobtrusive devices: Empatica E4, Samsung Galaxy Watch, and Muse
2 headband. Additionally, video of the participant was recorded using a Sam-
sung Galaxy S20+ smartphone. Details on all collected measures are presented in
Tab. 5.1.
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Table 5.1: Measures available in the Emognition dataset (from [24]).

Collection method /
device

Available data

Emotion
assessments

• Ratings for dimensional model of emotions: arousal,
valence, and motivation

• Ratings for discrete model of emotions
Empatica E4 • Blood volume pulse (BVP)

• Interbeat interval (IBI)
• Electrodermal activity (EDA)
• 3-axis accelerometer
• Skin temperature

Samsung Galaxy
Watch

• Heart rate (HR)
• Peak-to-peak interval (PPI)
• Raw blood volume pulse (BVP)
• Processed blood volume pulse (BVP)
• 3-axis accelerometer
• 3-axis gyroscope
• 4-axis rotation

Muse 2 • Data from AF7, AF8, AF9, and AF10 electrodes:
– Raw EEG signal
– Absolute powers for Alpha, Beta, Gamma, Delta,

Theta frequency bands
• 3-axis accelerometer
• 3-axis gyroscope

Samsung Galaxy
S20+ 5G

• Upper-body video recording

We used a custom application running on a computer to collect data on emotions.
This app utilized Empatica E4 SDK, so data from the Empatica E4 wristband was
synchronized with the stimuli out-of-the-box. On the other hand, data from Samsung
Watch and Muse 2 devices were collected separately via smartphone using third-
party apps, and they had to be synchronized with the participant’s session. Because
each device has its own CPU time, we could not use signal timestamps to synchronize
them. Instead, we utilized a simple protocol: once turned on, all devices were put
on a table, which was hit with a fist after a few seconds. It resulted in a visible peak
in ACC signals from all devices, which was used to match their time to Empatica
E4 time.
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5.2 Results
Our laboratory dataset was collected between July 16 and August 4, 2020, at the
Wroc!aw University of Science and Technology. It consists of data from 43 subjects
(21 females, M age = 22.37 years, SD = 2.25). For each participant, we released
data from all experimental stages (stimulus presentation, washout, self-assessment)
and all devices (Muse 2, Empatica E4, Samsung Watch) on Harvard Dataverse
Repository [180]. The released dataset consists of:

• recordings from 3 devices when watching 10 film clips, 3 phases each
(washout, stimulus, self-assessment);

• baseline recordings from between video clips (3 devices, 2 phases: baseline
and self-assessment);

• self-assessment responses, the control questionnaire, and metadata (e.g., de-
mographics and information about wearing glasses)

The types of available physiological and video data are illustrated in Fig. 5.1a. Addi-
tionally, for each video frame, we provide annotations of facial expressions obtained
using OpenFace (facial landmark points and values of action units, Fig. 5.1c) and
Quantum Sense (values of six basic emotions and head position) packages. Other
information regarding the dataset structure (e.g., file naming conventions and vari-
ables available in each file) can be found in the dataset’s README.txt file, which
is available in the repository.

5.2.1 Technical validation
To examine the e)ect that film clips had on participants (elicited emotions, within
conditions test), we used repeated-measures analysis of variance (rmANOVA) with
Greenhouse-Geisser correction and calculated recommended e)ect sizes of 𝑄2

𝑅 for
the tests [181, 182]. To check di)erences in experienced emotions between condi-
tions (e.g., if the level of self-reported anger in response to the anger stimulus was
higher than in response to the other stimuli), we calculated pairwise comparisons
with Bonferroni correction of p-values for multiple comparisons.

As summarized in Fig. 5.2 (also Appendix Tab. B.1 and Tab. B.2), watching film
clips evoked the targeted emotions, and di)erences in self-reported emotions in
film clips can be interpreted as large [183]. Pairwise comparisons indicate that
self-reported targeted emotions achieved the highest values for stimuli targetting
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Table 5.2: Signal-to-noise ratios (SNRs) statistics. Columns inherit their names
after abbreviations of physiology measures (EEG – electroencephalography, BVP
– blood volume pulse; TEMP – skin temperature; EDA – electrodermal activity).
All values are in decibels (dB), except for count. Qx are values for quantiles, where
x denotes the percentage of samples falling into the bin from min to Qx, e.g., Q50
is the median. Di)erences in samples used for calculations (count) come from the
malfunctioning of the devices (from [24]).

MUSE (EEG) Samsung Empatica
TP9 AF7 AF8 TP10 BVP BVP TEMP EDA

count 1312 1312 1312 1312 1344 1350 1348 1350
mean 36.22 37.74 37.12 37.16 33.77 33.43 26.81 26.66
std 6.02 9.44 11.13 6.77 2.86 2.27 3.04 2.81
min 0.88 5.85 4.13 4.84 17.76 23.57 3.01 18.50
Q0.3 5.15 8.74 7.26 7.39 26.24 25.51 17.48 19.78
Q25 33.74 37.50 38.18 35.31 31.40 32.12 24.46 24.36
Q50 37.46 40.84 41.39 39.12 35.46 33.54 28.56 27.90
Q75 40.17 43.47 43.99 41.12 35.82 34.93 28.84 28.68
max 45.63 48.62 49.88 46.73 42.91 40.83 36.91 37.00

them (e.g., self-reported anger in response to the angry film clip). Furthermore, we
observed the high intensity of some emotions in more than one film clip. Similarly,
some film clips elicited more than one (targeted) emotion. Such e)ects are frequently
reported for emotion elicitation procedures [184–186].

To validate the quality of collected physiological signals, we used signal-to-noise
ratios (SNRs) obtained by computing signal autocorrelation and fitting the second-
order polynomial to the resulting values. It was done separately for all physiological
recordings (all participants, baselines, film clips, and experimental stages). We
excluded accelerometer and gyroscope signals from SNR calculations, as all experi-
ments were conducted in a sitting position. Also, as we discarded samples corrupted
due to sensor malfunction, sample counts in Tab. 5.2 di)er between signals.

SNR statistics indicate that signals are of high quality (Tab. 5.2). Mean SNR
ranged from 26.66 dB to 37.74 dB, with standard deviations between 2.27 dB and
11.13 dB. The minimum observed SNR was 0.88 dB for the ECG signal from the
TP9 electrode, but only 0.3% of signals from this electrode had SNR values below
5.15 dB. Moreover, for other EEG electrodes, the computed SNR was never below
4.13 dB.

Additionally, we analyzed Quantum Sense annotations (six basic emotions; neutral,
anger, disgust, happiness, sadness, surprise) to check the software’s emotion recog-
nition quality. In general, it performed well within conditions but poorly between
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conditions. Wrong or missing annotations occurred most often when participants
covered their faces with a palm or leaned toward the camera. Also, we noticed
that participants’ faces usually remained neutral for the majority of the experiment,
and they expressed emotion very briefly during intense moments in the stimuli. In
some cases, participants familiar with the stimulus (e.g., watched the source movie)
reacted di)erently (e.g., smiled instead of expressing disgust). For a more detailed
analysis, see Saganowski et al. [24].

5.2.2 Issues in collected data
During the data collection e)ort, we can expect unexpected situations to occur. They
may originate from insu*cient testing of research procedures, people not following
the required protocol, or from unknown causes with a seemingly random nature.

Although all procedures had been tested beforehand, during the study, some technical
problems still occurred with collecting data. In two cases, we observed undesirable
behavior of the Empatica E4 wristband: on one occasion, it could not connect to the
computer, and on another, it connected instantaneously (which was also unexpected).
In both cases, restarting the device fixed the problem. Other issues with devices
measuring physiology included the Samsung Galaxy Watch running out of battery
(one participant), missing EEG data from Muse 2 (one participant), and a failed
connection between computer and server, resulting in a substantial delay between
stimulus and questionnaire (~8min 30s, one participant). Also, in the case of five
participants, facial expression recordings were either corrupted or missing (possibly
due to insu*cient space on the smartphone).

Issues of non-technical origin included participants who failed to maintain the
required posture during a study by leaning on the chair or covering their face (two
participants), people who were already familiar with film clips used during the study
(12 participants), or a person who came visibly intoxicated. Also, one participant
reported trouble with immersing in shown film clips without knowing the full movie
context, and three skipped some parts of inductions.

5.3 Discussion
The Emognition dataset described above can be seen as a step toward in-the-field
research on emotions. Although the study was not conducted outside the laboratory,
nor was its setup naturalistic, all of the devices used were unobtrusive and could be
easily used in a real-life study. While all of them were designed with everyday use
in mind, we note that the Muse 2 headband should be used in stationary conditions,
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as the EEG signal is susceptible to artifacts from movement and nearby electric
devices. Nevertheless, all of the devices are much easier to set up than their
laboratory counterparts.

5.3.1 Data quality
When compared with other datasets for emotion research, Emognition with its
43 participants does not fall below the average population count for [16, 187].
Moreover, it exceeds the average number of elicited emotions per participant [187].
Also, we obtained approval of ethics committee before conducting the study and
collected written consent from participants, which are not always considered in
other studies [187].

The study can be seen as overall successful, according to the results of technical
validation. Most of the signals exhibit satisfactory signal-to-noise ratios, with a
minority of recordings falling below the often assumed acceptable level of 25dB
(Tab. 5.2). Also, emotion inductions can be considered successful, with all film clips
inducing the highest levels of targeted emotion between all film clips (Fig. 5.2a), and
with targeted emotions being always strongest or near strongest within corresponding
film clips (Fig. 5.2b).

Some of the film clips provide interesting examples for analysis. For example, in
the video targeting anger, anger achieved the strongest ratings among all videos,
but at the same time, disgust, sadness, and surprise were, on average, stronger than
anger within this film clip. Also, awe was often induced not only during induction
targeting it but also for enthusiasm and liking stimuli. It is also worth noting
that registered levels of emotions are often below the middle value of the scale.
Possible causes include (1) lack of immersion (e.g., due to insu*cient context), (2)
weak e)ect of video stimuli in general, and (3) referencing induced emotions to a
very intense past experience. However, this e)ect is not present in self-reported
values for valence, arousal, and dominance. Thus, determining the exact e)ect of
emotion inductions requires further investigation, possibly including the specificity
of particular subjects.

5.3.2 Lessons learned
Another takeaway from this work are lessons that we learned facing issues observed
during this endeavor. We believe that they may be of value for researchers conducting
studies on emotion psychophysiology in both laboratory and outside-laboratory
settings.
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First, only basic information about participants was collected during the study.
While subjects may find short procedure pleasing, having detailed data on their
demography, personality, health issues, or some other factors that influence emotion
or physiological signals (e.g., medication used) could allow more detailed analyses
and better understanding of collected dataset. Also, ECG signal was not collected
during the study, despite its popularity among datasets for research on emotions [187]
and availability of simple o)-the-shelf ECG chest straps, such as Polar H10.

Problems with missing connection between devices, or between computer and the
server collecting data could be addressed in various ways. First of all, connection
should be thoroughly tested in terms of their reliability, especially during long
recording periods. Also, operability of an application for conducting the study
should not depend on internet connection, as it is crucial for obtaining reliable
results. However, if it is impossible to design an app working entirely without
internet connection, it should be limited to periods between di)erent inductions, not
between induction and self-report questionnaire.

Some of issues, such as insu*cient charge of a smartwatch or lack of memory on
the phone could be avoided if protocols were better designed. Such protocol should
include detailed steps to follow before and after each participant’s session. Ideally,
for each device there should be backup available, in case of sudden malfunction.

Lastly, we learned a lot regarding the management of study participants. In some
cases people showed up late, asked to change the date of visit right before their
allocated time slot, or canceled their participation at the last moment. Moreover,
some of participants showed visibly sick or intoxicated. We did not expect such
situations, as we asked them to show up in their best health for the experiment (or
reschedule if they required it). Appropriate well-considered protocol could also
help in such situations, as it would specify steps to follow in such unusual situations.
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Figure 5.1: Examples of data available in the Emognition dataset: (a) physiological
signals recorded with wearable devices: 4 x EEG (Muse 2); BVP, EDA, SKT
(Empatica E4); raw BVP, processed BVP, HR (Samsung Watch); ACC from all
devices; (b) upper-body recordings capturing the facial reactions to the stimuli,
from the left: neutral, disgust, surprise; (c) facial landmarks generated with the
OpenFace library facilitating emotion recognition from the face. The participant
gave written consent to include her image in this article (from [24]).
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Figure 5.2: Distribution of self-reported emotions between conditions (upper), i.e.,
levels of emotions elicited by di)erent films, and within conditions (lower), i.e.,
emotions evoked by di)erent film types. Vertical axes denote emotion intensity (1-5
for discrete emotions, 1-9 for SAM). Horizontal labels represent film clips (upper),
or discrete emotions reported by the participants (lower). Green color indicates
targeted emotion. Boxes depict quartiles of distributions and whiskers the span
from the 5th to 95th percentile (diamonds - outliers). Legend: AM - amusement,
AN - anger, AW - awe, D - disgust, E - enthusiasm, F - fear, L - liking, SA - sadness,
SU - surprise, B - baseline, N - neutral. From Saganowski et al. [24].
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C h a p t e r 6

COLD START AND GROUP PERSONALIZATION

Gathering annotated emotional events in everyday life is costly and challenging. In
this section, we describe research, where we focused on the problem of reducing
this complexity by building and employing machine learning models for detecting
intense emotional states. We also consider the cold start problem, where researchers
have no signals collected from the target subjects (users) at the beginning of a
data collection experiment. We investigated the possibility of using per-group
personalization to address this problem and the amount of data needed to perform
this procedure.

Contents of this section originate from the co-authored article, published in peer-
reviewed conference materials:

[28] S. Saganowski, D. Kunc, B. Perz, J. Komoszy’ska, M. Behnke, and P.
Kazienko, “The cold start problem and per-group personalization in real-
life emotion recognition with wearables,” in 2022 IEEE Int. Conf. Pervasive
Comput. Commun. Workshops, WristSense 2022 - The Eighth Workshop on
Sensing Systems and Applications Using Wrist Worn Smart Devices, Best
Paper Award, IEEE, 2022, pp. 812–817. !"#:10.1109/PerComWorkshops53856.
2022.9767233.

In the original article [28], our contributions included designing the experiment,
collecting data, and investigating the results, with special contributions of myself to
creating and validating deep learning models for emotion detection.

6.1 Materials and methods
The data and methods presented below bear a resemblance to the LarField study,
also described in Chap. 7. That is because this research was conducted when we
were exploring di)erent approaches and methods for conducting a study in real life.
Results and conclusions described in this section were later used to improve the
protocols, applications, and models used in our large field study.

6.1.1 Dataset
Data for experiments in this section came from two daily life studies (Study A and
Study B) performed by the Emognition research group. The studies were similar,
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Table 6.1: Distribution of data used in the research (from [28]).

Study/Scenario Intense
emotion

Neutral Sum

Study A 233 449 682
Study B week 1 71 61 132
Study B week 2 55 50 105
Study B weeks 3+4 65 73 138

Scenario S1 / S2 / S3 126 111 237
Scenario S4 359 342 701

Avg per person per week
Study A 1.8±3.0 3.4±3.2 5.1±5.2
Study B 9.6±6.6 9.2±7.2 18.8±9.5

Figure 6.1: Scenarios considered in cold start and group personalization experiments
(from [188]).

with the second having a slightly modified self-assessment and an entirely new
cohort of subjects. Study A lasted about seven months and involved 11 participants
(four females). Study B lasted two months and involved 13 participants (six females).

Study A focused mainly on collecting physiological signals during events in par-
ticipants’ everyday lives when they experienced intense emotions. The collected
data were used to create an ML model for recognizing intense emotions in real-
time [189]. Such a model was used for more e*cient data gathering in part of Study
A and in Study B.

Study B focused mainly on validating several models for predicting intense emotions,
and it involved further data collection. Also, the newer version of the Emognition
system used in Study B included a shorter self-assessment questionnaire and three
types of assessment triggers. As the analyses were conducted during Study B, they
consider only the first four weeks of Study B. Also, although in this study we had
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13 participants (6 female), we used data from only the five most active participants
(two females) who had the highest number of filled-out self-assessments.

The emotions were collected using the Emognition system [15], using short self-
assessment questionnaires triggered at quasi-random times, at the request of the
machine learning model recognizing intense emotions, or on demand. Same as
in our LarField study (Chap. 7), participants were asked: (1) if they felt intense
emotions (used to categorize emotions as intense emotions or neutral states), and
(2) how they felt in terms of valence and arousal from 1 (extremely negative or
sluggish) to 100 (extremely positive or aroused). Participants could also provide a
free text with comments in the last field of the questionnaire.

In total, the dataset used in this experiment contained 1075 self-reports (440 intense
emotions and 635 neutral states) collected in both studies (Tab. 6.1). We analyzed
data from 16 participants (6 female) between 18 and 54 years of age (M=26.86, SD
= 8.29). Participants received no compensation for their participation. The research
was approved by and performed in accordance with guidelines and regulations of
the Bioethical Committee at Wroclaw Medical University, Poland; approval no.
149/2020.

6.1.2 Signal processing and feature extraction
For the experiments, we used six types of signals:

1. BVP signal from the smartwatch (raw)

2. BVP processed with median and band-pass Butterworth filters

3. Heart rate (from smartwatch)

4. PP-interval (from smartwatch)

5. Heart rate computed from PP-interval

6. Accelerometer data (ACC)

Depending on the model setup, we utilized di)erent signals: all of the above signals
(1-6) or all cardiac signals (1-5) for feature-based models, and cardiac signals apart
from HR from PP-interval with (1-4 and 6) or without (1-6) accelerometer data
for end-to-end (e2e) models. From collected signals, we extracted 140s-long win-
dows centered around the annotated emotional event (the time when self-assessment
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Table 6.2: Features extracted from physiological signals (from [28]).

Signal Domain Features

All signals &
derivatives

Statistical min, max, min-max di)erence, standard deviation,
variance, mean, 1st quartile, 2nd quartile, 3rd
quartile, interquartile range, 1st value, last value,
1st and last values di)erence, skewness, kurtosis,
2nd di)erence mean, 2nd di)erence standard
deviation, slope, mean di)erence, min di)erence,
max di)erence, standard deviation di)erence,
variance di)erence

Frequency dominant frequency, energy, max power, min
power, mean power, standard deviation power

BVP Frequency mean of power spectrum in low frequency
(0.05-0.15 Hz), mean of power spectrum in high
frequency (0.16-0.4 Hz)

Time related Day of the week (0 (Monday) - 6 (Sunday)), Hour
(0-23)

began or timestamp marked by the reasoning model embedded in the smartphone
application). We discarded windows containing less than 90% of expected samples
(as compared with sampling frequency multiplied by the length of extracted win-
dow). Next, all signals were resampled using resample function from SciPy[190]
and further cropped to windows of 60s centered around the emotional event for each
signal. These windows were further divided into three non-overlapping 20s-long
parts to explicitly provide models with physiology before, during, and after the event
and allow them to learn short-time psychophysiological dependencies.

Signal windows were either provided to models as is or were used for computing
descriptive features (see Tab. 6.2). We used statistical features such as min, max,
and mean values of the signal, or the signal’s variance and standard deviation for
each part of a window, and their di)erences between consecutive parts of a window
(e.g., di)erence between minimum values in the first and second part of a window).
We also computed features in the frequency domain, such as minimum, maximum,
or average values in the power spectrum. Additionally, we computed computed
mean value in low- and high-frequency power spectra of a BVP signal, and two
date-related features. All features were concatenated (746 with ACC or 418 without
it), and resulting vectors were used to train machine learning classifiers.



87

6.1.3 Models
Experiments were conducted using two categories of machine learning models:
(1) feature-based models, i.e., AdaBoost, k-Nearest Neighbours (KNN), Random
Forest, Support Vector Machine (SVM), Multilayer Perceptron (MLP), and a Fully
Convolutional Network (FCN) with a unit kernel, and (2) end-to-end models, i.e.,
FCN, FCN with LSTM layers (FCN-LSTM), and Residual Neural Network (ResNet).
FCN-LSTM architecture consisted of several FCN channels that supplied processed
information to LSTM layers. In FCN and ResNet architectures, each part of a
window for each input signal was treated as separate channels (e.g., 3 parts ↑ 4
signals = 12 channels). The deep learning architectures were adapted from the
article by Dzie$yc et al. [121] and programmed in PyTorch [191], whereas classical
machine learning algorithms were implemented using scikit-learn [192].

6.1.4 Training procedure
When preparing scenarios 1, 2, and 4 (abbreviated as S1, S2, and S4, respectively),
we balanced data by repeatedly sampling it at random five times. Each split was
further divided into training and validation sets and used to tune hyperparameters.
Scenario 3 (S3) did not require balancing, but we used monte-carlo validation re-
peated five times to obtain results independent of a particular training and validation
split.

The hyperparameters were optimized separately for each scenario and model. For
scikit-learn models, we used the grid search method, and for deep learning models,
we used random search, as it is more e*cient for long training [193]. In all cases,
we chose the best set of hyperparameters based on the achieved F1-macro score and
retrained such models on the whole data splits (merged training and validation data).
Finally, models were tested on the previously unseen data from the last two weeks
of Study B (see Fig. 6.1).

6.2 Results
The results of each scenario and model are presented in Tabs 6.3 and 6.4. We do
not report standard deviations in S3, as we did not perform random subsampling in
this scenario. The three considered metrics are: (1) F1 measure on class 1, as it
measures models’ capability to catch emotional events, which in our case are more
important than neutral states; (2) macro averaged F1, as it measures the overall
performance of the model (emotions and neutral states); and (3) accuracy as it is the
most widely used quality metric.
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Figure 6.2: Mean F1 (Class 1) and mean F1 (Macro) scores for AdaBoost classifier
for all scenarios (from [28]).

Overall, models trained in scenario 3 achieved better recognition quality than other
scenarios. The e)ectiveness of the predictive model gradually increases when we
replace training samples from Study A (previous study) with the samples from the
current Study B (Fig. 6.2). AdaBoost and SVM models achieved the best results
among classical feature-based approaches, MLP with ACC was the best feature-
based deep learning model, and FCN-LSTM with ACC beat other e2e deep learning
models. The mean di)erences between S1 (training only on general data) and S3
(training only on new data) are 0.09 in F1 on class 1, 0.05 in F1 macro, and 0.05 in
accuracy, all in favor of S3.

These findings suggest that physiological traces of intense emotions are more
personalized/user-dependent than physiological changes during neutral states. In
several cases, models based on S4 performed better than models based on S3. This
may indicate that some classifiers/architectures benefit from additional training sam-
ples, even though samples are not representative (out of the application domain).
Nevertheless, in the majority of cases where the S4 model achieved higher results,
the model from S3 performed within the range of the standard deviation of the S4
model.

The use of Friedman’s statistical test [194] to examine our results. It confirmed that
models created in scenario 3 were the best, with S4, S2, and S1 following in the
given order (𝑅 = 3E→6). Sha)er’s post-hoc [195] indicated statistically significant
di)erences between the results of S1 and all other scenarios. However, it also
indicated that di)erences between the results from other scenarios are statistically
insignificant, i.e., S2 vs. S3, S2 vs. S4, and S3 vs. S4. Also, there was no clear
improvement in models using accelerometer data compared with models without
ACC.
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Table 6.3: Results for investigated scenarios - classifiers using only cardiac data as
input (metric±std). The highest scores for each classifier/architecture and perfor-
mance measure are in bold (from [28]).

Model Metric S1 S2 S3 S4

AdaBoost
F1 class 1 0.47±0.04 0.54±0.05 0.62 0.52±0.05
F1 macro 0.53±0.02 0.52±0.05 0.61 0.53±0.04
Accuracy 0.54±0.03 0.52±0.05 0.61 0.54±0.04

KNN
F1 class 1 0.45±0.04 0.52±0.04 0.53 0.49±0.03
F1 macro 0.53±0.03 0.53±0.03 0.53 0.55±0.01
Accuracy 0.54±0.03 0.53±0.03 0.53 0.56±0.01

Random
Forest

F1 class 1 0.48±0.05 0.60±0.03 0.58 0.60±0.03
F1 macro 0.51±0.03 0.56±0.04 0.54 0.60±0.03
Accuracy 0.52±0.03 0.56±0.03 0.54 0.60±0.03

SVM
F1 class 1 0.49±0.04 0.56±0.05 0.62 0.54±0.03
F1 macro 0.53±0.03 0.52±0.03 0.57 0.56±0.04
Accuracy 0.53±0.02 0.52±0.03 0.57 0.56±0.04

MLP
F1 class 1 0.51±0.06 0.54±0.05 0.57 0.48±0.03
F1 macro 0.53±0.05 0.55±0.06 0.57 0.50±0.03
Accuracy 0.53±0.05 0.55±0.06 0.57 0.50±0.03

Resnet e2e
F1 class 1 0.44±0.11 0.50±0.15 0.58 0.55±0.02
F1 macro 0.51±0.03 0.54±0.05 0.62 0.55±0.03
Accuracy 0.53±0.02 0.57±0.02 0.63 0.55±0.03

FCN e2e
F1 class 1 0.51±0.05 0.53±0.13 0.63 0.56±0.02
F1 macro 0.54±0.04 0.52±0.06 0.64 0.58±0.01
Accuracy 0.54±0.04 0.54±0.04 0.64 0.58±0.01

FCN-LSTM
e2e

F1 class 1 0.45±0.05 0.55±0.05 0.56 0.61±0.02
F1 macro 0.51±0.02 0.55±0.01 0.60 0.59±0.02
Accuracy 0.52±0.02 0.56±0.01 0.61 0.59±0.02
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Table 6.4: Results for investigated scenarios - classifiers using cardiac data and
acceleration (ACC) as input (from [28]).

Model Metric S1 S2 S3 S4

AdaBoost
with ACC

F1 class 1 0.47±0.05 0.54±0.04 0.50 0.56±0.03
F1 macro 0.53±0.05 0.51±0.04 0.48 0.55±0.03
Accuracy 0.53±0.05 0.51±0.04 0.48 0.55±0.03

KNN
with ACC

F1 class 1 0.48±0.07 0.48±0.04 0.50 0.53±0.03
F1 macro 0.56±0.04 0.53±0.03 0.55 0.58±0.02
Accuracy 0.58±0.03 0.54±0.03 0.56 0.58±0.02

Random
Forest
with ACC

F1 class 1 0.50±0.04 0.56±0.02 0.60 0.59±0.02
F1 macro 0.52±0.04 0.55±0.03 0.53 0.59±0.02
Accuracy 0.52±0.04 0.55±0.03 0.54 0.59±0.02

SVM
with ACC

F1 class 1 0.49±0.05 0.56±0.04 0.61 0.58±0.03
F1 macro 0.53±0.03 0.54±0.04 0.57 0.59±0.02
Accuracy 0.53±0.03 0.54±0.04 0.57 0.59±0.01

MLP
with ACC

F1 class 1 0.53±0.03 0.54±0.02 0.61 0.55±0.03
F1 macro 0.54±0.02 0.53±0.02 0.61 0.56±0.03
Accuracy 0.54±0.02 0.53±0.02 0.61 0.56±0.03

Resnet e2e
with ACC

F1 class 1 0.57±0.05 0.62±0.04 0.57 0.59±0.02
F1 macro 0.52±0.06 0.61±0.02 0.59 0.56±0.03
Accuracy 0.52±0.06 0.61±0.02 0.59 0.56±0.03

FCN e2e
with ACC

F1 class 1 0.55±0.07 0.62±0.03 0.58 0.62±0.01
F1 macro 0.52±0.05 0.61±0.02 0.56 0.60±0.02
Accuracy 0.52±0.05 0.61±0.02 0.57 0.60±0.02

FCN-LSTM
e2e
with ACC

F1 class 1 0.47±0.03 0.57±0.07 0.60 0.65±0.03
F1 macro 0.48±0.04 0.56±0.02 0.61 0.61±0.02
Accuracy 0.48±0.04 0.57±0.03 0.62 0.62±0.02
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6.3 Discussion
Capturing emotional events in everyday life poses a challenge, as they occur irreg-
ularly and sporadically. Recognizing emotional outbursts with wrist-worn smart-
watches and personalized ML models and using this information to trigger self-
assessments may improve data collection e)orts by increasing the likelihood of
capturing emotional states. However, due to the cold start problem, creating such
models requires large numbers of per-person training samples. To mitigate it un-
til the necessary number of personal cases is collected, an alternative solution of
per-group personalization can be used.

