PROGRAM OF STUDIES

```
FACULTY: Computer Science and Management
MAIN FIELD OF STUDY: Applied Computer Science
BRANCH OF SCIENCE:Dziedzina nauk inżynieryjno-technicznych
DISCIPLINES: D1 Informatyka techniczna i telekomunikacja (major discipline)
D2*
D3*
D4*
```

EDUCATION LEVEL: first-level (licencjat/inżynier) studies / second level studies / magister uniform studies*
FORM OF STUDIES: full-time studies / part time studies*
PROFILE: general academic / practical *
LANGUAGE OF STUDY: English/Polish

Content:

1. Assumed learning outcomes - attachment no. 1 to the program of studies
2. Program of studies description - attachment no. 2 to the program of studies
3. Plan of studies - attachment no. 3 to the program of studies
4. Concerning principles of training crediting - attachment no. 4 to the program of studies
5. Subject cards

Resolution no. ... of the Senate of Wroclaw University of Science and Technology In effect since 2021/22

[^0]
ASSUMED LEARNING OUTCOMES

FACULTY:
 MAIN FIELD OF STUDY:
 Computer Science and Management
 Applied Computer Science

EDUCATION LEVEL: first-level (licencjat/inżynier) studies / second level studies / magister uniform-studies*
PROFILE: general academic / practical *

Location of the main-field-of study:

Branch of science: Nauki inżynieryjno-techniczne

Discipline / disciplines (for several disciplines, please indicate the major discipline)

Informatyka techniczna i telekomunikacja

Explanation of the markings:
P6U - universal first degree characteristics corresponding to education at the first-level studies - 6 PRK level *
P7U - universal first degree characteristics corresponding to education at the second-level studies - 7 PRK level *
P6S - second degree characteristics corresponding to education at the first-level studies - 6 PRK level *
P7S - second degree characteristics corresponding to education at the second-level studies - 7 PRK level *
W - category "knowledge"
U - category "skills"
K - category "social competences"
K (faculty symbol) _W1, K (faculty symbol) _W2, K (faculty symbol) _W3, ... - main-field-of study learning outcomes related to the category "knowledge"
K (faculty symbol) _U1, K (faculty symbol) _U2, K (faculty symbol) _U3, ... - main-field-of study learning outcomes related to the category "skills"
K (faculty symbol) _K1, K (faculty symbol) _K2, K (faculty symbol) _K3, ... - main-field-of study learning outcomes related to the category "social competences"
S (faculty symbol) _W.., S (faculty symbol) _W.., S (faculty symbol) _W..., ... - specialization learning outcomes related to the category "knowledge"
S (faculty symbol) _U.., S (faculty symbol) _U..., S (faculty symbol) _U.., ... - specialization learning outcomes related to the category "skills"
S (faculty symbol) _K.., S (faculty symbol) _K.., S (faculty symbol) _ K.., ... - specialization learning outcomes related to the category "social competences"
... _inż. - learning outcomes related to the engineer competences

* delete as applicable

Main field of study learning outcomes	Description of learning outcomes for the main-field-of study Applied Computer Science After completion of studies, the graduate: Faculty of Computer Science and Management	Reference to PRK characteristics		
		Universal first degree characteristics (U)	Second degree characteristics typical for qualifications obtained in higher education (S)	
			Characteristics for qualifications on 6/7* levels of PRK	Characteristics for qualifications on 6 and 7 levels of PRK, enabling acquiring engineering competences
KNOWLEDGE (W)				
KINF_W01	Has basic general knowledge in the field of selected branches of mathematics: mathematical analysis, linear algebra and analytic geometry, mathematical logic, discrete mathematics, probability theory, and mathematical statistics, that form the theoretical foundations necessary to solve IT engineering problems	P6U_W	P6S_WG	
KINF W02	Has basic knowledge in the selected physics departments	P6U W	P6S WG	
KINF_W03	Knows and understands basic data structures, algorithms, and programming constructs and can implement them in various programming languages	P6U_W	P6S_WG	P6S_WG_inż
KINF_W04	He knows the basic programming paradigms and languages using these paradigms	P6U_W	P6S_WG	
KINF_W05	Has detailed knowledge of software lifecycle models and its processes as well as methodologies, good practices, notation, and support tools for software development	P6U_W	P6S_WG	P6S_WG_inż
KINF_W06	Has basic knowledge in the field of computer structure, organization and architecture	P6U_W	P6S_WG	P6S_WG_inż
KINF_W07	Has knowledge about programming various types of applications, e.g. mobile, web, database, or distributed	P6U_W	P6S_WG	P6S_WG_inż
KINF_W08	Has basic knowledge in the field of construction, operation and administration of operating systems	P6U_W	P6S_WG	P6S_WG_inż
KINF_W09	Has knowledge of computer networks, their architecture and the operation of selected network devices	P6U_W	P6S_WK	P6S_WG_inż
KINF_W10	Has basic knowledge in the field of IT systems security	P6U_W	P6S_WK	P6S_WG_inż

KINF_W11	Has knowledge of modeling different types of processes and knows the methods and techniques used in decision support systems	P6U_W	P6S_WK	P6S_WG_inż
KINF_W12	Knows and understands the architecture of database systems and the basic methods and tools for collecting, processing and retrieving information as well as extracting knowledge from data	P6U_W	P6S_WK	P6S_WG_inż
KINF_W13	Has systematic knowledge in the field of artificial intelligence, in particular methods of representing and processing knowledge.			P6S_WG_inż
KINF_W14	Has detailed knowledge of software and database design			P6S_WG_inż
KINF_W15	Has basic knowledge in the field of multimedia and multimedia systems			P6S_WG_inż
KINF_W16	He knows typical technologies and programming tools for software developments			P6S_WG_inż
KINF_W17	Has well-formed knowledge in the field of IT project management			P6S_WG_inż
KINF_W18	He knows current IT development trends			
KINF_W19	Has basic knowledge of managing the business activities; knows the general principles of creating and running various sorts of individual entrepreneurship			P6S_WK_inż
KINF_W20	Has basic knowledge in the field of protection of intellectual property and patent law			
KINF_W21	Has basic knowledge of humanities that is necessary to understand the social and philosophical conditions of engineering activities			
KINF_W22	He knows and understands the fundamental problems facing modern civilization			
SKILLS (U)				
KINF_U01	Is able to construct and implement algorithms using basic algorithms and data structures	P6U_U	P6S_UW	P6S_UW_inż
KINF_U02	Can choose and evaluate the usefulness of a programming paradigm to a problem and build an application that uses this paradigm	P6U_U	P6S_UW	P6S_UW_inż
KINF_U03	Can describe requirements and design - using the selected modeling language - a general software architecture and a database schema	P6U_U	P6S_UW	P6S_UW_inż

KINF_U04	Is able to implement, in accordance with the design, software and database for simple, typical applications and verify the correctness of the solution.	P6U_U	P6S_UW	P6S_UW_inż
KINF_U05	He can design and build simple logic circuits	P6U_U	P6S_UW	P6S_UW_inż
KINF_U06	Can apply an indicated analytical method and plan and conduct a simple engineering experiment or computer simulation; is able to carry out measurements and analyze their results, in particular of selected IT system components	P6U_U	P6S_UW	P6S_UW_inż
KINF_U07	He can configure basic devices and network software of computer networks	P6U_U	P6S_UW	P6S_UW_inż
KINF_U08	He can apply the specified security techniques for a given IT system	P6U_U	P6S_UW	P6S_UW_inż
KINF_U09	Is able to create and implement a schedule of works for developing a simple IT system and to pre-estimate the costs and time needed to implement this project.	P6U_U	P6S_UW	P6S_UW_inż
KINF_U10	Is able to formulate and solve complex and atypical problems and carry out tasks in conditions that are not fully predictable	P6U_U	P6S_UW	P6S_UW_inż
KINF_U11	Has the ability to program applications of various types, e.g. mobile, web and database	P6U_U	P6S_UW	P6S_UW_inż
KINF_U12	He can implement a simple multimedia product using carefully selected methods, techniques, and tools	P6U_U	P6S_UW	P6S_UW_inż
KINF_U13	He can apply selected technologies and programming tools	P6U_U	P6S_UW	P6S_UW_inż
KINF_U14	He has practical skills related to the administration of selected systems	P6U_U	P6S_UW	P6S_UW_inż
KINF_U15	Is able to describe and make a profound analysis of the functioning of existing IT solutions and evaluate these solutions	P6U_U	P6S_UW	P6S_UW_inż
KINF_U16	Can acquire information from literature, databases and other sources, also in English, among others for the purposes of self-education and raising professional competences, can integrate the obtained information, interpret it, draw conclusions, formulate and justify opinions	P6U_U	P6S_UW	P6S_UW

	advanced information and communication techniques on the results of this engineering task			
KINF_U18	He can communicate using specialized terminology; take part in discussions, present and evaluate different opinions and stands	P6U_U	P6S_UK	
KINF_U19	Has language skills in the fields of science and scientific disciplines, relevant to the studied field of study, in accordance with the requirements set for the B2 level of the European System of Language Description	P6U_U	P6S_UK	
KINF_U20	Is able to plan and organize work both for an individual and for a team	P6U_U	P6S_UO	
KINF_U21	He can cooperate with other people as part of a team undertaking	P6U_U	P6U_UO	
KINF_U22	Has the ability to self-education, e.g. to improve his/her professional skills	P6U_U	P6S_UU	
	SOCIAL COMPETENCES_(K)			
KINF_K01	Is ready to critically evaluate his/her knowledge and acquired information	P6U_K	P6U_KK	
KINF_K02	He is conscious of knowledge significance in solving cognitive and practical problems; he recognises the need of consulting experts' opinions in case of difficulties with unassisted problem solving	P6U_K	P6U_KK	
KINF_K03	He follows the rules of professional ethics and demands it from others	P6U_K	P6U_KR	
KINF_K04	He is able to think and act in an entrepreneurial way, he is ready to take action for society	P6U_K	P6U_KO	
*delete as applicable				

*delete as applicable

DESCRIPTION OF THE PROGRAM OF STUDIES

Main field of study: Applied Computer Science

Level of studies: first-level

Profile: general academic

Form of studies: full-time studies

1. General description

	- Software design and project management. - Advanced programming methods and tools, artificial intelligence and knowledge engineering, mobile applications and distributed systems. - Various aspects of multimedia - Trends in IT. The graduate also has knowledge of basic sciences: mathematical analysis, algebra with analytical geometry, logic, discrete mathematics, probability and statistics, and physics which are necessary to solve engineering problems and to continue studies at the second degree. An important supplement to the education is knowledge of the basics of entrepreneurship as well as social and professional problems of IT. In addition, the graduate knows English sufficiently to enable him or her to express freely, also in writing, on topics related to the work performed. Soft skills and the ability to work in a team are also important in educating IT engineers. Graduates of the first degree studies in Applied Computer Science may be employed in IT companies and IT departments of banks and financial institutions or enterprises in Wrocław, as well as throughout Poland and even abroad. Graduates are employed as software testers, programmers, designers, service technicians, system administrators and IT security specialists.
1.7 Possibility of continuing studies:	1.8 Indicate connection with University's mission and its development strategy:
.	The program of study in Applied Computer Science at the Faculty of Computer Science and Management is consistent with the mission of Wrocław University of Science and Technology and its development strategy. The program provides the opportunity to acquire knowledge, skills, engineering competences and social competences necessary for a modern IT engineer. The mandatory courses and modules of elective courses offered as part of the study program

meet the requirements of the Polish Qualifications Framework, and - on the other hand - they meet the dynamically changing needs of the social and economic environment.
It is expressed, among others, through:

- Participation of members of the Faculty Social Council in the work on the study program.
- Participation of highly qualified specialists from outside the university in conducting didactic activities.
- Offering student internships in companies or IT departments.
Practical classes are held in specialized laboratories with modern computer equipment, dedicated apparatus and software, regularly modernized. Acting in accordance with the strategy of Wroclaw University of Science and Technology in the field of internationalization, the Faculty of Computer Science and Management offers first-level studies in Applied Computer Science also in English for candidates from Poland and foreigners. Additionally, students can participate in international exchange programs (e.g. ERASMUS +).

2. Detailed description

2.1 Total number of learning outcomes in the program of study:
$\mathrm{W}($ knowledge $)=22, \mathrm{U}($ skills $)=22, \mathrm{~K}($ competences $)=4, \mathrm{~W}+\mathrm{U}+\mathrm{K}=48$
2.2 For the main field of study assigned to more than one discipline - the number of learning outcomes assigned to the discipline: D1 (major) \qquad (this number must be greater than half the total number of learning outcomes)
D2 \qquad
D3 \qquad
D4 \qquad
2.3 For the main field of study assigned to more than one discipline - percentage share of the number of ECTS points for each discipline: D1\% ECTS points
D2\% ECTS points D3\% ECTS points D4\% ECTS points
2.4a. For the general academic profile of the main field of study - the number of ECTS points assigned to the classes related to the University's academic activity in the discipline or disciplines to which the main field of study is assigned - DN (must be greater than $\mathbf{5 0 \%}$ of the total number of ECTS points from 1.2) 144
2.4b. For the practical profile of the main field of study - the number of ECTS points assigned to the classes shaping practical skills (must be greater than $\mathbf{5 0 \%}$ of the total number of ECTS points from 1.2)
2.5 Concise analysis of compliance of the assumed learning outcomes with the needs of the labor market

The study program is the result of close cooperation with the Social Council of the Faculty of Computer Science and Management. The Council includes representatives of the management of leading IT companies in the Lower Silesia. The assumed learning outcomes meet the current and prospective needs of the market. In particular, the outcomes meet needs for IT specialists of different companies (e-commerce, service, research) dealing with the maintenance/development of IT tools supporting their activities, developers of IT systems as well as companies designing, implementing and maintaining computer systems and networks.
2.6. The total number of ECTS points that a student must obtain in classes requiring direct participation of academic teachers or other persons conducting classes and students (enter the sum of ECTS points for courses / groups of courses marked with the BU ${ }^{1}$ code) 126 ECTS

2.7. Total number of ECTS points, which student has to obtain from basic sciences classes

Number of ECTS points for obligatory subjects	$\mathbf{3 9}$
Number of ECTS points for optional subjects	$\mathbf{0}$
Total number of ECTS points	$\mathbf{3 9}$

2.8. Total number of ECTS points, which student has to obtain from practical classes, including project and laboratory classes (enter total number of ECTS points for courses/group of courses denoted with code P)

Number of ECTS points for obligatory subjects	$\mathbf{4 0}$
Number of ECTS points for optional subjects	$\mathbf{4 3}$
Total number of ECTS points	$\mathbf{8 3}$

2.9. Minimum number of ECTS points, which student has to obtain doing education blocks offered as part of University-wide classes or other main field of study (enter number of ECTS points for courses/groups of courses denoted with code O)

35 ECTS points

2.10. Total number of ECTS points, which student may obtain doing optional blocks (min. $\mathbf{3 0 \%}$ of total number of ECTS points) 70 ECTS points

3. Description of the process leading to learning outcomes acquisition:

The educational process includes active participation in classes organized at the university: lectures, classes, exercises, laboratories, projects and seminars, as well as student's self-learning activities allowing for consolidation, supplementation and extension of knowledge. If necessary, the student can take advantage of individual consultations. The learning outcomes are further developed during mandatory student's internship.

4. List of education blocks:

4.1. List of obligatory blocks:

4.1.1 List of general education blocks
4.1.1.1 Liberal-managerial subjects block (min. 6 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of course	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	ZMZ001643W	Basics of entrepreneurship	2					K1INF_W19	30	60	2		1,2	T	Z				KO
2.	SCZ001115S	Presentation Techniques					2	K1INF U18	30	60	2		1,2	T	Z				KO
3.	INZ004440W	IT Social and Professional Problems	2					$\begin{aligned} & \hline \text { K1INF_W20 } \\ & \text { K1INF_W22 } \end{aligned}$	30	60	2		1,2	T	Z				KO
		Total	4				2		90	180	6		3,6						

4.1.1.4 Information technologies block (min. 9 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\substack{\mathrm{BU}^{1} \\ \text { classes }}}{ }$			University -wide ${ }^{4}$	$\begin{gathered} \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004400Wc	Computer System Organization (GK)	2	1				K1INF_W06	45	90	3		1,8	T	Z (w)				PD
2.	INZ004399Wc	Structural and Object oriented Programming (GK)	2	2				K1INF_W03 K1INF_U01 K1INF U02	60	120	4		2,4	T	E (w)				PD
3.	INZ004399L	Structural and Object oriented Programming			2			K1INF_W03 K1INF_U01 K1INF_U02	30	60	2		1,2	T	Z			P (2)	PD
		Total	4	3	2				135	270	9		5,4					2	

Altogether for general education blocks

Total number of ZZU hours				Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes		
lec	cl	lab	pr	sem					
8	3	2		2	225	450	15		9

4.1.2 List of basic sciences blocks

4.1.2.1 Mathematics block

No.	Course/group of coursescode	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup ofcourses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	\qquad Concern scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	MAT001688Wc	Algebra and Analytic Geometry (GK)	2	2				K1INF_W01	60	180	6		3,6	T	E (w)	O			PD
2.	MAT001689Wc	Mathematical Analysis I (GK)	2	2				K1INF W01	60	180	6		3,6	T	E (w)	O			PD
3.	MAT001690Wc	Mathematical Analysis II (GK)	2	1				K1INF W01	45	150	5		3	T	E (w)	O			PD
4.	INZ004406Wc	Discrete Mathematics (GK)	2	2				K1INF_W01	60	150	5		3	T	Z (w)				PD
5.	INZ004410Wc	Theory of Probabilistic and Statistics (GK)	2	2				K1INF_W01	60	200	7		4,2	T	E (w)				PD
		Total	10	9					285	860	29		17,4						

4.1.2.2 Physics block

No.	$\begin{gathered} \text { Course/ } \\ \text { group of courses } \\ \text { code } \end{gathered}$	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	FZP001136Wc	General Physics I (GK)	2	1				K1INF W02	45	120	4		2,4	T	Z (w)	O			PD
2.	FZP001137Wc	General Physics II (GK)	2	1				K1INF_W02	45	120	4		2,4	T	E (w)	O			PD
3.	FZP001137L	General Physics II			1			K1INF W02	15	60	2		1,2	T	Z	O		P (2)	PD
		Total	4	2	1				105	300	10		6					2	

Altogether for basic sciences blocks:

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes	
lec	cl	lab	pr	sem					
14	11	1			390	1160	39		23,4

4.1.3 List of the main field of study blocks

4.1.3.1 Obligatory main field of study blocks

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities }^{5} \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004402Wc	Logic for IT Specialists (GK)	2	2				K1INF_W01	60	150	5	5	3	T	E (w)		DN		K
2.	INZ004403L	Data Structures and Algorithms			2			$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF U01 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
3.	INZ004403Wc	Data Structures and Algorithms (GK)	2	1				$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	45	120	4	4	2,4	T	E (w)		DN		K
4.	INZ004404W	Computer Architecture	2					K1INF_W06 K1INF_U04 K1INF U05	30	60	2	2	1,2	T	Z		DN		K
5.	INZ004404L	Computer Architecture			2			K1INF_W06 K1INF_U04 K1INF_U05	30	60	2	2	1,2	T	Z		DN	P (2)	K
6.	INZ004405W	Operating Systems	2					$\begin{aligned} & \hline \text { K1INF_W08 } \\ & \text { K1INF U06 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN		K
7.	INZ004405L	Operating Systems			2			$\begin{aligned} & \text { K1INF_W08 } \\ & \text { K1INF U06 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
8.	INZ004407W	Computer Networks	3					K1INF_W09 K1INF U07	45	110	4	4	2,4	T	E		DN		K
9.	INZ004407L	Computer Networks			2			$\begin{aligned} & \hline \text { K1INF_W09 } \\ & \text { K1INF_U07 } \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
10.	INZ004408W	Effective Programming Techniques	1					$\begin{aligned} & \hline \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	15	60	2	2	1,2	T	Z		DN		K
11.	INZ004408L	Effective Programming Techniques			2			$\begin{aligned} & \hline \text { K1INF_W03 } \\ & \text { K1INF_U01 } \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
12.	INZ004409L	Programming paradigms			2			$\begin{aligned} & \hline \text { K1INF_W04 } \\ & \text { K1INF_U02 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
13.	INZ004409Wc	Programming paradigms (GK)	2	1				$\begin{aligned} & \hline \text { K1INF_W04 } \\ & \text { K1INF_U02 } \end{aligned}$	45	140	5	5					DN		K
14.	INZ002023L	Data Bases			1			$\begin{aligned} & \hline \text { K1INF_W12 } \\ & \text { K1INF_U03 } \\ & \text { K1INF_U04 } \\ & \hline \end{aligned}$	15	60	2	2	1,2	T	Z		DN	P (2)	K
15.	INZ002023Wc	Databases (GK)	2	1				K1INF_W12 K1INF_U03 K1INF U04	45	115	4	4	2,4	T	E(w)		DN		K
16.	INZ002024L	Systems Analysis and Decision Support Methods			1			$\begin{aligned} & \hline \text { K1INF_W11 } \\ & \text { K1INF_U06 } \end{aligned}$	15	50	2	2	1,2	T	Z		DN	P (2)	K
17.	INZ002024Wc	Systems Analysis and Decision Support Methods (GK)	2	1				$\begin{aligned} & \hline \text { K1INF_W11 } \\ & \text { K1INF_U06 } \end{aligned}$	45	140	5	5	3	T	E(w)		DN		K
18.	INZ002027W	Introduction to IoT	2					K1INF W09 K1INF U04 K1INF U07	30	60	2	2	1,2	T	E		DN		K
19.	INZ002027L	Introduction to IoT			2			$\begin{aligned} & \hline \text { K1INF_W09 } \\ & \text { K1INF_U04 } \\ & \text { K1INF_U07 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
20.	INZ004414L	Basics of Software Engineering			1			$\begin{aligned} & \hline \text { K1INF_W05 } \\ & \text { K1INF_U03 } \end{aligned}$	15	30	1	1	0,6	T	Z		DN	P (1)	K

21.	INZ004414Wc	Basics of Software Engineering (GK)	1	2			$\begin{aligned} & \hline \text { K1INF_W05 } \\ & \text { K1INF_U03 } \\ & \hline \end{aligned}$	45	90	3	3	1,8	T	Z(w)	DN		K
22.	INZ004418W	Cybersecurity	2				K1INF_W10 K1INF U08	30	90	3	3	1,8	T	E	DN		K
23.	INZ004418L	Cybersecurity			2		$\begin{aligned} & \hline \text { K1INF_W10 } \\ & \text { K1INF_U08 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z	DN	P (2)	K
24.	INZ002025W	Script Languages	2				K1INF_W03 K1INF_U01	30	85	3	3	1,8	T	E	DN		K
25.	INZ002025L	Script Languages			2		K1INF_W03 K1INF_U01	30	90	3	3	1,8	T	Z	DN	P (3)	K
26.	INZ004419W	Software Engineering	2				K1INF_W14 K1INF_U03 K1INF U04 K1INF U21	30	90	3	3	1,8	T	E	DN		K
27.	INZ004419P	Software Engineering				2	K1INF W14 K1INF U03 K1INF_U04 K1INF_U21	30	90	3	3	1,8	T	Z	DN	P (3)	K
28.	INZ004427W	Artificial intelligence and knowledge engineering	2				$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	E	DN		K
29.	INZ004427L	Artificial intelligence and knowledge engineering			2		$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U06 } \end{aligned}$	30	90	3	3	1,8	T	Z	DN	P (3)	K
30.	INZ002031W	Data Warehouses	2				$\begin{aligned} & \hline \text { K1INF_W12 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	E	DN		K
31.	INZ002031L	Data Warehouses			2		$\begin{aligned} & \hline \text { K1INF_W12 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		P (3)	K
		Total	31	8	25	2		990	2530	86	86	51,6				36	

Altogether (for main field of study blocks):

Total number of hours					Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ${ }^{5}$	Number of ECTS points for BU classes ${ }^{1}$
lec	cl	lab	pr	sem					
31	8	25	2		990	2530	86	86	51,6

4.2 List of optional blocks

4.2.1 List of general education blocks

4.2.1.1 Liberal-managerial subjects blocks: block M10 - Humanistic subject (min. 3 ECTS points):

No.	Course/group of coursescode	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\mathrm{BU}^{1}}{\text { classes }}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities }^{5} \\ \hline \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ118560BK	Humanities subject 1	2					K1INF W21	30	90	3		1,8	T	Z	O			KO
2.	INZ118560BK	Humanities subject 2	2					K1INF W21	30	90	3		1,8	T	Z	O			KO
		Total	2						30	90	3								

4.2.1.2 Foreign languages block (min. 5 ECTS points):

No.	$\begin{gathered} \text { Course/ } \\ \text { group of courses } \\ \text { code } \end{gathered}$	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	JZL100927BK	Foreign language $\mathrm{A} 1 / \mathrm{A} 2 / \mathrm{B} 1 /$ B2.1/ C1.1		4				K1INF_U19	30	60	2		1,2	T	Z	O			KO
2.	JZL100928BK	Foreign language B2.2/C1.2		4				K1INF_U19	60	90	3		1,8	T	Z	O			KO
		Total		8					120	150	5		3						

4.2.1.3 Sporting classes block (0. ECTS points):

No.	$\begin{gathered} \text { Course/ } \\ \text { group of courses } \\ \text { code } \end{gathered}$	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	WFW030000BK	Sports I		2					30	30	0		0	T	Z	O			KO
2.	WFW030000BK	Sports II		2					30	30	0		0	T	Z	O			KO
		Total		2					60	60									

Altogether for general education blocks:

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
2	12				210	300	8		4,8

4.2.3 List of blocks

4.2.3.1 M1 block - Administration of Computer Systems (min. 4 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni scientific activities ${ }^{5}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004415Wl	Linux Server Administration (GK)	2		2			$\begin{gathered} \hline \text { K1INF_W08 } \\ \text { K1IN U14 } \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ004468W1	Managing IT infrastructure (GK)	2		2			$\begin{gathered} \text { K1INF_W08 } \\ \text { K1IN_U14 } \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
3.	INZ002026Wl	Routing and Switching in Computer Networks (GK)	2		2			$\begin{gathered} \hline \text { K1INF_W08 } \\ \text { K1IN_U14 } \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

4.2.3.2 M2 block - Web Technologies (min. 4 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\mathrm{DN}^{5}}$	$\underset{\mathrm{BU}^{1}}{\text { classes }}$			University -wide ${ }^{4}$	Concerni ng scientific activities 5	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004420W1	Web Systems Programming (GK)	2		2			K1INF_W07 K1INF U11	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ002028Wl	Developing Web Applications with .NET (GK)	2		2			$\begin{aligned} & \text { K1INF_W07 } \\ & \text { K1INF_U11 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

4.2.3.3 M3 block - Database Design (min. 4 ECTS points):

No.	Course/group of coursescode	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerning activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004422Wp	Database Systems Engineering (GK)	1			2		K1INF_W14 K1INF_U03 K1INF_U04	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ004470Wp	Database Programming (GK)	1			2		$\begin{aligned} & \hline \text { K1INF_W14 } \\ & \text { K1INF_U03 } \\ & \text { K1INF_U04 } \\ & \hline \end{aligned}$	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
3.	INZ004424Wp	Database Design (GK)	1			2		K1INF W14 K1INF U03 K1INF_U04	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	1			2			45	120	4	4	2,4	2,4				2	

4.2.3.4 M4 block - Mobile applications (min. 4 ECTS points):

No.	Course/group ofcourses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\mathrm{DN}^{5}}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities }^{5} \\ \hline \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002029Wl	Mobile Applications for Android (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W07 } \\ & \text { K1INF_U11 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ002030Wl	Mobile Applications for IOS (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W07 } \\ & \text { K1INF_U11 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

4.2.3.5 M5 block - Project Management Basics (min. 4 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	$\begin{gathered} \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002032Wls	Introduction to IT Project Management (GK)	1		2		1	K1INF W17 K1INF_U09 K1INF_U16 K1INF U18	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ002033Wls	Support for IT Project Management (GK)	1		2		1	K1INF_W17 K1INF_U09 K1INF_U16 K1INF U18	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	1		2		1		60	120	4	4		2,4				2	

4.2.3.6 M6 block - Distributed Systems (min. 4 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002035Wl	Distributed Computer Systems (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W07 } \\ & \text { K1INF_U11 } \\ & \text { K1INF_U16 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ004470Wl	Cloud programming (GK)	2		2			K1INF_W07 K1INF_U11 K1INF_U16	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

4.2.3.7 M7 block - Programming Tools and Technologies (min. 4 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { BU'1 }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni ng scientific activities activitie	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004376Wl	Game Programming (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W16 } \\ & \text { K1INF_U13 } \\ & \hline \end{aligned}$	60	110	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ004436Wl	Advanced Web Technologies (GK)	2		2			K1INF_W16 K1INF_U13	60	110	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	110	4	4	2,4					2	

4.2.3.8 M8 block - Multimedia (min. 4 ECTS points):

No.	Course/group ofcourses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\mathrm{DN}^{5}}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities ${ }^{5}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004437W1	Computer Graphics (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W15 } \\ & \text { K1INF_U12 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
2.	INZ004438Wl	Programming Multimedia Applications (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W15 } \\ & \text { K1INF_U12 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
3.	INZ004439W1	Digital Media Processing Techniques (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W15 } \\ & \text { K1INF_U12 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4		2,4				2	

4.2.3.9 M9 block - Current trends in Computer Science (min. 5 ECTS points):

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\underset{\substack{\mathrm{BU}^{1} \\ \text { classes }}}{ }$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities }^{5} \\ \hline \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002040Wl	Data Science (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1NF_U10 } \end{aligned}$	60	120	5	5	3	T	Z (w)		DN	P (3)	K
2.	INZ002041W1	Neural Networks (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	120	5	5	3	T	Z (w)		DN	P (3)	K
3.	INZ002042W1	Metaheuristics in Problems Solving (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	120	5	5	3	T	Z (w)		DN	P (3)	K
4.	INZ002043Wl	Human-Computer Interaction (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	120	5	5	3	T	Z (w)		DN	P (3)	K
		Total	2		2				60	120	5	5	3					3	

4.2.3.10 Other elective courses/group of courses (min. 25 ECTS points):

No.	Course/group ofcourses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	$\begin{aligned} & \mathrm{p} \\ & \mathrm{r} \end{aligned}$	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\substack{\mathrm{BU}^{1} \\ \text { classes }}}{ }$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002017Ps	Team Project (GK)				8	1	K1INF_U10 K1INF_U17 K1INF_U20 K1INF_U21 K1INF_U22 K1INF_K01 K1INF_K02 K1INF K03 K1INF K04	135	600	20	20	2,4	T	Z		DN	P (19)	K
2.	INZ002044Q	Practical training							160	160	5	1	2,4		Z		DN	P (5)	K
		Total				8	1		135	760	25	20	2,4					24	

Altogether for blocks:

Total number of hours					Total numberofZZUhours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ${ }^{5}$	Number of ECTS points for BU classes ${ }^{1}$
lec	cl	lab	pr	sem					
16		18	10	2	660	1830 (including 160 of training)	$\begin{gathered} \hline 62 \\ \text { (including } 5 \\ \text { of training) } \end{gathered}$	58	37,2 (including 3 of training)

4.3 Training block - concerning principles of training crediting - attachment no. 4

Opinion of the Advisory Faculty Council concerning the rules of crediting training block

5. Ways of verifying assumed learning outcomes

Type of classes	Ways of verifying assumed learning outcomes
lecture	Examination, progress/final test
class	progress/final test
laboratory	pretest, report from laboratory, assessment of a solution delivered by student during laboratory
project	project defence, project documentation
seminar	participation in discussion, topic presentation, essay
training	report from training

6. Range of diploma examination

1. Basic digital circuits: logic gates, switches, sequence circuits.
2. Binary arithmetic, Boolean functions, Karnaugh tables.
3. Rules of structural programming. Overview of structural statements.
4. Object-oriented programming - basic concepts and their applications.
5. Basic operations on sets, functions and relations. Propositional calculus. Predicate calculus.
6. Deterministic finite automata - definitions, applications.
7. Examples of computer architectures: von Neuman, Princeton, Harvard.
8. RISC and CISC processors - characteristics, differences.
9. Graphs. Spanning trees. Euler and Hamilton cycles. Cohesion. Graph traversal algorithms.
10. Algorithm - definition. Sorting algorithms. Search algorithms.
11. Basics of algorithm analysis. Computational complexity.
12. Layered structure of the operating system. The concept of system kernel.
13. The OSI layer model.
14. Data link layer protocols. Ethernet network. TCP/IP internet protocol stack.
15. Application layer protocols.
16. Effective programming techniques - examples.
17. Memory management. Common problems. Pointers.
18. Selection of programming paradigms for solving IT problems.
19. Functional programming and imperative programming.
20. Abstract data types and their implementation in programming languages.
21. Identification algorithms of static objects. Analytical and numerical optimization methods.
22. The specificity of the Internet of Things (IoT), application areas, solving problems resulting from a large number of devices, their distribution and a number of generated data.
23. Hardware solutions supporting communication and communication protocols used in embedded systems and IoT.
24. Database models. Relational database. Normalization. Transactions.
25. SQL language. Characteristics. Sub-languages.
26. Software life cycle models.
27. Software development methodologies.
28. The use of lists, sets and dictionaries in Python.
29. Differences and similarities between Java and Python.
30. Principles of parallel programming in Python.
31. UML as a project specification language. Diagrams and their application.
32. Architectural and design patterns - classification, examples, applications.
33. Data protection methods.
34. Basic cryptographic algorithms.
35. Multidimensional data modeling (transactional and analytical data systems, types of multidimensional OLAP structures).
36. ETL process.
37. MDX expressions and directives.
38. Methods of knowledge processing in expert systems.
39. Inference in non-monotonic logic - a planning task.

7. Requirements concerning deadlines for crediting courses/groups of courses for all courses in particular blocks

No.	Course / group of courses code	Name of course / group of courses	Crediting by deadline of... (number of semester)
1.	FZP001136Wc	General Physics I (GK)	5
2.	INZ004400Wc	Computer System Organization (GK)	3
3.	INZ004399Wc	Structural and Object oriented Programming (GK)	3
4.	INZ004399L	Structural and Object oriented Programming	6
5.	INZ004402Wc	Logic for IT Specialists (GK)	6
6.	MAT001688Wc	Algebra and Analytic Geometry (GK)	6
7.	MAT001689Wc	Mathematical Analysis I (GK)	6
8.	INZ004403L	Data Structures and Algorithms	6
9.	INZ004403Wc	Data Structures and Algorithms (GK)	6
10.	INZ004404W	Computer Architecture	6
11.	INZ004404L	Computer Architecture	6
12.	INZ004405W	Operating Systems	6
13.	INZ004405L	Operating Systems	6
14.	FZP001137L	General Physics II	6
15.	FZP001137Wc	General Physics II (GK)	6
16.	INZ004406Wc	Discrete Mathematics (GK)	6
17.	MAT001690Wc	Mathematical Analysis II (GK)	6
18.	ZMZ001643W	Basics of entrepreneurship	6
19.	INZ004407W	Computer Networks	6
20.	INZ004407L	Computer Networks	6
21.	INZ004408W	Effective Programming Techniques	6
22.	INZ004408L	Effective Programming Techniques	6
23.	INZ004409L	Programming paradigms	6
24.	INZ004409Wc	Programming paradigms (GK)	6
25.	INZ004410Wc	Theory of Probabilistic and Statistics (GK)	6
26.	JZL100927BK	Foreign language A1/A2/ B1/ B2.1/ C1.1	6
27.	WFW030000BK	Sports I	6
28.	INZ002023L	Databases	6
29.	INZ002023Wc	Databases (GK)	6
30.	INZ002024L	Systems Analysis and Decision Support Methods	6
31.	INZ002024Wc	Systems Analysis and Decision Support Methods	6
(GK)	6		
		6	

32.	INZ002027W	Introduction to loT	6
33.	INZ002027L	Introduction to loT	6
34.	INZ004414L	Basics of Software Engineering	5
35.	INZ004414WC	Basics of Software Engineering (GK)	5
36.	IZL100928BK	Foreign language B2.2/Cl.2	6
37.	WFW030000BK	Sports II	6
38.	SCZ00III5S	Presentation Techniques	6
39.	INZ004418W	Cybersecurity	6
40.	INZ004418L	Cybersecurity	6
41.	INZ002025W	Script Languages	6
42.	INZ002025L	Script Languages	6
43.	INZ004419W	Software Engineering	6
44.	INZ004419P	Software Engineering	6
45.	INZ004427W	Artificial intelligence and knowledge engineering	6
46.	INZ004427L	Artificial intelligence and knowledge engineering	6
47.	INZ00203IW	Data Warehouses	6
48.	INZ00203IL	Data Warehouses	6
49.	INZ004440W	IT Social and Professional Problems	6

8. Plan of studies (attachment no. 4)

Approved by faculty student government legislative body:
1A.03.2024.
Mateosz Sulah Mateusz Salach

Date
11.03. 2021

Date

* delete as appropriate
name and surnameZsigntuad \downarrow f student representative
Kolany Nown

Deadr hadosinuy katarzyna Tworek, prof. uczelni (3)

PLAN OF STUDIES

FACULTY: Computer Science and Management
MAIN FIELD OF STUDY: Applied Computer Science
EDUCATION LEVEL: first-level (Hieenejat/inżynier) studies / second level studies / magister uniform studies*

FORM OF STUDIES: full-time studies / part time studies*
PROFILE: general academic /practical *
SPECIALIZATION: not applicable
LANGUAGE OF STUDY: English/Polish

In effect since 2021/22

Plan of studies structure (optionally)

1) in point layout; practical training after VI semester, 5 ECTS + 160 h CNPS added to the balance of semester VI, Mi - modules of optional courses; 1 course to choose

2) in hourly layout

28	CNPS ECTS	CNPS	ECTS															
27	900 30	900	30	900	30	900	30	900	30	900	30	900	30					
26						Sports II (2h)												
25	General Physics I (21000)			Sports I (2h)				Presentation Techniques (00002)										
24		General Physics II (21100 E)				Foreign language B2.2/C1. 2 (4h)				$\begin{aligned} & \text { M8 - Multimedia } \\ & (20200) \end{aligned}$								
23				Foreign language A1/A2/ B1/ B2.1/ C1.1 (4h)				M4 - Mobile applications (20200)										
22																		
21	$\begin{aligned} & \text { Computer System } \\ & \text { Organization (21000) } \end{aligned}$																	
20		Computer Architecture (20200)				M1 - Administration of Computer (20200)				M7 - Programming Tools and Technologies (20200)								
19				Basics														
18	Structural and Object oriented Programming (22200)			preneurs	(20000)													
17				Computer Networks (30200 E)									nistic					
16		Data Structures and Algorithms (21200 E)				Systems Analysis and Decision Support (21100 E)				M2 - Web Technologies (20200)		M6 - Distributed Systems (20200)						
15				M9 - Current Trends in Computer Science (20200)														
14																		
13																		
12	Logics for IT Specialists (22000 E)					$\underset{(20200 \mathrm{E})}{\text { Script Languages }}$		Cybersecurity (20200		M5 - Project Management Basics (10201)								
11		$\underset{(20200)}{\text { Operating Systems }}$				Pro	ing			$\begin{gathered} \text { Team Project } \\ (00081) \end{gathered}$								
10																		
9				Programming Paradigms (21200 E)														
8	Algebra and Analytic Geometry (22000 E)			$\begin{aligned} & \text { Databases } \\ & (21100 \mathrm{E}) \end{aligned}$				Introduction to IoT (20200 E)				Data Warehouses (20200 E)						
7		DiscreteMathematics (22000)																
6																		
5																		
4	Mathematical Analysis I (22000 E)			Theory of Probabilistic and Statistics (22000 E)		Basics of Software Engineering (12100)		Software Engineering (20020 E)				Artificial Intelligence and Knowledge Engineering (20200 E)						
3		Mathematical Analysis II (21000 E)																
2				IT Social and Professio-nal Problems (20000)														
1																		
	I																	Total
	24/360															165/2475		

1. Set of obligatory and optional courses and groups of courses in semestral arrangement

Semester 1

Obligatory courses / groups of courses
Number of ECTS points 30

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004399L	Structural and Object oriented Programming			2			K1INF_W03 K1INF_U01 K1INF_U02 K1INF_W0	30	60	2		1,2	T	Z			P (2)	PD
2.	INZ004400Wc	Computer System Organization (GK)	2	1				K1INF_W06	45	90	3		1,8	T	Z (w)				PD
3.	INZ004399Wc	Structural and Object oriented Programming (GK)	2	2				K1INF_W03 K1INF_U01 K1INF_U02	60	120	4		2,4	T	E (w)				PD
4.	INZ004402Wc	Logic for IT Specialists (GK)	2	2				K1INF_W01	60	150	5	5	3	T	E (w)		DN		K
5.	FZP001136Wc	General Physics I (GK)	2	1				K1INF W02	45	120	4		2,4	T	Z (w)	O			PD
6.	MAT001688Wc	Algebra and Analytic Geometry (GK)	2	2				K1INF_W01	60	180	6		3,6	T	E (w)	O			PD
7.	MAT001689Wc	Mathematical Analysis I (GK)	2	2				K1INF_W01	60	180	6		3,6	T	E (w)	O			PD
		Total	12	10	2				360	900	30	5	18					2	

Altogether in semester

				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
12	10	2			360	900	30	5	18

Semester 2

Obligatory courses / groups of courses
Number of ECTS points 30

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	$\begin{aligned} & \mathrm{se} \\ & \mathrm{~m} \end{aligned}$		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004403L	Data Structures and Algorithms			2			$\begin{aligned} & \hline \text { K1INF_W03 } \\ & \text { K1INF_U01 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
2.	INZ004404W	Computer Architecture	2					$\begin{aligned} & \hline \text { K1INF_W06 } \\ & \text { K1INF_U04 } \\ & \text { K1INF_U05 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN		K
3.	INZ004404L	Computer Architecture			2			$\begin{aligned} & \hline \text { K1INF_W06 } \\ & \text { K1INF_U04 } \\ & \text { K1INF_U05 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
4.	FZP001137L	General Physics II			1			K1INF_W02	15	60	2		1,2	T	Z	O		P (2)	PD
5.	INZ004405W	Operating Systems	2					$\begin{aligned} & \hline \text { K1INF_W08 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN		K
6.	INZ004405L	Operating Systems			2			$\begin{aligned} & \hline \text { K1INF_W08 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
7.	INZ004403Wc	Data Structures and Algorithms (GK)	2	1				$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	45	120	4	4	2,4	T	E (w)		DN		K
8.	FZP001137Wc	General Physics II (GK)	2	1				K1INF W02	45	120	4		2,4	T	E (w)	O			PD
9.	INZ004406Wc	Discrete Mathematics (GK)	2	2				K1INF_W01	60	150	5		3	T	Z (w)				PD
10.	MAT001690Wc	Mathematical Analysis II (GK)	2	1				K1INF_W01	45	150	5		3	T	E (w)	O			PD
		Total																	

