
FIELD OF SCIENCE: Engineering and Technology

DISCIPLINE OF SCIENCE: Information and Communication Technology

DOCTORAL DISSERTATION

Normalizing flow models for modeling
uncertainty in machine learning tasks

mgr inż. Patryk Wielopolski

Supervisor:
dr hab. inż. Maciej Zięba, prof. uczelni

Keywords: machine learning, normalizing flows, uncertainty modeling

WROCŁAW 2024





Personal Acknowledgments

First and foremost, I would like to extend my deepest gratitude to my Ph.D. supervisor,
Maciej Zięba. This Ph.D. journey would not have been possible without your support.
One of my key criteria for pursuing a doctorate was having an exceptional supervisor, and
you are exactly that. I am incredibly grateful for your patience and understanding during
all my highs and lows, from moments of doubt and pauses to re-energized comebacks.
Together, we made this possible—perhaps not in the two years we initially aimed for, but
three is still an accomplishment I am very proud of.

I also want to express thanks to my collaborators and colleagues at genwro.ai.
In particular, I owe immense gratitude to Oleksii, with whom I have had the pleasure
of closely collaborating over the past year and a half. I believe we have both gained in-
valuable insights from each other, and I eagerly look forward to observing your progress
through your doctorate journey. A special thank you also goes to Michał for sharing the
ups and downs of our Ph.D. adventures and providing mutual support along the way.

I am grateful for the support of my family and friends. To my beloved parents:
Mamo, Tato – dziękuję za wasze nieustające wsparcie, celebrowanie moich sukcesów,
wysiłek w odkrywaniu, kiedy i gdzie odbędzie się kolejna konferencja, a także przypom-
inanie mi, jak ważny jest odpoczynek. To my dear friends, Dominika, Bartek, and Aleks,
thank you for simply being there. I know I can always rely on you, ask for help, and
have the deep conversations we all enjoy so much. Your presence has been a source of
immense emotional support, and I am deeply grateful for it.

A special thank you to Martyna for your continuous support, for making me laugh
countless times, and for making sure I rest (or sometimes work) in the most wonderful
places—whether it’s Berlin, Canary Islands, London, Venice, Porto, Azores, Lisbon,
Mallorca, Iceland, Edinburgh, New York or any other place in the world. You’ve shown
me the joy in balancing life and work, empathized during tough publishing moments, and
fueled my curiosity. And, of course, for all the questions that have kept me thinking.

Lastly, I want to acknowledge myself —for the inner work, self-reflection, and the systems
I’ve built to support my personal growth. This process is ongoing, but I feel I’ve made
great strides during this Ph.D. journey.

iii





Table of Contents

Abstract vii

Streszczenie ix

List of Publications xi

Introduction 1

Part I: Normalizing Flows for Discriminative Tasks 7
2.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 TreeFlow: Going Beyond Tree-based Parametric Probabilistic Regression 8
2.3 NodeFlow: Towards End-to-end Flexible Probabilistic Regression on Tab-

ular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Modeling Uncertainty in Personalized Emotion Prediction with Normaliz-

ing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part II: Normalizing Flows for Generative Tasks 13
3.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Flow Plugin Network for Conditional Generation . . . . . . . . . . . . . 14
3.3 PluGeN: Multi-Label Conditional Generation From Pre-Trained Models . 15

Part III: Normalizing Flows for Combined Tasks 19
4.1 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Probabilistically Plausible Counterfactual Explanations with Normalizing

Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Contribution to Research Community 23

Conclusions 27

Acknowledgments 29

Bibliography 31

Full Texts of Publications 35

v





Abstract

In recent years, machine learning models have achieved remarkable results across a wide
range of tasks, including classification, regression, and data generation, spanning various
modalities such as tabular data, text, images, and point clouds. However, many of these
applications have focused primarily on deterministic predictions, often overlooking the
importance of modeling uncertainty in those predictions. This dissertation aims to ad-
dress this limitation by utilizing Normalizing Flow models to effectively model uncertainty
across a spectrum of machine learning tasks.