The model adjusted to the group of participants (S3) showed higher classification
quality over a general (S1) and a partially adjusted (S2) model. Training models on a
large number of general samples with added personal samples (S4) can improve the
classification over the general or partially adjusted models (S1 and S2). However,
such models usually fail to outperform the adjusted model (Scenario S3). We
conclude that, while the quantity of the training set impacts the prediction, its quality
and resemblance to the target task were more critical for the model’s predictive
ability, i.e., we observe better performance for models trained on data from the
application domain.

Our results contradict claims that one can easily find emotional cues in human
physiology that can be generalized to the whole population. Therefore, all emotion
researchers should be wary of the cold start problem when designing studies or
creating predictive models and try collecting data from new subjects as soon as pos-
sible to perform model personalization. Although creating subject-specific models
or adjusting them separately for each participant could lead to even better results,
our attempts at such a scenario did not yield satisfactory results. We believe that it
was caused by insu*cient amount of per-subject data, as during the first two weeks
of Study B we collected from 13 to 33 (avg 23.7) samples per participant. This
low-data problem further supports our claims about sparsity of real-life annotations
and di*culty of data-collection endeavors.
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C h a p t e r 7

EMOTIONS IN THE WILD

The idea of conducting a large field study (LarField) emerged from our interest in
everyday-life human psychophysiology. Starting in 2021, we performed preliminary
investigations using a preliminary version of our system for collecting data. We
conducted trial studies with a dozen subjects for up to a few weeks to validate
specific system components, such as the smartphone application and self-report
questionnaires. It led us to formulate the aim and scope of the study in the first
quarter of 2022. Its primary objective was to explore if physiological signals
collected with wearables can be used to identify physiological patterns of daily-life
emotional responses. Moreover, we aimed to research using the same signals for
recognition of a)ect, well-being, and sleep quality.

Contents of this chapter originate from the co-authored article, published in peer-
reviewed conference materials:

[25] J. Komoszy’ska, D. Kunc, B. Perz, A. Hebko, P. Kazienko, and S. Saganowski,
“Designing and executing a large-scale real-life a)ective study,” in 2024
IEEE International Conference on Pervasive Computing and Communi-
cations Workshops and other A!liated Events (PerCom Workshops), IEEE,
2024, pp. 505–510.

In the original article [25], our contributions included designing the experiment,
collecting data, investigating the results, and drawing the lessons learned, with
special contributions of myself to describing the process of data collection and
organizational obstacles. Additionally, results described in Sec. 7.3 were created
solely for this dissertation.

7.1 Designing a large real-life psychophysiology study
After deciding on the objective, we had to choose the study scope. At this point,
it was crucial to find a balance between all the data that could be collected and the
data that participants could provide. Our previous research [15] showed that factors
such as study complexity and cost, quality of data, participants’ load, and expected
compliance rate had to be taken into account. We decided that collecting physio-
logical data and emotional self-reports was the most important for us. However, we
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decided to add an additional wearable, together with morning and evening surveys
related to sleep, stress, and quality of life, as they provided more information that
could prove vital for our research. Also, having more data makes it possible to carry
out broader research with the collected dataset. Conducting the study in an iterative
form allowed us to refine and improve it based on ongoing observations and to better
address financial, organizational, and technological constraints.

Every iteration consisted of approximately 25 subjects tasked with carrying wearable
devices and providing self-assessments using the Emognition system [26, 196].
Apart from data collected using the system, each participant filled out pre- and
post-study questionnaires, providing additional context, among others, demography,
personality, and emotion perception (Tab 7.1). We also collected feedback so we
could better understand how participants felt about the study, learn from the user’s
perspective, and better prepare for future data collection e)orts.

7.1.1 Scheduling
After deciding on the study scope, we had to plan functional requirements of Emog-
nition system’s, and schedule development of the system and other necessary study
components (e.g., measures, consent forms, information for subjects, and ethics
committee application). We planned to run pilot studies in the fall of 2022 and start
the study in January 2023.

Although we created a schedule with large time bu)ers between tasks, we still faced
substantial delays in development, with some components not being developed at
all. Among them, the most critical ones were (1) launching of a tool for monitoring
study progress too late, i.e., right before the start of the main study (thus it was
not thoroughly tested), and (2) failing to create a tool for validating collected data
(both its completeness and quality). Consequences arising from their absence are
described in Sec. 7.2.

These delays were caused, among others, by (1) underestimating task complexity
and resources needed to complete them (time and people), (2) ignoring the neces-
sity of employing a project manager or, at least, following a project development
methodology (e.g., Scrum), (3) unforeseen errors that had to be corrected, and (4)
changing the application scope during development. As a consequence, some func-
tionalities, such as collecting audio from the surroundings, had to be abandoned,
and study execution (both pilot and main) had to be postponed by two months. We
present the resulting timeline in Fig. 7.1.
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Table 7.1: Signals and measures collected during the LarField study (from [25]).

Data type Device Details

Psysiological
signals

Samsung
Galaxy
Watch 3

• Photoplethysmography (PPG), Hear rate
(HR), RR-interval, Accelerometer (ACC),
Gyroscope, Gravity sensor, Ambient light,
Atmospheric pressure, Pedometer

Polar H10 • Electrocardiography (ECG), HR, ACC

Fitbit
Charge 5

• HR, Resting HR, Heat rate variability
(HRV), Pedometer, Distance traveled,
Calories burned

• (During sleep) Temperature, Respiration
rate, SpO2

Contextual data Smartphone • Approximate location, Events in calendar,
Sound intensity, SMS text (Anonymized
representation), Phone activity (used
applications), Physical activity (detected)

• (Metadata) SMS, Calls

Questionnaires
during study

Smartphone • (6x a day) Presence of intense emotion,
Arousal, Valence, Free text comment

• (2x a day) Perceived stress (morning and
evening)

• (1x a day) Sleep quality (morning),
Perceived health (evening)

Pre- and
post-study
questionnaires

- • (Pre-study) IPIP-BFM-20 [197]
(Personality), Demography

• (Post-study) Social relations questionnaire,
Feedback form

• (Pre- and Post-study) SWLS-A [198] (Life
satisfaction); SPANE [199] (A)ect in life);
Flourishing scale [199]; PHQ-4 [200]
(Depression and anxiety); PSS [201] (Stress
in life); PHQ [202] (General health);
RESS-EMA [203] (Emotion regulation);
PAQ [204] (Alexithymia)
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Figure 7.1: Timeline of the LarField phases: designing and main study. From
Komoszynska et al. [25].

Assessing the time requirements with more carefulness could have prevented costly
delays. Having no prior experience, we could have seeked a consultation or em-
ploying experienced people, e.g., a technical project manager. Moreover, developed
schedule should always be confronted with other responsibilities of team members
(e.g., student exams, or teaching duties).

7.1.2 Emognition system

Figure 7.2: Devices used in the LarField study. From Komoszynska et al. [25].
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The Emognition system, developed by the Emognition research group from Wroclaw
University of Science and Technology, was designed to enable conducting real-life
emotion psychophysiology studies [15, 26]. It comprises a smartwatch (Samsung
Galaxy Watch 3), a chest strap (Polar H10), and a smartphone to gather data using
a dedicated mobile application (Fig. 7.2b - d).

The system has gradually developed since 2020. We personally demonstrated one
of its early versions at the 2021 A)ective Computing and Intelligent Interaction
(ACII) conference [15], and it was well-received by the community. After that, the
system was further improved to best accommodate our and the subjects’ needs [26,
27, 196].

The version of the system used in the study allowed collecting multiple physiological
measures from wearables (Tab. 7.1). Smartphone, on the other hand, was used to
collect annotations of momentary emotions and daily a)ect measures, together with
contextual data. Additionally, in the LarField study, we employed a smartband
that was not integrated with the system (Fitbit Charge 5) to monitor sleep activity
(Fig. 7.2a).

The major novelty that the system introduced was utilizing an embedded machine
learning (ML) model for detecting intense emotion using real-time physiology.
Smartphone application processes physiological data in real-time and uses it for
triggering self-assessment questionnaires if it detects an emotional event!. Such
an approach increases the chances of capturing emotional events when compared
to random sampling, as it is not precise and may capture only a small subset of
emotions that are themselves sparse in real life [27]. Although similar ideas were
presented by other authors earlier, e.g., Larradet et al. [205] or Hoemann et al. [206],
their detection systems were based solely on heart rate or interbeat intervals, while
our system utilizes machine learning models reasoning from multiple physiological
signals [27].

7.1.3 Challenges
At the planning stage (June 2022), we contacted the General Data Protection Reg-
ulation (GDPR) o*cer from our university (Wroclaw University of Science and
Technology) to discuss the data collection process and applicable regulations. The
discussion focused mainly on the security and privacy of participants’ data during
and after the study, and the o*cer raised some valid points regarding data safety

1Demonstration video available at https://www.youtube.com/watch?v=qk3DFmRKKlw
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(e.g., malicious attacks or misuse by data handlers). After researching possible so-
lutions, we chose a process where data was first transferred from subjects’ phones to
Firebase and later downloaded to the local storage in our laboratory. Although using
third-party solutions always raises some concerns, Firebase’s reliability, security of
protocols used for data transfer, and low vulnerability to malicious attacks exceeded
by far any solution that we could develop and host with our resources. Although it
was beneficial, the consulting process took longer than we expected, as it involved
researching details about data handling and handlers rights, which consumed a lot
of resources and time.

Afterward (August 2022), we submitted an application to the Wroclaw University of
Science and Technology Research Ethics Committee and had to wait for a positive
evaluation until September. In January 2023, we submitted an update of an appli-
cation for the committee’s review, as we decided to utilize an additional wearable
in our study. After submitting the update, the committee informed us that their
regulations do not allow updating approved applications. Therefore, we submitted
the second application, which was rejected due to (previously accepted) use of the
PHQ-9 [207] questionnaire. As a result, we replaced the PHQ-9 with the PHQ-4,
eliminating the objected questions.

Another challenge involved compensation for study participants. Initially, we
planned to o)er them a choice of either a gift card or a smartband (both worth
around 500 PLN). However, because of tax regulations and the university’s own
rules, neither of those options could be realized. Devising a solution, i.e., preparing
contracts with the university and paying subjects in cash, took several months and
was inconvenient for study participants and the university’s financial department.
Also, in some cases, subjects had to visit the university multiple times. Moreover,
as we wanted to award additional incentives for active and conscientious subjects
(actively engaged in data collection), we had to sign two separate contracts (for base
and bonus remuneration), duplicating the required paperwork.

7.2 Conducting a study
Collecting physiological data requires conducting a study. We divided our e)orts
into three stages: (1) a preparatory stage (described in the previous section), (2) a
validation stage for testing our approaches, and (3) an actual study, where data for
future experiments were collected. We decided to conduct pilot studies before the
actual main study, as we see them as crucial in assessing the readiness and reliability
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of developed tools, protocols, and procedures. Additionally, if any problems arise,
introducing necessary changes in study components before the main study, e.g.,
fixing application logic or adjusting notification times, is not as costly, as during the
actual experiment (e.g., losing data from the pilot study is acceptable, while losing
data from main study decreases the size of collected dataset).

Both types of studies were arranged in a similar pattern. First, study participants were
recruited by advertisements in social media and by word of mouth. After signing up
for the study via an online form, people who met the requirements were contacted by
the study manager and invited for a pre-study visit. During this meeting, participants
were introduced to the specifics of the study, procedures, and their responsibilities,
and devices used in the study were handed out. Additionally, they completed
questionnaires on their personality, demography, well-being, emotion regulation,
and alexithymia and filled out the compensation paperwork. After leaving the
laboratory, participants were given a few days of time to get used to the system
and its specifics. At the beginning of the following week, the actual iteration of
the study launched, and from that point onwards, we collected participants’ data for
four whole weeks (Fig. 7.1). At the end of the collecting period, participants were
invited to the laboratory once more for the post-study visit to return the devices, fill
out closing questionnaires, and complete the required paperwork.

7.2.1 Pilot studies
In each pilot study, we validated di)erent components of the study together with
possible issues caused by introduced changes, from the recruitment procedure to
the final post-study meeting (Tab. 7.2). Predefining each pilot’s goals allowed us
to focus on specific procedures or tasks, which helped in thoroughly verifying and
refining them.

The significance of pilot studies lies in their ability to identify issues that may not
surface during regular evaluation. These studies, which involved one internal pilot
and three external pilots, were crucial in testing all parts of the study before its main
launch. Following each study, a person managing the experiment collected detailed
feedback on the Emognition system, study components, and overall experiment
experience. Collected feedback, together with frequently asked questions, revealed
necessary adjustments in di)erent aspects of the study.

Improving pre-study visit procedures involved refining explanations and additional
information materials provided to participants, such as (1) the contents of the pre-
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Table 7.2: Main aspects validated in pilot studies. Based on Komoszynska et al. [25].

Pilot ID No. of
subjects

Duration
[weeks]

Main aspects validated

0 (internal) 5 2 • A data collection system
• Private data transfer to a study phone

1 5 1 • Procedures:
– preparing devices
– pre-study visit
– explaining study to subjects

2 7 2 • ML model
• Verifying subjects’ engagement

throughout the study duration
• Verifying compensation level
• Fitbit testing

3 7 4 • Changes in the mobile application

sentation about the study, (2) the mobile application manual, and (3) the study
participation consent form. Other adjustments included (4) adding an item return
checklist, as some people forgot to bring all of the provided devices back for the
meeting, ending the iteration, and (5) adding pregnancy and obesity as exclusion fac-
tors, as suggested by the device manufacturer. Also, the Frequently Asked Questions
(FAQ) section in the mobile application was improved.

During the study, participants had to fill out two types of questionnaires measuring
(1) well-being (on mornings and evenings) and (2) emotional state (several times
a day). Initially, we wanted to trigger the morning questionnaire using Android’s
built-in sleep detection feature. However, the internal pilot showed that this feature
did not work as expected. Instead, we let participants provide their sleeping habits
and triggered questionnaires based on the provided time. To address possible missed
notifications or irregular circadian rhythms, which some participants showed, we
updated the application logic to allow completing the well-being questionnaire at
any moment during the predefined timeframe.

When planning the study, we assumed that (1) wearables would be worn throughout
the day and charged at night, and (2) participants would be prompted at most six
times during the 10 hours of recording session (battery life of the smartwatch running
our application). However, during pilot studies, some participants did not complete
any assessments for several days in a row. It allowed us to identify faulty logic
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in our application arising from previously assumed typical daily routines. As we
expected participants to use the Emognition system during the day, we scheduled
application counters to reset at night. If a person had an active session during
nighttime, either because they were awake or forgot to turn o) devices, the system
identified the session as ongoing and valid. It did not refresh the assessments counter
for the day. After consulting the development team about the issue, it turned out
that changing this behavior would require a significant application logic update.
Therefore, we decided to keep using the same scheduling logic. However, we (1)
instructed participants about scheduling and turning o) the devices before midnight
and (2) added a notification alerting participants if any wearable remained operating
after 11 p.m. Those measures significantly reduced the problem.

The Emognition system collects not only physiological signals and corresponding
assessments but also contextual data, including approximate location, used applica-
tions, and data on calls and SMS (without raw content). To avoid issues with the
system’s stability on di)erent devices, we provided participants with all hardware
necessary for the study, i.e., all wearables and a smartphone. We asked subjects to
migrate to provided phones and use them as their primary (or only) smartphones
throughout the study. Aware that such change may be hard for some subjects, as
it required them to transfer all of their data to the provided phone, we decided to
pilot this approach after much careful consideration. As team members were not
objective in this matter, it became one of the most important elements to be tested
during external pilot studies.

Most study participants did not object to phone change, with some pleased with
the possibility of using a phone newer than their own. However, pilots revealed
that not all people comply with the requirement, with some of them swapping SIM
cards between two phones, using two phones simultaneously, or not migrating to
the provided phone at all. These observations led to implementing a SIM card
monitoring feature, which told us if the phone was used as intended and allowed us
to intervene on such occasions. Our interventions considerably reduced undesired
participants’ behavior.

Pilot studies also disclosed that much time was required to prepare devices for
participants. We optimized this process by creating scripts to automate it partially.
It ensured that all devices were set up in the exact same way (settings, application
version) and considerably shortened the preparation time.

The above examples show that pilot-testing the study is crucial, as it enables iden-
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tifying issues beforehand and reducing the risk of failure during the main study.
Improvements in procedures and components made them less prone to subjects’
undertaking unexpected actions. We believe that piloting could be further improved
by making some participants intentionally misbehave, try to break the system or
fool the procedures.

7.2.2 Main study
We conducted the main LarField study from March to December 2023, running a
total of seven iterations. Although we pilot-tested study components and proce-
dures, some significant issues occurred. The development of the data quality and
completeness monitoring tool was delayed, and we had to launch the study without
it. Because of that, we could not see if the study was proceeding without issues,
if participants were wearing devices and collecting data as instructed, and if all
modules of the Emognition system were working as intended. Although monitoring
could be done manually by screening the database, it would be too time-consuming
to assess 25 participants, given other tasks. It was not until we finished the first wave
and examined their data that we discovered incorrect functioning of the emotional
self-assessment triggering using the ML model, a key system function. It resulted in
the first wave’s emotion self-assessments triggered solely at random moments. The
issue was caused by incorrect logic in adjusting thresholds for ML model output and
setting their level to values that were too high. As it occurred during the main study,
and we did not have enough time to test any major changes thoroughly, thresholds
were adjusted manually in all following iterations.

As we could not monitor the study data in real-time, two other problems with the ML
model’s triggering mechanism remained undetected until later in the study (second
and third wave, Fig. 7.1). First, we discovered that the data transfer rate from watch
to phone was insu*cient in some cases and only when specific conditions were
met, e.g., large size of data waiting in a transfer queue. Once detected, it was easily
fixed by increasing the analyzed data bu)er size. The second issue was harder to
detect and also involved data transfers. Occasionally, no data could be transferred
between the smartwatch and the phone, which was caused by the library used for
transferring files. Attempts at fixing this issue failed, and the only solution found to
work involved restarting both devices.

Later, once we improved the study monitoring tool, we could respond to the problems
on the fly. For instance, when we noticed unusual data and error reports from one
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subject, we investigated the issue with them. It turned out they performed a factory
reset of the smartphone and tried to handle the situation on their own rather than
reporting this to our team. The participant installed an old version of the Emognition
application, which could be found online but was no longer used by us. As a result
of this lesson, we put more stress on asking participants to report any issues or
concerns related to the devices or system to us. We also removed the old version of
the application from the internet.

Another tools that should had been developed earlier, but were not until the end of
the study, were scripts for checking completeness of data and cleaning it. It held
back the analyses, which could not start until the tools were completed. Because
of that, we discovered late that data about calendar events were not collected prop-
erly. We wanted to use it as contextual data for annotated emotions, but it was
implemented in a too simple way. To quicken the implementation of this feature,
we gathered information only about new events added using the phone. It ignored
changes in events, events added using other devices, and those created before the
study. If discovered earlier, this feature could have been improved. Also, more
precise requirements for developers could help, as they could plan longer for the
implementation and test if it works as intended.

The inability to analyze the data resulted in other information being improperly
collected, i.e., text messages and call tracking. The Emognition applications tracked
only the built-in communication applications and ignored external applications pop-
ular among some participants, especially younger ones. Fortunately, our application
collects usage data about other applications so that some limited communication
metadata can be obtained.

7.3 Results
During the seven months of the study, 167 participants took part in the experiment
(86 females, M age = 29.7; SD = 10.2, 77 males, M age 26.5, SD = 8.6; 4 other or not
specified, M age = 27.0, SD = 8.8). Almost all participants were Polish, with two
of Belarusian origin and one of Ukrainian. Additionally, one participant identified
as Polish-Moroccan. Interestingly, two Poles declared Polish not to be their mother
tongue.

The study population consisted mainly of university students (100, 60%). Addi-
tionally, 74 participants had already completed a degree of some level. Employed
participants most often declared their job to be in education (23, 13.8%), science
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or engineering (12, 7.2%), public administration and services (10, 6.0%), general
administration (7, 4.2%), culture (5, 3.0%), or service activity (5, 3.0%). Almost
all participants saw their financial situation as similar (71) or better (73) than an
average person’s. Most subjects (105, 63%) declared being in a relationship, and 29
people (non-students only) had children (M no. children 1.9, SD = 0.6).

We collected one month’s worth of everyday psychophysiological data from each
study subject. This e)ort resulted in more than 35,000 hours of physiology record-
ings and over 20,000 emotion self-reports, accompanied by contextual data from
additional questionnaires and a smartphone, adding up to 2.5TB of data. Although
we have not finished processing physiological data at the time of writing, we man-
aged to perform a brief analysis of emotion reports and a few simple experiments
on the dataset that we presented below.

In emotion and daily states recognition experiments, we treated each problem as
regression and classification (binary, high/low value) tasks. We used four machine
learning algorithms to solve them, i.e., K-Nearest-Neighbours (KNN), Multilayer
Perceptron (MLP), Random Forest, and Support Vector Machine (SVM). We report
model accuracy in terms of Root Mean Square Error (RMSE) for the regression task
and F1 score for classification. As in some cases, the majority class constituted even
87% of annotations, we decided to use macro-averaged version F1 metric, which is
well-suited for experiments with both balanced and imbalanced data.

Additionally, we examined the feasibility of personalization by comparing three
approaches, namely: (1) training models only on preceding assessments (from
previous day for morning states, from the same day for evening states) and physiology
(utilized features were the same as in one of our articles [28]), (2) training models on
preceding data, with additional context of personality scores for each of dimensions
from personality questionnaire, and (3) training models on preceding data with
additional context from personality and demography questionnaires. We call those
models General, Personality, and Broad context, respectively. Although none of the
strategies used an entirely independent set of participants, we treat approach (1) as
producing models close in performance to general ones because it contains much less
personal information than two other approaches. These approaches were examined
in tasks of recognizing daily morning and evening a)ective states and emotions.
In Sec. C.1, we present questionnaires that were utilized to gather a)ective state
ground truth and personal information used as context.

The results are compared with respective baseline predictions from an average



104

annotation predictor in regression and a majority class predictor in classification
tasks. For obtaining model performance estimates, we followed the procedure
designed by Bouckaert and Frank [208] using 10-fold cross-validation repeated 10
times, together with corrected paired t-test for determining statistical significance
of di)erences: (1) between model results and baselines, and (2) between di)erent
approaches to model design on within-condition averaged results (results averaged
across all four algorithms for each task and condition, e.g., general models for
predicting evening health). All results are reported as averages from di)erent runs
with standard deviations for both models and baselines. All p-values were corrected
using the Holm–Bonferroni procedure [209] (where applicable).

7.3.1 Personality and emotions

Figure 7.3: Distributions of Big Five personality model scores in LarField dataset.

The first analysis focused on examining distributions of personality scores in the
dataset and their relationship with emotion measures. Violin plots of collected
scores for the Big Five personality model (Fig. 7.3) show some di)erences between
study subjects. Distributions of extraversion and neuroticism cover the whole scale
of values (-1 to 1) for both male and female participants. Additionally, in male par-
ticipants, we observed the same behavior in conscientiousness. Moreover, women
scored on average (median) higher than men in agreeableness and conscientious-
ness, and men scored higher in extraversion and neuroticism. These observations
are supported by kernel density estimations, with men tending to score around the
average or higher in extraversion and neuroticism, and female scores showing the
same behavior in agreeableness and conscientiousness. Despite no visible di)er-
ence in median openness to experience scores, they tended to be around the 0.5
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Table 7.3: Results for emotion measure regression from personality trait scores.

Gender Personality trait Emotion measure 𝑆2 𝑅

Female Agreeableness Arousal 0.000 0.963
Valence 0.020 0.199

Conscientiousness Arousal 0.033 0.099
Valence 0.020 0.194

Extraversion Arousal 0.013 0.293
Valence 0.104 0.003

Neuroticism Arousal 0.051 0.038
Valence 0.126 0.001

Openness to experience Arousal 0.001 0.730
Valence 0.016 0.244

Male Agreeableness Arousal 0.002 0.712
Valence 0.062 0.032

Conscientiousness Arousal 0.295 0.000
Valence 0.083 0.012

Extraversion Arousal 0.048 0.058
Valence 0.121 0.002

Neuroticism Arousal 0.127 0.002
Valence 0.204 0.000

Openness to experience Arousal 0.056 0.041
Valence 0.053 0.046

value or higher for men and more spread out between 1 and -0.5 for women.

To examine the relationship between personality traits and emotion measures, we
performed a simple linear regression by taking average personality scores for each
person and trying to model person-averaged arousal and valence annotations. It
revealed a few small but significant" linear relationships (Tab. 7.3) between person-
ality traits and emotion measures, with five of them at the 𝑅 < 0.05 level, four at
𝑅 < 0.01, and two at 𝑅 < 0.001. The highest value of the coe*cient of determina-
tion (𝑆2) was at 0.295 for arousal regression from conscientiousness, and the lowest
among the significant ones was at 0.053 for valence regression from openness to
experience, both in men. Also, we noticed that such regression was more often
significant in men than in women, with eight out of ten experiments achieving sta-
tistical significance in men and only three in women. These results led us to suspect
that models for a)ect recognition on this dataset might benefit from personalization.

2Coe*cients of determination (𝑆2) and p-values from Wald Test with t-distribution for null
hypothesis that the slope is zero were computed using linregress function from SciPy package [190].
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7.3.2 Morning and evening state recognition

Figure 7.4: Results of morning questionnaire prediction on Larfield dataset. Average
(regression) or majority (classification) annotation baselines (values from test sets,
horizontal line denotes average baseline prediction ± standard deviation). Statistical
significance between models and baselines from corrected paired t-test [208]; ns -
not significant, * - p < 0.05, ** - p < 0.01, *** - p < 0.001.

In the first batch of experiments, we tried predicting daily states that can be regarded
as indicators of self-reported stress, mood, and health, namely: (1) composure,
stress, rest, and sleep quality measures from morning questionnaires, and (2) health,
mood, overwhelm, and unpredictability measures from evening assessments.

In experiments where morning self-assessments were predicted, most of the cre-
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Figure 7.5: Results of evening questionnaire prediction on Larfield dataset. Average
(regression) or majority (classification) annotation baselines (values from test sets,
horizontal line denotes average baseline prediction baseline prediction ± standard
deviation). Statistical significance between models and baselines from corrected
paired t-test [208]; ns - not significant, * - p < 0.05, ** - p < 0.01, *** - p < 0.001.

ated models achieved significantly better results than respective baselines (Fig. 7.4,
Tabs. C.1 - C.8). The only models that performed significantly worse than baselines
were MLP in morning rest and sleep quality regression. Out of the classification
models, most achieved accuracies significantly better than baselines, except for gen-
eral SVM in rest, broad-context SVM in sleep quality, and all Random Forest models
in sleep quality classification. Morning stress recognition turned out to be relatively
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simple to predict, with all regression and classification models performing signif-
icantly better than baseline predictors, and classification models achieving overall
highest values of F1-score among all morning states.

Experiments with predicting evening questionnaire responses yielded similar results
as morning experiments (Fig. 7.5, Tabs. C.9 - C.16). In each task, two MLP models
for regression performed significantly worse than baselines. Overall, models for
predicting mood were among the best-performing ones in terms of F1-macro and
achieved the lowest RMSE.