Altogether in semester

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
12	5	7			360	900	30		14

Semester 3

Obligatory courses / groups of courses
Number of ECTS points 28

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities ${ }^{5}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	ZMZ001643W	Basics of entrepreneurship	2					K1INF_W19	30	60	2		1,2	T	Z				KO
2.	INZ004407W	Computer Networks	3					$\begin{aligned} & \text { K1INF_W09 } \\ & \text { K1INF_U07 } \\ & \hline \end{aligned}$	45	110	4	4	2,4	T	E		DN		K
3.	INZ004407L	Computer Networks			2			$\begin{aligned} & \hline \text { K1INF_W09 } \\ & \text { K1INF_U07 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
4.	INZ004408W	Effective Programming Techniques	1					$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	15	60	2	2	1,2	T	Z		DN		K
5.	INZ004408L	Effective Programming Techniques			2			$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
6.	INZ004409Wc	Programming paradigms			2			$\begin{aligned} & \hline \text { K1INF_W04 } \\ & \text { K1INF_U02 } \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
7.	INZ004409L	Programming paradigms (GK)	2	1				$\begin{aligned} & \text { K1INF_W04 } \\ & \text { K1INF_U02 } \\ & \hline \end{aligned}$	45	140	5	5	3	T	E (w)		DN		K
8.	INZ004410Wc	Theory of Probabilistic and Statistics (GK)	2	2				K1INF_W01	60	200	7		4,2	T	E (w)				PD
		Total	10	3	6				285	810	28	19	16,8					8	

Optional courses / groups of courses (minimum 90 hours in semester, 2 ECTS points)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\mathrm{DN}^{5}}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng $\begin{gathered}\text { scientific } \\ \text { activities }\end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	JZL100927BK	Foreign language A1/A2/B1/ B2.1/C1.1		4				K1INF_U19	60	60	2		1,2	T	Z	O			KO
2.	WFW030000BK	Sports I		2					30	30	0		0	T	Z	O			KO
		Total		6					90	90	2		1,2						

Altogether in semester

				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
10	7	6			375	900	30	19	18

Semester 4

Obligatory courses / groups of courses
Number of ECTS points 23

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ002023L	Data Bases			1			$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U03 } \\ & \text { K1INF_U04 } \\ & \hline \end{aligned}$	15	60	2	2	1,2	T	Z		DN	P (2)	K
2.	INZ002024L	Systems Analysis and Decision Support Methods			1			K1INF_W12 K1INF_U07	15	50	2	2	1,2	T	Z		DN	P (2)	K
3.	INZ002025W	Script Languages	2					$\begin{aligned} & \hline \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	30	85	3	3	1,8	T	E		DN		
4.	INZ002025L	Script Languages			2			$\begin{aligned} & \text { K1INF_W03 } \\ & \text { K1INF_U01 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
5.	INZ004414L	Basics of Software Engineering			1			K1INF_W06 K1INF U03	15	30	1	1	0,6	T	Z		DN	P (1)	K
6.	INZ002023Wc	Data Bases (GK)	2	1				$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U03 } \\ & \text { K1INF_U04 } \\ & \hline \end{aligned}$	45	115	4	4	2,4	T	E(w)		DN		K
7.	INZ002024Wc	Systems Analysis and Decision Support Methods (GK)	2	1				$\begin{aligned} & \text { K1INF_W12 } \\ & \text { K1INF_U07 } \end{aligned}$	45	140	5	5	3	T	E(w)		DN		K
8.	INZ004414Wc	Basics of Software Engineering (GK)	1	2				$\begin{aligned} & \hline \text { K1INF_W06 } \\ & \text { K1INF_U03 } \\ & \hline \end{aligned}$	45	90	3	3	1,8	T	Z(w)		DN		K
		Total	7	4	5				240	660	23	23	13,8					8	

Optional courses / groups of courses (minimum 60 hours in semester, 3 ECTS points)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{aligned} & \text { Concerni } \\ & \text { ng } \\ & \text { scientific } \\ & \text { activities } \end{aligned}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	JZL100928BK	Foreign language B2.2/C1. 2		4				K1INF_U17	60	90	3		1,8	T	Z	O			KO
2.	WFW030000BK	Sports II		2					30	30	0		0	T	Z	O			KO
		Total		6					90	120	3		1,8						

Optional M1 block - Administration of Computer Systems (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni ng $\begin{array}{l}\text { scientific } \\ \text { activities }\end{array}$	Practical ${ }^{6}$	Type ${ }^{7}$
4.	INZ004415Wl	Linux Server Administration (GK)	2		2			$\begin{gathered} \hline \text { K1INF_W08 } \\ \text { K1IN_U14 } \\ \hline \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
5.	INZ004468Wl	Managing IT infrastructure (GK)	2		2			$\begin{gathered} \text { K1INF_W08 } \\ \text { K1IN_U14 } \\ \hline \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
6.	INZ002026Wl	Routing and Switching in Computer Networks (GK)	2		2			$\begin{gathered} \hline \text { K1INF_W08 } \\ \text { K1IN U14 } \end{gathered}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

Altogether in semester

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
9	10	7			390	900	30	27	18

Semester 5

Obligatory courses / groups of courses
Number of ECTS points 18

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			${ }^{\text {lec }}$	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	SCZ001115S	Presentation Techniques					2	K1INF_U18	30	60	2		1,2	T	Z				KO
2.	INZ004418W	Cybersecurity	2					$\begin{aligned} & \hline \text { K1INF_W10 } \\ & \text { K1INF_U08 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	E		DN		K
3.	INZ004418L	Cybersecurity			2			$\begin{aligned} & \hline \text { K1INF_W10 } \\ & \text { K1INF_U08 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
4.	INZ002027W	Introduction to IoT	2					K1INF_W09 K1INF_U04 K1INF_U07	30	60	2	2	1,2	T	E		DN		K
5.	INZ002027L	Introduction to IoT			2			K1INF_W09 K1INF_U04 K1INF_U07	30	90	3	3	1,8	T	Z		DN	P (3)	K
6.	INZ004419W	Software Engineering	2					K1INF_W14 K1INF_U03 K1INF_U04 K1INF_U21	30	90	3	3	1,8	T	E		DN		K
7.	INZ004419P	Software Engineering				2		K1INF_W14 K1INF_U03 K1INF_U04 K1INF_U21	30	90	3	3	1,8	T	Z		DN	P (3)	K
		Total	6		4	2	2		210	540	18	16	10,8					8	

Optional block M2 - Web Technologies (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup ofcourses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
3.	INZ004420Wl	Web Systems Programming (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W07 } \\ & \text { K1INF U11 } \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
4.	INZ002028Wl	Developing Web Applications with .NET (GK)	2		2			$\begin{aligned} & \text { K1INF_W07 } \\ & \text { K1INF_U11 } \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4	4	2,4					2	

Optional block M3 - Database Design (minimum 45 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities 5	Practical ${ }^{6}$	Type ${ }^{7}$
4.	INZ004422Wp	Database Systems Engineering (GK)	1			2		K1INF_W14 K1INF_U03 K1INF_U04 K1INF_W	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
5.	INZ004470Wp	Database Programming (GK)	1			2		K1INF_W14 K1INF_U03 K1INF_U04	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
6.	INZ004424Wp	Database Design (GK)	1			2		K1INF_W14 K1INF_U03 K1INF_U04	45	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	1			2			45	120	4	4	2,4					2	

Optional block M4 - Mobile applications (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
3.	INZ002029Wl	Mobile Applications for Android (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W07 } \\ & \text { K1INF_U11 } \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
4.	INZ002030Wl	Mobile Applications for IOS (GK)	2		2			$\begin{aligned} & \text { K1INF_W07 } \\ & \text { K1INF_U11 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	120	4		4					2	

Altogether in semester

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
11		8	4	2	375	900	30	28	18

Semester 6

Obligatory courses / groups of courses
Number of ECTS points 9

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004427W	Artificial intelligence and knowledge engineering	2					$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U06 } \end{aligned}$	30	60	2	2	1,2	T	E		DN		K
2.	INZ004427L	Artificial intelligence and knowledge engineering			2			$\begin{aligned} & \hline \text { K1INF_W13 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	90	3	3	1,8	T	Z		DN	P (3)	K
3.	INZ002031W	Data Warehouses	2					$\begin{aligned} & \hline \text { K1INF_W12 } \\ & \text { K1INF U06 } \end{aligned}$	30	60	2	2	1,2	T	E		DN		K
4.	INZ002031L	Data Warehouses			2			$\begin{aligned} & \hline \text { K1INF_W12 } \\ & \text { K1INF_U06 } \\ & \hline \end{aligned}$	30	60	2	2	1,2	T	Z		DN	P (2)	K
5.	INZ002044Q	Practical training							0	160	5	1	0	T	Z				K
		Total	4		4				120	430	14	10	5,4					5	

Optional block M5-Project Management Basics (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { classes } \end{gathered}$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
3.	INZ002032Wls	Introduction to IT Project Management (GK)	1		2		1	K1INF_W17 K1INF_U09 K1INF_U16 K1INF_U18	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
4.	INZ002033Wls	Support for IT Project Management (GK)	1		2		1	K1INF_W17 K1INF_U09 K1INF_U16 K1INF_U18	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	1		2		1		60	120	4	4	4					2	

Optional block M6 - Distributed Systems (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	$\begin{gathered} \text { Course/ } \\ \text { group of } \\ \text { courses code } \end{gathered}$	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effectsymbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ ofcoursegr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		zZU	CNPS	Total	$\begin{gathered} \mathrm{DN}^{5} \\ \text { clases } \end{gathered}$	$\begin{gathered} \text { BU1 } \\ \text { classes } \end{gathered}$			$\begin{gathered} \text { University } \\ \text {-wide }^{4} \end{gathered}$		Practical ${ }^{6}$	Type ${ }^{7}$
3.	INZ002035W1	Distributed Computer Systems (GK)	2		2			K1INF_W07 K1INF_U11 K1NF_U16 K1INF U16	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
4.	INZ004470W1	Cloud programming (GK)	2		2			K1INF_W07 K1INF_U11 K1INF U16	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K

Optional block M7-Programming Tools and Technologies (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\substack{\mathrm{DN}^{5}}}$	$\underset{\text { classes }}{\mathrm{BU}^{1}}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
3.	INZ004376Wl	Game Programming (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W16 } \\ & \text { K1INF_U13 } \\ & \hline \end{aligned}$	60	110	4	4	2,4	T	Z (w)		DN	P (2)	K
4.	INZ004436Wl	Advanced Web Technologies (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W16 } \\ & \text { K1INF_U13 } \\ & \hline \end{aligned}$	60	110	4	4	2,4	T	Z (w)		DN	P (2)	K
		Total	2		2				60	110	4	4	4					2	

Optional block M8 - Multimedia (minimum 60 hours in semester, 4 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\text { classes }}{\substack{\mathrm{DN}^{5}}}$	$\underset{\text { BU1 }}{\mathrm{BU}^{1}} \begin{gathered} \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
4.	INZ004437Wl	Computer Graphics (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W15 } \\ & \text { K1INF_U12 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
5.	INZ004438Wl	Programming Multimedia Applications (GK)	2		2			K1INF_W15 K1INF_U12	60	120	4	4	2,4	T	Z (w)		DN	P (2)	K
6.	INZ004439Wl	Digital Media Processing Techniques (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W15 } \\ & \text { K1INF_U12 } \\ & \hline \end{aligned}$	60	120	4	4	2,4	T	Z (w)			P (2)	K
		Total	2		2				60	120	4	4	2,4				DN	2	

Altogether in semester

Total number of hours				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	Cl	lab	pr	sem					
11		12		1	360	900 (including 160 of training)	30 (including 5 of training)	26 (including 1 of training)	18 (including 3 of training)

Semester 7

Obligatory courses / groups of courses
Number of ECTS points 22

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form 2 of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\begin{gathered} \mathrm{BU}^{1} \\ \text { classes } \end{gathered}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ004440W	IT Social and Professional Problems	2					$\begin{aligned} & \hline \text { K1INF_W20 } \\ & \text { K1INF_W22 } \end{aligned}$	30	60	2		1,2	T	Z				KO
2.	INZ002039Ps	Team Project (GK)				8	1	K1INF_U10 K1INF_U17 K1INF_U20 K1INF_U21 K1INF_U22 K1INF_K01 K1INF_K02 K1INF_K03 K1INF_K04	135	600	20	20	12	T	Z		DN	P (19)	K
		Total	2			8	1		165	660	22	20	13,2						

Optional block M9-Current trends in Computer (minimum 60 hours in semester, 5 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\underset{\mathrm{BU}^{1}}{\text { classes }}$			University -wide ${ }^{4}$	Concerni ng scientific activities	Practical ${ }^{6}$	Type ${ }^{7}$
5.	INZ002040Wl	Data Science (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF U10 } \end{aligned}$	60	150	5	5	3	T	Z (w)		DN	P (3)	K
6.	INZ002041W1	Neural Networks (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	150	5	5	3	T	Z (w)		DN	P (3)	K
7.	INZ002042Wl	Metaheuristics in Problems Solving (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	150	5	5	3	T	Z (w)		DN	P (3)	K
8.	INZ002043Wl	Human-Computer Interaction (GK)	2		2			$\begin{aligned} & \hline \text { K1INF_W18 } \\ & \text { K1INF_U10 } \\ & \hline \end{aligned}$	60	150	5	5	3	T	Z (w)		DN	P (3)	K
		Total	2		2				60	150	5	5	3					3	

Optional block M10 - Humanistic subject (minimum 30 hours in semester, 3 ECTS points, selection of 1 course)

No.	Course/ group of courses code	Name of course/group of courses (denote group of courses with symbol GK)	Weekly number of hours					Learning effect symbol	Number of hours		Number of ECTS points			Form ${ }^{2}$ of course/gr oup of courses	Way ${ }^{3}$ of crediting	Course/group of courses			
			lec	cl	lab	pr	sem		ZZU	CNPS	Total	$\underset{\substack{\mathrm{DN}^{5} \\ \text { classes }}}{ }$	$\underset{\substack{\mathrm{BU}^{1} \\ \text { classes }}}{ }$			University -wide ${ }^{4}$	$\begin{gathered} \hline \text { Concerni } \\ \text { ng } \\ \text { scientific } \\ \text { activities } \\ \hline \end{gathered}$	Practical ${ }^{6}$	Type ${ }^{7}$
1.	INZ118560BK	Humanities subject 1	2					K1INF_W22	30	90	3		1,8	T	Z	O			KO
2.	INZ118560BK	Humanities subject 2	2					K1INF W22	30	90	3		1,8	T	Z	O			KO
		Total	2						30	90	3		1,8						

Altogether in semester

				Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes	Number of ECTS points for BU classes ${ }^{1}$	
lec	cl	lab	pr	sem					
6		2	8	1	255	900	30		18

3. Set of examinations in semestral arrangement

Course / group of courses code	Names of courses / groups of courses ending with examination	Semester
$\begin{aligned} & \text { INZ004402Wc } \\ & \text { MAT001688Wc } \\ & \text { MAT001689Wc } \end{aligned}$	1. Logic for IT Specialists 2. Algebra and Analytic Geometry 3. Mathematical Analysis I	1
INZ004403Wc MAT001690Wc FZP001137Wc	1. Data Structures and Algorithms 2. Mathematical Analysis II 3. General Physics II	2
$\begin{array}{\|l\|} \hline \text { INZ004407W } \\ \text { INZ004409Wc } \\ \text { INZ004410Wc } \\ \hline \end{array}$	1. Computer Networks 2. Programming paradigms 3. Theory of Probabilistic and Statistics	3
$\begin{array}{\|l\|} \hline \text { INZ002024Wc } \\ \text { INZ002023Wc } \\ \text { INZ002025W } \\ \hline \end{array}$	1. Systems Analysis and Decision Support Methods 2. Databases 3. Script Languages	4
INZ004418W INZ002027W INZ004419W	1. Cybersecurity 2. Introduction to IoT 3. Software Engineering	5
$\begin{array}{\|l\|} \hline \text { INZ004427W } \\ \text { INZ002031W } \end{array}$	1. Artificial intelligence and knowledge engineering 2. Data Warehouses	6

4. Numbers of allowable deficit of ECTS points after particular semesters

Semester	Allowable deficit of ECTS points after semester
1	8
2	8
3	8
4	8
5	8
6	0
7	0

Opinion of student government legislative body

AAO3.2O2A.

Date
11.05. 2021

Date

Muteros Soluch Mateos S.lach
Name and surnamosightakeo Ntudent representative
Holouplan Reore
dr hab. Mi. Katarzyna Tworek, prof. uczelni

Dean's signature

Concerning principles of training crediting

POLITECHNIKA WROCLAWSKA WYDZIAL INFORMATYKII ZARZSDZANIM Wybraze St. Wyspimiskiten 27, 50 - 370 Wraclity tel. 713202010.713203504 fax. 713204295 UCHWAEA nr 8/1/2020-2024 RADY KONSULTACYJNEJ

Wydzialu Informatyki i Zarządzania Politechniki Wrocławskiej

z dnia 29.09.2020 r.
w sprawie przyjęcia zasad funkcjonowania Wydziałowego Systemu Jakości Kształcenia
§ 1. Rada Konsultacyjna Wydziału Informatyki i Zarządzania, działając w oparciu o ZW 34/2018 pozytywnie opiniuje aktualizację Wydziałowego Systemu Zapewnienia Jakości Kształcenia.
§ 2. Uchwała wchodzi w życie z dniem podjęcia.

> DZIEKAN
> Clolaywa Thone
> drhab. inz. Katenyms Tworek, prof. uczelni
> (1)

FACULTY of Computer Science and Management					
SUBJECT CARD					
Name in Polish: Zaawansowane technologie webowe					
Name in English: Advanced Web Technologies					
Main field of study (if applicable): Applied Computer Science					
Specialization (if applicable):					
Profile: practical					
Level and form of studies: $1^{\text {st }}$, full-time					
Kind of subject: optional					
Subject code INZ004436					
Group of courses: YES					
	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		60		
Form of crediting	Crediting with grade		Crediting with points		
For group of courses mark (X) final course	X				
Number of ECTS points	4		0		
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Ability to structured and object-oriented programming.
2. Basic database skills

SUBJECT OBJECTIVES

C1 The ability to develop advanced web applications using web frameworks

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Student could describe basic software components using by developing web systems
PEK_W02 Selects the appropriate technology for programming Web-based systems
relating to skills:
PEK_U01: Student is able to analyze and select the proper types and language constructs to support object-oriented programming paradigm on selected platform
PEK_U02: Student is able to implement a desktop application with the submitted requirements PEK_U03: Student using information from various sources and is able to choose the right technology to implement an advance web application.
relating to social competences:
PEU_K01 Presents the results of their work

Form of classes - lecture		Number of hours
Lec1	An introduction to the course and the principles of assessment. Architecture of web services.	2
Lec2	Single Page application principles	2
Lec3	Design patterns (MVC, MVP, MVVM)	2
Lec4	Overview of programming languages and usage of AJAX	2
Lec5	Frameworks overview	2
Lec6	Frontend, backend communication (REST)	2
Lec7	Prototyping	2
Lec8	Object-relational mapping Tools	2
Lec9	Django framework and architecture	2
Lec10	Case study of framework and architecture (II part)	2
Lec11	Performance of web services	2
Lec12	Test of web services	2
Lec13	Prediction in web services	2
Lec14	Web mining	2
Lec15	Final test	2
	Total hours	2
Lab 8	Web system with login ability	2
Lab 7	Web application - functionality part I	2
Lab 1	Introductory classes: presentation of health and safety regulations, fire protection rules as well as grading and class policies.	Lab
Lab 3	Define the functionality of web service Technology selection.	2
Presenting of developing environment 4	System design (UC Diagrams, DB Model, Mockups)	2
Lab	Web application - basic version	2
Web application applying data base	2	

Lab 9	Web application - functionality part II	2
Lab 10	Web application - functionality part III	2
Lab 11	Web application - functionality part IV	2
Lab 12	Applying charts in web systems	2
Lab 13	Final application + test	2
Lab 14	Bugs + Final application	2
Lab 15	Credit	2
	Total number of hours	$\mathbf{3 0}$
TEACHING TOOLS USED		
N1. Multimedia lecture. N2. Computer laboratory with development environment. N3. An e-learning system used for the publication of teaching materials, tests and communication		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
FL - points from laboratory	PEK_U01 PEK_U02 PEK_U03 PEU_K01	Implementation of tasks indicated by the teacher. Scoring on scale (0-10). Positive grade determined by proportional ranges from 50% to 100\% of total points.
P Lec	PEK_W01 PEK_W02	Solving tasks from test. Crediting: over 50\% points for correct answers in the final test. Positive grade determined by proportional ranges from 50% to 100\% of total points.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Scott, Emmit. SPA design and architecture: understanding single page web applications. Manning Publications Co., 2015.
[2] Ravindran, Arun. Django Design Patterns and Best Practices: Industry-standard web development techniques and solutions using Python. Packt Publishing Ltd, 2018.
[3] Souders, Steve. "High-performance web sites." Communications of the ACM 51.12 (2008):
[4] Crowder, Phillip, and David A. Crowder. Creating web sites bible. John Wiley \& Sons, 2008.

SECONDARY LITERATURE:

[1] Ganeshan, Amuthan. Spring MVC: Beginner's Guide. Packt Publishing Ltd, 2016.
[2] Melé, Antonio. Django 3 By Example: Build powerful and reliable Python web applications from scratch. Packt Publishing Ltd, 2020.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Jolanta Wrzuszczak-Noga, jolanta.wrzuszczak-noga@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Sztuczna Inteligencja i inżynierii wiedzy
Name of subject in English Artificial Intelligence and Knowledge Engineering
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practieal*
Level and form of studies: 1st/ 2nd level, uniform magister studies*, full-time / part-time*
Kind of subject: obligatory / optional/university-wide*
Subject code INZ004427
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		90		
Form of crediting	Examination/ eredititg with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark (X) final course					
Number of ECTS points	2		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,8		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES
 1. Programming skills (Java, C ++)
 2. Ability to read scientific texts with comprehension, including in English

SUBJECT OBJECTIVES

C1 Acquainting students with the field of artificial intelligence and its possibilities
C2 The ability to identify problems suitable for AI methods and select an appropriate approach to them

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Getting to know the field of artificial intelligence
PEU_W02 Learning the basic intelligent techniques, applicable to various types of problems
relating to skills:
PEU_U01 The ability to correctly identify problems suitable for the use of intelligent methods PEU_U02 Ability to select the appropriate intelligent technique for a given problem
relating to social competences:

PEU_K01 The ability to transfer the acquired knowledge and the results of experiments PEU_K02		
	PROGRAMME CONTENT	
Lecture	Number of hours	
	Lec 1	Introductory information to the course, discussion on artificial intelligence: understanding and defining AI, the state of development and prospects of AI in Poland

Lab10	Exercise 3: Implementing the third stage, algae. alpha-beta	2
Lab11	Exercise 3: Finishing the exercise, submitting the report	2
Lab12	Exercise 4: The application of selected machine learning methods in the analysis of text or images - introducing students to the problems of the exercise	2
Lab13	Exercise 4: Carrying out the first stage of the exercise	2
Lab14	Exercise 4: Completing the exercise, submitting the report	2
Lab15	Discussion and summary of the classes, completion of the course	2
	Total hours	30
TEACHING TOOLS USED		
N1. Projector		
N2. Remote education systems available at Wrocław University of Science and Technology		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1		Points for individual laboratory exercises, in accordance with the regulations provided to students, the sum of points will provide the basis for the final laboratory grade.
P Written exam in the form of a test - a selection test with negative points for a wrong answer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] M. Tim Jones, ARTIFICIAL INTELLIGENCE: A Systems Approach. Infinity Science Press LLC, 2008, dostępna pod adresem: https://archive.org/details/2008ArtificialIntelligenceASystemsApproachM.TimJones http://www.freebookspot.es/Comments.aspx?Element_ID=306137
[2] Mariusz Flasiński, Wstęp do sztucznej inteligencji. Wydawnictwo Naukowe PWN, 2021
[3] Introduction to Machine Learning. Draft, Nils J. Nilsson http://ai.stanford.edu/~nilsson, 2010. Stanford University.
[4] Kwaśnicka H., Spirydowicz A., Uczący się komputer. Programowanie gier logicznych. Oficyna Wydawnicza PWr. Wrocław. 2004.

SECONDARY LITERATURE:

[1] John R. Searle Umysł, mózg i nauka, Wyd. Naukowe PWN, W-wa, 1995, seria Logos. Książkowa wersja cyklu 6 wykładów, po 30 minut każdy na antenie, każdy wykład stanowi całość, wszystkie też stanowią jedną całość - oryginalne treści. Wykłady na zaproszenie dla BBC w 1984 roku, tzw. Wykłady Reithowskie
[2] Terry Dartnall Ed., Artificial Intelligence and Creativity, Kluwer Academic Publishers (Studies in Cognitive Systems, volume 17), 1994.
[3] Publikacje w czasopismach wskazane przez prowadzącego, internetowe źródła o światowych projektach z AI

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Halina Kwaśnicka, halina.kwasnicka@pwr.edu.pl

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT

SUBJECT CARD
Name of subject in Polish Podstawy przedsiębiorczości

Profile: academic
Level and form of studies: 1 st, full-time
Kind of subject: obligatory
Subject code ZMZ001643W
Group of courses NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	$\mathbf{3 0}$				
Number of hours of total student workload (CNPS)	$\mathbf{6 0}$				
Form of crediting	crediting with grade	Examination / crediting with grade*	Examination / crediting with grade*	crediting with grade	Examination crediting with grade*
For group of courses mark (X) final course					
Number of ECTS points	$\mathbf{2}$				
including number of ECTS points for practical classes (P)					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	$\mathbf{1 , 2}$				

delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.The course is dedicated to students of various specializations who want to gain elementary knowledge about creating and managing the companies (also on Polish market).

SUBJECT OBJECTIVES

C1. Acquiring knowledge of entrepreneurship.
C2. Getting to know the instruments (strategies, models, methods) necessary for business management
C3. An acquaintance with principles of a business plan's preparation and presentation.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:
PEK_W01 has a structured knowledge of creating organizational and legal forms of conducting business activity in terms of creating new enterprises,
PEK_W02 characterizes and knows the basic areas of capital raising and strategies, models, management methods and development of business organization.

Relating to skills:
PEK_U01 can search and interpret knowledge related to entrepreneurship,

PEK_U02 is able to construct a business plan for a new company.
Relating to social competences:
PEK_K01 will acquire an active entrepreneurial attitude to the realization of undertakings innovative and creative thinking

PROGRAMME CONTENT

Lecture		Number of hours
Lec 1	Defining entrepreneurship and supporting institutions. Global Entrepreneurship Index.	2
Lec 2	Types of entrepreneurship - nature of business. Characteristics of the entrepreneur	2
Lec 3	Locations of entrepreneurship: households, administrative institutions and market. An exchange of information	2
Lec 4	Analysis of the company's environment	2
Lec 5	Business models and marketing strategy	2
Lec 6	Sources of financing for entrepreneurial activities. Budget elements.	2
Lec 7	Selection of taxation forms. Basic financial statements and factors.	2
Lec 8	Insurance and social security in running a business	2
Lec 9	Material and financial investments	2
Lec 10	Business plan structure	2
Lec 11	Business plan examples	2
Lec 12	Business risk management	2
Lec 13	Electronic business security	2
Lec 14	Intellectual property protection	2
Lec 15	Final test	2
	Total hours	30
N1. multimedia presentation		
N2. presentation of sub-tasks	TEACHING TOOLS USED	
N3. discussion		2

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P - concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEK_W01, PEK_W02,PEK_U01, PEK_U02,,	Measuring creative thinking by participating in a discusion during the class (lecture)
F2	PEK_W01, PEK_W02,PEK_U01, PEK_U02,	Knowledge measurement by final test
F3	PEK_K01	

$\mathrm{P}=0,25 \mathrm{~F} 1+0,5 \mathrm{~F} 2+0,25 \mathrm{~F} 3$

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE: online access from the PWr library

[1] Bill Aulet, Chris Snyder; Marius Ursache, Disciplined Entrepreneurship Workbook, 2017, Wiley
[2] Karin Berglund, Karen Verduijn, Revitalizing Entrepreneurship Education, 2018, Routledge,
[3] Mathew J. Manimala, Entrepreneurship Education, 2017, Springer Singapore
[4] IB. V. Khandekar, Sameer Phan, Iinnovation, Incubation and Entrepreneurship, 2017, Singapore Springer Singapore

SECONDARY LITERATURE: online access from the PWr library

[5] Álvaro Cuervo ; Álvaro Cuervo; Domingo Ribeiro; Salvador Roig, Entrepreneurship, 2007, Springer Berlin Heidelberg,
[6] Legge, Entrepreneurship, 2004, Macmillan Education UK,
[7] Entrepreneurship, The AMA Dictionary of Business and Management, 2013, : AMACOM, Publishing Division of the American Management Association
[8] Mehmet Huseyin Danis, Hakan Demir, Ender Can, Ugur Bilgin Country Experiences in Economic Development, Management and Entrepreneurship, 2017, Springer International Publishin

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Anna Maria Kamińska, PhD. Anna.maria.kaminska@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Wprowadzenie do inżynierii oprogramowania
Name of subject in English Basics of Software Engineering
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic*
Level and form of studies: 1st *, full-time *
Kind of subject: obligatory *
Subject code INZ004414
Group of courses NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)			15		
Number of hours of total student workload (CNPS)			30		
Form of crediting	Examination/ credititg with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points			1		
including number of ECTS points for practical (P) classes			1		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of object-oriented programming paradigm

SUBJECT OBJECTIVES

C1 To gain practical skills in requirement specification, domain modeling and software testing.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
relating to skills:
PEK_U01 student specifies requirements using different techniques
PEK_U02 student develops a user interface prototype
PEK_U03 student develops a system data model with business constraints on the software system
PEK_U04 student defines test cases

Laboratory		Number of hours
Lab 1	Organizational activities.	1
Lab 2	Decision tables. User stories.	2

Lab 3	Use-case diagram.	2
Lab 4	Use-case specifications: textual, activity diagrams, acceptance tests.	2
Lab 5	User interface prototype.	2
Lab 6	Data model.	2
Lab 7	OCL.	2
Lab 8	Test cases.	2
	Total hours	15
N1. Examples of technical documentation and the UML models used in the software engineering area		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1-requirement specification	PEU_U01	Labs 2-4, each with tasks for 10 points max.
F2 - user interface prototype	PEU_U02	Lab 5 (10 points max).
F3 - data model and constraints	PEU_U03	Labs 6-7, each with tasks for 10 points max.
F4 - test cases	PEU_U04	Lab 7 (10 points max).
P1 - final grade	$\begin{aligned} & \text { PEU_U01 } \\ & \text { PEU_U02 } \\ & \text { PEU_U03 } \\ & \text { PEU_U04 } \end{aligned}$	$\begin{aligned} & \mathrm{P}=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3 \text { (max. } 60 \text { points) } \\ & \mathrm{P}<50 \% \rightarrow 2.0 \\ & \mathrm{P} \in[50,60) \rightarrow 3.0 \\ & \mathrm{P} \in[60,70) \rightarrow 3.5 \\ & \mathrm{P} \in[70,80) \rightarrow 4.0 \\ & \mathrm{P} \in[80,90) \rightarrow 4.5 \\ & \mathrm{P} \in[90,96) \rightarrow 5.0 \\ & \mathrm{P} \in[96,100] \rightarrow 5.5 \end{aligned}$
C		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] M. Fowler, UML distilled: a brief guide to the standard object modeling language, Addison-Wesley 2007 [2] Meyer, Software Engineering Springer International Publishing, 2015 (e resources) [3] B. Hambling, Software Testing, BCS, 2015 (e resources)		
SECONDARY LITERATURE:		
[1] Rumpe, Modeling with UML, Springer International Publishing, 2016 (e resources)[2] Rumpe, Agile Modeling with UML, Springer International Publishing, 2017 (e resources)		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Bogumiła Hnatkowska, Bogumila.Hnatkowska@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Wprowadzenie do inżynierii oprogramowania
Name of subject in English Basics of Software Engineering
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic*
Level and form of studies: 1 st *, full-time *
Kind of subject: obligatory *
Subject code INZ004414
Group of courses YES*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15	30			
Number of hours of total student workload (CNPS)	90				
Form of crediting	Examination/ credititg with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	3				
including number of ECTS points for practical (P) classes	-				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,8				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of object-oriented programming paradigm

SUBJECT OBJECTIVES

C1 To obtain basic knowledge about primary notions in software engineering, including life-cycle models, modelling languages and software testing
C2 To gain practical skills in requirement specification, domain modeling and software testing.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Student characterizes software lifecycle models
PEU_W02 Student knows UML and OCL constructs
PEU_W03 Student distinguishes between types of tests and test levels
relating to skills:
PEU_U01 Student prepares a software requirement specification (user stories, use-case PEU_U02
Student develops a data model for a software system (class diagram)
PEU_U03 Student specifies business constraints for a software system (in OCL)
PEU_U04 Student specifies tests for a software system at different levels

PROGRAM CONTENT		
	Lectures	Number of hours
Lec 1	Introduction do Software Engineering. Life-cycle models.	2
Lec 2	Requirement specification. Introduction to UML. Use-case diagrams. User-stories.	3
Lec 3	Use-case specifications. Activity diagrams. Acceptance-tests. GUI prototypes.	2
Lec 4	Analysis. Class diagrams.	2
Lec 5	OCL.	2
Lec 6	Testing.	2
Lec 7	Software development methodologies - review. Final test.	2
	Total hours	15
	Classes	$\begin{aligned} & \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ & \hline \end{aligned}$
Cl 1	Course introduction.	1
Cl 2	Flowcharts and their transformation to a source code.	3
Cl 3	Decision tables. Decision trees.	2
Cl 4	Requirements specification: User-stories (epics)	2
Cl 5	Requirements specification: Use-case diagrams.	2
Cl 6	Textual use-case specifications. Activity diagrams. Acceptance-tests.	4
Cl 7	Intermediate test.	2
Cl 8	Glossary. Class diagrams. Transformation to source code.	4
Cl 9	OCL.	4
Cl 10	Testing.	4
Cl 11	Final test.	2
	Total hours	30
TEACHING TOOLS USED		
N1. Examples of technical documentation and the UML models used in the software engineering area N2. Materials prepared by the lecturer		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 - intermediate test (classwork)	PEU_U01	Classwork - written work (tasks to solve) checking the trained skills. maxF1 - maximal number of points for F1
F2 - final test (classwork)	PEU_U01 PEU_U02 PEU_U03 PEU_U04	Classwork - written work (tasks to solve) checking the trained skills. maxF2 - maximal number of points for F2
F3 - activity points	PEU_U02 PEU_U03 PEU_U04	Number of points for student's activity during classes maxF3 $=10 \%$ (maxF1 + maxF2)

P1 - final evaluation of classwork	$\begin{aligned} & \text { PEU_U02 } \\ & \text { PEU_U03 } \\ & \text { PEU_U04 } \end{aligned}$	$\begin{aligned} & \mathrm{P}=(\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3) /(\operatorname{maxF} 1+\operatorname{maxF} 2+\operatorname{maxF} 3) \\ & \mathrm{P}<50 \% \rightarrow 2.0 \\ & \mathrm{P} \in[50,60) \rightarrow 3.0 \\ & \mathrm{P} \in[60,70) \rightarrow 3.5 \\ & \mathrm{P} \in[70,80) \rightarrow 4.0 \\ & \mathrm{P} \in[80,90) \rightarrow 4.5 \\ & \mathrm{P} \in[90,96) \rightarrow 5.0 \\ & \mathrm{P} \in[96,100] \rightarrow 5.5 \end{aligned}$
P2 - final evaluation of lecture	$\begin{aligned} & \text { PEU_W01 } \\ & \text { PEU_W02 } \\ & \text { PEU_W03 } \end{aligned}$	Colloquium - written work (theoretical problems) checking the gained knowledge from lecture scope. The work is given a positive evaluation, if the student scores at least 50% of the maximum number of points. The final evaluation of the lecture is determined on the basis of this mark. The specific rule is the same as for P 1
P - final grade	All	$\mathrm{P}=0,7 * \mathrm{P} 1+0,3$ * P 2
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] M. Fowler, UML distilled: a brief guide to the standard object modeling language, Addison-Wesley 2007 [2] Meyer, Software Engineering Springer International Publishing, 2015 (e resources) [3] B. Hambling, Software Testing, BCS, 2015 (e resources)		
SECONDARY LITERATURE:		
[1] Rumpe, Modeling with UML, Springer International Publishing, 2016 (e resources) [2] Rumpe, Agile Modeling with UML, Springer International Publishing, 2017 (e resources)		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Bogumiła Hnatkowska, Bogumila.Hnatkowska@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Programowanie w chmurze
Name of subject in English: Cloud programming
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): \qquad
Profile: academic / practical*
Level and form of studies: 1 st $/$ 2nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code: INZ004470
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination/ crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	2			2	
including number of ECTS points for practical (P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2			1,2	

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Programming skills in Java / Kotlin
2. Basic knowledge of databases
3. Programming skills to create applications for the Android platform

SUBJECT OBJECTIVES

C1 To familiarize students with various models of cloud computing, offered services and learn about good practices of programming and implementing applications to the cloud.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 - knows various models of cloud computing and the types of services offered.
PEU_W02 - lists and describes Infrastructure as Code tools
PEU_W03 - lists and describes tools for the orchestration of cloud services
relating to skills:
PEU_U01 - implements applications in the cloud using various types of data services, computing services, application services, serverless services.

Lectures		Number of hours
Lec 1	Introduction to the subject, course program description, organization of classes and rules of passing. Introduction of basic concepts, evolution and standardization in the field of cloud computing	1
Lec 2	Cloud security	2
Lec 3	Basic AWS services	2
Lec 4	Docker and Packer	2
Lec 5	Infrastructure as Code tools	4
Lec 6	Cloud service orchestration	4
Lec 7	Cloud data storage	2
Lec 8	Serverless architecture	2
Lec 9	Design and implementation of a cloud application	4
Lec 10	Continuous integration tools	2
Lec 11	Good practices in cloud solutions	2
Lec 12	Test	2
	Total hours	30
	Laboratory	Number of hours
Lab 1	Preview, health and safety course. Presentation of the scope and principles of evaluation.	2
Lab 2	Design and implementation of a web application - task 1	6
Lab 3	Design and implementation of a mobile application - task 2	6
Lab 4	Dockerization of designed applications - task 3	2
Lab 5	Implementation of the cloud infrastructure using Terraform - task 4	4
Lab 6	Orchestration of the designed application - task 5	4
Lab 7	Application implementation in serverless architecture - task 6	4
Lab 8	Summary and survey of laboratory classes; issuing grades	4
	Total hours	30
TEACHING TOOLS USED		
N1. An informative lecture with elements of a problem lecture, supported by multimedia presentations. N2. Integrated development environment supporting application development on AWS platform. N3. Student's own work - literature studies.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 - task 1	PEU_U01	Assessment of the solution of the task 1 on a scale of $0 . .10$ or traditional

F2 - task 2	PEU_U01	Assessment of the solution of the task 1 on a scale of 0..10 or traditional
F3 - task 3	PEU_U01	Assessment of the solution of the task 1 on a scale of 0..10 or traditional
F4 - task 4	PEU_U01	Assessment of the solution of the task 1 on a scale of 0..10 or traditional.
F5 - task 5	PEU_U01	Assessment of the solution of the task 1 on a scale of 0..10 or traditional
F6 - task 6	Assessment of the solution of the task 1 on a scale of 0..10 or traditional	
P1 - partial evaluation (laboratory)	PEU_U01	A pass mark is awarded from the laboratory if the student obtains at least 50% of the maximum number of points. Later, the rating is increased by 0.5 every 10\%.
P2 - partial evaluation		
(lecture)	Test - written, containing open and test questions, checking the knowledge and skills of the lecture. The test is passed if the student obtains at least 50\% of the maximum number of points. Later, the rating is increased by 0.5 every 10\%. (condition: P1 is positive).	
PEU_W01, PEU_W02, PEU_W03		
P - final evaluation	The P3 final score is calculated from the 70\% P1 score and 30\% of the P2	
final score. The final grade P3 is		
positive when both component		
assessments are positive.		