This thesis consists of seven papers and is divided into three parts. The first part,
covered in Publications [I-III], focuses on applying normalizing flows to discriminative
tasks. Publication [I] introduces TreeFlow, a novel approach that enhances tree-based
parametric models with more expressive probability distributions for regression tasks.
Publication [II] presents NodeFlow, an end-to-end probabilistic regression framework for
tabular data that improves upon TreeFlow’s two-stage learning process. Publication [III]
demonstrates the versatility of these methods by adapting them to personalized natural
language processing, yielding significant improvements in emotion recognition and hate
speech detection.

The second part of the thesis, encompassing Publications [IV-VI], explores the applica-
tion of normalizing flows to generative tasks. Publication [IV] introduces the Flow Plugin
Network (FPN), an innovative architecture that integrates normalizing flows with pre-
trained generative models. Publications [V, VI] present PluGeN, a sophisticated approach
for multi-label conditional generation that leverages pre-trained models, demonstrating
its potential in generating images and 3D point clouds with attribute combinations not
seen during training.

The third part, covered in Publication [VII], investigates the intersection of discrim-
inative and generative tasks within the domain of Explainable AI (XAI). It introduces
a novel method for generating Probabilistically Plausible Counterfactual Explanations
using Normalizing Flows (PPCEF), enhancing the plausibility and interpretability of AI
explanations.

All the publications listed here were presented at top- and high-tier conferences or
published in high-impact journals. The research demonstrates the versatility of normal-
izing flows across various machine learning paradigms, contributing to the development
of more accurate, controllable, and interpretable AI systems. This work opens up several
promising avenues for future research, including scaling these methods to larger datasets,
integrating them with other emerging paradigms, and extending their application to new
domains.

vii





Streszczenie

W ostatnich latach modele uczenia maszynowego osiągnęły niezwykłe wyniki w szerokim
zakresie zadań, w tym klasyfikacji, regresji i generowania danych, obejmujących różne
modalności, takie jak dane tabelaryczne, tekst, obrazy i chmury punktów. Jednak
wiele z tych zastosowań skupiało się głównie na przewidywaniach deterministycznych,
często pomijając znaczenie modelowania niepewności w tych przewidywaniach. Niniejsza
rozprawa ma na celu rozwiązanie tego ograniczenia poprzez wykorzystanie modeli normal-
izacji przepływu do efektywnego modelowania niepewności w szerokim spektrum zadań
uczenia maszynowego.

Ta rozprawa składa się z siedmiu artykułów i jest podzielona na trzy części. Pierwsza
część, omówiona w publikacjach [I-III], koncentruje się na stosowaniu modeli normaliza-
cji przepływu do zadań dyskryminacyjnych. Publikacja [I] wprowadza TreeFlow, nowa-
torskie podejście, które wzmacnia parametryczne modele oparte na drzewach o bardziej
ekspresyjne rozkłady prawdopodobieństwa dla zadań regresji. Publikacja [II] przedstawia
NodeFlow, kompleksowe podejście do regresji probabilistycznej dla danych tabelarycznych,
które ulepszają dwuetapowy proces trenowania TreeFlow. Publikacja [III] demonstruje
wszechstronność tych metod poprzez dostosowanie ich do spersonalizowanego przetwarza-
nia języka naturalnego, co daje znaczące usprawnienia w rozpoznawaniu emocji i wykry-
waniu mowy nienawiści.

Druga część pracy, obejmująca Publikacje [IV-VI], bada zastosowanie normalizacji
przepływów do zadań generatywnych. Publikacja [IV] wprowadza Flow Plugin Net-
work (FPN), innowacyjną architekturę, która integruje modele normalizacji przepływu z
wstępnie wyszkolonymi modelami generatywnymi. Publikacje [V, VI] przedstawiają Plu-
GeN, wyrafinowane podejście do wieloetykietowej generacji warunkowej, które wykorzys-
tuje wstępnie wyszkolone modele, demonstrując jego potencjał w generowaniu obrazów
i chmur punktów 3D z kombinacjami atrybutów niewidocznymi podczas treningu.