In most tasks, both in morning and evening state recognition, we noticed that includ-
ing personal context improves results over the general models. Pairwise comparisons
of modeling strategies for morning assessment predictions (Tabs. C.34 and C.35)
showed that di)erences in achieved prediction accuracy were significant only be-
tween General and both types of personalized models in composure regression. In
the classification of morning states, significant di)erences were present between
general and broad-context models in rest and sleep quality recognition. In both of
those tasks, broad-context models performed significantly better than personality-
aware ones. In rest classification, even including just personality context improved
results over general models. Models for regression of self-reported evening states
(Tabs. C.36 and C.37) were less homogeneous. In the regression task, only general
and personality-aware models for mood recognition showed no significant di)er-
ences, suggesting that in all other tasks, personalized models performed significantly
better than general ones. In evening health and unpredictability classification, both
personalization strategies resulted in significantly higher F1 scores than the general
approach.

7.3.3 Daily emotion recognition
After modeling morning and evening assessments, we decided also to try recognizing
answers to emotion assessments. First, we grouped emotion questionnaires, based
on the time of their creation, into three groups, namely (1) morning questionnaires
– filled after the morning assessment and noon, (2) afternoon questionnaires – filled
between noon and 6 p.m., and (3) evening questionnaires – filled between 6 p.m.
and evening assessment.

In experiments where morning self-assessments were predicted, most of the created
models achieved significantly better results than respective baselines in classification
and significantly worse results in regression (Figs. 7.6 and 7.7, Tabs. C.17 - C.28). In
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Figure 7.6: Results of emotion questionnaires regression on Larfield dataset in daily
setup. Average annotation baselines (values from test sets, horizontal line denotes
average baseline prediction ± standard deviation). Statistical significance between
models and baselines from corrected paired t-test [208]; ns - not significant, * - p <
0.05, ** - p < 0.01, *** - p < 0.001.

all regression tasks, MLP models performed significantly worse than baselines, and
the only model outperforming the average baseline was the broad-context Random
Forest. On the other hand, in classification models, most models achieved accura-
cies significantly better than baselines, with broad-context models performing on
a baseline level only in afternoon arousal recognition (Random Forest and SVM).
In daily emotion recognition, morning arousal can be regarded as the simplest to
predict, with all classification models outperforming the baseline and broad-context
Random Forest achieving error rates significantly lower than the respective baseline
as the only regression model.
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Figure 7.7: Results of emotion questionnaires classification on Larfield dataset in
daily setup. Majority annotation baselines (values from test sets, horizontal line
denotes average baseline prediction ± standard deviation). Statistical significance
between models and baselines from corrected paired t-test [208]; ns - not significant,
* - p < 0.05, ** - p < 0.01, *** - p < 0.001.

Pairwise comparisons of personalization strategies for daily emotion assessment
predictions (Tabs. C.38 and C.39) showed significant di)erences in achieved error
rates between broad-context and two other methods in morning and evening arousal
regression, and between personality and general approach in evening arousal. In
classification, models using broad context performed on the same level as general
models in morning valence and on the same level as personality models in morning
and evening valence, outperforming them in every other task. Personality-aware
models for classification showed significantly better results than general ones only
in morning arousal classification.
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7.3.4 Momentary emotion recognition

Figure 7.8: Results of emotion questionnaires prediction on Larfield dataset in mo-
mentary setup. Average (regression) or majority (classification) annotation base-
lines (values from test sets, horizontal line denotes average baseline prediction ±
standard deviation). Statistical significance between models and baselines from
corrected paired t-test [208]; ns - not significant, * - p < 0.05, ** - p < 0.01, *** - p
< 0.001.

The last batch of experiments on the LarField dataset focused on recognizing self-
reported momentary emotions from momentary physiology, morning assessment,
and contextual information depending on the modeling strategy. We attempted
to recognize arousal and valence as classification and regression tasks, and the
occurrence of intense emotion, being itself a binary state, as a classification task
only.

In experiments where momentary self-assessments were predicted as regression
tasks, most of the created models achieved significantly worse results than the av-
erage baseline (Fig. 7.8, Tabs. C.29 and C.30). In regression tasks, only Random
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Forest and SVM models performed significantly better than baselines, achieving
lower RMSE in personalized training. On the other hand, MLP models for regres-
sion performed better than baselines only when trained using a general approach.
Pairwise comparisons of three modeling strategies showed that, on average, there
are no di)erences between them in momentary emotion regression (Tab. C.40).

In classification, on the other hand, most models performed significantly better
than respective baselines (Fig. 7.8, Tabs. C.31 - C.33). On average, in all three
tasks, broad-context models achieved the highest F1-macro scores, followed by
personality-aware models, which was confirmed by pairwise comparisons of mod-
eling strategies (Tab. C.41).

7.4 Discussion
In this chapter, we described the performed study, aimed at collecting a dataset of
real-life physiology and behavioral information annotated with momentary emo-
tions, complemented by demography and contextual data from daily morning and
evening questionnaires. This dataset may be used for testing novel methods for
real-life emotion recognition and for uncovering patterns in outside-of-laboratory
a)ective states. Its large population and amount of per-participant data allow it to
be used to test hypotheses about both general and personalized models for emotion
recognition.

We share the description of study preparation, issues that we encountered, and
lessons that we learned, so other scientists may learn from our e)ort, and improve
on our methods. We also performed a few simple experiments to better understand
the data that we collected and tested hypotheses that we hoped the dataset would
allow us to examine. Unfortunately, as at the time of writing the dataset is still being
processed, and first experiments were possible as late as in June 2024, we could
perform only simple experiments on data that did not require precise synchronization
of di)erent devices before the thesis submission date.

7.4.1 Designing real-life emotion psychophysiology study
Most of the challenges that we encountered were caused by delays in the study
preparation and could have been avoided if (1) we had taken appropriate measures
against them or (2) the study launch had been postponed until all components and
tools were coded. However, the timeline specified in the funding grant did not allow
us to delay the study any longer. To prevent such situations, one could employ
a technical project manager to look after the development process and ensure the
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Table 7.4: Selected challenges encountered during the design and execution of the
study, along with our recommendations in handling them (from [25]).

Challenges Recommendations / possible solutions

Managing the
development of the
study system and
procedures

Consider appointing a project manager or applying a project
management methodology, which could improve the
academic style of project management.

Overseeing the
study

Hire a study manager responsible mainly for the study
(designing, monitoring) and participants (recruitment,
training, supporting).

Interacting with
external entities,
e.g., with an ethical
committee

Incorporate a large time bu)er for tasks associated with
external entities, for example, submitting the application to
an ethical committee way in advance.

Planning tests Plan in advance what and how has to be validated. In the
case of pilot studies, perform at least two; determine their
goals, and allocate time for making corrections.

Validating devices When choosing devices for the study, analyze them in person.
Pay attention to data availability, data quality in various
conditions, battery life, ease of usage, and convenience. Be
open to replacing the original component, e.g., a smartwatch
strap, to improve adjustment and fit.

Advanced research
equipment and
participants’ visit
procedures

Create a step-by-step protocol, specify personnel’s
responsibilities, and implement automation where feasible.

Last minute
changes in the
study, e.g., adding
devices or
questionnaires

Carefully assess the potential advantages and drawbacks of
changes. Consult the change with all stakeholders.
Remember to update the ethical approval.

Making the study
bulletproof

Conduct several pilot studies and collect feedback. Simulate
a noncompliant participant. Monitor participants and data
during the study to be able to respond to any detected
anomalies. Introduce monitoring of variables that can
potentially have impact on the study results.
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deadlines are met. On the other hand, the traditional workflow in academia rarely
assumes such supervision so that it could become a source of conflicts within a
team.

Employing a study manager with a background in psychology was the right decision
on our end. Employing one three months before the planned pilot studies allowed
them to grasp the study concept and learn all the study-related procedures. This
allowed them to e*ciently handle the recruitment process (advertising the study,
contacting and training participants) and administrative duties (discussing agree-
ments, contracts, and consents), attend to pre- and post-study visits, monitor study
progress, and complete other minor tasks. Moreover, it allowed other team members
to focus on developing applications used during the study and solving major issues
as they arose.

We also learned that all decisions related to data-collecting devices (wearables)
should be assumed early in the study planning process. After careful deliberations
about their benefits and drawbacks, we decided to utilize Fitbit smartbands in the
study. However, it turned out that we had to abandon integrating them into the data
collection system, as it would introduce additional costs and possible bugs due to
late changes. As a result, we had to configure smartbands and create user accounts
manually and could not monitor data collected using Fitbit devices in real time.

Considering all of the constraints in the a)ective study development process requires
meticulous work and attention to its intricacies. Besides following standard proce-
dures, researchers must also consider the ethical risks that such a study may induce
and try to minimize them. Fortunately, some researchers are focusing on examin-
ing these aspects and recommending possible solutions to them, thus simplifying
organizing such experiments [69].

7.4.2 A!ective state modeling
Results of the conducted investigation suggest some interactive e)ects of personal
features (e.g., gender or personality) on real-life a)ect. A simple regression of
per-person averaged arousal and valence scores as a function of a personality trait
showed non-negligible e)ects, especially in neuroticism, extraversion, and consci-
entiousness in men and neuroticism in women.

Albeit using only simple daily features, such as morning or evening mood, stress and
health questionnaires, average daily physiology, and daily annotations of emotions,
outperforming the baseline in predicting morning and evening a)ect was possible
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in both classification and regression tasks. Also, in the regression of morning
composure and all evening states but rest, and in the classification of morning
rest and sleep quality, along with evening health and unpredictability, we noticed
significantly better results in models that utilized personal information and the ones
that did not.

Emotion recognition experiments were conducted in two setups – recognition of av-
eraged daily states and of momentary emotions. Both setups showed that regression
of emotions is a di*cult problem. In daily emotion tasks, personalization resulted
in a significant improvement of error rates only in arousal prediction, and in momen-
tary emotions, there were no significant di)erences between the three strategies. On
the other hand, in classification, models using broad context achieved significantly
higher F1 scores than general ones in all tasks but morning valence. Using only
personality as context improved results over no context in morning arousal and all
momentary emotion tasks.

Overall, while we noticed some potential for improving emotion recognition by
including personal features, achieved gains were highly dependent on the task. Our
results showed that while predicting daily morning and evening self-reported a)ect
was in general easier (models often outperformed baselines), there were often no
significant di)erences between personalized and general modeling strategies. In
emotions, which were seemingly harder to predict, we can notice improvements
from the additional personal context in classification but almost no improvement in
regression.

Our results are limited by several factors. First, due to the insu*cient amount
of time, caused by delays in the study and data processing, created models were
relatively simple and therefore had low capacity. Additionally, no optimization
was performed for the utilized models, as after removing data samples that could
not be used in these experiments, we were left with a relatively small dataset.
Allocating the additional validation subset was impossible in this case, making
the whole setup prone to potential overfitting caused by optimization. Moreover,
annotations themselves may not be as precise as would be required in regression,
causing confusion during training and leading to imprecise predictions.

These factors could impact the results in several ways, either benefiting general or
personalized models. Low model capacity and lack of parameter optimization may
have increased the di*culty of learning general patterns with a very limited set
of features or made it impossible to learn patterns from a wide variety of useful
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features as the volume of the feature space increased. Moreover, all of the predicted
annotations were subjective, thus making it hard to find general patterns in data,
and also limiting the amount of data that could be used when modeling specific
people or groups. The fact that emotion perception is itself impacted by emotions
and that some participants reported in their feedback that the study allowed them to
gain more insight into everyday emotions, which they rarely think about, adds to the
claim about the overall subjectivity of reported data. The overall better performance
of models for binary classification, when compared with regression models, could
be then caused by the task’s nature, which focuses on coarse estimates rather than
precise measures of emotional states.
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C h a p t e r 8

SEARCHING FOR PHYSIOLOGICAL MARKERS OF EMOTION

Up to this point, this dissertation focused on reviewing existing literature, describing
our e)orts in collecting datasets for researching the psychophysiology of emotions,
and recognizing those states. However, although it is well-known that emotions
and human physiology are somehow connected, there is still no reliable evidence
for the presence of unique markers of emotion in human physiology. Motivated by
this problem, we organized an Emotion Physiology and Experience Collaboration
(EPiC) challenge. Its main point was to evaluate the strengths and limitations of
using machine learning to model presumed connections between peripheral nervous
system (PNS) activity and self-reported emotions. The challenge was held as a
part of a workshop organized at the 2023 A)ective Computing and Intelligent
Interaction (ACII) conference. To ensure replicability and transparency, we designed
the challenge with three goals in mind:

1. Evaluating how well can researchers use PNS features to model emotion using
one openly-available dataset.

2. Studying the impact that validation approach choice has on prediction quality.

3. Promoting open science by making all resources publicly available.

In this chapter, we describe the competition structure and obtained results and
summarize our findings. We commit to promoting open science(the third item) by
making all resources publicly available in a public Open Science Framework (OSF)
project!.

Contents of this chapter originate from the co-authored article", undergoing a review
in a peer-reviewed journal at the time of writing:

1OSF Project "2023 Emotion Physiology and Experience Collaboration (EPiC) Challenge" is
available under the link https://osf.io/bmhsd/

2Article preprint is available in the OSF project repository.
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[32] N. A. Coles, B. Perz, M. Behnke, J. C. Eichstaedt, S.-H. Kim, T. N. Vu,
C. Raman, J. Tejada, G. Zhang, T. Cui, S. Podder, R. Chavda, S. Pandey,
A. Upadhyay, J. I. Padilla-Buritica, C. J. Barrera Causil, L. Ji, F. Dollack, K.
Kiyokawa, H. Liu, M. Perusquia-Hernandez, H. Uchiyama, X. Wei, H. Cao,
Z. Yang, A. Iancarelli, K. McVeigh, Y. Wang, I. M. Berwian, J. C. Chiu, M.
Dan-Mircea, E. C. Nook, H. I. Vartiainen, C. Whiting, Y. Won Cho, S.-M.
Chow, Z. F. Fisher, Y. Li, X. Xiong, Y. Shen, E. Tagliazucchi, L. Bugnon, R.
Ospina, N. M. Bruno, T. A. D’Amelio, F. Zamberlan, L. R. Mercado Diaz,
J. O. Pinzon-Arenas, H. F. Posada-Quintero, M. Bilalpur, S. Hinduja, F.
Marmolejo-Ramos, S. Canavan, L. Jivnani, and S. Saganowski, “Big team
science reveals promises and limitations of machine learning e)orts to model
the physiological basis of a)ective experience,” Nature Human Behaviour,
2024, In reviews.

In the project [32], our contributions involved designing the challenge and method-
ology used, conducting the challenge, investigating the results, and drawing con-
clusions, with special contributions of myself to designing testing procedures and
drawing conclusions regarding methods and models utilized by competition partic-
ipants, curating the dataset, validating participating teams’ code and results, super-
vising the technical aspects of the challenge, and describing modeling approaches
and rationale of validation methods.

8.1 Competition as research method
Emotional experience is a complex process in which physiological, psychologi-
cal, and cognitive components intertwine. Although many researchers have been
studying the impact that emotions have on PNS responses, the scientific community
remains unconvinced by results presented thus far (Chap. 3, 4). The reasons for such
state of a)airs include (but are not limited to) (1) complexity of studied states, (2)
lack of interdisciplinary knowledge within research groups, (3) inability to replicate
and validate presented evidence, and (4) limited resources.

Although it is impossible to address all of the problems the a)ective-research
community faces, some of them can be researched using a big team science ap-
proach [210, 211]. For example, examining the impact of emotions on bodily
reactions is a complex task that a unidisciplinary team could not possibly solve. It
requires knowledge of psychology, physiology, signal processing, and computer sci-
ence, which are too broad for one researcher or a small research group to handle. In
such situations, big team science allows everyone’s expertise to be used to perform
experiments and draw conclusions. Although di)erent teams could not cooperate
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during the competition, we can study similarities and di)erences in their approaches
and results to draw conclusions.

8.2 Materials and methods
Taking all of our objectives into account, we decided to use the Continuously
Annotated Signals of Emotion (CASE) dataset [212] in the challenge. We divided the
data into four validation scenarios, each of them highlighting di)erent dependencies
in the data, and invited 15 teams to participate in the challenge.

8.2.1 Dataset
The original dataset consists of data from 30 subjects (15 females, M age = 25.7
years, SD = 3.10; 15 males, M age = 28.6 years, SD = 4.8), who were exposed
to a total of 8 emotionally stimulating videos, targeting states of amusement, fear,
boredom, and relaxation (two videos for each emotion). While watching stim-
uli, participants provided continuous ratings of their emotional experience using a
joystick (in valence and arousal space). Additionally, their PNS activity was mea-
sured during all inductions using eight physiological signals: blood volume pulse
(BVP); electrocardiography (ECG); electromyography (EMG) over the zygomaticus
major, corrugator supercilii, and trapezius muscles; electrodermal activity (EDA);
respiration (RSP); and skin temperature (SKT).

In the CASE dataset [212], subjects and stimuli have their own specific identifiers.
For the competition, we decided to obfuscate data by assigning each subject and
video a di)erent random number drawn independently for each validation scenario
(see next subsection). Randomization was performed once for each scenario, so
in scenarios utilizing cross-validation subject and video numbers were consistent
between folds.

8.2.2 Training and testing procedure
The challenge consisted of predicting valence and arousal ratings from a person’s
physiological signals. We designed four validation scenarios to evaluate prediction
quality, each emphasizing di)erent interrelations in data. Out of them, one scenario
was designed as a hold-out validation (one data split into training and test sets)
and the rest as cross-validation (multiple splits of the same data into training and
test sets)#. Additionally, in every test set, the emotion self-reports were 20 seconds

3We did not provide separate validation subsets to participants, but we permitted using training
data as they pleased. We also allowed them three early submissions that were evaluated on half of
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shorter than the physiology recordings$, to allow modeling momentary emotions
using signals preceding or following each of them. The scenarios are illustrated in
Fig. 8.1 and described below.

1. The across-time scenario used a hold-out validation approach and focused
on the order of signals in time. We divided each recording in the dataset (each
induction for each person) into training and test sets based on time. The first
part of the recording was included in the training set, and the later part was
included in the test set. This scenario can be seen as testing the usefulness of
knowledge regarding a person’s reaction obtained from past data for predicting
new reactions in similar situations.

2. The across-subject scenario used a leave-N-subjects-out validation approach.
Data were randomly divided into five groups (folds), so every fold consisted of
all the observations from six people. In every cross-testing pass, such fold was
used either in training (multiple times) or test set (only once). Conceptually,
this scenario examined the generalization abilities of models created for one
group of people when predicting emotional ratings provided by a di)erent
group of people.

3. The across-emotion scenario used a leave-one-emotion-out validation ap-
proach. As mentioned before, videos in the experiment targeted four emo-
tions: amusement, fear, boredom, and relaxation. Thus, to test how well
models generalize between conditions (targeted emotions), we created four
folds, each consisting of di)erent inductions (videos of one kind).

4. The across-induction scenario used a hold-out validation approach. As a
reminder, during the experiment, the same emotion was targeted twice, using
two di)erent videos (e.g., two inducing fear). Each pair of videos was split
into two folds - data from one induction in the first fold and data from the
other in the second fold. This scenario examined the quality of emotion rating
prediction by models trained on a di)erent induction of that same emotion.

The above scenarios were designed to allow modeling emotional experience using
physiology in a replicable and easy-to-understand manner. They also provide a good
framework for testing models for possible overfitting.
the test data.

4Exactly 10s of unannotated physiological signals both before and after annotations.
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Figure 8.1: Validation scenarios employed in EPiC competition (from [32]).

To prepare the challenge data, we had to divide it into training and test parts. Training
data always began at the beginning of the original recording, and its length varied
depending on the duration of the original induction. For each stimulus, the length
of corresponding training samples was chosen once per scenario, so they have a
constant duration within a scenario. Additionally, we ensured that the duration
of created learning cases di)ers by, at most, a few seconds between scenarios.
This varying length was used to further obfuscate subject-induction pairs between
di)erent scenarios.

Test cases were created similarly to training cases, with instances coming from one
induction within the validation scenario coming from the same part of the recording.
Following a standard approach to validation, all inductions for all subjects were
used for testing exactly once within a scenario. As chronological order was vital
in the across-time validation scenario, we split each session from the CASE dataset
(subject-video pair) into three fragments – training data (beginning at the start of
the session), bu)er data (discarded part of data lasting around the 20s), and test
data (starting after the bu)er). Other validation schemes assigned the whole session
either to training or validation sets, so there was no possibility for training and
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testing on overlapping samples. Therefore, we did not introduce the bu)er in other
scenarios, allowing training and validation data to contain common samples.

All test cases in the competition had the same length and structure. They consisted
of 50-second-long physiological recordings and centered 30s of corresponding an-
notations. The unlabeled fragments of 10s at the beginning and end of each test
case were introduced to allow using short periods of past and future physiological
data (relative to annotation moment) for reasoning. Participants were provided with
test cases where physiology remained untouched, but all annotations were deleted,
except for their timestamps.

We employed root-mean-square-error (RMSE) as a metric for evaluating machine
learning models during the competition and arranging the leaderboard. Additionally,
we used absolute prediction error and two baseline models for further analyses
regarding the quality of submitted predictions and their suitability for drawing
conclusions about physiological markers of emotions. The used baseline models
were (1) a random prediction model, assigning a random value to each point in the
test set, and (2) a mean prediction model, assigning an average computed over all
annotations from the training set to each point in the test set (done separately for
each data split).

Moreover, to better understand obtained predictions and analyze results even fur-
ther, we (1) reviewed the code of top-performing submissions and (2) ran three
of them, deemed most rigorous in their approach, on samples where physiology
was substituted with random noise. For an arbitrary data split, let us denote a test
dataset of size 𝑇 , consisting of physiology recordings 𝑈𝑀 and their annotations 𝑉𝑀,
as 𝑊 = {(𝑈𝑀,𝑉𝑀) : 𝑀 ↓ 1..𝑇}. For this analysis, we created another dataset, where
each physiology recording 𝑈𝑀 was replaced with random time series (white Gaussian
noise, M = 0.0, SD = 1.0), therefore creating 𝑊 = {( 𝑈̃𝑀,𝑉𝑀) : 𝑀 ↓ 1..𝑇}. We then ran
models trained for the challenge on the altered dataset (𝑊) and compared predictions
between samples from 𝑊 and 𝑊 .

8.2.3 Teams and modeling approaches
Out of 18 teams that applied for the challenge, S.S., M.B., and N.C. selected teams
based on their (1) expertise in the field, (2) experience with similar challenges, and
(3) a proposed approach. To be eligible to participate, teams had to agree to (a)
refrain from cheating (e.g., using an original dataset for model development), (b)
write their code in an accessible way and make it openly available, and (c) collaborate
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on a paper summarizing the challenge. The code was inspected for the three top-
performing teams (and a subset of other teams) to ensure that it was accessible,
replicable, and contained no evidence of cheating. To motivate participants, we
awarded $300 to all teams that completed the challenge and an additional three
$200 performance awards based on the overall prediction quality, i.e., root mean
squared error (RMSE) across all validation scenarios. Available funds allowed us
to recruit up to 15 teams for the competition, of which 12 teams completed it and
three resigned during the challenge. Below, we present a brief description of each
team’s modeling approach% (more details can be found in Tab. D.1).

Team 1 (A!ectiveBulls) Physiological signals were used to derive a univariate
time-series representation through a weighted sum of all signals, with
normalized variance used as weights. This signal was split into windows
of fixed duration and used for training person-specific Neural Networks
that predict valence and arousal dimensions at the same time.

Team 2 (Cafeteros) Physiological measures were cleaned and used to obtain deriva-
tive time series, such as phasic and tonic components of EDA. Using those
signals, the team trained hybrid deep learning models consisting of con-
volutional and recurrent branches (TCN-LSTM). For each data split, they
trained one model for predicting arousal and one for valence.

Team 3 (CARElab) Physiological signals were cleaned, split into windows, and
used to derive descriptive features. Next, machine learning models were
trained for the narrowest possible context in each scenario using Auto-
Gluon [213], a machine learning framework for automated model training
and optimization.

Team 4 (UBA) The team trained tree-based ensemble models (random forest and
gradient-boosted decision trees) for predicting emotional state in the nar-
rowest possible context, using features derived from preprocessed physiol-
ogy as input.

Team 5 (PSU) Physiological signals were cleaned and used to compute dynamic
features. These features were used as an input for trained machine learning
models - deep transformer models or ensembles of decision trees.

5Code submitted by participants and competition details can be found in the challenge GitHub
repository: https://github.com/Emognition/EPiC-2023-competition
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Team 6 (Northeastern) Physiology was first cleaned, and descriptive features were
derived. The team trained several di)erent classical machine learning
regression models and chose the best-performing one for each scenario and
a)ect dimension. They predicted annotations for every 1s and upsampled
them later.

Team 7 (NYIT) The team used a model taking raw physiology as input, which
was scaled only. They employed their own version of FEDformer [214],
a deep learning transformer-like architecture for time series forecasting.
The same model predicted arousal and valence levels, which were later
smoothed using an additional convolutional deep learning model.

Team 8 (Princeton) For scenario 1, they used signal windows with annotations
centered relative to physiology and an LSTM model with information
about the subject and video. For other scenarios, they used signal windows
with annotations at the end and regularized LSTM models working on
physiology provided for the challenge. They predicted arousal and valence
simultaneously.

Team 9 (Queens) Preprocessed ECG signal (time-series) was used to train deep
neural networks: convolutional and transformer-based architectures. The
authors explored two approaches: (1) training models from scratch and
(2) pretraining models on the entire training data and retraining them in
a narrower context. Out of the tested approaches, the transformer model
trained from scratch on the narrowest possible context achieved the best
accuracy.

Team 10 (SAIL) They cleaned and resampled physiology. Skin temperature signal
was used in the form of features, and the rest of the signals were used
as time series. For modeling, they used a deep state-space S4 model and
transfer learning, where they trained layers for ECG signal processing on
another, much larger dataset. They trained separate models for predicting
arousal and valence.

Team 11 (IITB) The team first cleaned and resampled physiology, which was later
split into 2s windows, with annotations at the end of each window. Using
this data, they trained decision trees to predict arousal and valence scores
(separately).
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Team 12 (VSL) Signals from the provided dataset were utilized as input for transformer-
based models. Input data was normalized and scaled inside the model and
later processed using neural network layers. They trained models to predict
valence and arousal at the same time.

Out of the above, only four teams created models generating arousal and valence
predictions at the same time (teams 1, 7, 8, 12). Seven teams focused solely on
creating deep learning models (1, 2, 7, 8, 9, 10, 12), three teams solely on classical
machine learning methods such as tree-based or SVM models (4, 6, 11), and two
tested various approaches and selected the best-performing ones for each scenario
(3, 5).

We can also categorize models employed by teams based on their approach to the
context present in the data in each validation scenario. Three teams (3, 4, 9) always
trained their models in the narrowest possible context in each, meaning that they
utilized induction-specific models in across subject scenario (A), subject-specific
models in across emotion (B), and across induction (C) scenarios, and distinct
models for each subject-induction pair in across time (D) validation scenario. Team
one approached the competition in a similar way but created one general model for
predicting emotion experience ratings in across emotion scenario (B). In across time
scenario (D), team 8 also utilized scenario-specific knowledge and provided their
model with information about the subject and induction from which each sample
originated. Other teams trained general models, predicting core a)ect ratings for the
whole population. Additionally, the approaches of the four teams did not follow the
strict validation procedure employed in the competition, possibly creating overfitted
models (teams 1, 5, 7, 11)&.