FACULTY of Computer Science and Management
SUBJECT CARD
Name of subject in Polish: Architektura komputerów
Name of subject in English: Computer Architecture
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: $1^{\text {st }}$ level / full-time
Kind of subject: obligatory
Subject code INZ004404
Group of courses NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	$\begin{aligned} & \hline \begin{array}{l} \text { Crediting } \\ \text { with } \\ \text { grade* } \end{array} \\ & \hline \end{aligned}$	Examination / crediting with grade*	Crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes	0		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of computer systems organization and design of combinational and sequential circuits.
2. Programming skills at a basic level

SUBJECT OBJECTIVES

C1 Acquainting students with the architecture of modern computers, including the memory organization, and evaluation of their performance
C2 Acquisition of skills to design and construct simple combinational and sequential circuits
C3 Acquisition of programming skills in assembly language of selected processor at a basic level

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:
PEK_W01 Knows different computer architectures including the architecture of the parallel computers
PEK_W02 Knows the computer memory organization, especially memory cache PEK_ W03 Knows the basics of pipeline processing, including how to solve the problems associated with this type of processing

PEK_W04 Knows the basic methods of evaluating the performance of parallel computers Relating to skills: PEK_U01 Is able to write simple programs in assembly language of selected processor PEK_U02 Can design and build simple combinational and sequential circuits		
PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Introduction to computer architecture, taxonomy of computer architectures, Harvard, Princeton and Harvard-Princeton architectures, Instruction Set Architecture (ISA).	2
Lec 2	Data representation in computer systems, integer and floating point coding, IEEE 754 standard, Little and Big Endian.	2
Lec 3	RISC vs CISC architecture, similarities, differences, exemplary realizations of them. Architecture and organization of the chosen RISC processor.	2
Lec 4	Introduction to low-level programming. Compilation, assembling, linking. Program organization in assembler.	2
Lec 5	Programming in assembly language I.	2
Lec 6	Programming in assembly language II.	2
Lec 7	Organization of the stack in RISC architecture.	2
Lec 8	Advanced assembly programming techniques.	2
Lec 9	Memory organization, memory hierarchy, cache memory - methods if it's realization (associative, direct mapped, set-associative) - examples, virtual memory - paging, segmentation.	2
Lec 10	Organization of RISC computers: pipeline processing, hardware control unit. Delay branches, branch prediction schemas.	2
Lec 11	Security of computer architectures, buffer overflow attacks. Multiprocessor and multicomputer systems - distributed and shared memory, vector processors.	2
Lec 12	Parallel systems evaluation: performance metrics, scalability of parallel system.	2
Lec 13	Static and dynamic interconnection networks, used topologies, routing mechanisms.	2
Lec 14	Final test.	2
Lec 15	New trends in computer architecture.	2
	Total hours	30
	Laboratory	$\begin{aligned} & \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ & \hline \end{aligned}$
Lab 1	Presentation of lab scope, presentation of grading principles, training from health and safety at work. Familiarization with laboratory tool used for the realization of combinational and sequential circuits.	2
Lab 2	Introductory laboratory - the analysis of the chosen circuit.	2
Lab 3	Designing of combinational circuits I.	2
Lab 4	Designing of combinational circuits II.	2
Lab 5	The analysis of systems with static hazard.	2

Lab 6	The analysis of the synchronous circuit.	2		
Lab 7	The synthesis of the synchronous circuit.	2		
Lab 8	Introduction to the lab in assembly language programming, familiarization with the working environment.	2		
Lab 9	Implementation of a simple program in assembler, running it in different execution modes, observing the contents of the registers during program execution.	2		
Lab 10	Implementation of a program that uses conditional branches.	2		
Lab 11	Familiarization with the implementation of different iteration instructions in assembly language.	2		
Lab 12	Familiarization with arrays implementation in assembly language.	2		
Lab 13	Familiarization with procedures implementation in assembly language.	2		
Lab 14	Implementation of a program that used nested procedures.	2		
Lab 15	Implementation of a program with floating point operations.	2		
	Total hours	30		
TEACHING TOOLS USED				
	N1. Lecture supported by multimedia presentations (slideshow) N2. SPIM and MIPS32 Simulator - http://pages.cs.wisc.edu/ \sim Larus / spim.html N3. MARS (MIPS Assembler and Runtime Simulator) - http://courses.missouristate.edu/KenVollmar/MARS/			
N4. Mounting plates allowing realization of combinational and sequential circuits				

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 - (lecture)	$\begin{array}{\|l\|} \hline \text { PEK_W01 } \\ \text { PEK_W02 } \\ \text { PEK_W03 } \\ \text { PEK_W04_W } \end{array}$	Quizzes during the lecture, student activity during the lecture, students answering on questions during lecture
$\begin{aligned} & \text { F2 - (switching theory laboratory) - (Lab1- } \\ & \text { Lab7) } \end{aligned}$	PEK_U01	Checking of student preparation for exercise realization, assessment (points allocated) the reports of the exercises
$\begin{aligned} & \text { F3 - (assembly programming laboratory) - } \\ & \text { (Lab8- Lab15) } \end{aligned}$	PEK_U02	Evaluation of the quality of submitted by students' programs, implementation during the laboratory additional tasks formulated during the laboratory (on-line programing
P - credits: independent for F1 and combined F2 / F3. The condition for passing the laboratory part is obtaining at least 40% of points from each activity: F2, F3.		
PRIMARY AND SECONDARY LITERATURE		

PRIMARY LITERATURE:

[1] D. Patterson, J. Hennessy, Computer Organization and design, Elsevier
[2] D. Harris, S. Harris „Digital Design and Computer Architecture", Morgan Kaufman, 2012 SECONDARY LITERATURE:
[1] D. Patterson, J. Hennessy, "Computer Architecture - a Quantitave Approach", Elsevier, 2012
[2] G. Ifrah, "The Universal History of Computing: From the Abacus to the Quantum Computer", Wiley, 2002

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Jan Kwiatkowski, jan.kwiatkowski@pwr.wroc.pl
Radosław Michalski, radoslaw.michalski@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Grafika komputerowa

Name of subject in English Computer Graphics
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic *
Level and form of studies: 1st, uniform magister studies, full-time
Kind of subject: optional
Subject code INZ004437
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	120				
Form of crediting	Crediting with grade	Examination / crediting with grade*	Crediting with grade	Examination / crediting with grade*	$\begin{array}{\|c\|} \hline \text { Examination } \\ \text { / crediting } \\ \text { with grade* } \end{array}$
For group of courses mark final course with (X)	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knows elementary notions and computational methods of linear algebra and geometry in 2D and 3D
2. Is fluent in Java programming and knows basic general purpose algorithms and data types
3. Knows one of popular development environments for C++ or Java

SUBJECT OBJECTIVES

C1 The students should know and understand the methods of 2D image rendering and 3D visualization, deeply understand how they work and what are their features and limitations.
C2 The students should know how to use practically standard software components supporting 2D and 3D CG application development in Java environment
C3 The students should be able to select appropriate methods and software components according to the particular needs related to the CG application domain and build CG application that renders plain image or 3D scene view using these software components

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Knows color spaces used in CG and understands differences between them PEK_W02 Knows principles of transformation composition in homogenous coordinates PEK_W03 Understands principles of curves modeling in 2D

PEK_W04 Knows properties of commonly used 3d rendering methods
PEK_W05 Knows and understands stages of typical 3D rendering pipeline
relating to skills:
PEK_U01 Can implement procedural pattern rendering of regular 2D using raster and vector approach
PEK_U02 Is able to design and implement graphical UI using standard software components available in Java
PEK_U03 Can construct the transformation matrix in homogenous coordinates corresponding to visually specified transformation
PEK_U04 Can implement simple CG applications for 3D rendering based on OpenGL usage

PROGRAMME CONTENT		Form of classes - lecture
	Number of hours	
Lec 1	Introduction, defining the scope of computer graphics, relation to other computer engineering domains, basic definitions and notions, raster graphics and vector graphics	2
Lec 2	CG program architecture, components for GUI building in Java2D and Swing	2
Lec 3	Color spaces in CG	2
Lec 4	Transformations in homogenous coordinates, general principles and advantages, affine transformation, derivation of transformation matrices for scaling rotation and translation	2
Lec 5	Derivation of transformation matrix for compound transformations in homogenous transformations, transformation superposition, examples	2
Lec 6	Bilinear interpolation of image attributes, application in image transformations, Gouraud shading	2
Lec 7	Curves modeling in 2D, Lagrange and Bezier curves, piecewise defined curves, B-splines	2
Lec 8	Introduction to 3D image synthesis, basic notions, scene description elements, lighting model, local and global illumination	2
Lec 9	3D scene geometry description, boundary representation, CSG, implicit surfaces, metaballs, volumetric representations, lighting models, Phong lighting model	2
Lec 10	Rendering pipeline, geometric transformations in 3D, observer coordinate system, projections from 3D to 2D	2
Lec 11	Visibility analysis methods, algorithms based on face sorting z-buffer algorithm, displaying transparent objects with z-buffer	2
Lec 12	OpenGL library, core functionality, rendering program organization for OpenGL, examples of visual effects available in OpenGL programs	2
Lec 13	Providing geometry to OpenGL, defining geometric transformations, application of transformation matrix stack, defining observer parameters, analysis of exemplary programs	2
Lec 14	Other 3D rendering component packages review: Direct3D and Java3D.	2

Lec 15	Brief review of advanced 3D rendering methods, backward ray tracing, radiosity, photon mapping	2
	Total hours	$\mathbf{3 0}$
Form of classes - laboratory	Number of hours	
Lab1	Lab scope safety regulations grading policy presentation, installation of IDE, short introduction to CG packages in Java	2
Lab2	Procedural rendering of 2D patterns using BufferedImage class	2
Lab3	Vector graphics components usage in interactive graphics, simple animation using vector graphics components	2
Lab4	GUI implementation using Swing components	2
Lab5	Image composition using affine transformations	4
Lab6	Bilinear and bicubic color interpolation, application to image scaling	2
Lab7	Implementation of Gouraud shading - displaying polygons with Gouraud shading	2
Lab8	Simple rendering of 3D scenes with Phong lighting model	2
Lab9	3D shape modeling by curve rotation and translation - conversion to triangle mesh, implementation of wireframe display of triangle meshes	4
Lab10	Scene rendering program based on OpenGL or java3D	2
Lab11	3D visualization program with observer interactive setting	4
Lab12	Summary, final grading	2
	Total hours	30
N1. Multimedia presentation used in lectures	2	
N2. Compilers and development environment for Java and C++		
N3. Freeware and open source programs for 3D scene modeling		
N4. E-learning system used to publish presentations, documents and other data related to the		
lecture and lab assignments		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation(F - forming (during semester), P - concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1 - Lab2	PEK_U01	Each assignment Lab2-Lab11 will be evaluated in the scale 2.0 - 5.0. The elements being evaluated: conformance with the assignment specification, ability to make small extensions and modifications to home-prepared code, relevance of used methods, efficiency, ability to predict results of processing of specified input data set, code clarity
F2 - Lab3	As in the case of grading of assignment in Lab2	
F3 - Lab4	PEK_U01 PEK_W02	As in the case of grading of assignment in Lab2
F4 - Lab5	PEK_W02 PEK_W02 PEK_U03	As in the case of grading of assignment in Lab2, scoring: $0-3$.

F5-Lab6	$\begin{aligned} & \text { PEK_W01 } \\ & \text { PEK_U02 } \end{aligned}$	
F6-Lab7	PEK_W04	As in the case of grading of assignment in Lab2, scoring: $0-3$.
F7-Lab8	$\begin{array}{\|l} \hline \text { PEK_W01 } \\ \text { PEK_W04 } \\ \text { PEK_W05 } \end{array}$	As in the case of grading of assignment in Lab2
F8-Lab9	$\begin{aligned} & \text { PEK_W03 } \\ & \text { PEK_U04 } \end{aligned}$	As in the case of grading of assignment in Lab2
F9-Lab10	PEK_W04 PEK_W05 PEK_U02 PEK_U04	As in the case of grading of assignment in Lab2
F10-Lab11	$\begin{array}{\|l\|} \hline \text { PEK_W04 } \\ \text { PEK_U02 } \\ \text { PEK_U04 } \end{array}$	As in the case of grading of assignment in Lab2, scoring: $0-3$.
P1 - final laboratory grade computed according to the following scale 0.00-8.99 - unsatisfactory 8.00-9.99 - satisfactory 10.00-11.99 - satisfactory plus 12.00-13.99-good 10.00-14.99 - good plus 14.99-16.00 - very good P2 - final lecture grade will be based on written exam results. The exam consists in solving a number of test queries and computational problems. Each query is assigned a number of scores. The final grade is based on total scores percentage according to the following scale 0-50\% - unsatisfactory $51-60 \%$ - satisfactory 61-70\% - satisfactory plus 80-89\% - good 90-95\% - good plus 96-100\% - very good		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Foley J.D. et al. Computer Graphics, Principles and Practice, Third Edition, AdditionWesley, 2013 [2] Klawonn F., Introduction to Computer Graphics: Using Java 2D and 3D, Second edition, Springer 2012 [3] Shreiner D. et al., OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3 (8th Edition)		
[1] Ammerall L., Zhang K., Computer Graphics for Java Programmers, John Wiley \& Sons, 2007 [2] McReynolds T., Blythe D., Advanced Graphics Programming Using OpenGL, Elsevier 2005		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Jerzy Sas, jerzy.sas@pwr.wroc.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Sieci komputerowe
Name of subject in English: Computer Networks
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic *
Level and form of studies: $1 \mathrm{st} / \mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optional / university-wide*
Subject code INZ004407
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	45		30		
Number of hours of total student workload (CNPS)	110		90		
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	4		3		
Number of ECTS points	4		3		
including number of ECTS points for practical (P) classes	2,4		1,8		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. K1INF_W01 - Has basic knowledge in the field of linear algebra, analytical geometry and mathematical analysis, necessary to solve computational problems of engineering character from technical and non-technical disciplines
2. K1INF_W02 - Has basic knowledge in the field of discrete mathematics, mathematical logic, probability theory and mathematical statistics, necessary to solve IT engineering problems.
3. K1INF_W07-Has basic knowledge in the field of computer structure, organization and architecture.

SUBJECT OBJECTIVES

C1. - Acquiring knowledge in the field of layered computer networks, construction and functionality of network protocols, principles of network protocols cooperation in the stacks.
C2. - Acquiring knowledge in the field of architectures, operations, construction and services of computer networks.

C3. - Acquiring basic skills of network devices configuration, as well as analysis of their

 operation and detection of errors in computer networks.
SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 - Has basic and systematic knowledge in the field of layered computer networks, structure and functionality of network protocols, principles of cooperation of network protocols in stacks.
PEK_W02 - Has basic knowledge in the field of architectures, operations, construction and services of computer networks.
relating to skills:
PEK_U01 - Has basic skills in the configuration of network devices, as well as analysis of their operation and detection of basic errors in computer networks.

PROGRAM CONTENT

Lectures		Number of hours
Lec1	Plan of the lecture. Explanation of the assessment method. Introduction to computer networks. The benefits and threats of global digitization and unlimited communication. The physical layer of the ISO-OSI model. Physical media. Description of the construction and use of passive and active devices. Description of purpose, arrangement and numbering of different interfaces. Description of tools for testing and making computer cables.	3
Lec2	Data link layer of the ISO-OSI model. Ethernet protocol.	3
Lec3	Network layer of the ISO-OSI model. IPv4 and IPv6 protocols.	3
Lec4	Network layer of the ISO-OSI model. Addressing, subnetting with fixed and variable mask length.	3
Lec5	The transport layer of the ISO-OSI model. TCP and UDP protocols.	3
Lec6	Network devices architecture. Introduction to the configuration of network devices.	3
Lec7	Introduction to administration in computer networks. Security, configuration management, network operating system management, connection encryption.	3
Lec8	Static routing.	3
Lec9	Dynamic routing on example of RIP protocol.	3
Lec10	Basic operation and configuration of the switch.	3
Lec11	VLANs and trunk connections.	3
Lec12	Routing between VLANs.	3
Lec13	DHCP service in IPv4 and IPv6 networks.	3
Lec14	NAT and PAT service.	3
Lec15	Other services supporting the operation of computer networks. Traffic management. Basic access control lists. Directions of computer network development. New generations of computer networks. New concepts of management and network configuration.	3
		3

	Total hours	45
	Laboratory	Number of hours
Lab1	Organizational classes. Explanation of the assessment method. Principles of health and safety. Presentation of the network topology in the laboratory and the deployment of network devices. Presentation of various types of media, passive devices and tools for making cables. Construction of active devices, description of interfaces.	2
Lab2	Physical media. Communication media. Sockets, terminals, patch panels, shielding. Making cables: straight, crossover, console.	2
Lab3	Data link layer: Types of interfaces. Laboratory topology. Basic IP configuration. Connection tests between computers. Wireshark application. Ethernet frame. Arp protocol. Additional: check for mac addresses table on the switch.	2
Lab4	Network layer: IPv4, IPv6 addressing. Special addresses. Subnetting with fixed mask. Subnetting with variable mask - VLSM.	2
Lab5	Network layer: IP configuration in Windows and Linux. Connections between computers. ICMP protocol. Tracking network path (tracert, traceroute, pathping). Analysis of response times. DNS address, nslookup command.	2
Lab6	Transport layer: TCP (FTP). UDP protocol (TFTP, DNS, DHCP). Wireshark. The netstat command.	2
Lab7	Architecture of active devices: Differentiation of interfaces. Console connection. Network connection. CLI interface. Basic configuration. IPv4 and IPv6 configuration. Communication tests. Remote configuration via telnet.	2

Lab8	Securing devices against unauthorized access, configuration management and operating system: Router protection. Switch protection. Analysis of the telnet and SSH connection in Wireshark: Collecting information about the network. Configuration backup (Startup, TFTP, USB, Terminal). Password recovery procedure on the router. Password recovery procedure on the switch.	2
Lab9	Static routing: Deafult Gateway. Cisco IPv4 routers. Cisco IPv6 routers. Detection of configuration errors (troubleshooting). Additional: routing using Windows and Linux systems.	2
Lab10	Dynamic routing: RIPv1. RIPv2. Network summation, passive interfaces. RIPv2 IPv6.	2
Lab11	Configuration of advanced switch options: Protecting the switch. Change of the management VLAN. Port configuration and securing.	2
Lab12	VLAN networks: VLAN. Trunk (connection options). Routing between VLANs: Routing through dedicated ports. Routing using a trunk connection. Additional: Analysis of the 802.1Q Ethernet frame.	2
Lab13	Configuration of the DHCP server: DHCP on the local router. DHCP on the remote router. DHCP on the switch. DHCP IPv6: SLAAC, stateless (SLAAC + DHCPv6), statefull (DHCPv6).	2
Lab14	NAT: Static NAT. Dynamic NAT. PAT.	2
Lab15	Ancillary services: CDP, LLDP. NTP. Syslog.	2
	Total hours	30
TEACHING TOOLS USED		

N1. - Lecture supported by multimedia presentations and a simulator.
N2. - Various types of network software.
N3. - Simulator enabling creation, configuration and testing of various topologies of computer networks.
N4. - Quizzes and knowledge tests.
N5. - A real environment for creating, configuring and testing various topologies of computer networks.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F forming (during semester), P concluding (at semester end)	$\begin{aligned} & \text { Learning } \\ & \text { outcomes } \\ & \text { number } \end{aligned}$	Way of evaluating learning outcomes achievement
F1-F14 - partial grades obtained at labs La2-15	PEK_U01	Student's presence. Theoretical preparation for the lab (quiz, test, other) on a point, percentage or traditional scale. Evaluation of the lab tasks on a point or traditional scale.
$\begin{array}{\|l\|} \hline \text { P1 - concluding } \\ \text { lab grade } \\ \hline \end{array}$	PEK_U01	An average of the F1-14 forming grades
F15 - forming lecture grade	$\begin{aligned} & \hline \text { PEK_W01, } \\ & \text { PEK_W02 } \end{aligned}$	Observation of student activity. Solving sample problems and tasks.
P2 - concluding lecture grade	$\begin{aligned} & \text { PEK_W01 } \\ & \text { PEK_W02 } \end{aligned}$	Exam - in form of computer test, containing questions of various types (multiple and single choice, computational, open, other) checking knowledge in the field of lecture. The test is given a positive evaluation, if the student scores at least 51% of the maximum number of points. Later, the rating is increased by 0.5 every 10%. A positive P2 rating can be adjusted by rating F15. The condition for obtaining a positive P 2 rating is to obtain a positive P1 rating.
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks, 5th Edition", Published by Pearson, Sep 27, 2010		
[2] J. Woźniak, K. Nowicki, „Sieci LAN, MAN i WAN - protokoły komunikacyjne", Wydawnictwo - FPT, Kraków 2000		
[3] Training materials of the Cisco Network Academy		
[4] Wendell Odom, "CCENT/CCNA ICND1 100-105 Official Cert Guide:, Cisco Systems; Auflage: Har/Dvdr (17. Mai 2016)		
[5] Wendell Odom, "CCNA Routing and Switching ICND2 200-105 Official Cert Guide: Official Cert Guid/ Learn, prepare, and practice for exam success", Cisco Systems; Auflage: Har/Cdr (4. Juli 2016) SECONDARY LITERATURE:		
[1] http://www.freebookcentre.net/Networking/Free-Computer-Networking-Books-Download.html [2] CCNA Exploration Companion Guide books		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Kamil Nowak, kamil.nowak@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Organizacja Systemów Komputerowych (GK)
Name of subject in English: Computer System Organization (GK)
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): not applicable
Profile: academic + practical*
Level and form of studies: 1 st $/ 2$ nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: obligatory /optional/university-wide*
Subject code INZ004400
Group of courses YES $\not / \mathbf{N O *}$

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15			
Number of hours of total student workload (CNPS)	30	60			
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	1	2			
including number of ECTS points for practical (P) classes	0	0			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,6	1,2			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. The student lists and describes the basic computer components.
2. The student defines the basic functional characteristics of the computer.

SUBJECT OBJECTIVES

C1. Knowledge of ways of representing fixed-point numbers and the basics of arithmetic for these numbers.
C2. Understanding methods for simplifying Boolean expressions.
C3. Knowledge of simple combinational and sequential circuits.
C4. Acquiring basic knowledge in the field of designing simple digital circuits.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 A student knows ways of representing numbers in fixed-point systems, methods of number conversion and ways of implementing arithmetic operations.
PEK_W02 A student knows the basic methods for simplifying Boolean expressions, PEK_W03 A student knows basic combinational and sequential circuits, PEK_W04 A student knows the basic principles of designing the simplest digital circuits.

relating to social competences:

PEU_K01 A student is aware of the importance of non-technical aspects of the activity of the engineer-computer scientist; understands the need to ensure high quality and availability of IT systems, taking into account the needs of different user groups.

PROGRAM CONTENT		
Lectures	Number of hours	
Lec 1	Introduction. Basic concepts. Structure and computer architecture. A brief history of computers - evolution, performance, and computer compatibility. Analog and digital signals; bit, byte,	2
Lec 2	Computer arithmetic, number systems: binary, octal, hexadecimal, Natural Binary Code.	2
Lec 3	Representation of natural numbers and integers, sign-module system, two's complement, number conversions.	2
Lec 4	Arithmetic of integers (binary) - negation, addition and subtraction, multiplication, division.	2
Lec 5	Arithmetic of integers (decimal) - negation, addition and subtraction, multiplication, division.	2
Lec 6	Floating-point representation, IEEE 754-2008 Standard, Floating-point arithmetic	2
Lec 7	Boole's algebra, truth table, Boolean Algebraic Identities, De Morgan's laws, Boolean functions	2
Lec 8	Logic Gates	2
Lec 9	Minimization of combinational functions (logic) - A formal transformation method, Karnaugh map and Quine-McCluskey Method (prime implicants).	2
Lec 10	Examples of connections and applications of logic gate, definition of a combination circuit, simple combinational circuits, arithmetic circuits: adders, comparators	2
Lec 11	Combinational Logic Circuits, Transistor Transistor Logic (TTL) Circuits	2
Lec 12	Sequential Logic Circuits: definition, types of flip-flops, excitation table, state diagram	2
Lec 13	Designing combinational circuits - a way to design a combinational system, static gambling.	2
Lec 14	Designing synchronous sequential circuits - definition of a sequential circuit (Mealy and Moore Machines), additionally designing counters.	2
Lec 15	Colloquium	2
	Total hours	$\mathbf{3 0}$
Cl 1	Discussion of the organization and the program of activities. Introduction to the issues of exercises - basic arithmetic operations in positional numerical systems.	1
Cl 2	Numerical conversion methods for various fixed-point number systems.	2
Cl 3	Ways of coding numbers. Binary, BCD and complement codes,	2

Cl 4	Fixed-point arithmetic of binary numbers, BCD and in the complement notation.	2
Cl 5	Test	2
Cl 6	Fixed-point arithmetic - multiplication and division of numbers.	2
C1 7	Basics of Boole's algebra. Methods for simplifying Boolean expressions.	2
Cl 8	Test	2
	Total hours	15
TEACHING TOOLS USED		
LECTURE: N1. Informative lecture with elements of the problem lecture, supported by multimedia presentations. EXERCISES: N2. Exercises at the blackboard.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	$\begin{aligned} & \text { PEK_W01 } \\ & \text { PEK_W02 } \\ & \text { PEK_W03 } \end{aligned}$	Colloquium in written or oral form
F2	$\begin{array}{\|l\|} \hline \text { PEK_W01 } \\ \text { PEK_W02 } \end{array}$	Exercises and tests
$\mathrm{P}=\mathrm{F} 1+\mathrm{F} 2$		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
1] C. Zielínski: Podstawy projektowania układów cyfrowych, Wydawnictwo Naukowe PWN, 2012 [2] B. Pochopień: Arytmetyka systemów cyfrowych, WPŚ, Gliwice 2002.		
SECONDARY LITERATURE:		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Dr hab. inż. Leszek Borzemski, prof. PWr, leszek.borzemski@pwr.edu.pl Dr inż. Krzysztof Billewicz, krzysztof.billewicz@pwr.edu.pl Dr inż. Mariusz Fraś, Mariusz.fras@pwr.edu.pl Dr inż. Ziemowit Nowak, ziemowit.nowak@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name in Polish Cyberbezpieczeństwo
Name in English Cybersecurity
Main field of study (if applicable): Applied Computer Science Specialization (if applicable):
Level and form of studies: 1st/ znd* level, full-time / part-time*
Kind of subject: obligatory / optional / university-wide*
Subject code INZ004418
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Examination / erediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	$\mathbf{3}$		2		
including number of ECTS points for practical (P) classes	1,8		1,2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Probability theory
2. Discrete mathematics
3. Computer networks.

SUBJECT OBJECTIVES

C1Understanding the current problems related to data security and information systems C2 Understanding the methods and examples of solutions related to guaranteeing a high level of security.
C3 Understanding the methods of security design for information systems.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Has knowledge about security threats
PEK_W02 Has knowledge of selected issues in cryptology
PEK_W03 Has knowledge about methods of ensuring security
relating to skills:
PEK_U01 Is able to identify threats to IT security
PEK_U02 Is able to identify needs in the field of IT systems protection
PEK_U03 Is able to choose protection methods to ensure IT security

relating PEK K01 PEK_K02 \qquad	to social competences: 01 Understand the need to protect IT systems 02 Understand the impact of IT security threats on the functioning economy	ctronic
	PROGRAM CONTENT	
	Lectures	$\begin{aligned} & \text { Number of } \\ & \text { hours } \end{aligned}$
Lec 1 In	Introduction to cybersecurity. Basic terms and notions.	2
Lec 2 B	Basic problems related to cryptology	2
Lec 3	Symmetrical encryption algorithms	2
Lec 4 E	Elements of cryptanalysis	2
Lec 5	Stream ciphers	2
Lec 6	Asymmetric algorithms	2
Lec 7 C	Cryptographic hash functions and electronic signature	2
Lec 8	Authentication	2
Lec 9	Vulnerabilities and threats in network communication	2
Lec 10 S	Secure communication protocols	2
Lec 11 A	Anonymity and privacy in the Internet	2
Lec 12 ${ }^{\text {S }}$	Security in Web networks	2
Lec 13 ${ }^{\text {S }}$	Security in IoT and mobile systems	2
Lec 14	Cybersecurity in the electronic economy	2
Lec 15	Current problems in cybersecurity and repetition	2
	Total hours	30
	Laboratory	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Lab 1 In	Introduction. Requirements and the lab environment configuration.	2
Lab 2	Historical ciphers	2
Lab 3 C	Cryptanalysis of historical algorithms	2
Lab 4 ${ }^{\text {M }}$	Modern symmetric algorithms	2
Lab 5 A	Asymmetric algorithms	2
Lab 6 P	Passwords security	2
Lab 7 S	Secure communication-VPN	2
Lab 8 D	Detection of security incidents - IDS systems	2
Lab 9 N	Network traffic filters - firewall systems	2
Lab 10 D	Detection of vulnerabilities in systems	2
Lab 11 O	Operating system level security	2
Lab 12 S	Security of web systems	2
Lab 13 E	Examples of attack scenarios	2
Lab 14 O	Open source intelligence	2
Lab 15 R	Repetition and consolidation of knowledge acquired during the semester.	2
	Total hours	30
	TEACHING TOOLS USED	
$\begin{array}{\|l\|} \hline \text { N1.Lectu } \\ \text { N2.Labs } \\ \hline \end{array}$		

N3.Own Work		
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT		
Evaluation (F forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	$\begin{aligned} & \text { PEK_W01, PEK_W02, } \\ & \text { PEK_W03, } \\ & \text { PEK_K01, } \\ & \text { PEK_K02. } \end{aligned}$	Assessment of the degree of preparation for the laboratory exercises
F2	$\begin{aligned} & \text { PEK_U01, } \\ & \text { PEK_U02, } \\ & \text { PEK_K03. } \end{aligned}$	Evaluation of laboratory tasks
P	$\begin{aligned} & \text { PEK_W01, PEK_W02, } \\ & \text { PEK_W03, } \\ & \text { PEK_K01, } \\ & \text { PEK_K02. } \end{aligned}$	Final exam
C		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Schneier, Bruce. Applied cryptography: protocols, algorithms, and source code in C. john wiley \& sons, 2007. [2] Stallings, William. Cryptography and network security: principles and practice. Pearson Education India, 2003. [3] Anderson, Ross. Security engineering. John Wiley \& Sons, 2008. [4] Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering: design principles and practical applications. John Wiley \& Sons, 2011. SECONDARY LITERATURE:		
[5] Katz, Jonathan, et al. Handbook of applied cryptography. CRC press, 1996. [6] Boneh, Dan, and Victor Shoup. "A graduate course in applied cryptography." http://cryptobook. net (2008). [7] Smart, Nigel P. Cryptography Made Simple. Heidelberg: Springer, 2016. [8] OWASP : https://www.owasp.org/ [9] ENISA • Publications : http://www.enisa.europa.eu [10] NIST • Special Publications (NIST-SP) : http://www.nist.gov/publicationportal.cfm		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Grzegorz Kołaczek, Grzegorz.Kolaczek@pwr.edu.pl		

FACULTY of Computer Science and Management
SUBJECT CARD

Name of subject in Polish: Danologia

Name of subject in English: Data Science
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st $/$ 2nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: ebligatory/ optional / university-wide*
Subject code INZ002040
Group of courses YES $/ \mathbf{N O *}$

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	120				
Form of crediting	Crediting with grade	Examination / crediting with grade*	Crediting with grade	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	3				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	3				

*delete as applicable
PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of the basics of mathematical statistics.
2. Basic programming skills

SUBJECT OBJECTIVES

C1 Students are familiarized with methods of design and development of advanced data analysis processes.
C2 Students are familiarized with methods and tools of statistical data analysis, data mining, machine learning.
C3 Students are familiarized with methods and tools to analyse large data sets, ensure and verify data quality and social media analysis.

SUBJECT EDUCATIONAL EFFECTS

Related to knowledge:
PEK_W01 A student knows and describes the methods and tools of statistical data analysis, data mining, machine learning.
PEK_W02 A student knows and describes the methods and tools for the analysis of large data sets, ensuring and verifying the quality of data and social media analyses.
relating to skills:

PEK_U01 Student is able to design and develop advanced data analysis processes. PEK_U02 Student is able to apply methods of statistical data analysis, data mining, machine learning. PEK_U03 Student is able to apply methods of analysis of large data sets, assurance and verification of data quality and social media analysis.		
PROGRAM CONTENT		
	Lectures	Number of hours
Lec1	Introduction to Data Science 1. Lecture plan and grading policy 2. Basic concepts and relations between them: data science, data mining, machine learning, statistics 3. Big data - characteristics and main challenges. Data science and Big data 4. Structured and unstructured data. Network data 5. Interdisciplinary of data science. The influence of data science on other sciences	3
Lec2	Mathematical foundations of data processing 1. Representation of signals - classical approaches: time series and frequency responses - time-frequency representation 2. Signal analysis - data sources (sensors, google analytics) - sampling theorem	3
Lec3	Machine learning methods 1. Statistical foundations of machine learning - maximum likelihood method - the Bayes method - linear regression - k-NN classifier, linear classifier, neural classifier 2. Model selection - criteria AIC, BIC - cross-validation	3
Lec4	Computational Computational Network Science 1. Graph theory and basic concepts. Random graphs. Network models. Random walk. Scale-free networks. Small words. 2. Groups/communities in networks. Network motifs. 3. Applications	3
Lec5	Association rules generation - market basket analysis 1. Market basket analysis - introduction, the role of human-understandable knowledge in KDD processes, applications 2. Basic concepts 3. Frequent patterns and evaluation measures (support, confidence, lift, Conviction) 4. Apriori algorithm 5. Market basket analysis	3

	6. Practical samples	
Lec6	Social media analysis 1. Characteristics of social media: sample from basics to business values. 2. Social media systems, e.g. Wikipedia, Facebook, Opineo, Twitter 3. Methods of collecting and processing of social media data.	3
Lec7	Data science in software Engineering 1. Data science in software engineering - example applications 2. Case Study 3. Introduction to R (RStudio) for the purposes of the case study	3
Lec8	Big data 1. Characteristics of big data vs traditional data bases 2. Storage and processing methods, Dedicated file systems. 3. Parallel processing. Map-Reduce model	3
Lec9	Data Quality 1. Data providing and validating (quality monitoring, data scoring). 2. Data integration and cleaning, aggregation and reduction, metadata 3. Data quality metrics 4. Detecting anomalies (outliers), inconsistency, error propagation, error detection and correction	3
Lec10	Invited lecture	3
	Total hours	30
	Laboratory	Number of hours
La 1	Setting up the data processing environment 1. Grading policy 2. Installation and configuration of laboratory environment 3. Python fundamentals 4. R fundamentals	3
La2	```Mathematical foundations of data processing 1. The scipy.signal library 2. Signal analysis - period and non-period signals - noisy data```	3
La3	Machine learning methods 1. Python fundamentals - the Scikit learn library 2. Regression and classification - fitting data with generalized linear models - classification using k-NN method	3
La4	Computational Network Science 1. Introduction to Python and R modules - NetworkX package - graph-tool package - igraph package 2. Generation of networks according to models - random networks, small world, power-law	3

	- networks based on real data 3. Working with real data sets - network creation and network properties analysis - visualization	
La5	Association rules generation - market basket analysis 1. Introduction to PYTHON or R modules 2. Introduction to sample data and its preparation 3. Association rules generation with different minSupport and minConfidence values. 4. Visualization of results	3
La6	Social media analysis 1. Basics API for social platforms 2. Import of data and creation of data structures for processing, usage of Pandas module 3. Clustering, classification, prediction in graphs and social media data	3
La7	Data science in software engineering 1. Predictive models in R and their empirical evaluation - a case study Data science in software Engineering	3
La8	Big data 1. Setting up a testing environment for big data processing 2. Running sample project of data analyses 3. Developing adjustments to the sample project in Map-Reduce 4. Running, saving and evaluation of results of the analysis	3
La9	Data Quality 1. Data Integration and cleaning methods 2. Quality data report	3
La10	Presentation and discussion of best solutions developed as part of laboratory classes.	3
	Total hours	30
TEACHING TOOLS USED		
N1. Lectures, lecture notes N2. Consultations N3. Student's independent work N4. Exercises on laboratory N5. R/Python modules		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F01..F08 - laboratory	PEK_U01, PEK_U02, PEK_U03	Evaluation of exercises from La2 to La9.
P01 - lecture	PEK_W01, PEK_W02	Written test. The test is given a positive evaluation, if the student scores at least 50\% of the maximum

		number of points. Optional for students with positive laboratory grades.
P02 - laboratory	PEK_U01, PEK_U02, PEK_U03, PEK_W01, PEK_W02	Average of F01 .. F08.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Field Cady: The Data Science Handbook, Wiley, 2017.
[2] Brian Steele, John Chandler, Swarna Reddy: Algorithms for Data Science. Springer, 2016
[3] Marek Gaggolewski, Programowanie w języku R Analiza Danych. Obliczenia. Symulacje, wyd.2, 2016
[4] Max Kuhn, Kjell Johnson, Applied Predictive Modeling. Springer 2013.
[5] Przemysław Biecek, Wizualizacja i modelowanie, Uniwersytet Warszawski, 2015. Ebook http://www.biecek.pl/R/\#Analiza
[6] Data Mining Concepts and Techniques. Third Edition. Jiawei Han, Micheline Kamber, Jian Pei. Morgan Kaufmann Pub., Elsevier, 2012.
[7] Jose Unpingco - "Python for Probability, Statistics, and Machine Learning", Springer 2016
[8] Koronacki J., Cwik J., Statystyczne systemy uczące się., EXIT, Warszawa, 2008
[9] Albert-László Barabási: Network Science. Cambridge University Press, 2016. http://barabasi.com/networksciencebook/
[10] Anjana Gosain, Heena, Literature Review of Data Model Quality Metrics of Data Warehouse, Procedia Computer Science, Volume 48, 2015, Pages 236-243.

SECONDARY LITERATURE:

[11] Advances in Knowledge Discovery and Data Mining (American Association for Artificial Intelligence) Paperback - February 1, 1996, by Usama M. Fayyad (Editor), Gregory Piatetsky-Shapiro (Editor), Padhraic Smyth (Editor)
[12] Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton: Modern Data Science with R. CRC Press, 2017
[13] Joel Grus: Data Science from Scratch: First Principles with Python. O'Reilly, 2015.
[14] Hadley Wickham: R for Data Science. O'Reilly, 2017
[15] Cole Nussbaumer Knaflic: Storytelling with Data. Wiley, 2015.
[16] Cathy O'Neil: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishers, 2016.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
dr inż. Artur Wilczek, artur.wilczek@pwr.wroc.pl

FACULTY of Computer Science and Management

SUBJECT CARD
Name of subject in Polish: Struktury Danych i Algorytmy
Name of subject in English: Data Structures and Algorithms
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optional / university-wide*
Subject code INZ004403
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15	30		
Number of hours of total student workload (CNPS)	90	30	90		
Form of crediting	Examination / erediting with grade*	Examination / erediting grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	4		2		
including number of ECTS points for practical (P) classes			1.2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2.4				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of a programming language (Java).
2. Knowledge of object programming basics

SUBJECT OBJECTIVES

C1. Gaining basic knowledge on abstract data types and dynamic data structures and their implementation.
C2. Knowledge of how to evaluate and compare algorithms and knowledge of basic algorithms from various application areas.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01. Knows abstract data types and dynamic data structures.
PEK_W02. Understands the asymptotic notation and knows basic algorithms from various areas of algorithmics.
relating to skills:

PEK_U01. He can create an implementation of abstract data types and algorithms from various areas of algorithms.

PROGRAM CONTENT		Lectures
		Number of hours
Lec1	Complexity (1/4), iterators.	2
Lec2	Complexity (2/4), linked lists.	2
Lec3	Complexity (3/4), stack and FIFO queues.	2
Lec4	Complexity (4/4), problem solving techniques	2
Lec5	Comparators, simple sortings.	2
Lec6	Effective sorting. Binary Heap.	2
Lec7	Linear and binary searches, priority queues, hash tables.	2
Lec8	Dictionary, binary search tree (BST).	2
Lec9	Red black tree, B-Tree.	2
Lec10	Interval tree, binomial heap, forest of disjoint sets.	2
Lec11	Graph algorithms.	4
Lec12	Pattern matching, the unification algorithm.	2
Lec13	Huffman codes, knapsack problems, selected geometrical algorithms.	2
Lec14	Complexity classes: P, NP,NPC	2
	Total hours	$\mathbf{3 0}$

Classes		Number of hours
C11	Defining simple classes and interfaces.	1
Cl2	Iterators.	2
Cl3	Lists, heaps, queues.	2
C14	Iterative and recursive list processing.	2
C15	Sorting - algorithms analysis and comparison.	2
Cl6	BST tree and hash tables processing.	2
C17	B-trees and hash tables.	2
C18	Graphs.	2
	Total hours	15

Laboratory		Number of hours
Lab1	Creation and use of own iterators.	4
Lab2	An implementation using dynamic data structures - lists, heaps,	6
Lab3	Implementation and testing of selected sorting algorithms.	4
Lab4	Implementation and use of hash tables and binary trees.	4
Lab5	Implementation of binomial heap, forest of disjoint sets	4

Lab6	Implementation of graph algorithms.	4
Lab7	Implementation of pattern matching algorithms	4
	Total hours	30

TEACHING TOOLS USED

N1. Multimedia lecture.
N2. Blackboard for a written presentation of solutions.
N3. Computer didactic laboratory with development environment.
N4. An e-learning system used for the publication of teaching materials, tests and communication

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement F1 - final score of the classes
	PEK_U01	The condition for admission to the exam is participation in the exercises - one unjustified absence is allowed and a minimum of 5 points is obtained. A maximum of 25 points can be earned.
F2 - exam score	PEK_W01,PEK_W02	Scoring in the range [0,90] is issued based on the results of the exam.
$\mathrm{P}=$ Min(100,F1+F2)		Grade based on scores: $[0 ; 50)-2.0$
$\left[\begin{array}{ll}{[50 ; 62)-3.0} \\ {[62 ; 73)-3.5}\end{array}\right.$		
PL - laboratory	PEK_U01	$[73 ; 84)-4.0$ $[84 ; 95)-4.5$ $[95 ; 100]-5.0$

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, "Introduction in algorithms". The MIT Press; 2 edition (September 1, 2001), 1184 pages,
[2] Kenneth A. Berman, Jerome L. Paul, "Algorithms: Sequential, Parallel, and Distributed", Course Technology; 1 edition (October 11, 2004), 992 pages.
[3] Robert Sedgewick "Algorithms in Java, Parts 1-4", Addison-Wesley Professional; 3 edition (August 2, 2002), 768 pages.

SECONDARY LITERATURE:

[1] Harel D., Algorithmics. The Spirit of Computing, Addison Wesley, 2004.
[2] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dariusz Konieczny (dariusz.konieczny@pwr.edu.pl)

FACULTY of Computer Science and Management

SUBJECT CARD

Name in Polish Hurtownie Danych
Name in English Data Warehouses
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Level and form of studies: 1 st level, full-time
Kind of subject: obligatory
Subject code INZ002031
Group of courses NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination	Examination / crediting with grade*	crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes	0		2		
including number of ECTS points corresponding to classes that require direct participation of	1,2		1,2		
lecturers and other academics (BU)					

*delete as applicable
PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of database system, with a particular focus on the relational model.
2. At least basic knowledge of SQL query language

SUBJECT OBJECTIVES

C1. Has basic knowledge and skills of using SQL grouping operators, and SQL aggregation and grouping functions.
C 2 . Has basic knowledge and skills in the area of transaction oriented processing (OLTP) and analytic oriented processing (OLAP).
C3. Has basic knowledge and skills of using data warehouses.
C4. Knows basics of MS PowerPivot, MS SQL Analysis Services, MS SQL Integration Services and MS SQL Reporting Services.
C5. Has basic knowledge and skills in data integration, reporting and visualization.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 has basic knowledge on data warehouse usage and data warehouse organization - logical and physical
PEK_W02 has basic knowledge on ETL process, reporting and data analysis
relating to skills:

PEK_U01 can use SQL grouping operators and SQL grouping and aggregating functions PEK_U02 can design and implement a ETL process
PEK_U03 can design and implement a simple data warehouse and use it to generate basic reports, using different data visualization methods
PEK_U05 can use basic MDX queries

PROGRAMME CONTENT		
Form of classes - lecture		Number of hours
Lec 1	Course details. Introduction to Business Intelligence.	2
Lec 2	SQL grouping operators. SQL aggregating and grouping functions.	2
Lec 3	Transaction vs analytic needs, processes and data sources	2
Lec 4	Multidimensional data model - logical organization	2
Lec 5	Data warehouses - basics	2
Lec 6	ETL proces	2
Lec 7	Data warehouse - logical organisation	2
Lec 8	Data warehouses - architecture	2
Lec 9	MDX queries	2
Lec 10	MDX queries	2
Lec 11	Multidimensional data model - physical organisation	2
Lec 12	Reporting	2
Lec 13	Data visualisation	2
Lec 14	Data warehouse - design basics	2
Lec 15	Web dashboards	2
	Total hours	30
		Number of hours
Lab 1	Course details (Health and Safety Training, Course requirements). MS PowerPivot; pivot tables and pivot graphs	2
Lab 2	SQL aggregation and SQL grouping functions. SQL grouping operators	2
Lab 3	MS SQL Integration Services - data cleansing	2
Lab 4	MS SQL Integration Services - data integration	2
Lab 5	MS SQL Analysis Services - basics	2
Lab 6	MS SQL Analysis Services - design and implementation	2
Lab 7	MS SQL Analysis Services - advanced topics	2
Lab 8	MS SQL Analysis Services - MDX basics	2
Lab 9	MS SQL Analysis Services - advanced MDX	2
Lab 10	MS SQL Reporting Services - simple reporting	2
Lab 11	MS SQL Reporting Services - advanced reporting	2
Lab 12	Business Intelligence applications - web dashboard systems (QlikView)	2
Lab 13	Business Intelligence applications - ETL tools, OLAP servers (group	
presentation)	2	
Lab 14	Business Intelligence applications - reporting tools (group presentation)	2

Lab 15 Test			2
Total hours			30
TEACHING TOOLS USED			
N1. Lecture - traditional method with multimedia content N2. Consultations N3. To get to know with basic items and expanded literature by the student N4. Project exercises in the computer laboratory N5. Student's own work - preparation for laboratory classes N6. Develop reports of project			
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT			
Evaluation (F - forming (during semester), $\mathrm{P}-$ concluding (at semester end)	Educational effect number	Way of evaluating educational effect	
F- laboratory	PEK U01 PEK U04	Student assessment - individual disc presentation, conclusions, etc.	
P - lecture	PPE_W01	Exam	
P - laboratory	$\begin{aligned} & \text { PEK_U01 - } \\ & \text { PEK_U04 } \end{aligned}$	Average note from part notes	
PRIMARY AND SECONDARY LITERATURE			
PRIMARY LITERATURE: 1. Jensen C.S., Pedersen T.B., Thomsen C., Multidimensional Databases and Data Warehousing, Morgan \& Claypool Publishers series SYNTHESIS LECTURES ON DATA MANAGEMENT, 2010 2. Rainardi V., Building a Data Warehouse With Examples in SQL Server, Apress, 2008 3. Harinath S., Pihlgren R., Lee D.G.-Y., Sirmon J., Bruckner R.M., PROFESSIONAL MICROSOFT® SQL SERVER® 2016 ANALYSIS SERVICES WITH MDX AND DAX, John Wiley \& Sons, Inc., 2016 4. Microsoft SQL Server 2012 Integration Services, APN Promise, 2012 5. Inmon W., Building the Data Warehouse, John Wiley \& Sons, New York 2002 6. Kimball R., Caserta J., The Data Warehouse ETL Toolkit, Wiley Publishing, Inc, 2004			
SECONDARY LITERATURE: 1. Aspin A., SQL Server 2012 Data Integration Recipes, Apress, 2012 2. Leonard A., Masson M., Mitchell T., Moss J.M., Ufford M., SQL Server 2012 Integration Services Design Patterns, Apress, 2012 3. Claudia Imhoff, Nicholas Galemmo, Jonathan G. Geiger, Mastering Data Warehouse Design, Wiley Publishing Inc., 2003 4. MacLennan J., Tang ZH., Crivat B., Data Mining with SQL Server 2008, Wiley Publishing, Inc, 2009			
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)			
Bernadetta Maleszka, bernadetta.maleszka@pwr.edu.pl			

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Programowanie baz danych
Name of subject in English: Database programming
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic
Level and form of studies: 1 st $/$ 2nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code INZ004470
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			30	
Number of hours of total student workload (CNPS)	30			90	
Form of crediting	Examination/t crediting with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination/ crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	2			2	
including number of ECTS points for practical (P) classes				1,2	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of the rules of the projecting and building relation databases.
2. Skill in defining simple SQL queries.
3. Competences in the field of the structural and object-oriented programming paradigm.