Trzecia część, omówiona w Publikacji [VII], bada przecięcie się zadań dyskrymina-
cyjnych i generatywnych w domenie Explainable AI (XAI). Wprowadza nową metodę
generowania prawdopodobnych, kontrfaktycznych wyjaśnień przy użyciu normalizacji
przepływów (PPCEF), zwiększając wiarygodność i interpretowalność wyjaśnień AI.

Wszystkie wspomniane publikacje zostały zaprezentowane na prestiżowych konferenc-
jach lub ukazały się w renomowanych czasopismach naukowych. Badania te pokazują, jak
wszechstronne zastosowanie mają modele normalizacji przepływu w różnych dziedzinach
uczenia maszynowego. Przyczyniają się one do tworzenia systemów sztucznej inteligencji,
które są nie tylko dokładniejsze, ale także bardziej kontrolowane i łatwiejsze do zrozu-
mienia. Ta praca otwiera wiele obiecujących kierunków dla przyszłych badań. Wśród
nich można wymienić zastosowanie tych metod do większych zbiorów danych, połączenie
ich z nowymi koncepcjami w dziedzinie AI, a także rozszerzenie ich wykorzystania na
nowe obszary.

ix





List of Publications

[I] P. Wielopolski, M. Zięba
"TreeFlow: Going Beyond Tree-based Parametric Probabilistic Regression"
ECAI 2023 : 26th European Conference on Artificial Intelligence : September
30–October 4, 2023, Kraków, Poland : proceedings / eds. Kobi Gal [et al.]. Ams-
terdam : IOS Press, cop. 2023. s. 2631-2638
2023; CORE A; 140 MEiN points

[II] P. Wielopolski, O. Furman, M. Zięba
"NodeFlow: Towards End-to-end Flexible Probabilistic Regression on Tabular Data"
Entropy. 2024. vol. 26, nr 7, art. 593, s. 1-16
2024; IF: 2.1; 100 MEiN points

[III] P. Miłkowski, K. Karanowski, P. Wielopolski, J. Kocoń, P. Kazienko, M. Zięba
"Modeling Uncertainty in Personalized Emotion Prediction with Normalizing Flows"
23nd IEEE International Conference on Data Mining Workshops (ICDMW), 1–4
December 2023 Shanghai, China : proceedings / eds. Jihe Wang [et al.]. Piscat-
away, NJ : Institute of Electrical and Electronics Engineers, cop. 2023. s. 757-766
2023; CORE A; 200 MEiN points

[IV] P. Wielopolski, M. Koperski, M. Zięba
"Flow Plugin Network for conditional generation"
Intelligent Information and Database Systems 15th Asian Conference, ACIIDS 2023
: Phuket, Thailand, July 24-26, 2023 : Proceedings, Pt. 2 / ed. Ngoc Thanh
Nguyen [et al.]. Singapore : Springer, cop. 2023. s. 221-232
2023; CORE B; 70 MEiN points

[V] M. Wołczyk, M. Proszewska, Ł. Maziarka, M. Zięba, P. Wielopolski, R. Kurczab,
M. Śmieja
"PluGeN: Multi-Label Conditional Generation from Pre-trained Models"
Proceedings of the 36th AAAI Conference on Artificial Intelligence : February 22 -
March 1, 2022 : virtual conferece / eds. Gabriel Pedroza [et al.]. Palo Alto, USA :
AAAI Press, cop. 2022. s. 8647-8656
2022; CORE A∗; 200 MEiN points

[VI] M. Proszewska, M. Wołczyk, M. Zięba, P. Wielopolski, Ł. Maziarka, M. Śmieja
"Multi-Label Conditional Generation From Pre-Trained Models"
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024. vol. 46,
nr 9, s. 6185-6198
2024; IF: 20.8; 200 MEiN points

xi



[VII] P. Wielopolski, O. Furman, J. Stefanowski, M. Zięba
"Probabilistically Plausible Counterfactual Explanations with Normalizing Flows"
Accepted to ECAI 2024 : 27th European Conference on Artificial Intelligence :
October 19–October 24, 2024, Santiago de Compostela, Spain
2024; CORE A; 140 MEiN points

xii







CHAPTER 1

Introduction

Machine Learning Machine Learning (ML) has revolutionized various areas of our
lives by providing powerful tools for extracting patterns and insights from complex
data [1, 2]. Over the past decade, ML techniques have demonstrated remarkable success in
diverse domains, including decision-making systems [3], natural language processing [4],
and computer vision [5]. As these methods continue to evolve, there is an increasing
recognition of the importance of not only making predictions but also quantifying the
uncertainty associated with those predictions [6, 7].

