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Abstract

Visual representation learning facilitates the extraction of useful information from scenes
presented in images and videos, which is essential for numerous computer vision applica-
tions. Global representation learning methods typically merge all scene elements into a single
embedding, limiting the ability to distinguish individual objects clearly. Multi-object represen-
tation learning explicitly models scenes as collections of distinct entities, enabling structured,
human-like understanding crucial for tasks such as visual reasoning, object tracking, and
robotics.

Despite significant advancements, several challenges persist in this area. Early approaches
relied on sequential inference, limiting scalability to visually complex scenes. Convolutional
grid-based methods improved object discovery e!ciency but still required sequential processing
of object glimpses and were constrained by fixed spatial resolution, making it di!cult to
represent objects of varying sizes. Fully unsupervised models often fail to disentangle objects
reliably in realistic settings, frequently encoding multiple objects as a single entity. Temporal
extensions for videos further amplified these challenges, additionally exhibiting computational
complexity, which restricts their practical applicability.

This thesis addresses these gaps by integrating advances from modern one-stage object
detection architectures into multi-object representation learning frameworks, which was mo-
tivated by an investigation into using visual features from an object detection network to
guide deep reinforcement learning in robotic navigation. It proposes SSDIR, a novel method
leveraging multi-scale feature maps within a parallel spatial grid-based encoding strategy,
using pre-trained object detectors as a robust foundation for unsupervised representation
learning and precise object localisation in complex, real-world settings. Additionally, RDIR
introduces an implicit temporal extension through a recurrent architecture, ensuring con-
sistent object representations across video frames. Furthermore, a di"usion-based model,
DetDi", conditioned on detection-guided representations enhances generative quality, enabling
controllable image synthesis. Extensive experiments confirm improvements in representation
quality and their performance in downstream tasks, demonstrating the e!cacy and versatility
of the proposed approaches across diverse visual domains.
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Streszczenie

Uczenie reprezentacji wizualnej umo#liwia wydobycie istotnych informacji ze scen zawartych
na obrazach i materia$ach wideo, co stanowi fundament wielu zastosowa% w dziedzinie wizji
komputerowej. Globalne metody uczenia reprezentacji zazwyczaj $&cz& wszystkie elementy
sceny w jedno osadzenie, co utrudnia precyzyjne rozró#nianie poszczególnych obiektów. Uczenie
reprezentacji wielu obiektów modeluje sceny jako zbiory odr’bnych encji, co pozwala na
ustrukturyzowan& analiz’ scen, podobn& do ludzkiego sposobu ich postrzegania. Jest to
kluczowe dla zada% takich jak rozumowanie wizualne, (ledzenie obiektów czy robotyka.

Pomimo znacz&cych post’pów, w tym obszarze nadal istnieje kilka wyzwa%. Wczesne
rozwi&zania polega$y na wnioskowaniu sekwencyjnym, co ogranicza$o skalowalno() do z$o#onych
wizualnie scen. Metody oparte na konwolucyjnych siatkach cech poprawi$y efektywno() wykry-
wania obiektów, jednak wci&# wymaga$y sekwencyjnego przetwarzania wycinków obiektów oraz
nie potrafi$y tworzy) reprezentacji przy zmiennych rozmiarach obiektów z powodu sztywnej
rozdzielczo(ci map cech. W pe$ni nienadzorowane podej(cia cz’sto nie mog$y niezawodnie
rozró#nia) poszczególnych obiektów w realistycznych scenach, $&cz&c wiele z nich jako jedno
osadzenie. Rozszerzenia temporalne dla filmów wideo pog$’bi$y te wyzwania, dodatkowo
zwi’kszaj&c z$o#ono() obliczeniow&, co ogranicza ich praktyczne zastosowanie.

Niniejsza rozprawa podejmuje te wyzwania, integruj&c post’py z jednoetapowych ar-
chitektur wykrywania obiektów z metodami uczenia reprezentacji wielu obiektów, co by$o
zainspirowane badaniami nad zastosowaniem cech z modeli detekcji w nawigacji robotycznej z
u#yciem g$’bokich modeli uczenia ze wzmocnieniem. Zaproponowano metod’ SSDIR, wyko-
rzystuj&c& wieloskalowe mapy cech w metodzie kodowania opartej na przestrzennej siatce
cech, wykorzystuj&c wst’pnie wytrenowan& sie) do detekcji obiektów jako fundament do nien-
adzorowanego uczenia reprezentacji i precyzyjnego ustalania po$o#enia obiektów w z$o#onych,
rzeczywistych warunkach wizualnych. Metoda RDIR rozszerza model na wideo, wprowadzaj&c
architektur’ rekurencyjn& dla spójnych reprezentacji obiektów w kolejnych klatkach. Model
dyfuzyjny DetDi", warunkowany reprezentacjami wzbogaconymi przez detekcje, poprawia
zdolno(ci generatywne, umo#liwiaj&c kontrolowane tworzenie obrazów. Szerokie ekspery-
menty potwierdzaj& polepszenie jako() reprezentacji i ich efektywne zastosowanie w zdaniach
docelowych, wykazuj&c skuteczno() i wszechstronno() proponowanych podej() w ró#nych
dziedzinach wizualnych.
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Symbols

AP Average Precision (area under the precision-recall curve for object
detection)

𝜔t Complement of variance schedule, defined as 1 → 𝜀t

𝜔̄t Cumulative product of 𝜔t

B Set of predicted bounding boxes, B = {b1, b2, . . . , bn}
bi = [xi, yi, wi, hi] Bounding box for the i-th object, bi ↑ R4 (centre coordinates (xi, yi),

width wi, and height hi)
𝜀t Variance schedule parameter at di"usion step t

C Number of image channels (e.g., 3 for RGB)
ci Vector of predicted class confidence scores for the i-th object
ci Class label assigned to the i-th object
D Dimensionality of object-level latent vector zi

DKL(p ↓ q) Kullback-Leibler divergence measuring di"erence between two distribu-
tions p and q

𝜔(t) True noise sampled from standard normal distribution at timestep t

𝜔(t) Predicted noise at timestep t

𝜗 Sample from standard normal distribution
f Downstream predictor operating on learned representations, f : Z ↔ Y

or f : ZK ↔ Y
FN False Negatives — incorrectly predicted negative instances
FP False Positives — incorrectly predicted positive instances
g Representation learning function mapping inputs to latent features,

g : X ↔ Z or ZK

H Image height (number of pixels vertically)
h

→ Unknown ground-truth function mapping inputs to targets, h
→ : X ↔ Y

HOTA𝜔 Higher Order Tracking Accuracy at localisation threshold 𝜔

IoU(·, ·) Intersection over Union between two sets
K Number of object instances in a scene
L Loss function comparing predicted and true outputs
𝜛 Weighting factor loss function components
mi Binary segmentation mask for the i-th object, mi ↑ {0, 1}H↑W
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oi

dec
Decoded i-th object patch before spatial transformation

oi

transformed
Object patch after applying spatial transformation according to zi

where

p Object presence probabilities predicted by YOLOv4
pij Object presence confidence at cell (i, j)
p(x) Marginal likelihood of the input image x under the generative model
p(x | z) Likelihood of input given latent variables
p𝜀(x(t↓1) | x(t)) Reverse di"usion distribution predicting denoised sample
p(z) Prior distribution over latent variables in generative models
PE(xij , yij) 2D sinusoidal positional encoding based on coordinates
q(x(t) | x(t↓1)) Forward di"usion distribution at step t

q(z | x) Approximate posterior distribution in variational inference
r Latent representation grid produced by the encoder
rij Latent representation at cell (i, j) in the feature grid
rPE

ij
Positionally encoded latent vector at cell (i, j)

S Set of confidence scores associated with predicted bounding boxes,
S = {s1, s2, . . . , sn}

T Number of frames in a video
𝜚 Threshold value
TN True Negatives — correctly predicted negative instances
TP True Positives — correctly predicted positive instances
W Image width (number of pixels horizontally)
X Input space (e.g., space of images or videos)
x Input data sample (e.g., image or video tensor)
x̂ Reconstructed image or video produced from latent slots
xi Frame i of a video sequence
x(0) Original data sample before the di"usion process
x(t) Noised version of x(0) at di"usion step t

xh,w,c Pixel value at location (h, w) in channel c

Y Target/output space (e.g., class labels, regression targets)
y Target output associated with input x
Z Latent feature space capturing semantic or object-level information
z Learned latent representation of input x
zi Latent representation of the i-th discovered object
z(0) Latent encoding of the input image, used in LDMs
z(t) Noisy latent representation at di"usion step t

zi

depth
Scalar latent variable representing the relative depth of the i-th object

zi
present Binary latent variable indicating whether the i-th object is present in

the corresponding grid cell
zi

what
Latent vector capturing the i-th object’s visual appearance features

zi

where
Latent vector describing the i-th object’s position and size
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Abbreviations

2D Two-dimensional
3D Three-dimensional
A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
AE Autoencoder
AIR Attend, Infer, Repeat
AP Average Precision
ARI Adjusted Rand Index
AUV Autonomous Underwater Vehicle
BB Bounding box
BiGRU Bidirectional Gated Recurrent Unit
BN Batch Normalisation
CLEVR Compositional Language and Elementary Visual Reasoning Dataset
CLIP Contrastive Language-Image Pre-training
CNN Convolutional Neural Network
Conv Convolutional
DDPG Deep Deterministic Policy Gradient
DDPM Denoising Di"usion Probabilistic Model
DetDi" Detection-Guided Latent Di"usion
DETR Detection Transformer
DM Di"usion Model
DQN Deep Q-Network
DRL Deep Reinforcement Learning
dVAE Discrete Variational Autoencoder
E2E End-to-end
ELBO Evidence Lower Bound
FC Fully-connected
FFHQ Flickr-Faces-HQ Dataset
FG-ARI Foreground Adjusted Rand Index
FID Fréchet Inception Distance
FN False Negative
FNA False Negative Association
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FP False Positive
FPA False Positive Association
FVD Fréchet Video Distance
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HOG Histogram of Oriented Gradients
HOTA Higher Order Tracking Accuracy
ICA Independent Component Analysis
IDF1 Identification F1-score
IoU Intersection over Union
KL Kullback-Leibler
LDM Latent Di"usion Model
LPIPS Learned Perceptual Image Patch Similarity
LSD Latent Slot Di"usion
LSTM Long Short-Term Memory
MAE Masked Autoencoder
mAP Mean Average Precision
mBO Mean Best Overlap
mIoU Mean Intersection over Union
MLP Multi-Layer Perceptron
MOT15 Multiple Object Tracking 2015 Dataset
MOTA Multiple Object Tracking Accuracy
MOVi Multi-Object Video Dataset
MS COCO Microsoft Common Objects in Context Dataset
MSE Mean Squared Error
NLP Natural Language Processing
NMS Non-Maximum Suppression
OBJ↔ DetDi" variant without object-aware loss
PCA Principal Component Analysis
PE Positional Encoding
PE↔ DetDi" variant without positional encoding
PPO Proximal Policy Optimisation
R-CNN Region-based Convolutional Neural Networks
RDIR Recurrent Detect, Infer, Repeat
ReLU Rectified Linear Unit
RGB Red, Green, Blue
RGB-D Red, Green, Blue and Depth
RI Rand Index
RL Reinforcement Learning
RNN Recurrent Neural Network
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ROV Remotely Operated Vehicle
RPN Region Proposal Network
SA Slot Attention
SAVi Slot Attention for Videos
SIFT Scale-Invariant Feature Transform
SPAIR Spatially Invariant Attend, Infer, Repeat
SQAIR Sequential Attend, Infer, Repeat
SSD Single Shot Multi-Box Detector
SSDIR Single-Shot Detect, Infer, Repeat
SSDIR-YOLO SSDIR model with a YOLOv4 backbone and detection head
STN Spatial Transformer Network
SURF Speeded-Up Robust Features
SVM Support Vector Machine
TN True Negative
TP True Positive
TPA True Positive Association
t-SNE t-Distributed Stochastic Neighbour Embedding
VAE Variational Autoencoder
ViT Vision Transformer
VQA Visual Question Answering
VQ-VAE Vector Quantised Variational Autoencoder
YOLO You Only Look Once
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Chapter 1

Introduction

Understanding complex visual scenes composed of multiple entities is a long-standing
challenge in computer vision and machine learning. Unlike pixel-level processing,
human perception focuses on semantically meaningful objects naturally, inferring their
attributes, tracking their dynamics and reasoning about their interactions over time
[52]. Replicating this ability in computer systems requires learning structured, object-
centric representations that reflect these characteristics of real-world scenes. This
thesis investigates the problem of multi-object representation learning, which focuses
on automatic discovery and encoding of objects from raw visual data, both in static
images and video sequences. This research area extends beyond classical vision tasks
such as object detection or instance segmentation, attempting not only to locate and
classify objects, but also to provide a deep understanding of the scene by generating
disentangled and reusable representations that can be applied in complex downstream
reasoning.

This chapter presents an introduction to the research problem addressed in the thesis.
Section 1.1 outlines the characteristics of the research domain and formally defines
the problem. Section 1.2 presents a review of related work, covering object detection,
global image and video representation learning, and prior approaches to multi-object
modelling, together with the datasets and main evaluation metrics. Section 1.3 provides
the motivation for this research, while Section 1.4 details the research goals, including
the plan of investigation, hypotheses and research questions. The chapter concludes
with an overview of the main contributions (Section 1.5) and a description of the
structure of the thesis (Section 1.6).
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1.1 Characteristics of the Research Domain

Extracting useful features from complex, high-dimensional data such as images,
videos, graphs, or natural language has been a challenge for computer applications. Un-
like low-dimensional numerical inputs, these data types are rich in structure, redundancy
and ambiguity, making them di"cult to process directly. Historically, computer systems
have relied heavily on task-specific feature engineering, where domain experts design
transformations to extract relevant information from raw data for a particular task.
In more recent machine learning approaches, especially deep neural networks, feature
extraction was automated, learned jointly with the model by optimising performance
on the end task. However, these task-specific models tend to extract features that
are coupled tightly to the original objective they were trained for, making it di"cult
to transfer them to a more general setup [8]. For example, a deep neural network
trained for image classification will encode high-level object categories, but might ignore
fine-grained spatial details required for accurate object localisation.

Representation Learning. Motivated by these limitations, representation learn-
ing is a machine learning paradigm which aims at learning general-purpose, abstract
representations that capture underlying explanatory factors of the data. These repre-
sentations are intended to be meaningful and reusable, enabling better generalisation,
interpretability and sample e"ciency across a wide range of downstream applications.
Representation learning stems from the hypothesis that most real-world data is gen-
erated by a relatively small number of latent factors, which interact in a complex
way to produce high-dimensional data. By trying to reverse this generative process,
representation learning models uncover the underlying structure of the data, providing
verbose representations that support generalisation across tasks and domains, reducing
the need for large labelled datasets.

Definition 1. Let X be the input space and Y the target space, which are related by
an unknown complex function h

→ : X ↔ Y. Representation learning is the problem of
learning a mapping g : X ↔ Z, where Z is a meaningful latent feature space, such that
the learned representations z = g (x) preserve the high-level factors of variation in the
data and admit the existence of a function f : Z ↔ Y for which f ↗ g ↘ h

→, typically
in the sense of minimising a loss function L (f (g (x)) , y) over a data distribution
(x, y) ≃ D.

Learned representations should satisfy several properties [8]:
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• disentanglement: di!erent dimensions in Z correspond to distinct characteristics
of the data,

• invariance: representations are robust to transformations that do not change
semantic context, but sensitive to meaningful variations,

• compactness: representations are low-dimensional and sparse, which promotes
generalisation,

• completeness: learned representations retain su"cient information for applying
in downstream tasks.

Among the challenges of representation learning, one fundamental issue results
from the ambiguity in defining a clear learning objective. Determining the quality of
representations is non-trivial, as it often depends on performance in downstream tasks,
which cannot be used as the learning objective, making model training and evaluation
complicated. Additionally, e!ectively disentangling underlying factors of variation
within the data can become particularly di"cult when objects’ features are complex
and interdependent. Another significant challenge involves balancing invariance and
sensitivity, as well as managing scalability and computational complexity. Properly
matching model complexity to the available data is also critical to prevent overfitting
to the training data and ensure generalisation capability. Finally, the choice of training
data is essential for generative models, as unfair representations of examples will lead
to biases and a lack of fairness.

Visual Representation Learning. In the domain of visual data, representation
learning tries to transform raw pixel inputs into latent encodings that capture the
semantic content of the scene from images or videos. The latent space produced by
these models may focus on various level of abstraction, from the global topic of the
image or video (e.g. “a crowded street”), to the most salient object within the scene
(e.g. “a person riding a bike”), or the entire structure of the scene (e.g. “a group
of people walking on a crosswalk”). In this context, representation learning aims to
encode these high-dimensional inputs into a compact latent space Z, which retains
essential visual information about the scene while discarding intentionally irrelevant
variation such as lighting or background textures. When applied to videos, the temporal
dimension introduces both a source of contextual information and an added layer
of complexity, as representations must also account for scene dynamics over time.
Learning such representations simplifies reasoning about complex scenes, providing a
deep understanding of their contents.
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Definition 2. An image is a two-dimensional grid of pixel values represented as a
tensor x ↑ RH↑W ↑C, where:

H ↑ N is the height (number of rows),
W ↑ N is the width (number of columns),
C ↑ N is the number of channels (e.g. C = 3 for RGB images).

Each element xh,w,c ↑ R represents the intensity of the pixel at position (h, w) in channel
c. An image captures the spatial structure of a visual scene and all objects within it at
a fixed point in time.

Definition 3. A video is a temporal sequence of image frames, represented as a tensor
x ↑ RT ↑H↑W ↑C, where:

T ↑ N is the number of frames,
H, W, C are as in Definition 2.

Each frame xi ↑ RH↑W ↑C, for i ↑ {1, ..., T} captures the visual content of the scene at
time step i. Hence, video encodes both spatial and temporal information about the scene.

Multi-Object Representation Learning. Global representations of visual inputs
tend to interpret the scene as a whole; however, they lack the internal structure required
to reason about individual entities e!ectively. Real-world scenes typically consist of
multiple distinct objects of di!erent characteristics and behaviours; to reflect this
compositional nature of visual scenes, multi-object representation learning aims to
encode them into object-centric components. Instead of mapping an image or video
to a single embedding, these models represent scenes as structured latent vectors
z = (z1, ..., zK) ↑ ZK , where each vector zi ↑ RD (with D being the size of the
representation) focuses on a single discovered entity in the scene. This approach
enables modular understanding of objects in the scene and their relations, supporting
generalisation to complex reasoning tasks.

Definition 4. Given the setup of Definition 1, multi-object representation learning is
the problem of learning a mapping g : X ↔ ZK from an input x ↑ X (an image or video)
to a structured latent representation z = (z1, ..., zK) ↑ ZK , where each zi ↑ RD captures
features corresponding to a distinct object or entity in the scene. The representation
aims to capture object-specific high-level factors of variation, ensuring the existence of a
downstream function f : ZK ↔ Y such that f ↗ g ↘ h

→, typically by minimising a loss
function L (f (g (x)) , y) over a data distribution (x, y) ≃ D.
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Ideally, object-centric representations should encode each object in the scene into
distinct, decomposed latent variables that independently and compositionally capture
the structured nature of visual scenes. These representations should be robust enough
to handle varying object counts, sizes, occlusions, background clutter, and interactions,
facilitating scalability to complex, real-world environments.

Object Discovery and Object-Centric Learning. Typically, multi-object rep-
resentation learning models decompose the scene in a way that object-level entity
representations capture the appearance, location, and potentially dynamics of each
distinct object. Therefore, multi-object representation learning can be viewed as a gen-
eralisation of the object discovery problem, which focuses on identifying and localising
object instances in raw, unannotated visual input. It goes one step further, learning
feature-rich embeddings for each of the discovered entities, which are not limited to one
particular computer vision task, but can be applied in a broad variety of applications.

The foundation for this research direction was laid by traditional computer vision
tasks like object detection and instance segmentation. Designed to localise and label
distinct objects in the scene, methods for solving these problems are typically trained
under supervision on labelled datasets, providing each object’s location as bounding
boxes or pixel-level masks, respectively. Many of the multi-object representation learning
models adopt similar inductive biases for object localisation (rectangular attention boxes
or region-based masking), which provides explicit disentanglement of objects. However,
instead of classifying each object, multi-object representation learning models encode
their characteristics into a reusable embedding, operating with weaker supervision, or
even without it.

Definition 5. Object detection is the task of predicting a set of bounding boxes {bi}K

i=1

and associated class labels {ci}K

i=1
from an input image x ↑ RH↑W ↑C, where each

bounding box bi ↑ R4 localises an object of class ci.

Definition 6. Instance segmentation is the task of predicting a set of binary masks
{mi}K

i=1
, each of shape H ⇐ W , and corresponding class labels {ci}K

i=1
from an input

image x ↑ RH↑W ↑C, such that each mask mi indicates pixel-wise support of a distinct
object instance of class ci.
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1.2 Related Work

This section provides an overview of literature relevant to the research directions
explored in this thesis, specifically focusing on object detection (Subsection 1.2.1), image
and video representation learning (Subsection 1.2.2), and multi-object representation
learning (Subsection 1.2.3). Given the scope and objectives of this work, the survey
emphasises deep learning-based approaches and reflects state-of-the-art methodologies
published up to 2025. Consequently, this literature review extends beyond the knowledge
available at the time of conducting work included in Chapters 2-5.

1.2.1 Object Detection

Early approaches to computer vision were based on hand-crafted features and
statistical models, most notably the use of sliding window classifiers combined with
descriptors such as Haar-like features [178], Histogram of Oriented Gradients (HOG)
[34], or Deformable Part-based Model (DPM) [55], to mention a few. With the advent
of deep learning, classical approaches were superseded by methods capable of learning
hierarchical feature representations directly from raw data, leading to substantial
improvements in accuracy and generalisation. Given convolutional neural networks’
superior performance and scalability, this thesis focuses exclusively on deep learning-
based object detection methods.

Two-Stage Detectors. The development of deep learning-based object detection
methods is grounded in the success of convolutional neural networks (CNNs) in large-
scale image classification tasks, initiated by the breakthrough performance of AlexNet
[105] on the ImageNet dataset. The capability of learning hierarchical visual features out-
performing traditional hand-crafted representations led towards further improvements
introduced by deeper and more regularised models such as VGGNet [156], Inception
[167] or ResNet [76].

These architectures formed the backbone of early object detection frameworks. The
first influential deep learning-based object detector, Regions with CNN features (R-
CNN) [61], utilised pre-trained classification networks to extract feature representations
from proposed object regions. This method processes images in two stages, first
generating object proposals via an external proposal algorithm (selective search [173]),
and then applying a CNN to each region, followed by class-specific support vector
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machines (SVMs). While o!ering better performance than classical detectors, R-CNN
was computationally ine"cient due to the need to apply the CNN independently to
thousands of overlapping regions per image.

This limitation was addressed by Fast R-CNN [60], where a single convolutional
feature map computed over the entire image was used with a Region of Interest pooling
operation to extract features for each proposed region. Fast R-CNN improved over R-
CNN in terms of training and inference speed, but still relied on a separate, non-learnable
region proposal step.

The introduction of Faster R-CNN [149] enabled a fully end-to-end trainable archi-
tecture by incorporating a learnable Region Proposal Network (RPN) into the detection
pipeline. The RPN shared convolutional features with the classification CNN, generating
object proposals directly from the feature map.

Two-stage detectors o!er high accuracy and robustness, especially in scenarios
with multiple overlapping objects and high variability in object scale and aspect ratio.
Their modular architecture allowed for further enhancements, including the addition of
segmentation branches (e.g. Mask R-CNN [75]). However, the computational complexity
and inference latency of this class of methods have also driven the field toward designs
improving detection speed, with the aim of reaching real-time object detection.

One-Stage Detectors. Despite the strong performance of two-stage detectors, their
multi-step architecture introduces latency, which limits their applicability for time-
sensitive tasks such as autonomous driving, robotics, or real-time video analysis. One
of the most successful approaches explored to improve detection speed was unifying the
detection pipeline into a single forward pass of the image through the network. These
models, named one-stage detectors, directly predict object classes and bounding boxes
over a dense sampling of locations in the image, typically using the spatial grid-based
attention (Figure 1.1), eliminating the need for an explicit region proposal stage and
significantly improving inference speed. In this approach, feature maps (tensors of shape
H

(l) ⇐ W
(l) ⇐ C

(l), where H
(l), W

(l) are the height and width of the l-th feature map,
and C

(l) denotes the number of channels), extracted using a convolutional backbone, are
treated as a grid of cells, each containing a C

(l)-sized feature vector corresponding with
a region in the input image. This method provides a spatially structured intermediate
features for localised inference.

One of the earliest and most influential one-stage models is You Only Look Once
(YOLO) [146]. This model reframed object detection as a single regression problem over
a fixed grid of image regions; it predicts bounding box coordinates and class probabilities
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Figure 1.1: Spatial grid-based attention focusing on corresponding regions in the image

in a single forward pass through the network by applying prediction heads on each
cell in the grid, assigning these predictions to a corresponding region in the original
image. While the original design achieved real-time performance, the fixed, coarse
spatial discretisation with a single grid made it struggle to detect small or overlapping
objects.

To address this issue, Single Shot Multi-Box Detector (SSD) [122] extends the original
YOLO design with two major improvements. It utilises anchor boxes, which simplify
the task of bounding box regression: instead of predicting the absolute coordinates of
bounding boxes, it uses a set of pre-defined boxes as reference points for the regression.
Most notably, SSD leverages multiple feature maps as spatial grids, providing multi-scale
intermediate features for predicting bounding box locations, aiming to overcome the
issue of detecting objects of highly varying sizes (Figure 1.2). Subsequent iterations
of YOLO [12, 147, 148, 180, 181] also introduced additional advancements, including
anchor boxes, multi-scale feature maps, the use of batch normalisation, improved loss
function, stronger convolutional backbones, etc. While they perform better than the
original design, addressing its key limitations, only the most recent methods match the
accuracy of state-of-the-art two-stage models. What is more, multi-scale feature maps
tend to generate multiple predictions for the same object due to the overlap between
the grids.

To address the problem of multiple overlapping bounding box predictions for the
same object, object-detection models widely adopt Non-Maximum Suppression (NMS)
as a post-processing technique, aiming at retaining only the most relevant bounding box
for each detected object, therefore improving model precision and reducing redundancy.
NMS is a greedy algorithm, which ensures that among a group of overlapping boxes
(based on Intersection over Union threshold), only the one with the highest confidence
is preserved (Algorithm 1). NMS was already used in early computer vision methods,
filtering overlapping candidate detections produced by the sliding window or region
proposals approaches. It is especially relevant in one-stage detectors, pruning redundant
detections during inference and providing an accurate set of object predictions.
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Figure 1.2: Multi-scale spatial grids extraction with 4 anchor boxes

In another attempt to address the imbalance between foreground and background
region proposals generated by the grid-based approach, RetinaNet [118] introduced
the focal loss, which weights well-classified examples down to focus learning on hard,
misclassified instances. This model retains high inference speed, improving the accuracy
to match the two-stage models. However, the addition of focal loss increases the
complexity of hyperparameter tuning.

Transformer-Based Object Detection. Building on the success of natural language
processing (NLP) transformers, the Vision Transformer (ViT) [43] demonstrated that
pure self-attention can replace convolutions for image recognition. The capability of
modelling long-range dependencies and the global context of transformers facilitates
scaling beyond restricted receptive fields in CNN-based models.

Detection Transformer (DETR) model [16] was the first end-to-end object detector
based on transformer architecture. It reframes object detection as a direct set prediction
problem; in contrast to previous approaches, this eliminates the need for incorporating
region proposals, anchor boxes and other heuristics. The model utilises a CNN-based
backbone to extract image features, followed by a transformer encoder-decoder that
predicts a fixed number of object queries. Each query outputs a class label and bounding
box, and a bipartite matching loss (Hungarian loss) is used to align predictions with
ground truth.

This design provides high interpretability of the process and removes the need for
detection post-processing while achieving competitive accuracy. Subsequent models
such as Deformable DETR [207], Co-DETR [211] and DINO [201] introduce various
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Algorithm 1: Non-Maximum Suppression (NMS)
Input : Set of predicted bounding boxes B = {b1, b2, . . . , bn} with associated

confidence scores S = {s1, s2, . . . , sn}, IoU threshold 𝜔

Output : Filtered set of bounding boxes BF

1 BF ⇒ ⇑
2 Sort B in descending order according to scores S

3 while B ⇓= ⇑ do
4 bmax ⇒ first box in B
5 BF ⇒ BF ⇔ {bmax}
6 B ⇒ B \ {bmax}
7 foreach b ↑ B do
8 if IoU(b, bmax) > 𝜔 then
9 B ⇒ B \ {b}

10 end
11 end
12 end
13 return BF

enhancements: multi-scale deformable attention, optimised encoder and decoder ar-
chitectures and improved query initialisation, reducing the training time and reaching
higher localisation accuracy, which makes transformer-based detectors the state-of-
the-art in object detection. Despite the advantages over two- and one-stage detectors
(modular architecture without engineered components and heuristics, improved ac-
curacy), transformer-based detectors require larger model sizes, bigger datasets, and
carefully tuned training protocols, and do not scale well during inference, which limits
their usability in practical applications, especially for real-time object detection.

1.2.2 Image and Video Representation Learning

Extracting informative and compact feature representations from visual data is a
prerequisite for modern computer vision tasks, including classification, object detection,
instance segmentation and many more. Early solutions relied on hand-crafted feature
descriptors that encode local structure in images; examples include Scale-Invariant
Feature Transform (SIFT) [125], Speeded-Up Robust Features (SURF) [7], or Histogram
of Oriented Gradients (HOG) [34] to mention a few. On the other hand, early data-
driven feature extraction methods were grounded in statistical and signal processing
techniques such as Principal Component Analysis (PCA), Independent Component
Analysis (ICA) and sparse coding, which extracted low-dimensional representations of
the input data. However, both groups of these methods lacked the capacity to adapt to
complex, high-level visual semantics, their performance degrading with the increasing
complexity of images, motivating the shift towards learned image representations.
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Pre-trained CNNs (e.g. [76, 105, 156, 167], and others), particularly those trained
on large-scale datasets, became widely adopted as generic feature extractors. The
scalability and domain generalisation of these models were limited by the simple
classification task; therefore, they were usually fine-tuned to downstream applications,
following the transfer learning paradigm. This limitation, combined with a lack of key
representation properties such as smooth latent space, equivariance to transformations
and disentanglement of underlying factors of variation, inspired research towards explicit
representation learning, where the goal is to learn structured, reusable and semantically
meaningful feature spaces directly from data.

Self-Supervised Representation Learning. The challenges of collecting and anno-
tating large datasets, as well as the limited scalability of domain-specific representations,
motivated the research of methods which do not require human-provided labels. In
image representation learning, one of the most prominent directions is applying self-
supervised learning, based on designing pretext tasks, which are auxiliary objectives
providing supervision from the data itself. Examples of pretext tasks include operating
on image patches (predicting the relative position of two patches, solving a jigsaw puzzle,
per-patch feature analysis, etc.) [40, 135, 136], or transformations of the image (rotation
[58], inpainting missing regions [140], denoising [177], colourisation [86, 110, 202], or
recognising distortion [44]).

A particularly influential class of self-supervised methods is contrastive learning
[29, 153], which uses a learning objective that draws semantically similar sample pairs
closer in the latent space and pushes dissimilar pairs apart. The core challenge is the
e!ective construction of positive and negative pairs and formulating the contrastive
loss. These approaches use heavy data augmentation to define positive and negative
pairs [22], or maintain a memory queue with momentum-based negative sampling
[24, 26, 74]. A prominent and commonly used image embedding models, CLIP and
ALIGN, pair vision representation learning with text annotations in a vision-language
contrastive learning approach, aligning image and text embeddings using a symmetric
contrastive objective [88, 143]; later work extended these models with a ViT image
encoder architecture [114, 115]. These approaches showcase the cross-modal alignment
as foundational techniques in modern self-supervised representation learning, however,
they also require providing or creating text captions for each of the dataset examples.