8.3 Results
To examine each team’s prediction quality, we used mixed-e)ect regression. We
regressed each team’s absolute prediction error as a function of (1) the prediction
source, i.e., the team’s model or one of the baselines (random or the average val-
ues), (2) the scenario (validation approach), (3) a higher-order interaction between
model source and scenario, and (4) random intercepts for each subject and stimulus.
We used random intercepts to include non-independent observations in the analysis
(originating from one person-video pair). For each validation scenario, we used

6Information in this paragraph were mainly derived from analyzing code submitted by partici-
pating teams, as most of them did not provide detailed enough descriptions of their approaches.
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pairwise di)erences in regression coe*cients (contrasts) to estimate the mean dif-
ference (MD) in the absolute prediction error between each team’s model baseline
model and test its significance (Fig. 8.2). Results show that all teams who completed
the challenge performed better than a random baseline model (1.89 < MD > 0.48,
all z > 130.31, all p < .001). However, the mean baseline model was harder to
outperform, with only seven teams (58%) achieving it in across-subject (0.49 < MD
> 0.01, all z > 2.44, all p < .05) and across-time validation scenarios (0.73 < MD >
0.02, all z > 5.13, all p < .001); five teams (42%) in across-emotion scenario (0.70
< MD > 0.02, all z > 5.81, all p < .001); and three (25%) teams in across-induction
scenario (0.51 < MD > 0.23, all z > 62.58, all p < .001).

We can also observe that prediction accuracy did not behave consistently between
scenarios but varied between teams (Fig. 8.2). For instance, team 1 prediction error
was lower in across-subject vs. across-time validation, while team 4 results showed
the opposite pattern.

These results highlight the multiplicative nature of constraints on generalizability,
i.e., interactive e)ect on inferences of decisions about (a) used models and (b)
utilized validation.

The above results can be seen as preliminary evidence for links between PNS
activity and core a)ect reports. However, the fact that ML models outperformed
the mean baseline model only in some cases raises questions about the nature of
their predictions. At this stage, it is unclear whether they were driven by potential
links between people’s PNS activity and core a)ect reports or simple averages of
annotations observed in the training set.

To investigate the emotion-PNS activity relationship further, we performed addi-
tional experiments on data with input samples substituted with random noise, the
logic being that if ML models do not capture emotions and PNS activity, we should
see no significant di)erence between prediction results. We tested it using mixed-
e)ect regression and regressing each team’s absolute prediction error as a function
of (1) the scenario in question (validation approach), (2) whether the prediction
came from real or random data, (3) a higher-order interaction between the scenario
and whether the input was real or simulated, and (4) random intercepts for each
person and stimulus in the dataset. In 93% of tests, the teams’ prediction quality
decreased for models tested on noise input when compared with the same models
tested on real input (-0.33 < MD > -0.02, all z < -6.56, all p < .001), with only one
case showing no significant di)erence (MD = 0.00, z = -1.01, p = .31) (Fig. 8.3).
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Figure 8.2: Mean absolute prediction error (y-axis) for predictions submitted to
competition (12 teams) for four validation scenarios, and their significance respective
to average baseline. Dashed line – mean baseline; dotted line – random baseline; *
denotes p < .05; n.s. denotes p > .05; all other p < .001 (from [32]). For specific
values, see Tabs D.2 - D.5.
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These results provide further evidence that some of the submitted models utilized
PNS signals when predicting self-reported emotions.

Figure 8.3: Panel A – example of real and simulated random electrocardiography
signal. Panel B – mean absolute prediction errors (y-axis) for predictions made by
models created by 3 teams selected for additional testing, reported for four validation
scenarios. Results are reported together with mean di)erences (*** denotes p <
.001). Circle – results when tested on real physiology; crossed circle – results when
tested on simulated physiological randomness (from [32]). For specific values, see
Tab. D.6.
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8.4 Discussion
The above results show that machine learning can potentially model complex physi-
ological patterns associated with emotional experience. Models created by 12 teams
of researchers all performed better than random guessing, and about half of them
also outperformed the average baseline created from training annotations.

An interesting observation arises when comparing employed approaches to creating
models and competition results. It turns out that the top three teams (out of those that
strictly followed validation procedures) all used models trained within the smallest
possible context – induction-specific models in across subject scenario (A), subject-
specific models in across emotion (B), and across induction (C) scenarios, and
subject-induction specific models in across time (D) scenario. Those results show
that in the employed dataset, psychophysiological dependencies were best modeled
by often small but specific models rather than the ones learning general patterns.

Additional tests with simulated physiological randomness add to this conclusion,
as it caused a drop in prediction accuracy in nearly all models from three selected
teams. However, in many tests, the di)erences in prediction quality between real
and random physiology were small, demonstrating the need for improvements in
utilized modeling strategies.

8.4.1 Emotion psychophysiology
Obtained results are in line with theories that posit a physiological basis of emotional
experience [46, 215], and at the same time with competing theories postulating spu-
riousness of these links, e.g., that both PNS activity and emotions are independent,
and both originate from upstream neural process [216]. However, this work was
not designed to provide strong tests regarding causal relationships between PNS
activity and emotion, e.g., team 4’s model [217] indicated that using preceding (vs.
succeeding or co-occurring) physiological signals to predict self-reported emotion
yielded the best accuracy. This observation could support the claims about causality
in the emotion-forming process [218], but such patterns may originate from delays
in participants’ emotion reports.

Our results highlight commensurability and generalizability challenges in emotion
research utilizing machine learning [219]. The results show that di)erences in study
design, i.e., how models are developed, benchmarked, and tested, can impact final
conclusions. In our case, focusing on a random baseline (vs. mean baseline) or
across-time validation (vs., for example, across-emotion validation) would result
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in an overly optimistic image of the models’ accuracy. These results contribute to
an ongoing discussion about emotion recognition technologies and their potential
benefits (e.g., unobtrusive measurement of emotions) and harms (e.g., the possibility
of inaccurate predictions) [17, 18].

We also provide a more challenging observation that constraints on generalizability
can be multiplicative (i.e., interactive) [220]. Our results show that obtained ac-
curacy depended both on the modeling and validation approaches without a clear
distinction of a more influential factor. Thus, we conclude that they had an interac-
tive e)ect on results. This observation leads to the conclusion that before making
theoretical claims about emotions, researchers should carefully study the data and the
assumed experimental design. For example, team 1 models achieved better accuracy
(lower prediction error) in across subject vs. across time scenario. It could be seen as
evidence for greater within-person than between-person variability of links between
physiology and emotion reports, leading to claims for biologically-innate [221] na-
ture of emotion. Meanwhile, results of other teams (e.g., team 8) show the opposite
pattern. They could be regarded as evidence for high inter-subject variability and
against biological innateness of associations between PNS activity and self-reported
emotions [222]. Similarly, observations that context-specific models performed in
general better than general ones may suggest that we should focus on developing
small but tailored solutions for emotion recognition. However, this dependency may
be specific to the utilized dataset, and no conclusions should be drawn before testing
the phenomenon on more datasets using appropriate procedures.

8.4.2 Big team science
This work also serves as a proof-of-concept study for using big team science [210,
211] in a)ective research. By standardizing data sources and testing procedures,
we obtained cleaner comparisons of di)erent approaches to the same problem. By
making variations in methodological decisions systematic (e.g., employing multiple
testing procedures), we could examine how these decisions impact the generalizabil-
ity of inferences. Also, requiring that competitors make their code openly available
allowed us to further inspect and reproduce teams’ solutions and identify the most
promising approaches for future research [223]. As all materials were published,
they may be useful for other researchers working on similar problems. Overall, big
team science e)ectively allowed us to leverage the wisdom of crowds to evaluate a
challenging theoretical question in emotion research.
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Our examination also yields lessons about conducting collaborative research and
how it can be improved. For example, competition organizers could not thoroughly
examine all submissions’ code, nor could they comprehensively evaluate the be-
havior of all models. The task could be crowdsourced [224], but it would require
establishing protocols and best practices for code review. Also, many teams pointed
to insu*cient resources as an issue, such as a need for (1) more time to create
models, (2) larger datasets, and (3) high-performance computing resources. Recent
initiatives regarding dataset development [210, 211] and providing shared comput-
ing resources [225] may help overcome these limitations. Despite these constraints,
our work presents a possibility of utilizing collaborative e)orts to address complex
questions in science with the help of novel machine learning methods. However,
researchers must remember about the multiplicative constraints on generalizability
when applying these methods.
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C h a p t e r 9

PERSONALIZED DATA PROCESSING

In the previous chapter, we explored group-personalized models and showed their
potential in creating models for emotion recognition and in mitigating the cold start
problem. In this chapter, we delve deeper into the data preparation process and
explore how di)erent processing methods impact the results of personalized mod-
els, both for groups of people and individual subjects. We apply those methods to
both input signals and annotations and thus name them a two-fold personalization.
Moreover, based on our research described thus far, we compare di)erent experi-
mental setups (general / group-personalized / individual models) to see which of
them performs best on the used datasets in terms of absolute accuracy metrics and
achieved gain over baseline models.

9.1 Materials and methods
9.1.1 Datasets
In the research, we utilized four datasets well-established in a)ective computing,
namely A Dataset for A"ect, Personality and Mood Research on Individuals and
Groups (AMIGOS) [226], a multimodal databaASe for impliCit pERsonaliTy and
A"ect recognitIoN (ASCERTAIN) [227], Continuously Annotated Signals of Emo-
tion (CASE) [212], and a Database for Emotion Recognition through EEG and
ECG Signals from Wireless Low-cost O"-the-Shelf Devices (DREAMER) [228].
We chose them as all of them: (1) contain electrocardiography (ECG) physiologi-
cal measures, which we decided to focus on in this research; (2) contain emotions
annotated using a multivalued dimensional arousal-valence model, allowing us to
perform both classification and regression tasks, (3) are highly cited, between 160
and 820 times!. Moreover, each of them has distinct characteristics that may allow
us to explore di)erent aspects of emotion recognition, with CASE being annotated
in a continuous manner and AMIGOS, ASCERTAIN, and DREAMER being col-
lected using relatively unsophisticated measuring devices resembling everyday-life
wearables.
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Figure 9.1: Distribution of annotations in a subset of AMIGOS [226] dataset used
in experiments. All values were normalized relative to ranges of scales in employed
questionnaires.

AMIGOS

The original dataset consists of data from 40 healthy participants (13 females; M age
= 28.3). All subjects were exposed to 16 short video stimuli, each targetting a spe-
cific quadrant of the two-dimensional arousal-valence plane (4 videos per quadrant).
Participants provided their emotions after watching stimuli, using 9-point scales for
rating their perceived arousal, valence, dominance, liking, and familiarity, and bi-
nary selection for basic emotions of neutral state, disgust, happiness, surprise, anger,
fear, and sadness. During all inductions participants had their PNS activity measured
using electrocardiography, electrodermal activity, electroencephalography (14 elec-
trodes), and video data. All PNS measures are collected using simplified interfaces
registering signals using only a couple of electrodes (two for ECG, one for EDA,
and 14 for EEG). Although used devices are not suitable for use in everyday life
studies, they are not fully laboratory-grade either, thus making this dataset a step
towards real-life emotion research. Authors also provide scores from Positive and

1According to Google Scholar search engine https://scholar.google.com/
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Negative A"ect Schedule (PANAS) questionnaire and personality scores for the Big
5 Personality model (extraversion, agreeableness, conscientiousness, neuroticism,
openness) for each participant.

When exploring the dataset, we noticed that some of the registered signals were of
very low quality. We decided to exclude recordings showing poor quality in the
last 35 seconds of an ECG signal. For automated scoring of signal quality, we
utilized the Neurokit 2 [229] Python toolbox. Additionally, we entirely excluded
ten participants who had less than ten such samples. The resulting distribution of
emotion annotations is presented in Fig. 9.1.

ASCERTAIN

Figure 9.2: Distribution of annotations in a subset of ASCERTAIN [227] dataset
used in experiments. All values were normalized relative to ranges of scales in
employed questionnaires.

The original dataset consists of data from 58 university students (21 females; M age
= 30). Subjects were exposed to a total of 36 movie video clips, each targetting
a specific quadrant of the two-dimensional arousal-valence plane (9 videos per
quadrant). Participants provided their emotions after watching stimuli, using 7-
point scales to rate their perceived arousal and valence and two-point scales to
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measure engagement, liking, and familiarity. During all inductions, participants
had their PNS activity measured using electrocardiography, electrodermal activity,
electroencephalography (only frontal pole), and facial expression features. All PNS
measures are collected using simplified interfaces registering signals using only a
couple of electrodes (one or two, depending on the device). Although used devices
are not suitable for everyday life studies, they can be seen as a step towards real-
life emotion research. The authors also provide personality scores for the Big 5
Personality model for each participant and a table indicating the data quality of each
collected sample in the one to six range, with one marking excellent and six marking
very poor quality.

When exploring the dataset, we noticed that some of the participant’s registered
signals were of very low quality. We decided to exclude recordings with a rating of
three or more (data of seemingly low quality). Additionally, we excluded participants
who had less than ten such samples, resulting in 10 subjects being excluded entirely.
The resulting distribution of emotion annotations is presented in Fig. 9.2.

CASE

We have already described the CASE [212] dataset earlier in Sec. 8.2.1, as we used
it for conducting the Emotion Physiology and Experience Collaboration (EPiC)
challenge. Unlike the earlier experiments, in this research, we have not utilized the
full scope of continuous annotations but divided each recording into non-overlapping
windows centered around the respective annotations. The resulting distribution of
emotion annotations is presented in Fig. 9.3.

DREAMER

Authors of DREAMER [228] dataset collected data from 25 subjects (11 females;
M age = 26.6 years, SD = 2.7), who were exposed to a total of 18 emotionally
stimulating videos, targeting states of amusement, excitement, happiness, calmness,
anger, disgust, fear, sadness, and surprise (two videos for each emotion). Participants
provided ratings of their emotional experience in terms of arousal, valence, and
dominance (each scored from one to five) after each stimulus. Due to technical
issues, two females were not included in the dataset. Thus, it consists of data
from 23 subjects. Participants’ PNS activity was measured during all inductions
using two physiological signals, namely electrocardiography (one-channel, 256Hz)
and electroencephalography (14-channel, 128Hz). Both devices can be viewed as
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Figure 9.3: Distribution of annotations in a subset of CASE [212] dataset used in
experiments. All values were normalized relative to range of scales in employed
questionnaires.

relatively simple when compared with medical-grade interfaces. We present the
resulting distribution of emotion annotations in Fig. 9.4.

9.1.2 Dataset preprocessing
Utilized datasets di)ered from one another; therefore, we had to preprocess them
into one common form. First, to increase the number of samples, all recordings
of emotion inductions were divided into 10-second long windows with an overlap
of five seconds. We created five such windows from one induction for AMIGOS,
ASCERTAIN, and DREAMER, which all have a single emotion score annotated at
the end of each recording. In the CASE dataset, we utilized continuous annotations
and created 22 samples per recording, restricting their total length to match that of
the shortest stimulus. In all datasets for each induction, we created samples starting
at their end and moving in time towards the beginning. Windowed ECG recordings
were next downsampled to 100Hz to match the frequency expected by the utilized
model (Sec. 9.1.4) and filtered using a high-pass Butterworth filter at 0.5Hz (order
= 5) followed by powerline filtering at 50Hz. Next, samples were further processed
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Figure 9.4: Distribution of annotations in a subset of DREAMER [228] dataset used
in experiments. All values were normalized relative to range of scales in employed
questionnaires.

using studied methods.

9.1.3 Studied processing methods
In this research, we investigated di)erent approaches to personalized data processing.
The approaches below di)er in the produced population-subject relationships, thus
a)ecting the quality of the obtained reasoning models. By facilitating the within-
subject di)erences between samples collected during di)erent emotional states,
we expected models to learn this information more easily and thus achieve higher
recognition accuracy. Moreover, since we preserved the original shape of signals
and absolute scales of processed inputs and outputs, we expected group-personalized
models to perform well by learning subject-specific di)erences between emotional
states and population-wise physiological patterns.

All of the research methods are based on standard scoring (also known as standard-
ization or z-scoring) of data to explore which approach to standardization yields the
best results in terms of regression and classification quality. Each method was tested
in a setup where test subject data were available both in training and test datasets
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without knowledge leaks (multiple data windows from one session had to be all
included in the training or test dataset). This allowed employing machine learning
models to capture each subject’s characteristics during the training phase and those
relationships for reasoning during testing. In our experiments, we considered the
following methods:

Method 1 Simple processing where normalization was done according to the range
of recorded values. It was done by first subtracting the range’s middle
value and later dividing by the range (𝑋𝐿𝑌𝑀𝑋𝑍𝑋 → 𝑋𝑀𝑎𝑀𝑋𝑍𝑋). We also
call it not standardized processing, and abbreviate it as NS.

Method 2 Standardization done per data sample, i.e., z-scoring each data sample
using its own statistics. Conceptually, we treat each data sample indi-
vidually in this method, so models cannot utilize first-order statistics for
learning. We also call it within-sample processing and abbreviate it as
WS. Applicable only to physiological signals.

Method 3 Subject-specific standardization, where each subject’s data were z-scored
using statistical measures calculated only from data of the given subject.
Conceptually, this method aims to make within-subject physiology more
regular while ignoring between-subject relationships. We also call it
within-person processing and abbreviate it as WP.

The above methods were applied to both physiological data (input) and emotional
experience annotations (target). In the case of target personalization, after applying
person-dependent standardization and per-sample standardization, we scale results
to the 0-1 range to improve training stability and to ensure that scales are consistent
and comparable. When describing the results, we denote applied processing meth-
ods as P - physiology processing method & A - annotation processing method, e.g.,
P-NS&A-WP denotes non-standardized physiology and annotations standardized in
a within-person manner.

When planning the experiments, we also considered other approaches, including
standardization respective to population-wise statistics and two-stage methods, e.g.,
population-wise standardization together with additional subject-wise processing.
However, when using standardization (or any other transformation based on shifting
and scaling), each new transformation applied to the already transformed dataset (or
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to its subset) overrides the e)ects of previously applied transformations (mathemat-
ical reasoning supporting this conclusion can be found in Appendix Sec. E.1). This
cancelation does not apply to transformations applied to smaller subsets first and
later to the whole dataset, which we utilize when scaling annotations standardized
in a person-dependent fashion to the 0-1 range.

The above methods were tested both by themselves (e.g., physiology processed
using min-max approach with annotations processed in a subject-specific way) and
together with other methods from the list (e.g., both physiology and annotations
processed using subject-specific approach) on emotion classification and regression
tasks. For the classification task, after processing, we divided data into binary high
emotion (1) and low emotion (0) states around the middle value from the range (0.5).
For regression, after processing with the considered method, emotion annotations
were scaled to the 0-1 range and used as a ground truth.

9.1.4 Emotion modeling
To examine the above data processing methods for emotion modeling, we employed
the WildECG model that we proposed in one of our articles [29]. It is based on
an S4 state-space model [230] pre-trained on the Tracking Individual Performance
with Sensors (TILES) [231] dataset – one of the most extensive publicly available
outside-the-laboratory biosignal datasets.

To learn to extract knowledge, during pretraining the model was tasked with recog-
nizing transformations applied to ECG signal samples in a multi-label classification
setting. The set of possible transformations consisted of (1) masking, (2) cropping,
(3) noise addition (white noise or random wander), (4) signal permutation, (5) time
warping (stretching or squeezing), (6) magnitude scaling, (7) inverting signal along
the temporal axis, and (8) reversing the signal (multiplication by -1). During pre-
training, each augmentation was applied with a predefined probability, and at most,
four transforms were applied simultaneously. More details on transformations and
training procedures can be found in the published article [29].

9.2 Results
In this section, we compare di)erent processing strategies in group- and individual-
model designs. Due to the relatively low number of samples in datasets, all models
were trained and tested using 5-fold cross-validation. Initially, we conducted exper-
iments using two training schemas, i.e., training the whole model (trained all / fully
trained) or only the downstream task head (trained head) with frozen pre-trained
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weights. To simplify analyses, we decided to compare processing methods using
one training schema (trained all) chosen based on obtained results from experiments
conducted with only basic preprocessing applied (NS).

All of the provided accuracy measurements for models are accompanied by baseline
results, namely majority label or average value (respectively for classification and
regression) from test sets (fold) to check if models can predict emotional states
better than naive predictors. For comparisons of modeling approaches in a group-
wise scenario, we also utilized non-initialized models trained solely in a supervised
manner, as in other experiments, personal datasets were too small in size to train
deep learning models solely on them.

In this section, we also describe our attempt at comparing di)erent experimental
designs, i.e., creating general, group-personalized, and subject-specific models and
their impact on obtained model accuracy. For better comparability, we analyzed
results in a subject-wise manner by first averaging results from five folds within
a person and comparing such population-wise distributions between experiment
setups.

The obtained results were tested for statistical significance. Comparisons with
baselines were performed using Wilcoxon’s signed-rank test [232]". Compar-
isons between di)erent studied methods were performed using Friedman’s test
for 𝑏2 and F distributions [233], followed by Conover’s post-hoc test [234, 235]#.
To control family-wise error rate, all of obtained p-values were corrected using
Holm–Bonferroni procedure [209]. While Wilcoxon’s tests were performed on raw
values of metrics (only computed from obtained predictions), for comparisons be-
tween processing methods, we had to account for di)erences in annotations caused
by di)erent annotation processing procedures (as shown in Fig. 9.5). Since those
di)erences are well visible in baseline scores, we performed statistical tests on dis-
tributions of gain values. For 𝑐 components (e.g., number of folds over which we
compute results), vectors of baseline scores 𝑑 = (𝑑1, ..., 𝑑𝑐), and prediction scores
𝑒 = (𝑒1, ..., 𝑒𝑐), vector of gain values 𝑓 can be expressed as:

𝑓 = (𝑒1 → 𝑑1
𝑑1

, ...,
𝑒𝑐 → 𝑑𝑐

𝑑𝑐
)

2Computed using rstatix R package, v. 0.7.2.
3Computed using PMCMRplus R package, v. 1.9.10.
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Figure 9.5: Self-reported arousal and valence of selected subjects from CASE [212]
dataset before and after adjusting.

9.2.1 Processing strategies for group models
When training in group setup for classification task, adjusting all weights of a model
in most cases resulted in higher metric values than training only classification head
with pre-trained weights frozen (Fig. 9.6, Tab. E.1). Also, all fully-trained clas-
sification models beat baseline models in terms of achieved recognition accuracy
(macro averaged F1, precision, and recall measures). On the other hand, in regres-
sion task models not only struggled to achieve higher (or even the same) prediction
accuracy than average baselines (RMSE, MAE), but it is hard to determine which
training strategy was better (Fig. 9.7, Tab. E.2). However, in terms of CCC measure,
fully-trained models performed the best, although we cannot tell if better than base-
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Figure 9.6: Comparison of model training approaches with baselines on classifica-
tion tasks in group setup. Initialized - models initialized with pre-trained weights;
trained all - training all weights of a model; trained head - training only downstream
task head, while leaving rest of weights frozen. For specific values see Tab. E.1.

lines (CCC equals zero for uniform predictions). For further analyses we selected
training strategy where all weights were trained, as it (1) proved to be the best in
classification setting, and (2) achieved highest CCC scores in all cases.

AMIGOS dataset

Results for the AMIGOS dataset show that predictions from models were, in the
majority of cases, di)erent from respective baselines (Fig. 9.8). While in classifica-
tion tasks, such result comes from outperforming baseline predictors, in regression
tasks, no model managed to achieve lower error than baseline values, with only
valence predictors for within-person standardized annotations producing results that
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Figure 9.7: Comparison of model training approaches with baselines on regression
tasks in group setup. Initialized - models initialized with pre-trained weights; trained
all - training all weights of a model; trained head - training only downstream task
head, while leaving rest of weights frozen. For specific values see Tab. E.2.

are not significantly worse than baseline.

Although some di)erences in achieved values can be observed between all process-
ing methods, Friedman’s test showed that they are statistically significant only in
arousal classification task (Tab. E.3), which was confirmed by further post-hoc pair-
wise comparisons. We observed slightly higher values of F1 measure and gain for
models trained on non-standardized annotations when compared with correspond-
ing models trained on standardized annotations and found significant di)erences
between 9 out of 15 pairs of tested processing methods (Tab. E.6). These results
suggest that the main factor influencing di)erences between models is the annotation
processing method, with di)erences between models utilizing the same processing
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Figure 9.8: Comparison of processing methods on AMIGOS dataset in group train-
ing setup. Baseline - majority class (for classification) or average value (for regres-
sion) from test set. Annotations above error bars denote results of the Wilcoxon’s
test for statistical significance of di)erences between methods and baselines: * - p
< 0.05, n.s. - not significant. For specific values see Tabs E.4 and E.5.

being always statistically insignificant and between models utilizing di)erent pro-
cessing being always statistically significant.

ASCERTAIN dataset

Results for the ASCERTAIN dataset show that predictions from models were always
di)erent from respective baselines (Fig. 9.9). Similarly to the AMIGOS dataset, in
classification tasks, such results come from outperforming baseline predictors. In
contrast, in regression tasks, no model managed to outperform baselines or achieve
the same error rates.

Friedman’s test results showed that only for arousal regression, all processing
methods yielded results with no statistically significant di)erences between them
(Tab. E.3). In a classification of emotion states, we observed universally higher F1
macro and gain scores for the prediction of non-standardized emotion annotations.
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Figure 9.9: Comparison of processing methods on ASCERTAIN dataset in group
training setup. Baseline - majority class (for classification) or average value (for re-
gression) from test set. Annotations above error bars denote results of the Wilcoxon’s
test for statistical significance of di)erences between methods and baselines: * - p
< 0.05. For specific values see Tabs E.7 and E.8.

For each of the classification tasks, we observed two di)ering pairs of methods. In
neither of those tasks were we able to identify a common factor impacting results
(Tab. E.9, E.10).

Regression of valence achieved lower (better) error rates when predicting non-
standardized values for two out of three physiology processing methods (P-NS and
P-WP). Also, it always resulted in lower gain scores due to a much higher baseline
error value. Also, for valence regression, we identified three pairs of processing
methods that showed significant di)erences in scores. Di)erently from results
for the AMIGOS dataset, the only pattern that we observed was that combining
non-standardized physiology with within-person standardized annotations led to the
highest, although never statistically significant, average error rates in both regression
tasks (Tab. E.11).
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CASE dataset

Figure 9.10: Comparison of processing methods on CASE dataset in group training
setup. Baseline - majority class (for classification) or average value (for regression)
from test set. Annotations above error bars denote results of the Wilcoxon’s test for
statistical significance of di)erences between methods and baselines: * - p < 0.05,
n.s. - not significant. For specific values see Tabs E.12 and E.13.

For the CASE dataset, we again observed models performing much better than
the baseline in both classification tasks (Fig. 9.10). However, for all regression
tasks, error rates achieved by models were statistically no di)erent from baselines
(Fig. 9.10), which led to lower relative error rates when compared with other datasets.

Results of Friedman’s test showed that only for arousal regression can we expect
some di)erences between processing methods (Tab. E.3). Indeed, pairwise post-
hoc comparisons showed that their results were significantly di)erent for seven pairs
of processing methods’ combinations (Tab. E.11). One source of di)erences can
be found in annotation processing methods, as models using the same annotation
processing never showed statistically significant di)erences. We can also observe
that di)erences between predictions are never caused only by the assumed physiol-
ogy processing method, as for all models utilizing the same annotation processing
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method, di)erences in predicted values were insignificant. In this task, raw error
rates were always lower for within-person standardized annotations.

DREAMER dataset

Figure 9.11: Comparison of processing methods on DREAMER dataset in group
training setup. Baseline - majority class (for classification) or average value (for re-
gression) from test set. Annotations above error bars denote results of the Wilcoxon’s
test for statistical significance of di)erences between methods and baselines: * - p
< 0.05, n.s. - not significant. For specific values see Tabs E.15 and E.16.