Uncertainty in Machine Learning In machine learning, uncertainty refers to the
inherent variability and lack of confidence in model predictions [8]. It encompasses var-
ious sources of ambiguity, including noise in the data, limitations of the model, and the
stochastic nature of the processes being modeled. Uncertainty modeling aims to quantify
and represent this variability in a principled manner [6]. Rather than relying solely on
point estimates, probabilistic approaches to machine learning explicitly capture uncer-
tainty by modeling the distribution of possible outcomes [9, 10]. These methods provide
a framework for reasoning about the reliability and limitations of ML models, forming
the foundation for more robust and interpretable machine learning systems.

Why is Modeling Uncertainty Important? Understanding and quantifying uncer-
tainty is essential for robust decision-making in real-world applications, where the con-
sequences of errors can be significant [7]. Effective uncertainty quantification enhances
model interpretability, improves decision-making processes, and provides valuable insights
into the reliability of predictions across various domains [8]. In both discriminative and
generative tasks, uncertainty modeling enables more informed decisions and realistic out-
puts [6, 11]. Moreover, in the context of Explainable AI (XAI), it contributes to the
development of more transparent and trustworthy systems [12]. Proper uncertainty mod-
eling thus not only improves the performance and reliability of machine learning models
but also enhances their applicability in critical real-world scenarios.

Current State in Modeling Uncertainty The landscape of uncertainty modeling in
machine learning is characterized by a range of approaches, from simple point-based es-
timates to more sophisticated probabilistic methods. Commonly used techniques include
frequentist methods like bootstrap [13], Bayesian approaches using variational inference or
MCMC [14], ensemble techniques [15], and Gaussian processes [16]. These methods often
rely on simplifying assumptions, typically employing Gaussian-based or other parameter-
ized distributions to make uncertainty quantification tractable [10]. Despite these sim-
plifications, such approaches have found wide application across various domains. They

1



have been successfully applied to regression problems on tabular data [17, 18], computer
vision tasks such as object detection and semantic segmentation [7], and in generative
modeling using variational autoencoders [19]. The prevalence of these methods in prac-
tical applications can be attributed to their relative simplicity, computational efficiency,
and well-established theoretical foundations. However, as the complexity of real-world
data and tasks increases, the limitations of these conventional approaches become more
apparent.

Limitations in Modeling Uncertainty Current approaches to modeling uncertainty
face several key limitations. Many traditional methods, including tree-based models like
NGBoost and CatBoost [20, 21], rely on parametric distributions, limiting their ability to
capture complex, real-world data distributions. Deep learning methods offer more flexi-
bility but often struggle with computational efficiency and scalability [15, 14]. Most tech-
niques face challenges with high-dimensional samples and distinguishing between different
sources of uncertainty [8]. The interpretability of uncertainty estimates, particularly in
complex models, remains a significant challenge [22, 12]. To address these limitations,
recent research has explored more flexible approaches to uncertainty modeling.

Normalizing Flows In recent years, Normalizing Flows [23] has emerged as a promis-
ing solution to address the limitations in uncertainty modeling. These models offer a
unique approach to distribution estimation, distinguishing themselves from other deep
generative techniques such as Variational Autoencoders (VAEs) [19], Generative Adver-
sarial Networks (GANs) [24], and Diffusion Models [25]. At their core, normalizing flows
leverage the principle of change of variables to transform a simple base distribution into
a complex target distribution [23].