Another important class of methods removes the need for explicit positive and
negative pair construction. Initially, methods achieved this objective by introducing
asymmetry or noise in the prediction targets [67, 199]. Later approaches include
clustering-based methods [18], redundancy-reduction techniques [19], and symmetric
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view prediction frameworks [25]. In parallel, masked token reconstruction emerged as a
highly e!ective strategy for self-supervised learning, drawing inspiration from masked
language modelling. Methods such as Masked Autoencoders (MAE) [73], SimMIM
[191], BEiT [4], and their later extensions [54, 138] pre-train Vision Transformers by
reconstructing missing parts of images, achieving state-of-the-art performance of inferred
representations in downstream tasks.

In the video domain, these ideas are extended by exploiting temporal dependence
between subsequent frames. Initially, these methods applied temporal pretext tasks
such as frame-order verification [56, 130], arrow-of-time prediction [185], and temporal
colourisation [179] to encourage motion-aware features. More recent methods extend
contrastive learning to video clips, leveraging instance discrimination across space and
time [139, 142]. Finally, self-supervision is also implemented via future frame prediction
and reconstruction task [72, 170, 182], capturing long-range dependencies in videos.

Unsupervised Representation Learning. Self-supervised learning methods have
proven highly e!ective at producing discriminative visual representations by leveraging
pretext tasks or contrastive objectives to separate instances within a latent space. These
methods are explicitly designed to optimise instance-level distinguishability rather than
to model the full underlying data distribution. In contrast, unsupervised representa-
tion learning often adopts a generative perspective; here, models aim to capture the
data distribution, reconstructing or predicting observations rather than merely distin-
guishing among them. By modelling the structure of the data, generative approaches
produce more general and versatile representation spaces, capable of supporting a wide
range of downstream tasks, including those requiring finer-grained understanding or
compositional reasoning.

A foundational class of generative models for unsupervised representation learning is
the variational autoencoder (VAE) [101, 150]. These models work under the assumption
that observed data is generated from latent variables drawn from a simple prior
distribution (typically Gaussian). VAEs introduce an encoder network to approximate
the intractable posterior distribution, enabling training via variational inference. It is
trained to maximise the variational lower bound on the data likelihood (evidence lower
bound), balancing reconstruction fidelity with a regularisation term that encourages
the latent distribution to remain close to the prior. This formulation should lead
to a smooth and structured latent space, which satisfies the representation learning
criteria. Further extensions, such as 𝜀-VAE [79] imposed a stronger constraint on the
latent space capacity to promote disentanglement; subsequent work proposed increasing
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the expressiveness of the latent space and the fidelity of generated outputs, including
hierarchical VAEs [27, 175] that uses multi-scale latent variables and vector-quantised
VAEs (VQ-VAE) [137] that model discrete latent codes.

A di!erent approach to generative modelling came with the introduction of Genera-
tive Adversarial Networks (GANs) [62]. In this setup, an adversarial objective is used
to train two networks: a generator, which synthesises images from random latent codes
and a discriminator that attempts to distinguish real pictures from generated ones.
This leads to implicit modelling of the data distribution without estimating likelihood;
GANs are capable of generating high-fidelity images, unlike VAEs, which tend to be
blurred due to the probabilistic regularisation of the latent space. The original setup
in GANs doesn’t provide an image encoder for inference; it was introduced in later
research [41, 42, 45], where the encoder is trained alongside the original two networks.
Other improvements focused on providing photorealistic quality of generated images
[13, 99, 100], or enhancing the disentanglement of latent factors with the GAN’s latent
space [23]. An alternative approach suggests joining the VAE and GAN idea in adver-
sarial autoencoders [128], which replace the KL divergence term with the adversarial
objective, or VAE-GAN hybrids [109], which apply the discriminator on VAE output to
improve perceptual quality.

An alternative path in unsupervised representation learning is o!ered by flow-based
models, which use invertible neural transformations for explicit probability modelling.
Normalising flows [38] construct a series of bijective mappings that transform an image
into a latent vector of the same dimensionality, enabling exact computation of data
likelihood via the change-of-variable formula. Other models use a"ne coupling layers
[39] and invertible 1 ⇐ 1 convolutions [102] to map images to latent representations.
The latent space in flow models, unlike in VAEs or GANs, is of the same dimensionality
as the input; since they are trained by maximising exact log-likelihood, this approach
can preserve all information and provide complete coverage of the data distribution.
However, the strict requirement of mapping invertibility can limit the architectural
flexibility of these models.

A major breakthrough in unsupervised generative modelling was di!usion models
[161]. The Denoising Di!usion Probabilistic Model (DDPM) [81] learns data structure
through a gradual denoising process. A forward di!usion process incrementally corrupts
an image with noise, while a neural network is trained to reverse this process step-by-step,
recovering the original input. A key milestone was the introduction of Latent Di!usion
Models (LDM) [152], where a DDPM is paired with a VAE to apply the di!usion
process within the lower-dimensional latent space, achieving high fidelity with lower
computational complexity. Additionally, the denoising process in LDM is conditioned
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on text encodings provided by captions of images. Unlike the previous categories of
generative modelling, di!usion models do not explicitly encode images into a latent space,
but instead capture the probability distribution by learning to remove noise; research
shows that the denoising network produces valuable representations of the input image
[169, 194]. Recent research further demonstrates that di!usion models naturally learn
rich representations and can be adapted to improve their utility for downstream tasks.
One approach introduces an auxiliary encoder into the denoising process, conditioned on
the di!usion timestep, enabling the model to organise information hierarchically across
noise scales and produce e!ective features for classification with simple linear probes
[131]. Another line of work uses a bottleneck between the encoder and the denoising
decoder, combined with a novel-view synthesis objective, to explicitly structure the
latent space and encourage the capture of pose-invariant, semantically meaningful
features [84].

Similar to self-supervised models, unsupervised representation learning from videos
requires models to capture additional temporal dynamics. Early approaches focused on
next-frame prediction in a probabilistic VAE framework [3, 36], by decomposing video
generation into separate content and motion components [172], or jointly modelling frame
and optical flow generation [116]. Subsequent methods model entire video sequences,
aiming at coherent video generation [70, 108]. The field of generative modelling of
videos accelerated with the advent of di!usion models, here extending the denoising
network to model both spatial and temporal dependencies [82], later extending the
existing LDM text-to-image models with temporal extensions [11, 69, 157].

1.2.3 Multi-Object Representation Learning

Multi-object representation learning is commonly tackled in an unsupervised or
weakly supervised setting, where the goal is to autonomously discover and disentangle
individual objects or entities from raw visual input, both in static images and in video
sequences. These models aim to organise perceptual data into structured, object-
centric representations without requiring dense supervision, enabling more generalisable,
modular, and interpretable reasoning about visual scenes. Over the years, numerous
architectural paradigms have been proposed to tackle this task, di!ering in how they
extract, represent, and decode object-level information while balancing interpretability,
flexibility, and scalability to complex real-world data. Most of them, however, share
the training objective, which is learning to reconstruct the input through a structured
neural network architecture, facilitating learning per-object representations.
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Inference method. Initial research in this area focuses on spatial attention-based
models, which use interpretable mechanisms to localise and process individual objects
in an image. The foundational model, Attend-Infer-Repeat (AIR) [53], introduced a
generative variational autoencoder framework that sequentially attends to and recon-
structs individual objects via a recurrent inference mechanism, learning the number,
location, and identity of objects without supervision. While AIR provided interpretable
object-wise decomposition and strong generalisation in simple scenes, it su!ered from
limited scalability and di"culty handling occlusions or overlapping objects. To address
AIR’s ine"ciency on complex scenes, SPAIR [31] replaced the recurrent inference with a
convolutional architecture that processes a dense spatial grid in parallel in a single-shot
manner. SPAIR improved scalability and spatial generalisation but retained weaknesses
in representing objects with irregular shapes or in cluttered scenes, especially due to
the limited variability of inferred object sizes caused by the fixed size and resolution of
the spatial grid. Subsequent models introduced hybrid mechanisms to mitigate these
limitations. For instance, SPACE [120] introduced a two-stream framework combin-
ing parallel spatial attention for foreground objects with a scene-mixture background
model. This approach retained the geometric clarity of spatial attention while enabling
background decomposition, resulting in improved segmentation and scalability across
varied visual domains. Generative Scene Graph Networks (GSGN) [35] expanded the
spatial attention paradigm by recursively composing part-whole hierarchies into scene
graphs, enabling the model to capture structured relationships among object compo-
nents. Meanwhile, Generative Neurosymbolic Machines (GNM) [89] fused symbolic
and distributed object representations by leveraging a probabilistic generative model
structured around spatial attention, improving interpretability and sample e"ciency.
Further, ROOTS [21] extended spatial attention to 3D-aware settings by learning
object-centric representations conditioned on camera pose and viewpoint, enabling
novel view synthesis. Spatial attention-based models o!er high interpretability, explicit
object factorisation, and the ability to impose geometric inductive biases beneficial
in structured reasoning and downstream tasks. However, common limitations include
di"culty modelling background explicitly, sensitivity to object scale and shape variance,
and challenges in handling dense, real-world scenes without strong priors or supervision.

Scene-mixture models provide an alternative to spatial attention-based approaches
for object-centric representation learning by decomposing scenes into a set of latent
components through soft masking rather than discrete spatial selection. Instead of
focusing on bounding boxes, these models interpret an image as a composition of over-
lapping reconstructions; the final image is produced by blending these reconstructions
based on learned attention masks, allowing the model to capture complex object shapes
and flexible spatial layouts without enforcing rigid geometries. A preliminary approach
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that led to scene-mixture models was Neural Expectation Maximisation (N-EM) [66],
which introduced an iterative clustering framework for discovering entities, combining
EM-style updates with neural inference networks to separate objects in an unsupervised
fashion, though it is limited in generative capacity and scalability. Subsequent works
such as MONet [14], IODINE [65], and GENESIS [49, 50] extended this line by integrat-
ing variational inference and compositional decoding, enabling per-slot reconstructions
that are combined into full images via spatial masks. These models showed substantial
improvements in handling occlusions and learning disentangled object representations,
especially in structured synthetic environments. A major advance came with the intro-
duction of Slot Attention [124], which states the object encoding process as an iterative
attention mechanism applied to fixed-size latent slots. The model leverages dot-product
attention between learned slots and input features to softly assign visual regions to
slots, followed by slot-wise updates. This architecture allows flexible, di!erentiable
object encoding without the need for explicitly defined object positions, achieving
superior reconstruction quality, particularly in scenes with ambiguous boundaries or
occlusion. The learned slots serve as compact, interpretable object representations
that are disentangled from each other by design. However, Slot Attention remains
computationally demanding due to the iterative attention and slot update steps. It
often struggles to cleanly separate individual objects in cluttered or realistic scenes,
particularly when visual cues are subtle or overlapping or in the case of a large number
of objects in the scene. Moreover, its performance drops significantly when scaling
beyond synthetic datasets.

Temporal Dynamics. Temporal extensions of multi-object representation learning
models aim to exploit the sequential character of video data to improve object discovery
and representation over time. Early spatial attention models like Sequential Attend-
Infer-Repeat (SQAIR) [104] introduced object discovery and propagation steps within
a recurrent generative framework, allowing objects to be tracked through time by
maintaining latent states per entity. While SQAIR provided clear object-level dynamics,
its reliance on nested RNNs and sequential inference limited its scalability. Follow-up
models such as SCALOR [92] and SILOT [32] improved dynamics modelling using
learned background transitions and proposal-rejection mechanisms, but retained high
computational cost and complex training dynamics. Similarly, recurrent mechanisms
were applied for scene-mixture models as well [33, 197].

More recently, video extensions of Slot Attention have combined iterative object
binding with slot-wise temporal dynamics. Models such as SAVi, STEVE and Loci
[103, 160, 171] propagate object slots across frames while learning motion-conditioned
updates, and SlotSSMs [91] replace RNNs with structured state-space models, enabling
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long-range memory and parallel training. On the other hand, SIMONe [95] proposed a
di!erent approach, where a parallel, fully di!erentiable model factorises visual sequences
into disentangled object latents and temporal latents, allowing it to model entire
sequences simultaneously. These innovations aim to address the limitations of recurrent
approaches, such as vanishing gradients and sequential bottlenecks, while retaining the
modularity and expressivity of per-object representations.

Decoder design. Most of the recent unsupervised multi-object representation learning
models adopt an autoencoder framework, in which the decoder plays a crucial role in
reconstructing the input image and providing a training signal through reconstruction
loss. The decoder must not only faithfully reconstruct visual details but also correctly
attribute and spatially place the individual object representations within the scene.
Its design thus directly impacts the model’s ability to learn meaningful, modular, and
disentangled object representations. Early scene-mixture models [14, 49, 50, 65, 124]
employed per-slot convolutional decoders whose outputs were combined using alpha-
based blending, with soft spatial masks determining how each object contributed to the
final image. This approach allowed for smooth composition and overlapping entities,
but imposed limitations on expressiveness and fidelity, especially in the presence of
complex textures or lighting e!ects. Additionally, such decoders tended to generate
blurry reconstructions of real-world data and were often unable to disentangle object
appearance from spatial context fully.

In parallel, spatial attention-based models [32, 53] employed spatial transformer
networks as di!erentiable renderers [87]. Each object was decoded in a canonical space
and then placed into the scene via an a"ne transformation, enabling position and
scale to be explicitly modelled. While interpretable and compositional, this mechanism
struggled with objects of varying aspect ratios or non-rigid shapes and required careful
balancing of decoder capacity and inductive bias. More recent hybrids like SPACE [120]
combined the benefits of both paradigms by using spatial transformers for foreground
objects and soft blending for complex backgrounds.

To improve reconstruction fidelity and scalability, a number of later models replaced
these simple decoders with more powerful transformer-based architectures [158, 159, 160].
By using slot-conditioned transformers, where a pre-trained discrete VAE (dVAE)
tokenises the image into visual codes, and a transformer decoder autoregressively
reconstructs these tokens from object slots, these models are capable of learning
object representations that align with high-level semantics and generating higher-quality
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images, particularly in natural scenes. However, the shift from pixel-space to token-space
reconstruction introduced architectural complexity, increased reliance on pre-training,
and often led to decreased interpretability due to entangled token-slot associations.

More recently, latent di!usion models have emerged as a powerful generative mecha-
nism for object-centric learning [90, 188]. Here, models condition a di!usion process on
structured slot representations, learning to denoise latent image features in a way that
respects the underlying object decomposition. These approaches o!er state-of-the-art
image quality and robustness to complex textures while preserving slot modularity.
Yet, di!usion models introduce substantial computational overhead, depend heavily
on pre-trained models, and obscure the connection between slots and localised image
regions due to their global conditioning and iterative nature.

Supervision in object-centric learning. The majority of the aforementioned
research focuses on unsupervised learning from raw visual input; however, it has become
increasingly clear that achieving robust performance on complex, real-world datasets
requires some form of external supervision or inductive signal. One common strategy is
to introduce conditioning signals in video models, such as motion cues derived from
optical flow or spatiotemporal consistency constraints, which help maintain object
identity across frames and improve segmentation under motion and occlusion [103].
Similarly, motion segmentation masks were used as a weak supervision signal, improving
object discovery in challenging real-world datasets [5, 6]. Another approach suggests
using depth information provided in RGB-D images as a means of supervision, o!ering
strong geometric cues that guide object separation when appearance features alone are
ambiguous [48].

One strategy to improve the performance of object-centric models is to incorporate
pre-trained components into their architecture, particularly powerful feature extractors.
This enables the use of powerful vision transformer backbones, which are either kept
frozen [155] or fine-tuned [90, 96, 188] during object-centric training, showing improved
results, especially on complex, real-world data. Similarly, latent di!usion-based models
rely on pre-trained auto-encoder, trained either on large-scale image datasets [90] or
on the target object-centric dataset [188], to provide a versatile latent space for the
di!usion process. This approach e!ectively decouples low-level feature extraction from
object-centric reasoning, enabling more scalable and data-e"cient learning.

Self-supervised learning objectives have also been used as an e!ective means of
regularising slot representations for learning object-centric representations in images.
These include techniques such as enforcing consistency across augmentations [155], or
leveraging teacher-student setups to reinforce instance segmentation [96]. In video



1.2. Related Work 22

settings, self-supervised approaches include learning to segment, transform, and inpaint
objects in a scene [10], masked slot attention mechanism guided by fused semantic
features and feature correspondence [141], incorporating patch-level temporal similarity
derived from self-supervised vision transformer features to guide slot assignment across
frames [198], and reconstructing high-level semantic features from masked inputs using
spatial-temporal slot binding and dynamic slot merging [2].

Collectively, these approaches address the poor scalability of unsupervised models
to real-world scenes with background clutter, intra-object variability, and ambiguous
spatial cues. By incorporating some forms of supervision, ranging from motion and
depth priors to feature-level self-supervision and minimal external hints, recent models
have achieved substantial gains in segmentation quality and object decomposition,
which promises a higher quality of the internal representations.

1.2.4 Object-Centric Datasets

Training and evaluating object-centric representation models requires datasets that
depict scenes containing multiple objects of interest, ideally with variation in types,
position and appearance. Because these models are typically generative and aim to
model the underlying data distribution, one of the key requirements is a satisfactory large
number of diverse samples to support robust generalisation. Early, foundational works
focused on demonstrating a basic feasibility of automatic object discovery and encoding
using simple synthetic data, where basic shapes or digits are placed randomly on
plain, uniform backgrounds. These toy datasets enable testing in controlled conditions,
allowing for detailed ablation studies to assess the influence of specific data properties,
such as the number and sizes of objects in images. As the field progressed, more complex
synthetic datasets were introduced, incorporating textured 3D objects, cluttered layouts
of scenes, occlusion, complex background and camera motion in videos. In parallel,
there is a growing interest in applying object-centric models to real-world images and
videos, where annotations enable evaluation through downstream tasks such as object
tracking, segmentation, or visual question answering.

Early Toy Datasets. Early methods, which pioneered the development of multi-
object representation learning, relied on toy datasets, which o!er controlled environments
to test the capability of these models to discover and encode individual objects without
supervision (Figure 1.3). Common examples include multi-object variants of MNIST
digits [53] or 2D shapes (Multi-dSprites [14] and Tetrominoes [65]), randomly placed
on a blank or monocolour background, or very simple 3D scenes (Objects Room [14]).
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In case of videos, researchers used sequences of these images, where objects moved
randomly within the frame. These datasets typically feature a small number of simple
objects, minimal variation in appearance and no background clutter. The synthetic
nature of these datasets allowed researchers to generate large datasets, validate the
functioning of the methods and perform fine-grained evaluations, including detailed
tests of objects’ discovery, e!ects of changes in objects’ count, size and overlap. Despite
their simplicity, toy datasets remain a valuable diagnostic tool for this category of
models.

Figure 1.3: Examples of toy datasets (left to right): scattered MNIST, Multi-dSprites,
Tetrominoes, and Objects Room

Synthetic Datasets. With progress in object-centric representation learning research,
more sophisticated synthetic datasets were introduced to analyse how these models
behave in more complex visual scenes (Figure 1.4). One of the key contributions
is CLEVR [93], which includes 3D-rendered scenes with multiple geometric objects,
varying in shape, colour and position. Together with its extension, CLEVRTex [98]
(which adds textured materials and backgrounds), these datasets expand on the earlier
setups by incorporating visual complexity and providing annotations, such as contextual
questions and answers, spatial relations and detailed object poses’ descriptions. Similar
to toy datasets, video-based extensions such as CATER [59] and CLEVRER [195] build
upon their image counterparts, focusing on object occlusions and temporal questions,
respectively. One of the most commonly used synthetic benchmarks is MOVi [64]. It
features several datasets with diverse 3D objects, realistic textures, dynamic lighting,
camera motion and detailed annotations. These datasets attempt to approximate real-
world challenges more closely, while retaining the benefits of synthetic data generation.

Figure 1.4: Examples of synthetic datasets (left to right): CLEVR, CLEVRTex, and
MOVi-C
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Real-World Datasets. The transition to real-world datasets is essential for assessing
whether object-centric representations can be applied to practical problems. Real-world
photos and videos are far more di"cult for unsupervised models to comprehend, as they
feature more complicated textures, uncontrolled lighting, and a high diversity of objects,
making it di"cult to attend to individual objects precisely (Figure 1.5). Object-centric
models have begun to show potential on these data only in recent years, driven by
advances in model scalability, decoder design and supervision strategies. However,
the size of real-world datasets can limit a model’s ability to learn a generalisable
representation of the data without overfitting: unlike synthetic datasets, which can be
generated at scale, real-world image and video collections often are not large enough
given their diversity, which makes it challenging for generative models to capture their
full complexity. The choice of dataset in research is usually guided by the intended
downstream application of learned representations. For example, datasets like MS
COCO [119] are commonly used to evaluate qualitatively the fidelity of reconstructed
images, or assess scene understanding capabilities through visual question answering
task [63]. For generative tasks such as image editing, face-centric datasets like CelebA
[123] or FFHQ [100] were used, while the MOT dataset [111] can be utilised as a
benchmark for object tracking in real-world scenarios. In many of these setups, one of
the persisting challenges is the scarcity of annotations, limiting the evaluation of these
models beyond reconstruction quality only to human-annotated samples.

Figure 1.5: Examples of real-world datasets (left to right): COCO, FFHQ, and MOT

1.2.5 Multi-Object Representation Learning Models Training

Most multi-object representation learning models are trained under an autoencoder
framework, where the objective is to reconstruct the input image as accurately as
possible from a compact, object-centric latent representation. This reconstruction-
driven training encourages the model to extract meaningful features for each entity in
the scene, with the latent bottleneck prioritising compactness and interpretability. A
critical role is played by the decoder design, which explicitly utilises the defined structure
of the latent space to create reconstructions. By requiring object representations to
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be composable into a coherent scene, these models are not only trained to compress
visual information but also to organise it in a way that reflects the semantics of the
underlying objects.

Autoencoders. The simplest conceptual approach to training multi-object repre-
sentation learning models relies on plain reconstruction error, following the original
autoencoder framework setup. Here, the model consists of an encoder e𝜗 that maps
the image to a latent vector z = e𝜗 (x), and a decoder d𝜀 that maps this intermediate
representation to an image reconstruction x̂ = d𝜀 (z). In the context of multi-object rep-
resentation learning, the latent representation is structured, consisting of object-centric
latent vectors z = (z1, ..., zK) ↑ ZK

The model is trained to minimise a reconstruction loss between the original and
reconstructed image. The most commonly used objective is the mean squared error
(MSE) (Equation (1.1)).

LMSE = 1
N

↓x → d𝜀 (e𝜗(x))↓2

2
(1.1)

where N is the number of pixels in the image.

With the representation bottleneck of the encoder-decoder architecture, autoencoders
compress the encoding of the input as a byproduct of learning to reconstruct. This
setup is agnostic to the structure of the latent space, which means that object-wise
decomposition emerges only from the network design, especially the decoder, which
must meaningfully consider each object’s appearance when creating the reconstruction.

Variational Autoencoders [101, 150]. Variational autoencoders (VAEs) extend the
basic autoencoder framework by introducing a probabilistic generative model, defining
a distribution over latent variables. It is assumed that the data x is generated by a
two-step stochastic process: first, a latent variable z is sampled from a prior distribution
p (z) (typically standard normal distribution z ≃ N (0, I)); then the observed data is
generated by sampling from a conditional likelihood p𝜀 (x | z), parametrised by the
decoder d𝜀. In this setup, inferring z given x would require computing the true posterior
p (z | x), which is intractable (it involves computing marginal likelihood, requiring
integration over all latent configurations). VAE approximates the posterior using the
encoder network e𝜗 (introducing a variational distribution q𝜗 (z | x)), which enables
training by maximising the evidence lower bound (ELBO) (Equation (1.2)).

LELBO = Eq𝜔(z|x) [log p𝜀 (x | z)] → DKL (q𝜗(z | x) ↓ p (z)) (1.2)
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where

Eq𝜔(z|x) [log p𝜀 (x | z)] is the expected log-likelihood of the data under the decoder
p𝜀 (x | z), encouraging accurate reconstructions,
DKL (q𝜗(z | x) ↓ p (z)) is the Kullback-Leibler divergence between the approxi-
mate posterior and the prior, constraining the expressiveness of the latent space
and penalising divergence from the prior.

To allow gradient-based optimisation through the stochastic sampling of latent
variables, VAE’s employ the reparametrisation trick, where instead of sampling z ≃
N

)︃
µ𝜗, 𝜀2

𝜗

[︃
directly, the latent variable is reparametrised as in Equation (1.3), allowing

gradients to propagate during training.

z = µ𝜗 + 𝜀𝜗 ↖ 𝜗, 𝜗 ≃ N (0, I) (1.3)

where both µ𝜗 and 𝜀𝜗 are the outputs of the encoder network e𝜗.

Latent Di!usion Models [152]. Motivated by the improved generative capabilities,
recent research in the area of object-centric learning explores the idea of using latent
di!usion models conditioned on object representations. Denoising Di!usion Proba-
bilistic Models (DDPMs) [161] learn to synthesise data by reversing a gradual noising
process. They rely on applying a forward di!usion process to transform a complex data
distribution into a simple prior (usually standard Gaussian); then, a neural network is
trained to iteratively map the noise back to the data distribution by approximating the
reverse process. Formally, given a data sample x(0), the forward process is defined as a
Markov chain that corrupts it with Gaussian noise over T steps (Equation (1.4)). The
reverse generative process models p𝜀

)︃
x(t↓1) | x(t)

[︃
, parametrised with a noise prediction

network 𝜗𝜀

)︃
x(t)

, t

[︃
, estimates the added noise at each step t. In this setup, sampling

data involves iteratively denoising from random Gaussian noise x(T ) to x(0).

q

)︃
x(t) | x(t↓1)

[︃
= N

]︃
x(t);

⌊︃
1 → 𝜀tx(t↓1)

, 𝜀tI
⌋︃

(1.4)

where 𝜀t is a variance schedule at timestep t.

The high dimensionality of the image space makes training DDPMs costly and slow,
which is why Latent Di!usion Models (LDMs) [152] utilise a lower-dimensional latent
space to perform the di!usion process. They incorporate a pre-trained autoencoder
capable of encoding the data x to a learned latent space z(0) = e (x), as well as
reconstructing the image from this latent encoding x̂ = d

)︃
z(0)

[︃
. Then, the di!usion
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process is applied to the latent representation z(0), producing its noisy version z(t),
whereas the reverse process utilises a conditional model to denoise the noisy encoding
(Equation (1.5)).

p𝜀

)︃
z(t↓1) | z(t)

[︃
= N

⌈︃

z(t↓1); 1
↘

𝜛t

⌈︃

z(t) → 𝜀t↘
1 → 𝜛̄t

𝜔(t)

⌉︃

, 𝜀tI
⌉︃

𝜔(t) = 𝜗𝜀

)︃
z(t)

, t, e
aux

𝜗
(y)

[︃ (1.5)

where:

𝜔(t) is the noise predicted at timestep t,
𝜗𝜀

)︃
z(t)

, t, e
aux

𝜗

[︃
is the output of the noise prediction network,

e
aux

𝜗
(y) denotes an encoder of auxiliary input y, used for conditional image

generation,
𝜀t is a variance schedule value at timestep t,
𝜛t = 1 → 𝜀t ,
𝜛̄t = {︃

t

i=1
𝜛i .

During training, a random timestep t is sampled uniformly, and the latent z(0) is
noised as in Equation (1.6).

z(t) =
↘

𝜛̄z(0) +
↘

1 → 𝜛̄t𝜔
(t)

, 𝜔(t) ≃ N (0, I) (1.6)

The network 𝜗𝜀 is trained to predict the noise 𝜔 from z(t) and t, conditioned on the
input from the encoder e

aux

𝜗
(y), by minimising the mean squared error (Equation (1.7)).

The encoder e
aux

𝜗
can be optimised jointly with the noise prediction network 𝜗𝜀, or

frozen when using a pre-trained domain-specific expert network (e.g. text encoder for
text-based conditioning).

LLDM = Ex,𝜛↔N (0,1),t,y

}︃⟨⟨⟨𝜗 → 𝜗𝜀

)︃
z(t)

, t, e
aux

𝜗
(y)

[︃⟨⟨⟨
2

2

⟩
(1.7)

Conditioning is implemented via cross-attention layers embedded in the noise
prediction network 𝜗𝜀. The auxiliary input is mapped to a conditioning embedding raux =
e

aux

𝜗
(y), which is then used to produce key-value pairs for attention (Equation (1.8)),

allowing the model to modulate denoising based on the conditioning signal.

Attn (Q, K (raux) , V (raux)) = softmax
⌈︃

QK
T

↘
dk

⌉︃

V (1.8)

where:
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Q are the internal feature queries,
K (raux) , V (raux) are the keys and the values – learned projections of raux,
dk is the dimensionality of the key/query vectors.

1.2.6 Evaluation of Multi-Object Representations

Evaluation of the quality of object-centric representations is a critical part of multi-
object representation learning research. In the context of object-centric modelling, it
often relies on downstream tasks; these models are typically trained without supervi-
sion, generally using the reconstruction error objective, which makes evaluation more
challenging than in the case of supervised learning. Because the goal is to learn struc-
tured, object-centric representations of input visual data, evaluation generally involves
assessing the alignment between these representations and semantically meaningful
properties of the objects (appearance, location, dynamics, etc.) relevant to established
benchmark problems. Among the most commonly used downstream tasks for evaluating
multi-object representations are:

• object counting and classification, estimating the number of distinct objects
and assigning semantic labels based solely on learned representations,

• object detection and segmentation, which emerge as a part of object repre-
sentation in spatial attention and scene-mixture models, respectively,

• object tracking, focusing on maintaining object identity over time in video
sequences, based on objects’ representations in consecutive frames,

• visual question answering (VQA), which involves answering queries about
objects and their relations using the learned representations,

• visual reasoning, utilising scene representation to infer properties or outcomes
such as the location of occluded objects,

• novel scene synthesis, which applies the model’s decoder to reconstruct the
image or video based on provided object encoding, testing how modifying the
representation alters the synthesised scene.
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1.2.6.1 Reconstructions Quality

Reconstruction error is often used as the objective during training multi-object
representation learning models, which is why the quality of reconstructions is one of
the most critical means of evaluating these models. Besides assessing the similarity
of the generated output to the input image or video, reconstruction metrics provide a
quantitative measure of reconstruction fidelity and realism.

• Mean Squared Error (MSE) is a standard metric used to measure the di!erence
between predicted values and actual values in the dataset (Equation (1.9)).

MSE = 1
N

N⧸︃

i=1

(xi → x̂i)2 (1.9)

where:

N is the number of observations,
xi refers to the true value of the i-th observation,
x̂i is the predicted value of the same observation.

In the case of images and videos, observations refer to pixels and their intensities.
A lower MSE value means that the prediction is closer to the actual values,
indicating high accuracy of input reconstruction. While commonly used in multi-
object representation learning, MSE doesn’t explicitly evaluate the quality of
representations. Models can achieve low MSE focusing on pixel-level accuracy
without inferring structured and meaningful representations.

• Fréchet Inception Distance (FID) [78] and Fréchet Video Distance
(FVD) [174] are metrics used to evaluate the generative capability of models
such as Generative Adversarial Networks. Unlike pixel-wise metrics, FID and
FVD assess the similarity between the distribution of real and generated images
(Equation (1.10)). Specifically, they compare the mean and covariance of feature
representations extracted from a pre-trained Inception v3 network [168] (in the
case of FVD, Inflated 3D ConvNet [20] is used as the feature extractor).

dFID,FVD (Pr, Pg) = ↓µr → µg↓2 + Tr
)︃
!r + !g → 2 (!r!g)

1
2
[︃

(1.10)

where:

µr, !r are the mean and covariance of real input features distribution Pr,
µg, !g are the same parameters of the generated output features distribution
Pg.
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A lower FID score indicates that the feature distribution of the generated images
or videos is more similar to that of the real data, suggesting that the model has
captured the underlying data distribution. However, similar to MSE, this metric
does not explicitly evaluate the latent space of the model.