SUBJECT OBJECTIVES

C1. Gain basic knowledge of programming environment of the chosen relational database.
C2. Gain basic knowledge of SQL language.
C3. Gain basic knowledge about the advanced SQL queries.
C4. Gain basic knowledge of database programming language on server side.
C5. Gain basic knowledge of the object-oriented extensions of relational database.
C6. Acquiring basic programming skills in the use of the programming environment of the chosen relational database.
C7. Acquiring basic programming skills in the use of SQL language.
C8. Acquiring basic skills in the use of advanced SQL queries.
C9. Acquiring basic programming skills in the use of database programming language on the server side.

C10. Acquiring basic programming skills in the use of relational database object-oriented extensions for the database schema and for the programming on the database server side.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 He has a basic knowledge about the programming environment of the chosen relational database.
PEU_W02 He has knowledge of the basics of the SQL language.
PEU_W03 He has knowledge necessary for building advanced SQL language queries.
PEU_W04 He knows the structures of database programming language on the server side.
PEU_W05 He has knowledge of object-oriented relational database extensions.
relating to skills:
PEU_U01 He can navigate in the programming environment of the chosen relational database
PEU_U02 He can construct basic SQL language queries.
PEU_U03 He can construct advanced SQL language queries.
PEU_U04 He can program the database on the server side.
PEU_U05 He can use the object-oriented extensions of the relational database, both in the definition of database scheme as well as programming on the server side.

PROGRAM CONTENT		Lectures			
Number of hours					
Lec 1	Preliminary information on the chosen DBMS.	1			
Lec 2	SQL language - basic queries.	2			
Lec 3	SQL language - advanced queries.	2			
Lec 4	Programming language on the server side - commands and their syntax.	2			
Lec 5	Advanced mechanisms of programming language on the server side.	2			
Lec 6	Object-oriented extensions of the relational database.	2			
Lec 7	Test.	2			
Lec 8	Repeating test.	2			
Lec 9	Security mechanisms of the relational database, query optimization and optimizers -materials provided by the teacher.				
	Total hours	$\mathbf{1 5}$			
	Project				Number of hours
Proj 1	Preview, health and safety course, introduction to the chosen DBMS programming environment.	2			
Proj 2	Discussion and pass a project list No. 1 concerning the basic SQL queries.	2			
Proj 3	Consultation to the project list No. 1 and its implementation.	2			
Proj 4	Consulting to the project list No. 1, its implementation and reception.	2			
Proj 5	Discussion and pass a project list No. 2, concerning advanced SQL queries.	2			
Proj 6	Consultation to the project list No. 2 and its implementation.	2			
Proj 7	Consulting to the project list No. 2, its implementation and reception.	2			
Proj 8	Discussion and pass a project list No. 3, concerning database programming language on the server side. Test No. 1 concerning advanced SQL queries.	2			
Proj 9	Consultation to the project list No. 3 and its implementation.	2			
Proj 10	Consulting to the project list No. 3, its implementation and reception.	2			

Proj 11	Discussion and pass a project list No. 4 concerning the object-oriented extensions of the relational database. Test No. 2 concerning database programming language on the server side.	2
Proj 12	Consultation to the project list No. 4 and its implementation.	2
Proj 13	Consultation to the project list No. 4 and its implementation	2
Proj 14	Consulting to the project list No. 4, its implementation and reception.	2
Proj 15	Reception of arrears. Credits.	2
	TEACHING TOOLS USED	$\mathbf{3 0}$
	Total hours	
N1. Lecture using the projector.		
N2. Projects as a project task lists.		
N3. Consultation.		
N4. Student's own work - preparation of project tasks lists and self-refer to the topics identified		
by the teacher.		
N5. Test (project).		
N6. Test (lecture).		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

$\begin{array}{\|l} \hline \text { Evaluation (F - forming } \\ \text { (during semester), } \mathrm{P}- \\ \text { concluding (at semester end) } \\ \hline \end{array}$	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	$\begin{array}{\|l\|} \hline \text { PEU_W01,PEU_W02, } \\ \text { PEU_U01, PEU_U02 } \end{array}$	Subject effects are achieved through the implementation of project list No. 1 confirmed by the oral answer. Criteria for the diversification of evaluation: - Implementation of project list No. 1. Point scale - up to 15% of the total number of points which one can obtain during the whole project.
F2	PEU_W03, PEU_U03	Subject effects are achieved through the implementation of project list No. 2 confirmed by the oral answer. Criteria for the diversification of evaluation: - Implementation of project list No. 2. Point scale - up to 15% of the total number of points which one can obtain during the whole project. - Test No. 1. Point scale - up to 20% of the total number of points which one can obtain during the whole project.
F3	PEU_W04, PEU_U04	Subject effects are achieved through the implementation of project list No. 3 confirmed by the oral answer Criteria for the diversification of evaluation: - Implementation of project list No. 3. Point scale - up to 15% of the total

$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{r}\text { number of points which one can obtain } \\ \text { during the whole project. }\end{array} \\ \text { Test No. 2. Point scale - up to 20\% of the } \\ \text { total number of points which one can } \\ \text { obtain during the whole project. }\end{array}\right]$

PRIMARY LITERATURE (FOR ORACLE DBMS):

[1] J. Price, Oracle Database 12c i SQL. Programowanie, Wydawnictwo Helion, Gliwice 2015.
[2] L. Barney, M. McLaughlin, Oracle Database 12c. Programowanie w jezzyku PL/SQL, Wydawnictwo Helion, Gliwice 2015.
[3] K. Loney, Oracle Database 11g. Kompendium administratora, Wydawnictwo Helion, Gliwice 2010.
[4] A. Pelikant, Programowanie serwera Oracle 11g SQL i PL/SQL. eBook, Wydawnictwo Helion, Gliwice 2012.
[5] F. Steven, Oracle PL/SQL. Najlepsze praktyki, Wydawnictwo Naukowe PWN, Warszawa 2009.
[6] Materials provided by the lecturer.

SECONDARY LITERATURE:

[1] T. Connolly, C. Begg, Systemy baz danych, T. 1 i 2, Wydawnictwo RM, Warszawa 2004.
[2] H. Ladanyi, SQL, Księga eksperta, Wydawnictwo Helion, Gliwice 2000.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Zbigniew Staszak, zbigniew.staszak@pwr.edu.pl

FACULTY of Computer Science and Management
SUBJECT CARD
Name of subject in Polish Projektowanie baz danych
Name of subject in English Database Design
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: $1^{\text {st }}$ level, full-time *
Kind of subject: optional
Subject code INZ004424
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			30	
Number of hours of total student workload (CNPS)	30			90	
Form of crediting	crediting with grade*			crediting with grade*	
For group of courses mark final course with (X)	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

deletie as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Completed the „Databases" course.

SUBJECT OBJECTIVES

C1 Introduce the methods of databases design and implementation to students
C2 Gather knowledge of available databases design and implementation tools
C3 Applying the acquired knowledge during the design of relational and object databases

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Student has a basic knowledge of methods and available tools for databases design
PEK_W02 Student is able to present all phases of databases design
relating to skills:
PEK_U01 Student is able to prepare all phases of databases design
PEK_U02 Student is able to implement a database
PEK_U03 Student is able to choose proper tools for databases design
relating to social competences:
PEK_K01 Student is able to search and reuse the primary and secondary literature listed below and is able to gather the proper knowledge
PEK_K02 Student understands the need for systematic and individual work in order to cover the scope of the course

PROGRAM CONTENT		
	Lectures	Number of hours
Lec 1	Introduction to database system design methodology	1
Lec 2	Selected elements of UML	1
Lec 3	Entity-relationship schemas design	2
Lec 4	Relational schemas design	2
Lec 5	Conceptual model of a database	2
Lec 6	Logical model of a database	2
Lec 7	Physical model of a database	2
Lec 8	An overview of available tools for database design	1
Lec 9	Types and specification methods of integrity constraints	1
Lec 10	Test	1
	Total hours	15
	Project	Number of hours
Proj 1	Introduction to database design (Power Designer, Visio)	2
Proj 2	Relational model: conceptual model of a database	2
Proj 3	Relational model: logical model of database	2
Proj 4	Relational model: physical model of database	2
Proj 5	Relational model: integrity constraints	2
Proj 6	Relational model: interface and report design, constraints	2
Proj 7	Object model: class diagrams	2
Proj 8	Object model: description of methods	2
Proj 9	Implementation of a database schema	4
$\begin{array}{\|l} \hline \text { Proj } \\ 10 \end{array}$	Implementation of integrity constraints	4
$\begin{array}{\|l} \hline \text { Proj } \\ 11 \\ \hline \end{array}$	Implementation of an interface	4
$\begin{array}{\|l} \hline \text { Proj } \\ 12 \\ \hline \end{array}$	Implementation of reports, evaluation of projects	2
	Total hours	30
TEACHING TOOLS USED		
N1. Traditional lecture N2. Labs N3. One-to-one consultancy during stuff hours N4. Student self-study		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P -	Learning outcomes number	Way of evaluating learning outcomes achievement

concluding (at semester end)		
P- project	$\begin{array}{\|l} \hline \text { PEK_U01-PEK_U03, PEK_K01- } \\ \text { PEK_K02 } \end{array}$	Evaluation of the prepared tasks during labs, oral test
P - lecture	PEK W01-PEK W02 PEK_K01-PEK_K02	Test
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Beynon-Davies P., Systemy baz danych. WNT, W-wa, 2003 [2] Connolly T., Begg C., Systemy baz danych. RM 2004. T2 [3] Date C.J., Wprowadzenie do baz danych. WNT, W-wa, 2000. [4] Szelag A., PHP, Microsoft IIS, SQL Server : projektowanie i programowanie baz danych. Helion 2008 [5] Ullman J.D., Systemy baz danych. WNT, W-wa, 2003. [6] Wrembel R., Oracle : projektowanie rozproszonych baz danych : wiedza niezbędna do projektowania oraz zarzadzania bazami danych. Helion 2003. SECONDARY LITERATURE:		
[1]		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Prof. dr hab. inż Ngoc Thanh Nguyen, Ngoc-Thanh.Nguyen@pwr.wroc.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Inżynieria systemów baz danych
Name of subject in English: Database Systems Engineering
Main field of study (if applicable): Applied Computer science
Specialization (if applicable):
Profile: academic / practical
Level and form of studies: 1st/ 2nd-level, uniform magister studies, full-time / part-time studies
Kind of subject: obligatory / optional / university-wide
Subject code INZ004422
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			30	
Number of hours of total student workload (CNPS)	30			90	
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

(1) Designated database knowledge
(2) Designated design skills for dedicated database
(3) Competences: communication skills, ability to identify and correct mistakes

SUBJECT OBJECTIVES

C1. Acquaintance with the selected database management system.
C2. Improvement of data modeling and relational database design skills.
C3. Designing ergonomic forms, menus and reports.
C4. Creating database queries in SQL language.
C5. Implementation of database transactions.
C6. Designing, implementing and documenting a dedicated database system.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 - knows the selected methodology of designing databases and database systems PEK_W02 - has knowledge of the possibilities of database management systems
PEK_W03 - knows the rules of designing ergonomic forms, menus and reports
PEK_W04 - has knowledge of the database transactions and their implementation in a selected
environment
PEK_W05 - knows syntax of basic SQL language commands
PEK_W06 - knows the selected relational database management system
PEK_W07 - has knowledge about creating macros
PEK_W08 - has knowledge of the types of tests and how to carry them out
PEK_W09 - knows issues related to database security
PEK_W10 - has knowledge of documenting a database project
PEK_W11 - has knowledge of how to assess the utility and functional quality of the database
_system
PEK_W12 - knows legal aspects of implementation and operation of database systems
relating to skills:
PEK_U01 - can correctly use terminology related to database systems
PEK_U02 - can see the area that requires designing a database system
PEK_U03 - can design a database for a selected section of reality
PEK_U04 - can design a database application for a selected field
PEK_U05 - can implement a designed database
PEK_U06 - can implement a simple database application
PEK_U07 - can implement ergonomic forms and application menus
PEK_U08 - can develop readable reports
PEK_U09 - can see the need to use transactions and implement them
PEK_U10 - has the ability to create necessary macros
PEK_U11 - can test the system in a systematic and planned way
PEK_U12 - can prepare technical and operational documentation of the system in compliance
PEK_ with the requirements
PEK_U13 - can formulate queries in SQL language
PEK_U14 - can create and manage user accounts
PEK_U15 - can provide secure access to the database
relating to social competences:
PEK_K01 - can work in a team (of 2-3 people)

PROGRAM CONTENT

Lectures		Number of hours
Lec 1	Basic concepts and terminology of database systems. Design and implementation of a database.	1
Lec 2	Sorting and indexing. Searching for data. Advanced queries. SQL language.	2
Lec 3	Data deletion and updating. Transaction processing. Forms.	2
Lec 4	Macros. Reports. Communication with the user. Menus, toolbars.	2
Lec 5	Data security in database systems.	2
Lec 6	Testing, and documenting the database system. Evaluation of the utility and functional quality of the database system. Legal aspects of implementation and exploitation of database systems.	2
Lec 7	Final test	2

Lec 8	Retake	2
	Total hours	$\mathbf{1 5}$

Form of classes - Project	Number of hours	
$\operatorname{Pr} 1$	H\&S training. Presentation of the Relational Database Management System	2
$\operatorname{Pr} 2$	Business modeling. Identification of the functionality of the designed database application, database modeling in a selected project environment, selection of the database system architecture and implementation environment.	2
$\operatorname{Pr} 3$	Correct database design for a selected section of reality.	2
$\operatorname{Pr} 4$	Implementation of the database project in DBMS and filling in the sample data. Integrity of the database.	2
$\operatorname{Pr} 5$	Design and implementation of advanced forms.	2
$\operatorname{Pr} 6$	Design and implementation of the main application menu.	2
$\operatorname{Pr} 7$	Design of ergonomic user interface, implementation of applications using graphical tools, macros and database languages. Procedures, stored functions, and triggers.	2
$\operatorname{Pr} 8$	Implementation of advanced queries. Query optimization.	2
$\operatorname{Pr} 9$	Transaction processing. Transaction management.	2
$\operatorname{Pr} 10$	Design and implementation of advanced reports.	2
$\operatorname{Pr} 11$	Data security in the database application, user accounts, giving permissions and authorizing access to data.	2
$\operatorname{Pr} 12$	Testing database application, assessment of the utility and functional quality of the database system, legal aspects of the implementation and operation of database systems	2
$\operatorname{Pr} 13$	Preparing the final documentation of the database system.	2
$\operatorname{Pr} 14$	Presentation of database applications.	$\mathbf{3 0}$
$\operatorname{Pr} 15$	Credit for the project	2
	Total hours	2

TEACHING TOOLS USED

N1. Demo versions of examples of correct and incorrect database systems
N2. Examples of system documentation

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation $\mathrm{F}-$ forming (during semester), $\mathrm{P}-$ concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 - attendance	PEK_K09	Checking the implementation of the curriculum
F2 - grade on the activity in the class	PEK_U01- PEK_U15 and PEK_K01 - PEKK09	Recording activity

F3 - grade on the database system	PEK_U01 - PEK_U15	Grade on the database system
F4 - grade on the system documentation	PEK_U01 - PEK_U15	Grade on the documentation
F5 - grade on the test	PEK_W01 - PEK_W12	Grade on the test
P1 - grade on the lecture credit - grade on the test (F5)		
P2 - grade on the project - weighted average grade at the end of classes calculated from the formulating grades (F1 - F4)		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Mazur H., Mazur Z.: Projektowanie relacyjnych baz danych. Oficyna Wydawnicza Politechniki Wrocławskiej, 2004.
[2] Date C.J.: Wprowadzenie do systemów baz danych. WNT, Warszawa, 2000.
[3] Date C.J., Darwen H.: SQL. Omówienie standardu języka. WNT, Warszawa, 2000
[4] Ullman J, D.: Podstawowy wykład z systemów baz danych. WNT, Warszawa, 2004
[5] Garcia-Molina H., Ullman J.D., Widom J.: Systemy baz danych. Pełny wykład. WNT, Warszawa, 2006.

SECONDARY LITERATURE:

[1] Pelikant A.: Bazy danych - pierwsze starcie. Helion, 2009.
[2] Jakubowski A.: Podstawy SQL - ćwiczenia praktyczne. Helion, 2001.
[3] Allen S.: Modelowanie danych. Helion, 2006.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
dr hab. Zygmunt Mazur, prof. WUST, zygmunt.mazur@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Bazy danych
Name of subject in English: Databases
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1st, full-time
Kind of subject: obligatory
Subject code INZ002023
Group of courses YES (Lecture, Classes), NO (Laboratory)

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15	15		
Number of hours of total student workload (CNPS)	115		60		
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	4		2		
including number of ECTS points for practical (P) classes	2,4		1,2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. None

SUBJECT OBJECTIVES

C1 Gaining the basic knowledge about databases, data models and their implementation in a DBMS C2 Acquisition of the ability to define and process data stored in databases

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Describes the principles of data modeling at different levels of abstraction PEK_W02 Presents basic transformation rules of data models and their verification PEK_W03 Describes implementation rules of data models in a DBMS
PEK_W04 Presents the role and possibilities of using the SQL standard in a DBMS systems PEK_W05 Defines the rules for defining architecture of database systems
relating to skills:
PEK_U01 Defines a conceptual data model using the UML
PEK_U02 Transforms conceptual data model into a physical model, taking into account the business rules and domain constraints

PEK_U03 Removes anomalies of data using the normalization process PEK_U04 Defines queries using DML database languages and their implementation in a DBMS for searching and processing of data in databases PEK_U05 Knows and applies safety rules of working		
PROGRAM CONTENT		
	Lectures	Number of hours
Lec 1	Introduction - General Course Information - Concepts and Architecture	2
Lec 2	Data modeling at different levels of abstractions - aims, properties, languages of specifications	2
Lec 3	The Relational Data Model - definition, properties, constraints	2
Lec 4	The Relational Algebra	2
Lec 5	Functional Dependencies - Normal Forms - Normalization Process	2
Lec 6	Normalization Process cont.	2
Lec 7	Introduction to Data Definition Language (DDL)	2
Lec 8	Implementation of conceptual data models using the SQL standard DDL basic information	2
Lec 9	DDL - Implementation of constraints	2
Lec 10	Introduction to Data Manipulation Language (DML), Transactions	2
Lec 11	DML - Data Modification (INSERT, UPDATE, DELETE)	2
Lec 12	DML Query - Joins, Subquery, Set Operations, Views	2
Lec 13	DML - Common Table Expressions, Stored Procedure, Triggers	2
Lec 14	NoSQL Databases	2
Lec 15	Test	2
	Total hours	30
	Classes	Number of hours
Cl 1	Introduction - Data - Data Models - DBMS	2
Cl2	Data modeling - UML/ERD- (P01)	2
Cl 3	Examples of simple databases, Basic rules of transformation of data models	2
Cl 4	The Relational Algebra Operations - (P02)	2
Cl 5	Normalization process - 1NF, 2NF, 3NF - (P03)	2
Cl 6	Normalization process - BCNF, 4NF - (P03)	2
C17	Transactions - Concurrency Control Technics - (P04)	2
C1 8	Test	1
	Total hours	15
	Laboratory	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Lab 1	Health and safety training. Conditions of the course. Organization of work, Introduction to DBMS (P08)	2
Lab 2	Analysis of exemplary databases	2
Lab 3	DDL - creating simple database -"Our University" (Student, Course, Teacher, etc.) - (P05)	2

Lab 4	DML - INSERT, UPDATE, DELETE - (P06)	2
Lab 5	DML Query - Joins, Subquery, Set Operations, Views (P06)	2
Lab 6	DML - Common Table Expressions (P06)	2
Lab 7	Programming - Stored Procedure, Triggers, User Defined Functions (UDF) (P07)	2
Lab 8	Test	1
	Total hours	15
TEACHING TOOLS USED		
N1. Lecture informative with elements of problem domains, supported by multimedia presentations and examples of solutions		
N2. Database management systems N3. E-learning system used for the publication of teaching materials and messages, and evaluate student work		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1- laboratory grade	PEK_U01-05	Grade from laboratory exercises from within scale $0 . .100 \%$
F2 - classes grade	PEK_U01-05	Grade from classes exercises from within scale 0 .
F3 - lecture grade	PEK_W01-05	Grade from final test from within scale $0 . .100 \%$
P1 - course final grade (lecture,classes) based on F2 and F3 (while F1 >=50\%)		
P2 - laboratory final grade based on F1		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Connolly T., Begg C., Database Systems. A Practical Approach to Design, Implementation, and Management $4^{\text {th }}$ ed., Addison Wesley, 2005 [2] Celko J., SQL for Smarties. Advanced SQL Programming, $3^{\text {th }}$ ed., Elsevier, 2005 [3] Elmasri R., Navathe S., Fundamentals of Database Systems $5^{\text {th }}$ ed., Addison Wesley, 2007 $[4]$ Kifer M., Bernstein A., Lewis P., Database Systems. An Application-Oriented Approach 2 ${ }^{\text {nd }}$ ed., Addison Wesley, 2006 SECONDARY LITERATURE:		
[1] Ben-Gan I., Microsoft SQL Server 2008, T-SQL Fundamentals, Microsoft Press, 2009 [2] The educational materials prepared by the teacher course on the basis of the documentation MS SQL, Oracle, and Internet resources		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Marek Kopel marek.kopel@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Aplikacje webowe na platformę .NET
Name of subject in English: Developing Web Applications with .NET
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code INZ002028
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Ability to object-oriented programming in Java.

SUBJECT OBJECTIVES

C1 The ability to develop an advanced web applications in C\# and .NET Framework using Visual Studio IDE

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01: Students could list and describe the basic software components used in the implementation of desktop applications with the console on .NET platform PEK_W02: Students could list and describe the basic software components used in the implementation of an advanced web applications on .NET platform.
relating to skills:

PEK_U01: Student is able to analyze and select the proper types and language constructs to
support object-oriented programming paradigm on .NET platform.
PEK_U02: Student is able to implement a desktop application with a console interface.
PEK_U03: Student obtains information from various sources and is able to choose the right
technology to implement an advance web application.

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	An introduction to the course and the principles of assessment. Basics of NET Framework and Visual Studio IDE	2
Lec 2	Basics of C\# - part 1: basic data types, variables, methods, value and reference types, operators, flow control	2
Lec 3	Basics of C\# - part 2: classes, structs, members, interfaces, enumerated types, types and partial methods	2
Lec 4	Basics of C\# - part 3: generics, collections	2
Lec 5	Basics of C\# - part 4: inheritance, object lifetime, exceptions	2
Lec 6	Basics of C\# - part 5: delegates, lambdas and events	2
Lec 7	Test 1	2
Lec 8	MVC pattern in ASP.NET, annotations.	2
Lec 9	Routing, controllers, data binding	2
Lec 10	Razor language and mechanisms for CSHTML page views	2
Lec 11	ADO .Net, Entity Framework Code-First, the basics of Fluent API	2
Lec 12	LINQ language, Entity Framework Base-First, Model-First	2
Lec 13	Authorization management, session, application publication	2
Lec 14	MS Cloud Azure	2
Lec 15	Test 2	2
	Total hours	30

Laboratory		Number of hours
Lab 1	Organizational classes. Presentation of the scope and principles of evaluation. To familiarize students with the principles of health and safety. Define and run demo applications in the Visual Studio environment	2
Lab 2	Define and run demonstration projects of console applications in the Visual Studio environment	2
Lab 3	Console applications using structures and classes.	2
Lab 4	Console applications using generic collections	2
Lab 5	Console applications with generic types	2
Lab 6	Console applications with collections	2
Lab 7	Console applications with inheritance	2
Lab 8	Console applications with lambda expressions and events	2
Lab 9	A simple web application with the MVC pattern.	2

Lab 10	Web application with data binding and own routing	2
Lab 11	Web application with Razor pages and own templates	2
Lab 12	Web application with a database using EF Code-First	2
Lab 13	Web application with a database using LINQ / Fluent API	2
Lab 14	Web application with a database with permissions and a session.	2
Lab 15	Grading and the questionnaire of the course	2
	Total hours	30

TEACHING TOOLS USED

N1. Multimedia lecture.
N2. Computer didactic laboratory with development environment.
N3. An e-learning system used for the publication of teaching materials, tests and communication

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), $\mathrm{P}-$ concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
FL - points from laboratory	PEK_U01 PEK_U02 PEK_U03	Implementation of tasks indicated by the teacher. The final score in the range [0; 50]
FW - points from classes	PEK_W01 PEK_W02	Solving tasks from two tests. The final score in the range [0; 50]
P=FL+FW, Final grade according to the scale: $[0 ; 50)-2.0$ $[50 ; 62)-3.0$ $[62 ; 73)-3.5$ $[73 ; 84)-4.0$ $[84 ; 95)-4.5$ $[95 ; 100]-5.0$		

PRIMARY AND SECONDARY LITERATURE
PRIMARY LITERATURE:
[1] J. Albahari, B. Albahari. C\# 7.0 w pigułce. Wydanie VII. Helion 2018
[2] K. Žydzik, T. Rak. C\# 6.0 i MVC 5. Tworzenie nowoczesnych portali internetowych,
Helion 2015
SECONDARY LITERATURE:
[1] Ch. Nagal. Professional C\# 6 and .NET Core 1.0. John Wiley \& Sons, Inc., Indianapolis, 2016
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Dr inż. Dariusz Konieczny (dariusz.konieczny@pwr.edu.pl)

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Techniki przetwarzania mediów cyfrowych
Name of subject in English: Digital Media Processing Techniques
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): no specialization
Profile: academic / practieal*
Level and form of studies: 1 st/2nd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code INZ004439
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	2		2		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Crediting with grade*	Examination/ crediting with grade*	Crediting with grade*	Examination/ crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of Discret Fourier Transform, Discret Cosine Transform and reverse transformations
2. Basic knowledge in acoustics: nature of acoustic waves, parameters describing the wave.
3. Basic knowledge in optics

SUBJECT OBJECTIVES

C1 Acquiring knowledge on digitalization of analog multimedia information and methods of digital media processing for typical applications
C2 Acquiring skills of creating, processing and mixing digital media using specialized software.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Student is able to list and describe a proces of digitalisation of analog multimedia information, he/she knows distortions that occure in this proces and the methods of removing them
PEU_W02 Student knows selected methods of multimedia compression
PEU_W03 Student knows the methods od digital sound processing

PEU_W04 Student i s able to list and describe selected methods of sound synthesis; he/she has basic knowledge about MIDI system		
PEU_W05 Student is able to list and describe models and color systems, he/she knows the difference between vector graphics and raster image		
PEU_W06 Student can list and desribe typical operations used in digital image porcessing, he/she knows their applications relating to skills: PEU U01 Student is able to use specialized software to create, edit and mix digital media		
PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Intorduction. Nature of sound. Parameters of accoustic wave. Basics of psychoacoustics.	2
Lec 2	Digitalization of sound: steps, parameters, distortions: reasons, prevention and removing	2
Lec 3	Sound images in the time and frequency domain	1
Lec 4	Basic methods of digital sound processing.	3
$\begin{array}{\|l\|} \hline \operatorname{Lec} 5 \\ \operatorname{Lec} 6 \\ \hline \end{array}$	Coding and compression of sound data: lossless methods, perceptual coding, MPEG compression algorithm, transmission codes	4
Lec 7	Sound synthesis	2
Lec 8	Basics of the MIDI system	2
Lec 9	Human perception of images. Models and color systems. Vector and raster images. Aquisition of digital images: steps, parameters and distortions	2
Lec 10	Digital image processing: context free operations, their applications	2
Lec 11	Digital image processing: context operations, linear and non linear filters, their applications	2
Lec 12	Feature detection in digital images	2
Lec 13	Digital image processing: morphological operations	2
Lec 14	Digital image processing: segmentation and tresholding	2
Lec 15	Digital image compression	2
	Total hours	
	Laboratory	Number of hours
Lab 1	Organization of laboratory: introduction, organization and time table, conditions of passing the subject, OSH training	2
$\begin{aligned} & \mathrm{Lab} 2, \\ & \mathrm{Lab} 3, \end{aligned}$	Simple edition of a sound file: recording own voice, removing noise, format conversion, cutting, pasting and mixing recordings, volume adjustment	4
$\begin{array}{\|l} \hline \text { Lab 4, } \\ \text { Lab 5, } \\ \text { Lab 6 } \\ \hline \end{array}$	Advanced edition of a sound file: use special effects (e.g. chorus, reverb etc.) to create full sound panorama. Modifications of own voice to get the voicw of another person.	6
$\begin{aligned} & \mathrm{Lab} 7, \\ & \mathrm{Lab} 8 \\ & \hline \end{aligned}$	Simple edition of digital image on the example of retouching an old photo	4
$\begin{array}{\|l} \mathrm{Lab} 9, \\ \text { Lab10, } \\ \text { Lab 11 } \end{array}$	Advanced edition of digital images on the example of photomontage of the face and the whole character.	6

Lab 12, Lab 13, Lab 14	Design and implementation of the final task involving preparation of a multimedia presentation combining processed image and sound (for example instructional material on a given topic)	6
Lab 15	Presentation of the final task	
	Total hours	2
TEACHING TOOLS USED		30
N1. Traditional lecture supported by the presentation N2. E-learning - materials for the lecture N3. E-learning: organization of laboratory, sharing exercise instructions and teaching aids, transfer of taks results and laboratory documentation (reports), use of forum, chat and e-mail to communicate with the teacher and other members of the group N4. - E-learning - exam in the form of an electronic test		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEU_U01	Average marks for the implementation of individual exercises
F2	PEU_U01	Average marks for reports
F3	PEU_U01	Evaluation for the final task
P - Laboratory	PEU_U01	The final laboratory grade is the weighted average of the forming grades: 0, 3*F1+0, 3* F2 +0, 4* F3
P - Lecture	PEU_W01 - PEU_W06	Exam result: to pass the exam it is necessary to get at least 50% of points that are possible to get in the test

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Chapman N., Chapman J., Digital Multimedia, Third Edition, John Wiley \& Sons, Ltd., Chichester, 2009
[2] Malina W., Smiatacz M., Cyfrowe przetwarzanie obrazów, Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2008.
[3] Gonzales R.,Woods R., Digital Image Processing, Prentice-Hall, New Jersey, 2001.
[4] Czyżewski A., Dźwięk Cyfrowy: wybrane zagadnienia teoretyczne, technologia, zastosowania, Wyd. 2, Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2015.
[5] Nowak W., Homan W., Midi: muzyczny standard dla komputerów, Kraków: Wydawnictwo DMM, 1994.

SECONDARY LITERATURE:

[1] Petrou M., Petrou C., Image Processing: The Fundamentals, $2^{\text {nd }}$ ed., Chichester: John Wiley \& Sons, 2010.
[2] Goodall, D. P., Haas, O. C. L., Signal and Image Processing, Wrocław: Wrocław University of Technology; Łódż : PRINTPAP, 2011.
[3] Speech and audio processing in adverse environments, Eds. Hänsler E., Schmidt G., Berlin ; Heidelberg : Springer-Verlag, cop. 2010.
[4] Zolzer U., Digital audio signal processing, Chichester: John Wiley and Sons, 1997.
[5] Pavlidis T., Grafika i przetwarzanie obrazów, WNT, Warszawa, 1987.
[6] Skarbek W., Metody reprezentacji obrazów cyfrowych, PLJ, Warszawa, 1993.
[7] Tadeusiewicz R., Korohoda P., Komputerowa analiza i przetwarzanie obrazów, FPT, Kraków, 1997.

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Matematyka Dyskretna
Name of subject in English Discrete Mathematics
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): not applicable
Profile: academic
Level and form of studies: $1^{\text {st }}$ level, full-time
Kind of subject: obligatory
Subject code INZ004406
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	60	90			
Form of crediting	crediting with grade				
For group of courses mark final course with (X)	X				
Number of ECTS points	2	3			
including number of ECTS points for practical (P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of set theory.
2. Basic knowledge of formal logic (propositional logic and first-order logic).

SUBJECT OBJECTIVES
C1. A student is supposed to obtain fundamental knowledge of discrete mathematics understood as a set
of formal tools needed to define and solve simple problems in the areas of knowledge representation
and processing, discrete optimization, and information retrieval in the context of computer science.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:
PEK_W01 A student knows and understands basic concepts of discrete mathematics applicable to the construction and understanding of simple tasks of information and knowledge processing in the context of computer - based systems.
PEK_W02 A student knows and understands basic concepts of discrete mathematics applicable to the construction and understanding of simple tasks of information retrieval in the context of computer - based systems.
PEK_W03 A student knows and understands basic concepts of discrete mathematics applicable to the construction and understanding of simple problems of discrete optimization in the context of computer - based systems.

PROGRAMME CONTENT		
Form of classes - lecture		Number of hours
Lec01	Introduction. Set, union and intersection of sets, relative and absolute complement of a set, symetric difference of sets. Set algebra laws. Power set.	2
Lec02	Cartesian product. Properties of cartesian product. Introduction to the mathematical theory of relations. Binary relations.	2
Lec03	Application of first-order predicate calculus to defining and verifying properties of binary relations.	2
Lec04	Basic tasks of knowledge processing in discrete universe of objects with macrostructure (representation choice, object grouping, object retrieval).	2
Lec05	The universe of binary relations	2
Lec06	Directed graphs and binary relations. Operations on binary relations. Transitive reduct and transitive completion.	2
Lec07	The universe of sets.	2
Lec08	The universe of equivalence relations.	2
Lec09	Approximation space and rough sets.	2
Lec10	Information system - basic concepts. Rough Sets Descriptions. Decision tables	2
Lec11	The universe of tolerance (similarity) relations and the universes of orders.	2
Lec12	Introduction to the theory of multisets. The theory of fuzzy sets. Linguistic variables.	2
Lec13	Discrete models of semantic relations in knowledge processing systems and wordnets. Classical and extended thesauri for information retrieval tasks.	2
Lec14	An overview of alternative universes of complex discrete objects.	2
Lec15	Final test	2
	Total hours	30

Form of classes - class		Number of hours
Tut01	Sets, operations on sets (union and intersection of sets, relative and absolute complement of a set, symetric difference of sets). Power set. Characteristic function of the set.	2
Tut02	Proving the set algebra theorems	2
Tut03	Cartesian product. Representation of binary relations.	2
Tut04	Application of first-order predicates to definining and verifying of properties of binary relations. Types of binary relations.	2
Tut05	The tasks of representation choice, object grouping, and object retrieval in the universe of objects with macrostructure.	2
Tut06	The tasks of knowledge processing, optimization and object retrieval in the universe of binary relations.	2
Tut07	Operation in the universe of Binary relations. Algorithms of determinantion of transitive reduct and transitive completion of binary relations.	2
Tut08	Test 1.	2
Tut09	Similarity and distance functions in the universe of sets - definitions and applications.	2
Tut10	Similarity and distance functions in the universe of equivalence relations - definitions and applications.	2
Tut11	Set-based information retrieval language in information systems. Approximation space and functional dependency of information system attributes.	2
Tut12	Rough sets and decision tables.	2
Tut13	Binary relations in the universes of complex discrete objects.	2
Tut14	Test 2.	2
Tut15	Final test.	2
	Total hours	30

TEACHING TOOLS USED

N1. Traditional lecture.
N2. Self study - literature studies.
N3. Self study - problem solving.
N4. Group tutorials - group problem solving and discussions of complex cases during regular meetings.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_W03	Total point score F1 of the task completion obtained on the basis of the first written test planned in the schedule of tutorial classes, supplemented with a point-based assessment of any additional and documented achievements. Supplementary score may

		result from solving of additional computational tasks, and active and substantively correct participation in solving tasks during tutorial classes. The first test is
claimed to be credited after obtaining a		
minimum of 50\% of the maximum number of		
FmAX1 points assigned to the first test.		

P2. The obligatory condition for obtaining a positive final grade is getting a pass of the exercise. If the condition is met, the basis for obtaining the assessment is the number $\mathrm{F}=\mathrm{W} 1$ + F3. The assessment is based on the table:

[F/FMAX $]$ $\%$	40%	60%	70%	80%	90%
Grade	3.0	3.5	4.0	4.5	5.0

where: $\mathrm{F}_{\text {MAX }}=\mathrm{W}_{\text {max }}+\mathrm{F}_{\text {MAX3 }}$ and $\mathrm{W}_{\text {max }}$ is the maximum number of points possible to obtain on the basis of the test planned for in the schedule of lectures.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

1. Ross K.A., Wright Ch., Matematyka Dyskretna. PWN, Warszawa 2006.
2. Rasiowa H., Wstęp do matematyki wspótczesnej. PWN, Warszawa 2003.
3. Czogała E., Pedrycz W., Elementy i metody teorii zbiorów rozmytych. PWN, Warszawa 1985.

SECONDARY LITERATURE:

1. Bolc L., Borodziewicz W., Wójcik M., Podstawy przetwarzania informacji niepewnej i niepetnej. PWN, Warszawa 1991.
2. Daniłowicz C., Modele systemów wyszukiwania informacji uwzględniajace preferencje użytkowników końcowych. Wydawnictwo Politechniki Wrocławskiej, Wrocław 1992.
3. Daniłowicz C., Nguyen N. T., Jankowski Ł., Metody wyboru reprezentacji stanu wiedzy agentów w systemach multiagenckich. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2002.
4. Hand D., Mannila H., Smyth P., Eksploracja danych. WNT, Warszawa 2005.
5. Kuratowski K., Wstęp do Teorii Mnogości i Topologii. Państwowe Wydawnictwo Naukowe, Warszawa, 1982.
6. Lipski W., Kombinatoryka dla programistów. WNT, Warszawa 1982.
7. Lipski W., Marek W., Analiza kombinatoryczna. PWN, Warszwa 1986.
8. Majewski W., Albicki A., Algebraiczna teoria automatów. WNT, Warszawa 1980.
9. Mazur Z., Modele i modyfikacje rozproszonych systemów wyszukiwania informacji opartych na tezaurusach z wagami. Wydawnictwo Politechniki Wrocławskiej, Wrocław 1989.
10. Graham R. L., Knuth D. E., Patashnik O., Matematyka Konkretna. PWN, Warszawa 1996.
11. Reinglod E. M., Nievergelt J., Deo N., Algorytmy kombinatoryczne. PWN, Warszawa 1985.
12. Zadrożny S., Zapytania nieprecyzyjne i lingwistyczne podsumowania baz danych. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2006.
13. Zakrzewski M., Markowe Wyklady z Matematyki - matematyka dyskretna. Oficyna Wydawnicza GiS s.c., Wrocław 2014.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Radoslaw Katarzyniak, PhD, DSc, University Prof., radosław.katarzyniak@pwr.wroc.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Rozproszone systemy informatyczne
Name of subject in English: Distributed computer systems
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optional / university-wide*
Subject code INZ002035
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	30		90		
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge about the operation of computer operating systems.
2. Basic knowledge about the operation of computer networks.
3. Basic knowledge of programming in Java, C/C++, C\#.

SUBJECT OBJECTIVES

C1. Obtaining basic knowledge in the field of architecture of distributed systems, as well as technologies and techniques used in distributed systems.