For the DREAMER dataset, di)erently from results on other datasets, not all classi-
fication models produced results statistically di)erent from baseline, i.e., in valence
classification for non-processed self-assessment scores, within-person, and within-
sample physiology processing resulted in models showing no significant di)erences
from the majority class model. For regression tasks, all models’ error rates were
higher than those of baseline predictors (Fig. 9.11). However, for no task on this
dataset did Friedman’s test show significant di)erences between processing methods
(Tab. E.3).
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9.2.2 Processing strategies for subject-specific models

Figure 9.12: Comparison of model training approaches with baselines on classifica-
tion tasks in subject-specific setup. Initialized - models initialized with pre-trained
weights; trained all - training all weights of a model; trained head - training only
downstream task head, while leaving rest of weights frozen. For specific values see
Tab. E.17.

In subject-specific setup, training whole models usually resulted in very similar or
the same results as training only classification head with pre-trained weights frozen,
with the latter ones more often achieving better performance (Fig. 9.12, Tab. E.17).
In the regression task, same as in the group modeling setup, no model achieved better
performance than the baseline in terms of RMSE and MAE measures. However,
fully-trained models almost always achieved smaller errors and higher CCC than
models with frozen pre-trained weights (Fig. 9.13, Tab. E.18). Therefore, for further
analyses, we selected a training strategy where all weights were trained.

Results for comparisons of trained models with baselines show that subject-specific
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Figure 9.13: Comparison of model training approaches with baselines on regression
tasks in subject-specific setup. Initialized - models initialized with pre-trained
weights; trained all - training all weights of a model; trained head - training only
downstream task head, while leaving rest of weights frozen. For specific values see
Tab. E.18.

models consistently achieved significantly higher classification accuracy (in terms
of F1 score) and significantly higher error in regression tasks (in terms of RMSE)
than corresponding baselines. From the results of Friedman’s test, we expected
significant di)erences between at least two utilized processing methods in 9 out of
16 studied cases (Tab. E.19).

AMIGOS dataset

For the AMIGOS dataset, Friedman’s test showed expected significant di)erences
between processing methods only for regression tasks (Tab. E.19). We noticed that
regression of non-standardized emotion levels always achieved lower RMSE than re-
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Figure 9.14: Comparison of processing methods on AMIGOS dataset in subject-
specific training setup. Baseline - majority class (for classification) or average value
(for regression) from the test set (computed subject-wise). Annotations above error
bars denote results of the Wilcoxon’s test for statistical significance of di)erences
between methods and baselines: *** - p < 0.001. For specific values see Tabs E.20
and E.21.

gression of within-person standardized values while achieving higher (worse) gains
due to lower baseline error rates (Fig. 9.14). In Conover’s post-hoc test for arousal
recognition, we can notice that most of the applied methods showed significant dif-
ferences, which were driven mainly by di)erent approaches to annotation processing
(Tab. E.22). Significant di)erences were found only for one of the tested pairs of
processing approaches for the valence task, so we could not draw any conclusions
(Tab. E.23).

ASCERTAIN dataset

Friedman’s test applied to results from the ASCERTAIN dataset showed that we
should expect significant di)erences between methods in all tasks but valence re-
gression (Tab. E.19). Emotion classification models consistently achieved higher
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Figure 9.15: Comparison of processing methods on ASCERTAIN dataset in subject-
specific training setup. Baseline - majority class (for classification) or average value
(for regression) from the test set (computed subject-wise). Annotations above error
bars denote results of the Wilcoxon’s test for statistical significance of di)erences
between methods and baselines: *** - p < 0.001. For specific values see Tabs E.24
and E.25.

F1-macro and gain values when predicting non-standardized emotions (Fig. 9.15).
Similarly, arousal regression models achieved lower error rates for non-standardized
annotations. However, they also achieved higher gains due to lower baseline RMSE.

Contrary to what we expected from Friedman’s test, Conover’s post-hoc for arousal
regression showed no statistically significant di)erences between processing meth-
ods (Tab. E.28). For arousal classification, results show similar behavior as in arousal
regression on the AMIGOS dataset, with no significant di)erences between models
trained on annotations processed in the same manner (Tab. E.26). However, we also
observed that in this task, di)erences between P-WP&A-WP and P-WS&A-NS were
of no statistical significance. For valence classification, we noticed that statistically
significant di)erences were present only between P-WP&A-WP and other methods,
with said method achieving the lowest F1-macro and gain (Tab. E.27).



152

CASE dataset

Figure 9.16: Comparison of processing methods on CASE dataset in subject-specific
training setup. Baseline - majority class (for classification) or average value (for
regression) from the test set (computed subject-wise). Annotations above error
bars denote results of the Wilcoxon’s test for statistical significance of di)erences
between methods and baselines: *** - p < 0.001. For specific values see Tabs E.29
and E.30.

Results of Friedman’s test for the CASE dataset show expected significant di)erences
only for arousal recognition, both as classification and regression tasks. Models for
classification of within-person standardized arousal achieved higher F1-macro than
their non-standardized counterparts (Fig. 9.15). In arousal regression, the P-WP&A-
WP model showed similar results, achieving lower RMSE than the P-WP&A-NS
model. We also noticed that predictors for non-standardized arousal always achieved
higher gain values in both classification and regression. Also, Conover’s test results
showed that only methods di)ering in annotation processing produced results that
were significantly di)erent (Tabs. E.31 and E.32).
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Figure 9.17: Comparison of processing methods on DREAMER dataset in subject-
specific training setup. Baseline - majority class (for classification) or average value
(for regression) from the test set (computed subject-wise). Annotations above error
bars denote results of the Wilcoxon’s test for statistical significance of di)erences
between methods and baselines: *** - p < 0.001. For specific values see Tabs E.33
and E.34.

DREAMER dataset

Similarly, as for the CASE dataset, Friedman’s test shows expected significant di)er-
ences only for arousal recognition in classification and regression tasks. However,
for the DREAMER dataset, we noticed that predicting non-standardized emotions
resulted in better values of metrics (higher for F1-macro, lower for RMSE; Fig. 9.15).
In the regression task, Conover’s test showed no significant di)erences between pairs
of processing methods (Tab. E.36) and in the classification task only P-WP&A-WP
and P-WS&A-NS di)ered on a statistically significant level.
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9.2.3 Comparison of experimental designs

Figure 9.18: Comparison of experimental designs with baselines on classification
tasks. For specific values see Tabs. E.37 and E.38.

Comparisons of experimental designs (setups) were first conducted against respec-
tive baselines, which di)er from each other because training had to be conducted
di)erently for each design. Although all average metrics were always higher for
models, only subject-dependent models produced predictions that were significantly
better from baselines in all classification tasks (Fig. 9.19, Tabs. E.37 and E.38).
Subject-independent and group-personalized models produced predictions with no
statistically significant di)erences from those of baseline models in three classifi-
cation tasks each (subject-independent models in arousal prediction on AMIGOS,
ASCERTAIN and CASE dataset; group-personalized models in arousal prediction
on CASE dataset and valence prediction on AMIGOS and DREAMER datasets).
In regression tasks, although some di)erences exist between models, in all exper-
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Figure 9.19: Comparison of experimental designs with baselines on regression
tasks. For specific values see Tabs. E.39 and E.40.

imental designs, they achieved significantly higher error rates than corresponding
baselines.

Results from Friedman’s test suggested that in almost all tasks and datasets, some
significant di)erences between experimental designs exist (except arousal regression
on AMIGOS and DREAMER datasets (Tab. E.41). Further post-hoc analyses on
baseline-corrected values (gains) showed that in classification tasks, personalized
models (both group- and subject-personalized) always predicted arousal better than
general models. In most cases it was also true for valence predictions, with no
significant di)erences between subject-independent and group-personalized models
on ASCERTAIN, CASE, and DREAMER datasets (Tabs. E.46, E.50, and E.54).
Also, in arousal classification on ASCERTAIN dataset, no significant di)erences
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were observed between predictions from subject- and group-personalized models.

Contrary to classification experiments, where personalized models almost always
achieved higher prediction accuracy than general ones, in regression tasks, subject-
wise models often achieved the highest (worst) average prediction error (RMSE) 9.18,
and subject-independent models performed the best in valence regression on AS-
CERTAIN and DREAMER datasets. When accounting for baselines (gain), subject-
independent models achieved the lowest prediction error in all but two tasks (arousal
prediction on AMIGOS and ASCERTAIN datasets, Tabs. E.39 and E.40), albeit it
was always significantly higher than baseline. Although mean scores always di)ered
between models, Conover’s post-hoc tests (Tabs. E.42-E.55) showed that subject-
independent models performed similarly to personalized ones in arousal regression
on ASCERTAIN dataset (subject-personalized) and valence regression on ASCER-
TAIN and CASE datasets (group-personalized).
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9.3 Discussion
Methods in this section were researched using four laboratory datasets well-known
in the literature. Unfortunately, we could not test them on our real-life dataset
(Chap. 7), as due to its size and complex nature, processing and cleaning the data
have not been finished at the time of writing. Also, we focused our e)orts on
ECG-based emotion recognition, which made our own laboratory dataset unusable
due to the lack of this modality (Chap. 5).

In this chapter, we mainly focused on researching the e)ect of di)erent standard-
ization approaches on the accuracy of deep learning models for emotion recogni-
tion from ECG signals. Processing strategies were utilized to examine the e)ect
of within-subject processing on achieved metrics. We expected that increasing
between-subject di)erences while preserving the original signals’ shapes would
facilitate capturing the subject’s specificity while learning population-wise patterns.

In both group- and personal-model setups, classifiers usually achieved significantly
higher metric values than respective majority class baselines, but Friedman and
Conover’s tests often showed no statistically significant di)erences between classi-
fication models using di)erent processing strategies. We observed some significant
di)erences between arousal predictors for all datasets and between valence pre-
dictors only for the ASCERTAIN dataset. Also, these results depended on an
experimental setup, with processing methods showing di)erences in AMIGOS and
ASCERTAIN datasets for group models and ASCERTAIN, CASE, and DREAMER
datasets for personal models. However, from those results, we can derive that for
the classification of emotional states, annotation processing often does not matter,
and in the cases where di)erences are present, using non-standardized annotations
led to better results than within-person standardized ones. Also, we did not notice
any significant di)erences between physiology processing methods.

Regression models showed opposite behavior to their classification counterparts,
achieving usually higher error rates than average baselines. Nonetheless, we still
decided to examine the results, as average predictors are usually very strong baselines
in regressions tasks, as shown, for example, in Chap. 8. Same as for classification
models, Friedman’s and Conover’s tests often showed no statistically significant
di)erences between processing methods. We observed some significant di)erences
between methods for arousal regression on AMIGOS, ASCERTAIN, and CASE
datasets, for valence regression on AMIGOS and ASCERTAIN, and no di)erences
between predictors for the DREAMER dataset. Also, these results depended on an
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experimental setup, with processing methods showing di)erences in ASCERTAIN
and CASE datasets for group models and AMIGOS and CASE datasets for personal
models. Again, we noticed that statistically significant di)erences originated mainly
from annotation processing methods. Group-personalized models trained on within-
person standardized annotations showed lower error rates and gains for arousal on the
CASE dataset and, in one case, for valence prediction on the ASCERTAIN dataset.
Personal models performed di)erently depending on a dataset, but in most cases,
we noticed lower error rates achieved when predicting non-standardized annotations
paired with higher gain values (due to lower baseline RMSEs).

Depending on the dataset and task solved, we also saw di)erences in the pre-
ferred approach to the experimental setup used. In classification experiments,
subject-wise models often achieved the highest accuracy and gain, followed by
group-personalized models. On the other hand, in regression tasks, person-specific
models never achieved the lowest error rates, and group-personalized models, al-
though they performed best in terms of RMSE, were often paired with the lowest
baselines (resulting in high gain values). When comparing gain values for statis-
tically significant di)erences, we often found no di)erences between models that
seemed to di)er based solely on raw RMSE values or found di)erences between
models that achieved similar error rates.

The above results provide preliminary evidence against our claims that personalized
standardization could improve the results of models for emotion recognition from
ECG signal. However, we would like to highlight the fact that results seem to
depend on (1) a used dataset, (2) a solved task, and (3) an assumed experimental
design. Also, in theory, proposed methods should perform better on information-
rich real-life data, especially in rare situations when very intense emotions occur.
Unfortunately, we could only test these methods on laboratory data due to the
unavailability of a public real-life psychophysiology dataset and delays in processing
our own dataset collected in everyday life.
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C h a p t e r 10

CONCLUSIONS

Throughout this dissertation, we introduced the reader to a)ective computing, pre-
sented the current state of the literature on emotion recognition methods for real
life and on personalized a)ective computing, as well as described our own research
in this field. In this last chapter, we summarize the key points of our work, pro-
vide conclusions regarding them, and reflect on the limitations of our research and
possible future work.

10.1 A!ect recognition literature
One of the major achievements described in this dissertation is the critical study
of a)ective computing literature, with a special focus on the methods for emotion
recognition. Not only did we describe methods used in emotion recognition for
real life, but also similarities and di)erences between experiments conducted in-
side and outside the laboratory by comparing them across several identified study
components, Chap. 3.

Our review revealed that it is necessary to conduct more studies on emotion psy-
chophysiology in real life, but also that this topic attracts more and more scientists
– with time, the number of articles focusing on everyday life increases, Sec. 3.1.
However, as in almost every year within the review scope (except 2017), in-the-
laboratory studies dominated over the in-the-field ones, a)ective studies still need
to shift focus from controlled laboratory conditions to real life.

We also identified the main di)erences between laboratory and field studies across
the characteristics of emotional experience and inductions, possible labeling and
self-assessment methods, characteristics of utilized measuring devices and collected
signals, and other constraints such as environment, required training, or amount of
data collected. As a result, new challenges introduced by real-life studies became
apparent, among others, (1) the necessity to collect information about context in-
fluencing emotions and utilize novel annotation methods, (2) designing machine
learning models to consider multiple possible emotional states at the same time,
(3) using methods that can learn from vast amounts of unlabeled data, (4) finding
ways to combine subject-specific information with population-wise knowledge, (5)



160

designing novel validation methods, and (6) developing more accurate measuring
devices. Moreover, if researchers do not contribute to open science, the whole
a)ective computing field will su)er from a lack of data and code to develop new
solutions and verify created methods.

We also contributed to literature research by reviewing articles that utilized per-
sonalization in a)ect recognition, Chap. 4. We identified four stages at which
personalization can be introduced into developed methods, i.e., (1) choosing the
subject of a)ect recognition, (2) designing the procedure used to create reasoning
models, (3) designing algorithms and machine learning models, and (4) defining
the tasks being solved. Additionally, we listed signals that are used in personalized
a)ective computing and validation procedures assumed by researchers. Although
personalization of a)ect recognition seems feasible, much work needs to be done
in researching the extent to which developed solutions should be personalized, i.e.,
how much personal and general data to use. Also, we have yet to fully understand
the impact that procedures have on results and proper ways of validating them, e.g.,
strategies or metrics.

10.2 Collecting data for emotion research
We also described the process of designing and executing a large everyday-life study
and collecting a dataset containing everyday physiological and behavioral signal
recordings annotated with emotional states, daily a)ect measures, and contextual
data. As it contains a large amount of per-person data collected in everyday life,
it may be useful for developing algorithms and methods for real-life reasoning,
developing and analyzing personalization strategies, or studying daily-life patterns.
However, collecting the LarField dataset was a di*cult endeavor, comprising many
months of preparation, testing, and designing, together with the engagement of the
entire Emognition team.

As we had no prior experience conducting data collection experiments, starting
with a much simpler experiment with controlled conditions, namely collecting the
Emognition dataset, Chap. 5 was a good choice. It allowed us to test devices for
recording physiological measures, discover issues with them (e.g., connection re-
liability, amount of noise and signal quality, the convenience of wearing them),
and decide on the ones we wanted to use in further experiments. Due to the un-
satisfactory performance of utilized devices, we included an ECG chest strap in
the later experiments. Also, we learned a lot regarding the management and com-
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munication with experiment subjects, including possible problems with people not
following procedures, last-minute cancellations, and proper ways of communicating
with humans unfamiliar with the topic.

Since emotions are sparse in everyday life, every captured emotional event is mean-
ingful. Therefore, to increase the likelihood of measuring high-intensity emotional
reactions, we utilized personalized machine learning models to recognize intense
emotions in real-time and trigger self-assessment questionnaires. We researched
di)erent strategies for creating such models, especially personalized ones, and over-
coming the cold start problem in a)ective studies, Chap 6. However, all machine
learning models require large amounts of training samples, and collecting such
amounts separately for each person may take a lot of time. Therefore, we proposed
utilizing per-group personalization before the necessary quantity of per-person cases
is reached.

10.3 Personalization for real-life a!ect recognition
Another problem that we delved into was the a)ect recognition in real life, with a
particular focus on emotions. During literature research, we discovered that although
researchers agree that people di)er in their perception of a)ect, most scientific papers
ignore this subjectivity and concentrate on general solutions. Simultaneously, the
same studies often utilize poor experimental procedures, especially in model training
and validation, thus potentially leading to knowledge leaks between training and
testing data. This issue is well-presented by many scientists who develop their
general models on the same set of participants that they are tested on. It results in a
group-personalized setup instead of a universal one.

In our research, we focused on personalized methods for a)ect recognition. We
confirmed that training models on personal data usually resulted in better recog-
nition quality than creating subject-independent models while also outperforming
baselines. Moreover, we confirmed that utilizing subject-specific or context-aware
models results in the best recognition performance across di)erent a)ective tasks.
It is especially true for classification (Chaps. 7, 6, 9), but our investigation also
demonstrated some potential in solving regression problems (Chaps. 7, 8, and 9).
It is worth noting that regression of a)ective states is by itself a di*cult problem,
and the minority of experiments provided results better than the average baseline,
Chap. 8. Nevertheless, our experimental studies proved that, to a certain extent,
the a)ect can be recognized from physiological signals and that personalization
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improves the recognition accuracy.

Unfortunately, we could not draw far-reaching conclusions regarding personalized
data standardization for emotion recognition, Chap. 9. None of the designed proce-
dures impacted results in a consistent way, neither when applied to input signals nor
when used to process the annotations. Any di)erences that we were able to discern
seem to be dataset-dependent, but we failed to identify significant factors governing
them. However, the rationale behind the designed methods suggests that they might
have some impact when tested on data collected in real life; then, we would expect
more between-subject di)erences than in standardized environments. Regrettably,
due to delays in collecting and processing our own dataset, unavailability of other
datasets collected in daily life, and the approaching deadline for dissertation sub-
mission, we were unable to test the two-fold personalization methods on real-life
data extensively. It will be the subject of our future work.

10.4 Limitations of this work and a!ective computing research
The presented research is not devoid of limitations, which could have a)ected
the obtained results. One of them is the aforementioned delays in collecting and
processing the LarField dataset. Although our results show that subject-dependent
models, in most cases, outperform subject-independent ones, there is still room for
improvement. Because data was not processed until June 2024, we were unable to
perform more sophisticated experiments on the LarField dataset, deeply investigate
relationships present in the data or thoroughly examine models’ behavior.

Another limitation that a)ected the models’ performance was the availability of
resources for developing them. It is probable that the amount of available data,
especially the number of per-person instances, was too low to train the personalized
models properly, Chap. 9. We used a pre-trained representation learning model in
our research, which should require fewer samples than training solely in a supervised
manner. However, the number of training instances could still be too low to adjust
it.

Problems with the availability of resources also a)ected the experiments on the
LarField dataset, Chap. 7. Although the dataset contains many samples, most of
them are unlabeled. Because of limited time and computational resources, we could
only employ classical machine learning algorithms, which can be trained quickly
and do not require vast numbers of instances to capture patterns in data. However,
those models were not designed to contain vast amounts of knowledge, thus leading
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to them possibly capturing only a tiny subset of possible relationships between
features.

Moreover, as we utilized simple machine learning models, we had to perform very
restrictive data cleaning. It resulted in the discarding of many data instances.
Therefore, we could not split data into separate training and testing sets and had
to carry out cross-validation testing on all data. We decided to avoid overfitting
at all costs and, therefore, had to resign from doing parameter optimization for
utilized algorithms. Without using a separate test set for the final evaluation, any
such procedure introduces knowledge leaks!, resulting in overfitted models and
overestimated values of performance metrics. Therefore, although the models were
not as accurate as they could, the reached accuracy estimates should correctly reflect
their capabilities in recognizing everyday a)ect.

10.5 Summary and future work
Even though personalized a)ective computing has yet to become widely adapted,
other authors proposed some personalization methods prior to this dissertation,
Chap. 4. In our own studies, we pushed the research further by:

1. confirming the benefits of utilizing personalized models; both for groups of
people and for individuals, Chaps. 6 - 9;

2. investigating the amount of data required to improve predictions over non-
personalized training, Chap. 6;

3. studying the impact of context (Chap. 7) and processing (Chap. 9) while
creating the personalized models;

4. examining di)erent a)ective tasks that can be modeled using machine learning
methods (Chaps. 6 - 9) and analyzing of properties of such models.

Apart from the above contributions to personalized methods for a)ective computing,
our work provides some other benefits to the field, such as

1. a critical literature review of methods for real-life emotion recognition, Chap. 3;

2. a review of methods used in personalized a)ective computing, Chap. 4;
1They are introduced by choosing specific values of di)erent parameters to best fit the data,

therefore biasing the solution.
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3. a publicly-available dataset of physiological measurements collected with
unobtrusive o)-the-shelf wearables, and their emotional annotations, Chap. 5;

4. a large information-rich dataset collected in real life (Chap. 7) that we plan to
publish soon;

5. a description and results of using a Big Team Science competition as a method
of researching di*cult research questions, Chap. 8;

6. conclusions regarding commensurability, replicability, and comparability in
a)ective computing studies utilizing machine learning methods, Chaps. 3, 4
and 8.

Continuation of research presented in this dissertation may take several forms. As
the research field is constantly growing, periodic updates to literature studies are
needed to be up to date with the newest developments in wearable devices, methods
for recognizing a)ect, available datasets, and procedures for conducting studies and
experiments. The developed methods of personalization via data standardization,
although they did not significantly impact the recognition quality on laboratory data,
could reveal their potential on a dataset collected outside the laboratory. In such
a wild environment, we would expect more between-subject di)erences and more
within-subject similarities. Therefore, we are planning to run the experiments on
the LarField dataset right after the ECG signals are satisfactorily synchronized with
the rest of the data.

Regarding the experiments on the collected LarField dataset, its information-rich
nature allows for studying various states that a person may find themselves in during
their everyday life. In addition to daily stress, mood, health, and emotion indicators,
which we studied briefly in this dissertation, one can explore many other aspects of
people’s daily lives and their impact on di)erent measures, such as (1) stress levels, its
changes over time, and how they depend on other collected measures, (2) correlations
between di)erent self-reported a)ect measures, (3) cycles in people’s self-reported
a)ect and other collected measures, or (4) impact of physical activity and daily
mobility on self-reported a)ect. Not only do we plan to carry out more research
on this dataset, but we also will publish the dataset once the data is thoroughly
investigated, cleansed, synchronized, and described.

One may also investigate the extent to which the links between emotions, physiology,
and behavior are subjective and search for some general patterns in their activation.
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The fact that not only subject-specific training but also group-personalized models
often outperformed baselines in our experiments may suggest the presence of both
types of relationships. The overall good performance of group-personalized models
could stem from data sparsity in high-dimensional feature space. We can test
whether models learn the general emotion-physiology links or just simple averages
for each person. Researching this problem while taking into account all possible
aspects impacting emotion recognition would require designing and conducting an
entirely new study, as none of the datasets and methods presented in the dissertation
are appropriate for addressing such a question directly.

Overall, this dissertation is but a small contribution to emotion and a)ective research
compared to all the work that still needs to be done. Nevertheless, our experiments
suggest that scientists should put much more e)ort into investigating the subjectivity
of a)ect, factors impacting it, and methods for personalizing machine learning
models.
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Table A.1: Emotional models, ground truth, and machine learning (ML) problems (from [16]). Env. –
Environment; Lab – lab study; Field – field study; FC – field with constraints; ’SA’ – self-assessment;
’?’ means it was not described but deduced by us only; ’/’ separates di)erent setups considered; n-class
denotes a multiclass problem solved

Year Paper Scenario;
Env.

Initial
emotional
model

Discrete emotions
+ neutral

Dimensions Modification
of the initial
model

Ground
truth

ML
problem

2002 Nasoz
et al.
[87]

1?/3?;
Lab

Own 4+1: anger, fear,
sadness,
frustration, neutral

– – SA 5-class

2004,
2006

Lisetti
et al.
[89, 90]

2; Lab Own 6: sad, anger, fear,
surprise,
frustration,
amusement

– – labels
assigned
to
stimuli?

6-class

2010,
2011

Rattanyu
et al.
[95, 96]

3; Lab Plutchik &
Circumplex
[45]

5+1: anger, fear,
disgust, sadness,
joy + neutral ↔
Ekman-Friesen
[39] w/o surprise

– selection +
neutral

SA if
agreed
with
picture
label

6-class?

2015 Guo et
al. [97]

3; Lab Own 4+1: anger, fear,
sadness,
happiness, peace

– – video
labels
con-
firmed by
SA?

5-class

2016 Guo et
al. [98]

3; Lab Own 4+1: angry, fear,
sad, happy, relax

– Also grouped
into positive-
negative

stimuli
(video)
labels
con-
firmed by
SA?

binary / 5
x binary
(one
against all)

2016 Exler et
al. [76]

7; Field 3D MDMQ
[236]

– 1: valence (3
levels)

selection
from 3D

SA 3-class

2017 Pollreisz
and
Taher-
iNejad
[78]

1; Lab Own 4: happy, sad,
angry, pain

– – SA 4-class

2017,
2018

Kanjo
et al.
[103,
104]

6; FC SAM [237] – 1: valence (5
levels)

– SA 5-class

2017 Kim et
al.
[105]

6; FC PAD-SAM – 3: pleasure,
arousal,
dominance (9
levels each)

– SA regression

2017 Nguyen
et al.
[106]

7; Field Oatley-
Johnson
[238]

5+1: fear, anger,
sadness, disgust,
happiness +
neutral ↔
Ekman-Friesen
[39] w/o surprise

– grouped into:
negative-
neutral-
positive

SA 3-class?
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2018 Quiroz
et al.
[99]

3; Lab Own 2: happy, sad /
2+1: happy, sad,
neutral

– – stimuli
labels +
SA
(PANAS)

binary /
3-class

2018 Feng et
al.
[102]

5; Lab Circumplex
[46]

2+1: joy,
boredom, accep-
tance=neutral

– selection external
experts

3 x binary
(one vs.
another) /
3-class

2018 Zhao et
al. [79]

1; Lab Dimensional – 2: arousal
(low, high),
valence (low,
high)

equivalent to
quadrants

SA 4-class / 2
x binary

2018 Albraikan
et al.
[80]

1/2; Lab Dimensional 4+1: cheer,
sadness, erotic,
horror, neutral

2: arousal
(calm,
medium,
activated),
valence
(unpleasant,
neutral,
pleasant)

9 keywords
located in the
2D space (3
valence x 3
arousal)

stimuli
(video)
labels /
SA /
keywords

5-class / 2
x 3-class

2018 Albraikan
et al.
[101]

4; Lab Own 4+1: happy, sad,
love, fear, neutral

– selection of 3
emotions

trained
own
system
vs. SA

3-class /
5-class

2018 Nakisa
et al.
[81]

1; Lab 3D
(SAM-like)

– 2: arousal,
valence

keywords
located in
quadrants

SA (key-
words)

4-class

2018 Dao et
al. [63]

6; FC ? 6?: excited, bored,
stressed, relaxed,
happy, serene

– – system /
SA

6-class?

2018 Setiawan
et al.
[108]

?; Lab Own 4: joy, sad, stress,
calm

2: arousal,
valence
(2-valued
each?)

– ? 2 x binary?

2018 Hu et
al. [88]

1?/5?;
Lab?