• Learned Perceptual Image Patch Similarity (LPIPS) [203] addresses the
challenge of perceptually similar images, which have high pixel-wise error due to
slight shifts, colour variations, or texture di!erences. It measures the perceptual
similarity between two images, using a pre-trained feature extractor (such as
AlexNet [105] or VGG [156]) and computes the 𝜚2 distance between normalised
features at multiple layers (Equation (1.11)).

dLPIPS (x̂, x) =
⧸︃

l

1
H(l)W (l)

⧸︃

h,w

⟨⟨⟨wl ↖
)︃
yl

hw
→ ŷl

hw

[︃⟨⟨⟨
2

2
(1.11)

where:

yl
, ŷl are unit-normalised features extracted using the pre-trained network

for layer l from the real input x and the generated output x̂, respectively,
H

(l)
, W

(l) denote the dimensions of l-th layer’s output,
wl is a trainable weights vector used to scale the activations for l-th layer
data, reflecting perceptual importance of each layer.

A lower LPIPS score indicates higher perceptual similarity. Unlike FID/FVD,
which assesses distribution-level similarity across a dataset, LPIPS is a per-image
metric.

1.2.6.2 Entity Classification

One of the most fundamental downstream tasks used to assess learned object-
centric representations is classification. In the most straightforward scenario, each
object within the scene is assigned a class label from a predefined set, based on
ground-truth annotations. These labels can correspond to various attributes of objects,
including object category, colour, size, material, or spatial properties. They may also
encode relational properties, such as whether the object is interacting with another
one in a particular way. If the model is capable of learning semantically meaningful
representations, even a simple classifier should be able to accurately map the latent
representation to the correct labels.

Beyond basic object-level classification, more complex reasoning tasks, which assess
scene-level understanding, can also be framed as classification tasks. For example, in
visual question answering with a closed set of answers, the model has to classify which
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answer applies given a query and scene representation. Similarly, in scene-level reasoning
tasks, the model may assign high-level labels to the entire scene. These scenarios can
be used to validate if, beyond capturing isolated object properties, the model is also
capable of understanding the global scene structure and object interactions.

• Accuracy measures the proportion of correct predictions over all predictions
(Equation (1.12)).

Accuracy = TP + TN
TP + TN + FP + FN (1.12)

where:

TP are true positive examples,
TN are true negative examples,
FP are false positive examples,
FN are false negative examples.

• Precision measures the proportion of correctly predicted positive instances among
all predicted positives (Equation (1.13)).

Precision = TP
TP + FP (1.13)

• Recall measures the proportion of actual positive instances that were correctly
predicted (Equation (1.14)).

Recall = TP
TP + FN (1.14)

• F1-Score is the harmonic mean of precision and recall, which balances these
measures especially for skewed datasets (Equation (1.15)).

F1 = 2 · Precision · Recall
Precision + Recall (1.15)

In a multi-class setting, these metrics need to be aggregated across classes. The
most common strategies involve:

• micro-averaging, which aggregates the contributions of all classes by considering
total count of TP, TN, FP and FN,

• macro-averaging, which computes metrics for each label, and returns the average
value,
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• weighted-averaging, which considers the proportion for each label in the dataset
when averaging per-label metrics.

1.2.6.3 Semantic Segmentation

Scene-mixture models use a structured latent space to encode both objects’ appear-
ance, as well as their location, using segmentation masks to indicate the spatial support
of each entity in the scene. These masks emerge from trained attention mechanisms,
assigning pixels to distinct object-centric slots. When ground-truth segmentation masks
are available, the encoded attention masks can be evaluated using semantic segmentation
metrics. This is particularly useful from the perspective of models’ capability to identify
and separate individual entities within the scene. A strong alignment between encoded
masks and ground truth segmentation indicates that the model learned to discover
object boundaries and group pixels meaningfully. This spatial disentanglement is one
of the key properties of multi-object representation learning.

• Mean Intersection over Union (mIoU) is one of the most widely used metrics
for evaluating spatial segmentation equality. Intersection over Union measures
the overlap between two sets (Equation (1.16)).

IoU (P, G) = |P ∝ G|
|P ⇔ G| (1.16)

where:

P ′ ” is the predicted mask,
G ′ ” is the ground-truth mask,
” is the set of all pixels in the image.

The metric takes values between 0 (no overlap) and 1 (perfect alignment of
masks). To evaluate the entire image segmentation, IoU is calculated between
each predicted mask and the ground truth in order to get the optimal one-to-one
matching, maximising the total IoU. Then, the Mean Intersection over Union is
calculated as the mean over matched pairs.

• Mean Best Overlap (mBO) follows a similar approach to mIoU, but instead
of getting an optimal one-to-one matching, it assigns each ground-truth object
mask to the max-overlapping predicted mask (Equation (1.17)).

BO (P, Gi) = max
j

IoU (Pj, Gi) (1.17)

where:
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Gi is the i-th ground-truth mask,
Pj is the j-th predicted mask.

The Mean Best Overlap is computed by averaging the BO scores across all ground-
truth objects. This approach allows each ground-truth object to be matched to its
best-overlapping predicted mask, properly handling scenarios where the number
of predicted objects does not match the ground truth.

• Adjusted Rand Index (ARI) is another metric used for evaluating segmentation
performance. Unlike mIoU, which measures pixel-level overlap between matched
masks, ARI evaluates overall agreement between two clusterings of the image,
making it particularly useful for object-centric masks, which lack class assignments.
It extends the Rand Index [145], which quantifies between two clusterings by
considering all pairs of pixels and counting how many pairs are consistently
grouped in both true and predicted segmentations. Given all combinations of
n pixels in an image (

)︃
n

2

[︃
combinations), the Rand Index is calculated as in

Equation (1.18).

RI = a + b
)︃

n

2

[︃ (1.18)

where:

a is the number of pairs of pixels covered by the same mask both in ground-
truth and predicted segmentation (true positives),
b is the number of pairs of pixels covered by di!erent masks in both segmen-
tations (true negatives).

Adjusted Rand Index includes correction for chance, subtracting its expected
value under random labelling and normalising the results (Equation (1.19)).

ARI = RI → E [RI]
1 → E [RI] (1.19)

where:

E [RI] is the expected Rand Index (average similarity between two random
clusterings).

ARI ranges from →1 to 1, where 1 indicates a perfect clustering match, 0 corre-
sponds to chance-level agreement, and values lower than 0 are worse than random
matchings. Importantly, ARI is invariant to permutation, making it especially
useful in evaluating object-centric models, where representation order is arbitrary.
In this context, researchers usually utilise FG-ARI, a variant which only considers
foreground objects and ignores false segmentation of the background.
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1.2.6.4 Object Detection

Spatial attention-based multi-object representation learning models use a di!erent
approach for representing object location. Instead of segmentation masks, their struc-
tured encodings typically include bounding boxes that indicate the spatial extent of
each discovered entity. Similar to scene-mixture models, evaluating how well these
spatial components align with ground-truth object locations provides insight into the
model’s ability to attend to and disentangle meaningful entities within the scene. In
this setting, the quality of object localisation is assessed using object detection metrics.

• Average Precision is a widely used metric for measuring the accuracy of predicted
object locations. To evaluate the performance in object detection, it determines for
each predicted bounding box if it qualifies as a true or false positive based on its
Intersection over Union with any unmatched ground-truth box. By using various
thresholds of IoU, it builds a precision-recall curve for all predicted bounding boxes.
In this setup, Average Precision is defined as the area under the precision-recall
curve. In practice, it is approximated by using discrete samples of recall levels,
AP computed as a weighted sum of precisions at each threshold with an increase
in recall as weight (Equation (1.20)).

AP =
N↓1⧸︃

k=0

)︃
Recall𝜚k

→ Recall𝜚k+1

[︃
· Precision𝜚k

(1.20)

where:

N is the number of thresholds,
𝜔k is the k-th threshold, at which Recall𝜚k

and Precision𝜚k
is computed.

Typically, in an object detection task, Average Precision is aggregated over all
available classes, forming Mean Average Precision. However, in object-centric
models, spatial attention only provides boxes’ locations, without classifying them,
hence, AP can be applied in a class-agnostic fashion.

1.2.6.5 Multi-Object Tracking

One of the downstream tasks utilised to evaluate the temporal stability and con-
sistency of learned object-centric representations in videos is object tracking. In this
setting, the model is expected to maintain coherent representations of individual objects
across frames as they move or undergo minor appearance changes. A common evalua-
tion approach involves integrating these representations into a tracking-by-detection
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framework similar to Deep SORT [186]. In this framework, object-centric represen-
tations are used as objects’ embeddings, and later associated across frames based on
an appearance similarity metric. This setup enables evaluating whether the learned
objects’ representations remain stable and temporally consistent, providing insight into
the model’s ability to support dynamic scene understanding.

• Multiple Object Tracking Accuracy (MOTA) [9] is one of the popular met-
rics for evaluating multi-object tracking performance. MOTA relies on qualifying
tracked objects as false negatives (missed detections), false positives (spurious de-
tections), and identity switches to determine tracking accuracy (Equation (1.21)).

MOTA = 1 →
⧹︃

t(FNt + FPt + MMEt)⧹︃
t GTt

(1.21)

where:

t is the timestep,
MME is the number of mismatches (identity switches),
GT is the number of ground-truth objects.

MOTA can be less than 0, indicating poor tracking performance. Values above
0.5 are considered acceptable, while 1 means perfect tracking.

• Identification F1-score (IDF1) [151] is a metric focusing on object identity
preservation in multi-object tracking. It measures the consistency of predicted
identities with respect to ground truth by computing the F1-score in the iden-
tity matching problem. Here, the metric is computed by creating a one-to-one
matching between ground-truth and predicted object trajectories, which minimises
mismatched frames. Then, true positive, false positive and false negative examples
are counted to calculate the F1-score (Equation (1.15)). In the multi-object rep-
resentation learning setup, IDF1 allows focusing on identity consistency instead
of raw detection accuracy, providing more insight into association quality across
time.

• Higher Order Tracking Accuracy (HOTA) [127] is a more recent metric
that aims to unify detection, association and localisation performance in a single
interpretable score, addressing the limitation of MOTA and IDF1, which overem-
phasise detection and association accuracy, respectively. For a given localisation
threshold 𝜛, it is computed as the geometric mean of detection and association
accuracy (Equation (1.25)). Detection accuracy DetA𝜔 is calculated by deter-
mining if a prediction is a true or false positive, similarly to Average Precision
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(Equation (1.22)), whereas Association accuracy score (AssA𝜔) involves counting
true positive associations (TPA), false negative associations (FNA) and false
positive associations (FPA) (Equations (1.23) and (1.24)).

DetA𝜔 = TP𝜔

TP𝜔 + FN𝜔 + FP𝜔

(1.22)

AssA𝜔 = 1
TP𝜔

⧸︃

c↗{T P𝜀}
A𝜔 (c) (1.23)

A𝜔 (c) = TPA𝜔 (c)
TPA𝜔 (c) + FNA𝜔 (c) + FPA𝜔 (c) (1.24)

HOTA𝜔 =
⌊︃

DetA𝜔 · AssA𝜔 (1.25)

The final HOTA score is the average of the HOTA𝜔 scores calculated at a number
of di!erent localisation thresholds 𝜛.

1.3 Motivation

As detailed in Section 1.2, e!ective feature extraction is fundamental for numerous
computer vision tasks such as classification, detection, or visual reasoning. Conventional
approaches commonly rely on global feature extraction, where the entire image is
processed into a single holistic embedding. Such global representations often lack
the resolution and structure required to analyse complex scenarios involving multiple
interacting objects. By merging object-specific details into entangled feature vectors,
these methods limit the ability to distinguish individual object properties, which is
essential for human-level understanding of visual scenes. Multi-object representation
learning emerges as a response to this limitation, o!ering a more structured, human-like
understanding of visual input. These models have numerous practical applications,
including their use as robust feature extractors for downstream tasks such as visual
question answering, object tracking or scene understanding, which is necessary for
robotics applications. Their inherent generative capabilities enable utilising them for
creating new scenes based on learned representations, as well as modifying input images
through object manipulation or scene editing.

Modern representation learning predominantly relies on unsupervised or self-supervised
training methodologies. The use of supervised models as feature extractors involves
optimising for a specific objective based on human-provided annotations. This can
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lead to highly specialised representations which are di"cult to use in more general
applications, di!erent from the original task. Furthermore, the scarcity of large-scale
annotated datasets and the risk of obtaining inaccurate annotations motivated the
shift towards unsupervised approaches, capable of leveraging vast amounts of unlabeled
visual data. Within this context, generative modelling emerges as particularly powerful,
explicitly targeting the learning of the underlying data distribution. Unlike discrimina-
tive models, which aim at di!erentiating objects and their characteristics, generative
models inherently capture the full complexity of the input data, facilitating richer and
more flexible representations suitable for diverse downstream tasks.

During the initial literature review and preliminary research, several key research
gaps were identified:

1. Scalability of early object-centric methods. Initial influential approaches,
such as AIR [53], MONet [14], or IODINE [65], significantly advanced the idea
of unsupervised multi-object representation learning. However, their reliance on
sequential inference with recurrent neural network architectures resulted in high
computational complexity, caused by processing one object at a time, or iteratively
refining the inferred representations. Research demonstrates their performance
mainly on synthetic datasets or relatively simplistic scenes, containing a small,
fixed number of objects. These methods fail to generalise to more realistic, visually
complex settings, which remains a key challenge in the area of unsupervised multi-
object representation learning.

2. Limitations of convolutional grid-based architectures. Subsequent methods
like SPAIR [31] and SPACE [120] aimed to address scalability through convo-
lutional, grid-based approaches inspired by single-shot object detectors. In this
setting, the model can infer objects’ locations simultaneously across all image
regions, instead of recurrent analysis of a single image. The inferred objects’
positions are used to extract glimpses, which are processed by a shared encoder.
Although this approach allows scalable processing of multiple objects in an image,
the convolutional encoder design introduces a significant rigidity due to reliance
on a fixed-size grid and predefined spatial discretisation. Objects substantially
deviating from the most common dimensions (larger or smaller than the cho-
sen grid resolution) could not be encoded e!ectively. Similarly, with each cell
corresponding to a region on the image, densely clustered objects with overlaps
could not be separated into distinct object representations, as multiple entities
could fall within the same grid cell, leading to ambiguous object representations.
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Consequently, convolutional grid-based methods struggled with realistic scenarios
where object scales, shapes, positions, and densities vary, negatively impacting
their practical utility.

3. Inadequate object disentanglement in fully unsupervised setups. Purely
unsupervised multi-object representation learning methods frequently struggled
to reliably disentangle scenes into distinct object representations, especially when
used on real-life images. Without explicit supervision or targeted inductive biases,
these models tended to collapse multiple distinct objects into a single, overly
coarse latent representation rather than clearly disentangling each entity. In the
case of scene mixture models, this behaviour was demonstrated by creating large
masks adhering to regions in images or colours rather than individual objects; in
the case of spatial attention models, they tend to reconstruct the input image by
splitting it into rectangular patches instead of focusing on individual objects. This
behaviour was particularly prominent in complex, cluttered, and realistic datasets
where individual object boundaries are more di"cult to di!erentiate visually,
limiting the versatility of the resulting representations. Thus, later multi-object
representation learning models introduced additional inductive biases or minimal
supervision to achieve meaningful decomposition, addressing a critical gap between
fully unsupervised representation objectives and the practical demand for precise,
interpretable object-centric representations.

4. Temporal inconsistency in video models. Temporal extensions of object-
centric models, designed to handle video data and dynamic visual contexts,
inherited and amplified the computational complexity and architectural limitations
observed in static-image counterparts. Video-based methods often rely heavily
on sequential recurrent inference mechanisms to track objects over multiple
frames, making them computationally expensive and challenging to scale beyond
short temporal sequences. Additionally, these models typically lacked explicit
mechanisms for enforcing long-term temporal consistency or stable object identity
preservation across frames. Consequently, these approaches frequently exhibited
undesirable behaviours, such as drift in object representations over time, and
inconsistent segmentation across consecutive frames, limiting their applicability
in realistic dynamic scenarios. Addressing these temporal limitations requires
e"cient temporal modelling strategies based on a robust image representation
learning model, capable of reliably maintaining coherent and stable object-centric
representations throughout extended video sequences.
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Given how the original grid-based approaches were inspired by advancements in
object detection frameworks, particularly single-shot detection methods [146, 122], it is
natural to hypothesise that subsequent improvements from modern object detection
methods could enhance multi-object representation learning models. Multi-scale fea-
ture maps and anchor boxes, which allowed these object detection models to better
attend to objects of varying sizes, densely clustered and overlapping, could lead to
better disentanglement of object representations in the object-centric learning setting,
improving the quality of their embeddings. Similarly, more powerful convolutional
backbones could be used to enhance the e!ectiveness of initial feature extraction in
these models. Finally, the original glimpse-based object encoding could be replaced
by extending the convolutional grid-based encoding to comprehensive object attribute
encoding, without the need for an additional glimpse encoding step. Such integrated,
parallel encoding strategies inspired by state-of-the-art detection models could result
in more e"cient, scalable, and robust multi-object representation learning approaches
capable of handling realistic and complex visual scenes.

1.4 Research Goals

The general aim of this research is to advance the multi-object representation learning
methods in complex visual environments, improving the scalability of unsupervised
generative methods. This section outlines the detailed plan for the research, formulates
the central hypothesis and specifies the research questions that guide the investigation.

1.4.1 Research Plan

The research conducted in this thesis, through a series of stages, presents the
development and evaluation of novel approaches to object-centric representation learning
across both image and video domains. The initial stage of the research (Section 2)
involves investigating the internal feature maps of pre-trained object detection neural
network, particularly a simplified YOLO [146], for their usability as inputs to deep
reinforcement learning agents. This includes a comparison of di!erent levels of visual
abstraction, including two early exits from the convolutional backbone, and final
detection outputs, with the aim to determine their utility for facilitating navigation
tasks in autonomous underwater vehicles. In this setup, the experimental scenario
includes training and evaluation of separate models based on each level of visual features.
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Building upon this approach, the first core phase of the research (Section 3) inves-
tigates the main research gap identified in the area of spatial attention, multi-object
representation learning models utilising convolutional grid-based object encoding. The
challenge of learning structured representations of diversely-sized objects without re-
lying on sequential or recurrent mechanisms is addressed by integrating a multi-scale
encoding architecture, inspired by the Single-Shot Multi-Box Detector (SSD) [122]. On
the other hand, this phase explores the capability of extending existing unsupervised
approaches to more complex datasets by integrating a pre-trained object detection
model for localising encoded objects and improving feature extraction. Evaluating
these capabilities is conducted through training models on specifically selected datasets,
including objects of highly varying sizes, ranging from synthetic images to realistic
photos, analyzing the quality of learned representations in downstream tasks.

The second phase (Section 4) addresses the challenge of applying these improvements
in a video-based multi-object representation learning model. In an attempt to mitigate
the inflexibility of strict recurrent mechanisms for discovery and propagation of objects,
this stage involves reviewing an implicit approach, where instead intermediate features
are propagated over time using a recurrent neural network (RNN). Following the previous
phase, here a staged training procedure is used, which includes three consecutive steps:
first, a supervised object detection model is trained to localise selected objects of
interests; then, an image-based representation learning model is trained, incorporating
encoding heads to extract object-centric embeddings; finally, a temporal extension is
introduced, enabling the model to learn consistent object representations from video
sequences. The experimental scenario includes preparing dedicated synthetic sequences
of images, as well as complex real-life videos, to review the quality of representations
and the improved temporal coherence of the objects’ representations.

The final stage of the research (Section 5) explores the generative modelling tech-
niques to improve the quality of reconstructions produced by the multi-object repre-
sentation learning model. Inspired by recent advances in di!usion-based generative
architectures [90, 152, 188], it explores the idea of using multi-scale object representations
as conditioning in a denosing network. This phase involves utilising detection-informed
object encodings, integrating the objects’ location information through positional en-
codings and a complex loss function. The experimental setup, aside from evaluating
the influence of this training setup on the resulting representations of objects, includes
a review of reconstruction quality on simple and complex datasets, addressing one of
the main limitations of existing methods.
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A critical aspect is the comparison with selected baseline methods on the same
dataset, ensuring a fair and detailed comparison. The reproducibility of the experiments
is guaranteed by providing the source code for all experiments, as well as the datasets.

1.4.2 Research Hypothesis

The central hypothesis of this research is that utilising multi-scale intermediate
features from single-shot object detection networks as a means for spatial grid-based
attention enables the development of object-centric representations that are disentangled,
scale-invariant and generalisable across images and videos. It is further hypothesised
that incorporating a pre-trained object discovery mechanism enables the shift from
synthetic images to real-life datasets, allowing these models to focus on important
objects discovered within the scenes, and providing generalisable representations that
can be e!ectively reused in downstream computer vision tasks.

1.4.3 Research Questions

In this thesis, the following research questions were considered.

RQ 1 : To what extent can internal representations extracted from intermediate layers
of an object detection neural network serve as e!ective visual inputs for deep
reinforcement learning agents, especially in 3D robotic navigation? See Section 2.3.

RQ 2 : To what extent does fully convolutional spatial grid-based attention, which replaces
sequential encoding or iterative refinement, enable the learning of high-quality
object-centric representations in multi-object visual scenes? See Section 3.4.

RQ 3 : How does utilising multi-scale feature maps improve the performance of object-
centric representations in downstream tasks, particularly for objects of varying
sizes in complex visual scenes? See Section 3.4.

RQ 4 : How can an unsupervised learning framework that incorporates knowledge from
a pre-trained object detector be used to learn structure latent variables, such as
appearance and depth? See Section 3.4.

RQ 5 : How can implicit representation-based temporal mechanisms be used to provide
consistent representations for tracking object identities across video frames? See
Section 4.3.
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RQ 6 : How does staged training procedure (translating from image-based to video-based
representation learning) impact the ability to learn objects’ representations in a
video setting? See Section 4.4.

RQ 7 : How can detection-guided object representations be used to condition di!usion-based
generative models for controllable image synthesis? See Section 5.3.

RQ 8 : How can positional information from detection models be incorporated in a
di!usion-based object-centric model to improve object-to-representation matching
in generative applications and complex downstream tasks? See Section 5.3.

1.5 Thesis Contributions

The following contributions of the thesis can be enumerated:

1. Identification of the research problem: learning modular, transferable object
representations from images and videos using internal feature maps of pre-trained
single-shot detection networks as a structured visual prior – see Section 1.4;

2. Experimental evaluation of the applicability of visual features extracted from a
pre-trained object detection network for use in deep reinforcement learning-based
3D navigation, demonstrating the feasibility of structured and abstract visual
inputs as alternatives to explicit object detections [210] – see Chapter 2;

3. Design and implementation of a scale-invariant, fully parallel encoding approach
for multi-object representation learning in images, which integrates spatial grid-
based attention with multi-resolution features and structured latent variables
[208] – see Chapter 3;

4. Introduction of SSDIR, an object-centric generative model that leverages detection-
based spatial supervision while learning appearance and depth latents in an
unsupervised manner, supporting compositionality and generalisation [208] – see
Chapter 3;

5. Development of a temporally consistent multi-object representation learning model
RDIR for videos by extending the static model with a recurrent feature encoder
(Sequence encoder) and a multi-scale spatial fusion module (Mixer module),
enabling consistent object representations across time and robust inference in
dynamic environments [209] – see Chapter 4;
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6. Formulation of an approach that uses a staged training procedure for the video-
based object-centric model to improve optimisation stability [209] – see Chapter 4;

7. Design of a detection-guided object encoding pipeline for generative modelling,
which includes positional disentanglement, cross-resolution fusion, and object-
conditioned latent di!usion – see Chapter 5;

8. Integration of learned object-centric representations with latent di!usion models
and detection-guided loss function in DetDi! to enable controllable object ma-
nipulation in image synthesis, while maintaining compositional structure – see
Chapter 5;

9. Experimental validation of the proposed methods on synthetic and real-world
datasets, demonstrating their e!ectiveness in object disentanglement, scalability,
temporal coherence, and applicability in downstream tasks – see Chapters 3, 4,
and 5;

10. Validation of the thesis outcomes through publications in peer-reviewed conferences
and journals [210, 208, 209] – see Appendix A.

1.6 Thesis Outline

This thesis is organised into four main research chapters, each addressing a distinct
phase of the research on learning object-centric representations from images and videos
using detection-guided and unsupervised learning methods. Chapter 2 presents the initial
stage of the research, which investigates the use of intermediate feature representations
from pre-trained object detection networks as inputs to deep reinforcement learning
agents for vision-based navigation tasks. This chapter describes the design of the
experimental pipeline, the motivation behind using mid-level features, and the evaluation
of their utility in spatial reasoning. Chapter 3 introduces a method for learning
structured, multi-object representations in static images using a fully convolutional,
parallel encoding approach. It focuses on the integration of multi-scale feature pyramids,
structured latent variables, and an unsupervised training strategy. The chapter includes
detailed experiments on object reconstruction, disentanglement, and ablation studies.
Chapter 4 extends the previous method to video data by incorporating an implicit
temporal modelling component. It presents a recurrent architecture that maintains
encoded feature maps over time and fuses spatially structured features at multiple scales.
This chapter provides an analysis of representation quality, object tracking, and the
e!ects of object dynamics, supported by a series of ablation studies and visualisations.
Finally, Chapter 5 explores the generative aspect of detection-enhanced object-centric
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representations. It presents a detection-guided di!usion-based approach that conditions
generation on structured object latents. This chapter details the integration of positional
encoding, cross-scale feature fusion, and object-aware losses and evaluates the model’s
e!ectiveness in reconstruction and downstream tasks. Chapter 6 concludes the thesis
by summarising the research findings, answering the research questions, and outlining
directions for future work.

Additionally, Appendix A lists selected scientific achievements, including publica-
tions, conference talks, and project participation. The List of Figures, List of Tables
and Bibliography follow at the end of the thesis.
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Chapter 2

Exploring Visual Representations
for Vision-Based Deep
Reinforcement Learning Navigation

This chapter presents the initial phase of the PhD research, which explored the
use of deep reinforcement learning (DRL) for 3D robotic navigation of autonomous
underwater vehicles (AUVs), with a particular focus on integrating visual perception
into the agent’s decision-making process. While the original goal was to demonstrate
the feasibility of vision-based control using deep reinforcement learning, a central
contribution of this work lies in investigating how various levels of visual feature
embeddings, extracted at di!erent stages of an object detection neural network, can
inform navigation. Rather than limiting the input to final, human-interpretable outputs
(i.e. bounding box coordinates), the study examined internal feature maps from early
exits placed within the network as alternative visual representations, comparing them
against an end-to-end trained convolutional feature extractor. This insight provided
a foundation for later research directions and an in-depth literature review, focused
on refining object representations and learning to encode multiple object instances
simultaneously in the multi-object representation learning setup.

This work was originally published as [210]; I was the main author of the publication,
responsible for the core concept, research methodology, experimental setup, and the
preparation of the manuscript, including all figures and tables. The results and insights
from this study serve as a starting point for the broader investigation of representation
learning for application in downstream tasks, which is further developed in subsequent
chapters.
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It is important to note that the related work and methodological choices presented in
this chapter reflect the state of the art at the time of preparing the original publication
[210]. The field of vision-based deep reinforcement learning for robotic navigation is
evolving rapidly; since then new approaches and architectures have emerged. However,
the findings described in this chapter remain relevant, as they became the foundation
for the continuation of this research.

In this study, four distinct types of visual embeddings were evaluated: the final
object detection outputs, a separate trainable convolutional encoder, and two internal
feature maps from a pre-trained object detection model. These representations were
used as input to a DRL agent tasked with navigating an AUV toward a visual target.
The agent’s performance was evaluated in terms of average reward, episode length,
inference speed, and detailed success/failure episode statistics. Section 2.1 outlines the
motivation for this study and summarises related work. The proposed architecture and
the methodology of visual feature extraction are described in Section 2.2. Section 2.3
presents the experimental setup, detailed results and analysis. Finally, Section 2.4
summarises and discusses the contributions.

2.1 Motivation

Autonomous Underwater Vehicles (AUVs) are a class of unmanned systems capable of
operating independently in complex underwater environments. Together with Remotely
Operated Vehicles (ROVs), they belong to a broader category of Unmanned Underwater
Vehicles (UUVs), widely adopted in scientific exploration, commercial inspection and
military operations. The ability of these systems to execute missions in hazardous or
inaccessible locations makes them valuable tools in modern robotics. The foundational
aspect of AUV control systems is autonomous navigation, the ability to travel reliably
from one operational point to another while avoiding obstacles, reacting to environmental
cues, and making real-time decisions under uncertainty [184].

Traditionally, path-planning for this class of systems utilises methods such as
Dijkstra’s [97] or A* [71] algorithms, or artificial potential field method [30], which
o!er a reliable solution for known or low-complexity environments, with a static map
and limited action space, allowing for tractable optimisation. However, this methods
typically fail to generalise in dynamic or high-dimensional spaces. Alternative approaches
using evolutionary algorithms, including multi-objective optimisation [113], game theory-
inspired models [46] and hybrid bio-inspired techniques [1], o!er more flexibility but often
su!er from challenging hyperparameter tuning and lack of sample e"ciency. In contrast,
reinforcement learning (RL) provides a model-free paradigm for learning behaviour
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directly from interaction with environment, and its deep learning extension (deep
reinforcement learning) has demonstrated success in high-dimensional perception tasks
such as robotic locomotion and control. Among many of the methods, the most common
ones are using Deep Deterministic Policy Gradients (DDPG [117]): [17, 85, 187], variants
of Deep Q-Networks (DQN [107, 133]): [165, 192, 205], Asynchronous Advantage Actor-
Critic (A3C [132]): [15], and Proximal Policy Optimisation (PPO [154]): [162, 164].
Later advances extended DRL applications with vision-based models, where raw images
or feature representations serve as inputs to policy models [106, 190, 196, 200]. However,
at the time of this research, these papers were focused only on two-dimensional problems.

The aim of this research is to extend DRL-based navigation approaches from 2D to
3D robotic control tasks by leveraging structured visual information from a pre-trained
object detection model. Instead of relying on an end-to-end vision pipeline that requires
training a feature extractor from scratch with the agent model, a compact detection
network was used to supply visual inputs that are already meaningful and easier for the
DRL model to interpret. This can include both detection’s bounding box, and internal
feature maps that reflect higher-level abstractions of the scene. These feature maps
are extracted from various layers of the detection network using an early-exit strategy,
enabling analysis of how implicit object-level context can be used as a valid substitute
for explicit target localisation.

The study was inspired by RoboSub, an international AUV competition that reflects
real-world robotic challenges under constrained and partially observable conditions. In
particular, the research involves a task of navigating toward a gate structure, simulating
a waypoint transition in a mission. This scenario provides a benchmark for evaluating
visual-based navigation strategies.

2.2 Proposed Method

The research focuses on one of the tasks from the RoboSub 2018 competition, which
focuses on navigating an autonomous underwater vehicle (AUV) from the starting area
(dock) towards a gate that marks the beginning of the competition task sequence. As
shown in Figure 2.1, the navigation begins at point P0 (the starting location) and ends
at the target point P →, situated in front of the gate. It is assumed that the gate is
initially outside the robot’s field of view, located several metres away from P0. The
navigation objective is to reach a position where the robot is centred and facing the
gate, such that it can pass through it by moving forward. The controller’s goal is to
steer the robot from P0 to P → in the shortest possible time. Both points are given as
four-element vectors (Equation (2.1)), relative to the centre of the competition arena.
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P = {x, y, z, 𝜍} : x, y, z, 𝜍 ↑ R (2.1)

where:

x, y, z are position on axes X, Y , Z,
𝜍 is heading angle (rotation about the vertical axis).

Figure 2.1: Plan view of an example configuration of a starting point P0 and a
destination point P → for the examined task

To solve this navigation problem, the robot’s controller has to find the best move to
the target using the information delivered from sensors. The AUV is equipped with
three high-definition colour cameras. Each one generates an image tensor ximg of shape
1280 ⇐ 720 ⇐ 3. The model utilises one of the cameras, mounted on the front of the
robot and facing forward.