C2 Acquiring the ability to implement applications for selected distributed processing environments.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knows the basic basic architectures of distributed computer systems and examples of such systems.
PEU_W02 Describe selected technologies and techniques for implementing applications for a distributed processing environment.

relating to skills: PEU_U01 Is able to implement basic applications in a distributed computing environment in selected technologies.		
PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Presentation of the course organization and program. Introduction to the subject: basic features, purpose and design assumptions of multiprocessor and distributed systems.	2
Lec 2	Middleware services - mechanisms and selected remote procedure call (RPC) techniques.	2
Lec 3	Middleware services - distributed objects (DO). Selected implementation technique and universal worker model.	2
Lec 4	Web Services - concepts of SOA, REST, Web API, AJAX.	2
Lec 5	Application programming in the SOA concept.	2
Lec 6	Application programming in the REST and Web API concept.	2
Lec 7	Programming web clients of RIA type applications.	2
Lec 8	Microservices and component services (SCA architecture).	2
Lec 9	Streaming in distributed systems - selected application implementation techniques.	2
Lec 10	Selected problems of distributed processing - point-to-point communication, collective communication and communication costs.	2
Lec 11	Selected problems of distributed processing - coordination of processes in distributed systems.	2
Lec 12	Selected problems of distributed processing - distributed transactions.	2
Lec 13	Selected problems of distributed processing - reliability of processing in distributed systems.	2
Lec 14	Peer-to-Peer (P2P) systems.	2
Lec 15	Passing test.	2
	Total hours	30
	Laboratory	Number of hours
Lab 1	Discussion of the organization and program of classes. OSH training. Presentation of teaching tools.	2
Lab 2	Programming RPC applications using XML RPC and/or JSON RPC standards.	2
Lab 3	Programming RPC applications using the gRPC framework.	2
Lab 4	Programming distributed applications using Java RMI.	2
Lab 5	Distributed applications in service-oriented architecture using Microsoft WCF - part 1 basics of programming.	2
Lab 6	Distributed applications in service-oriented architecture using Microsoft WCF - part 2. Asynchronous procedures and streaming.	2
Lab 7	Application programming under the SCA concept. Docker environment part I.	2

Lab 8	Application programming under the SCA concept. Docker environment - part II.	2
Lab 9	REST style web services - part I.	2
Lab 10	REST-style web services - part II.	2
Lab 11	REST web application with a fat client.	2
Lab 12	Application using the WebSocket protocol.	2
Lab 13	Application implementing selected control mechanisms in a distributed system - part I.	2
Lab 14	Application implementing a selected control mechanisms in a distributed system - part II.	2
Lab 15	Summary and discussion of classes. Final passing the class and issuing grades.	2
	Total hours	$\mathbf{3 0}$
TEACHING TOOLS USED		
N1. Informative lecture supported by multimedia presentations. N2. Printed or electronic laboratory exercises.		
N3. Development software for implementing distributed applications for selected environments.. N4. An e-learning system for publishing teaching materials, tasks and announcements, and collecting and assessing student work, as well as for carrying out knowledge tests.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), C - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 - La2	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 3$.
F2 - La3	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F3 - La5	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F4 - La6	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F5 - La8	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F6 - La9	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.	
F7 - La10	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F8 - La11	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F9 - La12	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F10 - La14	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.

C1 - final evaluation from the laboratory laboratory	PEK_U01	The grade is determined on the basis of sum of points from the grades F1 to F10 according to the formula: - below 50% of points - ndst (2.0) $[50 \%, 60 \%)$ - dst (3.0) $[60 \%, 70 \%)-$ dst+ (3.5) $[70 \%, 80 \%)-\mathrm{db}(4.0)$ $[80 \%, 90 \%)-\mathrm{db}+(4.5)$ $[90 \%, 100 \%)$ - bdb (5.0) 100% - discretionary (e.g. additional task)
C 2 - final evaluation from t lecture	PEK_W01, PEK_W02.	Knowledge test - written or electronic test using an e-learning system. Grade based on the score obtained from the test. Rating scale as for C 1 .
C3 - final evaluation from the lecture	The final grade C 3 is calculated on the basis of 50% of C 1 and 50% of C2. The condition for obtaining a positive grade C3 is obtaining a positive grade for both C 1 and C 2 components.	
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Tanenbaum A. S., van Steen M.: Distributed systems : principles and paradigms, Pearson Prentice Hall, 2007.		
[2] M. P. Papazoglou: Web Services \& SOA. Principles and Technology, Pearson Education Limited, 2012.		
[3] Richardson L., Ruby S.: RESTful Web Services, O'Reilly Media, Inc., 2007.		
[4] Buford J. Yu H., Lua E.K.: P2P Networking and Applications, Morgan Kaufm		
[5] Curry E.: Message-Oriented Middleware, Middleware Communication		
[6] Löwy J., Montgomery M.: Programming WCF Services. DeService-Oriented Systems, O'Reilly Media, Inc., 2016.		
[7] Krochmalski J.: Docker : projektowanie i wdrażanie aplikacji, Helion, 2017		
[8] Oracle electronic documentation - materials for the considered techniques, http://www.oracle.com		
SECONDARY LITERATURE:		
[9] Coulouris G., Dollimore J., Kindberg T.: Distributed systems : concepts and design, Addison-Wesley, 2005.		
[10] Hasan J.: Expert Service-Oriented Architecture in C\#: Using the Web Services Enhancements 2.0, Apress, 2004.		
[11] Allamaraju S.: RESTful Web Services Cookbook, O’Reilly Media, Inc., 2010.		
[12] R. Steinmetz, K. Wehrle: Peer-to-Peer Systems and Applications, LNCS 3485, Springer, 2005.		
[13] Nagel C.: Professional C\# 7 and .NET Core 2.0, John Wiley \& Sons, 2018.		
[14] Kane S. P., Matthias K.: Docker : praktyczne zastosowania, Helion, 2017.		
[15] IBM Redbooks electronic documentation - materials for the considered techniques, http://www.ibm.com/redbooks		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Mariusz Fraś, mariusz.fras@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Techniki efektywnego programowania
Name of subject in English: Effective programming techniques
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic*
Level and form of studies: 1st/2nd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory /optional/university-wide*
Subject code: INZ004408
Group of courses YES/ NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	$\mathbf{1 5}$		$\mathbf{3 0}$		
Number of hours of total student workload (CNPS)	$\mathbf{6 0}$		$\mathbf{9 0}$		
Form of crediting	Examination/t crediting with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark final course with (X)			$\mathbf{3}$		
Number of ECTS points	$\mathbf{2}$		$\mathbf{3}$		
including number of ECTS points for practical (P) classes			$\mathbf{1 , 8}$		
including number of ECTS points corresponding to classes that require direct	$\mathbf{1 , 2}$				
participation of lecturers and other academics (BU)					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic programming skills.
2. Basic knowledge of data structures and algorithms.
3. The ability to object-oriented programming in the basic level.

SUBJECT OBJECTIVES

C1 To familiarize students with the object-oriented programming paradigm in languages that require manual memory management.
C2 To familiazize students with memory addressing techniques and the practical use of pointers.
C3 Acquiring the skill of writing programs with manual memory management.
C4 Acquiring the skills of addressing memory and practical use of indicators.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Knows object-oriented programming mechanisms in languages requiring manual memory management
PEK_W02 Knows memory addressing techniques and the practical use of pointers.
Relating to skills:

PEK_U01 Is able to write effective programs in accordance with the object-oriented programming paradigm in languages requiring manual memory management. PEK_U02 Is able to address memory and use the mechanisms offered by pointers in practice.

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Object-oriented programming languages. Introduction to $\mathrm{C}++$, differences and benefits of using languages that allow you to manually manage your memory.	2
Lec 2	Dynamic memory allocation and deallocation - basics, pointers, tables.	2
Lec 3	Constructors and destructors, operator overloading, and memory management.	2
Lec 4	Advanced methods of object oriented programming. Polymorphism in C ++ , important features of the template mechanism in $\mathrm{C}++$.	2
Lec 5	Advanced methods of object oriented programming. Inheritance and Multiply inheritance in $\mathrm{C}++$.	2
Lec 6	Advanced methods of object oriented programming. Exemption handling.	2
Lec 7	Advanced methods of object oriented programming. Containers.	2
Lec 8	Test.	1
	Total hours	15
Classes		Number of hours
Cl 1		
	Total hours	0
Laboratory		Number of hours
Lab 1	Getting know with the teaching program, way of programs evaluation, health and safety training. Getting know the developer environment.	2
Lab 2	Allocation and deallocation of simple types, pointers, multiple pointers. Introductory exercise.	2
Lab 3	Static and dynamic allocation, constructors and destructors. Introductory exercise.	2
Lab 4	Static and dynamic allocation, constructors and destructors. Introductory exercise.	2
Lab 5	Error handling. Introductory exercise.	2
Lab 6	Relations between classes and objects, tree processing. Introductory exercise.	2
Lab 7	Using templates in $\mathrm{C}++$. Introductory exercise.	2
Lab 8	Implementation of smart pointer. Introductory exercise.	2
Lab 9	Chosen extensions C ++ 11 and C ++ 14. Introductory exercise.	2
Lab 10	Implementation of chosen classes that will be support a practical computational problem during following classes. A practical task.	2
Lab 11	Implementation of the optimization method. A practical task.	2
Lab 12	Implementation of the optimization method. A practical task.	2

Lab 13	Program optimization - searching and removing the bottlenecks. The introductory exercise.	$\mathbf{2}$
Lab 14	Program optimization - searching and removing the bottlenecks. The extended program with modification.	$\mathbf{2}$
Lab 15	The use of object-oriented mechanisms and memory management to implement the program on a given topic.	$\mathbf{2}$
	Total hours	$\mathbf{3 0}$
TEACHING TOOLS USED		
N1. Lecturer's presentation at a blackboard, supported by a multimedia presentation using a laptop and a projector. N2. MSVC programming environment N3. STL library N4. C++11 and C++14 libraries		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1(lecture)	PEK_W01 PEK_W02	Test during the lecture, the result obtained in the object-oriented programming competition, laboratory grade.
F2(laboratory)	PEK_U01 PEK_U02	Evaluation of students' preparation for the exercise, evaluation of the quality of the program presented, implementation of additional tasks formulated during the laboratory (on-line programming), result obtained in the object-oriented programming competition.

P - the final grade of the lecture will be issued based on the results of the test and the grade from the laboratory as follows. A student who has obtained at least 4.5 from the laboratory may request that it be rewritten as a lecture grade. Students who have received a lower grade from the laboratory, and all students who want to take part in the test as final grade will received grade from the test.
The final grade from the laboratory will be issued on the basis of partial grades (points) obtained from individual exercises.
Each grade (from the lecture and laboratory) can be raised by 0.5 if the student is one of the winners of the competition held as part of the lecture. Participation in the competition is voluntary. If the student did not get a credit, participation in the competition does not change this fact.

PRIMARY AND SECONDARY LITERATURE
PRIMARY LITERATURE:
[1] B. Stroustrup, The C++ Programming language, Addison-Wesley Pub. 1993
[2] H.M. Deitel, P.J. Deitel, C++ How to program, Prentice Hall 2003
[3] B. Eckel, Thinking in C++, Pearson Education 2000.
[4] Documentation of the STL library
SECONDARY LITERATURE:
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Jan Kwiatkowski, jan.kwiatkowski@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Programowanie gier
Name of subject in English Game programming
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1st level, full-time
Kind of subject: optional
Subject code INZ004376
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		60		
Form of crediting	Examination crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*	Examination crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of C\# language

SUBJECT OBJECTIVES

1 Using existing engins for programming 2D and 3D video games

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Naming basic ideas used in design and development of video games
relating to skills:
PEU_U01 Programming a simple 2D/3D game using a chosen engine

PROGRAM CONTENT		
Lectures	Number of hours	
Lec 1	History and classification of video games	2
Lec 2	Game engines. Introduction to Unity. First 2D game.	2

Lec 3	2D mechanics and animations	2
Lec 4	Game prototyping. GDD	2
Lec 5	Game level design	2
Lec 6	Supporting tools, e.g. Blender	2
Lec 7	Lighting, textures, materials. First 3D game.	2
Lec 8	Artificial intelligence in games.	2
Lec 9	Terrain modeling. Terrain generation. Blend trees.	2
Lec 10	Loading/saving data. Network communication	2
Lec 11	Designing games for different platforms.	2
Lec 12	Virtual Reality, VR support in Unity	2
Lec 13	Game testing	2
Lec 14	Optimization in Unity. Test	2
Lec 15	Test	2
	Total hours	30
	Laboratory	Number of hours
La1	Introduction. Credit rules.	2
La2-3	First 2D game.	4
La4-5	2D mechanics.	4
La6-7	Level design.	4
La8-9	3D game. Graphics assets.	4
$\begin{array}{\|l\|} \hline \text { La10- } \\ 11 \\ \hline \end{array}$	3D game. Navigation and character animation. Managing object states. Artificial intelligence.	6
$\begin{aligned} & \text { La12- } \\ & 14 \end{aligned}$	Loading/saving data. User authentication. Network communication	4
La15	Spare class	2
	Total hours	30
TEACHING TOOLS USED		
N1. Information lecture with elements of problem lecture, supported with multimedia presentations. N2. Unity Engine, supporting tools, e.g. Blender N3. E-learning system used for publishing teaching resources and announcements, submitting and grading student work.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), $\mathrm{P}-$ concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
Fi	PEK_U01	Grade from laboratory exercises from within scale $0 . .10$ (there shall be at least 6 exercises)
F1 - laboratory final grade	PEK_U01	Grade calculated as percentage of points from grades Fi $<50 \rightarrow \quad 2.0$

		$[50-60) \rightarrow$
		3.0
$[60-70) \rightarrow$	3.5	
$[70-80) \rightarrow$	4.0	
$[80-90) \rightarrow$	4.5	
$[90-98) \rightarrow$	5.0	
$[99-100] \rightarrow \quad 5.5$		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] M. Geig, Unity 2018 Game Development in 24 Hours, Pearson 2018
[2] J. Hocking, Unity in Action. Multiplatform Game Development in C\#, Manning
Publications Co., 2015
SECONDARY LITERATURE:
[1] http://www.appwikia.com/
[2] Teaching resources prepared by course teacher.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Dr inż. Bogumila Hnatkowska, Bogumila.Hnatkowska@pwr.wroc.pl
Dr inż. Marek Kopel, Marek.Kopel@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD
Name of subject in Polish Interakcja Czlowiek-Komputer
Name of subject in English Human-Computer Interaction
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practied*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*

Kind of subject: obligatory / optional / university-wide*
Subject code INZ002043
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		90		
Form of crediting	Examination/ crediting with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

 None
SUBJECT OBJECTIVES

C1 Acquainting with practical knowledge in the area of Human-Computer Interaction.
C2 Getting practice in application of usability and User Experience (User Experience) methods.
C3 To familiarize students with the methodology of user-oriented design.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 student has practical knowledge in the field of Human-Computer Interaction
PEK_W02 student knows methods and tools for designing interactive systems
PEK_W03 student knows methods used for user modeling methods, personalization and adaptation of information systems
PEK_W04 student has knowledge in the field of UX testing methods, usability and accessibility of interactive systems
relating to skills:

PEK_U01 student is able to analyze the context of the use of the IT system
PEK_U02 student has the ability to plan and monitor the process of the user interface development
PEK_U03 student can design a user interface
PEK_U04 student is able to plan the process of usability and availability assessment, conduct it and develop conclusions regarding changes in the system under examination
relating to social competences:
PEK_K01 student is able to cooperate in a project group in which the roles of members responsible for UX have been defined
PEK_K02 student is aware of the impact of the IT system on the work and life environment of users and understands the importance of usability, UX and the accessibility of an IT system in this context

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	The problems of the research in Human-Computer Interaction area and the applications of the user interface	3
Lec 2	Philosophy, psychology and ethics of User Experience (UX)	3
Lec 3	Aesthetics and UX design	3
Lec 4	User-oriented systems design	3
Lec 5	Usability assurance methods used for requirements determination and system design	3
Lec 6	Usability assurance methods used for prototyping and testing interactive systems	3
Lec 7	Designing graphic interfaces	3
Lec 8	Standards for the design of mobile interfaces	3
Lec 9	Voice interfaces	3
Lec 10	Directions of future development and the latest trends in ICK	3
	Total hours	30
	Laboratory	3
Lab 1	Organizational classes and introduction to the subject of the course	3
Lab 2	Examples of user interfaces and heuristic analysis of the selected system	
Lab 3	Formulation of a project task, which will be the thematic axis for further exercises and the selection of tools	
Lab 4	Defining target users with Persona	3
Lab 5	Defining the functionality of the system with the use of user stories and use cases	3
Lab 6	Design sprint for selected views	3
Lab 7	Development and testing of a paper user interface prototype	3
Lab 8	Development and testing of the first version of a clickable user interface prototype using design patterns	3
Lab 9	Presentation of the final version of the prototype and a report on the tests carried out	3
Lab 10	Summary of classes and retrospection from the realized project task	3

Total hours	30
TEACHING TOOLS USED	
N1. Lecture using slide presentations	
N2. Consultations	
N3. Familiarizing students with basic and extended literature	
N4. Laboratory exercises in a computer lab	
N5. Student's own work and in a group - preparation for laboratory classes	
N6. Preparation of reports on laboratory tasks in digital form	
N7. Selection tests carried out using the e-portal	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F	PEK_U01-PEK_U04, PEK_K01	Implementation of laboratory exercises and preparation of reports on their implementation
P	PEK_W01-PEK_W04 PEK_K02	Final test

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Marcin Sikorski, Interakcja Człowiek-Komputer. Wydawnictwo PJWSTK 2010.
[2] Chapman N., Chapman J., Digital media. Third edition. Ontario: John Wiley \& Sons Ltd., 2009.
[3] International Standard ISO 9241 (1,2,10-17, 210) Ergonomic requirements for office work with visual display terminals (VDTs).
[4] Galitz W.O. Essential Guide to User Interface Design. Wiley Comp. Pub. 2007.
[5] Nielsen J. Projektowanie funkcjonalnych serwisów internetowych. Helion, 2003.
[6] Lazar, Jonathan, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods in human-computer interaction. Morgan Kaufmann, 2017.
[7] Turner, Phil. A psychology of user experience: Involvement, affect and aesthetics. Springer, 2017.

SECONDARY LITERATURE:

[1] Mark Pearrow, Funkcjonalność stron internetowych. Gliwice: HELION 2002.
[2] Lull, Dave, Discussions in User Experience. Apress, Berkeley, CA, 2017.
[3] Federici S, Borsci S., Usability evaluation: models, methods, and applications. In: JH Stone, M Blouin, editors. International Encyclopedia of Rehabilitation, 2010

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Janusz Sobecki, janusz.sobecki@pwr.edu.pl

FACULTY of Computer Science and Management

Name of subject in Polish
Name of subject in English
Main field of study (if applicable):
Podstawy Internetu Rzeczy
Introduction to IoT
Applied Computer Science
Specialization (if applicable): -
\section*{Profile: academic / practieal*}
Level and form of studies: 1st/ Znd level, uniform magister studies*, full-time / part-time
studies*

SUBJECT CARD

Kind of subject: obligatory / optional/university-wide*
Subject code INZ002027
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		90		
Form of crediting	Examination erediting with grade*	Examination erediting with grade*	Examination crediting with grade*	Examination erediting with grade*	Examination erediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes	0		3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics	1,2		1,8		

${ }^{*}$ delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

The following academic courses are passed or the equivalent to them knowledge and skills are possessed:

1. Structural and Object Oriented Programming,
2. Computer Architecture,
3. Computer Networks.

SUBJECT OBJECTIVES

C1. Acquiring basic knowledge about the theoretical foundations of the Internet of Things and programming devices functioning in it.
C2. Acquiring basic practical skills in the programming of Internet of Things devices.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge a student:
PEK_W01 - acquires basic knowledge about the theoretical foundations of the Internet of Things and programming devices functioning in it.
relating to skills:
PEK_U01 - acquires basic practical skills in the programming of Internet of Things devices.

PROGRAM CONTENT		
Lectures	2	
Lec 1	Introduction to Internet of Things (IoT). Devices in Internet of Things: sensors, actuators, smart devices and embedded systems.	Number of Lours
Lec 2	High-level languages in programming IoT devices and microcontrollers. Introduction to programming of microcontrollers in IoT devices: architecture, programming interfaces (JTAG, etc.), CPU, memory and access to memory.	2
Lec 3	Introduction to programming of microcontrollers in IoT devices: events, system clock, power management, startup and boot modes, system control and reset, watchdog timer (WDT), interrupts and programmable interrupt controllers, I/O ports, timers, real time counter (RTC).	2
Lec 4	Introduction to programming of microcontrollers in IoT devices: cryptographic engine, cyclic redundancy check (CRC) generator, analog to digital converter (ADC), digital to analog converter (DAC), analog comparator, embedded sensors (temperature, etc.).	2
Lec 5	Input and output devices: LED and LCD displays, programmable RGB LEDs, buttons, keyboard, potentiometers and quadrature encoders, etc.	2
Lec 6	Sensors of light, motion, ultrasonic, temperature, humidity, real time clocks, etc. Signaling elements and actuators: servomechanisms, relays, electronic switching circuits, etc.	2
Lec 7	Local communication interfaces and buses of Internet of Things devices: USB, UART, RS232, RS458, I2C, 1Wire, CAN, etc.	2
Lec 8	Wireless technologies for Internet of Things: Bluetooth, IEEE 802.15.4, IEEE 1901.2a, IEEE 802.1lah, LoRaWAN, NB-IoT, etc.	2
Lec 9	The IP protocol in the network layer of Internet of Things.	2
Lec 10	Architecture and design of Internet of Things.	2
Lec 11	Application protocols in Internet of Things.	2
Lec 12	Acquiring, storing and analyzing large amounts of data generated by Internet of Things devices.	2
Lec 13	Security and privacy in Internet of Things.	2
Lec 14	Internet of Things in practice - examples (part I).	2
Lec 15	Internet of Things in practice - examples (part II).	2
	Total hours	2

	Laboratory	Number of hours
Lab 1	Introduction to the laboratory. OSH training.	2
Lab 2	Introduction to Arduino programming.	2
$\begin{array}{\|l} \hline \text { Lab } 3- \\ \text { Lab6 } \end{array}$	Selected input and output devices. Selected sensors, signaling and executive elements Communication using selected communication interfaces.	4×2
$\begin{array}{\|l\|} \hline \text { Lab } 7-1 \\ \text { Lab } 8 \\ \hline \end{array}$	Introduction to microcontroller programming in professional programming environments.	2 x 2
Lab 9	Communication using computer networks based on the IP protocol (part I).	2
Lab 10	Communication using computer networks based on the IP protocol (part II).	2
Lab 11	Communication using wireless technology.	2
Lab 12	Programming for Internet of Things - programming task (part I).	2
Lab 13	Programming for Internet of Things - programming task (part II).	2
Lab 14	Programming for Internet of Things - programming task (part III).	2
Lab 15	Presentation of the results of the programming task. Final grading.	2
	Total hours	30
TEACHING TOOLS USED		
N1. Traditional lecture. N2. Laboratories. N3. Consultations for students. N4. Own work - preparation for laboratories. N5. Own work - learning of theoretical foundations.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), $\mathrm{P}-$ concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
C (lecture)	PEK_W01	To get credit for the lecture (pass), a student should be given more than half of the points for the theoretical exam. If the above is met, then the grading scale is as follows: P - the sum of obtained points in percent. Range P: Grade
	$100-91 \%: 5.0$ (very good) $90-81 \%: 4.5$ (good plus) $80-71 \%: 4.0$ (good)	
		$70-61 \%: 3.5$ (satisfactory plus) $60-51 \%: 3.0$ (satisfactory) $50-0 \%: 2.0$ (unsatisfactory)
F1 (laboratory)	PEK_U01	Knowledge tests in the field of theoretical preparation for the laboratory and practical skills obtained at the laboratory.
F2 (laboratory)	PEK_U01	Evaluation of the effects of the programming task.

PRIMARY AND SECONDARY LITERATURE
PRIMARY LITERATURE:
1] Rob Barton, Gonzalo Salgueiro, David Hanes: IoT Fundamentals: Networking Technologies,
Protocols, and Use Cases for the Internet of Things, Cisco Press, 2017,
ISBN: 9780134307091.
[2] Perry Lea: Internet of Things for Architects, Packt Publishing, 2018,
ISBN: 9781788470599.
[3] Arvind Ravulavaru: Enterprise Internet of Things Handbook, Packt Publishing, 2018,
ISBN: 9781788838399.
[4] Andrew Minter: Analytics for the Internet of Things (IoT), Packt Publishing, 2017,
ISBN: 9781787120730.
[5] Agus Kurniawan: Smart Internet of Things Projects, Packt Publishing, 2016,
ISBN: 9781786466518.
[6] Amir Vahid Dastjerdi, Rajkumar Buyya: Internet of Things, Morgan Kaufmann, 2016,
ISBN: 9780128093474.
[7] Elliot Williams: Make: AVR Programming, Maker Media, Inc, 2014,
ISBN: 9781449355784,
in Polish: Programowanie układów AVR dla praktyków, Helion, 2014,
ISBN: 97888324695010.
[8] Tomasz Francuz: Jezyk C dla mikrokontrolerów AVR, Helion, 2015, (in Polish)
ISBNN 9788324698141.
SECONDARY LITERATURE:
[1] Technical documentation of devices and microcontrollers used in the course on the websites of
producers and distributors.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Krzysztof Chudzik, Krzysztof.Chudzik a, pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish ... Wprowadzenie do zarządzania projektami informatycznymi
Name of subject in English ... Introduction to IT Projects Management
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: obligatory / optional / thiversity-wide*
Subject code INZ002032
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	1		2		1
Number of hours of total student workload (CNPS)	30		60		30
Form of crediting	Examination / credititg with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

C1 To develop an awareness of the need for project planning and management
C2 To apply professional attitudes and techniques to managing a project

SUBJECT OBJECTIVES
C1 Introduction to basic notions of management
\quad SUBJECT EDUCATIONAL EFFECTS
relating to knowledge:
PEK_W01 Explain the stages in the project development lifecycle; explain of key components
of a project plan
PEK_W02 Understanding of steps needed to build a project plan, scheduling and cost
estimation as well as the responsibility of the key staff of project
PEK_W03 Explain the procedures needed to monitor, control and report upon an IT
development project
relating to skills:
PEK_U01 demonstrate an ability to prepare a project charter of simple project
PEK_U02 apply basic project planning techniques and resource assigning to project tasks

PEK_U03 apply basic project cost estimation techniques
PEK_U04 demonstrate an ability to analyze and to report project progress
PEK_U05 demonstrate ability to prepare a presentation and essay on given subject...

PROGRAM CONTENT		
	Lectures	Number of hours
Lec 1	Basic notions in project management. Feasibility study	1
Lec 2 P	Project planning and scheduling techniques for plan driven methods	2
Lec 3 P	Project planning and scheduling techniques for agile driven methods	2
Lec 4 ${ }^{\text {P }}$	Project resources;examples. Team management (organization and decisionmaking, roles and responsibilities in a software team).	2
Lec 5 P	Project cost estimation techniques	2
Lec 6 P	Project monitoring and tracking. Software quality. Software Quality Assurance methods and techniques.	3
Lec 7 ${ }^{\text {M }}$	Methodologies of software project management- review (PRINCE2,DSDM,Scrum..)	2
Lec 8 T	Test	1
	Total hours	15
	Laboratory	Number of hours
Lab 1	Introductory lab: safety regulation; introduction to MSProject 2016.	2
Lab2-3	Project scope definition; requirements specification; Project charter.	4
Lab 3-4	-4 Traditional project planning and scheduling	4
Lab 5-6	6 Agile project planning and scheduling	4
Lab 7-8	Project Resource definition and assignments	4
$\begin{aligned} & \hline \text { Lab 9- } \\ & 10 \\ & \hline \end{aligned}$	Project cost estimation;	4
Lab11	Project task tracking	2
Lab12	Using Reports in MsProject 2016	4
Lab13	Reports of own project planning results	2
	Total hours	30
	Seminar	Number of hours
Sem 1	Introductory seminar; topics assignments	1
Sem 2	Conceptualizing and Initializing the IT Project; Developing the Project Charter	2
Sem3-4	4 Developing the Project Plan and Schedule; Resource problems	4
Sem 5	The Human Side of Project Management	2
Sem 6	Managing Change, Resistance and Conflicts	2
Sem 7	Progress monitoring, project control and reporting	2
Sem 8	Software quality	2
	Total hours	15

N1. Informative lecture supporting with PowerPoint presentations
N2. Examples of managerial documentation of projects published on e-learning system
N3. Software for software project management
N4. An e-learning system used for the publication of teaching materials and announcements as
well as for collecting and assessing student work..
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT
\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Evaluation (F - } \\
\text { forming (during } \\
\text { semester), P - } \\
\text { concluding (at } \\
\text { semester end) }\end{array} & \begin{array}{l}\text { Learning } \\
\text { outcomes number }\end{array} & \text { Way of evaluating learning outcomes achievement } \\
\hline \text { F1 } & \text { PEK_U05 } & \begin{array}{l}\text { PEK_U01- } \\
\text { PEK_U04 }\end{array} \\
\hline \text { F2 } & \begin{array}{l}\text { PEK_W01- } \\
\text { MsPowerPoint presentation and essay }\end{array} \\
\hline \text { PEK_W03 }\end{array}
$$ \quad \begin{array}{l}Grade based on completeness, on time and quality of laboratory

assignments\end{array}\right]\)| Grade based on multichoice test result |
| :--- |
| Final course grade will be based upon the following weights for categories of assessments: |
| Presentation and essay 20\% of F1 |
| laboratory assignments 40\% of F2 |
| - Final test 40\% of F3 |

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Cobb Ch., Zrozumiéć Agile Project Management- Równowaga kontroli i elastyczności, APN Promise Warszawa 2012
[2] Chatfield C., Johnson T., MS Project 2013 - Krok po kroku, APN Promise, Warszawa 2013
[3] Schwaber K., Sprawne zarzqdzanie projektami metodq Scrum. APN Promise, Warszawa, 2005
[4]Żmigrodzki M., Zarządzanie projektami dla poczatkujacych, Wyd. II Helion 2018.
[5] Microsoft Project 2016.

SECONDARY LITERATURE:

[1] Materiały przygotowane przez prowadzącego kurs.
[2] PMBOK® Guide: A Guide to the Project Management Body of Knowledge. Fifth Edition, 2012
[3] Prince2 (materiały z Internetu)
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Iwona Dubielewicz, iwona.dubielewicz@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Problemy spoleczne i zawodowe informatyki
Name of subject in English IT Social and Professional Problems
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st $/ 2$ nd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory /optiona//university-wide*
Subject code INZ004391
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	60				
Form of crediting	Examination / crediting with grade*				
For group of courses mark final course with (X)					
Number of ECTS points					
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. None

SUBJECT OBJECTIVES

C1. Educating skills in solving social and legal problems related to Computer Science and the profession of Computer Science specialist. Education of competences in the field of copyright, related rights and patent law. Providing knowledge about the nature of copyright law, its subject and object part. The acquisition of practical knowledge in the field of personal and property copyright in relation to products of an information nature.
C2. To educate awareness of the importance and understanding of non-technical aspects and effects of the engineer-computer science, including its legal effects and impact on the environment, and the related responsibility for decisions

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 The student has knowledge of the protection of intellectual and industrial property related to the Computer Science product. The student has knowledge of copyright and patent law, with detailed knowledge of solutions in the field of personal and property rights. The student has knowledge in the field of risk assessment related to the
protection of intellectual and industrial property. The student has practical knowledge in the field of implementing protection of Computer Science works created as part of individual and group work. The student has the competence to understand and formulate the license. Has knowledge of the transfer of property copyrights. Understands the essence of fair use and public use.
relating to social competences:
PEK_K01 The student has the ability to see the social aspects of the profession. Has the skills of creative thinking and applying the law in both individual and group work.

PROGRAM CONTENT					
Lectures	2				
Lec 1	Basic concepts. Introduction.	2			
Lec 2	Prumber of hours legar contion, design, manufacturing and exploitation of software in a social and				
Lec 3	The intellectual property, definitions, legal settlements, examples.	2			
Lec 4	Object and subject of copyright. Special legal regulations in the field of subjects and entities related to Computer Science.	2			
Lec 5	Authorship of individual and collective works. Personal copyright, protection method and scope of use.	2			
Lec 6	Personal copyright. Duration of personal copyrights. Attributes of personal copyright and the scope of their protection.	2			
Lec 7	Economic part of copyright and its use. Examples in the field of computer product protection.	2			
Lec 8	Permitted use. Public use. Exclusions from protection.	2			
Lec 9	Copyright law in scientific and educational institutions.	2			
Lec 10	Creating software and documentation with respect for copyright.	2			
Lec 11	Criminal liability for infringement of copyright. Computer crimes. Forensic examinations.	2			
Lec 12	The right to protect industrial property. Definitions. The scope of application.	2			
Lec 13	Patents. Trademarks. Registration. Regulations regarding the protection of industrial property in Poland and Europe. Industrial property law and copyright law in an ethical and social context.	2			
Lec 14	The final test.	2			
Lec 15	Licenses. Collective management of copyright. Occupational risk. Reliability and legal security of the software.	2			
	Total hours	30			
	TEACHING TOOLS USED				
N1. Lecture using the multimedia slide projector.	2				
N2. Consultation.	2				
N3. Own work of the student.					
N4. Electronic using educational platforms.	2				

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

| Evaluation (F - forming | Learning outcomes | Way of evaluating learning outcomes achievement |
| :--- | :--- | :--- | (during semester), P concluding (at semester end) number

F1	PEK_W01, PEK_K01	questions and discussion, the final test
$\mathrm{C}=\mathrm{F} 1$		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Cohen J. E.: Copyright in a global information economy. Aspen Publishers 2010. [2] Okediji C. L. \& Orourke: Copyright Law. Aspen Publishers 2010. [3] Thies Ch.: Computer Law and Ethics. Mercury Learning \& Information 2013. [4] Ustawa o prawie autorskim z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych. Dz. U. 1994 nr 24 poz. 83 (z późniejszymi zmianami) SECONDARY LITERATURE:		
[1] McJohn S. M.: Examples \& Explanantions: Copyright. Aspen Publishers 2012.		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Arkadiusz Liber, PhD Arkadiusz. Liber / at / pwr . edu . pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish
Name of subject in English
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): -

Profile: academic / practied*

Level and form of studies: 1 st/ Znd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code INZ004415
Group of courses YES / NQ*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination / crediting with grade*	Examination+ erediting with grade*	Examination/ crediting with grade*	Examination erediting with grade*	Examination+ erediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes	0		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge about the principles of the modern operating systems.
2. Knowledge about the principles of the computer networks based on the TCP / IP protocol suite.

SUBJECT OBJECTIVES

C1. Acquiring basic knowledge and practical skills in the Linux server and user's workstation administration.
C2. Acquiring basic knowledge and practical skills in the administration of network infrastructure and network services using the Linux system.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge a student:
PEK_W01 - acquires basic knowledge in the administration of Linux server and workstation and basic knowledge in the administration of network infrastructure and network services using Linux.
relating to skills:
PEK_U01 - acquires practical skills in the administration of Linux server and workstation and basic knowledge in the administration of network infrastructure and network services using Linux.

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Distributions of the Linux system. System architecture. System installation.	2
Lec 2	Text console: shells, basic commands, scripts.	2
Lec 3	User and group account management.	2
Lec 4	Disks and file system management.	2
Lec 5	Data compression. Backup. Scheduling of administrative tasks.	2
Lec 6	System update. Installing, updating and uninstalling additional software. Use of installation packages.	2
Lec 7	Printing in Linux. Graphic environment - X Window.	2
Lec 8	Managing network connections. Routing.	2
Lec 9	Firewalls and network traffic management.	2
Lec 10	Configuration and management of DHCP and DNS servers.	2
Lec 11	Configuration and management of the file server (NFS, Samba, FTP).	2
Lec 12	Configuration and management of the web server. Content management systems (CMS).	2
Lec 13	Virtualization in Linux systems.	2
Lec 14	Securing the server. Remote system administration. The knowledge test (1 term).	2
Lec 15	The knowledge test (2 term).	2
	Total hours	20
		Number of hours
Lab 1	Introduction to the laboratory. OSH training.	2
Lab 2	Installation of the Linux system.	2
Lab 3	Text console: shells, basic commands, scripts.	2
Lab 4	Practical management of accounts and user groups.	2
Lab 5	Practical disk and file system management.	2
Lab 6	Performing data compression. Backing up and recovering data. Operations scheduling.	2
Lab 7	System upgrade, installation, upgrade and uninstallation of additional software using installation packages and software repositories.	2
Lab 8	Configuring printing in the Linux environment. Graphic environment - X Window. Practical test - Management of the server and workstation operating system.	

Lab 9	Managing network connections. Routing.	2	
Lab 10	Firewalls and network traffic management.	2	
Lab 11	Configuration and management of DHCP and DNS servers.	2	
Lab 12	Configuration and management of the file server (NFS, Samba, FTP).	2	
Lab 13	Configuration and management of the web server. Content management systems (CMS).	2	
Lab 14	Configure and run virtual machines on Linux systems. Securing the server. Remote system administration.	2	
Lab 15	Practical test - Management of the network infrastructure and network services.	2	
	Total hours	30	
TEACHING TOOLS USED			
N1. Traditional lecture.			
N2. Laboratories with full administrative access to Linux systems.			
N3. Consultations for students.			
N4. Own work - preparation for laboratories.			
N5. Own work - learning of theoretical foundations.			

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEK_W01	Test of theoretical knowledge (max 50\% of points).
F2	PEK_U01	Practical test - Management of the server and workstation operating system (max 25\% of points).
F3	PEK_U01	Practical test - Management of the network infrastructure and network services. ($\max 25 \%$ of points).
C	To get credit for this group of courses (pass), a student should be given more than half of the points for the theoretical test ($\mathrm{F} 1>25 \%$) and over half of the points possible to get on both practical tests ($\mathrm{F} 2+\mathrm{F} 3>25 \%$). The student's absences may constitute the grounds for not crediting the course. The number of student's absence must not exceed the limit given by the lecturer. If the above are met, then the grading scale is as follows: The sum of points in percent $\mathrm{P}=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3$. Range P : Grade 100-91\%: 5.0 (very good) $90-81 \%: 4.5$ (good plus) 80-71\%: 4.0 (good) $70-61 \%$: 3.5 (satisfactory plus) $60-51 \%$: 3.0 (satisfactory) $50-0 \%: 2.0$ (unsatisfactory)	
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] William E. Shotts, Jr., Linux	mand Line, No Starc	2019.

[2] Osamu Aoki, Debian Reference, https://www.debian.org/doc/manuals/debian-reference/, Retrieved 2018. [3] Raphaël Hertzog \& Roland Mas, https://debian-handbook.info/, Retrieved 2018.

SECONDARY LITERATURE:

[4] Brian Ward, How Linux Works, What Every Superuser Should Know, No Starch Press, Second edition, 2014.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Krzysztof Chudzik, Krzysztof.Chudzik @ pwr.edu.pl
$\left.\begin{array}{|l|c|l|l|l|l|}\hline \text { FACULTY of Computer Science and Management } \\ \text { SUBJECT CARD } \\ \text { Logika dla informatyków } \\ \text { Name in Polish: }\end{array} \quad \begin{array}{l}\text { Logics for IT Specialists } \\ \text { Applied Computer Science }\end{array}\right)$

*elete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Knowledge of mathematics at the high school level in the expanded range.

SUBJECT OBJECTIVES

C1. Gaining knowledge of the set theory and the classical propositional and predicate calculi.
C2. Gaining knowledge about the usage of classical logic to formally define some elements of programming languages.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:
PEK_W01: Students know and understand the concept of a set and operations on sets, the concept of relations and functions.
PEK_W02: Students know and understand the concept of logical syntax and semantics of propositional logic and predicate calculus, and selected proving systems.
PEK_W03: Students know and understand the concept of mathematical induction and structural definition of recursive sets and functions, graphs and methods of their representation.

Relating to skills:
PEK_U01: Students can apply propositional and predicate calculi.
PEK_U02: Students can conduct a simple and moderately difficult proofs by mathematical and structural induction.
PEK_U03: Students can use language of set theory interpreting problems in different areas of mathematics and science.

Relating to social competences:

PEK_K01: Students can precisely formulate questions to deepen their understanding of the topic and find the missing pieces of reasoning.
PEK_K02: Students can independently search the bibliographic databases and study the literature available there.
PEK_K03: Students know the limits of their own knowledge and understand the need for further education

PROGRAMME CONTENT		
Form of classes - lecture	Number of hours	
Lec 1	Basic logical notions: truth and false, simple and compound propositions. Basic set-theoretical notions: a set, definitions of sets, operations on sets.	2
Lec 2	Cartesian product, relations and their properties, equivalence and ordering relations.	2
Lec 3	Functions, composition of functions. Equinumerosity of sets, cardinal numbers. Sequences and operations on sequences.	2
Lec 4	Graphs, formal languages, free-context grammars.	2
Lec 5	Accepting finite automata, finite automata with outputs	2
Lec 6	Syntax and semantics of propositional calculus.	
Lec 7	Zero-one method of formulas proving. Proving system based on semantic equivalence of formulas.	2
Lec 8	Proving system for the propositional calculus based on Gentzen's sequents.	2
Lec 9	Complete sets of logical connectives. Meta-logical properties of the propositional calculus - decidability, consistency and completeness of proving systems.	2
Lec 10	Syntax of the predicate calculus.	2
Lec 11	Semantics of the predicate calculus.	2
Lec 12	Proving system for the predicate calculus based on Gentzen's sequents	
its consistency and completeness.		

Form of classes - class		Number of hours
Cl 1	Basic logical notions: truth and false, simple and compound propositions.	2

Cl 2	Methods of definitions of sets, operations on sets.	2
Cl 3	Cartesian product, relations defining and checking their properties.	2
Cl 4	Proving properties of equivalence and ordering relations.	2
Cl 5	Checking equinumerosity of sets. Operations on sequences.	2
Cl 6	Defining of exemplary formal languages.	2
Cl 7	Test 1.	2
Cl 8	Many-sorted algebras as models for data types.	2
Cl 9	Application of zero-one method and transformational method for formulas proving.	2
Cl 10	Application of Gentzen system for proposition formulas proving.	2
Cl 11	Informal interpretation of predicate formulas.	2
Cl 12	Application of Gentzen system for predicate formulas proving.	2
Cl 13	Canonical forms of predicate formulas.	2
Cl 14	Test 2. Application of resolution rule for formulas proving.	3
Cl 15	Corrective test.	1
	Total hours	30
TEACHING TOOLS USED		
N1. Lecturer's presentation at a blackboard, supported by a multimedia presentation using a		
laptop and a projector.		
N2. Individual search and study of literature and Internet sources.		
N3. Access to teaching materials published in the local area network.		
N4.	Individual consultations.	