Formally, a normalizing flow is defined as a composition of invertible and differentiable
transformations, f = fK ◦ fK−1 ◦ ... ◦ f1, applied to a random variable z with a known
probability density pZ(z). The resulting probability density pX(x) of the transformed
variable x = f(z) can be computed exactly through the change of variables formula:

pX(x) = pZ(f
−1(x))

∣∣∣∣det
∂f−1(x)

∂x

∣∣∣∣ , (1.1)

where pZ(z) typically denotes a simple base distribution such as a standard normal dis-
tribution.

Key Properties and Advantages of Normalizing Flows This formulation endows
normalizing flows with several key properties that make them particularly suitable for
addressing the challenges in uncertainty modeling [26]. First and foremost, normalizing
flows provides exact computations of probability densities, enabling precise likelihood
evaluation. This feature, coupled with the invertible nature of the transformations, allows
for both efficient sampling and exact density estimation, overcoming the limitations of
approximate methods often used in traditional uncertainty quantification.

The careful design of these transformations empowers normalizing flows to model
complex, high-dimensional probability distributions, addressing the challenge of capturing
intricate data distributions that many parametric models struggle with [27, 28, 29, 30].
Moreover, the bidirectional mapping between the base and target distributions facilitates
both inference and generation tasks, making normalizing flows a versatile tool across
various machine learning paradigms.

2



5 0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

True value
TreeFlow
CatBoost

(a) Normalizing Flows for discriminative tasks.
Original Straight Swivel Cantilever Club

(b) Normalizing Flows for generative tasks.

(c) Normalizing Flows for combined tasks.

Figure 1.1: Application of Normalizing Flows for uncertainty modeling across diverse
machine learning tasks. (a) Discriminative tasks: Enhancing probabilistic regression for
tabular and text data. The innovations led to a more reliable uncertainty modeling for
both domains. (b) Generative tasks: Advancing computer vision applications. These
improvements enabled better control of generative model outputs, more effective object
manipulation, and novel generation capabilities previously unattainable. (c) Combined
discriminative and generative tasks: Leveraging generative capabilities of Normalizing
Flows to explain discriminative models through plausible counterfactual explanations.

3



This flexibility and power make normalizing flows particularly well-suited for tackling
the limitations in current uncertainty modeling approaches. They offer the potential to
model complex, multimodal distributions without the need for simplifying assumptions,
to provide scalable solutions for high-dimensional data, and to enable more nuanced
uncertainty quantification in both discriminative and generative tasks. These unique
capabilities of normalizing flows open up new avenues for research and applications across
various domains of machine learning, setting the stage for the core investigations of this
thesis.

Motivation The core of this thesis is driven by the aforementioned unique properties
of normalizing flows, particularly their ability to perform exact density estimation and
facilitate efficient sampling. The primary research question guiding this work is: "How
can the properties of normalizing flows be leveraged to enhance uncertainty modeling
across a range of machine learning tasks?" As illustrated in Figure 1.1, this work explores
the application of normalizing flows across a spectrum of machine learning tasks, focusing
on both discriminative (Figure 1.1a) and generative contexts (Figure 1.1b). Additionally,
it explores innovative hybrid approaches that merge these paradigms (Figure 1.1c) within
the domain of Explainable AI.

Contributions This thesis makes several key contributions to the field through seven
papers exploring various aspects of normalizing flows for uncertainty modeling. These
papers are organized into three chapters, each dedicated to a different machine learning
task. The research presented in this thesis has been published in highly regarded venues,
including machine learning conferences rated A* to B by CORE and journals with Im-
pact Factors ranging up to 20.8. Of these seven papers, I am the first author of four,
demonstrating significant personal contributions to the field. The impact of this work is
evident in its accumulation of 1050 MEiN points and 12 citations as of October 2024,
according to Google Scholar.

This thesis explores the application of normalizing flows in both discriminative and
generative models, as well as in innovative hybrid approaches, demonstrating their versa-
tility and potential across various machine learning paradigms. The following paragraphs
provide an overview of the key contributions made in each chapter, outlining how nor-
malizing flows are applied to specific machine learning tasks.