Apart from the cameras, the AUV utilises an AHRS (Attitude and Heading Reference
System), an integrated sensor composed of a gyroscope, an accelerometer and a compass,
which allows orientation and both linear and angular acceleration measurement. The
controller analyses the following three-element vectors: linear acceleration vector xa

(Equation (2.2)), angular velocity vector x𝜍 (Equation (2.3)) and rotation vector x𝜙

(Equation (2.4)) with values in the range (→180, 180].

xa = {ax, ay, az} , ax, ay, az ↑ R
}︃m
s2

⟩
(2.2)

x𝜍 = {𝜙x, 𝜙y, 𝜙z} , 𝜙x, 𝜙y, 𝜙z ↑ R
⧸︁

rad
s2

⃥︁

(2.3)

x𝜙 = {𝜍x, 𝜍y, 𝜍z} , 𝜍x, 𝜍y, 𝜍z ↑ R [↘] (2.4)



2.2. Proposed Method 49

Finally, the model utilises the current depth value xd, measured in metres (Equa-
tion (2.5)).

xd = d, d ↑ R, d ∞ 0 [m] (2.5)

The control settings vector y estimated by the model consists of four real values
in the range [→1, 1] (according to Equation (2.6)). All these values are illustrated in
Figure 2.2:

• longitudinal velocity setting vz (vz = 1 stands for maximal forward velocity),

• lateral velocity setting vx (vx = 1 stands for maximal velocity to the right),

• vertical velocity setting vy (vy = 1 stands for maximal emergence speed),

• yaw velocity setting 𝜙y (𝜙y = 1 stands for maximum clockwise angular velocity).

y = {vz, vx, vy, 𝜙y} , vz, vx, vy, 𝜙y ↑ R (2.6)

Figure 2.2: Control settings vector components: longitudinal velocity vz, lateral
velocity vx, vertical velocity vy and yaw velocity 𝜙y

2.2.1 Agent Controller

The high-level architecture of the agent controller is presented in Figure 2.3. It is
implemented as a deep reinforcement learning model, which maps an input vector x
that contains information from all sensors to an output control settings vector y.

The image from the front camera is first processed by the Vision Module, which
extracts visual features and reduces dimensionality. Its output is concatenated with
readings from other sensors (i.e. linear acceleration, angular velocity, current rotation
and depth) in the Data Processing Module. To capture temporal relationship between
streams of data, a recurrent network is applied as the final module of the controller
(the Time-Series Analysis Module). The output of this module is the control vector y,
determining the robot’s movement at each step.
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Figure 2.3: Overview of the controller architecture used by the agent. Sensor inputs x
are processed through three main modules: the Vision Module (visual feature

extraction), the Data Processing Module (sensor fusion and feature transformation)
and the Time-Series Analysis Module (modelling temporal dependencies). The

controller outputs the control vector y.

The controller’s model is trained using an actor-critic strategy [166], specifically the
A2C (Advantage Actor-Critic) method [132]. This approach employs two models; the
actor (policy gradient method) is used to control the agent behaviour, while the critic
evaluates those actions using an action-value function. Both components are trained
in parallel: the actor policy ↼𝜀 (s, a) is optimised to maximise the value of reward for
actions taken by the agent, while the critic function Q

→
𝜍

(s, a) is trained to minimise
the error in reward function approximation. Here, s refers to the state vector and a is
the action vector. With the A2C, training is distributed across multiple workers, which
interact with their own environments, maintaining local versions of the global network.
These local networks are updated independently, and their gradients are synchronised
periodically to update the global model.

The controller uses PPO (Proximal Policy Optimisation) [154] as the policy gradient
method. PPO extends the classic gradient ascent method by introducing a trust region
mechanism, limiting the maximal update step size, and thereby preventing destabilising
shifts in the learned policy. The size of the trust region is set using the clipped surrogate
objective function, penalising excessive updates. This approach e"ciently restricts
policy weight changes, balancing exploration and stability of the training process.

Vision Module. As illustrated in Figure 2.4, the Vision Module supports two methods
for image processing, which can be used independently or in combination. The first
option is a custom convolutional neural network (CNN) based on the architecture from
[133], trained end-to-end with the rest of the controller. The second option utilises the
YOLO object detection architecture [146], specifically the lightweight TinyYOLO variant
(see Figure 2.5). This network, modified to detect only a single object, processes images
in a single forward pass and outputs either the coordinates of a detected object zbbox, or
intermediate features extracted via early exits (zbasic and zraw). Optionally, the selected
representation is passed through flattening and additional, trainable fully-connected
layers. The Vision Module returns the visual feature vector zimg.
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Figure 2.4: Structure of the Vision Module used for visual feature extraction. The
input image tensor ximg is processed either by a custom CNN or a pre-trained YOLO
detection model. From the YOLO model, three levels of visual features can be selected:
bounding box predictions (zbbox), and basic or raw intermediate features (zbasic and

zraw). The selection of the processing path is denoted by the Method block. The chosen
visual representation is optionally flattened and passed through a set of trainable,
fully-connected layers. The final visual embedding zimg is forwarded to subsequent

modules in the controller.

CNN. The custom CNN’s architecture used in the controller follows [133] and
consists of the following layers:

• convolutional layer (32 filters 8 ⇐ 8 with stride 4 ⇐ 4),

• convolutional layer (64 filters 4 ⇐ 4 with stride 2 ⇐ 2),

• convolutional layer (64 filters 3 ⇐ 3 with stride 1 ⇐ 1),

• flattening layer,

• fully-connected layer (512 neurons).

The output of the CNN is a tensor of shape 48 ⇐ 48 ⇐ 64. It is then flattened and can
be processed using fully connected layers. In a configuration which uses the CNN, the
whole controller model is trained end-to-end.

YOLO detection model. The architecture of the YOLO models is shown in
Figure 2.5. It consists of a series of convolutional layers, with the first six layers each
followed by a max-pooling layer. Batch normalisation is applied after every convolutional
layer, and ReLU is used as the activation function. The final output is a bounding box
zbbox, which localises the detected object in the input image. To explore the usability
of internal visual representations, two early-exit points were added to the network
(marked as zbasic and zraw, corresponding to di!erent levels of feature complexity). The
motivation for using internal features instead of final bounding box output is to retain
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richer semantic information that may improve decision-making by the controller. In
this framework, the YOLO model is pre-trained independently of the controller and
used as a fixed, non-trainable feature extractor within the Vision Module.

Figure 2.5: Architecture of the YOLO detection model used in the Vision Module. The
input is the image tensor ximg (scaled to 416 ⇐ 416). The model consists of a series of
convolutional layers (Conv) with batch normalisation (batch-norm), interleaved with

max-pooling layers (Max-pool). Two early-exit points are defined for intermediate
feature extraction: zbasic and zraw. The final output zbbox is the detected object’s

bounding box prediction.

The YOLO network is an object detection model that estimates the position and
size of each object on the image. It uses a 13 ⇐ 13 grid to divide the input image into
169 cells, where each predicts one bounding box. To match this grid structure, the input
image is resized to 416 ⇐ 416 pixels. Each of the convolutional layers performs feature
extraction, finally returning a full bounding boxes tensor Zbbox of shape 13 ⇐ 13 ⇐ 5.
Each five-element vector [c, x, y, w, h] represents a bounding box prediction for one
cell, where c is the detection confidence (Equation (2.8)), x and y are the normalised
coordinates of the bounding box centre and w and h are its normalised width and
height. To produce the final output zbbox, only the bounding box with the highest
confidence score is selected, according to Equation (2.7).

zbbox = arg max
C

(Zbbox) =
⎛
ĉ, x̂, ŷ, ŵ, ĥ

⎞
(2.7)

c = pobj · IoU (z→
bbox

, zbbox) (2.8)

where:

pobj is the probability, that the bounding box contains the object,
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IoU (z→
bbox

, zbbox) is the Intersection over Union (Equation (1.16)) between ground
truth z→

bbox
and predicted bounding box zbbox.

The YOLO model utilised in this research was modified to detect a single type of
objects, therefore classification error component was removed from the original loss
function. The assumed loss function is described in Equation (2.9):

L = Lpos + Lsize + Lobj + Lnoobj (2.9)

where:

Lpos is the detected object position error (based on the di!erence between
the target and predicted bounding box position):

Lpos = ↽coord

S
2⧸︃

i=0

obj

i

⎛
(x→

i
→ xi)2 + (y→

i
→ yi)2

⎞
(2.10)

↽coord – position component relevance coe"cient,
S – number of rows and columns in YOLO grid,

obj

i
– step function ( obj

i
= 1 if cell i contains the detected object; obj

i
= 0

if it does not),
(x→

i
, y

→
i
) – target bounding box position,

(xi, yi) – predicted bounding box coordinates,
Lsize is the bounding box size error (comparing predicted and true width and
height of the bounding box):

Lsize = ↽coord

S
2⧸︃

i=0

obj

i

⧸︁]︃⌊︃
w

→
i

→
↘

wi

⌋︃2

+
]︃⌊︃

h
→
i

→
⌊︃

hi

⌋︃2
⃥︁

(2.11)

(w→
i
, h

→
i
) – real width and height of the bounding box,

(wi, hi) – predicted size of the detection,
Lobj, Lnoobj are the positive and negative detection error, based on comparing
the confidence of the detection Ci with the ground truth C

→
i

(C→
i

= 0 for negative
detection; C

→
i

= 1 for positive):

Lobj =
S

2⧸︃

i=0

obj

i
(C→

i
→ Ci)2 (2.12)

Lnoobj = ↽noobj

S
2⧸︃

i=0

noobj

i
(C→

i
→ Ci)2 (2.13)

↽noobj – negative detection loss relevance factor,
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noobj

i
– step function ( noobj

i
= 1 if cell i does not contain the detected object;

noobj

i
= 0 if it does).

Data Processing Module. The data collected from the robot’s sensors (AHRS and
depth sensor) are concatenated with the Vision Module’s output, creating the input for
the Data Processing Module. A sequence of trainable, fully-connected layers is used to
process this input vector.

Time-Series Analysis Module. The navigation task exhibits strong temporal
dependencies, requiring the controller to condition its action on the past environmental
states as well as the current observation. To capture these temporal dynamics, a
recurrent network (LSTM [83]) is used and trained jointly with the rest of the controller.
This module processes the output of the Data Processing Module, propagating the
temporal dynamics via a hidden state (of size 256). The final output of the module y is
the control setting vector, specifying the signals used to steer the robot.

2.2.2 Reward Function

The reward function is a critical component of reinforcement learning, which guides
the training process and shapes the agent’s behaviour [166]. An e!ective reward
function should accurately evaluate agent actions, promoting those leading to success
and discouraging suboptimal or incorrect decisions. In the context of the navigation
task researched here, the goal is for the agent to reach the target e"ciently, following a
smooth and direct path, while maintaining appropriate speed and natural orientation.
To support this, four reward components were proposed to influence specific aspects of
the agent’s behaviour.

• Position reward Rp, based on the agent’s distance from the target point (e.g.
the centre of the gate), computed separately for each dimension D ↑ {X, Y, Z}
according to Equation (2.14) (see Figure 2.6a); this component encourages the
agent to minimise the distance to the target, with the reward increasing as the
agent gets closer.

Rp,D = exp
⌈︃

|dtarget → dagent|
ln kmin,D

lmin,D

⌉︃

(2.14)

where:

|dtarget → dagent| is the absolute distance between agent and target position,
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kmin,D is the expected function value achieved at distance lmin,D; during
research, kmin,D and lmin,D were set empirically.

• Rotation reward Rr, which evaluates the agent’s yaw orientation relative to the
normal vector of the target object’s front plane (illustrated in Figure 2.6b and
defined in Equation (2.15)). This component encourages the agent to align its
heading with the target, so that it can approach the object by moving forward.

Rr = cos (⇀target → ⇀agent) (2.15)

where:

⇀ is the normal angular position around yaw axis.

• Velocity reward Rv, evaluating agent’s movement direction and speed, defined
in Equation (2.16). This component encourages the agent to move toward the
gate as quickly and directly as possible.

Rv = cos [↭ (vagent, Ttarget)]
|vagent|
vmax

(2.16)

where:

↭ (vagent, Ttarget) is the angle between agent velocity vector and a vector
connecting agent’s centre of mass and target point (see Figure 2.6c),
|vagent| is the length of the velocity vector, normalised to maximal agent’s
speed vmax;

• Angular velocity reward Rav, which evaluates whether the agent’s current
rotational motion is aligned with the desired yaw orientation, as defined in
Equation (2.17). It encourages angular movement towards the target’s orientation
(i.e. parallel to target object’s normal) and penalises turning away from it.

Rav = cos
⧸︁

↼

⌈︃
tanh (#⇀) → tanh 𝜙Y

tanh 1

⌉︃⃥︁

(2.17)

where:

#⇀ = ⇀target → ⇀agent is the di!erence between agent and target normals’ an-
gular positions around the yaw axis (same as in Equation (2.15)), normalised
to the range [→1, 1],
𝜙Y is the normalised yaw angular velocity.
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(a) (b)

(c) (d)

Figure 2.6: Parameters used to compute each reward component. (a) Position reward:
based on the agent’s distance from the target along each axis (#x, #y and #z). (b)

Rotation reward: computed from the di!erence in yaw orientation between the agent’s
and the target’s surface normals Nagent and Ntarget (⇀agent and ⇀target). (c) Velocity
reward: assesses the alignment and magnitude of the agent’s linear velocity vector

vagent with respect to the target direction vector Ttarget. (d) Angular velocity reward:
evaluates the agent’s yaw angular velocity 𝜙Y in relation to the desired orientation

di!erence (⇀target → ⇀agent).

To discourage undesirable behaviour in which the agent prolongs episodes by accu-
mulating small rewards over time, two constraints were introduced. First, the duration
of each training episode is limited by a maximum number of steps Lepisode. Second,
an exponential discount factor Dexp (defined in Equation (2.18)) is applied to positive
rewards; this factor decreases continuously from the start of the episode, reaching a
value of 0.1 at the halfway point, thereby encouraging the agent to complete the task
e"ciently.

Dexp = exp
⌈︃

step · ln 0.1
1

2
Lepisode

⌉︃

(2.18)
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The agent receives several distinct rewards and penalties. Upon successfully reaching
the target, it is granted a high reward, as defined in Equation (2.19). Task completion
is determined by checking whether the agent enters a predefined box surrounding the
target object with an added tolerance margin. Crossing into this zone is treated as a
successful episode termination, triggering an environment reset and the start of a new
training episode.

Rsuccess = 50 · Dlin (Rrwr + Rp,avgwp) (2.19)

Rp,avg = 1
3 (Rp,x + Rp,y + Rp,z) (2.20)

Dlin = kmin,lin → 1
lmin,lin

· step + 1 (2.21)

where:

wr, wp are the weights for rotation and position components (parameters),
Rp,avg is the average position reward for each axis,
Dlin is the linear discount factor, taking the value kmin,lin at step = lmin,lin (pro-
motes reaching the target in a low number of steps).

The agent is punished when hitting an obstacle (Rpenalty = →1) or when making
a fatal mistake, such as untimely emergence or missing the target (Rfatal = →10). A
fatal mistake causes an immediate reset of the environment and starts a new training
episode.

2.3 Experiments

The controller model was evaluated to assess its e!ectiveness in solving the navigation
task and to analyse how various hyperparameters a!ect training dynamics, preformance
e"ciency and achieved results. This section describes the experimental platform, the
evaluation procedure and presents the experiments conducted to validate the proposed
approach.

2.3.1 Simulation Environment

To evaluate the proposed solution, a simulation environment was developed to closely
replicate real-world conditions at the RoboSub test facility. The facility mirrors the
structure of the competition arena, which is divided into four quarters, each containing
an identical set of objects. The quarter in which a team performs its run is selected
at random, and the robot’s initial orientation is randomly assigned via a coin flip (see
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Figure 2.7). To ensure robustness to varying conditions, the environment includes
randomisation of various parameters, such as water hue and opacity, sun position and
lighting conditions. The simulation is implemented in Unity Software, based on the
model provided by the Coleman University team. Integration with the environment is
provided by the Unity ML-Agents toolkit [94], supporting interaction with externally
controlled models.

Figure 2.7: Test facility layout. Each region is marked with letters A-D: the robot’s
starting orientations are indicated with green and blue arrows.

2.3.2 Object Detection Model

The detection model was trained to detect the gate, used as the target object in
the first competition task. The model was evaluated using Intersection over Union
(Equation (1.16)) and the modified loss function [146] (Equation (2.9)).

Dataset. To train the object detection model, a dataset of images was generated using
the simulation environment. Each image depicts the target gate from the perspective
of the robot’s front camera. For every sample, a random facility quarter was selected,
along with randomised positions for other scene elements. The agent was positioned
and oriented such that the gate appeared in the camera’s field of view, with slight
perturbations applied to simulate natural variation. During image generation, the
conditions within the environment (such as water hue and opacity, sun position and
brightness, etc.) were randomised dynamically. Additionally, various distractor objects
from other competition tasks were placed around the gate to introduce visual noise.

The bounding box annotations for each image were generated automatically by
computing the gate’s position relative to the agent’s camera. Each annotation consists
of a four-element vector (x, y, w, h), representing the centre coordinates, width and
height of the bounding box, normalised to the image dimensions.
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Using this procedure, a dataset of 4000 training examples was collected, evenly split
between positive and negative samples (determined by the visibility of the gate). Half
of the images included added distractor objects. A separate test set of 400 images was
generated using the same procedure.

Training and evaluation. The object detection model was trained using online
image augmentation to improve generalisation. Each training batch was modified by
randomised transformations (horizontal flipping, random crop, Gaussian blur and noise,
contrast normalisation and random a"ne transformation). To form mini-batches, a
randomly selected bu!er of 1000 images was drawn from the full dataset each time the
model was saved. The key training hyperparameters are listed in Table 2.1.

Table 2.1: Object detection model hyperparameters

hyperparameter value

mini-batch size 30
learning rate 1 ⇐ 10↓4

model saving frequency 10000 steps
position loss coe!cient (𝜛coord) 5
no-object loss coe!cient (𝜛noobj) 0.5
YOLO grid size (Sgrid) 13

The training strategy followed an iterative approach involving alternating cycles of
learning steps, model evaluation, weight checkpointing and re-sampling of the training
bu!er. The learning curve, presented in Figure 2.8, shows that the best performance
(measured by the Intersection over Union (IoU) on both training and validation datasets)
was achieved between the sixth and seventh saved checkpoints. An empirical comparison
of saved models’ performance confirmed that the 70k-step model o!ered the highest
performance in a test video generated with the simulation. As a result, this checkpoint
was selected for integration into the Vision Module in subsequent experiments.

2.3.3 Navigation Controller

The controller was implemented using a deep reinforcement learning model from the
Stable Baselines library [80], a widely adopted fork of OpenAI’s Baselines [37]. Both
training and evaluation were conducted within the simulation environment prepared for
the project. The performance was measured using four metrics:
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Figure 2.8: Learning curves for the object detection model during training. The top
plot shows the Intersection over Union (IoU) metric, while the bottom shows

corresponding loss values, for both the training and evaluation phases.

• Mean reward R̄, the average cumulative reward collected by the agent across
all environment instances:

R̄ = 1
Ne

Ne⧸︃

i

Lepisode⧸︃

t=0

ri(t) (2.22)

where:

Ne – total number of agents,
Lepisode – episode length,
ri(t) – value of a reward received by the agent in i-th environment at time
step t.

• Average episode length L̄, i.e. the number of steps taken by the agent before
reaching the target or terminating the episode. High reward with short episodes
indicates e!ective behaviour, while low reward with short episodes may reflect
failure cases (e.g. untimely emergence or missing the target). Conversely, long
episodes may suggest indecisive or wandering behaviour.

• Inference speed īts, calculated as the average number of agent steps per second
during evaluation:

īts = Nsteps

Teval

(2.23)

where:

Nsteps – total number of steps taken,
Teval – total evaluation time in seconds.
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• Episode statistics, i.e. proportions of di!erent episode outcomes:

qS = |S|
|T | ; qE = |E|

|T | ; qM = |M |
|T | ; qC = |C|

|T | (2.24)

where:

|S| – number of successful episodes (agent reaches the target),
|E| – number of episodes terminated by untimely emergence,
|M | – number of episodes where the target was missed,
|C| – number of episodes in which a collision occurred,
|T | – total number of evaluated episodes; |T | = |S| + |E| + |M |.

During training, 12 agents were run in parallel using the actor-critic architecture
with the A2C method, over a fixed period of 24 hours (using the test platform specified
in Table 2.2). The training procedure assumed cyclic model evaluation every 50000
training steps: each evaluation episode involved performing 200 steps according to the
model’s prediction in each of the 12 environments and registering average reward and
episode length. By repeating this process five times, evaluation metrics were averaged,
while episode statistics summed accordingly, allowing for identifying the best-performing
model for each run (i.e. the one achieving the highest average reward per test episode
during training).

Table 2.2: Test platform configuration

CPU AMD Ryzen 7 2700
RAM 32 GB
GPU Nvidia RTX 2070
OS Ubuntu Linux 18.04

The experiments focus on analysing how the choice of visual feature embeddings and
the form of the reward function a!ect the controller’s performance, training e"ciency and
inference speed. In all experiments, models were trained using the default parameters
from Table 2.3. The specific hyperparameters explored in the study, along with their
possible configurations, are summarised in Table 2.4.

2.3.4 Preliminary Architecture Selection

The configuration of the Data Processing Module (Data Processing FC layers) was
selected through a small-scale hyperparameter sweep. The search involved several
configurations of the Data Processing Module, varying the size of fully-connected (FC)
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Table 2.3: Default parameters used in experiments

hyperparameter value description

Ttraining 24 model training period (hours)
nenvs 12 number of agents
ntrain 50000 number of steps between each evaluation and model saving
neval 200 number of evaluation steps
idec 10 interval between each model’s decision
Lepisode 4000 maximum number of steps per episode
Ct 256 LSTM cell state vector length
Lminibatch 30 number of steps in one mini-batch
nminibatch 4 number of mini-batches used for model training
lr 0.00025 constant learning rate value
𝜍PPO 0.2 PPO clipping threshold
kmin,X 0.3

expected position reward value kmin,D achieved at
distance lmin,D for each dimension (Eq. (2.14))

kmin,Y 0.3
kmin,Z 0.3
lmin,X 0.8
lmin,Y 0.5
lmin,Z 2.0
wr 0.2 rotation component weight in success reward (Eq. (2.19))
wp 0.1 position component weight in success reward (Eq. (2.19))
kmin,lin 0.5 linear discount factor parameters (Eq. (2.21))
lmin,lin Lepisode

Table 2.4: Hyperparameters examined in the research

hyperparameter values description

visual features {zbbox, zraw, zbasic, zconv} Visual embedding method used in the
Vision Module (Fig. 2.4)

Vision FC layers [l1, l2, l3, ...]
The number of neurons in fully-
connected (FC) layers in the Vision
Module (None refers to no FC layers)

Data Processing
FC layers [l1, l2, l3, ...] The number of neurons in FC layers in

the Data Processing Module (Fig. 2.4)

layers, as well as their number. In this experiment, all models were trained using
the bounding box zbbox as the visual representation and the complex reward function
(Equation (2.29)).

The results, summarised in Table 2.5, show that the Data Processing Module
configuration does not cause major performance changes: all tested configurations
demonstrated the ability to learn the task, with moderate to high rewards and success
rates. Among the two-layer variants, the 2 ⇐ 64 model performed best, outperforming
both narrower and wider alternatives. Increasing the network depth yielded only minor
performance gains; the 4 ⇐ 64 model achieved the highest success rate (51.8%) and
competitive reward, without a!ecting the inference time or stability.
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Table 2.5: Evaluation results for di!erent FC layers configurations in the Data
Processing Module. Top: varying the number of neurons per layer (fixed depth = 2).

Bottom: varying the number of layers (fixed width = 64).

configuration R̄ L̄ īts qS [%] qE [%] qM [%] qC [%]

Varying layer size (2 layers)

2 ⇐ 16 10.33 70.5 2.05 41.5 9.4 49.1 19.5
2 ⇐ 64 11.80 65.5 1.99 42.4 4.0 53.6 18.3
2 ⇐ 256 8.38 61.2 2.02 19.0 3.7 77.3 15.3

Varying number of layers (width = 64)

2 ⇐ 64 11.80 65.5 1.99 42.4 4.0 53.6 18.3
3 ⇐ 64 11.58 114.8 2.00 39.3 1.6 59.0 37.7
4 ⇐ 64 11.81 69.4 1.99 51.8 1.8 46.3 9.9

These results indicate that the performance of the controller is not highly sensitive
to the precise configuration of the Data Processing Module, provided the model has
su"cient, but not excessive, capacity. Consequently, further experiments adopt the
4 ⇐ 64 configuration.

2.3.5 Experiment 1: Influence of Reward Function Compo-
nents on the Model Performance

The main aim of this experiment is to examine the importance of the reward function
components. To do that, four reward functions definitions were researched:

• analyzing only agent’s position Rpos:

Rpos = 1
4Dexp (Rp,X + Rp,Y + Rp,Z + Rr) (2.25)

• assessing only agent’s velocity Rvel:,

Rvel = 1
2Dexp (Rv + Rav) (2.26)

• complex form without angular velocity Rnoangvel:

Rnoangvel = Dexp (Rv + b)
1 + b

∈ wv + wpRp,agg + wrRr

wv + wp + wr

(2.27)

Rp,agg = Rp,Z (Rp,X + Rp,Y ) (2.28)
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• complex form, using all components Rcomplex:

Rcomplex = Dexp (Rv + b)
1 + b

wv + wavRav + wpRp,agg + wrRr

wv + wav + wp + wr

(2.29)

The complex form of the reward function is a weighted sum of elementary reward
functions. The weights were selected empirically, based on preliminary behavioural
analysis (details not included here). The specific values used in this experiment are
listed in Table 2.6.

Table 2.6: Parameters of the complex reward function

symbol value description

wv 0.8 velocity reward weight
wav 0.2 angular velocity reward weight
wp 0.1 position reward weight
wr 0.2 rotation reward weight
b 0.2 velocity reward bias

The complex reward function defined in Equation (2.29) was designed based on
several practical observations to provide an informative training signal. Conditioning
the velocity component Rv should promote consistent motion toward the target; a
bias term b ensures the reward remains informative even when the agent is stationary
(which occurs particularly during early training stages, where lack of movements could
otherwise lead to random exploration and unproductive reward accumulation). The
longitudinal position component Rp,Z is the most critical for aligning with the gate,
which is why it is used as a conditioning factor in the aggregated position reward
(Equation (2.28)). Finally, the entire expression is scaled to the range [→1, 1] to improve
training stability.

The experiment was conducted in two phases. First, models were trained using
each of the reward function variants, while keeping the model architecture fixed (same
as concluded in the preliminary hyperparameter search). In the second phase, the
best-performing model from each training run was evaluated using an averaged reward
function defined in Equation (2.30), to enable consistent comparison across configura-
tions.

Reval = 1
6 (Rp,X + Rp,Y + Rp,Z + Rr + Rv + Rav) (2.30)

The results of the training are shown in Figure 2.9; position-only refers to reward func-
tion from Equation (2.25), velocity-only is the form defined in Equation (2.26), noangvel
refers to complex form without angular velocity component from Equation (2.27) and
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complex is the full form from Equation (2.29). Here, the rewards were calculated
according to the form used for training the model (e.g. position-only form for the
position-only model).

Figure 2.9: Learning curves comparing reward function forms. The plot shows the
average reward obtained during periodic testing for each of the evaluated reward

function formulations.

Following training, the model with the highest value of average reward achieved in
evaluation sequences was subjected to a detailed evaluation procedure. The results are
shown in Figure 2.10: (a) shows average evaluation reward (Equation (2.30)) achieved
by the model, (b) presents average episode length during evaluation and (c) presents
episode statistics. Since all models use the same model architecture, the model’s speed
was not analysed.

The performance di!erences between models trained using each reward function
variant are clearly reflected in the evaluation results. Models trained with the simple
formulations: position-only and velocity-only (Equations (2.25) and (2.26)) failed to
learn e!ective navigation behaviour, achieving low mean rewards during training and
evaluation. These models frequently terminated episodes through untimely emergence
or by missing the target, indicating an inability to consistently complete the task.

In contrast, the two complex reward functions (Equations (2.27) and (2.29)) resulted
in substantially better performance. The model trained with the full complex formulation
achieved the highest evaluation reward and success rate. The noangvel variant also
showed a higher proportion of successful runs than the simple reward functions, but the
agent exhibited problems with aligning to the target normal, leading to more frequent
misses. This behaviour can be attributed to the lack of the angular velocity component,
which is essential for achieving the best performance in the full reward formulation.
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(a) (b)

(c)

Figure 2.10: Evaluation results for each reward function form. (a) Mean reward
achieved during evaluation, computed using the averaged reward function (Eq. (2.30)).
(b) Average episode length. (c) Episode outcome statistics, showing the percentage of

runs that ended in success, missing the target, untimely emergence, or collision.

One drawback observed in the best-performing model was a non-negligible collision rate
(≃ 10%), likely due to misaligned final approaches resulting in collisions with the gate
structure.

Episode length results are consistent with these conclusions. The best models
achieved high rewards within relatively short episodes, indicating e"cient behaviour.
In contrast, models trained with simple reward forms completed shorter episodes with
poor performance, reflecting incorrect navigation.

2.3.6 Experiment 2: Influence of Visual Representations on
the Model Performance

This experiment evaluates how di!erent visual features extraction methods used in
the Vision Module a!ect both the training process and the resulting performance of
the controller. The objective was to analyse whether features of various complexity can
e!ectively support the controller in solving the navigation task. All model configurations
were trained using the complex reward function (Equation (2.29)), with default model
parameters from Table 2.3 and researched variants listed in Table 2.7.
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Each model configuration is identified by a structured denomination. The first term
refers to the source of visual representations:

• default: uses only the bounding box prediction from the YOLO network (zbbox),

• conv: uses visual features extracted from a custom CNN trained end-to-end with
the controller (zconv),

• raw and basic: use feature maps extracted from early exits in a pre-trained
YOLO network, with raw referring to penultimate convolutional layer features
(zraw) and basic to mid-level features (zbasic).

For each base embedding type, a model without additional processing in the Vision
Module is denoted by the base name alone. These variants use deeper Data Processing
Modules to handle the higher dimensionality of uncompressed visual inputs. Two
additional su"xes are used to indicate architectural extensions:

• -fc: indicates that the visual representation is processed by additional Vision FC
layers,

• -bb: indicates that the YOLO bounding box vector is concatenated with the
visual representation before fusion.

These naming conventions are summarised in Table 2.7.

Figure 2.11 shows mean-reward training curves for conv, raw and basic representations-
based models. Results of the evaluation of the best-performing checkpoints appear in
Figure 2.12.

Among models without Vision Module fully connected layers, only the configuration
using basic early-exit features from the YOLO network achieved meaningful performance,
surpassing 40% success rate. In contrast, models using the raw early-exit features or
trainable CNN embeddings failed to learn e!ective navigation policies, consistently
oscillating around 0.0 reward throughout the entire process of training. The poor
performance of raw configuration suggests that features extracted from the penultimate
layer of the detection model are too specialised for object localisation, making them
unsuitable for downstream navigation. On the other hand, the trainable CNN increases
the controller’s complexity, which makes its convergence more di"cult. Adding the
bounding box vector directly to high-dimensional visual embeddings (i.e., bb variants
without Vision FC layers) did not improve performance. This is likely caused by the
scale imbalance, where the small bounding box vector is concatenated with large feature
tensors, leading to the controller ignoring the box location.
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Table 2.7: Model naming conventions used in visual representation experiments. Each
configuration name reflects the type of visual representation, and the architecture of

the Vision and Data Processing Modules fully-connected layers.

name visual
representation

Vision FC
layers

Data Processing
FC layers

default bbox None [64, 64, 64, 64]

conv conv None [256, 64, 64, 64]
conv-fc conv [256] [64, 64, 64, 64]
conv-bb conv + bbox None [256, 64, 64, 64]
conv-bb-fc conv + bbox [256] [64, 64, 64, 64]

raw raw None [1024, 256, 64, 64]
raw-fc raw [1024, 256] [64, 64, 64, 64]
raw-bb raw + bbox None [1024, 256, 64, 64]
raw-bb-fc raw + bbox [1024, 256] [64, 64, 64, 64]

basic basic None [1024, 256, 64, 64]
basic-fc basic [1024, 256] [64, 64, 64, 64]
basic-bb basic + bbox None [1024, 256, 64, 64]
basic-bb-fc basic + bbox [1024, 256] [64, 64, 64, 64]

In configurations where Vision FC layers were introduced (fc and bb-fc), performance
generally improved for both CNN- and YOLO-based controllers. Notably, the conv-bb-fc
model reached 25% success rate, with an average reward close to 10.00. However, the
inclusion of Vision FC layers slightly degraded the performance of the basic features-
based models.