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming (during semester), - concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_U01 PEK_U02 PEK_K01	During each class students are awarded 1 or 2 points for an individual solution of a task from the announced list of tasks.
F2	PEK_W02 PEK_W03 PEK_U02 PEK_U03 PEK_K01	Students are oblige to participate in two tests at the middle and at the end of a semester. During each test students are awarded up to 10 points.
	PEK_W01 PEK_W02 PEK_W03 PEK_W03 PEK_U01 PEK_U02 PEK_U03	Final mark for the classes is determined on the base of total number of points resulted from activity during classes (F1) and points for the tests (F2). Detailed rules for final mark evaluation are as follows: Let

The students which have passed the classes without corrective test and have got at least mark 4 are exempted from examination with the same mark.
C: The final evaluation of the course is determined based on the results of the examination. The examination lasts two hours and consists of a set of tasks, with the total number of 20 points. The condition for a positive assessment of the final exam is to get 10 points and a positive final evaluation of the exercise.
The final evaluation of the examination is determined in accordance with the following table:

Points	10	12	14	16	18
Mark	3.0	3.5	4.0	4.5	5.0

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] HUZAR Z., Elementy logiki i teorii mnogości dla informatyków, Oficyna Wydawnicza Politechniki Wrocławskiej, 2007.
[2] BEN-ARI M., Logika matematyczna w informatyce, WNT, 2005.
[3] MAREK W., ONYSZKIEWICZ J., Elementy logiki i teorii mnogości w zadaniach, PWN, 2001.
SECONDARY LITERATURE:
[1] RASIOWA H., Wstęp do matematyki współczesnej, PWN, 1998.
[2] ŁAWROW I. A., MAKSIMOWA Ł. L., 2004, Zadania z teorii mnogości, logiki matematycznej i teorii algorytmów, PWN, 2004.
STANOSZ B., Ćwiczenia z logiki, PWN, 2002.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Zbigniew Huzar, zbigniew.huzar@pwr.edu.pl
Ngoc-Than Nguyen, ngoc-than.nguyen@pwr.edu.pl

FACULTY of Computer Science and Management					
	SUBJECT	CARD			
Name of subject in Polish Zarządzanie infrastrukturą IT					
Name of subject in English Managing IT infrastructure					
Main field of study (if applicable): Applied computer science					
Specialization (if applicable): -					
Profile: practical					
Level and form of studies: 1st level, full-time					
Kind of subject: optional					
Subject code INZ004468Wl					
Group of courses NO					
	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) final course	X				
Number of ECTS points	2		2		
including number of ECTS points for practical classes (P)	0		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge on design of contemporary operating systems.
2. Knowledge on computer networks using TCP/IP protocol stack.

SUBJECT OBJECTIVES

C1 Gain knowledge on management of complex, distributed IT environment, including:
C1.1 single machine administration
C1.2 using directory services to centralize of administration tasks
C1.3 administration of network services
C 2 Develop the conscience of the value of lifelong self-learning.

\quad SUBJECT EDUCATIONAL EFFECTS
relating to knowledge:
PEU_W01 knows basic local resources (user accounts, groups, files, printers) and how to
\quad manage them

PEU_W02 knows directory services and knows how to use it to centralize administrative
\quad efforts
PEU_W03 knows selected services supporting computer networks and network security
relating to skills:
PEU_U01 can configure users' access to local resources

PEU_U02 can administer directory services

PEU_U03 is able to configure selected network services
relating to social competences:
PEU_K01 can search for additional external knowledge sources to extend course content.
PROGRAMME CONTENT

Lecture		Number of hours
Lec 1	Contemporary IT environment. System installation.	2
Lec 2	Accounts and group management.	2
Lec 3	Disk management.	2
Lec 4	Printing	2
Lec 5	Scripting administration tasks	2
Lec 6	Directory services.	2
Lec 7	Centralized management using directory services.	2
Lec 8	Distributed environment with directory services.	2
Lec 9	System monitoring.	2
Lec 10	DHCP and DNS servers.	2
Lec 11	Routing and remote access.	2
Lec 12	PKI infrastructure.	2
Lec 13	Securing network traffic.	2
Lec 14	Web server configuration.	2
Lec 15	Final test	2
		$\mathbf{3 0}$

Laboratory		Number of hours
Lab 1	Getting used to lab environment. Safety regulations.	2
Lab 2	System installation.	2
Lab 3	User accounts and groups administration.	2
Lab 4	Disk resources management.	2
Lab 5	Scripting administrative tasks.	2
Lab 6	Practical test 1.	2
Lab 7	Directory services installation. Users and groups in directory.	2
Lab 8	Environment administration using directory services.	2
Lab 9	Directory services in distributed environment.	2
Lab 10	Practical test 2.	2
Lab 11	System monitoring.	2
Lab 12	DNS and DHCP servers configuration.	2
Lab 13	Routing and remote access configuration.	2
Lab 14	PKI infrastructure configuration. Web server configuration.	2

Lab 15	ractical test 3.	2	
		Total hours	$\mathbf{3 0}$

TEACHING TOOLS USED

N1. Lecture.
N2. Laboratory.
N3. Self-learning and studying.
N4. Practical self-learning using virtual machines.
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F-forming during semester), P- concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement	
F1	PEK_U01-PEK_U03	Graded activities on labs.	
F2	PEK_U01-PEK_U03	Graded practical tests on labs.	
F3	PEK_W01-PEK_W03	Graded tests.	
P (lecture) = F3	\mid		
P (labs) $=$ W1 \times F1+W2 \times F2, W1 and W2 weights will be available at the start of the course.			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] T.Limoncelli, C.Hogan, S.Chalup, The practice of System and Network Administration, vol. 1., $3^{\text {rd }}$ ed., Addison Wesley, 2017.
[2] J. Krause, Mastering Windows Server 2019: The complete guide for IT professionals to install and manage Windows Server 2019 and deploy new capabilities, $2^{\text {nd }}$ ed., Packt Publishing, 2019.

SECONDARY LITERATURE:

[1] C. Zacker, Exam Ref 70-740 Installation, Storage and Compute with Windows Server 2016, Microsoft Press, Redmond, 2017.
[2] A. Warren, Exam Ref 70-741 Networking with Windows Server 2016, Microsoft Press, Redmond, 2017.
[3] A. Warren, Exam Ref 70-742 Identity with Windows Server 2016. Microsoft Press, Redmond, 2017.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Wojciech Thomas, wojciech.thomas/at/pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name in Polish Metaheurystyki w rozwiązywaniu problemów.
Name in English Metaheuristics in problems solving
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Level and form of studies: 1st/ Znd* level, full-time / part-time*
Kind of subject: obligatory / optional / university-wide*
Subject code INZ002042
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	$\begin{aligned} & \hline \text { Examination / } \\ & \text { crediting with } \\ & \text { grade* } \end{aligned}$	Examination/ crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	-	-	-	-	-
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes	-		2	-	-
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics	1,2		1,2		

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. K1INF_W15 Has basic knowledge about modeling, and knows methods and techniques used in decision supporting systems
2. K1INF_U16 Can effectively use methods and tools of information storing, information processing, information searching and knowledge acquisition

SUBJECT OBJECTIVES

C1 To teach students about various approaches and metaheuristics used in machine learning tasks
C2 To get a skill of metaheuristics selection suitable to given task
C3 To get a skill of validation of metaheuristics in real world applications

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W02: Has knowledge of approaches and methods used in machine learning
PEK_W02: Has knowledge of various metaheuristics applications
PEK_W03: Has knowledge of selected data preprocessing techniques
PEK_W04: Has knowledge of metaheuristics results validation
PEK_W05: Has knowledge of effective implementation of metaheuristics
relating to skills:
PEK_U01: Can select a proper metaheuristic for given task
PEK_U02: Can design and implement application
PEK_U03: Can prepare and do an empirical experiments to examine metaheuristics effectiveness and usability
PEK_U04: Can prepare results analysis and do report of done experiments
relating to social competences:
PEK K01

PROGRAM ME CONTENT		
Form of classe s - lectur e		
Lec1	Introduction to metaheuristics	
Lec2	Introduction to Evolutionary Algorithms (EA)	2
Lec3	Solving problems and tasks by metaheuristics - research methodology	2
Lec4	Other metaheuristics: HillClimbing (HC), Tabu Search (TS), Simulated Annealing (SA)	2
Lec5	Introduction to EA specialization and extensions	2
Lec6	Specialization of EA: representation, fitness function and genetic operators	2
Lec7	Types and extensions of EA	4
Lec9	Hybrid metaheuristics	2
Lec10	Selected swarm-based metaheuristics: Ant Colony Optimization, Bee Colony Optimization, Particle Swarm Optimization	2
Lec11	Other selected metaheuristics	4
Lec12	Methods of metaheuristics efficiency improvement	4
Lec13	Summary and recent directions	2
	Total hours	30

Lab 1	Organization issues	2
Lab 2	L1. Application of Evolutionary Algorithms to given problem A	6
Lab 3	L2 Tabu Search (TS) usage to selected problem A	4
Lab 4	L3 Simulated Annealing (SA) application to selected problem A	4
Lab 5	L4 Comparison of EA, TS and SA implementation effectivency for selected problem A	4
Lab 6	L5 Hybrids EA+SA and EA+TS used for A problem solving	2
Lab 7	L6 Selected metaheuristics implementation, e.g. Ant Colony Optimization solving A problem	$\mathbf{8}$
	Total hours	30

TEACHING TOOLS USED

N1. Multimedia PowerPoint presentation
N2. Laboratory exercises description
N3. e-learning system
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1 - L1 realization	PEK_W01; PEK_U01; PEK_U03; PEK_U04;	L1 realization is worth 10 points. For each working week delay penalty -20\% is used. In each laboratory, a student can present only one exercise realization. The exercise realization is: exercise specification reading, given method analysis, and implementation, application verification and effectivency research. The whole process is described in the report. There are included implementation details, research methodology, summary results and emerged problems. Such a report is uploaded to the e-learing portal. It is suggested implementation in a non-interpret programming language. Using interpret language (such as Java, python) decreases points -20\%. The C/C++ usage is preferred.
F2 - L2 realization	PEK_W01; PEK_U02; PEK_U03; PEK_U04;	Like F1
F3 - L3 realization	PEK_W01; PEK_U02; PEK_U03; PEK_U04;	Like F1 F3 - L4 realization PEK_W01; PEK_U02; PEK_U03; PEK_U04;

F3 - L5 realization	PEK_W01; PEK_U02; PEK_U03; PEK_U04;	Like F1
F3 - L6 realization	PEK_W01;	Like F1
	PEK_U02;	
	PEK_U03;	
	PEK_U04;	
C - summay	PEK_U01;	The final mark is given as follows:
	PEK_U02;	$0-29$ points gives ndst
	PEK_U03;	$30-34$ points gives dst
	PEK_U04;	$35-40$ points gives dst+
	PEK_U01;	$41-45$ points gives db
		$45-50$ points gives db+
		$51-60$ points gives bdb
		No more than 2 absences are allowed. More fails the
course.		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

1. Goldberg D. "Algorytmy genetyczne i ich zastosowanie", WNT 1998.
2. Kwaśnicka H. "Obliczenia ewolucyjne w sztucznej inteligencji", Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1999.
3. Michalewicz Z. "Algorytmy genetyczne + struktury danych = programy ewolucyjne", WNT 2010.
4. Michalewicz Z., Fogel D.B. "Jak to rozwiązać, czyli nowoczesna heurystyka", WNT 2006

SECONDARY LITERATURE:

[1] Arabas J. "Wykłady z algorytmów ewolucyjnych", WNT, Warszawa 2004.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
 Pawel Myszkowski, pawel.myszkowski@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD
Name of subject in Polish: Aplikacje mobilne na platformę Android
Name of subject in English: Mobile applications for Android platform
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*

Kind of subject: ebligatory / optional / university-wide*
Subject code INZ002029
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	30		90		
Form of crediting	Examination / crediting with grade*	Examination crediting with grade*			
For group of courses mark final course with (X)	X				
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			1,2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2				

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of programming in Java.
2. Basic knowledge about the operation of computer operating systems.

SUBJECT OBJECTIVES

C1 Obtaining basic knowledge of the architecture of mobile applications for the Android platform and methods to implement the functionality of typical applications.

C2. Acquiring practical skills in implementing mobile applications for the Android platform.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knows the basic elements of mobile application architecture for the Android platform.
PEU_W02 Describes how to implement solutions for Android applications regarding the basic functionalities of typical applications.

relating to skills: PEU_U01 Is able to implement mobile applications for the Android platform in the field of selected basic functionalities implemented in typical applications.		
PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Presentation of the course organization and program. Introduction to subject matter. Presentation of the Android platform and development tools.	2
Lec 2	Elements of the Android application architecture and the basics of application design. Life cycles of the discussed app components.	2
Lec 3	Basics of application graphical interface - layouts, controls for handling interface input events.	2
Lec 4	Triggering of actions and data transfer - intentions, interaction of activities, use of system activities. Configuration change support.	2
Lec 5	Creating application menu items.	2
Lec 6	Interface elements that require a content adapter.	2
Lec 7	Fragments - operating principle, management, operating patterns.	2
Lec 8	Persistent data support. Built-in database mechanism.	2
Lec 9	Advanced interface support - bookmarks, scrolling views, etc.	2
Lec 10	Streaming media support in Android.	2
Lec 11	Sensor support and location mechanisms.	2
Lec 12	Mobile application communication functions.	2
Lec 13	Background tasks. Services.	2
Lec 14	Applications for non-smartfon devices with the Android environment.	2
Lec 15	Passing test.	2
	Total hours	30
Laboratory		Number of hours
Lab 1	Discussion of the organization and program of classes. OSH training. Presentation of teaching tools.	2
Lab 2	Configuration of the Android production environment. Creating a basic application project.	2
Lab 3	Application I - activities (windows), graphic layouts and controls. Triggering activity.	2
Lab 4	Application II - advanced interface elements - part I.	2
Lab 5	Application II - advanced interface elements - part II.	2
Lab 6	Application III - application menu.	2
Lab 7	Application IV - fragments and bookmarks - part I.	2
Lab 8	Application IV - fragments and bookmarks - part II.	2
Lab 9	Application VI - support for selected streaming media.	2
Lab 10	Application V - sensors and location.	2
Lab 11	Application VII - background tasks.	2
Lab 12	Application VIII - communication functions.	2

Lab 13	Application IX - programming the application for a selected nonsmartphone/tablet device (e.g. Android TV) - part I.	2
Lab 14	Application IX - programming the application for a selected nonsmartphone/tablet device (e.g. Android TV) - part II.	2
Lab 15	Summary and discussion of classes. Final passing the class and issuing grades.	2
	Total hours	30
TEACHING TOOLS USED		
N1. Informative lecture supported by multimedia presentations. N2. Printed or electronic laboratory exercises. N3. Development software for the Android platform. N4. Devices (smartphones, tablets) and emulators to run developed applications. N5. An e-learning system for publishing teaching materials, tasks and announcements, and collecting and assessing student work, as well as for carrying out knowledge tests.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), C - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1-La2	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 3$.
F2-La3	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F3-La5	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F4-La6	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F5-La8	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F6-La9	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F7-La10	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F8-La12	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F9-La13	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
F10-La14	PEK_U01	Assessment of completeness and quality of task solution. Point scale $0 \div 10$.
C1 - final evaluation from the laboratory	PEK_U01	The grade is determined on the basis of sum of points from the grades F1 to F10 according to the formula: - below 50% of points - ndst (2.0) $[50 \%, 60 \%)$ - dst (3.0) $[60 \%, 70 \%)-$ dst+ (3.5) $[70 \%, 80 \%)-$ db (4.0) $[80 \%, 90 \%)-\mathrm{db}+(4.5)$ $[90 \%, 100 \%)-\operatorname{bdb}(5.0)$

		100\% - discretionary (e.g. additional task
C2 - final evaluation from the lecture	$\begin{aligned} & \text { PEK_W01, } \\ & \text { PEK_W02. } \end{aligned}$	Knowledge test - written or electronic test using an e-learning system. Grade based on the score obtained from the test. Rating scale as for C 1.
C3 - final evaluation from the lecture	The final grade C 3 is calculated on the basis of 50% of C 1 and 50% of C2. The condition for obtaining a positive grade C3 is obtaining a positive grade for both C 1 and C 2 components.	
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Phillips, B.: Programowanie aplikacji dla Androida, Helion 2018. [2] Annuzzi, J.: Android: wprowadzenie do programowania aplikacji, Helion, 2016. [3] Deitel, P. J.: Android 6 dla programistów: techniki tworzenia aplikacji, Helion, 2016. [4] Dokumentacja elektroniczna Open Handset Alliance: http://developer.android.com		
SECONDARY LITERATURE:		
[1] Murphy, M. L.: The Busy Coder's Guide to Android Development, CommonsWare, 2015. [2] Płonkowski, M.: Android Studio : tworzenie aplikacji mobilnych, Helion, 2018.		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Mariusz Fraś, mariusz.fras@pwr.edu.pl		

FACULTY of Computer Science and Management
SUBJECT CARD
Name of subject in Polish Aplikacje mobilne a platformę IOS
Name of subject in English Mobile Applications for IOS
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic
Level and form of studies: 1st/2nd level, uniform magister studies*, full-time / part-time*
Kind of subject: ebligatory + optional / university-wide*
Subject code INZ002030Wl
Group of courses YES $\not / \mathbf{N O}^{*}$

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Crediting with grade*	Examination / crediting with grade*	Crediting with grade**	Examination / credititng with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	2		2		
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of	1,2		1,2		
lecturers and other academics (BU)					

delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of basic programming techniques for Android.
2. Basic knowledge of design and programming of mobile applications.
3. Basic knowledge of graphical software.
4. Awareness of mobile and multimedia technologies for the society.

SUBJECT OBJECTIVES

C1. Transfer of knowledge about usage of Apple devices.
C2. Introduction to programming in Swift.
C3. Design and implementation of a mobile application in Swift.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knows and understands the specificity of mobile applications.
PEU_W02 Knows how to design and implement mobile applications.
PEU_W02 Knows programming tools.
relating to skills:
PEU_U01 Defines a set of functional requirements of a mobile application, and - based on the definition - designs a mobile application.

PEU_U02 Implements a mobile application in accordance to the design.
PEU_U03 Publishes a mobile application.
relating to social competences:
PEU_K01 Cooperates with a potential user of a mobile application to define a set of functional requirements.
PEU_K02 Includes specific requirements in the user-interface design process.
PROGRAMME CONTENT

Lecture		$\begin{aligned} & \text { Number of } \\ & \text { hours } \end{aligned}$
Lec 1	Introduction. Review of selected mobile applications. Introduction to Apple devices and Mac OS.	2
Lec 2-3	UI and UX. Interactions. Touch screens. Material design. Human Interface guidelines. Voice communication. Siri.	4
Lec 4	Tools for multimedia processing. Gathering multimedia data. Copyright.	2
Lec 5	Implementation rules in Xcode. The structure of application written in Swift.	2
Lec 6-7	Presentation of basic elements of Swift by examples. Core libraries.	4
Lec 8	Apple Human Interface Guideline by examples.	2
Lec 9	Libraries and frameworks supporting creation of multimedia applications. Short characteristics of Kotlin language.	2
Lec 10	Applications of augmented reality. Code analysis of application with augmented reality mechanisms.	2
Lec 11	Games review. Connections between games and the progress of algorithms and programming languages.	2
Lec 12	Multimedia data compression. Compression formats. Video and audio streaming.	2
Lec 13	Multimedia in mobile systems. Cameras. Recommended frameworks.	2
Lec 14	Interaction mechanisms - review. New technologies and multimedia devices.	2
Lec 15	Summary. Perspectives of multimedia techniqes.	2
	Total hours	30
	Laboratory	Number of hours
	Introduction. Introduction to Android Studio. Animate program. Implementation of a puzzle game.	4
Lab 3-4	Implementation of photo gallery with animation and audio effects in AS 3.0.	4
	Implementation of photo gallery with animation and audio effects in Swift and Xcode.	4
Lab 7-8	Implementation of an interactive game with animations and audio in Android Studio (Swift UI).	4
$\begin{array}{\|l} \hline \text { Lab 9- } \\ 10 \\ \hline \end{array}$	Implementation of photo gallery with animation and audio effects in Swift and Xcode.	
$\begin{array}{\|l\|} \hline \text { Lab 11-II } \\ \hline 14 \\ \hline \end{array}$	Design and implementation of a virtual museum.	8
Lab 15	Demonstration of virtual museum implementation with the use of modern multimedia techniques.	2
	Total hours	30

TEACHING TOOLS USED

N1. Lectures in the form of multimedia presentations.
N2. Introduction to the laboratories in the form of multimedia presentation.
N3. Collections of additional materials (links, papers).
N4. Individual meetings.
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), P- concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01 PEU_W02 PEU_W03 PEU_U01 PEU_U02 PEU_U03	Students have to realize 9 laboratory tasks. For each they can get from 0-2 points.
F2	PEU_W01 PEU_W02 PEU_W03 PEU_U01 PEU_U02 PEU_U03 PEU_K01 PEU_K02	Design and implementation of a multimedia application for 0-4 points.

P is calculated based on the formula given below. The highest grade requires the F 2 is greater than zero.

Points	$10-11$	$12-13$	$14-15$	$16-17$	$18-20$	$21-22$
\mathbf{P}	3,0	3,5	4,0	4,5	5,0	5,5

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Carmen Delessio, Lauren Darcey, Shane Conder, Android Studio w 24 godziny. Wygodne programowanie dla platformy Android, Helion 2017.
[2] Andrzej Stasiewicz, Android. Podstawy tworzenia aplikacji, Helion 2014.
[3] Kathy Sierra, Bert Bates, Rusz głową. JAVA, Wydanie 2, Helion 2011.
[4] Matthew Mathias, John Gallagher, Programowanie w języku Swift. BIG NERD RANCH GUIDE, Helion 2017.
SECONDARY LITERATURE:
[1] Randi L. Derakhshani, Dariusz Derakhshani, Autodesk 3ds Max 2014. Oficjalny podręcznik, Helion 2014.
[2] Dariusz Derakhshami, MAYA 2011. Wprowadzenie, Helion 2011.
[3] Cameron Chapman, Podręcznik genialnych pomysłów. Od inspiracji po realizację, Helion 2012.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Dr inż. profesor uczelni Krzysztof Waśko, krzysztof.wasko@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Sieci Neuronowe
Name of subject in English Neural Networks
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic
Level and form of studies: 1 st/ Znd level, uniform magister studies*, full-time / part-time stedies*
Kind of subject: ebligatory/ optional / university-wide*
Subject code INZ002041
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	120				
Form of crediting	Examination/ crediting with grade*	Examination / crediting with grade*	Examination/ crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	3				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	3				
gra					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1.K1INF_U02 Good programming skills in a high level programming language
2.K1INF_W01 Basic knowledge in differential and matrix calculus

SUBJECT OBJECTIVES

C1. Knowledge in the neural network development
C2 Knowledge of various neural networks structures and the way of training.
C3 Skills in neural network development

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knowledge in neural networks theory of architectures, training methods and the way of processing information
relating to skills:
PEU_U01 Is able to design and implement a neural network model
PEU_U02 Is able to conduct experiments and prepare reports

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Introduction. Presentation of the course content, course organization and rules of assessment. Principles of neural network design. Simple neural networks - simple perceptron.	3
Lec 2	Simple neural networks - Adaline. Backpropagation method - intuitions	3
Lec 3	Backpropagation in matrix. Multilayered networks, choice of the neural networks architecture, hiperyparameters, the way of input output encoding	3
Lec 4	Regularization, Autoencoder, Multilayerd networks - examples of applications	3
Lec 5	Fundamentals of convolutional networks	3
Lec 6	Unsupervised training CP - Counterpropagation network, SOM neural network, RBM network	3
Lec 7	Associative memories - Hopfielda and BAM networks	3
Lec 8	Boltzmann Machine. Test	3
Lec 9	Survey of deep neural networks and their applications i ich zastosowań	2
Lec 10	Survey of students. Test	3
	Total hours	
	Laboratory	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Lab 1	Introduction. Presentation of organization and assessment rules. OSH training. Short presentation of simple neuron. Implementation of the network and its training rule.	3
Lab 2	Assessment of Task1 implementation. Conducting experiments and preparing a report.	3
Lab 3	Project and implementation of MLP - Task 2	3
Lab 4	Conducting experiments for various number of neurons in the hidden layer, various learning coefficient and for sigmoid activation function. Report preparation.	${ }^{3}$
Lab 5	Changes in activation function, increasing the number of layers, various methods of learning coefficient optimization	3
Lab 6	Implementation of simple convolutional network - Task 3	3
Lab 7	Continuing implementation of Task 3. Testing the network.	3
Lab 8	Conducting experiments with convolutional network. Report preparation	3
Lab 9	Discussions on obtained results	3
Lab 10	Assessment of the results and survey of students	3
	Total hours	30
TEACHING TOOLS USED		
N1. Lecture supported by multimedia presentations N2. Specification of documents necessary to be assessed during the lab. N3. Examples of documentations from lab.		

N4. e-learning platform used to collect didactic materials.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] S.Osowski: Sieci neuronowe w ujęciu algorytmicznym, WNT 1996
[2] I. Goodfellow, Y. Bengio, A. Courville: Deep learning, MIT 2016
[3] Sieci neuronowe w zastosowaniach, pod red. U. Markowskiej Kaczmar, H. Kwaśnickiej, Oficyna Wydawnicza PWr. 2005
[4] Michael Nielsen: Neural Network and Deep Learning,książka dostępna pod adresem http://neuralnetworksanddeeplearning.com/

SECONDARY LITERATURE:

[1] Biocybernetyka i inżynieria biomedyczna 2000 Tom 6 Sieci neuronowe (redaktorzy tomu (Włodzisław Duch, Józef Korbicz, Leszek Rutkowski, Ryszard Tadeusiewicz); Akademicka Oficyna Wydawnicza EXIT

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Urszula, Markowska-Kaczmar, urszula.markowska-kaczmar@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Systemy Operacyjne
Name of subject in English Operating Systems
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practieal*
Level and form of studies: 1 st/ 2nd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / eptiona//university-wide*
Subject code INZ004405
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination / crediting with grade*	$\begin{aligned} & \begin{array}{l} \text { Examination/ } \\ \text { crediting with } \\ \text { grade* } \end{array} \end{aligned}$	$\begin{aligned} & \text { Examination / } \\ & \text { crediting with } \\ & \text { grade* }^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Examination / } \\ \text { crediting with } \\ \text { grade* } \end{array} \end{aligned}$	Examination/ crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2		1,2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic programming

SUBJECT OBJECTIVES

C1 General knowledge about structure, mechanisms and applications of modern operating systems
C2 General knowledge about resource management in computer systems

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 - Student knows operating systems’ architectures
PEU_W02 - Student knows organizational principles of distributed operating systems relating to skills:
PEU_U01 - Student is able to simulate standard resource allocation algorithms
PEU_U02 - Student is able to assess how resource allocation algorithms impact operating
systems' effectiveness
relating to social competences:
PEU_K01 - Student understands the need to implement access control mechanisms in operating systems

PEU_K02 - Student understands contemporary research trends in operating systems, and how they influence organization of information systems

PROGRAM CONTENT		
Lectures		Number of hours
Lec 1	Introduction. History of operating systems. Monitors, virtual machines, client-server architecture	2
Lec 2	Process management. Resource allocation problems	2
Lec 3	Process coordination, semaphores, critical sections, inter-process communication	2
Lec 4	Synchronization. Deadlock avoidance and management	2
Lec 5	Memory management. Memory allocation algorithms. Paging and segmentation	2
Lec 6	Virtual memory	2
Lec7	Disk space allocation.	2
Lec8	File systems. Implementation and hardware requirements	2
Lec9	Protection in operating systems. Access control mechanisms	2
Lec 10	Distributed systems. Hardware, software, communication	2
Lec11	Clock synchronization in distributed systems. Election algorithms. Transactions	2
Lec 12	Process and processors management in distributed systems. Fault tolerance, resource allocation	2
Lec13	Distributed file systems	2
Lec14	Shared memory and distributed systems. Consistency models. Paging	2
Lec 15	Operating systems in GRID architectures. Perspectives of operating systems	2
	Total hours	30
	Laboratory	$\begin{array}{\|l} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Lab 1	UNIX shell, shell scripts	6
Lab 2	Access control in Unix system	4
Lab 3	CPU scheduling - methods and algorithms	6
Lab 4	Memory management - methods and algorithms	6
Lab 5	Resource management in distributed systems	8
	Total hours	30
TEACHING TOOLS USED		
N1.Lecture N2. Laboratory tasks N3. Individual work		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), C - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEK_W01 PEK_W02 PEK_U01	Evaluation of preparation for completing laboratory taks

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Techniki prezentacji

Name of subject in English: Presentation techniques
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): not applicable
Profile: academic / practieal*
Level and form of studies: 1 st/ Znd level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optiona//university-wide*
Subject code SCZ001115S
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					30
Number of hours of total student workload (CNPS)					60
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*			
For group of courses mark final course with (X)					
Number of ECTS points					
including number of ECTS points for practical (P) classes				1,2	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					
Sura					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. None

SUBJECT OBJECTIVES

C1 Familiarizing students with the basic issues related to interpersonal communication and its applications in science and business.
C2 Improvement of students' competences in the field of creating and implementing various types of speeches and presentations in business practice.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Student knows the basic concepts and psychological mechanisms related to interpersonal communication and self-presentation.
PEU_W02 Student knows the techniques and tools used to present their own and team solutions and scientific, technical and business achievements.
relating to skills:
PEU_U01 Student is able to prepare various types of presentations and presentations of own solutions and achievements.

PEU_U02 Student is able to critically analyze the speeches and presentations of other p organizations and institutions. relating to social competences: PEU_K01 He can set priorities in his own work and in cooperation with others. PEU_K02 It presents assertiveness and courage in passing on and defending one's own achievements and views.		
	Seminar	Number of hours
Sem 1	Basics of interpersonal communication: basic concepts and models	2
Sem 2	Basics of interpersonal communication: principles of creating an effective message, credibility of the sender	2
Sem 3	The role of verbal communication (dictionary, grammar, functions of words, sentences and questions)	2
Sem4	The role of non-verbal communication (voice and its characteristics, facial expressions and gestures, distance)	2
Sem5	Types of messages and their functions in various areas of social communication	2
Sem6	The specificity of communication in various areas of social communication - matching messages to the auditorium	2
Sem7	Mechanisms of self-presentation in interpersonal communication	2
Sem8	Rules for the development of effective multimedia presentations	2
Sem9	Rules for the development of effective multimedia presentations - case studies	2
Sem10	Principles of effective data presentation	2
Sem11	Elevator pitch - development of a brief speech and presentation	2
Sem12	Stress related to public speeches and methods of coping with it	2
Sem13	Analysis of students' own speeches and presentations	2
Sem14	Analysis of students' own speeches and presentations, cont.	2
Sem15	Analysis of students' own speeches and presentations, cont. Summary of classes. Final test.	2
	Total hours	30
TEACHING TOOLS USED		
N1. Lecture N2. Group exercises N3. Case analysis N4. Presentation prepared by students N5. Discussion of problems and results of work		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1 Activity during classes	PEU_W01-02 PEU_U01-02 PEU_K01-02	Oral feedback

F2 Work prepared individually and in groups	PEU_W01-02 PEU_U01-02 PEU_K01-02	Work evaluation; oral feedback
C Own presentation of the student assessed by the teacher; final test		
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
$\left[\begin{array}{ll}\text { [1] } & \text { Jonathan Schwabish (2016) Better Presentations. A Guide for Scholars, Researchers, and Wonks. } \\ \text { [2] } & \text { Maurizio La Cava (2015) Lean PresentationDesign. How to create presentations that everybody } \\ \text { loves. } \\ \text { [3] } & \text { Carmine Gallo (2014) Talk Like TED. The 9 Public-Speaking Secrets of the World's Top Minds }\end{array}\right.$		
SECONDARY LITERATURE		
[1] Keith Schreiter, Tom Schreiter (2017) The One-Minute Presentation: Explain Your Network		
Marketing Business Like A Pro. Fortune Network Publishing		
[2] Stephen Haunts (2017) A Gentle Introductiont o Speaking in Public		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Anna Borkowska, anna.borkowska@pwr.edu.pl		

FACULTY of Computer Science and Management

SUBJECT CARD

Name in Polish: Paradygmaty programowania
Name in English: Programming Paradigms
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic + practical*
Level and form of studies: 1 st $/ 2$ nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: obligatory /optional/university-wide*
Subject code INZ004409L
Group of courses YES + NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)			30		
Number of hours of total student workload (CNPS)			60		
Form of crediting	Examination / crediting with grade*	Examination /crediting with grade*			
For group of courses mark final course with (X)			2		
Number of ECTS points			2		
including number of ECTS points for practical (P) classes		1,2			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of object-oriented programming and the ability to write simple programs.
2. Knowledge of basic algorithms and data structures.

SUBJECT OBJECTIVES

C1 Ability to use programming techniques typical of chosen programming paradigm.
C2 Ability to merge constructs from different paradigms in one program.

SUBJECT EDUCATIONAL EFFECTS

relating to skills:
PEK_U01 Implement programs in accordance with the given specification.
PEK_U02 Select the programming paradigm that best suits the problem in hand.
PEK_U03 Choose appropriate constructs available in programming language depending on the problem to be solved.
PEK_U04 Use the standard documentation of programming languages.
PEK_U05 Use a modern programming environment (e.g. IntelliJ) and programming tools.

Laboratory	Number of hours	
Lec 1	Grading policy. Safety rules. Introduction to the programming environment used.	2
Lec 2	Functional programming in interactive environment.	2
Lec 3	Simple functions with pattern matching.	2
Lec 4	Higher-order functions.	2
Lec 5	Functions with algebraic data types (e.g. trees).	2
Lec 6	Functions on lazy lists and/or trees.	2
Lec 7	Functions with computational effects.	2
Lec 8	Using modules.	2
Lec 9	Object-oriented program with class hierarchy.	2
Lec 10	Object-oriented program with traits and mixins.	2
Lec 11	Object-oriented program with generic classes. Variance properties.	2
Lec 12	Concurrent programming with threads.	2
Lec 13	Concurrent programming. Actors and message passing.	2
Lec 14	Program with event handling or reactive programing	2
Lec 15	Grading.	2
	Total hours	30

TEACHING TOOLS USED

N1. Modern programming environment and programming tools.
N2. E-learning system used to publish teaching materials and messages

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEK_U01 PEK_U02 PEK_U03 PEK_U04 PEK_U05	Grading programs written on-line during labs.

PRIMARY LITERATURE:

[1] Handouts provided by the teacher
[2] R. Martin, Clean Architecture, Pearson Education 2018
[3] M. Odersky, L.Spoon, B.Venners, Programming in Scala, Artima 2016
[4] J. Hickey, Introduction to Objective Caml, Internet

SECONDARY LITERATURE:

[1] E. Chailloux, P.Manoury, B.Pagano, Developing Applications with Objective Caml, Internet
[2] K.D. Lee, Foundations of Programming Languages, Springer 2017
[3] A.Prokopec, Learning Concurrent Programming in Scala, Packt 2017
[4] R. W.Sebesta, Concepts of Programming Languages, Addison-Wesley 2012
[5] P. Van Roy, S.Haridi, Concepts, Techniques, and Models of Computer Programming, MIT 2004
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Michał Szczepanik, michal.szczepanik@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name in Polish: Paradygmaty programowania
Name in English: Programming Paradigms
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): .
Profile: academic /practical*
Level and form of studies: 1 st $/ 2$ nd level, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: obligatory /optiona//university-wide*
Subject code INZ004409Wc
Group of courses YES $\not / \mathbf{N O} \mathbf{}^{*}$

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15			
Number of hours of total student workload (CNPS)	80	60			
Form of crediting	Examination/ crediting with grade*	Examination/ crediting with grade*	Examination/ crediting with grade*	Examination// credititng with grade*	Examination/ crediting with grade*
For group of courses mark final course with (X)	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes					
including number of ECTS points corresponding to classes that require direct tarticipation of lecturers and other academics (BU)	3				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of object-oriented programming and the ability to write simple programs.
2. Knowledge of basic algorithms and data structures.

SUBJECT OBJECTIVES

C1 Basic understanding of fundamental programming paradigms and programming-language constructs.
C2 Ability to use programming techniques typical of chosen programming paradigm.
C3 Ability to merge constructs from different paradigms in one program.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 Enumerate and characterize the basic programming paradigms.
PEK_W02 Know which programming languages support these paradigms.
PEK_W03 Know typical for basic paradigms programming mechanisms.
PEK_W04 Know common abstractions and mechanisms that support those abstractions in programming languages.

relating to skills:

PEK_U01 Implement programs in accordance with the given specification.
PEK_U02 Select the programming paradigm that best suits the problem in hand.
PEK_U03 Choose appropriate constructs available in programming language depending on the problem to be solved.
PEK_U04 Use the standard documentation of programming languages.

PROGRAM CONTENT		
	Lectures	Number of hours
Lec 1	Introduction. Functional programming in interactive environment.	2
Lec 2	Basics of functional programming: curried and uncurried form, tail recursion, pattern matching.	2
Lec 3	Higher-order functions. Higher-order programming.	2
Lec 4	Algebraic data types: definitions and usage.	2
Lec 5	Eager and lazy evaluation. Streams. Parameter passing.	2
Lec 6	Computational effects. Imperative programming.	2
Lec 7	Abstract data types, monads, functional programming summary	2
Lec 8	Object-oriented programming I. Reminder of known programming constructs.	2
Lec 9	Object-oriented programming II. New programming constructs: traits, mixins, case classes and others.	2
Lec 10	Variance properties and bounded polymorphism	2
Lec 11	Concurrent programming. Threads and shared memory.	2
Lec 12	Concurrent programming. Actors and message passing.	2
Lec 13	Reactive Programming	2
Lec 14	Handling events. GUI programming.	2
Lec 15	Basics of logic programming.	2
	Total hours	30
	Classes	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Cl 1	Administrative class. Grading policy.	1
Cl 2	Basics of functional programming. Pattern matching.	2
Cl 3	Higher-order functions. Algebraic data types.	2
Cl 4	Eager and lazy evaluation. Computational effects.	2
Cl 5	Abstract data types. Basics of object-oriented programming.	2
Cl 6	More advanced object-oriented mechanisms. Generic classes and variance properties.	2
Cl 7	Concurrent programming with threads.	2
Cl 8	Concurrent programming with actors and message passing. Handling events Reactive programming	2
	Total hours	15
TEACHING TOOLS USED		

N1. Lecture supported by multimedia presentations.
N2. E-learning system used to publish teaching materials and messages.
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P- concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEK_W01 PEK_W02 PEK_W03 PEK_W04 PEK_U01 PEK_U02 PEK_U03 PEK_U04	Grading homework exercises solved at classes and declared as solved.
	PEK_W01 PEK_W02 PEK_W03 PEK_W04	Written examination.
F2		
C The overall grade of the course is the grade for written exam, possibly modified by 0,5 up or down depending on the activity during classes.		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Handouts provided by the teacher
[2] R. Martin, Clean Architecture, Pearson Education 2018
[3] M. Odersky, L.Spoon, B.Venners, Programming in Scala, Artima 2016
[4] J. Hickey, Introduction to Objective Caml, Internet

SECONDARY LITERATURE:

[1] E. Chailloux, P.Manoury, B.Pagano, Developing Applications with Objective Caml, Internet
[2] K.D. Lee, Foundations of Programming Languages, Springer 2017
[3] A.Prokopec, Learning Concurrent Programming in Scala, Packt 2017
[4] R. W.Sebesta, Concepts of Programming Languages, Addison-Wesley 2012.
[5] P. Van Roy, S.Haridi, Concepts, Techniques, and Models of Computer Programming, MIT 2004
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Michał Szczepanik, michal.szczepanik@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Programowanie aplikacji multimedialnych
Name of subject in English Programming multimedia aplications
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic
Level and form of studies: 1st/2nd level, uniform magister studies*, full-time / part-time*
Kind of subject: ebligatory + optional / university-wide*
Subject code INZ004438Wl
Group of courses YES $\nsim \mathbf{N O}^{*}$

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Crediting with grade*	Examination / crediting with grade*	Crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	2		2		
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of	1,2		1,2		
lecturers and other academics (BU)					

delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of basic programming techniques for Android or iOS platform
2. Basic knowledge of design and programming of user interface
3. Basic knowledge of graphical software
4. Awareness of mobile and multimedia technologies for the society

SUBJECT OBJECTIVES

C1. Transfer of knowledge about the application areas of modern multimedia techniqes
C2. Presentation of programming tools for multimedia processing.
C3. Design and implementation of a mobile application.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knows and understands the specificity of multimedia applications.
PEU_W02 Knows how to design and implement multimedia applications.
PEU_W02 Knows programming tools for multimedia processing.
relating to skills:
PEU_U01 Defines a set of functional requirements of a multimedia application, and - based on
the definition - designs a multimedia application.

PEU_U02 Implements a multimedia application in accordance to the design.
PEU_U03 Creates and processes multimedia.
relating to social competences:
PEU_K01 Cooperates with a potential user of a multimedia application to define a set of functional requirements.
PEU_K02 Includes specific requirements in the user-interface design process.

PROGRAMME CONTENT

	Lecture	$\begin{aligned} & \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ & \hline \end{aligned}$
Lec 1	Introduction. Review of selected multimedia applications.	2
Lec 2-3	UI and UX. Interactions. Touch screens. Material design. Human Interface guidelines. Voice communication.	4
Lec 4	Tools for multimedia processing. Gathering multimedia data. Copyright.	2
Lec 5	Implementation rules in Android Studio. The structure of android application. Implementation of user-interfce. Implementation of user-interfce.	2
Lec 6	Apple XCode environment. The structure of application written in Swift. Introduction to Swift language.	2
Lec 7	2D and 3D animations. Introduction to the 3ds Max and Maya programs. Implementation of animations in ActionScript 3.0 and Lingo.	2
Lec 8	Scene planning. Non-linear assembly of video - Adobe Premiere, After Effects.	2
Lec 9	Libraries and frameworks supporting creation of multimedia applications. Short characteristics of Kotlin language.	2
Lec 10	Applications of augmented reality. Code analysis of application with augmented reality mechanisms.	2
Lec 11	Games review. Connections between games and the progress of algorithms and programming languages.	2
Lec 12	Multimedia data compression. Compression formats. Video and audio streaming.	2
Lec 13	Multimedia in mobile systems. Cameras. Recommended frameworks.	2
Lec 14	Interaction mechanisms - review. New technologies and multimedia devices.	2
Lec 15	Summary. Perspectives of multimedia techniqes.	2
	Total hours	30
	Laboratory	$\begin{array}{\|l} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Lab 1-2 II	Introduction. Introduction to Android Studio. Animate program. Implementation of a puzzle game.	4
Lab 3-4	Implementation of photo gallery with animation and audio effects in AS 3.0.	4
Lab 5-6	Implementation of photo gallery with animation and audio effects in Swift and Xcode.	4
Lab 7-8I	Implementation of an interactive game with animations and audio in Android Studio (Swift UI).	4
$\begin{array}{\|l\|} \hline \text { Lab 9- } \\ 10 \\ \hline \end{array}$	Implementation of photo gallery with animation and audio effects in Swift and Xcode.	
$\begin{array}{\|l\|} \hline \text { Lab 11-I } \\ 14 \\ \hline \end{array}$	Design and implementation of a virtual museum.	8

Lab 15	Demonstration of virtual museum implementation with the use of modern multimedia techniqes.	2
	Total hours	20
TEACHING TOOLS USED		
N1. Lectures in the form of multimedia presentations. N2. Introduction to the laboratories in the form of multimedia presentation. N3. Collections of additional materials (links, papers). N4. Individual meetings.		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

[3] Cameron Chapman, Podręcznik genialnych pomysłów. Od inspiracji po realizację, Helion 2012.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Dr inż. profesor uczelni Krzysztof Waśko, krzysztof.wasko@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Routing i przelączanie w sieciach

Name of subject in English: Routing and Switching
Main field of study (if applicable): Applied of Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: 1 st/ $\mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: ebligatory / optional / university-wide*
Subject code INZ002026
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting	Examination / crediting with grade*				
For group of courses mark final course with (X)	X		2		
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes	0		1,2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,2				
(Bader\|					

delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. K1INF_W01 - Has basic knowledge in the field of linear algebra, analytical geometry and mathematical analysis, necessary to solve computational problems of engineering character from technical and non-technical disciplines
2. K1INF_W02 - Has basic knowledge in the field of discrete mathematics, mathematical logic, probability theory and mathematical statistics, necessary to solve IT engineering problems.
3. K1INF_W07-Has basic knowledge in the field of computer structure, organization and architecture.
4. K1INF_W10-Has basic knowledge in the field of computer networks and their architectures.
5. 5. K1INF_U08 - Is able to configure basic devices and network software in computer networks.