Krech et al.
[120]

4+1: happy, angry,
fear, sad, normal

– grief from
[120] was
replaced with
sad

SA? or
expert?

5-class

2018 Ragot
et al.
[82]

1; Lab SAM [237] – 2:
arousal,valence

selection=
quadrants

SA 2 x binary

2019 Bulagang
et al.
[91]

2; Lab Circumplex
[46] - di-
mensional

– 2: arousal,
valence

quadrants stimuli
labels

4-class?

2019 Romeo
et al.
[83]

1; Lab SAM [237]
+ liking

– 2: arousal,
valence (9
levels each)

dimension
selection,
level
reduction to
low-high

SA 2 x binary



191

2019 Wampfler
et al.
[84]

1; Lab SAM [237] 3/5/6 (a)ective
regions)

2:
arousal,valence

region
identification

regions
based on
SA

3/5/6-class
/ clustering
in arousal-
valence
space

2019 Schmidt
et al.
[11]

7; Field SAM [239] – 2:
arousal,valence
(3 levels each)

dim selection SA (EMA
[240])

2 x 3-class
/
multi-task
with STAI
& stress

2020 Shu et
al. [92]

2; Lab Dimensional – 1: valence (3
levels)

– stimuli
(video)
labels

3-class

2020 Setiawan
et al.
[93]

2; Lab Own 4: happiness,
angry, sad, calm /
7 for facial
expressions

– – stimuli
labels

4-class?

2020 Martens
et al.
[85]

1; Lab Own – 5: interest,
energy,
valence,
focus, tension

– SA:
DSSQ
[241]

5 x
regression

2020 Kadoya
et al.
[107]

7?; Field Circumplex
[46]

4+1: happy, angry,
relaxed, sad,
neutral

– selection +
neutral

SA? multiclass?

2020 Tizzano
et al.
[100]

3; Lab Own 2: happy, sad /
2+1: happy, sad,
neutral

– – stimuli
labels +
SA
(PANAS)

binary /
3-class

2020 Majumder
et al.
[94]

2?; Lab Own 3+1: happy, angry,
sad, neutral

– – stimuli
labels?

4-class

2020 Saxena
et al.
[86]

1; Lab Own 5+1: amusement,
anger, disgust,
fear, sad, neutral /
2+1: positive,
negative, neutral /
5+1+anxiety /
2+1+anxiety

– – SA 3/6-class /
regression
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Table A.2: Main di)erences in emotion recognition between lab study and field study (from [28]).
’+’ denotes an advantage; ’→’ is a disadvantage; ’±’ means an aspect has both, positive and negative
sides

Category Lab study Field study

Emotions
experi-
enced

→ In controlled environment
→ Impacted by unnatural conditions
→ Limited to the prepared stimuli
+ Beginning and end determined by the
stimuli

+ In natural context
+ Full range of emotions
→ Occurrence is di*cult to capture
→ Hard to determine the beginning and end

Stimuli ± Planned and prepared, e.g., videos,
images, music, tasks
+ Fully controlled by researchers, may be
interrupted
+ May be annotated
+ Known duration
+ No distractions nor unexpected stimuli
+ Condensed sequence of stimulants
separated by wash out

+ Daily life stimuli
→ Unknown stimuli
→ No stimuli label
→ No starting point
→ Unknown duration
→ Out of researcher’s control
→ Susceptible to life conditions, e.g., drugs,
fatigue

Labeling
(ground
truth)

+ Self-assessment
+ Expert-annotated stimuli
+ Observed and derived by external
experts

→ Mainly self-assessment
+ Nearby person (relative, friend)

Self-
assessment

+ Detailed
+ Often
+ Trigger time easy to determine
+ Triggered and filled out right after each
stimuli

→ Limited scope
→ Sporadic
→ Triggering time is di*cult to determine
± Self-, event-, activity-, randomly-triggered,
schedule, reasoning
→ Usually delayed participant’s response [76]

Measuring
physiol-
ogy /
devices

+ Medical-level, precise devices
+ Devices can be large and wired
+ Many devices simultaneously possible
+ External devices possible, e.g., multiple
cameras
+ No battery problem
→ Stressful condition
+ High-quality signal / data (little external
interference)
+ Stationary position (usually sitting)

→ Lower quality of sensors and signals [77]
+ Personal, convenient, useful wearables
→ Only few devices feasible
± Battery-e*cient wearables
+ Convenient and unnoticeable measuring
→ Artifacts caused by the movement and field
conditions
± Data transfer to server (in real-time /
post-session)
→ Lack of data when wearable is o) / not worn
→ 24/7 technical support required

Additional
factors

+ Static environment (temperature,
lighting, etc.)
+ Meta-questions (e.g., health issues, time
past since last co)ee/activity/sleep)
± Relatively small amount of data

→ Variable environment
→ No meta-question
± Large amount of data to be collected and
processed
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Table A.3: Machine learning-related techniques and measures applied in SLR studies (from [28]). ’?’
means it was not clarified but concluded by us only; ’/’ separates di)erent setups considered; n-class
denotes a multiclass problem solved

Year Paper Classification
type

ML models
applied

Tested
hyperparam-
eters

Quality
measures

Imbalance in
learning
samples

Statistical
tests on
results

2002 Nasoz et al.
[87]

5-class KNN, LDA no info accuracy balanced? no

2004,
2006

Lisetti et al.
[89, 90]

6-class KNN, LDA,
MBP

no info accuracy balanced no

2010,
2011

Rattanyu et al.
[95, 96]

6-class? adaptable
KNN, LDA

no info accuracy no info ANOVA,
LSD

2015 Guo et al. [97] 5-class DT based on
their own rules

none accuracy balanced no

2016 Exler et al.
[76]

3-class DT no info accuracy not considered;
high imbalance

no

2016 Guo et al. [98] binary / 5 x
binary (one
against all)

SVM various
kernels

accuracy binary: small
imbalance / 5 x
binary: equal
size sampling

no

2017 Pollreisz and
TaheriNejad
[78]

4-class DT based on
their own rules

no info accuracy,
conf. level
(probabil-
ity)

not considered;
small imbalance

no

2017 Kanjo et al.
[103]

5-class KNN, RF,
stacking with
NB as a learner,
SVM

no info accuracy,
F-measure

no info no

2017 Kim et al.
[105]

regression mixed linear
model

no info - no info p-value,
analysis of
beta coe).

2017 Nguyen et al.
[106]

3-class? DT, KNN,
SVM

none accuracy balanced no

2018 Quiroz et al.
[99]

binary /
3-class

RF, LR none accuracy,
F-measure,
AUC

balanced p-value

2018 Feng et al.
[102]

3 x binary
(one vs.
another) /
3-class

KNN, SVM SVM: 3
kernels;
KNN: k = 1,
3, 5

accuracy,
AUC,
precision,
recall

not considered;
imbalanced

no

2018 Zhao et al.
[79]

4-class / 2 x
binary

NB, NN, RF,
SVM

no info correct
classifica-
tion ratio

no info no

2018 Albraikan et
al. [80]

5-class / 2 x
3-class

no info no info accuracy,
F-measure

their dataset
balanced? /
MAHNOB
imbalanced

no info
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Year Paper Classification
type

ML models
applied

Tested
hyperparam-
eters

Quality
measures

Imbalance in
learning
samples

Statistical
tests on
results

2018 Albraikan et
al. [101]

3-class /
5-class

no info no info accuracy,
statisticall
test for
di)rence

no info McNemar’s
test

2018 Nakisa et al.
[81]

4-class LSTM, MLP,
SVM

optimization
algorithms
(DE, PSO,
SA, RS,
TPE), batch
size, no. of
hidden
neurons

accuracy small
imbalance?

ANOVA

2018 Dao et al. [63] 6-class? no info no info no info no info no
2018 Setiawan et al.

[108]
2 x binary? DT, LR, RF,

SVM
no info accuracy no info no

2018 Kanjo et al.
[104]

5-class CNN,
CNN-LSTM,
MLP

no info accuracy,
F-measure,
precision,
recall,
error rate,
RMSE,
confusion
matrix

no info no

2018 Hu et al. [88] 5-class SVM no info accuracy not considered;
high imbalance

no

2018 Ragot et al.
[82]

2 x binary SVM no info accuracy no info no

2019 Bulagang et
al. [91]

4-class? SVM gamma
values?

accuracy balanced? no

2019 Romeo et al.
[83]

2 x binary NB, RF,
various MILs,
various SVMs

RF: no. of
trees;
mil-Boost:
weak learners

accuracy,
macro
F-measure,
ROC
curves,
confusion
matrices

not considered;
imbalanced

Wilcoxon’s
signed-rank

2019 Wampfler et
al. [84]

3/5/6-class /
clustering in
arousal-
valence space

Gaussian NB,
KM, KNN, RF,
SVM

randomized
search with
100 iterations
(no details)

accuracy,
micro-avg
AUC,
macro-avg
AUC

high imbalance;
RF with
balanced class
weights,
macro-avg AUC

no

2019 Schmidt et al.
[11]

2 x 3-class /
multi-task
with STAI &
stress

CAE, CNN,
DT,
randomized
DT, RF

Adam
optimization

macro
F-measure

high imbalance;
converting
Likert scales into
bins, but data
still imbalanced

Pearson
correlation
coe).
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Year Paper Classification
type

ML models
applied

Tested
hyperparam-
eters

Quality
measures

Imbalance in
learning
samples

Statistical
tests on
results

2020 Shu et al. [92] 3-class AdaBoost, DT,
Gradient
Boosting DT,
KNN, RF

no info accuracy balanced no

2020 Setiawan et al.
[93]

4-class? DF, DT, KNN,
NB, RF, SVM

no info accuracy balanced? no

2020 Martens et al.
[85]

5 x regression gradient
boosting, Ridge
Regression

no info MAE,
RMSE,
Pearson
correlation
coe*cient

no info student’s
t-tests

2020 Kadoya et al.
[107]

multiclass? no info no info no info not considered;
high imbalance

no

2020 Tizzano et al.
[100]

binary /
3-class

SVM, GMM,
LSTM

Adam
optimization

accuracy balanced no

2020 Majumder et
al. [94]

4-class TreeBagger
Bootstrap

none accuracy,
confusion
matrix

balanced? no

2020 Saxena et al.
[86]

3/6-class /
regression

Gaussian SVM,
Cubic KNN,
Weighted
KNN,
Ensemble
Bagged Trees,
Ensemble
Boosted Trees,
NN

no info accuracy,
confusion
matrices

balanced no
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A p p e n d i x B

IN-THE-LABORATORY DATA COLLECTION

(a) Questionnaire for discrete emotions.

(b) Questionnaire for valence, arousal, and
motivation.

Figure B.1: The original (Polish) version of self-reports used in the Emognition
study [24].
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A p p e n d i x C

EMOTIONS IN THE WILD

C.1 Questionnaires utilized for experiments
Although we utilized many more questionnaires to collect contextual data in the
LarField study, we were not able to utilize all of them in our experiments. Below,
we present the Polish versions that we used for research in this dissertation, with
references to their original English versions if we used such. Participants filled
out personality and demography questionnaires at the start of the study. Daily
questionnaires were shown to them in the app – morning and evening questionnaires
once a day, and emotion questionnaires six times a day or more if triggered manually.
In the Emognition app, participants answered daily questionnaires using sliders or
checkboxes, depending on the specific questions!. Polish versions of questionnaires
were created by members of the Emognition research group unless otherwise noted.

C.1.1 Personality and demography questionnaires
Personality questionnaire

1The outline of the Emognition application can be seen in the demonstration video:
https://www.youtube.com/watch?v=qk3DFmRKKlw
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Figure C.1: Personality questionnaire used in the Emognition study [25] – IPIP-
BFM-20 [242]. Polish adaptation by Topolewska et al. [243].

Demography questionnaire

[P!e% / Gender] Okre"lam swoj& p!e% jako...

• Kobieta • M#$czyzna • Niebinarny • Wol# si# samookre"li% (odpowied( otwarta)
• Wol# nie mówi%

[Wiek / Age] Jaki jest Pana/Pani wiek w latach (prosz# wpisa% tylko liczb#)?

• Odpowied( otwarta / Free text

[Narodowo"% / Nationality] Jakiej jest Pani/Pana narodowo"ci? (np. Polak)

• Odpowied( otwarta / Free text

[J#zyk / Language] Czy j#zyk polski jest Twoim pierwszym lub ojczystym j#zykiem?
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• Tak • Nie

[Dzieci / Children] Czy ma Pani/Pan dzieci w wieku poni$ej 18 lat?

• Tak: prosz# wymieni% liczb# dzieci w polu odpowiedzi otwartej (Odpowied(
otwarta / Free text) • Nie

[Opieka / Caregiving] Czy ma Pani/Pan inne obowi&zki zwi&zane z opiek& nad
dzie%mi?

• Tak • Nie

[Dochody / Income] Twoja sytuacja ekonomiczna w porównaniu do przeci#tnej
osoby w Twoim kraju jest:

• zdecydowanie gorsza • gorsza • raczej gorsza • podobna / taka sama • raczej lepsza
• lepsza • zdecydowanie lepsza

[Sektor zatrudnienia / Employment sector]

• Przetwórstwo przemys!owe • Rolnictwo, le"nictwo, !owiectwo, rybactwo • Handel;
naprawa pojazdów samochodowych • Edukacja • Administracja publiczna i obrona
narodowa; obowi&zkowe zabezpieczenia spo!eczne • Budownictwo • Transport i
gospodarka magazynowa • Opieka zdrowotna i pomoc spo!eczna • Dzia!alno"% pro-
fesjonalna, naukowa i techniczna • Administrowanie i dzia!alno"% wspieraj&ca • In-
formacja i komunikacja • Dzia!alno"% finansowa i ubezpieczeniowa • Pozosta!a Dzi-
a!alno"% us!ugowa • Zakwaterowanie i gastronomia • Obs!uga rynku nieruchomo"ci
• Dostawa wody, gospodarowanie 3ciekami i odpadami • Dzia!alno"% zwi&zana
z kultur&, rozrywk& i rekreacj& • Gómictwo i wydobywanie • Inny: (Odpowied(
otwarta / Free text)

[Status zwi&zku / Relationship status] Jaki jest Twój status zwi&zku?

• Samotny • W zwi&zku, ale nie mieszkam razem • Zam#$na lub mieszkaj&ca razem
• Owdowia!y • Rozwiedziony lub w separacji • Inne (prosz# okre"li%) (Odpowied(
otwarta / Free text)

[Wielko"% gospodarstwa domowego / Number of people in a household] Ile osób,
!&cznie z Panem/Pani&, mieszka w gospodarstwie domowym?

• Odpowied( otwarta / Free text

[Wykszta!cenie / Education] Jaki jest Pana(i) poziom wykszta!cenia?

• Podstawowe • 3rednie • Wy$sze (w trakcie) • Wy$sze



202

[Obecnie studiujesz / Are you studying] Czy obecnie studiujesz?

• Tak • Nie

[Zatrudnienie / Employment status] Jaki jest Twój status zatrudnienia?

• Pe!ny etat • W niepe!nym wymiarze czasu pracy • Dorywczo • Samozatrud-
niony • Bezrobotny (i poszukuj&cy pracy) • Bezrobotni (nie poszukuj&cy pracy)
• Nie pracuj# zarobkowo (np. opieka, pomoc domowa, emerytura, wolontariat, stu-
dent, ucze’) • Zamierzam wkrótce rozpocz&% now& prac# • Inny (prosz# okre"li%)
(Odpowied( otwarta / Free text)

[Religia / Religious practices] Czy jest Pan(i) osob& relig-n&?

• Nie • Raczej nie • Raczej tak • Tak

[Pogl&dy polityczne / Political views] (Odpowied( nieobowi&zkowa / Answer not
mandatory) Z jakimi pogl&dami politycznymi si# uto$samiasz na osi ekonomicznej
oraz "wiatopogl&dowej?

O" ekonomiczna:

• Lewicowe (rozwini#ty interwencjonizm pa’stwowy, wysokie podatki, wy$sze
podatki dla bogatszych, rozwini#ta polityka socjalna)

• Prawicowe (dominacja w!asno"ci prywatnej, ograniczenie interwencjonizmu
pa’stwowego, niskie podatki, ograniczone ramy polityki socjalnej pa’stwa)

O" "wiatopogl&dowa/spo!eczna:

• Liberalne (akceptacja zwi&zków homoseksualnych, transseksualizmu, abor-
cji, egalitarno"%)

• Konserwatywne (wa$ne warto"ci to rodzina, naród, tradycja, hierarchia spo!eczna)
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C.1.2 Daily questionnaires
Morning questionnaire

Figure C.2: Morning sleep [244] and stress [245] questionnaire used in the Emog-
nition study [25].

Evening questionnaire

Figure C.3: Evening health [245, 246] and stress [245] questionnaire used in the
Emognition study [25].
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Emotions questionnaire

Figure C.4: Emotion questionnaire used in the Emognition study [15, 25].
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Table C.1: Results for regression of next day morning sleep quality questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.221 0.014 - - -
KNN Broad context 0.208 0.015 -2.636 0.029 *

General 0.219 0.016 -0.405 0.686 ns
Personality 0.214 0.017 -1.608 0.222 ns

MLP Broad context 0.254 0.020 5.233 0.000 ***
General 0.257 0.020 5.857 0.000 ***
Personality 0.256 0.021 5.194 0.000 ***

Random
Forest

Broad context 0.205 0.013 -5.162 0.000 ***
General 0.211 0.014 -3.330 0.007 **
Personality 0.206 0.013 -4.732 0.000 ***

SVM Broad context 0.205 0.016 -3.643 0.003 **
General 0.211 0.015 -2.998 0.014 *
Personality 0.209 0.017 -3.133 0.011 *

C.2 Results
In this section, we present supplementary tables with results obtained from experi-
ments on the LarField dataset, using four machine learning algorithms (KNN, MLP,
Random Forest, SVM) and three modeling strategies: (1) models without personal
context (general), (2) models with personality as context (personality), and models
with personality and demography as context (broad context). All presented classifi-
cation and regression scores were computed using 10-fold cross-validation repeated
10 times (10 di)erent random seeds, same between experiments). Comparisons
between results and baselines (average annotation, test set) were done using cor-
rected paired t-test [208]. The same test was used for pairwise comparisons between
modeling methods, on results averaged between four utilized models. All p-values
were corrected using the Holm–Bonferroni procedure [209].

C.2.1 Prediction results
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Table C.2: Results for regression of next day morning rest questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.236 0.013 - - -
KNN Broad context 0.222 0.017 -2.647 0.028 *

General 0.237 0.015 0.461 0.646 ns
Personality 0.230 0.017 -1.060 0.584 ns

MLP Broad context 0.269 0.023 4.400 0.000 ***
General 0.274 0.022 5.454 0.000 ***
Personality 0.273 0.019 6.291 0.000 ***

Random
Forest

Broad context 0.218 0.013 -5.418 0.000 ***
General 0.221 0.013 -4.562 0.000 ***
Personality 0.219 0.013 -5.032 0.000 ***

SVM Broad context 0.217 0.016 -3.870 0.001 **
General 0.221 0.016 -3.537 0.003 **
Personality 0.221 0.016 -3.208 0.007 **

Table C.3: Results for regression of next day morning stress questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.300 0.013 - - -
KNN Broad context 0.235 0.016 -10.205 0.000 ***

General 0.235 0.016 -10.286 0.000 ***
Personality 0.229 0.019 -10.077 0.000 ***

MLP Broad context 0.274 0.021 -3.035 0.006 **
General 0.280 0.023 -2.120 0.037 *
Personality 0.271 0.020 -3.628 0.001 **

Random
Forest

Broad context 0.242 0.015 -10.506 0.000 ***
General 0.228 0.015 -13.213 0.000 ***
Personality 0.226 0.015 -13.115 0.000 ***

SVM Broad context 0.232 0.016 -10.642 0.000 ***
General 0.226 0.017 -11.032 0.000 ***
Personality 0.227 0.017 -10.726 0.000 ***
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Table C.4: Results for regression of next day morning composure questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.269 0.014 - - -
KNN Broad context 0.226 0.019 -6.470 0.000 ***

General 0.242 0.018 -4.465 0.000 ***
Personality 0.232 0.018 -5.729 0.000 ***

MLP Broad context 0.266 0.020 -0.422 1.349 ns
General 0.283 0.022 1.865 0.196 ns
Personality 0.271 0.020 0.216 0.830 ns

Random
Forest

Broad context 0.225 0.015 -8.281 0.000 ***
General 0.231 0.016 -7.552 0.000 ***
Personality 0.225 0.016 -7.965 0.000 ***

SVM Broad context 0.222 0.017 -7.597 0.000 ***
General 0.230 0.018 -6.022 0.000 ***
Personality 0.227 0.017 -6.483 0.000 ***

Table C.5: Results for classification of next day morning sleep quality questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.445 0.017 - - -
KNN Broad context 0.614 0.080 6.027 0.000 ***

General 0.514 0.069 2.973 0.019 *
Personality 0.531 0.073 3.412 0.006 **

MLP Broad context 0.593 0.073 5.559 0.000 ***
General 0.583 0.071 5.478 0.000 ***
Personality 0.587 0.075 5.434 0.000 ***

Random
Forest

Broad context 0.468 0.044 1.659 0.200 ns
General 0.465 0.046 1.388 0.168 ns
Personality 0.478 0.055 1.869 0.258 ns

SVM Broad context 0.472 0.046 1.839 0.207 ns
General 0.445 0.017 0.000 0.000 ***
Personality 0.445 0.017 0.000 0.000 ***
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Table C.6: Results for classification of next day morning rest questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.419 0.021 - - -
KNN Broad context 0.634 0.067 8.597 0.000 ***

General 0.544 0.058 6.040 0.000 ***
Personality 0.583 0.067 6.660 0.000 ***

MLP Broad context 0.624 0.065 8.699 0.000 ***
General 0.580 0.070 6.586 0.000 ***
Personality 0.596 0.067 7.323 0.000 ***

Random
Forest

Broad context 0.513 0.067 4.446 0.000 ***
General 0.498 0.067 3.898 0.001 ***
Personality 0.516 0.072 4.170 0.000 ***

SVM Broad context 0.578 0.069 6.831 0.000 ***
General 0.428 0.036 0.987 0.326 ns
Personality 0.473 0.057 3.370 0.002 **

Table C.7: Results for classification of next day morning stress questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.419 0.018 - - -
KNN Broad context 0.772 0.054 16.899 0.000 ***

General 0.764 0.068 14.225 0.000 ***
Personality 0.755 0.063 14.699 0.000 ***

MLP Broad context 0.766 0.057 16.380 0.000 ***
General 0.726 0.062 14.107 0.000 ***
Personality 0.736 0.062 13.798 0.000 ***

Random
Forest

Broad context 0.735 0.062 14.123 0.000 ***
General 0.732 0.064 13.664 0.000 ***
Personality 0.740 0.067 13.600 0.000 ***

SVM Broad context 0.757 0.057 15.815 0.000 ***
General 0.754 0.066 14.124 0.000 ***
Personality 0.748 0.067 13.456 0.000 ***
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Table C.8: Results for classification of next day morning composure questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.390 0.023 - - -
KNN Broad context 0.742 0.057 16.085 0.000 ***

General 0.704 0.058 14.166 0.000 ***
Personality 0.729 0.058 15.567 0.000 ***

MLP Broad context 0.739 0.059 14.957 0.000 ***
General 0.661 0.056 12.741 0.000 ***
Personality 0.698 0.058 14.552 0.000 ***

Random
Forest

Broad context 0.670 0.063 12.408 0.000 ***
General 0.674 0.056 13.123 0.000 ***
Personality 0.691 0.062 13.276 0.000 ***

SVM Broad context 0.722 0.058 15.819 0.000 ***
General 0.713 0.060 14.897 0.000 ***
Personality 0.714 0.060 14.909 0.000 ***

Table C.9: Results for regression of same day evening health questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.231 0.013 - - -
KNN Broad context 0.197 0.015 -7.968 0.000 ***

General 0.220 0.012 -3.372 0.003 **
Personality 0.207 0.014 -7.574 0.000 ***

MLP Broad context 0.221 0.016 -1.975 0.102 ns
General 0.256 0.017 4.295 0.000 ***
Personality 0.236 0.015 0.987 0.326 ns

Random
Forest

Broad context 0.197 0.011 -12.329 0.000 ***
General 0.208 0.010 -9.147 0.000 ***
Personality 0.203 0.012 -10.783 0.000 ***

SVM Broad context 0.188 0.013 -11.894 0.000 ***
General 0.208 0.012 -8.045 0.000 ***
Personality 0.203 0.014 -9.216 0.000 ***
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Table C.10: Results for regression of same day evening mood questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.208 0.009 - - -
KNN Broad context 0.189 0.012 -5.083 0.000 ***

General 0.193 0.011 -5.073 0.000 ***
Personality 0.193 0.011 -4.807 0.000 ***

MLP Broad context 0.209 0.015 0.187 0.852 ns
General 0.213 0.017 0.842 0.804 ns
Personality 0.222 0.014 2.748 0.021 *

Random
Forest

Broad context 0.176 0.010 -13.047 0.000 ***
General 0.179 0.009 -12.175 0.000 ***
Personality 0.182 0.010 -11.645 0.000 ***

SVM Broad context 0.173 0.010 -10.290 0.000 ***
General 0.177 0.010 -10.249 0.000 ***
Personality 0.180 0.010 -9.093 0.000 ***

Table C.11: Results for regression of same day evening overwhelm questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.304 0.012 - - -
KNN Broad context 0.246 0.014 -11.893 0.000 ***

General 0.267 0.014 -8.189 0.000 ***
Personality 0.255 0.014 -10.848 0.000 ***

MLP Broad context 0.280 0.017 -3.658 0.001 **
General 0.301 0.019 -0.365 0.716 ns
Personality 0.293 0.019 -1.652 0.203 ns

Random
Forest

Broad context 0.240 0.013 -16.182 0.000 ***
General 0.247 0.013 -14.662 0.000 ***
Personality 0.244 0.013 -15.182 0.000 ***

SVM Broad context 0.234 0.013 -15.465 0.000 ***
General 0.248 0.015 -12.269 0.000 ***
Personality 0.243 0.014 -14.067 0.000 ***
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Table C.12: Results for regression of same day evening unpredictability question-
naire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.290 0.012 - - -
KNN Broad context 0.229 0.015 -12.601 0.000 ***

General 0.262 0.013 -6.031 0.000 ***
Personality 0.240 0.013 -10.970 0.000 ***

MLP Broad context 0.263 0.019 -3.929 0.000 ***
General 0.302 0.019 1.734 0.172 ns
Personality 0.282 0.018 -1.178 0.242 ns

Random
Forest

Broad context 0.234 0.011 -16.707 0.000 ***
General 0.251 0.012 -10.957 0.000 ***
Personality 0.241 0.011 -14.127 0.000 ***

SVM Broad context 0.221 0.014 -15.262 0.000 ***
General 0.249 0.014 -9.374 0.000 ***
Personality 0.241 0.013 -12.712 0.000 ***

Table C.13: Results for classification of same day evening health questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.465 0.010 - - -
KNN Broad context 0.665 0.073 7.839 0.000 ***

General 0.556 0.065 4.003 0.000 ***
Personality 0.652 0.079 6.994 0.000 ***

MLP Broad context 0.670 0.067 8.755 0.000 ***
General 0.614 0.067 6.384 0.000 ***
Personality 0.653 0.076 7.000 0.000 ***

Random
Forest

Broad context 0.561 0.074 3.922 0.000 ***
General 0.514 0.058 2.623 0.010 *
Personality 0.519 0.062 2.667 0.018 *

SVM Broad context 0.585 0.065 5.412 0.000 ***
General 0.465 0.010 0.000 0.000 ***
Personality 0.573 0.064 5.031 0.000 ***
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Table C.14: Results for classification of same day evening mood questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.443 0.011 - - -
KNN Broad context 0.685 0.060 11.615 0.000 ***