What draws attention is the di!erence in prediction speed between models. YOLO-
based feature extraction methods (raw and basic) resulted in more than 35% lower
inference speed compared to end-to-end CNN models and bounding box prediction,
primarily due to the overhead of extracting and transferring large feature maps from
the detection network at every timestep. The use of bounding box prediction in feature
maps-based models resulted in a modest computational overhead (5 → 10% slowdown),
whereas adding Vision Module FC layers contributed minimally to inference time, with
slowdowns below 5%.

2.3.7 Controller Performance Discussion

To illustrate the behaviour of the best-performing controller model, three represen-
tative examples of navigation attempts are presented. Figures below include plots of
the robot’s position during each run together with linear velocity settings output by
the controller (Equation (2.6)), averaged over intervals between plotted points. Among
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(a)

(b)

(c)

Figure 2.11: Learning curves comparing visual feature embedding methods. Each plot
shows the average reward achieved during periodic testing over the 24-hour training

period. The reference model (4 ⇐ 64) uses only the YOLO bounding box. (a) Models
using visual features from a trainable CNN. (b) Models using raw early-exit features

from the YOLO network. (c) Models using basic mid-level YOLO features.

all the runs, three categories of acquired paths were distinguished: successful runs with
smooth path (Figure 2.13a), successful runs with a distorted trajectory (Figure 2.13b)
and failed attempts (Figure 2.13c).
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(a) (b)

(c) (d)

Figure 2.12: Evaluation results for various visual representations used in the model.
Each group of bars corresponds to a di!erent visual input type: bbox (YOLO bounding
box), conv (features from a trainable CNN), raw and basic (early-exit feature maps

from the YOLO network). Visual embeddings were tested in four configurations:
default (no Vision FC layers), fc (with Vision FC layers), bb (concatenated with

bounding box vector), and bb-fc (combined embedding with Vision FC layers). (a)
Mean reward. (b) Average episode length. (c) Inference speed measured in iterations
per second. (d) Episode statistics: percentage of runs ending in success, emergence,

missed target, or collision.

Subjectively satisfactory paths, which constitute approximately half of all successful
attempts, were typically observed when the robot was able to detect the target object
early in the episode. This allowed it to maintain visual contact with the target
throughout the run, resulting in a smooth and direct trajectory and stable velocity
settings.

In the second group, the robot was often unable to detect the target object at the
beginning of the episode, leading to chaotic or exploratory movements in the initial
phase, likely reflecting searching for the target. Once the target was located, the
controller typically succeeded in directing the robot toward it; however, the resulting
trajectory was less stable compared to the satisfactory runs.

Unsuccessful runs were attributed to two failure modes. In the first one, the controller
continued to search for the target object without success, ultimately exceeding the
fixed episode length without reaching the goal. In the second case, the robot did detect
the target but lacked information about its orientation (since the detection model



2.3. Experiments 71

(a)

(b)

(c)

Figure 2.13: Visualisation of robot trajectories and control velocities using a trained
default model (bounding box-based input). The plots show 3D paths along with

velocity control settings in the X, Y , and Z directions. (a) A successful run with a
smooth trajectory. (b) A successful run with a distorted path. (c) A failed run. All

position axes are given in metres.

only provides a bounding box of the detection). As a result, the controller sometimes
approached the target from an incorrect angle (e.g. from the side) and failed to align
properly, causing the robot to pass by the gate.
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2.4 Summary

This chapter presents research on a deep reinforcement learning-based controller for
vision-guided 3D navigation of an autonomous underwater vehicle. While the primary
goal was to demonstrate the feasibility of using DRL for underwater robotic control, the
key focus of the study was the analysis of how di!erent types of visual input, particularly
those derived from a pre-trained object detection model, influence the performance of
the navigation policy.

Four types of visual embeddings were investigated, ranging from a trainable con-
volutional feature extractor, through explicit detection outputs (bounding boxes) to
internal feature maps extracted at varying depths of the detection network. This
setup allowed examining how the level of abstraction in visual features a!ects learning
dynamics, decision-making, and general navigation behaviour. The results showed that
supplying the DRL agent with structured, semantically meaningful visual cues can
lead to successful policy learning without the need for end-to-end training of a visual
encoder.

Among the tested configurations, the ‘basic’ feature maps, extracted from interme-
diate layers of the object detection network, demonstrated strong performance when
incorporated into the controller, surpassing models that relied on heavier-processed
‘raw’ features, or a simple convolutional feature extractor. These findings highlight the
potential of using task-agnostic, abstract representations instead of narrow, task-specific
outputs. This early investigation was the foundation for further research in the area of
utilising representations in other downstream tasks in this thesis.
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Chapter 3

Single-Shot Variational Autoencoder
for Learning Representations of
Multiple Objects in Images

This chapter presents the part of the PhD research dedicated to the advancement
of methods for learning representations of multiple objects within images. The central
contribution of this work is the development of a novel variational autoencoder architec-
ture that integrates a pre-trained object detection model as a robust feature extractor
in object-centric scenarios. Specifically, by extending the intermediate representations
extracted by the convolutional backbone with additional spatial grid-based attention
encoders, the proposed model enables encoding object representations in an e"cient,
single-shot manner. By doing so, this research addresses key limitations of its contempo-
rary reference object-centric representation learning methods, particularly their di"culty
in handling scenes with multiple objects of varying sizes and their constrained scalability
due to sequential glimpse encoding and single-grid inference. The proposed approach
utilises multi-scale feature pyramid to achieve scale-invariant, parallel encoding of object
representations, resulting in improved performance and robustness of representations.

The motivation for working on this approach was grounded in the limitations of
existing methods at the time of the study’s conception (2021). Consequently, the
methods selected as baselines for comparison reflect the the state-of-the-art available
at that time; it is worth noting, however, that subsequent studies have since proposed
alternative approaches, addressing the challenge of varying sizes and scalability through
di!erent methodologies.
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The findings and methodology detailed here were published in 2022 as the associ-
ated publication [208]. As the principal author, I was responsible for developing the
foundational concept, designing and executing the research methodology, managing
the experimental evaluations, and preparing the manuscript along with all figures and
tables.

The structure of this chapter is organised as follows: Section 3.1 explains the idea
behind this research, its motivation, and Section 3.2 presents an overview of related
works in the field at the time of working on this area. Section 3.3 provides a detailed
description of the proposed method, emphasising the extraction of features via the
pre-trained object detection model and the specific setup for representation learning.
Section 3.4 outlines the experimental procedures, reports the results and provides
their thorough analysis. Finally, Section 3.5 provides conclusions and highlights the
contributions of this research.

3.1 Motivation

The ability to discriminate and reason about individual objects in an image is one
of the important tasks of computer vision, which is why object detection and instance
segmentation tasks have drawn vast attention from researchers throughout the years.
The latest advances in artificial intelligence require a more insightful analysis of the
image to provide more profound reasoning about its contents. It can be achieved
through representation learning, which facilitates extracting useful information about
objects, allowing transferring more general knowledge to other tasks [8]. One can
see multi-object representation learning as a natural extension of the aforementioned
computer vision tasks. Here, the objective is to produce a valuable abstract feature
vector of each of the inferred objects and hence produce a structured representation of
the image, allowing for its more insightful understanding.

Recently, the most successful methods are based on the variational autoencoder
(VAE) framework [101, 150], with structured latent space, which includes individual
objects’ representations. The original approach consists in extracting object latent
vectors with a recurrent network [14, 49, 50, 53, 65]. Alternatively, each object’s
representation can be produced with a single forward pass through the network by
employing a convolution-based single-shot approach [31, 120]. However, these methods
are limited by a single feature map utilised to create objects’ latent vectors and hence
cannot be used when object sizes vary.
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This chapter presents a single-shot method for learning multiple objects’ representa-
tions, called Single-Shot Detect, Infer, Repeat (SSDIR). It is a convolutional generative
model applying the single-shot approach with a feature pyramid for learning valuable,
scale-invariant object representations. By processing multi-scale feature maps, SSDIR
can attend to objects of varying sizes and produce high-quality latent representations
directly, without the need to extract objects’ glimpses and process them with an ad-
ditional encoder network. The ability to focus on individual objects in the image is
improved by leveraging knowledge learned in an SSD [122] object detection model.
Through experiments, the SSDIR model’s performance is evaluated on multi-scale
scattered MNIST digits, CLEVR [93] and WIDER FACE [193] datasets with other
single-shot approaches, proving the ability to focus on individual objects of varying sizes
in complicated scenes, as well as the improved quality of objects’ latent representations,
which can be successfully used in other downstream problems, despite the use of an
uncomplicated convolutional backbone.

The contributions of this chapter are as follows. We present a model that enhances
multi-object representation learning with a single-shot, feature pyramid-based approach,
retaining probabilistic modelling of objects. We provide a framework for generating
object representations directly from feature maps without extracting and processing
glimpses, allowing easier scaling to larger images. We compare the method with other
single-shot multi-object representation learning models and show its ability to attend
to objects, the improved latent space quality, and applicability in various benchmark
problems.

3.2 Related Works

Multi-object representation learning has recently been tackled using unsupervised,
VAE-based models. Two main approaches include sequential models, attending to a
single object or part of the image at a time, and single-shot methods, which generate
all representations in a single forward pass through the network.

The original approach to this problem was presented by Ali Eslami et al. in [53]. The
Attend, Infer, Repeat (AIR) model assumes a scene to consist of objects, represented
with what vector, describing the object’s appearance, where vector indicating its position
on the image and present vector, describing if it is present in the image, controlling
termination of the recurrent image processing. The model attends to a single object
at a time, generating representations sequentially with a recurrent network until a
non-present object is processed. Other studies, including [66] and [163] proposed a
di!erent approach, where object representations are learned using Neural Expectation-
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Maximisation, without structuring the latent representations explicitly. These methods
su!er from scaling issues, not being able to deal with complex scenes with multiple
objects.

Alternatively, an image might be described with a scene-mixture approach, as in
MONet [14], IODINE [65] and GENESIS [49, 50]. Here, the model does not explicitly
divide the image into objects but instead generates masks, splitting the scene into
components, which the model encodes. In the case of MONet and GENESIS, each
component is attended to and encoded sequentially, while IODINE uses amortised
iterative refinement of the output image. However, these methods are not a good fit
for learning object representations in an image, as scene components usually consist
of multiple objects. Furthermore, masks that indicate particular objects limit the
model’s scalability due to this representation requiring more memory than bounding
box coordinates.

GENESIS belongs to a group of methods, which focus on the ability to generate
novel, coherent and realistic scenes. Among them, one should notice recent advances
with methods leveraging generative adversarial networks (GANs), such as RELATE [47]
or GIRAFFE [134]. Compared to VAE-based methods, they can produce sharp and
natural images, which are more similar to original datasets. However, these models do
not include an explicit image encoder, and therefore cannot be applied to multi-object
representation learning directly. What is more, the process of training GANs tends to
be longer and more complicated than in the case of VAEs.

Recently, methods such as GMAIR [206] postulate that acquiring valuable what
object representations is crucial for the ability to use object encodings in other tasks,
such as clustering. Here, researchers enhanced the original what encoder with Gaussian
Mixture Model-based prior, inspired by the GMVAE framework [68]. In this chapter,
the importance of the what object representation is emphasised as well, evaluating its
applicability in downstream tasks.

One of the promising methods of improving scalability of VAE-based multi-object
representation learning models was presented in SPAIR [31], where the recurrent
attention of the original AIR was replaced with a local feature maps-based approach.
In analogy to single-shot object detection models like SSD [122], the SPAIR first
processes image with a convolutional backbone, which returns a feature map with
dimensions corresponding to a fixed-sized grid. Each cell in the grid is then used to
generate the locations of objects. Object representations’ are inferred by processing
these cells sequentially, generating what, depth and present latent variables, describing
its appearance, depth in the scene, and the fact of presence. This approach has recently
been extended in SPACE [120], which fixes still existing scalability issues in SPAIR
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by employing parallel latent components inference. Additionally, the authors used
the scene-mixture approach to model the image background, proving to be applicable
for learning objects’ representations in more complex scenes. However, both methods
rely on a single grid of fixed size, which makes it di"cult for this class of models to
attend to objects of highly varying sizes. What is more, both of them employ glimpse
extraction: each attended object is cut out of the input image and processed by an
additional encoder network to generate objects’ latent representations; this increases
the computational expense of these methods.

The latest advances in the field of multi-object representation learning try to apply
the aforementioned approaches for inferring representations of objects in videos. SQAIR
[104] extends the recurrent approach proposed in AIR for sequences of images by
proposing a propagation mechanism, which allows reusing representations in subsequent
steps. A similar approach was applied to single-shot methods by extending them with a
recurrent network in SILOT [32] and SCALOR [92]; here, the representations were used
in the object tracking task. An interesting approach was proposed by Henderson and
Lambert [77]. Authors choose to treat each instance within the scene as a 3D object;
the image is then generated by rendering each object and merging their 2D views into
an image. This allows for a better understanding of objects’ representations, at the cost
of significantly higher computational complexity.

3.3 Single-Shot Detect, Infer, Repeat

SSDIR (Single-Shot Detect, Infer, Repeat) is a neural network model based on
a variational autoencoder architecture [101, 150] as shown in Figure 3.1; its latent
space consists of structured objects’ representations z, enhanced by leveraging inductive
priors learned in a single-shot object detection model SSD [122], both sharing the same
convolutional backbone.

The model extends the idea of single-shot object detection by incorporating them
into a probabilistic generative framework. Let x denote an input image containing all
relevant (i.e. detected by a pre-trained SSD detector) objects present in the image.
SSDIR assumes that this image is generated from a structured latent representation z,
which captures object-specific attributes across multiple spatial locations. These latent
variables are associated with each grid cell in the feature pyramid produced by the
SSD convolutional backbone and are sampled from a prior distribution p (z). SSDIR
parametrises the conditional distribution p𝜀 (x | z) using the decoder network ⇁. Then,
the generative model can be formulated as a standard VAE decoder (Equation (3.1)).
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Figure 3.1: Overview of the SSDIR model architecture. The model consists of two fully
convolutional neural networks: an encoder and a decoder. The encoder uses a

convolutional backbone as a feature extractor (shared with a pre-trained SD object
detector), which builds a pyramid of multi-scale features processed by each latent

component encoder. Each object’s position zwhere and presence zpresent latent vectors
are computed using the SSD detection heads, indicating grid cells, which refer to

detected objects. In parallel, additional convolutional encoders generate the
appearance zwhat and depth zdepth latents from the same feature maps. In the decoder,
latents corresponding to detected objects are filtered based on presence indicators. The

appearance vectors are decoded into object reconstructions, which are spatially
transformed back into their respective positions using the a"ne parameters from zwhere

in the spatial transformer module. The final image is composed by merging all
transformed reconstructions, weighted by depth-based softmax to handle occlusions.

p (x) =
⎡

p𝜀 (x | z) p (z) dz (3.1)

To perform inference with this generative framework, SSDIR employs the variational
inference technique. It approximates the intractable true posterior with a function
q𝜗 (z | x) ↘ p (z | x), parametrised by ˓ (the encoder network’s parameters). This
enables training via maximisation of evidence lower bound (ELBO) as the model’s loss
function (Equation (1.2)).

3.3.1 Object Representation

SSDIR extends the grid-based approach with a feature pyramid inspired by the
SSD object detector to enable multi-scale object encoding. Each spatial location in
multi-scale grids is associated with a candidate object, which is described using a
structured latent representation. For each i-th object, this representation consists of
the following four latent components:

• zi

where
↑ R4 – the object’s bounding box position and size, specifying the object’s

spatial attributes,
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• zi

present
↑ {0, 1} – a binary variable indicating whether a valid object is present at

the location corresponding with the given cell,

• zi

what
↑ RD – D-sized vector capturing the object visual features,

• zi

depth
↑ R – a scalar representing the object’s relative depth in the scene; higher

values correspond to objects appearing closer in the final rendering.

To facilitate object discovery and reduce the complexity of model training, SSDIR
reuses a pre-trained SSD object detection model to obtain bounding box position and
size, as well as the detected object confidence score. These outputs are directly used to
produce zwhere and zpresent as defined in Equations (3.2) and (3.3).

zi

where
=

⎛
xi yi wi hi

⎞
(3.2)

zi

present
≃ Bernoulli

)︃
𝜀

i
[︃

(3.3)

where:

i refers to the index of a cell in the feature pyramid,
xi, yi are the bounding box’ centre coordinates,
wi, hi are the bounding box’ width and height dimensions,

𝜀
i =

⎤
⎣⎦

⎣⎢

arg max
k

ci if an object detected in the cell i,

0 otherwise,
c is the vector of the object’s predicted class confidences.

The two remaining latent components: zwhat and zdepth are modelled with Gaussian
distributions, as shown in Equations (3.4) and (3.5).

zi

what
≃ N

)︃
µi

what
, 𝜀i

what

[︃
(3.4)

zi

depth
≃ N

)︃
µi

depth
, 𝜀i

depth

[︃
(3.5)

where:

µi

what
, µi

depth
are the mean vectors, encoded with what and depth encoders,

𝜀i

what
, 𝜀i

depth
are the corresponding standard deviations, which are treated as the

model’s fixed hyperparameters.
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3.3.2 SSDIR Encoder Network

The encoder network, denoted q𝜗 (z | x), is responsible for inferring the structured
latent representation z from an input image x. It is implemented using a fully convolu-
tional backbone (VGG11), which accepts images of resolution 300 ⇐ 300 ⇐ 3, extended
with a feature pyramid, and processed by additional convolutional encoders, as shown
in Figure 3.1.

Given an input image x ↑ RH↑W ↑3, a grid-based spatial attention mechanism
divides the image into a regular grid of cells. Each cell corresponds to a region of the
original image and is responsible for attending to at most one object within its local
spatial context. This grid is created from feature maps encoded by a convolutional
backbone and leverages the spatial invariance property of deep convolutional neural
networks [112]. Each cell is encoded with a D-sized vector (b (x) ↑ RHb,Wb,D).

Each cell encoding bij ↑ RD contains a representation of the visual features corre-
sponding to the area in the original image. They are then used to infer object properties
via learned transformations. In single-shot object detection models [12, 122], prediction
heads transform the encodings into bounding box locations and class logits. In SSDIR,
spatial grid-based attention is used to infer object representations by applying additional
convolutional sub-encoders on cell features:

• the where encoder applies a single convolutional layer with 3 ⇐ 3 kernel size and
four output channels (corresponding to bounding box parameters),

• the present and depth encoders each use a single convolutional layer with 3 ⇐ 3
kernel size and one output channel per feature map (for single presence probability
and depth, respectively),

• the what encoder involves multiple 3⇐3 convolutional layer with ReLU activations,
ultimately returning D-sized vector for each cell in each feature pyramid grid.

All latent variables are produced in parallel for each feature pyramid cell, without
requiring sequential attention or glimpse extraction.

The backbone’s, as well as where and present encoders’ weights are transferred
from a pre-trained SSD model, detecting objects of interest in a given task. These
weights remain frozen during training; what and depth encoders, which share the same
pre-trained backbone, are trained jointly with the decoder. This approach enables
highly parallel inference across all candidate object locations.
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3.3.3 SSDIR Decoder Network

The decoder network in SSDIR reconstructs the input image from inferred object-
centric latent variables, forwarded from the encoder network. Here, the reconstruction
is restricted to regions corresponding to objects deemed present by the encoder, focusing
on salient scene content. The decoding process starts with filtering the latent variables
using zpresent, retaining only those entries for which an object has been detected. Next,
for each present object i = 1, ..., K, the corresponding zi

what
vector is passed through

a shared convolutional what decoder, producing K localised image patches of size
64 ⇐ 64 ⇐ 3, representing each detected object’s appearance.

These object patches are then spatially transformed to their original location accord-
ing to the bounding box parameters in zi

where
, implemented via a Spatial Transformer

Module [87]. The resulting set of K 300 ⇐ 300 ⇐ 3 images of object patches placed
at their inferred positions is merged using a weighted sum, using softmax-normalised,
filtered depth values derived from zdepth. The output of the model might then be
normalised with respect to the maximum intensity of pixels in the reconstruction to
improve the fidelity of the reconstruction.

SSDIR does not require special preprocessing of the image, apart from the standard
normalisation used widely in convolutional neural networks. Originally, the model
does not model the scene background explicitly, as its focus lies in the object-centric
representations, which encourages the model to extract and reconstruct only the most
informative parts of the image. However, an optional background encoder could be
incorporated; by treating the background as an extra object, which is transformed to
fill the entire image and put behind all other objects, the model could provide higher
fidelity of reconstructions.

Crucially, the parallel nature of the model is preserved in the decoder. The en-
tire pipeline, including filtering, decoding, transforming, and depth-based merging is
implemented using fully parallelisable matrix operations, maintaining computational
e"ciency and scalability.

3.3.4 Training

The SSDIR model1 is trained with a modified ELBO loss function. Building upon
the standard VAE loss (Equation (1.2)), which intuitively includes reconstruction
error of an entire image and KL divergence for latent and prior distributions, SSDIR

1Code available at: https://github.com/piotlinski/ssdir

https://github.com/piotlinski/ssdir
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extends it with an additional term, specifically a normalised sum of each detected
object’s reconstruction error. This design encourages the model to learn expressive
object appearance and proper depth ordering while preserving transformation function
continuity thanks to KL divergence-based regularisation. The complete form of the loss
function is shown in Equation (3.6).

L (x, ⇁, ˓) = ↽objEz [log p𝜀 (x | z)] + ↽rec

1
K

K⧸︃

i

Ezi

⎛
log p𝜀

)︃
xobj

i
| zi

[︃⎞

→ ↽whatDKL (q𝜗 (zwhat | x) ↓ p (zwhat))

→ ↽depthDKL (q𝜗 (zdepth | x) ↓ p (zdepth))

(3.6)

where:

Ez [log p𝜀 (x | z)] is the log-likelihood of the full image reconstruction,
Ezi

⎛
log p𝜀

)︃
xobj

i
| zi

[︃⎞
is the expected reconstruction log-likelihood of the i-th

detected object,
↽obj, ↽rec, ↽what, ↽depth are scalar weights that control the relative contribution of
each loss component,
K is the number of objects detected by the SSD network in a given image.

For both zwhat and zdepth, standard Gaussian priors are assumed, i.e. N (0, I). The
training objective is described by Equation (3.7) for each image xi in the training
dataset. The model is trained jointly with gradient ascent using Adam as the optimiser,
utilising the reparametrisation trick for backpropagating gradients through the sampling
process. The training procedure is unsupervised with respect to the appearance and
depth components, however the SSD backbone’s as well as where and present encoders’
weights are initialized from a pre-trained SSD model and kept frozen during training.

⇁
→
, ˓

→ = arg max
𝜀,𝜗

⧸︃

i

L (xi, ⇁, ˓) (3.7)

3.4 Experiments

This section presents an empirical evaluation of the SSDIR model. During ex-
perimentation, SSDIR was compared against two representative baseline methods:
SPAIR [31] and SPACE [120], both following the single-shot, grid-based approach for
multi-object representation learning. The evaluation was designed to assess the model’s
capacity to handle objects of varying sizes, learning interpretable and reusable object
representations. This research includes an analysis of the quality of reconstructions
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produced by each model, as well as the utility of representations in a downstream
classification task. Additionally, this section shows an ablation study on the influence
of the dataset characteristics on the performance of SSDIR.

For SPAIR, the original architecture (based on a fully connected encoder) was
modified to use a convolutional encoder to improve its performance on more complex
datasets. As the focus of this evaluation is on learning object-centric representation,
background modelling was omitted across all compared methods. SPAIR does not
explicitly include a background component, whereas in SPACE only the outputs of
the foreground module were analyzed, as this module is responsible for reconstructing
individual objects within the scene.

For reference, Table 3.1 presents a comparative summary of the evaluated methods,
including an additional pipeline for theoretical reference: an object detector followed
by a spatial transformer network (STN) for extracting glimpses and a variational
autoencoder (VAE) for encoding object appearance. This reference is denoted as basic
VAE.

Table 3.1: Summary of the key di!erences between SSDIR and baseline models. A
method is considered semi-supervised if it incorporates a pre-trained object detector.
“Glimpse-based” refers to models that extract and encode object subimages, while
“single-shot” methods infer all object representations directly from feature maps.

basic VAE SPAIR [31] SPACE [120] SSDIR

supervision level semi-
supervised unsupervised unsupervised semi-

supervised
object encoding
strategy glimpse-based glimpse-based glimpse-based single-shot

handles varying
object sizes ✁ ✂ ✂ ✁

selective object
type attention ✁ ✂ ✂ ✁

parallel object
encoding ✂ ✂ ✂ ✁

Datasets. The experimental evaluation utilises three datasets reflecting varying levels
of visual complexity, aiming at validating the model in simple problems and proving its
performance on more realistic data.
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1. Multi-scale scattered MNIST2 is a synthetic dataset, a variant of the widely
used scattered MNIST dataset where digit sizes are sampled from a configurable
range to simulate scale variation; this dataset served as a controlled environment
for evaluating the model’s robustness to dataset parameters, especially object
overlapping and high variability in size,

2. CLEVR [93] is a synthetic benchmark dataset designed originally for visual
reasoning tasks; featuring scenes composed of multiple 3D-rendered objects, which
vary in shape, material and size, CLEVR is widely used for evaluating object-
centric models,

3. WIDER FACE [193] is a real-world benchmark for face detection, containing
highly cluttered scenes with multiple people, varying conditions and face sizes;
this dataset was selected to test the model’s ability to selectively focus on objects
of specific semantic type based on detection priors.

3.4.1 Experiment 1: Qualitative Analysis of Per-Object Re-
constructions

This experiment reviews the quality of images’ and objects’ reconstructions of
SSDIR and baseline methods. The quality of object-centric reconstructions serves here
as an indicator of representation quality. Figure 3.2 shows a qualitative comparison
between SSDIR and the baseline methods: SPAIR [31] and SPACE [120], across the
three evaluation datasets. For each model, samples from the held-out test set are
shown, together with the corresponding reconstruction and a subset of reconstructed
individual objects to illustrate the quality of objects’ representations. Due to variability
in object count and a high number of utilised objects, only a selection of reconstructions
is visualised.

Both SPAIR and SPACE can reconstruct full-scene images from the scattered
MNIST dataset correctly. However, inspection of the inferred where boxes reveals that
these models struggle to assign a single object representation to individual objects. Due
to a fixed-size grid in both of these models, their limited capacity for scale variation
leads to fragmenting larger digits across multiple latent variables. In SPAIR all objects’
reconstructions tend to consist of disjoint digit parts merged together, while SPACE
performs well only on digits of sizes similar to its preset grid configuration, and splits
larger digits into multiple components. SSDIR is able to detect and reconstruct the

2https://github.com/piotlinski/multiscalemnist

https://github.com/piotlinski/multiscalemnist
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Figure 3.2: Qualitative comparison of inference results for SSDIR, SPAIR [31] and
SPACE [120] across three datasets: multi-scale MNIST (top), CLEVR (middle) and

WIDER FACE (bottom). For each model and image, the first column shows the input
image, the second and third present the full-scene reconstruction (without and with

inferred bounding boxes zwhere, respectively). The remaining columns display
individual object patches decoded from the object-centric latents. SSDIR produces

coherent, well-localised object reconstructions even in cluttered and complex scenes. In
contrast, SPAIR and SPACE often tend to fragment larger objects, allocate latents to
background regions, or fail to isolate full objects in more complex scenes, leading to

redundant representations.

MNIST image accurately: the use of a multi-scale feature pyramid allows for attending
to entire objects across a wide range of scales, resulting in scale-invariant reconstructions,
which are then mapped to the output image according to tight bounding boxes.

On more complex datasets such as CLEVR and WIDER SPACE, SPAIR fails to
learn meaningful object-level representations. Instead of capturing discrete entities,
it tends to segment the image into regular rectangular patches aligned with the grid
structure, often encompassing a bigger part of an image. In CLEVR, this behaviour
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leads to blurry and geometrically distorted reconstructions, further degraded by a
transparency mask applied in this model during reconstruction. The tendency to
divide the image into rectangles is exhibited in the WIDER FACE dataset. Despite low
reconstruction error and overall fair quality of image reconstructions, the representations
are semantically uninformative.

SPACE exhibits comparable limitations. Despite an extensive hyperparameter
search, particularly for the object size parameter in the foreground module, the model
fails to learn valid object decompositions on the CLEVR dataset. Instead, it defers
most of the reconstruction to the background module, which aggregates multiple objects
into a single representation. This behaviour, consistent with issues reported by other
users3, leads to noisy and unstructured object representations. When applied to the
WIDER FACE dataset, SPACE exhibits similar behaviour to SPAIR, dividing the image
into rectangular partitions rather than meaningful entities, resulting in an acceptable
reconstruction quality but poor object-level semantics of representations.

SSDIR demonstrates strong performance on both CLEVR and WIDER FACE.
On CLEVR, the model accurately localizes and reconstructs individual objects with
high fidelity, reflecting successful appearance encoding. On WIDER FACE, SSDIR is
capable of identifying and reconstructing individual faces. Although the visual quality
of reconstructed patches is limited by the relatively shallow convolutional backbone
and simple decoder architecture, the model produces distinct, semantically consistent
object representations. Importantly, due to the use of a multi-scale feature pyramid,
featuring multiple grids, SSDIR may produce redundant reconstructions for individual
objects, which could motivate the use of post-processing methods such as non-maximum
suppression.

3.4.2 Experiment 2: Evaluating the Structure and Utility of
the Latent Space

This section presents the analysis of the SSDIR model’s latent space and compares
it with the latent space of SPAIR and SPACE. Figure 3.3 visualises latent spaces
for the scattered multi-scale MNIST dataset. For each model, the test subset was
processed to generate latent vectors of each image. Then, individual objects’ zwhere

vectors were compared with ground truth bounding boxes, and labels were assigned
to latent representations by choosing the maximum intersection over union between
predicted and true boxes. Each zwhat vector was then embedded into two-dimensional
space using t-SNE.

3https://github.com/zhixuan-lin/SPACE/issues/1

https://github.com/zhixuan-lin/SPACE/issues/1
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Figure 3.3: t-SNE visualisation of zwhat latent representations for the multi-scale
scattered MNIST test dataset. Each point corresponds to an individual object

representation, with colours indicating ground truth digit classes, assigned by matching
predicted zwhere bounding boxes to ground truth using maximum Intersection over

Union. SSDIR shows a well-structured latent space with separated digit clusters. In
contrast, SPAIR (middle) and SPACE (right) exhibit no clusterisation in the latent

space, largely due to the tendency to fragment larger objects.

A comparison of the latent spaces reveals that SSDIR produces a latent space in
which individual object classes (in this case: digits) are clearly separated. Additionally,
the latent manifold is smooth and continuous, with no apparent distortions. While the
latent spaces generated by the reference methods (SPAIR and SPACE) are continuous as
well, they do not support clear separation between object classes. This limitation likely
stems from their tendency to segment larger objects into smaller fragments, constrained
by their predefined object size, as shown in Subsection 3.4.1.

To evaluate the usefulness of the learned latent representations, a downstream task
of digit classification was performed. For each method, models were trained on the multi-
scale scattered MNIST dataset using three random seeds. Then, latent representations
were extracted for both train and test subset, with digit labels assigned to each object’s
zwhat based on Intersection over Union (IoU) between zwhere and the corresponding
ground truth bounding boxes. Then, a logistic regression classifier was trained for
each model and seed to predict digit class from latent representation. Classification
results on the test set are presented in Table 3.2. The SSDIR latent space demonstrates
superior utility for the classification task, consistently achieving higher performance
across all evaluation metrics compared to the baseline methods. The weaker results
of the reference methods are similarly caused by the fragmentation behaviour, which
leads to less discriminative latent representations.