SUBJECT OBJECTIVES

C1 Acquiring knowledge in the field of functionality and application of protocols operating in switched Ethernet networks.

C2. Acquiring knowledge in the field of functionality and the use of routing protocols intended for work inside and between autonomous areas of computer networks (IGP - Interior Gateway Routing Protocol, EGP - Exterior Gateway Routing Protocol).
C3. Acquiring knowledge in the field of functionality and application of protocols and services supporting the computer networks.
C4. Acquiring knowledge in the field of operation, management and configuration of network operating systems.
C5. Acquiring the ability to configure network devices (network operating systems) and protocols in the level of 2 and 3 layer od ISO-OSI model as well as the skills of monitoring , management and diagnostic of computer networks.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:
PEK_W01 - Has basic and structured knowledge about the functionality and operation of protocols and services supporting computer networks.
PEK_W02 - Has basic and structured knowledge in the field of configuration and operation of network operating systems.

Relating to skills:
PEK_U01 - Has skills related to basic configuration of various types of network protocols, network services, network operating systems, as well as analysis of their operation and detection of basic errors in computer networks.

PROGRAM CONTENT

Lectures		Number of hours
Lec1	Plan of the lecture. Explanation of the assessment method. Introduction to computer networks. The benefits and threats of global digitization and unlimited communication. Protocols and services supporting switched networks. Explanation of operation and application of VTP (VLAN Trunking Protocol) and DTP (Dynamic Trunking Protocol) protocols.	2
Lec2	Protocols and services supporting switched networks. Explanation of the operation and application of the Spanning Tree Protocol (STP).	2
	Protocols and services supporting switched networks. Lec3	Explanation of operation and application of the EtherChannel protocol. Explanation of the operation and application of the switch port monitoring protocol (port mirroring). SPAN (Switched Port Analyzer) service.
	Protocols that provide redundancy of the default gateway (FHRP - First	2
Lec4	Hop Redundancy Protocols). Description of the operation of HSRP (Hot Standby Router Protocol) and GLBP (Gateway Load Balancing Protocol) protocols.	2
Lec5	Vector routing protocols on the example of EIGRP in IPv4 and IPv6 networks.	2
Lec6	Parameterization of the EIGRP protocol in the IPv4 and IPv6 networks.	2

Lec7	Link-state routing protocols on the example of OSPF protocol in the IPv4 and IPv6 networks.	2
Lec8	Parameterization of the OSPF protocol in the IPv4 and IPv6 networks.	2
Lec9	Multi-area routing. Routing in a multi-access network. Information exchange between different routing protocols.	2
Lec10	PPP (Point To Point) protocol and its variations (PPPoE).	2
Lec11	Virtual networks and VPN tunnels.	2
Lec12	EGP routing protocols on the example of BGP protocol.	2
Lec13	Access control in computer networks. Extended access control lists.	2
Lec14	Securing, monitoring and diagnostics of computer networks. Protocols and services (SNMP, syslog, netflow, others).	2
Lec15	Directions of computer network development. New generations of networks and ways to configure them. Software defined network SDN (Software Defined Network).	2
	Total hours	30
	Laboratory	Number of hours
Lab1	Organizational cLabsses. ExpLabnation of the assessment method. Principles of health and safety. Presentation of the network topology in the Labboratory and the deployment of network devices. Construction of active devices, description of interfaces.	2
Lab2	Configuring and testing VTP (VLABN Trunking Protocol) and DTP (Dynamic Trunking Protocol) protocol operations.	2
Lab3	Configuring and testing the Spanning Tree Protocol (STP).	2
Lab4	Configuring and testing the various EtherChannel variants. Configuration and testing port mirroring protocol operation.	2
Lab5	Configuring and testing a group of protocols that create a redundant default gateways - FHRP (First Hop Redundancy Protocols).	2
Lab6	Basic configuration and testing of the EIGRP protocol in the IPv4 and IPv6 environment.	2
Lab7	Advanced configuration and testing of EIGRP in an IPv4 and IPv6 environment.	2
Lab8	Basic configuration and testing of the OSPF protocol in the IPv4 and IPv6 environment.	2
Lab9	Advanced configuration and testing of OSPF in an IPv4 and IPv6 environment. Parameterization of the protocol.	2
Lab10	Configuration and testing of OSPF protocol in an Ethernet multi-access network environment. Configuration and testing of OSPF in an environment that combines multiple areas managed by the OSPF protocol and other routing protocols.	2
Lab11	Configuration and testing of PPP protocol (EncapsuLabtion, PAP and CHAP authentication). Configuring and testing the PPPoE protocol.	2

Lab12	Configuration and testing virtual network connections - VPN tunnels (Virtual Private Network). Creation of GRE (Generic Routing EncapsuLabtion) tunnels. Configuration and application the BGP (Border Gateway Protocol) routing protocol.	2
Lab13	Configuration and use of extended access control lists (Extended ACLs)	2
Lab14	Network monitoring and diagnostics. Configuration and operation of the SNMP protocol. Configuration and application of IP SLAB service (Service Level Agreements). Configuration and application of the Syslog service.	2
Lab15	Additional cLabsses devoted to the implementation of selected issues not done or finished during the semester.	2
	Total hours	30
TEACHING TOOLS USED		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
F1-F14 - partial grades obtained at La2-15 laboratories	PEK_U01	Student's presence. Theoretical preparation for the lab (quiz, test, other) on a point, percentage or traditional scale. Evaluation of the lab tasks on a point or traditional scale.
P1 - concluding lab grade	PEK_U01	An average of the F1-14 forming grades.
F15- forming lecture grade	PEK_W01, PEK_W02	Observation of student activity. Solving sample problems and tasks.
P2 - concluding lecture grade	PEK_W01, PEK_W02	A computer test, containing questions of various types (multiple and single choice, computational, open, other) checking knowledge in the field of lecture. The test is given a positive evaluation, if the student scores at least 51\% of the maximum number of points. Later, the rating is increased by
0.5 every 10\%. A positive P2 rating can be adjusted by rating F15.		
P3 - grade	PEK_W01, PEK_W02, concluding the group of courses	Score summarizing the group of courses. Rating calculated as an average of P1 and P2 grade. The condition for passing the subject is positive evaluation of P1 and P2.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks, 5th Edition", Published by Pearson, Sep 27, 2010
[2] J. Woźniak, K. Nowicki, „Sieci LAN, MAN i WAN - protokoły komunikacyjne", Wydawnictwo FPT, Kraków 2000
[3] Training materials of the Cisco Network Academy
[4] Wendell Odom, "CCENT/CCNA ICND1 100-105 Official Cert Guide:, Cisco Systems; Auflage: Har/Dvdr (17. Mai 2016)
[5] Wendell Odom, "CCNA Routing and Switching ICND2 200-105 Official Cert Guide: Official Cert Guid / Learn, prepare, and practice for exam success", Cisco Systems; Auflage: Har/Cdr (4. Juli 2016)

SECONDARY LITERATURE:
[1] http://www.freebookcentre.net/Networking/Free-Computer-Networking-Books-Download.html [2] CCNA Exploration Companion Guide books
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Kamil Nowak, kamil.nowak@pwr.edu.pl

FACULTY of Computer Science and Management	
	SUBJECT CARD
Name of subject in Polish	Jezyki skryptowe
Name of subject in English	Script Languages
Main field of study:	Applied Computer Science
Specialization:	
Profile:	academic
Level and form of studies:	1st level, full-time
Kind of subject:	obligatory
Subject code	INZ002025
Group of courses	NO

	Lecture	Classes	Lab	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	85		90		
Form of crediting	Examinati on		Crediting with grade		
For group of courses mark (X) final course					
Number of ECTS points	3		3		
including number of ECTS points for practical classes (P)			3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.8		1.8		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge on structural and object oriented programming
2. Knowledge on data structures and algorithms

SUBJECT OBJECTIVES

C1 Understands the application area of script languages
C2 Understand and exploit the particularities of OOP in Script Languages.

SUBJECT EDUCATIONAL EFFECTS			
relating to knowledge:			
PEU_W01 Student knows idiosyncrasy of scripting language development process			
PEU_W02 Student know how scripted code can collaborate with IT environment			
relating to skills:			
PEU_U01 Student can develop an application that cooperate with the rest of operating system			
PEU_U02 Student can create GUI application			
relating to social competences:			
PEU_K01 Student realizes need for self-directed learning	PROGRAMME CONTENT		
Lecture			Number of hours

Lec 1	Introduction. Tools for developing an application.	$\mathbf{2}$
Lec 2	Debugging application. Using input and output streams. Strings.	$\mathbf{2}$
Lec 3	Lists and tuples. Using correct coding style.	$\mathbf{2}$
Lec 4	Sets and dictionaries. Text files.	$\mathbf{2}$
Lec 5	Binary and structured text files. Using exceptions.	$\mathbf{2}$
Lec 6	Text processing. Regular expressions.	$\mathbf{2}$
Lec 7	Using object oriented approach. Classes and objects.	$\mathbf{2}$
Lec 8	Lambda expressions. Reading and writing CSV and XLS files.	$\mathbf{2}$
Lec 9	Internet access. Using HTTP and SMTP protocols.	$\mathbf{2}$
Lec 10	Testing code.	$\mathbf{2}$
Lec 11	Reading and writing DOC files. Graphics processing.	$\mathbf{2}$
Lec 12	Database access.	$\mathbf{2}$
Lec 13	Building GUI applications.	$\mathbf{2}$
Lec 14	Using threads and processes.	$\mathbf{2}$
Lec 15	Elements of functional programming.	$\mathbf{2}$
		$\mathbf{3 0}$

Laboratory		Number of hours
Lab 1	Introduction. Safety guidelines. Development environments and tools	$\mathbf{2}$
setup.		

TEACHING TOOLS USED

N1. Lectures. Lecture notes in PDF format available on-line.
N2. LMS systems with additional tools for online and collaborative work.
N3. Laboratory equipped with necessary software and hardware

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT		
Evaluation (F-forming during semester), P-concluding (at	Learning outcomes code semester end)	Way of evaluating learning outcomes achievement
F1	PEU_U01 PEU_U02	10 weekly assignments, graded on quality of the code and the punctuality of delivery
F2	PEU_U01 PEU_U02	2 mini projects, graded on creativity, originality, quality of the code and the punctuality of delivery
F3	PEU_W01	Exam 100\% grade
P (Lab) = F1+F2		
P (Lecture) = F3		

PRIMARY AND SECONDARY LITERATURE
PRIMARY LITERATURE:
[1] M Lutz, Learning Python, 5th ed, O'Reilly Media, 2013.
[2] E. Matthes, Python Crash Course, 2nd ed, No Starch Press, 2019.
[3] A. Sweigart, Automate the Boring Stuff with Python, 2nd ed, No Starch Press, 2019.
SECONDARY LITERATURE:
[1] J. Danjou, Serious Python, No Starch Press, 2018.
[2] L. Vaughan, Impractical Python Projects, No Starch Press, 2018.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Thomas, wojciech.thomas/at/pwr.edu.pl,

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Projektowanie oprogramowania
Name of subject in English Software Engineering
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practieal*
Level and form of studies: $1 \mathrm{st} / \mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optional / thiversity-wide*
Subject code INZ004419
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar					
Number of hours of organized classes in University (ZZU)	30		30							
Number of hours of total student workload (CNPS)	90			90						
Form of crediting	Examination			crediting with grade						
For group of courses mark final course with (X)										
Number of ECTS points						3	including number of			3
:---	:---	:---	:---							
ECTS points for practical (P) classes			1,8							
including number of ECTS points corresponding to classes that require direct										
participation of lecturers and other academics (BU)										

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basics of Software Engineering
2. Familiarity with object-oriented programming principles

SUBJECT OBJECTIVES

C1 Familiarity with basic concepts of software engineering
C2 Familiarity with requirements engineering priciples and techiques
C3 Familiarity with main aspects of modelling, design and testing of information systems

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
K1INF_W14
relating to skills:
K1INF_U03
K1INF_U04

K1INF_U21				
PROGRAM CONTENT				
Lectures				Number of hours
Lec 1 Introduction, Basic Terms and Definitions				2
Lec 2 Requirements Engineering (Stakeholder Requirements Definition Process, Techniques of Requirements Elicitation, Semantics of Business Vocabulary and Business Rules, System Requirements Analysis Process, Requirements Classification, Requirements Diagrams, Use Case Diagram)				10
Lec 3	Modelling and Design (Software Architecture, Behavioural Modelling, Structural Modelling, Database Design)			16
Lec 4	Testing			2
	Total hours			30
Project				$\begin{array}{l}\text { Number of } \\ \text { hours }\end{array}$
Proj 1	Elaboration of application concept (Aim of the Project, General Assumptions, Stakeholders Description, Gantt Chart, Use Case Diagram)			4
Proj 2	Requirements specification (Functional Requirements Specification, NonFunctional Requirements, Requirement Matrix, Requirements Diagram, Dictionary and Business Rules)			6
Proj 3	Design (Structural Model, Behavioral Model, Database Model, Software Architecture, User Interface Design)			12
Proj 4	Construction and tests (Implementation, Tests)			8
Total hours				30
TEACHING TOOLS USED				
N1. Informative lecture supported by multimedia presentations N 2 . Software modelling and design tools N3. IDE used for programming and testing				
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation (F - forming (during semester), P concluding (at semester end)		Learning outcomes number	Way of evaluating learning outcomes achievement	
F1 - elaboration of application concept			Checking of completeness, intra and inter consistency. Up to 15% of maximal number of points for the whole project	
F2 - requirements specification			Checking of intra-consistency, completeness, correctness, GUI guidelines. Up to 25% of the maximal number of points for the whole project	
F3-design			Checking for inter-consistency (with preceding phases, and between different diagrams), completeness. Up to 40% of the maximal number of points for the whole project	

F4 - construction and tests	As above. Up to 20% of the maximal number of points.
P1 - final grade from project	The grade calculated basing on the formula: $\begin{aligned} & <0 \%, 50 \%) \rightarrow 2.0 \\ & <50 \%, 60 \%) \rightarrow 3.0 \\ & <60 \%, 70 \%) \rightarrow 3.5 \\ & <70 \%, 80 \%) \rightarrow 4.0 \\ & <80 \%, 90 \%) \rightarrow 4.5 \\ & <90 \%, 95 \%) \rightarrow 5.0 \\ & <90 \% \\ & <95 \%, 100 \%) \rightarrow 5.5 \end{aligned}$
P2 - final grade from lecture	Exam - test. The grade calculated basing on the formula: $\begin{aligned} & <0 \%, 50 \%) \rightarrow 2.0 \\ & <50 \%, 60 \%) \rightarrow 3.0 \\ & <60 \%, 70 \%) \rightarrow 3.5 \\ & <70 \%, 80 \%) \rightarrow 4.0 \\ & <80 \%, 90 \%) \rightarrow 4.5 \\ & <90 \%, 95 \%) \end{aligned}$
PRIMARY AND SECONDARY LITERATURE	
PRIMARY LITERATURE:	
[1] Bruegge Bernd. Object-oriented software engineering: using UML, Patterns, and Java. Pearson/Prentice Hall, cop. 2004. [2] Pfleeger Shari Lawrence. Software engineering: theory and practice. Pearson/Prentice Hall, 2006. SECONDARY LITERATURE:	
[1] Sommerville Ian, Software engineering, Addison-Wesley, 2007. [2] Materials prepared by the lecturer	
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)	
Marek Krótkiewicz, marek.krotkiewicz@pwr.edu.pl	

FACULTY of Computer Science and Management
SUBJECT CARD
Name of subject in Polish ...Programowanie strukturalne i obiektowe.
Name of subject in English ... Structural and Object oriented Programming...
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): \qquad
Profile: academic
Level and form of studies: $1^{\text {st }}$, full-time
Kind of subject: obligatory
Subject code INZ004399
Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30	30		
Number of hours of total student workload (CNPS)	120		60		
Form of crediting	crediting with grade	crediting with grade*	crediting with grade*		
For group of courses mark final course with (X)	X				
Number of ECTS points	4		2		
including number of ECTS points for practical (P) classes		2			
including number of ECTS points corresponding to classes that require direct participation of lectures and other academics (BU)	2		1,2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES
 1. None

SUBJECT OBJECTIVES

C1 Knows the basics of Structured and Object Oriented Programming
C2 Knows the methodology of problem solving and decomposition

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 Knows the basics of structured and Object Oriented Programming PEU_W02 Knows the methodology of problem solving and decomposition
relating to skills:
PEU_U01 Is able to implement algorithms in JAVA
PEU_U02 Masters the tools and methods needed for program testing and debugging
relating to social competences:
...
PROGRAM CONTENT

Lectures		Number of hours
Lec 1	Introduction to computers, the concept of an algorithm, instruction, variables, heap, stack, one dimension arrays, compiler, simple program	2

Lec 2	Principles of structured programming, basic data types, operators, rules for coding and naming	2
Lec 3	Problem decomposition, functions, iteration, recursion and their comparison.	2
Lec 4	OOP paradigm, types of methods, scope of visibility, functions and parameter passing	2
Lec 5	Inheritance and aggregation	2
Lec 6	Exceptions, assertions, program testing with JUnit	2
Lec 7	Useful classes, stream processing, object serialization, properties, advanced enumerations	2
Lec 8	Interfaces, Abstract classes	2
Lec 9	Principles of GUI, event driven programming, layout managers, basic GUI components	2
Lec 10	More on GUI components, implementation of MVG pattern	2
Lec 11	Basic collections	2
Lec 12	More on collection, pro and cons of generic collections	2
Lec 13	Threads, sockets simple client-server application	2
Lec 14	Good programming practices, Clear Code methodology	2
Lec 15	Final test	2
	Total hours	30
		2
Cl 1	Ways of conduct, first algorithms	2
Cl 2	One dimension arrays, simple numeric argorithms	2
Cl 3	Problem decomposition	2
Cl 4	Recursive data structures: list and queues	2
Cl 5	Recursive data structures: trees and sets	2
Cl 6	Test1: Algorithms	2
Cl 7	OOP paradigm	2
Cl 8	Defining Hierarchy of classes	2
Cl 9	Polymorphism	2
Cl 10	GUI components, layout managers	2
Cl 11	MVC programming pattern	2
Cl 12	Basic Collections	2
C 13	Advanced Collections	2
Cl 14	Test \#2	2
Cl 15	Case study	2
humber of		
hours	2	
Lab 1	Ways of conduct, first algorithms, the Eclipse IDE	2
Lab 2	Modifications of a simple program, debugging	Standard input/output, simple numeric algorithms
Lab 4	Dynamic data stuctures implementation	2
		2

Lab 5	Simple classes	2
Lab 6	Inheritance and aggragation	2
Lab 7	Program testing with JUnit	2
Lab 8	File and folders processing	2
Lab 9	Interfaces, Abstract Classes	2
Lab 10	Basic GUI	2
Lab 11	Advanced GUI	2
Lab 12	Collections	2
Lab 13	GUI for the implemented database	2
Lab 14	Practical Test 1	2
Lab 15	Practical Test 2	2
	Total hours	30

TEACHING TOOLS USED

N1. Lecture notes in PDF format available on-line
N2. Source files for case study programs available on - line
N3. Laboratory equipped with necessary software and hardware
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluati on (F - forming (during semeste r), P- concludi ng (at semeste rend)	Learning outcomes numer	Way of evaluating learning outcomes achievement
F1	PEU_W01 PEU_W02 PEU_U01	During Classes, the students have to present solutions to tasks given to them on a weekly basis. Activity measured on a weekly base makes 30\% of the final grade. 70\% comes from two tests.
	PEU_W01 PEU_W02 PEU_U01 PEU_U02	During laboratories, the students have to present solutions to tasks given to them on a weekly basis. An overdue for solution delivery of one week is allowed but affects the grade. In order to pass, they have to pass the practical test at the end of the semester. During the test, they are given modified versions of tasks solved during the semester. 40\% of the grade comes from work during the semester and 60\% from the final test.
P1	PEU_W01 PEU_W02 PEU_U01	The final test during the lecture is required for all students that have not gathered at least over 75\% of all points from the classes. To pass the final test at least 50\% of points are obligatory.

PRIMARY LITERATURE:

[1] Eckel B.: Thinking in Java, available at www.bruceeckel.com (http://mindviewllc.com/quicklinks/)
[2] Burd B.: Java For Dummies, Wiley Publishing Inc.
[3] Cadenhead R.:Sams Teach Yourself Java in 21 Days (Covering Java 7 and Android) Prentice Hall Publishing

SECONDARY LITERATURE:

[1] Schildt H.: Java The Complete Reference, The McGraw Inc.
[2] Flanagan D.: Java Examples in a Nutshell, O'Reilly
[3] Darwin I.F.:Java Cookbook, O'Reilly

On-Line Documantation

[1] https://docs.oracle.com/javase/8/docs/api/
[2] http://www.java2s.com/Tutorial/Java/
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Andrzej Siemiński, Andrzej.Sieminski@pwr.edu.pl

FACULTY Computer Science and Management

SUBJECT CARD

Name of subject in Polish Wspomaganie zarządzania projektami informatycznymi Name of subject in English Support for IT Project Management
Main field of study (if applicable): Computer Science
Specialization (if applicable):
Profile: academic
Level and form of studies: $\mathbf{1}^{\text {st }}$ level, full-time
Kind of subject: optional
Subject code INZ002033Wls
Group of courses NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30		15
Number of hours of total student workload (CNPS)	30		60		30
Form of crediting	crediting with grade		crediting with grade		crediting with grade
For group of courses mark (X) final course	X				
Number of ECTS points	1		2		1
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0,8		1,6		0,8

delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of the basics of programming
2. Basic knowledge of database technology

SUBJECT OBJECTIVES

C1 Familiarize students with basic methods for IT project management.
C2 Familiarize students with categories of software tools aiding IT project management.
C3 Gaining skills in work breakdown, planning, scheduling, cost estimation, and monitoring in IT projects.
C4 Gaining skills in utilizing software tools aiding IT project management.
C5 Gaining skills in working and cooperating with a team utilizing software tools aiding IT project management.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEK_W01 student has a basic knowledge of methods for IT project management.
PEK_W02 student knows categories of software tools aiding IT project management.
relating to skills:
PEK_U01 student can select and utilize aiding software tools appropriate for different phases of IT project management.
PEK_U02 student is able to carry out work breakdown, allocate resources, schedule and monitor accomplishment of a small IT project.
relating to social competences:

PEK_K01 student can retrieve and utilize information from recommended sources and acquire knowledge on his own.		
PEK_K02 student understands the necessity of working systematically and creatively to accomplish the course.		
PEK_K03 student is capable of cooperating in a team utilizing software tools aiding IT project management.		
PROGRAMME CONTENT		
	Lecture	Number of hours
Lec 1	Introduction. Basic concepts. Life cycle of an IT project.	1
Lec 2	Total cost of acquiring and maintaining an IT system.	2
Lec 3	Systematics of supporting software.	2
Lec 4	Software size measurements - review of supporting tools	2
Lec 5	Support for planning and scheduling an IT project.	2
Lec 6	Supporting the management of project teams	2
Lec 7	Supporting communication in an IT project	2
Lec 8	Final test	2
	Total hours	15
	Laboratory	Number of hours
Lab 1	Introduction to the class. Division into teams. Task allocation.	2
Lab 2	Utilizing software for business process modeling.	2
Lab 3	Utilizing software for requirements management.	2
Lab 4	Utilizing software for system modeling.	2
Lab 5	Utilizing software for interface modeling.	2
Lab 6	Utilizing software to create and maintain a RACI matrix.	2
Lab 7	Utilizing software to schedule an IT project.	2
Lab 8	Utilizing software to assign and account for tasks.	2
Lab 9	Utilizing software to monitor project performance.	2
Lab 10	Utilizing software to communicate within a group.	2
Lab 11	Utilizing software to estimate the total cost of software acquisition and maintenance.	2
Lab 12	Utilizing software for risk management.	2
Lab 13	Utilizing software for configuration management.	2
Lab 14	Utilizing software integrated in cloud computing.	2
Lab 15	Final report presentation	2
	Total hours	30
	Seminar	Number of hours
Semin 1	Introduction. Allocation of seminar topics.	1
Semin 2	Comparative analysis of business process modeling software.	1
Semin 3	Comparative analysis of requirements management software.	1
Semin 4	Comparative analysis of system modeling software.	1
Semin 5	Comparative analysis of interface modeling software.	1
Semin 6	Comparative analysis of software for scheduling an IT project.	1

Semin 7	Comparative analysis of task allocation and accounting software.	1
Semin 8	Comparative analysis of project implementation monitoring software.	1
Semin 9	Comparative analysis of group communication software.	1
Semin 10	Comparative analysis of risk management software.	1
Semin 11	Comparative analysis of data archiving software.	1
Semin 12	Comparative analysis of software integrated in a computing cloud.	1
Semin 13	Meyers-Briggs Personality Tests.	1
Semin 14	The Big Five Personality Tests.	1
Semin 15	DISC Personality Tests.	1
	Total hours	15
	TEACHING TOOLS USED	
N1. Lecture (delivered with slides)		
N2. Laboratory (utilizing supporting software tools)		
N3. Seminar (comparative analysis of various supporting software tools)		
N4. Consultations		
N5. Student's own work		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F - forming during semester), $\mathrm{P}-$ concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEK_U01 \div PEK_U02	Assessment for reports on exercises performed on particular topics during the laboratories
F2	$\text { PEK_U01 } \div \text { PEK_U02, }$ PEK_K03	Grade for preparing and conducting classes on the leading topic in a given laboratory.
F3	PEK_K01 \div PEK_K02	Assessment of the presentation of the assigned topic delivered during the seminar
F4	PEK_K01 \div PEK_K02	Assessment of activity in discussing the topics presented during the seminar
F5	PEK W01 \div PEK W02	Final test
$\mathrm{P}(\mathrm{lect})=\mathrm{F} 5$		
$\mathrm{P}(\mathrm{lab})=\mathrm{W} 1 \times \mathrm{F} 1+\mathrm{W} 2 \times \mathrm{F} 2$, weights W1, W2 will be given at the beginning of the semester		
$\mathrm{P}(\mathrm{sem})=\mathrm{W} 3 \times \mathrm{F} 3+\mathrm{W} 4 \times \mathrm{F} 4$, weights $\mathrm{W} 3, \mathrm{~W} 4$ will be given at the beginning of the semester		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide) - 6th Edition 2017
[2] SWEBOK - Guide to the Software Engineering Body of Knowledge v.3.0 IEEE 2014.
[3] Kathy Schwalbe: Information Technology Project Management, 9th Edition. Cengage Learning 2018
SECONDARY LITERATURE:
[1] Capterra: https://www.capterra.com/
[2] Software Advice: https://www.softwareadvice.com/
[3] GetApp: https://www.getapp.com/
[4] G2: https://www.g2.com/

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Metody systemowe i decyzyjne
Name of subject in English Systems analysis and decision support methods.
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practieal*
Level and form of studies: 1 st/ 2 nd Hevel, uniform magister studies*, full-time $/$ part-time studies*
Kind of subject: obligatory / optional/university-wide*
Subject code INZ002024
Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15	15		
Number of hours of total student workload (CNPS)	140		50		
Form of crediting	Examination / crediting with grade*	Examination/ credititg with grade*	Examination/ crediting with grade*	Examination// crediting with grade*	Examination/ crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	5		2		
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	3		1,2		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knows basics of mathematical analysis and linear algebra.
2. Basic programming skills (variables, functions, loops, conditional statements).

SUBJECT OBJECTIVES

C1 Knowledge about methods of modelling static and dynamic systems.
C2 Acquisition of skills necessary to develop computer models of technical and non-technical processes.
C3 Learning how to formulate typical decision making problems and how to solve them.
C4 Learning how to use computer engineering software to develop decision making support systems and solve optimization tasks.

SUBJECT EDUCATIONAL EFFECTS

related to knowledge:
PEK_W01 Knows basic ideas, problems and methods of systems modelling and identification. PEK_W02 Knows typical decision making tasks and knows methods of solving optimization problems.
related to skills:

| $\begin{array}{l}\text { PEK_U01 Knows how to formulate decision making problems. } \\ \text { PEK_U02 Knows how to use MATLAB and SIMULINK for engineering computations, in } \\ \text { particular for systems modelling and identification. }\end{array}$ | |
| :--- | :--- | :--- |
| PEK_U03 Knows how to use computer engineering software to solve optimization tasks and to | |
| develop decision making support systems. | |$\}$

	Classes	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Number of } \\ \text { hours } \end{array} \\ \hline \end{array}$
Cl 1	Examples of dynamical processes and their models.	1
Cl 2	Discrete processes examples and their models.	1
Cl 3	Identification algorithm for static plant - deterministic case.	1
Cl 4	Identification algorithm for static plant - probabilistic case.	1
Cl 5	Machine learning algorithms	2
Cl 6	Optimization problems formulations. Decision variables, performance index, constraints.	2
Cl 7	Foundations of optimization. Convex sets and functions, quadratic form, gradient, the Hess matrix.	1
Cl 8	Analytical methods for unconstrained and constrained optimization. Equality constraints and the Lagrange function.	2
Cl 9	Analytical methods for unconstrained and constrained optimization. Inequality constraints and Kuhn-Tucker conditions.	2
Cl 10	Linear programming.	1
Cl 11	Integer programming.	1
	Total hours	15
	Laboratory	Number of hours
Lab 1	Instructions for OSH. Introduction for MATLAB. Basic commands, working with command window.	1
Lab 2	Advanced functions in MATLAB for data processing.	1
Lab 3	Dynamical processes modeling in Simulink. Simulation studies.	2
Lab 4	Identification algorithm for selected plant. Test.	2
Lab 5	Optimization method for one variable function. Implementation and graphical presentation of selected methods.	2
Lab 6	Optimization method for multi variable function. Implementation and graphical presentation of selected methods. Report.	3
Lab 7	Application of Matlab's toolbox for advanced problems of modeling and optimization.	2
Lab 8	Elaboration of student's own project in Matlab environment. Report.	2
	Total hours	15
TEACHING TOOLS USED		
$\begin{aligned} & \hline \text { N1. Traditional lecture. Multimedia presentations. } \\ & \text { N2. Student's own works - solving calculation tasks. } \\ & \text { N3. Collective works - consultations with teacher. } \\ & \text { N4. Student's own works - literature studies. } \\ & \hline \text { N5. Student's own works - computer programming. } \\ & \text { N5. Student's own works - simulation studies. } \\ & \text { N7. Student's own works - results presentation. } \\ & \hline \end{aligned}$		

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F	Learning - forming	Way of evaluating learning outcomes achievement (during semester), C- -

concluding (at semester end)		
F1	PEK_U02	Observation of student's activity. Conversation with student about current laboratory exercises. Programming test.
F2	PEKU03 PEK_K01	Observation of student's activity. Conversation with student about current laboratory exercises. Report evaluation.
F3	PEK_W01 PEK_W02 PEK_U01	Observation of student's activity. Solving exercises. Test.
C1 (Lec)	PEK_W01 PEK_W02 PEK_U01	On the basis of F3 and exam.
C2 (La)	PEK_U02 PEK_U03	On the basis of F1, F2.

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Bubnicki Z., Identification of control plants, PWN, Warszawa, 1980.
[2] Bubnicki Z. Modern Control Theory, Springer, Berlin-Heidelberg-New York, 2005
[3] Ikonen E., Najim K., Advanced identification and control, CRC Press LLC, 2002

SECONDARY LITERATURE:

[1] Bazaraa M. S., Sherali H.D., Shett C. M., Nonlinear Programming Theory and Algorithms, John Wiley and Sons, Inc., 2006
[2] Bishop C.M., Pattern Recognition and Machine Learning, Springer Science +Business Media, LLC
[3] Duda R.O., Hart P.E., Storok D.G., Pattern Classification, John Wiley and Sons, Inc., 2006.
[4] Chong E.K.P., Żak S.H., An Introduction to Optimization, Wiley-Interscience, 2008.
[5] Ogata K., Modern Control Engineering, Prentice Hall, 2009.
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
prof. dr hab. inż. Jerzy Świątek, jerzy.swiatek@pwr.edu.pl

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish Zespołowe Przedsięwzięcie Inżynierskie
Name of subject in English Team Project
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable): \qquad
Profile: academic*
Level and form of studies: $1^{\text {st }}$ level, full-time
Kind of subject: obligatory
Subject code INZ002017
Group of courses YES*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)				120	15
Number of hours of total student workload (CNPS)					
Form of crediting	Examination / crediting with grade*				
For group of courses mark final course with (X)				X	
Number of ECTS points			20		
including number of ECTS points for practical (P) classes			12		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					
*delete as anplicable					

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of the basic stages of implementation of an IT project, techniques used to prioritize and task assessment.
2. Ability to program, test, create technical documentation.

SUBJECT OBJECTIVES

C1 To enable students to gain professional experience in "near-natural" conditions.
C2. Implementation of a small or medium scale engineering project in a team, using modern approaches, practices and tools.

SUBJECT EDUCATIONAL EFFECTS

relating to skills:
PEU_U01 Student plans iteration tasks, estimates their execution time, presents the way they are implemented.
PEU_U02 Student works individually and in a team; communicates with team members using modern means and tools.
PEU_U03 Student solves the encountered (complex) engineering problems using various sources of information.

PEU_U04 Student presents a solution from various perspectives (business, technical). He takes part in the discussion.
relating to social competences:
PEU_K01 Student improves technical skills and shares his knowledge with colleagues. PEU_K02 Student cooperates in the group taking on different roles.

Project		Number of hours
Proj 1	Vision. Definition of requirements. Task planning as part of the first iteration.	8
Proj 2	Implementation of tasks according to the plan. Preparation of technical documentation. Summary of iteration and planning of the next one. ${ }^{1}$	112
	Total hours	120
	Seminar	Number of hours
Sem 1	Organizational classes. Preparation of speeches schedule.	1
Sem 2	Presentation of the product vision, expected business benefits, addressed problems, competitive products - according to the schedule.	7
Sem 3	Presentation of the program product (in its current form), its basic functionalities, used technologies and approaches to solve problems according to the schedule.	7
	Total hours	15

TEACHING TOOLS USED

N1. Software for modeling, implementation, software testing, code sharing (possibly others), preparation of multimedia presentations.
N2. A system supporting team, work among others in the area of planning tasks and reporting work progress.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F forming (during semester), P - concluding (at semester end)	Learning outcomes number	Way of evaluating learning outcomes achievement
$F_{i}-$ phase grade (option)	PEK_U01, \ldots, PEK_U03 PEK_K01,PEK_K02	The lecturer may decide on the phase evaluation after each (selected) phases of the project implementation. The grade should reflect the scope of implementation, its quality, and being in time.
FP - final evaluation of the project	PEK_U01, ... PEK_U03 PEK_K01, PEK_K02	The grade is determined on the basis of the scope, completeness (relative to plans) of implementation, quality of the solution and documentation (at least user /

[^1]| | | administrator documentation required), timeliness of tasks implementation, if phase evaluations were not used or based on phase estimates (average of phase ratings) |
| :---: | :---: | :---: |
| FS - final grade from the seminar | $\begin{aligned} & \text { PEK_U04, } \\ & \text { PEK_K01 } \end{aligned}$ | The grade is based on:
 a) Preparations of the presentation: preservation of time limits, readability, substantive value of the presentation, purity of the language used, attempt to involve the participants
 b) Participation in the discussion of the presented solutions |
| P - final grade | PEK_U01...
 PEK_U04,
 PEK_K01, PEK_K02 | Grade calculated on the formula: $\mathrm{P}=0.8 * \mathrm{FP}+0.2 * \mathrm{FS}$ |
| PRIMARY AND SECONDARY LITERATURE | | |
| PRIMARY LITERATURE: | | |
| [1] K. Schwaber, Agile Project Management with Scrum, Microsoft Press, 2004
 [2] A. Cocburn, Agile Software Development: The Cooperative Game, Addison Wesley, 2006 | | |
| SECONDARY LITERATURE: | | |
| [1] Literature about the technology used by a team. | | |
| SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) | | |
| Dr inż. Bogumila Hnatkowska, Bogumila.Hnatkowska@pwr.wroc.pl | | |

FACULTY of Computer Science and Management

SUBJECT CARD

Name of subject in Polish: Rachunek prawdopodobieństwa i statystyka
Name of subject in English: Theory of probabilistic and statistics
Main field of study (if applicable): Applied Computer Science
Specialization (if applicable):
Profile: academic / practical*
Level and form of studies: $1 \mathrm{st} / \mathbf{2 n d}$ level, uniform magister studies*, full-time / part-time studies*
Kind of subject: obligatory / optional/ university-wide*
Subject code: INZ004410
Group of courses YES / NO*

							Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30									
Number of hours of total student workload (CNPS)	200										
Form of crediting	Examination / erediting with grade*	Examination / crediting with grade*									
For group of courses mark final course with (X)	X										
Number of ECTS points	7										
including number of ECTS points for practical (P) classes											
including number of ECTS points	4,2										
corresponding to classes that require direct participation of lecturers and other academics (BU)											

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Passed the subject: Algebra and Analytic Geometry. Knowledge of the subject.
2. Passed the subject: Mathematical analysis. Knowledge of the subject.
3. Passed the subject: Discrete Mathematics. Knowledge of the subject.

SUBJECT OBJECTIVES

C1 Acquisition of basic knowledge of probability and increased knowledge of selected aspects of the theory of probability.
C2 Acquisition of basic knowledge of the reliability of systems.
C3 Acquisition of basic knowledge of mathematical statistics.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:
PEU_W01 - has knowledge of the nature and properties of probability and probability space, and has knowledge of calculating probability and conditional probability events.
PEU_W02 - know the total probability theorem events and Bayesian model and also has knowledge of the reliability of circuits.

PEU_W03 - has knowledge of random variables, the distribution of the probability distribution function of a random variable, has a knowledge of the basic parameters of random variable and their interpretations.
PEU_W04 - knows limit theorems and their interpretation, and knows the probability inequalities, and knows how to pre-analyze the data for the analysis of probabilistic.

PEU_W05 - knows the point estimate and the maximum likelihood estimators.
PEU_W06 - has knowledge of confidence intervals for the mean and variance of the normal distribution and the ratio, it also has the knowledge of statistical hypothesis testing, tests for the mean and variance for a normal distribution and proportion.
PEU_W07 - known compatibility tests and independence tests, chi-square test, gained knowledgeof analysis of variance and one-dimensional linear regression.
relating to skills:
PEU_U01 - can calculate the overlap of events, conditional probability and the probability of overlap completely overlapping events.
PEU_U02 - can calculate the reliability of connections.
PEU_U03 - is able to calculate the distribution and the cumulative distribution of a random variable, and the basic parameters of random variables.
PEU_U04 - can use estimation and processes greatest reliability estimates, test hypotheses about the mean and variance of the normal distribution, as well as be a one-dimensional linear regression.
relating to social competences:
PEU_K01 - understands the importance of the theory of probability and statistics in the processes of social and economics.
PEU_K02 - understands the importance of the theory of probability and statistics in the technology.

PROGRAMME CONTENT		
Lectures		Number of hours
Lec 1	The essence of a random experience. The definition and the properties of probability. Calculation of the probability of the event. The definition of the probability space.	2
Lec 2	Conditional probability. Definition and examples.	2
Lec 3	Bayesian formula. Total probability theorem events.	2
Lec 4	Independence of events. Reliability of connections.	2
Lec 5	Random variable. Probability distribution. The distribution of the random variable. Formal definitions and examples.	2
Lec 6	Basic parameters of random variable. Interpretation of parameters.	2
Lec 7	Limit theorems and their interpretation. Important inequalities of probability.	2
Lec 8	Preliminary analysis of the data.	2
Lec 9	The point estimate.	2
Lec 10	Maximum likelihood estimators.	2

Lec 11	Confidence intervals for the mean and variance of the normal distribution and the aspect ratio.	2
Lec 12	Testing statistical hypotheses. Tests for the mean and variance for a normal distribution and proportion.	2
Lec 13	Compliance tests and independence tests. Chi-square test.	2
Lec 14	Analysis of variance. Simple linear regression.	2
Lec 15	Repertory.	2
	Total hours	$\mathbf{3 0}$
Classes	Number of hours	
Cl 1	Determination and calculation of the probability of events - accounting exercises.	2
C1 2	Conditional probability - examples and tutorials.	2
Cl 3	Independence of events - examples, tutorials. Reliability of connections - accounting exercises.	2
C1 4	Random variable. Probability distribution. The distribution of the random variable. Analysis of the properties of the distributions of random variables. Examples of phenomena of the distribution.	2
C1 5	Basic parameters of the random variable and their interpretation - tutorials.	2
C1 6	Important inequalities in probability theory, limit theorems and their interpretation - tutorials.	2
C1 7	Preliminary analysis of the data. Examples of data analysis problems. Types of analytical variables. Examples and tutorials.	2
Cl 8	Point estimation - tutorials.	2
C 9	Maximum likelihood estimators - tutorials.	2
Cl 10	Confidence intervals for the mean and variance of the normal distribution and the aspect ratio. Classes.	2
Cl 11	Statistical hypothesis testing - examples. Tests for the mean and variance of the normal distribution and the ratio - examples and tutorials.	2
Cl 12	Compliance tests and chi-square independence - tutorials.	2
C 13	Analysis of variance. Simple linear regression. Examples and tutorials.	2
Cl 14	Simple linear regression.	2
C 15	Final test.	$\mathbf{3 0}$
	Total hours	2

TEACHING TOOLS USED

N1. Traditional lecture. Slideshows.
N2. Tutorials and discussion of solutions of the foundations of probability theory and the reliability of systems. Discussing and presenting solutions lists. Final test of the exercise.
N3. Counseling for students.
N4. Self-study students - solving task lists.
N5. Own work - self-study problems of lecture and exam preparation.