General 0.624 0.051 9.792 0.000 ***
Personality 0.671 0.056 11.634 0.000 ***

MLP Broad context 0.706 0.058 13.024 0.000 ***
General 0.685 0.056 12.049 0.000 ***
Personality 0.697 0.051 13.902 0.000 ***

Random
Forest

Broad context 0.689 0.060 12.033 0.000 ***
General 0.673 0.067 9.962 0.000 ***
Personality 0.611 0.070 7.028 0.000 ***

SVM Broad context 0.622 0.064 8.219 0.000 ***
General 0.662 0.066 9.656 0.000 ***
Personality 0.644 0.060 9.947 0.000 ***

Table C.15: Results for classification of same day evening overwhelm questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.436 0.011 - - -
KNN Broad context 0.683 0.055 12.721 0.000 ***

General 0.684 0.048 14.023 0.000 ***
Personality 0.685 0.053 13.344 0.000 ***

MLP Broad context 0.701 0.053 13.537 0.000 ***
General 0.674 0.045 14.354 0.000 ***
Personality 0.694 0.055 13.059 0.000 ***

Random
Forest

Broad context 0.666 0.057 11.912 0.000 ***
General 0.650 0.056 11.586 0.000 ***
Personality 0.653 0.060 10.787 0.000 ***

SVM Broad context 0.662 0.053 12.244 0.000 ***
General 0.704 0.053 14.632 0.000 ***
Personality 0.701 0.049 15.483 0.000 ***
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Table C.16: Results for classification of same day evening unpredictability ques-
tionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.436 0.010 - - -
KNN Broad context 0.713 0.049 16.051 0.000 ***

General 0.661 0.055 11.762 0.000 ***
Personality 0.670 0.055 12.067 0.000 ***

MLP Broad context 0.712 0.052 14.823 0.000 ***
General 0.623 0.059 9.053 0.000 ***
Personality 0.684 0.048 13.786 0.000 ***

Random
Forest

Broad context 0.613 0.057 9.210 0.000 ***
General 0.574 0.058 7.045 0.000 ***
Personality 0.577 0.056 7.441 0.000 ***

SVM Broad context 0.634 0.063 9.211 0.000 ***
General 0.572 0.060 6.931 0.000 ***
Personality 0.625 0.062 8.988 0.000 ***

Table C.17: Results for regression of daily emotions morning valence questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.497 0.004 - - -
KNN Broad context 0.518 0.029 2.152 0.135 ns

General 0.530 0.028 3.403 0.006 **
Personality 0.535 0.022 4.869 0.000 ***

MLP Broad context 0.608 0.043 7.523 0.000 ***
General 0.619 0.039 8.973 0.000 ***
Personality 0.621 0.045 7.962 0.000 ***

Random
Forest

Broad context 0.496 0.015 -0.231 1.636 ns
General 0.500 0.014 0.674 1.505 ns
Personality 0.497 0.014 0.128 0.898 ns

SVM Broad context 0.535 0.033 3.381 0.005 **
General 0.537 0.031 3.753 0.002 **
Personality 0.536 0.030 3.739 0.002 **
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Table C.18: Results for regression of daily emotions morning arousal questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.491 0.009 - - -
KNN Broad context 0.489 0.032 -0.233 2.450 ns

General 0.525 0.026 4.251 0.000 ***
Personality 0.508 0.025 1.814 0.436 ns

MLP Broad context 0.570 0.040 5.665 0.000 ***
General 0.611 0.049 7.431 0.000 ***
Personality 0.601 0.039 8.204 0.000 ***

Random
Forest

Broad context 0.470 0.021 -3.143 0.018 *
General 0.485 0.018 -1.196 1.174 ns
Personality 0.478 0.019 -2.151 0.237 ns

SVM Broad context 0.490 0.035 -0.115 0.909 ns
General 0.493 0.031 0.153 1.757 ns
Personality 0.494 0.029 0.317 3.007 ns

Table C.19: Results for regression of daily emotions afternoon valence question-
naire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.472 0.016 - - -
KNN Broad context 0.489 0.028 1.932 0.281 ns

General 0.503 0.028 3.822 0.002 **
Personality 0.492 0.028 2.566 0.083 ns

MLP Broad context 0.577 0.038 7.960 0.000 ***
General 0.591 0.042 8.437 0.000 ***
Personality 0.573 0.044 6.971 0.000 ***

Random
Forest

Broad context 0.461 0.019 -2.022 0.275 ns
General 0.472 0.017 -0.040 0.968 ns
Personality 0.466 0.017 -1.220 0.450 ns

SVM Broad context 0.483 0.033 1.237 0.657 ns
General 0.494 0.034 2.940 0.033 *
Personality 0.485 0.033 1.613 0.439 ns
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Table C.20: Results for regression of daily emotions afternoon arousal questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.441 0.022 - - -
KNN Broad context 0.448 0.034 0.578 2.259 ns

General 0.454 0.027 1.871 0.450 ns
Personality 0.445 0.032 0.405 2.058 ns

MLP Broad context 0.527 0.044 6.019 0.000 ***
General 0.538 0.038 7.464 0.000 ***
Personality 0.528 0.042 6.278 0.000 ***

Random
Forest

Broad context 0.436 0.027 -0.852 2.379 ns
General 0.443 0.027 0.340 1.470 ns
Personality 0.440 0.027 -0.107 0.915 ns

SVM Broad context 0.449 0.036 0.811 2.096 ns
General 0.463 0.038 3.505 0.006 **
Personality 0.458 0.038 2.734 0.059 ns

Table C.21: Results for regression of daily emotions evening valence questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.383 0.033 - - -
KNN Broad context 0.393 0.038 1.230 0.665 ns

General 0.412 0.036 4.048 0.001 ***
Personality 0.410 0.038 3.331 0.009 **

MLP Broad context 0.449 0.043 5.790 0.000 ***
General 0.459 0.042 6.433 0.000 ***
Personality 0.454 0.046 6.143 0.000 ***

Random
Forest

Broad context 0.381 0.032 -0.326 1.490 ns
General 0.399 0.033 3.625 0.004 **
Personality 0.392 0.033 1.986 0.199 ns

SVM Broad context 0.381 0.040 -0.218 0.828 ns
General 0.392 0.041 3.175 0.012 *
Personality 0.390 0.042 2.244 0.135 ns
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Table C.22: Results for regression of daily emotions evening arousal questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.393 0.033 - - -
KNN Broad context 0.402 0.039 1.081 0.847 ns

General 0.433 0.037 5.670 0.000 ***
Personality 0.426 0.039 4.407 0.000 ***

MLP Broad context 0.448 0.042 5.280 0.000 ***
General 0.498 0.045 8.310 0.000 ***
Personality 0.471 0.047 5.887 0.000 ***

Random
Forest

Broad context 0.393 0.030 -0.038 0.969 ns
General 0.409 0.031 3.147 0.013 *
Personality 0.403 0.031 1.740 0.340 ns

SVM Broad context 0.395 0.041 0.393 1.391 ns
General 0.405 0.041 3.758 0.002 **
Personality 0.404 0.042 3.016 0.016 *

Table C.23: Results for classification of daily emotions morning valence question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.497 0.004 - - -
KNN Broad context 0.565 0.051 3.787 0.003 **

General 0.550 0.055 2.787 0.038 *
Personality 0.541 0.052 2.437 0.050 *

MLP Broad context 0.551 0.054 2.854 0.037 *
General 0.531 0.057 1.726 0.088 ns
Personality 0.535 0.052 2.106 0.075 ns

Random
Forest

Broad context 0.557 0.056 3.041 0.033 *
General 0.552 0.061 2.568 0.047 *
Personality 0.557 0.062 2.775 0.033 *

SVM Broad context 0.547 0.050 2.878 0.039 *
General 0.559 0.061 2.915 0.040 *
Personality 0.557 0.057 3.016 0.033 *
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Table C.24: Results for classification of daily emotions morning arousal question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.491 0.009 - - -
KNN Broad context 0.618 0.055 6.487 0.000 ***

General 0.518 0.055 1.340 0.183 ns
Personality 0.584 0.056 4.781 0.000 ***

MLP Broad context 0.604 0.052 6.026 0.000 ***
General 0.539 0.054 2.519 0.027 *
Personality 0.559 0.053 3.543 0.002 **

Random
Forest

Broad context 0.634 0.056 7.110 0.000 ***
General 0.576 0.053 4.413 0.000 ***
Personality 0.590 0.056 4.953 0.000 ***

SVM Broad context 0.645 0.054 7.896 0.000 ***
General 0.597 0.051 5.680 0.000 ***
Personality 0.608 0.054 6.004 0.000 ***

Table C.25: Results for classification of daily emotions afternoon valence question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.472 0.016 - - -
KNN Broad context 0.579 0.049 6.021 0.000 ***

General 0.542 0.055 3.417 0.007 **
Personality 0.559 0.059 4.004 0.001 **

MLP Broad context 0.563 0.057 4.286 0.000 ***
General 0.538 0.061 3.034 0.022 *
Personality 0.556 0.057 4.218 0.001 ***

Random
Forest

Broad context 0.543 0.062 2.991 0.018 *
General 0.491 0.054 0.898 0.743 ns
Personality 0.513 0.053 1.932 0.225 ns

SVM Broad context 0.543 0.060 3.021 0.019 *
General 0.437 0.051 -1.579 0.353 ns
Personality 0.468 0.050 -0.167 0.868 ns
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Table C.26: Results for classification of daily emotions afternoon arousal question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.441 0.022 - - -
KNN Broad context 0.617 0.058 8.482 0.000 ***

General 0.558 0.058 5.086 0.000 ***
Personality 0.590 0.054 7.243 0.000 ***

MLP Broad context 0.592 0.063 6.456 0.000 ***
General 0.546 0.056 5.046 0.000 ***
Personality 0.570 0.054 6.091 0.000 ***

Random
Forest

Broad context 0.496 0.053 2.516 0.081 ns
General 0.459 0.049 0.823 0.825 ns
Personality 0.466 0.048 1.168 0.737 ns

SVM Broad context 0.432 0.033 -0.544 0.587 ns
General 0.421 0.016 -1.495 0.691 ns
Personality 0.421 0.016 -1.495 0.553 ns

Table C.27: Results for classification of daily emotions evening valence question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.383 0.033 - - -
KNN Broad context 0.585 0.068 7.429 0.000 ***

General 0.497 0.058 4.523 0.000 ***
Personality 0.541 0.065 5.781 0.000 ***

MLP Broad context 0.578 0.060 8.307 0.000 ***
General 0.529 0.060 5.858 0.000 ***
Personality 0.554 0.065 6.192 0.000 ***

Random
Forest

Broad context 0.456 0.027 4.068 0.000 ***
General 0.449 0.018 4.066 0.000 ***
Personality 0.460 0.032 3.897 0.000 ***

SVM Broad context 0.449 0.012 4.229 0.000 ***
General 0.450 0.012 4.234 0.000 ***
Personality 0.450 0.012 4.234 0.000 ***
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Table C.28: Results for classification of daily emotions evening arousal question-
naire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.393 0.033 - - -
KNN Broad context 0.576 0.066 6.419 0.000 ***

General 0.477 0.044 3.872 0.001 **
Personality 0.502 0.054 4.475 0.000 ***

MLP Broad context 0.564 0.060 7.465 0.000 ***
General 0.508 0.056 4.763 0.000 ***
Personality 0.528 0.054 5.849 0.000 ***

Random
Forest

Broad context 0.452 0.025 3.437 0.004 **
General 0.452 0.027 3.260 0.002 **
Personality 0.454 0.026 3.531 0.004 **

SVM Broad context 0.446 0.013 3.339 0.005 **
General 0.446 0.013 3.339 0.004 **
Personality 0.446 0.013 3.339 0.002 **

Table C.29: Results for regression of momentary emotions valence questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.226 0.006 - - -
KNN Broad context 0.232 0.008 2.830 0.017 *

General 0.244 0.007 9.258 0.000 ***
Personality 0.234 0.008 3.711 0.002 **

MLP Broad context 0.254 0.022 3.589 0.002 **
General 0.222 0.006 -3.731 0.002 **
Personality 0.262 0.016 7.093 0.000 ***

Random
Forest

Broad context 0.215 0.007 -8.363 0.000 ***
General 0.223 0.006 -2.264 0.026 *
Personality 0.216 0.007 -7.865 0.000 ***

SVM Broad context 0.216 0.008 -4.458 0.000 ***
General 0.222 0.007 -2.509 0.027 *
Personality 0.217 0.007 -5.013 0.000 ***
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Table C.30: Results for regression of momentary emotions arousal questionnaire.

RMSE Std t p Signif.
Model Personalization
Baseline - 0.196 0.007 - - -
KNN Broad context 0.197 0.008 0.301 0.764 ns

General 0.211 0.008 9.797 0.000 ***
Personality 0.199 0.008 1.229 0.444 ns

MLP Broad context 0.209 0.020 1.920 0.173 ns
General 0.193 0.007 -2.565 0.047 *
Personality 0.215 0.016 3.795 0.001 **

Random
Forest

Broad context 0.181 0.007 -11.006 0.000 ***
General 0.193 0.006 -4.645 0.000 ***
Personality 0.183 0.006 -12.590 0.000 ***

SVM Broad context 0.182 0.007 -8.364 0.000 ***
General 0.192 0.007 -5.240 0.000 ***
Personality 0.186 0.007 -7.482 0.000 ***

Table C.31: Results for classification of momentary emotions intense emotions
questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.461 0.013 - - -
KNN Broad context 0.699 0.028 23.641 0.000 ***

General 0.494 0.032 2.586 0.022 *
Personality 0.671 0.030 20.200 0.000 ***

MLP Broad context 0.680 0.029 19.200 0.000 ***
General 0.514 0.032 4.165 0.000 ***
Personality 0.663 0.033 16.665 0.000 ***

Random
Forest

Broad context 0.695 0.028 22.090 0.000 ***
General 0.451 0.020 -1.129 0.262 ns
Personality 0.508 0.029 3.713 0.001 **

SVM Broad context 0.708 0.029 22.932 0.000 ***
General 0.408 0.011 -6.416 0.000 ***
Personality 0.413 0.018 -4.777 0.000 ***
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Table C.32: Results for classification of momentary emotions valence questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.468 0.009 - - -
KNN Broad context 0.601 0.029 12.010 0.000 ***

General 0.518 0.027 4.907 0.000 ***
Personality 0.590 0.029 11.428 0.000 ***

MLP Broad context 0.580 0.026 11.536 0.000 ***
General 0.526 0.028 5.555 0.000 ***
Personality 0.582 0.027 11.395 0.000 ***

Random
Forest

Broad context 0.531 0.028 5.678 0.000 ***
General 0.469 0.022 0.110 0.913 ns
Personality 0.492 0.026 2.273 0.101 ns

SVM Broad context 0.573 0.032 8.472 0.000 ***
General 0.452 0.026 -1.425 0.471 ns
Personality 0.482 0.030 1.222 0.449 ns

Table C.33: Results for classification of momentary emotions arousal questionnaire.

F1-
macro

Std t p Signif.

Model Personalization
Baseline - 0.398 0.019 - - -
KNN Broad context 0.570 0.034 12.570 0.000 ***

General 0.515 0.026 9.924 0.000 ***
Personality 0.571 0.035 12.227 0.000 ***

MLP Broad context 0.589 0.032 15.929 0.000 ***
General 0.532 0.031 10.605 0.000 ***
Personality 0.580 0.033 14.771 0.000 ***

Random
Forest

Broad context 0.481 0.022 7.243 0.000 ***
General 0.461 0.016 6.086 0.000 ***
Personality 0.468 0.019 6.338 0.000 ***

SVM Broad context 0.484 0.033 6.150 0.000 ***
General 0.445 0.008 5.065 0.000 ***
Personality 0.445 0.008 5.065 0.000 ***
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C.2.2 Pairwise comparisons of modeling strategies
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Table C.34: Pairwise comparisons of modeling strategies for regression of next day
morning questionnaires.

t p Signif.
Task Approach 1 Approach 2
Composure General Broad context 3.127 0.007 **

Personality 2.872 0.010 **
Personality Broad context 1.328 0.187 ns

Rest General Broad context 1.865 0.195 ns
Personality 0.941 0.349 ns

Personality Broad context 1.620 0.217 ns
Sleep Quality General Broad context 1.899 0.182 ns

Personality 1.292 0.399 ns
Personality Broad context 1.161 0.249 ns

Stress General Broad context -0.838 0.404 ns
Personality 1.326 0.376 ns

Personality Broad context -1.862 0.197 ns

Table C.35: Pairwise comparisons of modeling strategies for classification of next
day morning questionnaires.

t p Signif.
Task Approach 1 Approach 2
Composure General Broad context -2.175 0.064 ns

Personality -2.288 0.073 ns
Personality Broad context -0.801 0.425 ns

Rest General Broad context -4.557 0.000 ***
Personality -2.349 0.021 *

Personality Broad context -3.640 0.001 ***
Sleep Quality General Broad context -2.441 0.049 *

Personality -0.715 0.476 ns
Personality Broad context -2.332 0.044 *

Stress General Broad context -0.915 0.724 ns
Personality -0.082 0.935 ns

Personality Broad context -0.981 0.987 ns
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Table C.36: Pairwise comparisons of modeling strategies for regression of same
day evening questionnaires.

t p Signif.
Task Approach 1 Approach 2
Health General Broad context 7.304 0.000 ***

Personality 4.807 0.000 ***
Personality Broad context 5.063 0.000 ***

Mood General Broad context 1.323 0.189 ns
Personality -1.767 0.161 ns

Personality Broad context 4.205 0.000 ***
Overwhelm General Broad context 5.535 0.000 ***

Personality 3.327 0.001 **
Personality Broad context 4.081 0.000 ***

Unpredictability General Broad context 7.894 0.000 ***
Personality 5.260 0.000 ***

Personality Broad context 5.707 0.000 ***

Table C.37: Pairwise comparisons of modeling strategies for classification of same
day evening questionnaires.

t p Signif.
Task Approach 1 Approach 2
Health General Broad context -5.132 0.000 ***

Personality -4.047 0.000 ***
Personality Broad context -1.851 0.067 ns

Mood General Broad context -1.018 0.622 ns
Personality 0.421 0.675 ns

Personality Broad context -1.705 0.274 ns
Overwhelm General Broad context -0.012 0.991 ns

Personality -0.551 1.166 ns
Personality Broad context 0.575 1.700 ns

Unpredictability General Broad context -4.312 0.000 ***
Personality -2.879 0.010 **

Personality Broad context -2.801 0.006 **
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Table C.38: Pairwise comparisons of modeling strategies for regression of daily
emotions questionnaires.

t p Signif.
Task Approach 1 Approach 2
Afternoon
Arousal

General Broad context 1.459 0.443 ns
Personality 1.392 0.334 ns

Personality Broad context 0.507 0.614 ns
Afternoon
Valence

General Broad context 1.562 0.243 ns
Personality 1.928 0.170 ns

Personality Broad context 0.186 0.853 ns
Evening Arousal General Broad context 4.927 0.000 ***

Personality 2.145 0.034 *
Personality Broad context 3.484 0.001 **

Evening Valence General Broad context 2.100 0.115 ns
Personality 0.777 0.439 ns

Personality Broad context 1.936 0.111 ns
Morning
Arousal

General Broad context 2.754 0.021 *
Personality 1.240 0.218 ns

Personality Broad context 2.319 0.045 *
Morning
Valence

General Broad context 0.845 0.800 ns
Personality -0.096 0.924 ns

Personality Broad context 1.245 0.648 ns
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Table C.39: Pairwise comparisons of modeling strategies for classification of daily
emotions questionnaires.

t p Signif.
Task Approach 1 Approach 2
Afternoon
Arousal

General Broad context -3.144 0.007 **
Personality -1.585 0.116 ns

Personality Broad context -2.360 0.040 *
Afternoon
Valence

General Broad context -3.505 0.002 **
Personality -1.976 0.051 ns

Personality Broad context -2.638 0.019 *
Evening Arousal General Broad context -3.576 0.002 **

Personality -1.468 0.145 ns
Personality Broad context -2.963 0.008 **

Evening Valence General Broad context -3.319 0.004 **
Personality -2.053 0.085 ns

Personality Broad context -1.822 0.071 ns
Morning
Arousal

General Broad context -5.155 0.000 ***
Personality -2.645 0.010 **

Personality Broad context -3.580 0.001 **
Morning
Valence

General Broad context -0.548 1.169 ns
Personality 0.051 0.959 ns

Personality Broad context -0.688 1.480 ns

Table C.40: Pairwise comparisons of modeling strategies for regression of momen-
tary emotions questionnaires.

t p Signif.
Task Approach 1 Approach 2
Arousal General Broad context 2.318 0.067 ns

Personality 1.031 0.305 ns
Personality Broad context 1.667 0.197 ns

Valence General Broad context -0.608 0.545 ns
Personality -2.418 0.052 ns

Personality Broad context 1.244 0.433 ns
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Table C.41: Pairwise comparisons of modeling strategies for classification of mo-
mentary emotions questionnaires.

t p Signif.
Task Approach 1 Approach 2
Arousal General Broad context -5.601 0.000 ***

Personality -4.751 0.000 ***
Personality Broad context -2.853 0.005 **

Intense
Emotions

General Broad context -23.935 0.000 ***
Personality -13.222 0.000 ***

Personality Broad context -22.003 0.000 ***
Valence General Broad context -10.187 0.000 ***

Personality -7.074 0.000 ***
Personality Broad context -7.103 0.000 ***
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A p p e n d i x D

EPIC COMPETITION SUBMISSIONS

Table D.1: Details of submissions to Emotion Physiology and Experience Collabo-
ration (EPiC) challenge (from [32]). ? - deduced by us.

Team id Approach Comment

Team 1 • Combining multiple physiological signals into
one, using their variance as weights

• Person-specific models in across-time,
across-emotion and across-induction
scenarios?

• MLP models used in all scenarios
• Predicting arousal and valence levels at the

same time

Non-rigorous
approach –
mixing data
between folds

Team 2 • Models utilizing convolutional and recurrent
layers (TCN-LSTM) [247]

• Predicting arousal and valence levels
separately

Intended
(rigorous)
approach to
validation

Team 3 • Models trained in the smallest possible context
– Separate models for each person-video pair

in across-time validation scenario
– Video-specific models in across-subject

scenario
– Models trained on selected most informative

videos in across-emotion scenario
– Separate models for each video in

across-induction scenario
• Autogluon (AutoML framework) used to train

models and choose the best one:
– MLP
– Tree-based algorithms (Random Forest,

CatBoost, GBM, GBMXT, GBMLarge)
– KNN

• Predicting arousal and valence levels
separately

Intended
(rigorous)
approach to
validation
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Team id Approach Comment

Team 4 Tree-based algorithms
• Models trained in the smallest possible context

– Separate models for each person-video pair
in across-time validation scenario

– Video-specific models in across-subject
scenario

– Subject-specific models in across-emotion
scenario and across-induction scenario

• Tree based algorithms (Random Forest and
XGBoost)

• Predicting arousal and valence levels
separately

Intended
(rigorous)
approach to
validation

Team 5 • General models predicting arousal and valence
levels at the same time?

• Multivariate Time Series Transformers in
across-time and across-subject validation
scenarios

• XGBoost models in across-emotion scenario
and across-induction scenarios

Non-rigorous
approach –
mixing data
between folds

Team 6 • General models predicting arousal and valence
levels separately

• In each validation scenario, three algorithms
were tested (ElasticNet, Random Forest, SVM)
and the best one was selected

Intended
(rigorous)
approach to
validation

Team 7 • General models simultainously predicting
arousal and valence levels

• FEDformer (Frequency Enhanced
Decomposed Transformer) algorithm used,
with additional model for prediction
smoothing

Non-rigorous
approach –
mixing data
between folds?

Team 8 • General models simultainously predicting
arousal and valence levels

• Models consisting of LSTM layers
• In across-time validation scenario, models

were provided with information about
predicted subject and video

Intended
(rigorous)
approach to
validation
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Team id Approach Comment

Team 9 • Only ECG signal used
• Models trained in the smallest possible context

– Separate models for each person-video pair
in across-time validation scenario

– Video-specific models in across-subject
scenario

– Subject-specific models in across-emotion
scenario and across-induction scenario

• Predicting arousal and valence levels
separately

• Deep transformer-based network used
Team 10 • General models predicting arousal and valence

levels separately
• Deep pre-trained model used

– S4 state-space architecture
– Layers for ECG signal processing was

pre-trained on TILES [231] dataset
– Layers for other signals were trained in

supervised manner on competition dataset

Intended
(rigorous)
approach to
validation

Team 11 • General models for predicting arousal and
valence levels simultainously

• Only decision trees used

Non-rigorous
approach –
mixing data
between folds

Team 12 • General models predicting arousal and valence
levels separately

• Deep transformer-based network used

Intended
(rigorous)
approach to
validation?
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Table D.6: Results for the three teams selected to partake in additional testing (based
on [32]).

Team Team 3 Team 4 Team 9
Scenario

Across-time MAE 0.876 0.807 0.937
MAE (random) 1.024 0.956 0.986
di) -0.148 -0.150 -0.049
Z -58.318 -56.907 -18.701
p 0.000 0.000 0.000

Across-subject MAE 1.026 1.218 0.965
MAE (random) 1.092 1.285 0.984
di) -0.067 -0.067 -0.018
Z -26.305 -25.409 -6.969
p 0.000 0.000 0.000

Across-emotion MAE 1.359 1.513 1.521
MAE (random) 1.687 1.516 1.650
di) -0.328 -0.003 -0.129
Z -129.180 -1.066 -49.300
p 0.000 0.287 0.000

Across-induction MAE 1.255 1.397 1.336
MAE (random) 1.275 1.493 1.478
di) -0.020 -0.096 -0.142
Z -7.992 -36.607 -54.263
p 0.000 0.000 0.000
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A p p e n d i x E

PERSONALIZED EMOTION RECOGNITION

E.1 Proof for z-score equality
Population data 𝑌 = {𝑌1, 𝑌2, ..., 𝑌𝑎}, |𝑌 | = 𝑇

n-th subject’s data 𝑌𝑎 = {𝑌𝑎1, 𝑌𝑎2, ..., 𝑌𝑎𝑋}, |𝑌𝑔 | = 𝑐

mean of population data 𝑕 = 1
𝑇

∑
𝑇 𝑌𝑎

mean of n-th subject data 𝑕𝑎 = 1
𝑐

∑
𝑐 𝑌𝑎𝑋

standard deviation of population data 𝑖 =
√

1
𝑇

∑
𝑇 (𝑌𝑎 → 𝑕)2

standard deviation of n-th subject data 𝑖𝑎 =
√

1
𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕𝑎)2

z-scored population data 𝑅𝑌 = 𝑌→𝑕
𝑖

n-th subject data z-scored using only data 𝑁𝑌𝑎 =
𝑌𝐿→𝑕𝐿
𝑖𝐿

N-th subject data, z-scored using population measures (𝑕,𝑖), and subjective mea-
sures afterwards (𝑅𝑕𝑎, 𝑅𝑖𝑎, computed after first z-scoring):

𝑁𝑅𝑌𝑎 =
𝑅𝑌𝑎 → 𝑅𝑕𝑎

𝑅𝑖𝑎
=

𝑅𝑌𝑎 → 1
𝑐

∑
𝑐

𝑅𝑌𝑎𝑋√
1
𝑐

∑
𝑐 ( 𝑅𝑌𝑎𝑋 → 1

𝑐

∑
𝑐

𝑅𝑌𝑎𝑋)2

By substituting 𝑅𝑌𝑎 with 𝑌𝐿→𝑕
𝑖 we obtain

𝑁𝑅𝑌𝑎 =
𝑌𝐿→𝑕
𝑖 → 1

𝑐

∑
𝑐

𝑌𝐿𝑀→𝑕
𝑖√

1
𝑐

∑
𝑐 ( 𝑌𝐿𝑀→𝑕𝑖 → 1

𝑐

∑
𝑐

𝑌𝐿𝑀→𝑕
𝑖 )2

Which can be converted to

𝑁𝑅𝑌𝑎 =
𝑐𝑌𝑎 → 𝑐𝑕 → 𝑖

𝑖

∑
𝑐 (𝑌𝑎𝑋 → 𝑕)

𝑖𝑐
√

1
𝑐

∑
𝑐 ( 𝑌𝐿𝑀→𝑕𝑖 → 1

𝑖𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕))2

=

=
𝑐𝑌𝑎 → 𝑐𝑕 + 𝑐𝑕 →∑

𝑐 𝑌𝑎𝑋

𝑐
√

𝑖2

𝑖2𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕 → 1

𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕))2

=
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=
𝑌𝑎 → 1

𝑐

∑
𝑐 𝑌𝑎𝑋√

1
𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕 + 𝑕 → 1

𝑐

∑
𝑐 𝑌𝑎𝑋)2

=
𝑌𝑎 → 𝑕𝑎√

1
𝑐

∑
𝑐 (𝑌𝑎𝑋 → 𝑕𝑎)2

=
𝑌𝑎 → 𝑕𝑎
𝑖𝑎

Thus, we obtain

𝑁𝑅𝑌𝑎 =
𝑌𝑎 → 𝑕𝑎
𝑖𝑎

= 𝑁𝑌𝑎

proving, that standardizing data twice results in the same transformation as z-scoring
only once, using the latter method.