Table 3.2: Downstream digit classification performance using object-centric latent
representations and logistic regression. Results are averaged over 3 random seeds.

accuracy precision recall F1-score

SSDIR 0.9789 ± 0.0016 0.9787 ± 0.0017 0.9786 ± 0.0016 0.9786 ± 0.0016
SPAIR [31] 0.1919 ± 0.0073 0.1825 ± 0.0087 0.2019 ± 0.0092 0.1803 ± 0.0102
SPACE [120] 0.2121 ± 0.0432 0.2020 ± 0.0431 0.2158 ± 0.0435 0.1992 ± 0.0462



3.4. Experiments 88

3.4.3 Ablation Study: Influence of Dataset Properties

To assess how characteristics of the input data a!ect model performance, an ablation
study was conducted using variants of the multi-scale scattered MNIST dataset. Each
dataset was generated by randomly selecting cells from a pre-defined grid and placing
MNIST digits of varying sizes and o!sets within them. The generation process was
controlled by hyperparameters, such as the number and size of grids, as well as the
minimum and maximum size of a digit. These parameters were systematically varied to
study their individual e!ect on model performance.

For each dataset configuration, an SSDIR model was trained and subsequently
evaluated on its test subset using mean squared reconstruction error (MSE, Equation 1.9)
as the evaluation metric. The results of this analysis are presented in Figure 3.4.

Figure 3.4: Ablation study showing the impact of the dataset generation parameters on
model performance, measured by reconstruction MSE. Parameters leading to a dataset
with larger or more occluded digits negatively a!ect the model’s reconstruction quality.
SSDIR works best on datasets containing smaller, non-overlapping digits. Error bars

indicate standard deviation across three runs.

The study reveals the model’s sensitivity to the size of objects present in the input
image. Larger digits lead to an increase in reconstruction error, likely due to the
mismatch between the fixed-sized latent reconstruction ant the required upscaling for
transformation in the output image. Another factor contributing to the higher error is
the number of digits in the image, which increases the likelihood of occlusions. This
e!ect is particularly visible when increasing the minimum and maximum grid size, as
well as the total number of cells used during dataset generation.
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3.5 Summary

This chapter presented SSDIR, a single-shot convolutional generative model designed
to learn scale-invariant object representations. The proposed approach extends existing
multi-object representation learning frameworks with a multi-scale feature pyramid and
leveraging knowledge learned by a pre-trained object detection model. The e!ectiveness
of SSDIR was demonstrated through qualitative and downstream evaluation, which
confirmed its ability to infer structured, scale-invariant representations of objects across
both simple and moderately complex visual scenes.

However, several challenges remain, particularly in dealing with complex, real-
world data. SSDIR exhibits limitation related to fixed input resolution, which makes
it struggle with complicated scenes, especially in case of occlusions. What is more,
learning representations of objects in complex scenes could be improved by using a
more advanced feature extractor and reconstructing approach. The subsequent chapters
address these aspect by exploring more expressive encoder architecture and improved
image reconstruction approaches.
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Chapter 4

Implicit Temporal Encoder for
Multi-Object Representation
Learning on Videos

This chapter presents the part of the PhD research focused on extending the multi-
object representation learning model to the temporal domain, by applying it to videos
and addressing the challenge of capturing temporally coherent object representations.
The model proposed in this work, Recurrent Detect, Infer, Repeat (RDIR), enhances
the previously developed semi-supervised single-shot model (SSDIR) by introducing an
implicit recurrent mechanism, which refines internal feature maps of the convolutional
backbone through time directly, without requiring explicit object association and
tracking. Furthermore, several architectural enhancements are proposed to overcome the
limitations of SSDIR, including a significantly more powerful convolutional backbone and
cross-scale mixer modules that promote sharing context across multi-scale convolutional
grids.

The motivation for this research emerged during the analysis of the static image-
based method developed in the earlier phase. Following the move towards complex,
real-world scenarios in this research area, the need for ensuring temporally-stable
representations became increasingly important. The selected reference methods were
the state-of-the-art models for object-centric learning in videos at the time of developing
this approach, utilising the most prominent approaches: spatial attention models, scene-
mixture models and transformer-based architectures, complemented by an improved
variant of the image-based model from the previous phase, used as a baseline for
assessing the benefits of the proposed temporal extension.
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The methodology and results reported in this chapter are part of the publication
[209], for which I served as the principal author. I was responsible for the development of
the method, design and implementation of the model and experimental setup, evaluation
and analysis of the results, and preparation of the manuscript, including visual materials.

The structure of this chapter is organised as follows: Section 4.1 introduces the
motivation, and the relevant literature in the domain of video-based object-centric
learning is reviewed in Section 4.2. Section 4.3 presents the proposed RDIR model,
detailing the recurrent encoder and architectural improvements over SSDIR. Section 4.4
outlines the experimental framework, presents evaluation results in both synthetic and
real-world settings, and includes ablation studies. Finally, Section 4.5 summarises the
findings and discusses the broader implications of the proposed approach.

4.1 Introduction

Human’s ability to perceive and understand the visual world allows us to comprehend
the compositionality of the scene captured by our eyesight. This cognitive process
is based not only on observing the surroundings at a given moment but also on
comprehending the temporal variance of the scene and how the objects move and interact
with each other, enabling a deep understanding of visual scenes. The complexity of this
natural process is a topic of vivid research. Recent machine learning and computer
vision methods aim at learning similar comprehension as a result of supervised learning
for particular tasks, such as object detection, instance segmentation, visual question
answering etc. A group of methods allowing for a more general understanding of scenes
is often referred to as multi-object representation learning models.

Downstream models that operate on object-centric representations are usually easier
to train; this approach can also reduce the amount of data required to achieve good
performance. However, the success of these algorithms relies heavily on the quality
of embeddings produced by the representation learning model [8]. Recent methods,
building upon previous developments in this area, extend the image-based approach to
videos and infer temporal changes of objects in scenes: their movement, variation of
shape, etc. [32, 92, 95, 104, 197]. This makes it possible to capture and understand the
underlying dynamics of complex scenes as they change through time.

Recent developments in multi-object representation learning have increasingly moved
from fully unsupervised methods toward semi- and self-supervised approaches [48, 103,
208]. By incorporating additional knowledge these approaches provide more robust
object representations and can attend to individual objects in complex scenes more
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easily. However, many of these methods rely on computationally expensive training
procedures, often requiring multiple days of training on high-performance GPUs to
reach success. Furthermore, the quality of the representations and their temporal and
spatial stability have been given insu"cient attention, as most models are compared by
the quality of scene decomposition (i.e. the accuracy of segmentation masks).

This chapter addresses the challenge of capturing object-centric, temporally, and
spatially stable representations in videos. It introduces RDIR, a method for multi-
object representation learning on videos that incorporates a recurrent mechanism to
provide temporally consistent object representations. The approach builds on the recent
shift toward semi- and self-supervised learning by extending a pre-trained one-stage,
multi-scale object detection model with a recurrent mechanism for encoding each object
representation without the need for additional supervision. By applying a pre-trained
object detection model, RDIR o!ers a deeper understanding of detected objects, which
can be obtained on any unannotated dataset, with improved scalability and shorter
training. Experimental comparisons with existing video-based object-centric models
demonstrate that RDIR captures more consistent object representations and supports
downstream tasks e!ectively.

The contributions of the paper are as follows. We introduce a model for learning
object-centric representations on videos and explain the theoretical underpinnings. We
present a comparison of the performance and the quality of the representations of this
model and other state-of-the-art methods for multi-object representation learning. We
provide an experimental approach for evaluating the temporal and spatial coherence of
representations and show how dataset characteristics and model architecture influence
the performance of the approach.

4.2 Related Works

The presented research lies within the domain of multi-object visual representation
learning, with the objective of learning structured representations of multiple objects
present in a scene.

Multi-object representation learning on images. This task is commonly ap-
proached using unsupervised, VAE-based models [101, 150]. These methods can be
broadly classified into spatial-attention models and scene-mixture models. Spatial-
attention models use geometrically defined regions (typically rectangular bounding
boxes) to attend to individual objects, allowing for e"cient processing and highly inter-
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pretable inference. These models can work by iteratively predicting subsequent objects
(as in AIR [53]) or predicting all objects with a single-shot model (SPAIR [31] and
SPACE [120]). However, their strong inductive bias limits their ability to handle objects
of irregular shapes and struggle with large objects, often resulting in over-segmentation
or fragmentation. In contrast, scene-mixture models such as MONet [14], IODINE
[65], Slot Attention [124] or GENESIS [49, 50] do not restrict the shape of masks used
to split the scene into parts, enabling the model to infer on more complex scenes.
However, these methods are expensive to train and infer, as they rely on recurrent mask
refinement or sequential attention. Moreover, they tend to encapsulate multiple objects
in a single representation on complex datasets, unable to discover meaningful entities.

RDIR builds on the approach suggested in SSDIR (Chapter 3), where a spatial-
attention model is extended with a multi-scale convolutional encoder and a flexible
attention mechanism that supports variable object sizes. This architecture retains the
computational e"ciency of spatial-attention models while improving the model’s ability
to attend to diverse object scales in a single forward pass.

Multi-object representation learning on videos. Multi-object representation
learning on videos has typically been approached by extending image-based models
to sequential data. A common strategy involves integrating a recurrent module such
as LSTM [83] or GRU [28] to capture temporal dependencies. This paradigm was
applied to both spatial-attention models (in a recurrent setup [104] or in single-shot
form [32, 92]), as well as to scene-mixture models [33, 197], achieving promising results
on synthetic datasets. However, without supervision, these methods often fail to
scale to more complex, real-world scenarios, encountering limitations similar to their
image-based counterparts. What is more, most existing approaches emphasise the
reconstruction quality and scene segmentation capabilities of these models, rarely
reviewing or comparing the quality of inferred object representations. In addition, the
use of recurrent modules introduces additional computational overhead.

An alternative formulation was introduced in SIMONe [95], which uses a transformer-
based architecture to decompose latent space into temporal and per-object latents
explicitly. By inferring the entire sequence at once, the model can extract split repre-
sentations referring to how the frame changes over time, and encapsulate each object’s
appearance in its per-sequence representation. However, this approach is constrained by
its fully unsupervised training setup and significant computational demands, limiting
its scalability to real-world datasets.
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RDIR adopts a recurrent mechanism inspired by discovery-propagation approaches
in spatial-attention video models. Unlike methods that explicitly track and associate
new objects across frames, RDIR applies the recurrent cell to the encoder’s feature
maps, enabling temporal refinement of features through hidden state propagation. This
facilitates implicit object association across time without additional tracking logic.

Supervision in multi-object representation learning models. Supervision is
increasingly considered a key factor for enabling multi-object representation learning
to scale to real-world datasets. In Slot Attention for Videos [103], self-supervision is
introduced through optical flow conditioning, allowing the model to incorporate motion
cues. A related extension [48], conditions the model on depth maps rather than RGB
images, demonstrating improved scene understanding. While these approaches show
improved segmentation performance, they do not review the expressiveness or consistency
of learned representations. Furthermore, these methods rely on auxiliary signals such
as depth maps or optical flow, which require annotations or online estimations during
training.

RDIR builds on the semi-supervised framework introduced in Chapter 3, where
a pre-trained single-shot object detector provides spatial attention locations. RDIR
incorporates a staged training procedure designed to balance computational e"ciency
and training e!ectiveness. Assuming access to a reliable object detector, the model can
accurately attend to object classes of interest and learn temporally consistent object
representations from video data without requiring further supervision.

4.3 Recurrent Detect, Infer, Repeat

This section introduces RDIR (Recurrent Detect, Infer, Repeat), a structured
autoencoder designed for multi-object representation learning in videos. RDIR extends
the semi-supervised framework by incorporating a recurrent encoder network that
enables implicit temporal reasoning over sequences of frames. The model combines pre-
trained object detection with learned object-centric representation encoders, facilitating
temporally consistent and semantically meaningful embeddings.

RDIR builds upon the concept of extending a one-stage object detection model
with dedicated encoding heads for object-centric representation learning trained in an
autoencoding framework. Each frame in a video sequence is processed to produce a
structured representation consisting of a set of object-specific latent vectors. These
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vectors encode information about object appearance, location, presence and depth in the
scene. The representations are then filtered and passed to the decoder, which produces
per-object reconstructions, which are merged to create a full image reconstruction.

The overall model includes two core components: the encoder q𝜗 (z|x), which maps
the input video x to the latent representation z, and the decoder p𝜀 (x|z), which
reconstructs the input video from the inferred latent representation. Both functions are
trained jointly.

4.3.1 RDIR Latent Space

The latent space in RDIR is structured to encode information about individual
objects present in the scene. Leveraging a one-stage object detection model and multi-
scale feature maps, the architecture produces object-centric representations for multiple
grids, referring to spatial locations in the input image. Each cell in all detection grids
contributes a set of latent variables:

1. zi

where
= [xi, yi, wi, hi] ↑ R4, which describes the i-th object’s position and size (as

bounding box centre coordinates xi, yi, width wi and height hi),

2. zi

present
= max c ↑ [0, 1], used to encode the object’s presence confidence, computed

as the maximum of object’s class confidences c,

3. zi

what
↑ RD, a D-dimensional appearance vector capturing the visual characteristics

of the object, used during the reconstruction of per-object patches,

4. zi

depth
↑ R, which represents the relative depth of the object, facilitating correct

compositing order in the decoder.

Following the semi-supervised approach, RDIR uses a pre-trained object detec-
tion model to provide zwhere and zpresent latent variables, simplifying the process of
object discovery. The remaining latent variables (zwhat and zdepth) are learned in the
representation learning framework.
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4.3.2 RDIR Encoder

The RDIR encoder (illustrated in Figure 4.1) is designed to capture latent repre-
sentations that are both spatially and temporally consistent across video sequences.
The architecture builds upon the CSPDarknet53 convolutional backbone introduced in
YOLOv4 [12], o!ering substantially enhanced feature extraction capacity compared to
SSDIR.

Figure 4.1: RDIR encoder architecture. Input videos, treated as sequences of frames,
are processed individually by the convolutional backbone (Conv). The intermediate

features are passed through a pre-trained YOLO head to infer zwhere and zpresent latents
for each grid cell. To infer zwhat and zdepth embeddings, these intermediate features are
forwarded to the Mixer module (see Figure 4.3) to share information across all levels of
grid resolution. A Sequence encoder (Figure 4.2) follows, propagating temporal context

across the input sequence. Another Mixer module is provided to share temporal
context across scales. Finally, the resulting latent features are used by dedicated

encoders for zwhat and zdepth.

YOLOv4 is a well-established single-shot object detection framework. Its backbone
encodes multi-scale feature maps that are interpreted as spatial grids of intermediate
representations, used for predicting bounding box coordinates and class confidences at
each cell via spatial grid-based attention. By default, this model utilises three levels of
feature grids, each with di!erent spatial resolutions and channel depths.

RDIR leverages this backbone to extract intermediate features for each time-step
t ↑ 1, ..., T of the input sequence. These features are processed through a pre-trained
YOLO detection head, which infers objects’ locations (zwhere) and class confidences (used
to compute zpresent). The same multi-scale feature maps are reused to learn appearance
embeddings zwhat and depth cues zdepth for all grid cells. This design extends the
approach introduced in SSDIR, with key architectural advances to improve the quality
of object-centric representations. To stabilise training, predicted bounding boxes are
adjusted to be square, preventing the spatial transformer from introducing excessive
aspect ratio distortion.
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Sequence encoder. The key contribution in RDIR is the design of the Sequence
encoder (illustrated in Figure 4.2), which enables implicit modelling of temporal structure
in videos. Unlike prior spatial-attention models that require explicit object discovery
and propagation across frames, RDIR leverages grid-based inference to incorporate
temporal dynamics directly in the latent feature space.

Figure 4.2: Sequence encoder module in RDIR. Multi-scale feature maps from each
video frame are first processed by dimension-preserving convolutional layers (conv),

which enable local spatial information to be propagated across adjacent cells using 2D
kernels (of size 3 ⇐ 3). The resulting feature maps are flattened and concatenated into

a tensor of shape [Nobj, cl] and passed through a GRU cell to propagate temporal
context. Next, the original grid structure is restored via unflattening, and additional

convolutional layers are applied to distribute temporal information across spatial
regions. The output retains the same shape as the input.

The model flattens all grid cells from the multi-scale feature maps into a single
tensor of shape [Nobjs, D] (where Nobjs = ⧹︃

3

i=1
wi ∈ hi is the total number of cells across

all three grid levels, and D = cl denotes the number of channels shared across feature
maps). This flattened representation is passed through a recurrent cell for propagating
temporal information through its hidden state. After recurrent processing, the original
spatial grid structure is restored, preserving the original shape and order of cells.

This formulation allows the model to incorporate temporal consistency into the
latent features of all cells before per-object representation learning, without the need
for explicitly associating objects across frames. However, since each of the Nobjs vectors
is processed independently by the recurrent unit, temporal information cannot be
shared between adjacent spatial regions, which is a limitation that may a!ect objects
moving across the scene. To solve this issue, RDIR integrates dimension-preserving
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convolutional layers before and after the recurrent module. These layers enable spatial
context to be shared among neighbouring cells, allowing information to flow across
regions of image that correspond to the same object over time.

Mixer. An important part of the RDIR encoder is the Mixer module (illustrated
in Figure 4.3). Multi-scale feature maps struggle with sharing contextual information
across objects detected on various grid levels. This limitation arises because each grid
is extracted from a di!erent stage in the convolutional backbone, resulting in feature
maps that lack shared lower-level representations. However, such shared context is
particularly important for consistent and robust representation learning.

Figure 4.3: RDIR Mixer module used for context sharing across multi-level feature
maps. The initial set of conv layers (each consisting of a 2D convolution, batch
normalisation, and Leaky ReLU activation) unifies the number of channels in all
feature maps to cl. To enable information exchange across scales, additional conv

layers perform upsampling and downsampling of neighbouring grids. The resulting
feature maps are concatenated and passed through a final set of conv layers to restore

the unified channel dimension cl.

To address this, the Mixer module enables cross-scale propagation by performing
upsampling and downsampling operations to align the dimensions of adjacent feature
maps. These rescaled features are concatenated with the original grid-level features,
allowing each grid cell to incorporate context from other resolutions while preserving
the spatial ordering of cells. The design ensures that each cell can access relevant
information from corresponding regions across feature levels.
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Each Mixer module consists of a 2D convolutional layer followed by batch normali-
sation and a Leaky ReLU activation. The number and parameters of these convolutions
are chosen to allow spatial alignment and concatenation of feature maps across grid
levels. The output of the Mixer retains the original number of multi-scale grids (three
in the YOLOv4 setup), with the smallest shared channel dimension across all levels.

Two Mixer modules are used in the RDIR encoder: one preceding the Sequence
encoder and one following it. This approach allows the model to propagate information
across feature scales both before and after the integration of temporal context via the
GRU cell.

Latents encoding. The resulting temporally and contextually enriched feature maps
are used to predict zwhat and zdepth. The zwhat encoder applies a stack of 3 ⇐ 3
convolutional blocks, followed by a 1 ⇐ 1 convolution to produce latent maps with the
target dimensionality (zwhat size). The zdepth encoder consists of a single convolutional
block and a final 1 ⇐ 1 convolution to output depth scores.

Optionally, the representation learning module of the encoder can use a cloned
backbone and neck, allowing additional trainable capacity. In this case, the cloned
neck is optimised with the encoders while sharing the frozen weights of the pre-trained
backbone. The original YOLO detection head remains frozen throughout.

The overall encoding pipeline is summarised in Algorithm 2. The encoder network
retains the ability to scale to images of varying resolutions, addressing a key limitation
of SSDIR. Furthermore, the use of a more advanced convolutional backbone enables
the model to operate e!ectively on complex datasets with higher-resolution inputs.
As in SSDIR, the YOLO backbone and detection head are initialised with weights
from a pre-trained object detection model and remain frozen during training, whereas
the encoder part is trained together with the decoder without supervision, allowing
the model to focus on semantically meaningful regions of the image during learning
representations.

4.3.3 RDIR Decoder

The RDIR decoder follows the general structure of spatial-attention decoders used in
prior multi-object representation learning models, particularly SSDIR. The key enhance-
ments include support for non-max suppression (NMS), the use of batch normalisation
and configurable object reconstruction size.
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Algorithm 2: RDIR Encoder
Input : Image sequence x
Output : Latent representation for each image in sequence:

{zwhere, zpresent, zwhat, zdepth}
1 foreach xi in x do
2 features ⇒ BackboneNeck(xi)
3 [zwhere, zpresent] ⇒ YOLOHead(features)
4 featuresmixed ⇒ Mixer(features)
5 Append zwhere, zpresent, featuresmixed to lists
6 end
7 featuresseq ⇒ SeqEncoder(featuresmixed)
8 foreach features(t)

seq in featuresseq do
9 featuresseqmixed ⇒ SeqMixer(features(t)

seq
)

10 zwhat ⇒ WhatEncoder(featuresseqmixed)
11 zdepth ⇒ DepthEncoder(featuresseqmixed)
12 Append zwhat, zdepth to lists
13 end
14 return {zwhere, zpresent, zwhat, zdepth}

The decoder operates independently on each frame and does not leverage temporal
information. During training, latent representations are filtered using stochastic sam-
pling based on zpresent. This stochasticity was found to improve learning e"ciency. To
improve training stability and ensure the model learns a broader distribution, negative
examples are included in addition to those inferred by the detector. At inference
time, sampling of zpresent is replaced with a fixed thresholding operation, and negative
examples are omitted. Non-maximum suppression (Algorithm 1) is applied to the
zpresent scores with an Intersection over Union threshold of 0.45 to eliminate redundant
detections and reduce duplication.

Then, the selected appearance latents zwhat are decoded using a convolutional
decoder network consisting of a sequence of 2D transposed convolution layers to produce
object reconstructions. Each layer is followed by batch normalisation and a Leaky
ReLU activation function. The architecture is parameterised by the input latent
dimensionality, the number of decoder channels and the target resolution of the per-
object reconstructions. The final transposed convolution layer produces three output
channels followed by a sigmoid activation, resulting in individual RGB object patch
reconstructions.

Each object patch is then spatially transformed to the original image size based
on the corresponding zwhere latent using a spatial transformer [87]. The compositing
is performed by depth order, determined by sorting the objects based on their zdepth

values. This allows the model to produce a more accurate and compact set of object
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representations, particularly in cluttered scenes containing many objects. The resulting
image contains only the reconstructed foreground objects; no background modelling is
performed.

The high-level flow of the decoder is presented in Algorithm 3.

Algorithm 3: RDIR Decoder
Input : Latent representation for each image in sequence:

{zwhere, zpresent, zwhat, zdepth}, sorted by zdepth

Output : Image sequence reconstruction x̂
1 foreach {zwhere, zpresent, zwhat, zdepth} in z do
2 zwhat ⇒ Filter(zwhat, zpresent)
3 zwhere ⇒ Filter(zwhere, zpresent)
4 zdepth ⇒ Filter(zdepth, zpresent)
5 foreach (zi

what, zi

where) in (zwhat, zwhere) do
6 oi

dec
⇒ Decoder(zi

what
)

7 oi

transformed
⇒ STN(oi

dec
, zi

where
)

8 x̂ ⇒ Merge(oi

transformed
, zi

depth
)

9 end
10 end
11 return x̂

4.3.4 Model Training

RDIR is trained in a classic autoencoder setup. Since the probabilistic properties of
variational autoencoders are not utilised explicitly in this research, training is performed
using the mean squared error (MSE) loss function, minimising the reconstruction error
between the input sequence of images x and their reconstruction x̂ (Equation (1.9)).
Although this formulation does not use probabilistic components, the model could be
trivially extended to a VAE framework. In the context of generative modelling, the
training objective could be viewed as maximising the likelihood of the data under the
assumed model, given the noise introduced by the grid-based encoding and the injection
of negative samples during training [57]. Since RDIR does not explicitly reconstruct the
background, the reconstruction error measured over the entire image may be inflated
due to the complexity of the background. To mitigate this, an additional loss term is
introduced computing the reconstruction error only within regions corresponding to
detected objects. The final loss function is defined in Equation (4.1):

L = ↽r · MSE (x, x̂) + ↽obj

1
K

K⧸︃

i

MSE
)︃
xi

obj
, x̂i

obj

[︃
(4.1)

where:
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↽r is the reconstruction MSE component coe"cient,
x is the input image sequence,
x̂ denotes the reconstruction,
↽obj is the per-object MSE component coe"cient,
K is the number of objects in all images in the sequence,
xi

obj
, x̂i

obj
refer to detected objects’ original appearances and reconstructions.

A staged training procedure is used to train the model e!ectively. First, the weights
of a pre-trained object detection model are transferred to an SSDIR-like architecture,
identical to RDIR’s, but without the Sequence encoder and the second Mixer. This
model is trained in an unsupervised autoencoding setup that initialises components
responsible for multi-object representations in images, in particular, the zwhat encoder
and decoder. In the next stage, the model is extended with the Sequence encoder and
the second Mixer, and a full RDIR model is trained as an unsupervised autoencoder on
videos. This results in faster convergence and improved final performance.

4.4 Experiments

This section presents the experimental setup and evaluation methodology used to
assess the performance of RDIR. The goal was to evaluate the quality and consistency
of the object representations learned by the model in comparison with reference multi-
object representation learning approaches. The evaluation includes downstream task
performance and visual review of the image and object reconstructions. In addition, an
ablation study was conducted to examine the role of the Mixer module in the encoder
and the model’s robustness to varying numbers of objects in the sequence.

Baseline methods To evaluate the performance of RDIR, a set of representative
baseline methods was selected. The goal was to include one method from each major
category of multi-object representation learning approaches for videos. The selected
baselines span spatial-attention models, scene-mixture models, and transformer-based
architectures:

• SCALOR [92], a recurrent spatial-attention model that performs object discovery
and propagation using a proposal-rejection mechanism across frames,

• PROVIDE [197], a recurrent scene-mixture model, that runs iterative amortised
inference using a 2D-LSTM, integrating context from previous refinement steps
and earlier frames,
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• SIMONe [95], a transformer-based variational autoencoder that factorises la-
tent representations into temporally invariant per-object components and global
sequence-level context,

• SSDIR-YOLO [208], an enhanced version of SSDIR that incorporates the
YOLOv4 backbone (same as in RDIR) and the Mixer module; used to isolate the
contribution of the Sequence encoder to the model, and overcoming the major
limitations of the original model, such as low-resolution processing and weak
convolutional backbone.

All models were configured to use the same dimensionality of latent representation.
For experiments on the Multi-Scale Moving MNIST dataset, the original resolution is
64 ⇐ 64; however, RDIR and SSDIR-YOLO operated on upscaled inputs (128 ⇐ 128)
due to their grid resolution dependencies.

In the MOT15 object tracking experiments, each model was evaluated at the highest
input resolution supported by its architecture and GPU constraints: SCALOR and
PROVIDE used their default resolution of 64 ⇐ 64, SIMONe was run at 128 ⇐ 128,
while SSDIR-YOLO and RDIR operated at 416 ⇐ 416, demonstrating their scalability
to higher-resolution inputs.

Datasets The experiments were conducted using a combination of synthetic and
real-world datasets. The inclusion of simulated datasets allowed for precise control
over various scene parameters, which is crucial for evaluating the robustness and
generalisation capability of the model. Figure 4.4 presents sample sequences from each
dataset.

1. Multi-Scale Moving MNIST4. This synthetic dataset extends the concept
of multi-scale digit sequences introduced in Chapter 3, providing a structured
benchmark for assessing the model’s performance in the presence of size variation,
object motion and occlusion. Each sequence begins with a frame of size 128 ⇐ 128
pixels, containing a random number of MNIST digits (the number sampled
uniformly between nmin and nmax). Digits are independently scaled to one of the
predefined sizes {s1, s2, . . . , sN} and placed at random positions.

Throughout the T -frame sequence, each digit moves with an initial velocity (vx, vy)
sampled uniformly from the range (→1, 1) in both directions. Digits bounce o!
the image boundaries with symmetric reflection. Additionally, digits undergo

4https://github.com/piotlinski/moving_multiscalemnist

https://github.com/piotlinski/moving_multiscalemnist
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Figure 4.4: Example sequences from datasets used in the experiments. Each row shows
a sequence of five frames from datasets: (1) Multi-Scale Moving MNIST, (2) MOT15,

(3) MOVi-A, (4) MOVi-C, (5) MOVi-E.

sinusoidal size oscillation with amplitude sv (e.g., sv = 0.1 corresponds to 10%
size variation) and period op (where op = 1.0 corresponds to one full oscillation
per second).

The primary training dataset uses the configuration summarised in Table 4.1. For
evaluation, two additional variants were created:

• No scaling: digits remain at a fixed size (sv = 0), allowing for evaluation
without scale changes,

• No translation: digit velocities are set to zero, removing motion from the
sequences.

For the ablation study, further variants involved modifying the number of objects
per sequence (ranging from 1 to 7 digits per frame), which allowed evaluation
of the model’s robustness to varying object counts and occlusion levels. Each
variant contained 1000 sequences.



4.4. Experiments 105

parameter value

train sequences 8000
test sequences 2000
T 10
nmin 2
nmax 5
s {48, 72, 96}
op {1.0, 1.5, 2.0}
sv {0.0, 0.1, 0.2, 0.3}
FPS 10

Table 4.1: Parameters used for generating the Multi-Scale Moving MNIST dataset.

2. MOT15 [111]. This dataset served as a real-world benchmark for the task of
multi-object tracking, enabling the evaluation of object representations in a more
complex context. The training split includes 11 video sequences containing multiple
walking pedestrians, captured in urban environments. Provided annotations
include bounding boxes and consistent object IDs. Since the o"cial test set does
not include public annotations, a validation subset was created from the training
data according to Table 4.2.

sequence resolution frames

train

ADL-Rundle-8 1920 ⇐ 1080 654
ETH-Bahnhof 640 ⇐ 480 1000
ETH-Pedcross2 640 ⇐ 480 837
KITTI-13 1242 ⇐ 375 340
PETS09-S2L1 768 ⇐ 576 795
TUD-Campus 640 ⇐ 480 71
TUD-Stadtmitte 640 ⇐ 480 179
Venice-2 1920 ⇐ 1080 600

! = 4467

val

ADL-Rundle-6 1920 ⇐ 1080 525
ETH-Sunnyday 640 ⇐ 480 354
KITTI-17 1224 ⇐ 370 145

! = 1024

Table 4.2: MOT15 dataset split details.

For model training, each video was divided into overlapping sequences of 10 frames.
Full-length sequences were used during the evaluation. The size of the frames was
adjusted to the maximum resolution supported by each model configuration.

3. COCO [119]. It is a large-scale benchmark widely used in object detection tasks.
It contains images depicting everyday scenes with 80 object categories, including
people, animals, vehicles and household items. In this research, COCO was used
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to train the initial object detection model, focusing solely on the person class. The
resulting model was initialising the detection components of the representation
learning model on MOT15, ensuring proper detection of pedestrians.

4. MOVi [64]. It is a video benchmark designed for evaluating object-centric models
in visually complex, synthetic environments. In this research, these datasets were
used to qualitatively assess the stability of reconstructions produced by RDIR.
Three subsets: MOVI-A, MOVi-C and MOVi-E were selected based on their
progressively increasing di"culty. Each one consists of sequences containing 24
images of resolution 256 ⇐ 256, with detailed annotations including object masks,
bounding boxes and identities. Dataset statistics are summarised in Table 4.3.

MOVi-A MOVi-C MOVi-E

train sequences 9703 9737 9749
test sequences 250 250 250

Table 4.3: Number of sequences in each MOVi dataset.

Model training setup RDIR5 was trained using a staged protocol on a single
NVIDIA A40 GPU:

1. An object detection model was first trained on an annotated dataset with super-
vision. YOLOv4 was used as the base detector, and its backbone and prediction
head were later reused in the encoder of RDIR.

2. In the second stage, the model was trained to learn object-centric representations
on static images in an unsupervised autoencoding setup. Here, the Sequence
encoder and the second Mixer module were removed while the model operated as
a single-frame autoencoder. The YOLO backbone and detection head were kept
frozen, while the representation learning modules were updated. The checkpoint
achieving the lowest validation loss was selected for the next phase. This inter-
mediate stage was found to improve final model performance and reduce overall
training time compared to directly training the full recurrent model.

3. Finally, the pre-trained image-based model was extended with the Sequence
encoder and the second Mixer module to form the complete RDIR architecture.
Training began with a short warmup phase, during which only the newly added
modules were updated while the rest of the model remained frozen. This allowed

5https://github.com/piotlinski/rdir

https://github.com/piotlinski/rdir
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the recurrent components to initialise e!ectively. Afterwards, training proceeded
in the same manner as the second stage, with the backbone and YOLO heads
remaining frozen and sequence-level loss used as the objective.