Chapter 2 explores the application of normalizing flows to discriminative tasks, focus-
ing on probabilistic regression. It introduces TreeFlow, a novel approach that enhances
tree-based parametric models with more expressive probability distributions [I]. TreeFlow
integrates normalizing flows with tree-based models, significantly improving uncertainty
estimates in regression tasks (Figure 1.1a) and achieving notable advancements in uni-
variate regression benchmarks. The chapter then presents NodeFlow, an end-to-end prob-
abilistic regression framework for tabular data [II]. NodeFlow improves upon TreeFlow’s
two-stage training process, offering a unified approach for modeling complex distributions
and achieving state-of-the-art results in multivariate probabilistic regression. Finally, the
chapter demonstrates the versatility of these methods by adapting them to personal-
ized natural language processing [III]. This application yields significant improvements
in emotion recognition and hate speech detection, highlighting the broad effectiveness of
the proposed methodologies.

In Chapter 3, the focus shifts to the realm of generative tasks, specifically exploring
how normalizing flows can enhance conditional generation and manipulation of complex

4



data types like images and 3D point clouds. The chapter’s first major contribution is the
Flow Plugin Network (FPN) [IV], an innovative architecture that seamlessly integrates
normalizing flows with pre-trained generative models such as Variational Autoencoders.
FPN’s plug-in network design enables refined control over generated outputs, facilitating
conditional generation, object attribute manipulation (Figure 1.1b), and even classifica-
tion tasks. The chapter then introduces PluGeN, a sophisticated approach for multi-label
conditional generation that leverages pre-trained models [V, VI]. By extending the FPN
framework to modern architectures like Generative Adversarial Networks, PluGeN tack-
les the challenge of generating images and 3D point clouds with attribute combinations
not seen during training. Through advanced attribute disentanglement, PluGeN demon-
strates its potential to address complex generative challenges, pushing the boundaries of
what’s possible in conditional generation and data manipulation.

Chapter 4 delves into the intersection of discriminative and generative tasks, demon-
strating the versatility of normalizing flows in addressing challenges within the domain of
Explainable AI. While XAI encompasses various approaches to making machine learning
models interpretable, this chapter focuses specifically on counterfactual explanations for
discriminative models. In this context, I introduce a novel method for generating Proba-
bilistically Plausible Counterfactual Explanations using normalizing flows (PPCEF) [VII].
This approach pushes the boundaries of current methods by ensuring that the generated
counterfactuals not only achieve the desired class change but also align with the under-
lying data distribution modeled by the normalizing flow model, thereby enhancing their
plausibility (Figure 1.1c).

Chapter 5 discusses the contributions to the research community. It highlights my
efforts in founding a research group, reviewing for conferences, conducting workshops,
mentoring students, giving talks, and collaborating at local, national, and international
levels during my Ph.D. journey. Chapter 6 summarizes the thesis, highlighting key con-
tributions to advancing machine learning through versatile applications of normalizing
flows in discriminative and generative modeling and Explainable AI. Finally, Appendix
A provides the complete texts of the related publications.

5





CHAPTER 2

Part I: Normalizing Flows for
Discriminative Tasks

2.1 Research Scope

Discriminative tasks in machine learning encompass a wide range of problems where the
primary objective is to predict specific outcomes or labels based on input features [10].
These tasks, which include classification and regression, form the backbone of numerous
real-world applications, from medical diagnosis to financial forecasting [31, 32]. As the
complexity and stakes of these applications continue to grow, there is an increasing need
for models that not only provide accurate predictions but also offer reliable estimates of
uncertainty [7].

The importance of uncertainty modeling in discriminative tasks cannot be overstated.
In high-stakes domains such as healthcare or financial forecasting mentioned previously,
understanding the confidence level of a model’s predictions is crucial for making in-
formed decisions and mitigating risks. Traditional approaches to uncertainty estimation
in discriminative tasks have often relied on simplistic assumptions, such as Gaussian
distributions for regression tasks or softmax probabilities for classification [10]. While
these methods provide a basic measure of uncertainty, they often fail to capture the true
complexity of real-world data distributions.