E.2 Personalized processing
E.2.1 Group models
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Table E.1: Classification results in subject-dependent (group) experimental setup
(metric±std).

F1-macro Precision-
macro

Recall-
macro

Dataset Model Task

AMIGOS Baseline
(majority, test)

Arousal 0.38±0.02 0.31±0.02 0.50±0.00
Valence 0.36±0.01 0.28±0.02 0.50±0.00

Baseline
(trained all)

Arousal 0.38±0.02 0.31±0.02 0.50±0.00
Valence 0.36±0.01 0.28±0.02 0.50±0.00

Initialized
(trained all)

Arousal 0.62±0.04 0.63±0.04 0.62±0.04
Valence 0.57±0.03 0.59±0.03 0.58±0.03

Initialized
(trained head)

Arousal 0.61±0.02 0.61±0.02 0.61±0.03
Valence 0.56±0.03 0.57±0.03 0.56±0.02

ASCERTAIN Baseline
(majority, test)

Arousal 0.45±0.00 0.42±0.01 0.50±0.00
Valence 0.38±0.01 0.31±0.01 0.50±0.00

Baseline
(trained all)

Arousal 0.45±0.00 0.42±0.01 0.50±0.00
Valence 0.38±0.01 0.31±0.01 0.50±0.00

Initialized
(trained all)

Arousal 0.61±0.03 0.64±0.02 0.60±0.03
Valence 0.55±0.02 0.55±0.02 0.55±0.02

Initialized
(trained head)

Arousal 0.51±0.01 0.62±0.09 0.52±0.01
Valence 0.51±0.01 0.52±0.01 0.52±0.01

CASE Baseline
(majority, test)

Arousal 0.38±0.02 0.31±0.02 0.50±0.00
Valence 0.39±0.01 0.33±0.01 0.50±0.00

Baseline
(trained all)

Arousal 0.45±0.08 0.43±0.12 0.52±0.02
Valence 0.41±0.02 0.45±0.14 0.49±0.01

Initialized
(trained all)

Arousal 0.57±0.04 0.59±0.02 0.59±0.03
Valence 0.66±0.03 0.67±0.03 0.66±0.03

Initialized
(trained head)

Arousal 0.57±0.02 0.58±0.02 0.58±0.02
Valence 0.56±0.02 0.59±0.04 0.56±0.02

DREAMER Baseline
(majority, test)

Arousal 0.42±0.02 0.36±0.02 0.50±0.00
Valence 0.38±0.01 0.31±0.02 0.50±0.00

Baseline
(trained all)

Arousal 0.39±0.07 0.33±0.08 0.50±0.00
Valence 0.35±0.04 0.28±0.05 0.50±0.00

Initialized
(trained all)

Arousal 0.52±0.03 0.56±0.06 0.53±0.02
Valence 0.55±0.09 0.62±0.05 0.59±0.06

Initialized
(trained head)

Arousal 0.50±0.07 0.54±0.04 0.53±0.03
Valence 0.54±0.08 0.58±0.04 0.57±0.05
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Table E.2: Regression results in subject-dependent (group) experimental setup
(metric±std).

RMSE MAE CCC
Dataset Model Task

AMIGOS Baseline
(average, test)

Arousal 0.22±0.01 0.19±0.01 -0.00±0.00
Valence 0.28±0.01 0.24±0.01 0.00±0.00

Baseline
(trained all)

Arousal 0.30±0.07 0.26±0.06 0.00±0.00
Valence 0.53±0.26 0.48±0.26 0.00±0.00

Initialized
(trained all)

Arousal 0.32±0.02 0.26±0.01 0.29±0.08
Valence 0.44±0.04 0.35±0.03 0.10±0.05

Initialized
(trained head)

Arousal 0.29±0.02 0.23±0.02 0.22±0.04
Valence 0.46±0.03 0.38±0.03 0.11±0.03

ASCERTAIN Baseline
(average, test)

Arousal 0.23±0.01 0.18±0.01 -0.00±0.00
Valence 0.30±0.01 0.26±0.01 0.00±0.00

Baseline
(trained all)

Arousal 0.52±0.24 0.48±0.25 0.00±0.00
Valence 0.39±0.05 0.32±0.04 0.00±0.00

Initialized
(trained all)

Arousal 0.32±0.01 0.24±0.00 0.29±0.03
Valence 0.46±0.02 0.36±0.01 0.14±0.03

Initialized
(trained head)

Arousal 0.31±0.02 0.25±0.02 0.19±0.03
Valence 0.38±0.01 0.31±0.01 0.11±0.03

CASE Baseline
(average, test)

Arousal 0.18±0.01 0.14±0.01 0.00±0.00
Valence 0.20±0.01 0.14±0.01 0.00±0.00

Baseline
(trained all)

Arousal 0.23±0.01 0.17±0.01 0.22±0.12
Valence 0.70±0.56 0.65±0.59 0.13±0.11

Initialized
(trained all)

Arousal 0.21±0.02 0.16±0.02 0.42±0.06
Valence 0.22±0.01 0.16±0.01 0.44±0.04

Initialized
(trained head)

Arousal 0.23±0.03 0.18±0.03 0.21±0.07
Valence 0.35±0.10 0.29±0.10 0.07±0.07

DREAMER Baseline
(average, test)

Arousal 0.27±0.01 0.22±0.01 0.00±0.00
Valence 0.33±0.01 0.28±0.02 0.00±0.00

Baseline
(trained all)

Arousal 0.57±0.19 0.52±0.19 0.00±0.00
Valence 0.80±0.71 0.75±0.72 0.00±0.00

Initialized
(trained all)

Arousal 0.42±0.04 0.34±0.04 0.14±0.08
Valence 0.50±0.03 0.41±0.03 0.15±0.11

Initialized
(trained head)

Arousal 0.48±0.09 0.37±0.10 0.08±0.07
Valence 0.47±0.03 0.37±0.03 0.11±0.07
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Table E.3: Results of Friedman’s test between processing methods in subject-
dependent (group) experimental design, based on relative di)erences between mod-
els and baselines.

𝑏2 p (𝑏2) F p (F) Signif. (𝑏2 / F)
Dataset Task

AMIGOS
classification

arousal 20.67 0.000 19.11 0.000 *** / ***
valence 7.81 0.167 1.82 0.155 ns / ns

AMIGOS
regression

arousal 9.00 0.109 2.25 0.088 ns / ns
valence 10.03 0.074 2.68 0.051 ns / ns

ASCERTAIN
classification

arousal 13.80 0.016 4.93 0.004 * / **
valence 13.57 0.018 4.75 0.005 * / **

ASCERTAIN
regression

arousal 3.97 0.553 0.76 0.592 ns / ns
valence 15.40 0.008 6.42 0.001 ** / **

CASE
classification

arousal 7.74 0.170 1.79 0.159 ns / ns
valence 2.37 0.795 0.42 0.829 ns / ns

CASE
regression

arousal 16.77 0.004 8.15 0.000 ** / ***
valence 6.14 0.292 1.30 0.302 ns / ns

DREAMER
classification

arousal 2.94 0.708 0.53 0.748 ns / ns
valence 3.79 0.579 0.72 0.619 ns / ns

DREAMER
regression

arousal 1.69 0.890 0.29 0.913 ns / ns
valence 3.63 0.604 0.68 0.644 ns / ns
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E.2.2 Subject-specific models
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Table E.17: Classification results in subject-dependent (subject) experimental setup
(metric±std).

F1-macro Precision-
macro

Recall-
macro

Dataset Model Task

AMIGOS Baseline
(majority, test)

Arousal 0.37±0.18 0.33±0.18 0.44±0.18
Valence 0.42±0.12 0.37±0.13 0.53±0.11

Initialized
(trained all)

Arousal 0.74±0.11 0.77±0.10 0.76±0.11
Valence 0.70±0.11 0.73±0.11 0.73±0.10

Initialized
(trained head)

Arousal 0.79±0.08 0.81±0.08 0.81±0.07
Valence 0.70±0.12 0.73±0.12 0.73±0.11

ASCERTAIN Baseline
(majority, test)

Arousal 0.39±0.09 0.34±0.09 0.46±0.09
Valence 0.38±0.03 0.31±0.03 0.49±0.04

Initialized
(trained all)

Arousal 0.61±0.10 0.65±0.09 0.65±0.08
Valence 0.55±0.07 0.59±0.08 0.60±0.06

Initialized
(trained head)

Arousal 0.60±0.09 0.65±0.08 0.64±0.07
Valence 0.56±0.07 0.62±0.07 0.60±0.06

CASE Baseline
(majority, test)

Arousal 0.62±0.08 0.58±0.09 0.68±0.07
Valence 0.32±0.19 0.29±0.20 0.38±0.19

Initialized
(trained all)

Arousal 0.72±0.09 0.75±0.10 0.76±0.08
Valence 0.76±0.11 0.78±0.12 0.78±0.10

Initialized
(trained head)

Arousal 0.72±0.08 0.76±0.09 0.75±0.07
Valence 0.76±0.12 0.78±0.13 0.79±0.11

DREAMER Baseline
(majority, test)

Arousal 0.34±0.07 0.29±0.07 0.41±0.07
Valence 0.41±0.12 0.37±0.12 0.48±0.12

Initialized
(trained all)

Arousal 0.71±0.09 0.74±0.09 0.74±0.08
Valence 0.75±0.09 0.77±0.09 0.78±0.08

Initialized
(trained head)

Arousal 0.72±0.10 0.74±0.11 0.76±0.09
Valence 0.74±0.10 0.77±0.10 0.78±0.08
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Table E.18: Regression results in subject-dependent (subject) experimental setup
(metric±std).

RMSE MAE CCC
Dataset Model Task

AMIGOS Baseline
(average, test)

Arousal 0.20±0.07 0.19±0.07 0.00±0.00
Valence 0.25±0.08 0.24±0.08 0.00±0.00

Initialized
(trained all)

Arousal 0.54±0.25 0.49±0.25 0.23±0.17
Valence 0.51±0.21 0.46±0.20 0.27±0.18

Initialized
(trained head)

Arousal 0.62±0.29 0.58±0.30 0.18±0.14
Valence 0.56±0.27 0.52±0.27 0.26±0.17

ASCERTAIN Baseline
(average, test)

Arousal 0.24±0.04 0.20±0.03 0.00±0.00
Valence 0.28±0.04 0.25±0.04 0.00±0.00

Initialized
(trained all)

Arousal 0.48±0.18 0.41±0.18 0.23±0.14
Valence 0.53±0.16 0.45±0.14 0.17±0.10

Initialized
(trained head)

Arousal 0.49±0.17 0.42±0.17 0.21±0.12
Valence 0.55±0.16 0.47±0.16 0.17±0.10

CASE Baseline
(average, test)

Arousal 0.14±0.02 0.12±0.02 0.00±0.00
Valence 0.15±0.03 0.13±0.03 0.00±0.00

Initialized
(trained all)

Arousal 0.29±0.18 0.25±0.18 0.29±0.12
Valence 0.36±0.22 0.32±0.21 0.28±0.15

Initialized
(trained head)

Arousal 0.34±0.17 0.30±0.17 0.22±0.11
Valence 0.39±0.20 0.35±0.20 0.22±0.11

DREAMER Baseline
(average, test)

Arousal 0.24±0.05 0.21±0.05 0.00±0.00
Valence 0.24±0.04 0.22±0.03 0.00±0.00

Initialized
(trained all)

Arousal 0.48±0.18 0.43±0.17 0.32±0.14
Valence 0.51±0.17 0.45±0.15 0.31±0.12

Initialized
(trained head)

Arousal 0.70±0.30 0.64±0.30 0.21±0.15
Valence 0.57±0.24 0.52±0.23 0.30±0.14
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Table E.19: Results of Friedman test between processing methods in subject-
dependent (subject) experimental design, based on relative di)erences between
models and baselines.

𝑏2 p (𝑏2) F p (F) Signif. (𝑏2 / F)
Dataset Task

AMIGOS
classification

arousal 0.31 0.958 0.10 0.959 ns / ns
valence 5.82 0.120 1.99 0.119 ns / ns

AMIGOS
regression

arousal 16.48 0.000 6.25 0.000 *** / ***
valence 9.62 0.022 3.41 0.020 * / *

ASCERTAIN
classification

arousal 14.22 0.002 5.13 0.002 ** / **
valence 36.32 0.000 15.57 0.000 *** / ***

ASCERTAIN
regression

arousal 8.01 0.045 2.76 0.044 * / *
valence 1.84 0.606 0.61 0.610 ns / ns

CASE
classification

arousal 29.28 0.000 13.98 0.000 *** / ***
valence 1.24 0.743 0.41 0.749 ns / ns

CASE
regression

arousal 15.08 0.001 5.84 0.001 ** / **
valence 6.16 0.104 2.13 0.102 ns / ns

DREAMER
classification

arousal 10.24 0.016 3.83 0.013 * / *
valence 1.31 0.726 0.43 0.734 ns / ns

DREAMER
regression

arousal 9.05 0.028 3.32 0.024 * / *
valence 1.19 0.754 0.39 0.762 ns / ns
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E.2.3 Design comparisons
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Table E.37: Comparison of results in experimental setups (designs) with respective baselines
(metric±std). Arousal classification, majority baseline (test). Note - gain represents scores
relative to the baseline, averaged over a set of participants (may di)er from simple calculation
based on average values).

F1-macro Gain p Signif.
Dataset Setup Predictor

AMIGOS Subject-independent Baseline 0.39±0.19 - - -
Model 0.43±0.20 0.04±0.45 0.931 ns

Subject-dependent
(group)

Baseline 0.32±0.25 - - -
Model 0.57±0.25 1.15±1.97 0.000 ***

Subject-dependent
(subject)

Baseline 0.37±0.18 - - -
Model 0.74±0.11 1.96±2.72 0.000 ***

ASCERTAIN Subject-independent Baseline 0.42±0.13 - - -
Model 0.48±0.12 0.09±0.29 0.073 ns

Subject-dependent
(group)

Baseline 0.28±0.12 - - -
Model 0.61±0.16 1.31±1.61 0.000 ***

Subject-dependent
(subject)

Baseline 0.39±0.09 - - -
Model 0.61±0.10 0.65±0.56 0.000 ***

CASE Subject-independent Baseline 0.39±0.04 - - -
Model 0.43±0.12 0.10±0.34 0.157 ns

Subject-dependent
(group)

Baseline 0.48±0.12 - - -
Model 0.44±0.14 0.02±0.65 0.119 ns

Subject-dependent
(subject)

Baseline 0.62±0.08 - - -
Model 0.72±0.09 0.18±0.17 0.000 ***

DREAMER Subject-independent Baseline 0.42±0.05 - - -
Model 0.47±0.09 0.15±0.26 0.017 *

Subject-dependent
(group)

Baseline 0.25±0.09 - - -
Model 0.49±0.18 1.77±2.77 0.000 ***

Subject-dependent
(subject)

Baseline 0.34±0.07 - - -
Model 0.71±0.09 1.17±0.52 0.000 ***
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Table E.38: Comparison of results in experimental setups (designs) with respective baselines
(metric±std). Valence classification, majority baseline (test). Note - gain represents scores
relative to the baseline, averaged over a set of participants (may di)er from simple calculation
based on average values).

F1-macro Gain p Signif.
Dataset Setup Predictor

AMIGOS Subject-independent Baseline 0.37±0.07 - - -
Model 0.46±0.12 0.25±0.33 0.000 ***

Subject-dependent
(group)

Baseline 0.46±0.13 - - -
Model 0.47±0.18 0.12±0.73 0.546 ns

Subject-dependent
(subject)

Baseline 0.42±0.12 - - -
Model 0.70±0.11 0.74±0.52 0.000 ***

ASCERTAIN Subject-independent Baseline 0.38±0.03 - - -
Model 0.44±0.10 0.17±0.28 0.000 ***

Subject-dependent
(group)

Baseline 0.38±0.04 - - -
Model 0.44±0.09 0.22±0.48 0.000 ***

Subject-dependent
(subject)

Baseline 0.38±0.03 - - -
Model 0.55±0.07 0.47±0.24 0.000 ***

CASE Subject-independent Baseline 0.40±0.03 - - -
Model 0.63±0.19 0.59±0.48 0.000 ***

Subject-dependent
(group)

Baseline 0.28±0.10 - - -
Model 0.61±0.17 1.68±1.85 0.000 ***

Subject-dependent
(subject)

Baseline 0.32±0.19 - - -
Model 0.76±0.11 2.31±1.88 0.000 ***

DREAMER Subject-independent Baseline 0.39±0.04 - - -
Model 0.49±0.12 0.26±0.33 0.004 **

Subject-dependent
(group)

Baseline 0.42±0.11 - - -
Model 0.46±0.12 0.18±0.47 0.520 ns

Subject-dependent
(subject)

Baseline 0.41±0.12 - - -
Model 0.75±0.09 0.98±0.66 0.000 ***
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Table E.39: Comparison of results in experimental setups (designs) with respective baselines
(metric±std). Arousal regression, average baseline (test). Note - gain represents scores relative
to the baseline, averaged over a set of participants (may di)er from simple calculation based on
average values).

RMSE Gain p Signif.
Dataset Setup Predictor

AMIGOS Subject-independent Baseline 0.18±0.06 - - -
Model 0.54±0.34 2.39±2.48 0.000 ***

Subject-dependent
(group)

Baseline 0.10±0.04 - - -
Model 0.28±0.09 2.29±2.44 0.000 ***

Subject-dependent
(subject)

Baseline 0.20±0.07 - - -
Model 0.54±0.25 2.46±4.17 0.000 ***

ASCERTAIN Subject-independent Baseline 0.21±0.05 - - -
Model 0.47±0.29 1.38±1.51 0.000 ***

Subject-dependent
(group)

Baseline 0.19±0.05 - - -
Model 0.29±0.10 0.55±0.41 0.000 ***

Subject-dependent
(subject)

Baseline 0.24±0.04 - - -
Model 0.48±0.18 1.02±0.71 0.000 ***

CASE Subject-independent Baseline 0.17±0.05 - - -
Model 0.22±0.05 0.44±0.94 0.001 ***

Subject-dependent
(group)

Baseline 0.10±0.03 - - -
Model 0.18±0.04 0.99±0.71 0.000 ***

Subject-dependent
(subject)

Baseline 0.14±0.02 - - -
Model 0.29±0.18 1.06±1.43 0.000 ***

DREAMER Subject-independent Baseline 0.25±0.04 - - -
Model 0.47±0.23 0.91±0.96 0.000 ***

Subject-dependent
(group)

Baseline 0.20±0.05 - - -
Model 0.39±0.07 1.09±0.61 0.000 ***

Subject-dependent
(subject)

Baseline 0.24±0.05 - - -
Model 0.48±0.18 1.08±0.82 0.000 ***
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Table E.40: Comparison of results in experimental setups (designs) with respective baselines
(metric±std). Valence regression, average baseline (test). Note - gain represents scores relative
to the baseline, averaged over a set of participants (may di)er from simple calculation based on
average values).

RMSE Gain p Signif.
Dataset Setup Predictor

AMIGOS Subject-independent Baseline 0.26±0.07 - - -
Model 0.43±0.26 0.75±1.20 0.000 ***

Subject-dependent
(group)

Baseline 0.17±0.05 - - -
Model 0.41±0.11 2.37±4.51 0.000 ***

Subject-dependent
(subject)

Baseline 0.25±0.08 - - -
Model 0.51±0.21 1.25±1.68 0.000 ***

ASCERTAIN Subject-independent Baseline 0.28±0.05 - - -
Model 0.42±0.13 0.50±0.44 0.000 ***

Subject-dependent
(group)

Baseline 0.27±0.05 - - -
Model 0.43±0.14 0.63±0.83 0.000 ***

Subject-dependent
(subject)

Baseline 0.28±0.04 - - -
Model 0.53±0.16 0.90±0.53 0.000 ***

CASE Subject-independent Baseline 0.18±0.07 - - -
Model 0.21±0.08 0.21±0.29 0.007 **

Subject-dependent
(group)

Baseline 0.11±0.04 - - -
Model 0.18±0.06 0.77±0.39 0.000 ***

Subject-dependent
(subject)

Baseline 0.15±0.03 - - -
Model 0.36±0.22 1.50±1.55 0.000 ***

DREAMER Subject-independent Baseline 0.32±0.03 - - -
Model 0.41±0.08 0.29±0.26 0.000 ***

Subject-dependent
(group)

Baseline 0.24±0.04 - - -
Model 0.47±0.08 0.96±0.35 0.000 ***

Subject-dependent
(subject)

Baseline 0.24±0.04 - - -
Model 0.51±0.17 1.11±0.73 0.000 ***
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Table E.41: Results of Friedman test between experimental designs, based on
relative di)erences between models and baselines.

𝑏2 p (𝑏2) F p (F) Signif. (𝑏2 / F)
Dataset Task

AMIGOS
classification

arousal 22.90 0.000 15.79 0.000 *** / ***
valence 26.34 0.000 19.37 0.000 *** / ***

AMIGOS
regression

arousal 4.15 0.125 2.14 0.124 ns / ns
valence 19.54 0.000 12.70 0.000 *** / ***

ASCERTAIN
classification

arousal 51.24 0.000 50.47 0.000 *** / ***
valence 39.53 0.000 31.64 0.000 *** / ***

ASCERTAIN
regression

arousal 20.04 0.000 12.22 0.000 *** / ***
valence 25.92 0.000 17.04 0.000 *** / ***

CASE
classification

arousal 18.20 0.000 12.63 0.000 *** / ***
valence 12.60 0.001 7.71 0.001 ** / **

CASE
regression

arousal 21.67 0.000 16.39 0.000 *** / ***
valence 31.67 0.000 32.41 0.000 *** / ***

DREAMER
classification

arousal 21.48 0.000 19.27 0.000 *** / ***
valence 18.09 0.000 14.26 0.000 *** / ***

DREAMER
regression

arousal 3.13 0.209 1.61 0.212 ns / ns
valence 18.87 0.000 15.30 0.000 *** / ***

Table E.42: Results of Conover’s post-hoc test between experimental designs. AMI-
GOS dataset, Arousal classification. Comparisons were done on raw metrics. P-
values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-2.501 0.015 *

Subject-independent Subject-dependent
(group)

3.109 0.005 **

Subject-dependent
(subject)

5.609 0.000 ***



281

Table E.43: Results of Conover’s post-hoc test between experimental designs. AMI-
GOS dataset, Valence classification. Comparisons were done on raw metrics. P-
values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-6.220 0.000 ***

Subject-independent Subject-dependent
(group)

-2.903 0.005 **

Subject-dependent
(subject)

3.317 0.003 **

Table E.44: Results of Conover’s post-hoc test between experimental designs. AMI-
GOS dataset, Valence regression. Comparisons were done on raw metrics. P-values
were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

2.324 0.023 *

Subject-independent Subject-dependent
(group)

5.035 0.000 ***

Subject-dependent
(subject)

2.711 0.017 *

Table E.45: Results of Conover’s post-hoc test between experimental designs. AS-
CERTAIN dataset, Arousal classification. Comparisons were done on raw metrics.
P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

1.263 0.209 ns

Subject-independent Subject-dependent
(group)

9.264 0.000 ***

Subject-dependent
(subject)

8.000 0.000 ***
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Table E.46: Results of Conover’s post-hoc test between experimental designs. AS-
CERTAIN dataset, Valence classification. Comparisons were done on raw metrics.
P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-7.516 0.000 ***

Subject-independent Subject-dependent
(group)

-1.503 0.136 ns

Subject-dependent
(subject)

6.013 0.000 ***

Table E.47: Results of Conover’s post-hoc test between experimental designs. AS-
CERTAIN dataset, Arousal regression. Comparisons were done on raw metrics.
P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-4.047 0.000 ***

Subject-independent Subject-dependent
(group)

-4.484 0.000 ***

Subject-dependent
(subject)

-0.437 0.663 ns

Table E.48: Results of Conover’s post-hoc test between experimental designs. AS-
CERTAIN dataset, Valence regression. Comparisons were done on raw metrics.
P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-4.314 0.000 ***

Subject-independent Subject-dependent
(group)

1.249 0.215 ns

Subject-dependent
(subject)

5.562 0.000 ***
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Table E.49: Results of Conover’s post-hoc test between experimental designs. CASE
dataset, Arousal classification. Comparisons were done on raw metrics. P-values
were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-5.018 0.000 ***

Subject-independent Subject-dependent
(group)

-2.737 0.016 *

Subject-dependent
(subject)

2.281 0.026 *

Table E.50: Results of Conover’s post-hoc test between experimental designs. CASE
dataset, Valence classification. Comparisons were done on raw metrics. P-values
were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-2.571 0.025 *

Subject-independent Subject-dependent
(group)

1.285 0.204 ns

Subject-dependent
(subject)

3.856 0.001 ***

Table E.51: Results of Conover’s post-hoc test between experimental designs. CASE
dataset, Arousal regression. Comparisons were done on raw metrics. P-values were
adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

1.588 0.118 ns

Subject-independent Subject-dependent
(group)

5.558 0.000 ***

Subject-dependent
(subject)

3.970 0.000 ***
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Table E.52: Results of Conover’s post-hoc test between experimental designs. CASE
dataset, Valence regression. Comparisons were done on raw metrics. P-values were
adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-0.924 0.360 ns

Subject-independent Subject-dependent
(group)

6.465 0.000 ***

Subject-dependent
(subject)

7.388 0.000 ***

Table E.53: Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Arousal classification. Comparisons were done on raw met-
rics. P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-2.173 0.035 *

Subject-independent Subject-dependent
(group)

3.950 0.001 ***

Subject-dependent
(subject)

6.123 0.000 ***

Table E.54: Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Valence classification. Comparisons were done on raw met-
rics. P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-5.183 0.000 ***

Subject-independent Subject-dependent
(group)

-1.481 0.146 ns

Subject-dependent
(subject)

3.702 0.001 **
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Table E.55: Results of Conover’s post-hoc test between experimental designs.
DREAMER dataset, Valence regression. Comparisons were done on raw met-
rics. P-values were adjusted using Holm’s procedure [209].

Statistic p Signif.
Group 1 Group 2

Subject-dependent
(subject)

Subject-dependent
(group)

-0.188 0.852 ns

Subject-independent Subject-dependent
(group)

4.694 0.000 ***

Subject-dependent
(subject)

4.882 0.000 ***