Model hyperparameters used in the experiments are summarised in Table 4.4.

parameter MNIST MOT15 MOVi-A MOVi-C MOVi-E

batch size 256 4 64 64 64
image size 128 416 256 256 256
decoded size 32 32 32 32 32
decoder channels 16 128 256 256 256
zwhat size 64 128 256 256 256
zwhat hidden 3 5 5 5 5
𝜛total 5 5 5 5 5
𝜛obj 10 10 10 10 10
RNN type BiGRU GRU BiGRU BiGRU BiGRU
RNN cells 2 2 2 2 2
seq CNN hidden 2 2 2 2 2
seq CNN kernel size 5 5 5 5 5

Table 4.4: Model parameters used for learning representations on each dataset.

4.4.1 Experiment 1: Predicting the Sum of Digits in a Se-
quence

To assess the informativeness of the learned representations, a downstream task was
conducted in which the objective was to predict the sum of digits in a video sequence,
following the approach proposed in [53]. Each model was trained on the full Multi-Scale
Moving MNIST dataset, after which latent representations were extracted for both
the train and validation subsets. A linear regression model was then fitted on the
representations to predict the sum of digits in each sequence, using ground truth labels
to compute the target.

Since each method produces multiple latent vectors for each image (corresponding
to detected objects or inferred attention masks), these were aggregated across each
frame by summation. The final sequence-level feature was computed as the average of
the aggregated per-frame vectors, yielding a 64-dimensional representation per sequence.
This strategy enables a uniform comparison across models, including those that do
not explicitly produce per-object representations. For instance, scene-mixture-based
models (such as PROVIDE and SIMONe) often generate masks covering multiple
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objects, while spatial attention models with fixed object sizes (such as SCALOR) tend
to fragment large objects. Aggregating over sequence mitigates these di!erences and
enables comparison based on overall scene encoding quality.

Performance was measured using the R
2 metric, computed across three random

seeds for both training and validation subsets. The results are reported in Table 4.5.

dataset variant model train R
2 val R

2

MNIST

SCALOR 0.301 ± 0.009 0.294 ± 0.028
PROVIDE 0.298 ± 0.258 0.282 ± 0.258
SIMONe 0.580 ± 0.020 0.577 ± 0.023
SSDIR-YOLO 0.574 ± 0.015 0.573 ± 0.012
RDIR 0.579 ± 0.010 0.581 ± 0.002

MNIST
(no scaling)

SCALOR 0.353 ± 0.018 0.357 ± 0.024
PROVIDE 0.349 ± 0.300 0.345 ± 0.312
SIMONe 0.652 ± 0.013 0.658 ± 0.070
SSDIR-YOLO 0.641 ± 0.013 0.647 ± 0.015
RDIR 0.625 ± 0.006 0.636 ± 0.002

MNIST
(no translation)

SCALOR 0.288 ± 0.017 0.274 ± 0.010
PROVIDE 0.266 ± 0.232 0.253 ± 0.236
SIMONe 0.493 ± 0.018 0.478 ± 0.019
SSDIR-YOLO 0.396 ± 0.011 0.404 ± 0.019
RDIR 0.425 ± 0.009 0.429 ± 0.008

Table 4.5: Downstream task: regression of the sum of digits in a sequence. RDIR
achieves best results on the most complex dataset but is slightly worse than SIMONe
and SSDIR in simpler datasets (without scaling or translation). Values are averaged

over 3 random seeds.

RDIR achieves the highest performance on the full dataset, which includes scaling
and translation, demonstrating the e!ectiveness of incorporating the Sequence encoder
into the SSDIR baseline. The results of SIMONe are competitive with those of RDIR,
highlighting the advantages of its factorised latent space for capturing global sequence-
level information.

On the simplified variants of the dataset (without scaling or translation), RDIR
performs slightly below SIMONe and SSDIR. Importantly, the inclusion of temporal
modelling via recurrent units o!ers a practical advantage over SSDIR, particularly on
most complex data, and when stable object representations across time are required.
Unlike transformer-based models, RDIR’s use of recurrent cells supports online inference,
eliminating the need to observe the full sequence before processing.
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The performance of SCALOR and PROVIDE is notably worse across all dataset
variants. Both models exhibited di"culties in correctly identifying objects in the scene,
often producing an excessive number of latent vectors per frame. These outcomes
suggest limitations in their capacity to handle dynamic, cluttered environments and
extract coherent object representations under objects’ scale and motion variability.

4.4.2 Experiment 2: Representations-Based Object Tracking

To explore the utility of RDIR representations in real-life scenarios, their performance
was evaluated in the task of object tracking. The experimental setup is as follows: each
model was trained on the training subset of the MOT15 dataset. Next, representations
were extracted from the validation dataset. A simple object tracking algorithm was used,
matching objects between consecutive frames via the Hungarian algorithm based on
the cosine similarity between object representations, while maintaining unique IDs for
tracked entities. Tracking was performed using each model’s bounding box predictions
combined with assigned object IDs, and evaluated using the TrackEval framework [126].

Tracking performance was quantified using the HOTA metric [127] (Equation (1.25)),
averaged over three random seeds on both training and validation subsets. Results for
all models, along with a baseline object detector (YOLO), are reported in Table 4.6.

MOT15 HOTA
train val

SCALOR 1.452 ± 0.063 1.305 ± 0.041
PROVIDE 0.753 ± 0.038 0.698 ± 0.036
SIMONe 0.495 ± 0.275 0.724 ± 0.597
SSDIR-YOLO 31.774 ± 2.193 20.752 ± 1.190
RDIR 30.582 ± 2.201 20.749 ± 0.344

YOLO 20.100 ± 0.520 14.263 ± 0.525

Table 4.6: Downstream task: object tracking using learned representations. RDIR and
SSDIR-YOLO achieve substantially better results than the baseline methods. Values

are averaged over 3 random seeds.

SSDIR-YOLO and RDIR achieve comparable performance, both showing a sub-
stantial improvement over the baseline YOLO detection model. For PROVIDE and
SIMONe, which produce segmentation masks rather than bounding boxes, an additional
step was required to estimate object locations. Each mask was converted to a bounding
box by computing its centre of mass and assigning a fixed 3 : 1 height-to-width ratio,
appropriate for the pedestrian class. Despite this adjustment, both PROVIDE and
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SIMONe fail to consistently localise individual objects, instead segmenting the scene
into regions inconsistent with pedestrians. This leads to low tracking accuracy, as
reflected in the HOTA metric.

Leveraging a pre-trained object detection model enables the transfer of knowledge
from external datasets. Table 4.7 presents the performance of models built on a detector
pre-trained on the COCO dataset (restricted to the ‘person’ class). While the baseline
detector (YOLO@COCO) performs poorly on this task due to limited domain alignment,
incorporating representations learned by SSDIR-YOLO and RDIR leads to a substantial
improvement in object tracking accuracy. In contrast, a model trained end-to-end,
without the benefit of a frozen pre-trained object detection, exhibits performance similar
to baseline methods, failing to reliably focus on relevant objects.

MOT15 HOTA
train val

YOLO@MOT15 20.100 ± 0.520 14.263 ± 0.525
YOLO@COCO 8.240 ± 0.154 9.457 ± 0.141

SSDIR@MOT15 31.774 ± 2.193 20.752 ± 1.190
SSDIR@COCO 14.788 ± 0.607 14.029 ± 0.751

RDIR@MOT15 30.582 ± 2.201 20.749 ± 0.344
RDIR@COCO 13.922 ± 0.781 13.752 ± 0.777

RDIR E2E 0.634 ± 0.076 0.582 ± 0.120

Table 4.7: Downstream task: object tracking using learned representations. ‘@’ denotes
the dataset on which the base detection model was trained. The addition of

representations improves tracking performance, even for less-fitting object detection
models. Values are averaged over 3 random seeds.

The marginal di!erence in performance between SSDIR-YOLO and RDIR requires
attention. The SSDIR baseline used here incorporates architectural improvements
proposed in this work, which enhance its capabilities beyond the original version.
However, RDIR is able to learn from video sequences and incorporate temporal context
into object representations, leading to more general embeddings, which is particularly
valuable when objects become partially occluded or ambiguous in single frames. Due to
the use of recurrent cells, RDIR could scale better to large unlabelled video datasets.
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4.4.3 Ablation Study 1: Influence of the Mixer Module on
Model Performance

To evaluate the impact of the Mixer module in RDIR, an ablation study was
conducted by training three architectural variants. The standard model is referred
to as RDIR. In no-mixer, the latent features were left unmodified, requiring separate
recurrent cells for each feature map due to di!ering channel dimensions. The downscaler
variant unifies the channel dimensions to enable a single shared recurrent cell but
omits feature-level mixing. All models were evaluated on the digit summation task
(Subsection 4.4.1), with R

2 metrics summarised in Table 4.8.

MNIST
R

2 train val

RDIR 0.579 ± 0.010 0.581 ± 0.002
no-mixer 0.561 ± 0.023 0.562 ± 0.022
downscaler 0.543 ± 0.027 0.542 ± 0.027

Table 4.8: Ablation study: the influence of the Mixer module on the quality of
representations. Adding the Mixer to RDIR improves the performance of the linear
regression model applied to its representations. Values are averaged over 3 random

seeds.

The results demonstrate that incorporating the Mixer module into RDIR leads to
improved representation quality, as evidenced by higher R

2 scores. Interestingly, simply
reducing the number of channels to enable a single recurrent cell (downscaler) does not
yield better performance than using multiple recurrent cells without mixing (no-mixer).
This suggests that the key advantage of the Mixer module lies not in unifying feature
dimensions alone, but in allowing feature maps at di!erent scales to share contextual
information prior to sequence modelling. Without this integration, the model cannot
e!ectively leverage complementary information from other grid levels.

4.4.4 Ablation Study 2: Influence of the Number of Objects
in the Sequence on Model Performance

To evaluate RDIR’s robustness to the number of objects visible in a scene, additional
versions of the Multi-Scale Moving MNIST dataset were generated, containing between
1 and 7 digits per sequence. Each dataset was split into training and validation
subsets (80 : 20 ratio). Following the same digit summation evaluation protocol as in
Subsection 4.4.1, linear regression models were trained on the extracted representations.
The R

2 scores and corresponding standard deviations are presented in Figure 4.5.
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Figure 4.5: Impact of the number of objects per sequence on representation quality in
RDIR. Each point shows the R

2 score of a linear regression model predicting the sum
of digits for all variants of the dataset (with a given number of objects). Performance
improves as the number of objects increases, indicating RDIR’s ability to generalise to

more complex scenes. Error bars denote the standard deviation over three random
seeds.

The results confirm that RDIR produces representations robust to an increasing
number of objects in the scene. As the number of objects increases, the downstream
model maintains or improves its performance, demonstrating RDIR’s capacity to encode
scene information in cluttered settings. Notably, a decline in performance is observed
in sequences containing only one or two objects.

4.4.5 Computational Expense

This section presents a comparative analysis of the computational requirements of
RDIR relative to the baseline methods. The computational expense of deep learning
models depends on several factors, including hardware configuration, software stack,
model architecture and dataset characteristics. To provide a comprehensive view,
Table 4.9 reports each model’s training time to convergence, while Table 4.10 presents
each model’s iteration speed.

The baseline methods were trained on di!erent hardware than the proposed approach
due to computational constraints. The batch size in all cases was tuned to utilise
the memory capacity of a single GPU fully. Despite these di!erences, the results
demonstrate that the staged training strategy adopted by RDIR leads to substantially
lower computational costs compared to the reference methods.
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Model Training time (103 s) Batch size GPU

SCALOR 435.54 ± 3.92 16 RTX TITAN
PROVIDE 523.11 ± 3.22 4 RTX TITAN
SIMONe 238.71 ± 15.17 16 RTX TITAN
SSDIR-YOLO 9.34 ± 0.68 256 A40
RDIR 22.34 ± 1.36 32 A40

Table 4.9: Model training expense comparison. Although SSDIR-YOLO and RDIR
were trained on a more powerful GPU, the large gap in training time highlights the

substantially greater computational e"ciency of these architectures.

iterations per second

SCALOR 4.899
PROVIDE 2.758
SIMONe 8.938
SSDIR-YOLO 31.277
RDIR 27.645

Table 4.10: Model inference speed. SSDIR-YOLO and RDIR are much faster than
other methods, despite using a higher input resolution.

The inference speed benchmark was conducted on a consistent hardware setup using
an NVIDIA A40 GPU. Each model was tested on 1000 randomly selected sequences,
preloaded to exclude data loading time. All models were evaluated with a batch size of
1. The input resolution was set to 64 ⇐ 64, except for SSDIR-YOLO and RDIR, which
operated on upscaled 128 ⇐ 128 inputs, following the protocol established in earlier
experiments. The results indicate a faster inference speed for SSDIR-YOLO and RDIR
compared to baseline methods. This performance gain is primarily due to the heavy
reliance on recurrent modules and iterative inference in baseline approaches, whereas
RDIR was designed for e"cient, fully parallel inference throughout its architecture.

4.4.6 Inference Visualisations

This section presents qualitative results illustrating the behaviour of the RDIR model.
Each visualisation includes the input image (input), the model’s full reconstruction
(reconstruction), reconstruction overlaid with attention indicators (attention - bounding
boxes), and a selection of individual object-level reconstructions (objects) showing how
the model decomposes and interprets the scene. Visualisations are provided for several
timesteps in the sequence (T = {1, 4, 7, 10}), using two example sequences from each
dataset.
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Figure 4.6: RDIR inference on Multi-Scale Moving MNIST dataset.

Multi-Scale Moving MNIST Figure 4.6 presents inference results on the Multi-
Scale Moving MNIST dataset. The pre-training phase enables RDIR to reliably attend
to individual digits throughout the sequence. Incorporating sequential context further
improves RDIR performance in cases of overlap between objects.

Figure 4.7: RDIR inference on MOT15 dataset.

MOT15 Figure 4.7 shows RDIR inference on the MOT15 dataset. As expected,
RDIR does not reconstruct the entire scene but instead composes the output by pasting
individual per-object reconstructions. This results in a lower overall image fidelity but
highlights the model’s ability to isolate and reconstruct human-like silhouettes. Despite
the limited resolution, these object reconstructions preserve coarse appearance details,
demonstrating the model’s capacity to encode meaningful per-object representations.
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Figure 4.8: RDIR inference on MOVi-A dataset.

Figure 4.9: RDIR inference on MOVi-C dataset.

MOVi datasets Figures 4.8, 4.9, 4.10 show RDIR inference results on the MOVi
datasets. The staged training strategy enables the model to attend accurately to indi-
vidual objects, even in more complex scenes. However, the increased visual complexity
leads to occasional false positives. These are e!ectively suppressed in the final image
reconstruction, as seen in the reconstructions row. RDIR performs best on the simpler
MOVi-A dataset, which contains basic geometric objects. The quality of individual
object reconstructions remains limited due to the low-resolution format prior to spatial
transformation. While increasing the resolution of intermediate object images could
improve reconstruction fidelity, it would also substantially raise computational cost.
Despite these constraints, the final reconstructions preserve the structure of the input
in regions corresponding to detected objects.
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Figure 4.10: RDIR inference on MOVi-E dataset.

4.5 Summary

This chapter introduced RDIR, a recurrent extension of a semi-supervised object-
centric model for learning stable, multi-object representations in video sequences.
Building on a pre-trained object detection backbone, RDIR enables the extraction of
spatially grounded and temporally consistent embeddings, which can be e!ectively ap-
plied in downstream tasks. The introduction of the Mixer module improves information
sharing across multi-scale feature maps, allowing representations at each spatial resolu-
tion to benefit from contextual cues present in other grid levels. This cross-resolution
integration enhances the quality and robustness of object representations. Additionally,
the Sequence encoder enables the model to propagate information across time, using
features from previous frames to improve the encoding of each object’s latent repre-
sentation. The method was shown to perform across various datasets, demonstrating
robustness to varying numbers of objects and enabling knowledge transfer from models
pre-trained on complex datasets. Besides representation quality, experimental results
confirm RDIR’s e"ciency in training and inference.

Despite its advantages, RDIR inherits a key limitation from spatial grid-based
attention models, in particular, its predecessor SSDIR: its reconstructions are based
solely on per-object representations, without explicitly modelling the background,
utilising a structured convolutional decoding methodology. While simplifying the
learning task and enforcing object disentanglement, this leads to incomplete scene
reconstructions and low generative capacity of the model. Improving reconstruction
quality is the topic of the subsequent chapter of this thesis. Additional research
could also investigate more expressive modelling of object interactions or focus on
extending the architecture to support instance segmentation-based attention, enhancing
the precision and interpretability of representations in complex real-world scenes.
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Chapter 5

Detection Guidance for
Conditioning Latent Di!usion
Model in Multi-Object
Representation Learning Setup

This chapter presents the stage of the PhD research dedicated to advancing multi-
object representation learning on images through improved generative capabilities of
the model. The key contribution of this work is the proposal of Detection-Guided
Latent Di!usion, which follows the approach outlined in previous phases and integrates
a pre-trained object detection model into a latent di!usion-based generative framework,
where the object representations are used as conditioning for the denoising process. By
leveraging spatial priors deriving from a detection model and incorporating them in
the di!usion-based model, DetDi! is capable of focusing on semantically meaningful
regions in the scene. The method integrates detection guidance, which enhances object
representations with location information via positional encoding, and enforces focus
on objects during training through localised object-aware loss. The model is trained
as a latent di!usion model (LDM), yielding improvements in reconstruction fidelity
compared to prior autoencoder-based approaches.

This work stems from unresolved challenges encountered in earlier research phases,
particularly the poor generative capabilities of rendering-based decoders used in SSDIR
and RDIR. At the time of this study, reference methods were selected to reflect the latest
advancements in the area of object-centric learning, including other LDM-based models,
advanced transformer-based methods, together with an improved SSDIR baseline from
the preceding phase of this research.
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The methodology, findings and experimental results discussed in this chapter are
included in a manuscript currently under review for publication. As in previous research
phases, I served as the principal author of this work, developing the proposed method,
designing and executing the experimental protocols, conducting evaluation and ablation
studies, and preparing the manuscript.

The structure of this chapter is organised as follows: Section 5.1 outlines the
motivation and background, followed by a relevant literature review in Section 5.2.
Section 5.3 introduces the DetDi! model, emphasising the novel use of detection-guided
di!usion, whereas Section 5.4 presents a comprehensive evaluation of the model across
several datasets and tasks, including an ablation study to isolate the impact of the
detection guidance mechanism. Finally, Section 5.5 provides conclusions and discusses
opportunities for further work.

5.1 Introduction

Understanding complex visual scenes is a fundamental challenge in computer vision,
aiming to emulate human perception of the surrounding world. Many supervised
methods acquire this ability implicitly through learning to solve high-level tasks such
as semantic segmentation or visual question answering. Object-centric representations
decompose images into structured entities, capturing object attributes and relation-
ships in a compositional and more interpretable manner. Methods for multi-object
representation learning provide a way to map images to structured representations [8],
object-centric embeddings that support generalisation and downstream inference.

The early models for multi-object representation learning leveraged structured
variational autoencoders (VAEs) [101, 150], which learned to reconstruct simple images
through a structured bottleneck in an unsupervised way [31, 53, 104]. The primary
challenge addressed in later work was scaling these methods to more complex datasets
by introducing more sophisticated object encoding mechanisms [14, 65, 124], utilising
sequential information from videos [92, 103], or introducing weak or self-supervision
[48, 103, 155]. However, these methods often struggled with more complex datasets,
entangling multiple object representations and lacking the ability to generate high-
quality samples.

Recently, research has shifted towards enhancing decoder capability, demonstrating
its crucial role in determining the fidelity of reconstruction and, consequently, the
quality of the learned representations [90, 158, 188]. Despite applying strong generative
frameworks such as latent di!usion models [152], modern methods still tend to merge
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multiple objects into a single representation. Furthermore, existing approaches entangle
all object attributes, such as their appearance, location, and inter-object relationships,
making structured manipulation challenging [188].

This chapter introduces Detection-Guided Latent Di!usion (DetDi!), a novel object-
centric generative framework that integrates detection guidance into representation
learning. By leveraging a pre-trained object detector, DetDi! ensures that object
encodings are grounded in actual detected entities, addressing challenges in object
localisation and correspondence that existing generative models struggle with. Unlike
transformer-based or recurrent approaches, DetDi! employs spatial attention with
multi-scale grids, enabling e"cient encoding of object-centric representations even
from high-resolution images. Furthermore, DetDi! introduces a more disentangled
representation space by separating object appearance from spatial information through
dedicated positional encodings and a per-object alignment loss. Trained as a Latent
Di!usion Model (LDM), this design not only retains generation quality but also produces
richer and more controllable object representations, facilitating compositional reasoning.

The performance of DetDi! is evaluated by assessing the fidelity of generated images,
analysing the object-to-representation matching, and applying the representations in a
downstream vision–language reasoning task. The results demonstrate the advantages
of detection guidance compared to state-of-the-art baselines, particularly in terms of
representation quality and objects’ disentanglement.

5.2 Related Works

Object-centric learning methods aim to decompose scenes into structured represen-
tations that correspond to distinct entities within an image. Unsupervised multi-object
representation learning is typically facilitated through reconstruction-based learning, in
which models infer a structured latent space that encodes attributes, spatial relationships,
and compositionality.

Early approaches built on structured variational autoencoders (VAEs) [101, 150],
with AIR [53] introducing a spatial attention mechanism to sequentially attend to and
reconstruct individual objects via box-based inference and a patch-based decoder. To
improve encoding e"ciency, SPAIR [31] extended this idea by encoding object repre-
sentations through spatial grid-based attention, allowing multi-object representation
inference in a single forward pass. DetDi! builds on this encoding scheme, enhancing it
with multi-scale grids [208] to better handle objects of varying sizes in natural, densely
packed scenes.
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To enhance reconstruction quality later approaches replaced boxes with mask-based
mixing for decoding images [14, 49, 65, 120, 124], merging each object’s appearance
based on its iteratively inferred and/or refined attention mask. These methods achieve
higher fidelity in reconstructions at the cost of increased computational complexity;
they continue to face challenges when applied to real-world datasets. Recent research
attempted to improve realistic image generation by employing a powerful transformer-
based decoder [158], which autoregressively reconstructs discretised visual tokens from
dVAE-encoded images. Another approach is to implement a latent di!usion model
(LDM [81, 152]), in which the denoising process is conditioned on structured scene
representations [90, 188]. DetDi! follows the LDM-based paradigm, leveraging object-
centric representations as conditioning to improve reconstruction quality and robustness
in complex, multi-object scenes.

A fully unsupervised setup for learning a structured scene representation often leads
to an entangled representation, in which multiple objects are merged into a single latent
entity, limiting applicability in tasks that require object-level reasoning. To address this,
additional training signals have been incorporated to improve object-to-representation
matching, such as temporal consistency in video-based approaches [32, 92, 103, 104, 160],
weak supervision [48, 208, 209], or modified training protocols [96, 155]. DetDi! follows
the approach proposed in Chapters 3 and 4, incorporating knowledge from a pre-trained
object detection model to guide representation learning.

Di!usion models (DMs) [81] achieve high-quality image synthesis by progressively
refining noisy inputs. Latent Di!usion Models (LDMs) [152], which improve the
scalability of DMs, are commonly conditioned on text embeddings. While this can
provide semantic control, recent work introduced layout conditioning to facilitate spatial
control via layout-aware generation [51, 189, 204]. However, these methods continue
to rely on text captions. DetDi! infers scene concepts directly from images, enabling
explicit spatial control without textual supervision. In contrast to previous layout-
guided LDMs, DetDi! places emphasis on representation learning rather than image
generation.

5.3 Detection-Guided Latent Di!usion

This section introduces Detection-Guided Latent Di!usion (DetDi!), an object-
centric representation learning model that enhances disentanglement by incorporating
detection guidance from a pre-trained object detector.
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5.3.1 DetDi! Latent Di!usion Model

The proposed method is a generative model learning structured object-centric
representations of complex visual scenes in images. A pre-trained one-stage object
detection model is used to identify object locations, providing detection guidance to
capture each object representation via a spatial grid-based attention mechanism inspired
by the SSDIR approach [208]. These representations serve as encodings that condition
a latent di!usion model (following [90] and [188]), allowing reconstruction of the input
image through a reverse di!usion process.

Object Representation Encoding. The DetDi! encoder (Figure 5.1) incorporates
the spatial grid-based attention approach within its architecture. Specifically, multi-level
feature maps, derived using a convolutional backbone, serve as spatial attention grids. A
pre-trained YOLOv4 model is integrated [12], a one-stage, multi-scale object detection
model known for its balance between detection accuracy and computational e"ciency.
The YOLOv4 architecture comprises the CSPDarknet53 backbone and the PANet neck
[121]; during training, the backbone remains frozen, while the neck is fine-tuned to
allow enhanced feature extraction for learning multiple object representations.

Figure 5.1: Overview of the object representation encoding (˓) in DetDi!. Given an
input image, feature extraction is performed using a modified YOLOv4 model. Then,

the Latent Encoder produces representations r, while YOLOv4 Prediction Head
outputs object presence probabilities p and box location [x, y, w, h]. The

representations are filtered using the probabilities, and then enriched with 2D
positional encodings, creating final representations rPE.
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The YOLOv4 implementation in DetDi! produces predictions at three distinct
resolutions (grids), facilitating robust feature representations for objects of varying sizes,
particularly useful in densely populated scenes. Additionally, residual connections from
the backbone to the multi-scale grids are introduced, enriching the dimensionality of
the feature maps and enhancing the quality of the representations.

To enable information sharing across multi-scale feature maps, DetDi! employs cross-
resolution convolutional integration modules, similar to the Mixer modules introduced
in Chapter 4. Each integrated feature map is subsequently processed by a sequence of
convolutional layers (each consisting of 3 ⇐ 3 convolutional layers, batch normalisation,
and Mish activation function), producing three grids with dimensions H

(l) ⇐ W
(l) ⇐ D,

where H
(l) and W

(l) denote the height and width of the l-th grid, respectively, and D

denotes the dimensionality of the latent representations (a result of applying a final
1 ⇐ 1 convolutional layer).

Object representations are filtered based on their associated detection confidence
scores. To stabilise training and reduce variance in input conditioning, only top 10
detected objects are retained during model fitting. Positional encodings are computed
from the spatial coordinates of the inferred objects, with positional resolution downscaled
to 128 ⇐ 128 to limit spatial variability.

Detection Guidance. The detection guidance approach improves object representa-
tion by leveraging a pre-trained object detector in two steps: (1) by enforcing focus
on plausible object locations through confidence-based filtering, and (2) by encoding
spatial information via positional encodings.

DetDi! incorporates filtering of spatial features using confidence scores obtained
from a pre-trained YOLOv4 detector. Specifically, for each grid cell (i, j), YOLOv4
predicts a detection confidence score, interpreted here as the object presence probability
pij, which is spatially aligned with the encoder’s latent representation rij. These pairs
are matched across all grid levels and cells, and only the latent vectors corresponding
to cells where pij > 𝜔 are retained. This thresholding step ensures that only regions
likely to contain objects contribute to the learned representation.

Positional encoding is employed to explicitly embed spatial information within the
object representations. Positional encodings [176], based on the YOLOv4-predicted
object centre coordinates (xij, yij), are introduced. Two-dimensional sinusoidal encod-
ings PE (xij, yij), as defined in [183], are used and combined with each filtered latent
representation rij:
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rPE

ij
= rij + PE (xij, yij) (5.1)

This approach disentangles an object’s identity and its spatial location, improving
representation alignment with corresponding objects and enabling generalisation across
various spatial configurations during the di!usion process.

Representation-Conditioned Latent Di!usion. Di!usion models are generative
models capable of reconstructing data by iteratively removing noise [81]. Given an
initial data sample x(0), the forward di!usion process gradually adds Gaussian noise
over a sequence of time steps t. The reverse generative process iteratively denoises
the sample, starting from random noise x(T ) and progressing backwards through time.
In the context of generative modelling, the noise to be subtracted from the sample is
predicted using a denoising neural network.

Latent di!usion models reduce the computational cost by performing the di!usion
process in a lower-dimensional latent space, using pre-trained latent space mapping
models [152]. In DetDi!, an auto-encoder pre-trained on OpenImages (KL-F8) is
employed. This consists of an encoder e, which maps images into latent representations,
and a decoder d, which reconstructs images from these latents. The auto-encoder
remains frozen throughout training.

In this setup, the di!usion process is formulated as:

z(0) = e (x) ; q

)︃
z(t) | z(t↓1)

[︃
= N

]︃
z(t);

⌊︃
1 → 𝜀tz(t↓1)

, 𝜀tI
⌋︃

(5.2)

In LDMs, conditioning the denoising network ⇁ is typically achieved using super-
vised text embeddings. In DetDi!, following [90] and [188], the denoising network
is conditioned on the representations rPE

𝜗
inferred by the encoder ˓, which is jointly

trained with the denoising network without supervision. The denoising step at each
time t is defined as:

p𝜀

)︃
z(t↓1) | z(t)

, rPE

𝜗

[︃
= N

⌈︃

z(t↓1); 1
↘

𝜛t

⌈︃

z(t) → 𝜀t↘
1 → 𝜛̄t

𝜗𝜀

)︃
z(t)

, rPE

𝜗
, t

[︃⌉︃

, 𝜀tI
⌉︃

(5.3)

where:

𝜗𝜀

)︃
z(t)

, rPE

𝜗
, t

[︃
is the noise prediction model,

𝜀t is a variance schedule value at timestep t,
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𝜛t = 1 → 𝜀t ,
𝜛̄t = {︃

t

i=1
𝜛i .

Overall, the reverse di!usion process models the posterior distribution:

p𝜀

)︃
z(0:T ) | rPE

𝜗

[︃
= p

)︃
z(T )

[︃ T⎥

t=1

p𝜀

)︃
z(t↓1) | z, rPE

𝜗

[︃
(5.4)

By sampling from this posterior (the denoising procedure [81]), the model iter-
atively generates progressively denoised latent representations from noisy samples
(z(T )

, z(T ↓1)
, ....z(0)), leading towards the original latent representation. Finally, it can

be decoded back to the image space using the decoder: x̂ = d

)︃
z(0)

[︃
.

The reverse di!usion process assumes the use of a denoising network to predict the
noise at each time step. The approach used in DetDi! follows the original design of
LDMs [152], employing an adapted UNet architecture augmented with a representation-
conditioned transformer. The network comprises a stack of multiple UNet blocks, each
followed by a cross-attention transformer layer, integrating the representation rPE

𝜗
.

5.3.2 Training Procedure

The DetDi! training procedure adjusts the LDM training paradigm [152], jointly
training the DetDi! encoder ˓ and the noise predictor ⇁. Figure 5.2 presents an overview
of DetDi!’s latent di!usion model training setup. Given an input image x, structured
representations are first obtained as rPE

𝜗
= ˓ (x), along with the latent space embedding

of the image z(0) = e(x). A random timestep t is sampled uniformly, and the latent z(0)

is noised accordingly:

z(t) =
↘

𝜛̄tz(0) +
↘

1 → 𝜛̄t𝜔t, 𝜔t ≃ N (0, I) (5.5)

The noise prediction network is used to estimate the noise given the noised latent
z(t), the representations rPE

𝜗
, and the timestep t: 𝜔t = 𝜗𝜀

)︃
z(t)

, rPE

𝜗
, t

[︃
. The network is

trained by minimising the mean squared error between the predicted noise and the true
noise:

LLDM (⇁, ˓) = Et,𝜔

⎛
↓𝜔t → 𝜔t↓2

⎞
(5.6)
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Figure 5.2: Overview of DetDi! LDM training. Given an input image, the DetDi!
encoder (Fig. 5.1) produces normal distribution parameters, from which structured
object representation r𝜗 is sampled, as well as objects binary mask, created from

YOLOv4 bounding box prediction. During training, the Denoising Network predicts
the noise 𝜔t added to the latent space encoding of the input image (z(0)). Then, the

predicted noise and the true noise are mapped to the original image space via the LDM
Decoder. Red lines indicate each loss component: LLDM (Eq. 5.6), LOBJ (Eq. 5.7) and

LKL (Eq. 5.8).