Evaluation (F - forming (during semester), P - concluding (at semester end) (1	Learning outcomes number	Way of evaluating learning outcomes achievement
F1	PEU_U01-PEU_U04	Examples and tutorials. Solving lists. Analysis of system reliability problems.
F2		
F3		
C	$\begin{aligned} & \text { PEU_W01-PEU_W_07, } \\ & \text { PEU_K01-PEU_K0 } 29 \end{aligned}$	Examination.
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] J. Bartos, W. Dyczka, W. Krysicki, Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, PWN, Warszawa 2008.		
[2] J. Jakubowski, R. Sztencel, Rachunek prawdopodobieństwa dla prawie każdego, Script, Warszawa, 2009.		
$\left[\begin{array}{l}\text { [3] A. Plucińska, E. Pluciński, Rachunek prawdopodobieństwa, WNT, Warszawa } 1999 . \\ {[4]} \\ \text { R. Zieliński, Tablice statystyczne, WNT, Warszawa } 2006 .\end{array}\right.$		
[5] J. Koronacki, J. Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa 2001.		
[6] L. Gajek, M. Kaluszka, Wnioskowanie statystyczne. Modele i metody, Wydawnictwa Naukowo-Techniczne, Warszawa 1984.		
[7] D. Bobrowski, Probabilistyka w zastosowaniach technicznych, WNT, Warszawa 1986.		
[8] D. Bobrowski, Modele i metody matematyczne teorii niezawodności w przykładach i zadaniach, WNT, Warszawa 1985.		
[9] M. Fisz, Probability theory and mathematical statistics, 3 edition, Krieger Pub Co, June 1980.		
[10] A. Stanisz, Przystępny kurs satystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 1, 2, 3. Wydawnictwo StatSoft Polska, Kraków 2007.		
[11] A. Luszkiewicz, T. Słaby, Statystyka z pakietem komputerowym STATISTICA PL. Teoria i zastosowania. Wydawnictwo C.H. Beck, Warszawa 2001.		
[12] H. Kobayashi, B.L. Mark, W. Turin, Probability, Random Processes and Statistical Analysis. Cambridge University Press, Cambridge (UK) 2012.		
SECONDARY LITERATURE:		
[1] W. Feller, Wstęp do rachunku prawdopodobieństwa, tom I.II, PWN, Warszawa 2009. [2] G. Grimmet, D. Stirzaker, One thousand exercises In probability, Oxford University Press, 2004.		
[3] H. Jasiulewicz, W. Kordecki, Rachunek prawdopodobieństwa i statystyka matematyczna. Definicje, twierdzenia, wzory, GiS, Wrocław 2001.		
[4] H. Jasiulewicz, W. Kordecki, Rachunek prawdopodobieństwa i statystyka matematyczna. Przyklady i zadania, GiS, Wrocław 2001.		
[5] M. Maliński, Weryfikacja hipotez statystycznych wspomagana komputerowo, Wy Politechniki Śląskiej, Gliwice 2004.		

[6] O. Hryniewicz, Wyklady ze statystyki. Skrypt Wyższej Szk. Informatyki Stosow. i Zarz. Warszawa 2001.
[7] A. Zelaś, B. Pawełek, S. Wanat, Metody statystyczne. Zadania i sprawdziany. PWE Warszawa 2002.
[8] J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa. Wydawnictwo SCRIPT, Warszawa 2010.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)
Prof. PWr. dr hab. inż Ireneusz Jóźwiak, ireneusz.jozwiak@pwr.edu.pl

FACULTY of Computer Science and Management					
SUBJECT CARD					
Name in Polish: Programowanie systemów w					
Main field of study (if applicable): Applied Computer Science					
Specialization (if applicable):					
Profile: practical					
Level and form of studies: $1^{\text {sts }}$, full-time					
Kind of subject: \quad Leverional					
Subject code Group of courses: INZ004420					
	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in	15		30		
Number of hours of total student workload (CNPS)	120				
Form of crediting	Crediting with grade		Crediting with points		
For group of courses mark (X) final course	X				
Number of ECTS points	4				
including number of ECTS points for practical (P) classes	2				
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	2,4				
	*delete as applicable				
PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Basic knowledge of structured and object-oriented programming 2. Basic database skills					
SUBJECT OBJECTIVESC1 Acquisition of knowledge and skills in developing systems that are based on client-servercommunication and use of HTTP.					
SUBJECT EDUCATIONAL EFFECTS relating to knowledge: PEU_W01 Understands HTTP communication PEU_W02 Selects the appropriate technology for programming Web-based systems' components					
relating to skills:					
PEU_U01 Adapts, arranges and rearranges working systems or their components in accordance with the submitted requirements					
PEU_U02 Constructs simple web-based systems in accordance with the submitted requirements					
relating to social competences:					
PEU_K01 Presents the results of his or her work					
PROGRAMME CONTENT					

Form of classes - lecture		Number of hours
Lec1	Internet and Web - Introduction	2
Lec2	Introduction to HTML5	2
Lec3	Introduction to CSS3	2
Lec4	$\begin{array}{l}\text { Selected elements of JavaScript, Document Object Model and event } \\ \text { handling }\end{array}$	2
Lec5	Working with WWW and database server	2
Lec6	$\begin{array}{l}\text { Overview of backend programming languages, frontend frameworks and } \\ \text { usage of AJAX }\end{array}$	2
Lec7	Session mechanisms, usage of database	2
Lec8	Final test	2
	Total hours	15
Lab 1	Introductory classes: presentation of health and safety regulations, fire	
protection rules as well as grading and class policies.		

Lab 15	Credit	2
	Total number of hours	$\mathbf{3 0}$

TEACHING TOOLS USED

N1. Lectures illustrated with the multimedia boards
N2. Laboratory exercises with use of appropriate programming environments
N3. The e-learning system for publishing course materials and receiving students' work
N4. Student's individual work based on the lists of tasks
N5. Student's individual work - final test preparation
N6. Final test conducted by the e-learning system
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F forming (during semester), P concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1-F8	$\|$PEU_W02 PEU_U01 PEU_K01	Scoring on a scale (0-10).
F9 - F14	PEU_W01 PEU_W02 PEU_U01 PEU_U02 PEU K01	Scoring on a scale (0-10).
P Lec	$\begin{aligned} & \text { PEU_W01 } \\ & \text { PEU_W02 } \end{aligned}$	Crediting: over 50\% points for correct answers in the final test. Points from the laboratory and points from the lecture are weighed so that their impact on the final grade is equal and then they are added together. Positive grade determined by proportional ranges from 50% to 100% of total points.
PRIMARY AND SECONDARY LITERATURE		
PRIMARY LITERATURE:		
[1] Paul Deitel, Harvey Deitel, Abbey Deitel: Internet \& World Wide Web: How to Program, Fifth Edition, Prentice Hall, 2011		
SECONDARY LITERATURE:		
[1] HTML \& CSS Design and Build Websites by Jon Duckett, Wiley 2011 [2] David Flanagan, JavaScript: The Definitive Guide. Activate Your Web Pages. 6th Edition, 1996 [3] Introduction to Client/Server Systems: A Practical Guide for Systems Professionals, Paul E. Renaud, 1993		
SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)		
Aleksander Mariański, aleksander.marianski@pwr.edu.pl		

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT	
	SUBJECT CARD
Name in English	ALGEBRA AND ANALYTIC GEOMETRY
Name in Polish	ALGEBRA Z GEOMETRIA ANALITYCZNA
Main field of study (if applicable)	Computer Science Level and form of studies
I level, full time	
Kind of subject	obligatory
Subject code	MAT001688
Group of courses	YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course	X				
Number of ECTS points					
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES
It is recommended that the knowledge of mathematics is equivalent to high school certificate at the basic level.

SUBJECT OBJECTIVES

C1 Presentation of basic theorems and algorithms concerning the theory of linear equations.
C2 Presentation of basic notions concerning matrix calculus, eigenvalues and eigenvectors of matrices.
C3 Exposition of rudiments of the theory of complex numbers, polynomial and rational functions.
C 4 Exposition of rudiments of analytic geometry in R^{3}.
C5 Expalining the basic notions of theory of vector spaces.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student

PEK_W1 knows basic methods of solving systems of linear equations,
PEK_W2 knows basic properties of complex numbers,
PEK_W3 knows basic algebraic properties of polynomials,
PEK_W4 knows characterizations of lines and planes in R^{3}.
PEK_W5 knows basic notions of theory of vector spaces.

Relating to skills a student:

PEK_U1 can add and multiply matrices and calculate determinants, PEK_U2 can solve systems of linear equations, PEK_U3 can find eigenvalues and eigenvectors of a matrix, PEK_U4 can carry out calculations with use of complex numbers, PEK_U5 can find line and plane equations in the space R^{3}.

PROGRAM CONTENT		
	Form of classes - lectures	Hours
Lec1	Mathematical induction. Newton's binomial formula.	1
Lec2	The notion of a matrix. Operations on matrices. Transposition. Examples of matrices (triangular, symmetric, diagonal etc.).	2
Lec3	The determinant of a matrix. The Laplace expansion. Cofactor of an element of a matrix. Minors. Properties of determinants. Calculation of determinants by elementary row and column operations. Cauchy's theorem. Nonsingular matrix.	3
Lec4	Inverse matrix. Computation of inverse matrix by cofactors or by elementary row operations. Properties of inverse matrices. Matrix equations. Rank of a matrix. Applications of determinants, their connections with rank and invertibility.	2
Lec5	Systems of linear equations. Rouché-Capelli theorem. Cramer's formulas. Gaussian elimination. Solving arbitrary systems of linear equations.	3
Lec6	Complex numbers. Operations on complex numbers in algebraic form. Complex conjugate. Modulus. Argument.	2
Lec7	Geometric interpretation of a complex number. Polar form of a complex number. De Moivre's formula. Roots of complex numbers.	2
Lec8	Polynomials. Polynomial remainder theorem. Fundamental theorem of algebra. Roots of polynomials with real coefficients.	2
Lec9	Linear and quadratic factors of a real polynomial. Decomposition of a polynomial into factors. Rational functions. Real partial fractions with irreducible denominators. Partial fraction decomposition of a real rational function.	2
Lec10	Eigenvalues and eigenvectors of a matrix.	2
Lec11	Analytic geometry in the space R ${ }^{3}$. Operations on vectors. Length of a vector. Scalar product, cross product and triple product of vectors - computing area and volume.	2
Lec12	Planes. Normal to a plane. Equations of a plane. Relative location of planes.	1
Lec13	Line in the space. Equations of a line (parametric, directional). Line as an intersection of planes. Relative location of two lines. Relative location of a line and a plane. Orthogonal projection of a point onto a line or a plane.	3
Lec14	Vector spaces (finite dimensional). Linear combination of vectors. Linear independence. Basis and dimension of a vector space.	3
	Total hours	$\mathbf{3 0}$

Form of classes - classes		Hours
Cl1	Transformation of algebraic expressions. Newton's binomial formula.	1
Cl2	Operations on matrices.	1
Cl3	Calculation of matrix determinants with use of their properties. Laplace expansion. Computation of an inverse matrix. Solving matrix equations. Evaluation of the rank of a matrix.	4

C14	Kronecker-Capelli theorem. Cramer's formulas. Gaussian elimination. Solving of arbitrary systems of linear equations.	4
C15	Operations on complex numbers in algebraic form. Polar form. Geometric interpretation. Powers and roots of complex numbers. Solving simple equations and inequalities.	6
C16	Finding roots of polynomials. Decomposition of a polynomial into irreducible components. Partial fraction decomposition of a real rational function.	4
Cl7	Eigenvalues and eigenvectors of a matrix.	2
C18	Vector operations. Scalar, cross or triple product of vectors and their applications to calculating area and volume.	2
C19	Solving problems in analytic geometry in $\mathrm{R}^{3}-$ finding equations of lines and planes, finding projections of vectors etc.	4
Cl10	Test.	2

TEACHING TOOLS USED

N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.
N4 Tutorial.
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; P- concluding)	Educational effect number	Way of evaluating educational effect achievement
$\mathrm{F}-\mathrm{Cl}$	PEK_U1 - PEK_U5	oral presentations, quizzes, tests
$\mathrm{F}-$ Lec	PEK_W1-PEK_W5	exam
P - rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

[1] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2015.
[2] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław 2014.
[3] P. Kajetanowicz, J. Wierzejewski, Algebra z geometrią analityczną, PWN 2008.
[4] M. Zakrzewski, Markowe wykłady z matematyki, Algebra z geometrią, Oficyna Wyd. GiS, Wrocław 2015.

SECONDARY LITERATURE

[1] B. Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004.
[2] A. Mostowski, M. Stark, Elementy algebry wyższej, PWN, Warszawa 1963.
[3] W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, Cz. A, PWN, Warszawa 2003.
[4] F. Leja, Geometria analityczna, PWN, Warszawa 1972.
[5] E. Kącki, D. Sadowska, L. Siewierski, Geometria analityczna w zadaniach, PWN, Warszawa 1993.

```
SUBJECT SUPERVISORS
Wydziałowa Komisja Programowa ds. kursów ogólnouczelnianych dr Karina Olszak (Karina.Olszak@pwr.edu.pl)
```

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ALGEBRA AND ANALYTIC GEOMETRY MAT001688
AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer science

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1, C2	Lec5, C14	N1-N4
PEK_W2	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_W3	K1INF_W01	C3	Lec8, Lec9, Cl6	N1-N4
PEK_W4	K1INF_W01	C4	Lec11-Lec13, C18, C19	N1-N4
PEK_W5	K1INF_W01	C5	Lec14	N1, N3, N4
PEK_U1	K1INF_W01	C2	Lec2-Lec4, Lec10, Cl2, Cl3	N1-N4
PEK_U2	K1INF_W01	C1, C2	Lec5, C14	N1-N4
PEK_U3	K1INF_W01	C2	Lec10, Cl7	N1-N4
PEK_U4	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_U5	K1INF_W01	C4	Lec11-Lec13, C18, C19	N1-N4

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT	
	SUBJECT CARD
Name in English	MATHEMATICAL ANALYSIS I
Name in Polish	ANALIZA MATEMATYCZNA I
Main field of study (if applicable)	Computer Science
Specialization (if applicable)	
Level and form of studies	I level, full time
Kind of subject	obligatory
Subject code	MAT001689
Group of courses	YES

	Lecture	Exercise class	Laboratory	Project	Seminar
Number of hours of organized University classes (ZZU)	30	30			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For a group of courses mark the final course (X)	X				
Number of ECTS points	6				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Knowledge of mathematics equivalent to high school certificate at the advanced level is recommended.

SUBJECT OBJECTIVES

C1 Provide training in basic elementary functions and their properties.
C2 Provide training in basic differential calculus of one-variable functions.
C3 Introduction to the concept of definite integral, its basic properties and methods of calculation.
C4 Presentation of practical applications of differential and integral calculus of one-variable functions.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student:

PEK_W1 knows graphs and properties of basic elementary functions,
PEK_W2 knows basic notions and theorems of differential calculus for one-variable functions, PEK_W3 knows the concept of definite integral, its properties and basic applications.

Relating to skills a student:

PEK_U1 can solve typical equations and inequalities with elementary functions,

PEK_U2 can examine a function and draw its graph,
PEK_U3 can evaluate typical indefinite integrals and calculate definite integrals,
PEK_U4 can apply differential and integral calculus to solve practical problems.

PROGRAMME CONTENT		
Form of classes - lecture		Hours
Lec1	Definition of a function. Basic examples: linear, quadratic and polynomial functions. Rational functions. Composition of functions. Transformations of graphs of functions.	3
Lec2	Injective functions. The inverse function and its graph. Power and exponential functions and their inverses. Properties of logarithms.	2
Lec3	Trigonometric functions. Unit (trigonometric) circle. Inverse trigonometric functions.	2
Lec4	Sequences of real numbers. Finite and infinite limit of a sequence. Basic theorems on limits of sequences. Indeterminate expressions. The number e.	3
Lec5	The limit of a function at a point and the limit at infinity. Examples of the limits of certain indeterminate expressions. Asymptotes.	2
Lec6	Continuity of a function at a point and on an interval. Basic properties of continuous functions. Approximate solutions of equations.	2
Lec7	The derivative of a function. Geometrical and physical interpretations of the derivative. Tangent line. Differential of a function. Derivatives of basic elementary functions. Differentiation rules.	2
Lec8	Lagrange's theorem. Intervals of monotonicity of a function. De l'Hospital's rule.	2
Lec9	Local and global extrema. Examples of optimization problems.	2
Lec10	Definition and basic properties of indefinite integral. Basic rules. The substitution rule and integration by parts.	2
Lec11	Definition and basic properties of definite integral. Fundamental theorem of calculus (Newton-Leibniz theorem).	2
Lec12	Applications of integral calculus (average value of a function, area of a flat region, volumes of solids of revolution, arc length etc.)	2
Lec13	Integration of rational and trigonometric functions.	2
Lec14	Examples of applications of mathematical analysis methods for one-variable functions (e.g. Taylor's theorem, convexity and inflection points of a function, or other applications typical for the field of study).	2
	Total hours	30
	Form of classes - classes	Hours
Cl1	Elements of mathematical logic (logical connectives, quantifiers). Determination of the function domain. Even and odd functions.	2
C12	Composition of functions. Transformations of graphs of functions. Polynomial and rational equations and inequalities.	2
Cl3	The inverse function. Typical equations and inequalities with exponential and logarithmic functions.	2
C14	Trigonometric and inverse trigonometric functions. Unit (trigonometric) circle. Typical trigonometric equations and inequalities.	2
C15	Monotonicity and boundedness of sequences. Computing proper and improper limits of sequences.	2
C16	Limits of functions. Asymptotes.	2
C17	Continuity of a function. Approximate solutions of equations.	2
C18	Derivative of a function. Rules of differentiation. Tangent line. Differentials and their applications.	2
C19	De l'Hospital's rule. Intervals of monotonicity of a function.	2

Cl10	Determining local and global extrema of a function.	2
Cl11	Evaluation of indefinite integrals of elementary functions. Integration by parts and by substitution.	2
	Calculating definite integrals. Area of a flat region as an application of definite integral.	2
Cl13	Applications of definite integral.	2
Cl14	Integration of rational and trigonometric functions.	2
Cl15	Test.	2
		Total hours

TEACHING TOOLS USED

N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.
N4 Tutorial.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement
F-Cl	PEK_U1-PEK_U4, PEK_K1	tests, oral presentations, quizzes
F-Lec	PEK_W1-PEK_W3	exam
P- rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] G. Decewicz, W. Żakowski, Matematyka, Cz.1, WNT, Warszawa 2007.
[2] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2015.
[3] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2015.
[4] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, Cz. I, PWN, Warszawa, 2006.

SECONDARY LITERATURE:

[1] F. Leja, Rachunek różniczkowy i całkowy, PWN, 2012.
[2] R. Leitner, Zarys matematyki wyższej dla studiów technicznych, cz.1-2, WNT, Warszawa, 2006.
[3] M. Zakrzewski, Markowe wykłady z matematyki. Analiza, Oficyna Wydawnicza GiS, Wrocław, 2013.

```
SUBJECT SUPERVISORS
Wydziałowa Komisja Programowa ds. kursów ogólnouczelnianych
dr Jolanta Sulkowska (Jolanta.Sulkowska@pwr.edu.pl)
```

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT
MATHEMATICAL ANALYSIS I MAT1689
AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer Science

Subject educationa 1 effect	Correlation between subject educational effectand educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1	Lec1-Lec6	
PEK_W2	K1INF_W01	C2	Lec7-Lec9, Lec14	N1-N4
PEK_W3	K1INF_W01	C3	Lec10-Lec13	N1-N4
PEK_U1	K1INF_W01	C1	Lec1-Lec3, C11-C14	N1-N4
PEK_U2	K1INF_W01	C1	Lec5-Lec9, Cl5-C110	N1-N4
PEK_U3	K1INF_W01	C3	Lec10, Lec11, Lec13, Cl11, Cl12, Cl14	N1-N4
PEK_U4	K1INF_W01	C2, C4	Lec7, Lec12, Lec14, C18-Cl10, Cl12, C113	N1-N4

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT	
	SUBJECT CARD
Name in English	MATHEMATICAL ANALYSIS II
Name in Polish	ANALIZA MATEMATYCZNA II
Main field of study (if applicable)	Computer Science
Specialization (if applicable):	
Level and form of studies:	I level, full time
Kind of subject:	obligatory
Subject code:	MAT001690
Group of courses:	YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Student must have basic knowledge in one-variable differential and integral calculus, confirmed by completing the Mathematical Analysis I course with a positive grade.

SUBJECT OBJECTIVES

C1 Provide training in basics of infinite series and power series theories.
C2 Presentation of rudiments of multivariable differential calculus.
C3 Exposition of basics of multiple integrals.
C4 Introduction to the idea of the Laplace and Fourier transformations.

PRZEDMIOTOWE EFEKTY KSZTALCENIA

Relating to knowledge a student

PEK_W1 knows basic convergence tests for infinite series,
PEK_W2 knows rudiments of multivariable differential and integral calculus,
PEK_W3 knows the notions of the Laplace and Fourier transformations.
Relating to skills a student
PEK_U1 is able to find power series representation of a function and knows how to use it for
approximations,
PEK_U2 can calculate and interpret partial derivatives, directional derivatives and gradients of multivariable functions, is able to find local and global extrema of two-variable functions,
PEK_U3 can calculate double integrals and apply double-integral calculus to solve engineering problems,
PEK_U4 can find the Laplace transforms of basic functions.

PROGRAM CONTENT		
Form of classes - lectures		Hours
Lec1	Improper integrals. Absolute and conditional convergence. Cauchy principal value.	2
Lec2	Infinite series. The basic tests for convergence and divergence. Absolute and conditional convergence. The alternating series test (Leibniz's theorem).	2
Lec3	Power series. The radius and interval of convergence. Cauchy-Hadamard theorem. Taylor series.	2
Lec4	Sets in the plane and in space. Functions of several variables. Graphs of typical twovariable functions. Surfaces of revolution and cylindrical surfaces.	2
Lec5	The partial derivative. Definition. Geometric interpretation. Higher order partial derivatives. Schwarz's Theorem.	2
Lec6	The tangent plane to the graph of two-variable function. Directional derivatives. Gradient of a function	2
Lec7	Local and global extrema of two-variable function. Necessary and sufficient conditions for the existence of minimum /maximum. Examples of extremal problems in geometry and engineering.	2
Lec8	Conditional extrema. Applications. Examples of optimization problems.	2
Lec9	Double integral, its definition and interpretation. Methods of calculation of double integrals over normal and regular regions.	2
Lec 10	Properties of double integrals. Jacobian determinant. Change of variables in double integrals. Double integrals in polar coordinates.	2
Lec11	Applications of double integrals in geometry, physics and engineering.	2
Lec12	Introduction to theory of ordinary differential equations. Laplace transformation.	2
Lec13	Laplace inverse transformation and its applications in ordinary differential equations.	2
Lec14	Fourier transformation and its applications.	4
	Total hours	30
	Form of classes - classes	Hours
Cl1	Improper integrals.	1
C12	Infinite series.	1
Cl 3	Power series.	1
Cl4	Functions of two variables.	1
Cl 5	Partial derivatives.	1
Cl6	Gradient of a function. Tangent planes.	1
C17	Local and global minima and maxima.	1
Cl8	Conditional extrema.	1
C19	Double integrals.	1
Cl10	Double integrals in polar coordinates.	1
Cl11	Applications of double integrals.	1
Cl12	Integral transforms.	2
C113	Test.	2
	Total hours	15

TEACHING TOOLS USED

N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_U1- PEK_U4	tests, oral presentations, quizzes
F2	PEK_W1-PEK_W3	exam
P - rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

[1] F. Leja, Rachunek Różniczkowy i Całkowy, Wydawnictwo Naukowe PWN, 2012
[2] R. Leitner, Zarys Matematyki Wyższej dla Studiów Technicznych, Cz. 1-2, WNT, Warszawa, 2006.
[3] M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2016

SECONDARY LITERATURE

[1] W. Krysicki, L. Włodarski, Analiza Matematyczna w Zadaniach, Cz. II, PWN, Warszawa, 2006
[2] G. M. Fichtenholz, Rachunek Różniczkowy i Całkowy, T. I - II, PWN, Warszawa, 2007
[3] M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2016

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych
doc. dr Zbigniew Skoczylas (Zbigniew.Skoczylas@pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT
MATHEMATICAL ANALYSIS 2.4 A MAT001690
AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer Science

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1	Lec2, Lec3, C12, Cl3	N1-N3
PEK_W2	K1INF_W01	C2, C3	Lec4-Lec12, Cl4-Cl11	N1-N3
PEK_W3	K1INF_W01	C4	Lec13, Lec14, Cl12	N1-N3
PEK_U1	K1INF_W01	C1	Lec3, Cl3	N1-N3
PEK_U2	K1INF_W01	C2	Lec5-Lec8, C15-Cl8	N1-N3
PEK_U3	K1INF_W01	C3	Lec9-Lec11, C19-Cl11	N1-N3
PEK_U4	K1INF_W01	C4	Lec12, Lec13, Cl12	N1-N3

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT	
	SUBJECT CARD
Name in English	ALGEBRA AND ANALYTIC GEOMETRY
Name in Polish	ALGEBRA Z GEOMETRIĄ ANALITYCZNA
Main field of study (if applicable)	Computer Science
Level and form of studies	I level, full time
Kind of subject	obligatory
Subject code	MAT001688
Group of courses	YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course	X				
Number of ECTS points					
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

It is recommended that the knowledge of mathematics is equivalent to high school certificate at the basic level.

SUBJECT OBJECTIVES

C1 Presentation of basic theorems and algorithms concerning the theory of linear equations.
C2 Presentation of basic notions concerning matrix calculus, eigenvalues and eigenvectors of matrices.
C3 Exposition of rudiments of the theory of complex numbers, polynomial and rational functions.
C 4 Exposition of rudiments of analytic geometry in R^{3}.
C5 Expalining the basic notions of theory of vector spaces.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student

PEK_W1 knows basic methods of solving systems of linear equations,
PEK_W2 knows basic properties of complex numbers,
PEK_W3 knows basic algebraic properties of polynomials,
PEK_W4 knows characterizations of lines and planes in R^{3}.
PEK_W5 knows basic notions of theory of vector spaces.

Relating to skills a student:

PEK_U1 can add and multiply matrices and calculate determinants, PEK_U2 can solve systems of linear equations, PEK_U3 can find eigenvalues and eigenvectors of a matrix, PEK_U4 can carry out calculations with use of complex numbers, PEK_U5 can find line and plane equations in the space R^{3}.

PROGRAM CONTENT		
Form of classes - lectures		Hours
Lec1	Mathematical induction. Newton's binomial formula.	1
Lec2	The notion of a matrix. Operations on matrices. Transposition. Examples of matrices (triangular, symmetric, diagonal etc.).	2
Lec3	The determinant of a matrix. The Laplace expansion. Cofactor of an element of a matrix. Minors. Properties of determinants. Calculation of determinants by elementary row and column operations. Cauchy's theorem. Nonsingular matrix.	3
Lec4	Inverse matrix. Computation of inverse matrix by cofactors or by elementary row operations. Properties of inverse matrices. Matrix equations. Rank of a matrix. Applications of determinants, their connections with rank and invertibility.	2
Lec5	Systems of linear equations. Rouché-Capelli theorem. Cramer's formulas. Gaussian elimination. Solving arbitrary systems of linear equations.	3
Lec6	Complex numbers. Operations on complex numbers in algebraic form. Complex conjugate. Modulus. Argument.	2
Lec7	Geometric interpretation of a complex number. Polar form of a complex number. De Moivre's formula. Roots of complex numbers.	2
Lec8	Polynomials. Polynomial remainder theorem. Fundamental theorem of algebra. Roots of polynomials with real coefficients.	2
Lec9	Linear and quadratic factors of a real polynomial. Decomposition of a polynomial into factors. Rational functions. Real partial fractions with irreducible denominators. Partial fraction decomposition of a real rational function.	2
Lec 10	Eigenvalues and eigenvectors of a matrix.	2
Lec 11	Analytic geometry in the space R^{3}. Operations on vectors. Length of a vector. Scalar product, cross product and triple product of vectors - computing area and volume.	2
Lec12	Planes. Normal to a plane. Equations of a plane. Relative location of planes.	1
Lec 13	Line in the space. Equations of a line (parametric, directional). Line as an intersection of planes. Relative location of two lines. Relative location of a line and a plane. Orthogonal projection of a point onto a line or a plane.	3
Lec 14	Vector spaces (finite dimensional). Linear combination of vectors. Linear independence. Basis and dimension of a vector space.	3
	Total hours	30

Form of classes - classes		Hours
C11	Transformation of algebraic expressions. Newton's binomial formula.	1
Cl2	Operations on matrices.	1
Cl3	Calculation of matrix determinants with use of their properties. Laplace expansion. Computation of an inverse matrix. Solving matrix equations. Evaluation of the rank of a matrix.	4

Cl4	Kronecker-Capelli theorem. Cramer's formulas. Gaussian elimination. Solving of arbitrary systems of linear equations.	4
C15	Operations on complex numbers in algebraic form. Polar form. Geometric interpretation. Powers and roots of complex numbers. Solving simple equations and inequalities.	6
Cl6	Finding roots of polynomials. Decomposition of a polynomial into irreducible components. Partial fraction decomposition of a real rational function.	4
Cl7	Eigenvalues and eigenvectors of a matrix.	2
Cl8	Vector operations. Scalar, cross or triple product of vectors and their applications to calculating area and volume.	2
C19	Solving problems in analytic geometry in \mathbf{R}^{3} - finding equations of lines and planes, finding projections of vectors etc.	4
Cl10	Test.	2

TEACHING TOOLS USED

N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.
N4 Tutorial.
EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; Pconcluding)	Educational effect number	Way of evaluating educational effect achievement
$\mathrm{F}-\mathrm{Cl}$	PEK_U1 - PEK_U5	oral presentations, quizzes, tests
F-Lec	PEK_W1 - PEK_W5	exam
P - rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

[1] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2015.
[2] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław 2014.
[3] P. Kajetanowicz, J. Wierzejewski, Algebra z geometrią analityczną, PWN 2008.
[4] M. Zakrzewski, Markowe wykłady z matematyki, Algebra z geometrią, Oficyna Wyd. GiS, Wrocław 2015.

SECONDARY LITERATURE

[1] B. Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004.
[2] A. Mostowski, M. Stark, Elementy algebry wyższej, PWN, Warszawa 1963.
[3] W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, Cz. A, PWN, Warszawa 2003.
[4] F. Leja, Geometria analityczna, PWN, Warszawa 1972.
[5] E. Kącki, D. Sadowska, L. Siewierski, Geometria analityczna w zadaniach, PWN, Warszawa 1993.

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. kursów ogólnouczelnianych dr Karina Olszak (Karina.Olszak@pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ALGEBRA AND ANALYTIC GEOMETRY MAT001688
AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer science

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1, C2	Lec5, Cl4	N1-N4
PEK_W2	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_W3	K1INF_W01	C3	Lec8, Lec9, Cl6	N1-N4
PEK_W4	K1INF_W01	C4	Lec11-Lec13, C18, Cl9	N1-N4
PEK_W5	K1INF_W01	C5	Lec14	N1, N3, N4
PEK_U1	K1INF_W01	C2	Lec2-Lec4, Lec10, Cl2, Cl3	N1-N4
PEK_U2	K1INF_W01	C1, C2	Lec5, C14	N1-N4
PEK_U3	K1INF_W01	C2	Lec10, Cl7	N1-N4
PEK_U4	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_U5	K1INF_W01	C4	Lec11-Lec13, C18, C19	N1-N4

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT

SUBJECT CARD

Name in English
MATHEMATICAL ANALYSIS I
analiza Matematyczna I
Computer Science

Main field of study (if applicable)
Specialization (if applicable)
Level and form of studies
Kind of subject
Subject code
Group of courses

I level, full time
obligatory
MAT001689
YES

	Lecture	Exercise class	Laboratory	Project	Seminar
Number of hours of organized University classes (ZZU)	30	30			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For a group of courses mark the final course (X)	X				
Number of ECTS points	6				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Knowledge of mathematics equivalent to high school certificate at the advanced level is recommended.

SUBJECT OBJECTIVES

C1 Provide training in basic elementary functions and their properties.
C2 Provide training in basic differential calculus of one-variable functions.
C3 Introduction to the concept of definite integral, its basic properties and methods of calculation.
C4 Presentation of practical applications of differential and integral calculus of one-variable functions.

SUBJECT EDUCATIONAL EFFECTS
Relating to knowledge a student:
PEK_W1 knows graphs and properties of basic elementary functions,
PEK_W2 knows basic notions and theorems of differential calculus for one-variable functions,
PEK_W3 knows the concept of definite integral, its properties and basic applications.
Relating to skills a student:
PEK_U1 can solve typical equations and inequalities with elementary functions,

PEK_U2 can examine a function and draw its graph, PEK_U3 can evaluate typical indefinite integrals and calculate definite integrals, PEK_U4 can apply differential and integral calculus to solve practical problems.

PROGRAMME CONTENT		
Form of classes - lecture		Hours
Lec1	Definition of a function. Basic examples: linear, quadratic and polynomial functions. Rational functions. Composition of functions. Transformations of graphs of functions.	3
Lec2	Injective functions. The inverse function and its graph. Power and exponential functions and their inverses. Properties of logarithms.	2
Lec3	Trigonometric functions. Unit (trigonometric) circle. Inverse trigonometric functions.	2
Lec4	Sequences of real numbers. Finite and infinite limit of a sequence. Basic theorems on limits of sequences. Indeterminate expressions. The number e.	3
Lec5	The limit of a function at a point and the limit at infinity. Examples of the limits of certain indeterminate expressions. Asymptotes.	2
Lec6	Continuity of a function at a point and on an interval. Basic properties of continuous functions. Approximate solutions of equations.	2
Lec7	The derivative of a function. Geometrical and physical interpretations of the derivative. Tangent line. Differential of a function. Derivatives of basic elementary functions. Differentiation rules.	2
Lec8	Lagrange's theorem. Intervals of monotonicity of a function. De l'Hospital's rule.	2
Lec9	Local and global extrema. Examples of optimization problems.	2
Lec 10	Definition and basic properties of indefinite integral. Basic rules. The substitution rule and integration by parts.	2
Lec 11	Definition and basic properties of definite integral. Fundamental theorem of calculus (Newton-Leibniz theorem).	2
Lec12	Applications of integral calculus (average value of a function, area of a flat region, volumes of solids of revolution, arc length etc.)	2
Lec 13	Integration of rational and trigonometric functions.	2
Lec14	Examples of applications of mathematical analysis methods for one-variable functions (e.g. Taylor's theorem, convexity and inflection points of a function, or other applications typical for the field of study).	2
	Total hours	30
	Form of classes - classes	Hours
Cl1	Elements of mathematical logic (logical connectives, quantifiers). Determination of the function domain. Even and odd functions.	2
C12	Composition of functions. Transformations of graphs of functions. Polynomial and rational equations and inequalities.	2
Cl3	The inverse function. Typical equations and inequalities with exponential and logarithmic functions.	2
C14	Trigonometric and inverse trigonometric functions. Unit (trigonometric) circle. Typical trigonometric equations and inequalities.	2
C15	Monotonicity and boundedness of sequences. Computing proper and improper limits of sequences.	2
C16	Limits of functions. Asymptotes.	2
C17	Continuity of a function. Approximate solutions of equations.	2
C18	Derivative of a function. Rules of differentiation. Tangent line. Differentials and their applications.	2
C19	De l'Hospital's rule. Intervals of monotonicity of a function.	2

Cl10	Determining local and global extrema of a function.	2
Cl11	Evaluation of indefinite integrals of elementary functions. Integration by parts and by substitution.	2
Cl12	Calculating definite integrals. Area of a flat region as an application of definite integral.	2
Cl13	Applications of definite integral.	2
Cl14	Integration of rational and trigonometric functions.	2
Cl15	Test.	2
		Total hours

TEACHING TOOLS USED

N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.
N4 Tutorial.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F - forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement
F-Cl	PEK_U1-PEK_U4, PEK_K1	tests, oral presentations, quizzes
F-Lec	PEK_W1-PEK_W3	exam
P - rules set by the lecturer		

\author{

PRIMARY AND SECONDARY LITERATURE

 PRIMARY LITERATURE:
 [1] G. Decewicz, W. Żakowski, Matematyka, Cz.1, WNT, Warszawa 2007.
 [2] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2015.
 [3] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2015.
 [4] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, Cz. I, PWN, Warszawa, 2006.
 \section*{SECONDARY LITERATURE:}
 [1] F. Leja, Rachunek różniczkowy i całkowy, PWN, 2012.
 [2] R. Leitner, Zarys matematyki wyższej dla studiów technicznych, cz.1-2, WNT, Warszawa, 2006.
 [3] M. Zakrzewski, Markowe wykłady z matematyki. Analiza, Oficyna Wydawnicza GiS, Wrocław, 2013.}

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. kursów ogólnouczelnianych dr Jolanta Sulkowska (Jolanta.Sulkowska@ pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT
 MATHEMATICAL ANALYSIS I MAT1689
 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer Science

Subject educationa l effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1	Lec1-Lec6	N1-N4
PEK_W2	K1INF_W01	C2	Lec7-Lec9, Lec14	N1-N4
PEK_W3	K1INF_W01	C3	Lec10-Lec13	N1-N4
PEK_U1	K1INF_W01	C1	Lec1-Lec3, Cl1-Cl4	N1-N4
PEK_U2	K1INF_W01	C1	Lec5-Lec9, Cl5-Cl10	N1-N4
PEK_U3	K1INF_W01	C3	Lec10, Lec11, Lec13, Cl11, Cl12, Cl14	N1-N4
PEK_U4	K1INF_W01	C2, C4	Lec7, Lec12, Lec14, C18-Cl10, Cl12, Cl13	N1-N4

FACULTY OF COMPUTER SCIENCE AND MANAGEMENT	
	SUBJECT CARD
Name in English	MATHEMATICAL ANALYSIS II
Name in Polish	ANALIZA MATEMATYCZNA II
Main field of study (if applicable)	Computer Science
Specialization (if applicable):	
Level and form of studies:	I level, full time
Kind of subject:	obligatory
Subject code:	MAT001690
Group of courses:	YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	15			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Student must have basic knowledge in one-variable differential and integral calculus, confirmed by completing the Mathematical Analysis I course with a positive grade.

SUBJECT OBJECTIVES

C1 Provide training in basics of infinite series and power series theories.
C2 Presentation of rudiments of multivariable differential calculus.
C3 Exposition of basics of multiple integrals.
C4 Introduction to the idea of the Laplace and Fourier transformations.

PRZEDMIOTOWE EFEKTY KSZTALCENIA

Relating to knowledge a student

PEK_W1 knows basic convergence tests for infinite series,
PEK_W2 knows rudiments of multivariable differential and integral calculus,
PEK_W3 knows the notions of the Laplace and Fourier transformations.
Relating to skills a student
PEK_U1 is able to find power series representation of a function and knows how to use it for
approximations,
PEK_U2 can calculate and interpret partial derivatives, directional derivatives and gradients of multivariable functions, is able to find local and global extrema of two-variable functions, PEK_U3 can calculate double integrals and apply double-integral calculus to solve engineering problems,
PEK_U4 can find the Laplace transforms of basic functions.

PROGRAM CONTENT		
Form of classes - lectures		Hours
Lec1	Improper integrals. Absolute and conditional convergence. Cauchy principal value.	2
Lec2	Infinite series. The basic tests for convergence and divergence. Absolute and conditional convergence. The alternating series test (Leibniz's theorem).	2
Lec3	Power series. The radius and interval of convergence. Cauchy-Hadamard theorem. Taylor series.	2
Lec4	Sets in the plane and in space. Functions of several variables. Graphs of typical twovariable functions. Surfaces of revolution and cylindrical surfaces.	2
Lec5	The partial derivative. Definition. Geometric interpretation. Higher order partial derivatives. Schwarz's Theorem.	2
Lec6	The tangent plane to the graph of two-variable function. Directional derivatives. Gradient of a function	2
Lec7	Local and global extrema of two-variable function. Necessary and sufficient conditions for the existence of minimum /maximum. Examples of extremal problems in geometry and engineering.	2
Lec8	Conditional extrema. Applications. Examples of optimization problems.	2
Lec9	Double integral, its definition and interpretation. Methods of calculation of double integrals over normal and regular regions.	2
Lec10	Properties of double integrals. Jacobian determinant. Change of variables in double integrals. Double integrals in polar coordinates.	2
Lec11	Applications of double integrals in geometry, physics and engineering.	2
Lec12	Introduction to theory of ordinary differential equations. Laplace transformation.	2
Lec13	Laplace inverse transformation and its applications in ordinary differential equations.	2
Lec14	Fourier transformation and its applications.	4
	Total hours	30
	Form of classes - classes	Hours
C11	Improper integrals.	1
C12	Infinite series.	1
Cl3	Power series.	1
C14	Functions of two variables.	1
C15	Partial derivatives.	1
C16	Gradient of a function. Tangent planes.	1
C17	Local and global minima and maxima.	1
C18	Conditional extrema.	1
C19	Double integrals.	1
Cl10	Double integrals in polar coordinates.	1
C111	Applications of double integrals.	1
Cl12	Integral transforms.	2
Cl13	Test.	2
	Total hours	15

TEACHING TOOLS USED
N1 Lectures - traditional or using multimedia tools.
N2 Classes - traditional method (problems sessions and discussion).
N3 Student's self-study with the assistance of mathematical packages.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_U1-PEK_U4	tests, oral presentations, quizzes
F2	PEK_W1-PEK_W3	exam
P- rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

[1] F. Leja, Rachunek Różniczkowy i Całkowy, Wydawnictwo Naukowe PWN, 2012
[2] R. Leitner, Zarys Matematyki Wyższej dla Studiów Technicznych, Cz. 1-2, WNT, Warszawa, 2006.
[3] M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2016

SECONDARY LITERATURE

[1] W. Krysicki, L. Włodarski, Analiza Matematyczna w Zadaniach, Cz. II, PWN, Warszawa, 2006
[2] G. M. Fichtenholz, Rachunek Różniczkowy i Całkowy, T. I - II, PWN, Warszawa, 2007
[3] M. Gewert, Z. Skoczylas, Analiza Matematyczna 2. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław, 2016

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych
doc. dr Zbigniew Skoczylas (Zbigniew.Skoczylas@ pwr.edu.pl)
CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT
MATHEMATICAL ANALYSIS 2.4 A MAT001690
AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer Science

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1	K1INF_W01	C1	Lec2, Lec3, Cl2, Cl3	N1- N3
PEK_W2	K1INF_W01	C2, C3	Lec4-Lec12, C14-Cl11	N1-N3
PEK_W3	K1INF_W01	C4	Lec13, Lec14, Cl12	N1-N3
PEK_U1	K1INF_W01	C1	Lec3, Cl3	N1-N3
PEK_U2	K1INF_W01	C2	Lec5-Lec8, Cl5-Cl8	N1-N3
PEK_U3	K1INF_W01	C3	Lec9-Lec11, Cl9-Cl11	N1-N3
PEK_U4	K1INF_W01	C4	Lec12, Lec13, C112	N1-N3

[^0]: *delete as applicable

[^1]: ${ }^{1}$ The number of iterations depends on the type of project and is determined by the course provider. Activities: summary of iterations and subsequent planning take place at the end and the beginning of each iteration. Some iterations may end with the release of the product. The number of releases and their scope is determined by the teacher together with the team.