To improve reconstruction quality in regions where objects are detected, DetDi!
incorporates an additional pixel-space loss. As YOLOv4 provides bounding boxes that
indicate likely object locations, these are used as a self-supervised signal to guide the
model’s focus during training. Specifically, a mask m is derived from the bounding boxes
and applied to the image-space noise prediction error loss, placing greater emphasis on
accurate reconstruction within object regions:

LOBJ (⇁, ˓) = Et,𝜔

⎛
↓m ↖ (d (𝜔t) → d (𝜔t))↓2

⎞
(5.7)

where:

m is the binary mask that indicates the presence of the object according to the
bounding boxes predicted by YOLOv4,
↖ denotes element-wise multiplication.

Finally, to encourage a smooth and continuous latent space, DetDi! includes a KL
divergence regularisation term. The encoder ˓ outputs the parameters of a Gaussian
distribution, from which latent representations r𝜗 are sampled: r𝜗 ≃ N (µ𝜗 (x) , ˒𝜗 (x)).
The KL term penalises deviations from the standard normal prior, promoting smooth
interpolation in the latent space and improved generalisation:

LKL (˓) = DKL [N (µ𝜗 (x) , ˒𝜗 (x)) || N (0, I)] (5.8)

The final training objective combines these three terms (weighted by ↽):
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L = LLDM + ↽OBJLOBJ + ↽KLLKL (5.9)

5.4 Experiments

This section presents the results of a comprehensive evaluation of the DetDi! model
across a range of tasks, aimed at demonstrating its e!ectiveness and robustness. The
quality of image reconstructions produced via the reverse di!usion process is assessed,
alongside an analysis of the structural quality of the learned latent representations,
particularly their alignment with corresponding objects within the images. Furthermore,
the practical utility of DetDi!’s representations is evaluated through application to
a visual question answering (VQA) task. Finally, an ablation study is conducted to
examine the impact of the proposed detection guidance components.

Implementation Details. Table 5.1 presents the key model hyperparameters for all
datasets. The pre-trained YOLOv4 model is trained separately for each dataset. During
DetDi! training, YOLOv4 predictions are sampled using a Bernoulli distribution, with
the predicted confidence score serving as the sampling probability. In addition, a small
number of negative examples are included at this stage to improve the generalisation
capability of the encoder. At inference time, a fixed threshold 𝜔 = 0.25 is applied,
followed by non-maximum suppression to eliminate duplicate detections.

To stabilise training, particularly when integrating pre-trained components like the
detector and autoencoder, a learning rate schedule is employed, consisting of a one-
epoch warm-up phase followed by linear annealing. The KL divergence loss component
is scheduled trapezoidally: it is initially suppressed, then gradually increased and
subsequently held constant. This allows the model to learn useful representations prior
to being encouraged to form a well-structured latent space. All models are trained on a
single NVIDIA H100 GPU using bfloat16 precision.

Datasets. DetDi! is evaluated on three datasets of increasing complexity, enabling
assessment of model’s performance across progressively more challenging scenarios,
ranging from synthetic compositional scenes to real-world images:

1. CLEVRTex [98] is a synthetic dataset augmenting the CLEVR dataset, featuring
procedurally generated scenes with multiple objects placed on complex textured
backgrounds. It contains 50 000 images, of which the default split is used: 80% for
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Table 5.1: Implementation details of DetDi!.

hyperparameter value

Learning rate 0.0001 (1 epoch warmup; linear annealing)
Image size 256 ⇐ 256
UNet sample size 32
UNet attention head dimension 24
UNet block out channels [192, 384, 768, 768]
Per object loss coe!cient 𝜛OBJ = 10

KL divergence scheduler trapezoidal, max value 𝜛KL = 0.1, warmup 1
epoch

Noise scheduler DDPMScheduler, 𝜀start = 0.00085, 𝜀end = 0.012
Optimiser AdamW8bit, weight decay 0.01
Number of training epochs 100 with early stopping
Gradient clipping 1.0
Latent representation size 192
Number of encoder convolutional
blocks 2

Negative objects added 1%
NMS threshold 0.45
Positional encoding resolution 128

training, 10% for validation, and 10% for testing. Each image includes between
3 and 10 objects from 4 possible shape categories. The original annotations are
converted into bounding boxes, which are used for training the YOLOv4 model.

2. MOVi-E [64] is a dataset designed for object-centric learning, featuring dynamic
and occluded objects rendered in realistic 3D environments. The default split
provides 9 749 sequences of 24 frames for training (approximately 234 000 images),
and 250 sequences of equal length for testing (6 000 images). As DetDi! operates
on static images, each frame is treated as an independent image, and 10% of the
training set is extracted for validation. Compared to other versions of the MOVi
dataset, MOVi-E introduces viewpoint variation and a high degree of occlusion,
with scenes containing up to 23 objects from 17 possible categories.

3. MS COCO [119] is a real-world dataset containing natural images with a wide
variety of object categories, backgrounds, and occlusions. It represents the most
complex setting in the evaluation. Additional VQA annotations [63] are used to
support the downstream task experiment. The dataset comprises approximately
118 000 training images and 5 000 validation images (used as the test subset,
since annotations for the test set are not publicly available). For DetDi! training,
all images without annotated objects are removed, and 10% of the training set is
extracted as a validation subset.



5.4. Experiments 128

For each dataset, an input resolution of 256⇐256 is used; however, the convolutional
nature of DetDi!’s encoder allows for straightforward scalability to higher resolutions.

Reference Methods. DetDi! was compared with four representative reference
methods:

1. Latent Slot Di!usion [90] is a slot attention-based latent di!usion model similar
in setup to DetDi!. The denoising network is conditioned on object-centric slots,
which are inferred without supervision from the input image.

2. SlotDi!usion [188], similar to Latent Slot Di!usion, is a latent di!usion model
conditioned on object slots. Key di!erences include the use of a di!erent latent
space encoding model: SlotDi!usion employs a VQ-VAE trained jointly with the
model, rather than a pre-trained autoencoder as in Latent Slot Di!usion.

3. RDIR [209], specifically its non-recurrent variant, employs a structured convo-
lutional encoder similar to that used in DetDi! but relies on a rendering-based
reconstruction method. Although this rendering approach constrains the fidelity of
reconstructed images, the learned representations demonstrate strong performance
in downstream tasks relative to other baselines.

4. SPOT [96] utilises an autoregressive transformer decoder in place of a latent
di!usion model. By enhancing segmentation quality through a self-training
stage, SPOT achieves robust and high-quality scene representations within the
slot attention framework, o!ering insight into state-of-the-art transformer-based
generative techniques.

Table 5.2 presents summary of key di!erences between each of the reference methods
used in this research.

5.4.1 Experiment 1: Reconstruction Fidelity

To evaluate the reconstruction quality of DetDi!, it is compared with other LDM-
based methods. The testing subsets of each dataset (CLEVRTex, MOVi-E, and COCO)
are used; each image is passed through the respective model’s encoder to obtain a
representation of the scene objects (either as slots or structured encodings). This
representation is then used as conditioning for the reverse di!usion process to generate a
set of reconstructions. The Fréchet Inception Distance (FID) score [78] is computed by
comparing the generated images with those from the full training dataset. Additionally,
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Table 5.2: Architectural comparison of reference methods.

LSD SlotDi!usion RDIR SPOT DetDi!

encoding slot attention slot attention spatial
attention slot attention spatial

attention

decoding LDM LDM rendering
CNN

autoregressive
transformer LDM

backbone simple CNN
encoder

ResNet18 /
ViT-S/8 YOLOv4 ViT-B/16 /

ViT-S/8 YOLOv4

image
size 256 128 / 224 256 224 256

training
objective

noise
prediction

error

noise
prediction

error

reconstruction
error

reconstruction
error +

self-training

noise
prediction

error +
detection
guidance

latent
space
encoding

Pre-trained
AE

VQ-VAE
trained
jointly

- - Pre-trained
AE

reconstruction fidelity is assessed using Mean Squared Error (MSE), calculated between
each generated image and its corresponding original input image; the generation process
is repeated three times with di!erent random seeds. The results are presented in
Table 5.3.

Table 5.3: FID and MSE scores of generated images for the test subset. MSE values
are reported in ⇐10↓2, averaged over 3 random seeds. DetDi! reconstruction quality is

generally lower, which may result from the lack of explicit background modeling.

dataset method FID ∋ MSE ∋

CLEVRTex
SlotDi"usion 19.18 1.646 ± 0.001
LSD 8.08 0.468 ± 0.001
DetDi" 23.51 2.405 ± 0.002

MOVi-E
SlotDi"usion 54.70 1.282 ± 0.002
LSD 25.61 1.377 ± 0.002
DetDi" 28.75 2.128 ± 0.002

MS COCO
SlotDi"usion 15.51 5.774 ± 0.006
LSD 19.02 2.554 ± 0.001
DetDi" 38.10 5.09 ± 0.223

Example reconstructions for each LDM-based method are shown in Figure 5.3.

While DetDi! demonstrates competitive reconstruction performance in certain cases,
it struggles with background modeling. Both SlotDi!usion and LSD leverage mask-
based approaches, that enable comprehensive scene reconstruction, whereas DetDi!
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Figure 5.3: Qualitative comparison of generated samples from test images’
representation. Similar infidelity issues occur, with lower quality of DetDi!’s

background.

learns localised object representations based on detected entities, which forces the
model to encode background details within object representations, reducing overall
reconstruction quality.

DetDi! performs worse than other methods on CLEVRTex both in the case of
FID and MSE. However, the results are better for the MOVi-E dataset, which, despite
featuring a more complex object set, uses simpler backgrounds. In contrast, for the
real-world MS COCO dataset, the fidelity of DetDi! images is worse, even though its
MSE is lower than SlotDi!usion’s.

Visual inspection supports this observation: even though DetDi! e!ectively re-
constructs individual objects’ appearances, the background quality is often inferior
compared to other methods. This suggests that DetDi!’s per-object loss function helps
preserve object integrity but at the cost of overall scene coherence.

5.4.2 Experiment 2: Object-to-Representation Matching Qual-
ity

This experiment provides a setup to evaluate how well the model understands
each object within the scene and its capability of matching object representations its
appearance in the image space. The idea is to assess whether removing an object from
the encoded representation results in a coherent reconstruction where the correct object
is successfully omitted. For that, experimentation follows these steps:
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1. Each model’s encoder processes the input image to generate a structured repre-
sentation of the scene.

2. The representations are used in the LDM to generate a reconstructed image,
establishing a baseline output for each model.

3. A pre-trained object detection model is employed as an oracle to detect objects
in both the original input image and the reconstructed output. Average Precision
(AP) is computed with respect to the ground-truth bounding boxes, denoted as
APin for the input image and APrec for the reconstruction.

4. Each encoded object representation is matched with the corresponding ground-
truth annotation and predicted bounding box using Intersection over Union
(IoU).

5. One object is randomly removed from the representation set; it is also excluded
from the ground-truth annotations.

6. The new, modified representation is used in a second reverse di!usion process to
generate an image with the object removed.

7. The AP is recomputed for the original input image (excluding the removed
object from both annotations and predictions), and again based on the oracle’s
predictions for the newly reconstructed image.

This process is shown in Figure 5.4 for a sample image. Successful object-to-
representation alignment should result in a coherent scene with the correct object
removed, which should be reflected by a proportional drop in AP following object
removal on both the input image and the reconstructed image (since the removal of
a true positive (TP) object reduces precision). This experiment is conducted on the
CLEVRTex and MOVi-E datasets, with the results reported in Table 5.4.

Across both datasets, DetDi! exhibits consistent reconstruction behaviour when
removing an object, as indicated by the similarity in # values between all and →1. On
CLEVRTex, SlotDi!usion reaches comparable APrec, and # values between all and
→1, indicating that it maintains a structured approach to object representation. LSD
performs even better, reaching a higher baseline APrec. However, both SlotDi!usion
and LSD struggle significantly on MOVi-E, where their reconstruction AP deteriorates.

The performance drop of SlotDi!usion and LSD on MOVi-E is particularly notable,
as both models exhibit low AP scores on reconstructed images. This may suggest that
they struggle to dedicate slots to individual objects in scenes with a large number of
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Figure 5.4: Object-to-representation experiment steps. Images 1, 2 and 3 present the
annotation, oracle prediction and model’s attention on the original image respectively;
the red colour indicates the object selected for removal. Image 4 is the reconstruction

with the oracle’s prediction. Image 5 shows annotations with the selected object
removed. Image 6 is the reconstruction with the model’s attention where the object’s

representation was removed. Image 7 shows the oracle’s prediction on the new
reconstruction.

overlapping entities. In contrast, DetDi! achieves a higher AP on reconstructions thanks
to the explicit guidance from object detection, allowing the allocation of independent
representations to all objects.

5.4.3 Experiment 3: Applying Representations in Visual Ques-
tion Answering Downstream Task

To assess the e!ectiveness of the learned representations in complex reasoning tasks,
DetDi! is evaluated on the Visual Question Answering (VQA) task using the VQA-v2
dataset [63], which provides questions about images from the MS COCO dataset [119].
A similar experimental setup to that described in [129] is followed, adapting their
downstream framework to DetDi! and other reference methods:

1. The VQA-v2 questions are filtered to include only yes/no and numeric answers
ranging from 0 to 14, reducing the answer space to 17 possible choices.

2. Each method’s encoder is used to extract a visual representation r from im-
ages, while a pre-trained Text-to-Text Transfer Transformer (T5) [144] provides
embeddings t for the text-based questions.
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Table 5.4: Object-to-representation matching evaluation via oracle’s object detection
performance. Average Precision (AP) is measured using an oracle detector on input

images (in) and their reconstructions (rec), for the full scene (all) and after removing a
randomly selected object (→1). # represents the relative drop in AP. Similar # values
across conditions suggest successful object removal, while smaller drops indicate more

faithful object reconstruction.

dataset method APin APrec ! [%]

CLEVRTex

SlotDi"usion all 0.463 0.238 →48.7
→1 0.393 0.223 →43.3

LSD all 0.486 0.412 →15.2
→1 0.411 0.374 →9.1

DetDi" all 0.486 0.275 →43.5
→1 0.408 0.277 →32.3

MOVi-E

SlotDi"usion all 0.455 0.088 →80.7
→1 0.418 0.078 →81.4

LSD all 0.456 0.106 →76.7
→1 0.418 0.097 →76.8

DetDi" all 0.457 0.152 →66.7
→1 0.398 0.130 →67.3

3. Both representations are projected to a unified latent space of equal embedding
size (r≃ and t≃); then sinusoidal positional encodings are applied to t≃ and a one-hot
vector is appended to di!erentiate image and text encodings.

4. The concatenated representations are processed by a transformer encoder layer
with Nt layers, with a trainable CLS token. The token is then passed through an
MLP classifier, predicting probability over the 17 possible answers.

Table 5.5 presents the classification accuracy across 5 di!erent seeds, with both image
and text encodings generated o#ine for faster processing. Two control experiments are
also included: ResNet50 [76], where features from a pre-trained convolutional backbone
are reshaped to form tokens and used as object encodings, and Text-only, where no
image encodings were used. In this study, accuracy was found to be consistent with the
F1-score; therefore, only the simpler accuracy metric is reported.

The results show that DetDi! improves over previous spatial attention-based meth-
ods, demonstrating the benefits of using an LDM-based decoding strategy over a
structured autoencoder from RDIR. DetDi! performs slightly worse than SlotDi!usion
and LSD and falls behind SPOT, which attains the highest accuracy. However, unlike
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Table 5.5: Accuracy on VQA-v2 downstream task. DetDi! provides significant
improvement over control text-only approach and pre-trained convolutional network,

but falls behind slot attention-based models. Results are averaged over 5 random seeds.

method accuracy △

SlotDi"usion 0.542 ± 0.004
LSD 0.536 ± 0.003
RDIR 0.517 ± 0.001
SPOT 0.561 ± 0.001
DetDi" 0.530 ± 0.003

ResNet50 0.517 ± 0.004
Text only 0.497 ± 0.001

DetDi!, neither of these methods provides positional disentanglement or explicit repre-
sentations for each entity; instead, they tend to group similar or close objects in one
representation, which can be beneficial in the case of the VQA task.

5.4.4 Ablation Study: Detection Guidance

An ablation study is conducted to assess the contribution of the detection guidance
components in DetDi!. Two additional model variants are evaluated:

1. without per-object loss LOBJ (Equation (5.7)) - OBJ↔: the object-aware loss
component is removed to evaluate the importance of object-focused learning;

2. without positional encoding (Equation (5.1)) - PE↔: positional encodings are
omitted from the representation to assess their role in the model’s spatial aware-
ness.

Table 5.6: Ablation results on the reconstruction quality (FID and MSE). OBJ↔ omits
the object-aware loss, and PE↔ removes positional encoding. MSE values are reported

in ⇐10↓2 (averaged over 3 random seeds). Full guidance improves reconstruction
quality on CLEVRTex, while removing positional encoding slightly improves metrics on

MOVi-E.

dataset variant FID ∋ MSE ∋

CLEVRTex
DetDi" 23.51 2.405 ± 0.018
OBJ↔ 24.42 3.282 ± 0.032
PE↔ 24.56 2.679 ± 0.030

MOVi-E
DetDi" 28.75 2.128 ± 0.002
OBJ↔ 28.63 2.365 ± 0.001
PE↔ 27.85 2.073 ± 0.008
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The Reconstruction Quality (5.4.1) and Object-to-Representation Matching Quality
(5.4.2) experiments are repeated using the same experimental setup. The results of
these ablation experiments are presented in Table 5.6 and 5.7.

Table 5.7: Ablation results on object-to-representation matching. Average Precision
(AP) is reported for input images (APin) and reconstructions (APrec) across two
conditions: full scene (all) and with one object removed (→1). # indicates the

percentage drop in AP from input to reconstruction. OBJ↔ removes the object-aware
loss; PE↔ removes positional encoding. Full detection guidance yields better

object-to-representation matching.

dataset variant APin APrec ! [%]

CLEVRTex

DetDi" all 0.486 0.275 →43.5
→1 0.408 0.277 →32.3

OBJ↔
all 0.486 0.254 →47.7
→1 0.408 0.258 →34.8

PE↔
all 0.486 0.240 →50.7
→1 0.408 0.231 →43.2

MOVi-E

DetDi" all 0.457 0.152 →66.7
→1 0.398 0.130 →67.3

OBJ↔
all 0.457 0.141 →69.1
→1 0.397 0.120 →69.8

PE↔
all 0.457 0.141 →68.1
→1 0.398 0.130 →67.3

The full DetDi! model consistently achieves the best performance on the CLEVRTex
dataset, both in terms of image reconstruction quality and object-to-representation
matching. However, on MOVi-E, the model without positional encoding (PE↔) out-
performs the default model in terms of image generation quality. Despite this, full
detection guidance demonstrates better object-to-representation matching, achieving
the best AP scores. This indicates that in datasets consisting of videos with multiple
similar frames and slight positional variations, positional encoding contributes less to
object representation learning and may introduce unnecessary spatial bias.

5.5 Summary

This chapter introduced the Detection-Guided Latent Di!usion Model, which inte-
grates detection guidance into a latent di!usion model-based framework for multi-object
representation learning. By integrating a pre-trained object detector, DetDi! leverages
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the spatial grid-based attention mechanism to e!ectively encode complex scenes, ensur-
ing that object representations align with actual entities, reducing entanglement and
improving structured representations.

Experimental results demonstrate the high quality of learned representations while
maintaining fidelity in generated images. It shows that DetDi! produces structured and
explicitly separated object representations, successfully disentangling object position
from appearance. Additionally, ablation studies confirm the critical role of detection
guidance, with each of its components contributing to improved scene representation
quality and reconstruction fidelity.

The method has several limitations. While detection guidance enhances object-to-
representation alignment, leading to more precise representations of relevant objects in
the scene, reliance on a pre-trained object detector may introduce biases inherent to
the detector itself. Furthermore, like other LDM-based object-centric models, DetDi!
encounters challenges in decoding natural images, often leading to visible distortions in
generated outputs.

Future work could explore direct background modeling, disentangling it from the
object appearances to enhance scene consistency. Another promising direction is to
investigate self-supervised detection guidance, reducing dependence on external object
detectors. Lastly, following other object-centric contributions, research could be directed
to extend DetDi! for temporal scene understanding in video-based applications.
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Chapter 6

Conclusions

This thesis explores the problem of learning structured, modular representations of
multiple objects in images and videos. Existing approaches in the literature often rely
on fully unsupervised object discovery pipelines, which struggle to scale e!ectively to
complex, real-world datasets. On the other hand, methods based on iterative attention
and refinement are computationally expensive, limiting their practicality. This work
addresses these gaps by joining a research trend in multi-object representation learning
by incorporating a pre-trained object discovery mechanism into the original approaches
and investigates how spatially structured intermediate features one-stage detectors can
guide the learning of object-centric representations under semi-supervised regimes.

The main contributions of this thesis are as follows:

1. Formulation of the research problem of learning modular and transferable object
representations from images and videos by utilising internal feature maps of a
pre-trained one-stage object detection neural network,

2. Evaluation of visual features extracted from a pre-trained one-stage object detec-
tion network for deep reinforcement learning-based 3D robotic navigation,

3. Design and implementation of a scale-invariant encoding framework for multi-
object representation learning in images, combining fully parallel spatial grid-based
attention with multi-scale features and structured latent space,

4. Introduction of SSDIR, an object-centric generative model that integrates detection-
based spatial supervision with unsupervised learning of appearance and depth
latents,
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5. Design of RDIR, a temporally consistent extension of SSDIR for video data, incor-
porating a recurrent Sequence encoder and a Mixer module to enable temporally
coherent and robust object representations,

6. Proposal of a staged training procedure for improved training stability in the video-
based object-centric model, involving re-using of a pre-trained object detection
model, training an image-based model and fine-tuning with the temporal extension,

7. Introduction of a detection-guided object encoding pipeline for multi-object
modelling, including positional encoding, multi-scale spatial fusion and object-
conditioned latent di!usion,

8. Development of DetDi!, a generative framework that applies detection-guided su-
pervision to a latent di!usion process conditioned on object-centric representations,
achieving controllable object manipulation in image synthesis,

9. Comprehensive experimental validation of the proposed methods on synthetic
and real-world datasets, demonstrating improvements in object disentanglement,
scalability, temporal consistency, and utility in downstream tasks,

10. Validation of the thesis results through peer-reviewed publications.

The summary below outlines how each of these contributions addresses the research
questions formulated in Chapter 1.4.

RQ 1 : To what extent can internal representations extracted from intermediate
layers of an object detection neural network serve as e!ective visual inputs for deep
reinforcement learning agents, especially in 3D robotic navigation?

As shown in Chapter 2 (published as[210]), internal representations extracted from
an object detection network (specifically the “basic features”, which refer to mid-level
convolutional features of a pre-trained TinyYOLO model) can serve as e!ective visual
inputs for deep reinforcement learning agents in 3D robotic navigation, though with
trade-o!s. The study demonstrates that these features enable learning correct navigation
behaviour, achieving over 40% success rates in reaching the target destination. This
shows that intermediate representations of an object detection model retain semantically
meaningful and general information that the agent can exploit for task-relevant decision-
making, outperforming penultimate YOLO feature maps and end-to-end trainable visual
encoders (Subsection 2.3.6).
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However, the e!ectiveness of these internal representations is worse than the more
interpretable bounding box-based location of the target object. Moreover, while the use
of internal feature maps provides the RL agent with more information in the context of
no detection, it also introduces a computational cost, with prediction speeds dropping
by over 35% compared to bounding box-based designs.

RQ 2 : To what extent does fully convolutional spatial grid-based attention, which
replaces sequential encoding or iterative refinement, enable the learning of high-quality
object-centric representations in multi-object visual scenes?

Chapter 3 (published as[208]) introduces SSDIR, a multi-object representation
learning model that employs a fully convolutional spatial grid-based attention mechanism
to infer representations of multiple objects in an image. This is achieved by leveraging
the multi-scale feature maps of an SSD object detector, enabling parallel encoding of
object representations without the need for iterative image analysis or object glimpse
extraction. See Subsection 3.3.2 for more details.

The learned representations demonstrate strong performance on synthetic datasets,
resulting in high-quality object reconstructions (Subsection 3.4.1), e!ective in down-
stream object classification (Subsection 3.4.2). However, the use of a simple convolutional
backbone in SSDIR limits its performance on more realistic data, leading to degraded
reconstruction quality (Subsection 3.4.1). Furthermore, the spatial grid-based attention
mechanism inherits the limitations of one-stage object detectors, particularly their
sensitivity to densely packed or overlapping objects (Subsection 3.4.3).

These scalability constraints were addressed in Chapter 4 (published as [209]), where
the backbone was replaced with a more powerful architecture (Subsection 4.3.2), leading
to improved object representation quality. Nonetheless, the method remains limited by
the low resolution of reconstructed object patches and the constraints imposed by the
rendering-based decoder.

RQ 3 : How does utilising multi-scale feature maps improve the performance of
object-centric representations in downstream tasks, particularly for objects of varying
sizes in complex visual scenes?

The use of multi-scale feature maps as spatial grids improves the quality of object-
centric representations in spatial attention models, particularly for objects of varying
sizes in complex scenes. In SSDIR (Chapter 3), multi-scale feature maps extracted from
a pre-trained SSD object detector are utilised as attention grids to localise and encode
object representations, addressing the limitations of earlier models such as SPAIR and
SPACE, which rely on a single fixed-resolution grid and struggle to capture objects of
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varying sizes appropriately. In contrast, SSDIR is able to encode objects across a range
of scales, as demonstrated on the synthetic scattered multi-scale MNIST dataset. See
Subsection 3.4.1 for more details.

This advantage is especially visible in the structure of the learned latent space.
SSDIR produces scale-invariant representations that clearly separate digits into distinct
clusters, while baseline methods often fragment objects into partial components, aligned
with their fixed grid size. The e!ectiveness of these representations is confirmed in a
downstream classification task, where SSDIR performs better than reference methods
on the same multi-scale dataset (See Subsection 3.4.2).

In RDIR (Chapter 4), this design was enhanced through the introduction of the
Mixer module, which facilitates cross-resolution information sharing across all grids
(Subsection 4.3.2). This addition improves the consistency of representations by enabling
the model to integrate features across scales. The importance of the addition of the
Mixer module was analysed in the ablation study (see Subsection 4.4.3 for more details).

RQ 4 : How can an unsupervised learning framework that incorporates knowledge
from a pre-trained object detector be used to learn structure latent variables, such as
appearance and depth?

SSDIR is an unsupervised model that enables learning of structured latent variables
by incorporating prior knowledge from a pre-trained object detection model (Chapter 3).
The encoder of SSDIR shares the convolutional backbone with a pre-trained SSD object
detector, which serves as a feature extractor throughout the training process. See 3.3.2
for more details. SSDIR adopts the spatial grid-based attention mechanism used in
one-stage detectors, adding object appearance and depth encoders to SSD prediction
heads. During training, the weights of the backbone and detection heads (location
and class confidence encoders) are frozen, and only the representation encoders are
trained as a structured variational autoencoder. This setup enables the model learn
representations of objects, attending only to regions associated with detected objects,
eliminating the influence of background or irrelevant entities, as shown in experiments
on more complex datasets (Subsection 3.4.1). The model benefits from the object
detector’s knowledge, while still learning appearance and depth representations without
additional supervision.

RQ 5 : How can implicit representation-based temporal mechanisms be used to
provide consistent representations for tracking object identities across video frames?

Chapter 4 of this thesis presents RDIR, which applies an implicit temporal mech-
anism to improve object representations stability over time. It uses the Sequence
encoder, which operates directly on an intermediate feature map extracted using a
convolutional backbone. Treating it as a spatial grid, RDIR processes them using a
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GRU-based module propagating temporal information through hidden states across
video frames, without an explicit mechanism for object matching. To further improve
the consistency of representations, RDIR integrates the Mixer module before and after
the recurrent processing, mitigating the disconnect between objects detected at di!erent
grid resolutions. See Subsection 4.3.2 for more details.

Together, these architectural components improve the temporal stability of object-
centric representations, which is demonstrated by the performance of models operating
on learned representations in downstream tasks (Subsection 4.4.1 and 4.4.2).

RQ 6 : How does staged training procedure (translating from image-based to video-
based representation learning) impact the ability to learn objects’ representations in a
video setting?

The staged training procedure used in RDIR is critical to enable learning meaningful
object representations in a video setting. This approach involves first training an
image-based model using a pre-trained object detector, and then extending it with
temporal modules for video processing. See Subsection 4.3.4 for more details. The
downstream object tracking experiment (Subsection 4.4.2) shows that this protocol leads
to better performance than training the model end-to-end, in which case it fails to focus
on learning representations of people. By re-using a fixed pre-trained object detection
model, RDIR can focus specifically on the regions containing objects of interest (in
this case, people). Furthermore, the experiment explores the possibility of transferring
knowledge from a large-scale dataset (MS COCO) into a new domain. Although the
stage protocol enables adaptation, the quality of transferred representations is sensitive
to domain-specific visual characteristics, which is shown by the drop in performance
when the detector is transferred from another dataset to the object tracking task.

RQ 7 : How can detection-guided object representations be used to condition di!usion-
based generative models for controllable image synthesis?

In Chapter 5), a LDM-based method DetDi! infers detection-guided representations
learned through a spatial grid-based attention mechanism as conditioning input of the
Latent Di!usion Model (LDM). These representations are created by filtering multi-
scale convolutional features based on object confidence predictions from a pre-trained
YOLOv4 detector and then processed through encoder heads similar to SSDIR and
RDIR. To disentangle spatial position from object appearance, DetDi! enriches each
object’s representation with positional encodings derived from predicted object centres.
The conditioning follows the LDM approach, where the denoising network incorporates
multi-head cross-attention to use auxiliary input in the reverse di!usion process. See
Subsection 5.3.1 for more details.
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RQ 8 : How can positional information from detection models be incorporated in
a di!usion-based object-centric model to improve object-to-representation matching in
generative applications and complex downstream tasks?

In DetDi! (Chapter 5), positional guidance is integrated in two ways. First, the
detected object centre coordinates, predicted by a pre-trained YOLOv4 detector, are
used to compute 2D positional encodings, integrated into each object’s representation;
these representations are used to condition the denoising network in the Latent Di!usion
Model setup, enabling the model to ground the reverse di!usion process with explicit
object location guidance. See Subsection 5.3.1 for more details. Second, DetDi! uses
a per-object pixel space loss based on detector-derived bounding boxes, guiding high-
accuracy reconstructions of regions corresponding to detected entities (Subsection 5.3.2).
This self-supervised loss improves object-to-representation alignment and supports the
generation of images from interpretable and granular object representations.

This mechanism enhances object-to-representation alignment by improving disen-
tanglement of object appearance and spatial location in the embeddings. As shown
in Subsection 5.4.2, DetDi! provides a precise matching between scene entities and
their inferred representations. The benefits of positional encodings and per-object loss
are supported by the ablation study presented in Subsection 5.4.4, where removing
detection guidance leads to degraded performance. However, due to the lack of explicit
background modelling, background information is absorbed into object latents, leading
to entanglement and lower reconstruction fidelity overall (Subsection 5.4.1). This
highlights the importance of future work in decoupling background and foreground in
inferred scene representation.

Future Work. Several promising research directions could be explored based on
the findings presented in this thesis. Modelling background information explicitly
as a separate latent variable, or employing a dedicated decoder could enhance the
fidelity of the reconstructions and reduce the influence of the background on objects’
representations. Similarly, shifting from the use of a pre-trained object detection
network to internally learned or weakly supervised spatial cues might mitigate dataset-
specific biases and improve domain generalisation. Extending the di!usion-based model
into temporal domains follows the research direction in object-centric representation
learning, and could lead to more stable object representations across video frames,
enabling consistent temporal editing applications. In this setup, it could be useful to
introduce explicit object relations modelling, enhancing the model’s capacity to manage
complex scenes with occlusions. Following the scene-mixture multi-object representation
learning, an approach similar to detection guidance could be proposed, where bounding
box-based attention could be replaced with instance segmentation, which performs



143

better in the case of objects of highly irregular shapes. Finally, deploying object-centric
representations directly on real robotic systems would allow for validating the practical
applicability of these models in complex, real-world problems.
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