Existing approaches to uncertainty modeling in discriminative tasks include Bayesian
Neural Networks [33], Monte Carlo Dropout [6], and ensemble methods [15]. While
these techniques have shown promise, they often struggle with computational efficiency,
scalability, or the ability to model complex, multi-modal distributions. Moreover, many
of these methods provide only approximate uncertainty estimates, which may not be
sufficient for critical applications requiring precise probabilistic outputs.

Normalizing flows offers a promising avenue for addressing these limitations in dis-
criminative tasks. By leveraging their ability to model complex probability distributions
through a series of invertible transformations, normalizing flows can potentially provide
more accurate and flexible uncertainty estimates. This chapter explores novel applications
of normalizing flows to various discriminative tasks, focusing on probabilistic regression
and emotion prediction in natural language processing.

The research presented in this chapter aims to bridge the gap between the expressive
power of normalizing flows and the practical needs of discriminative tasks. By introducing
innovative architectures that combine normalizing flows with traditional machine learning
models, I seek to enhance the accuracy and reliability of uncertainty estimates across a
range of applications. This work not only advances the state-of-the-art in probabilistic
modeling for discriminative tasks but also paves the way for more robust and interpretable
machine learning systems in critical domains.

7



Figure 2.1: TreeFlow architecture. The proposed model consists of three components:
Tree-based Feature Extractor, Shallow Feature Extractor, and Conditional CNF module.

2.2 TreeFlow: Going Beyond Tree-based Parametric
Probabilistic Regression

This section covers results from Publication [I], which explores improving uncertainty
modeling in probabilistic regression tasks by combining tree-based models with normal-
izing flows.

Motivation Tree-based models have long been a popular choice for regression tasks due
to their interpretability and ability to handle complex feature interactions [17, 18, 34].
However, probabilistic extensions of the traditional tree-based methods [20, 21, 35] often
rely on simplistic probabilistic assumptions, limiting their ability to capture complex
uncertainty patterns in real-world data. The motivation behind TreeFlow is to address
this limitation by combining the strengths of tree-based models with the flexibility of
normalizing flows, thereby enabling more expressive and accurate uncertainty modeling
in regression tasks.

Contents TreeFlow introduces a novel framework that extends traditional tree-based
parametric probabilistic regression models to accommodate more flexible probability dis-
tributions. The core idea is to use a tree-based model as a feature extractor and combine
it with a conditional variant of normalizing flow. This approach allows for modeling com-
plex distributions for regression outputs, going beyond the typical Gaussian assumptions.

The architecture of TreeFlow (presented in Figure 2.1) consists of three main com-
ponents: a Tree-based Feature Extractor, a Shallow Feature Extractor, and a condi-
tional Continuous Normalizing Flow (CNF) module. The Tree-based Feature Extractor
captures complex relationships in tabular data through a tree-like structure, while the
Shallow Feature Extractor maps the high-dimensional binary output to a low-dimensional
representation. The CNF module then utilizes this representation as a conditioning factor
to model flexible probability distributions for the regression outputs.

The training process of TreeFlow employs a two-stage approach. First, the Tree-based

8



0 10 20 30 40
0

10

20

30

40

50

Independent NGBoost

0 10 20 30 40

NGBoost

0 10 20 30 40

TreeFlow

Figure 2.2: The estimated probability density functions for TreeFlow and NGBoost,
a benchmark method, demonstrate that the proposed approach effectively models multi-
modal distributions, surpassing the limitations of a fixed unimodal Gaussian distribution.

Feature Extractor is trained using a surrogate criterion specific to the type of tree-based
architecture. Then, the remaining components are trained end-to-end by optimizing the
negative log-likelihood of the conditional probability distribution modeled by the CNF.

Extensive experiments were conducted on various regression benchmarks, including
datasets with varying volumes, feature characteristics, and target dimensionality. The
results demonstrate TreeFlow’s superior performance compared to traditional tree-based
regression baselines, particularly on datasets with multi-modal target distributions as
presented in the paper and in Figure 2.2.

Summary TreeFlow represents a significant advancement in probabilistic regression
modeling by combining the strengths of tree-based models and normalizing flows. This
novel approach enables more accurate and flexible uncertainty estimation, particularly
for complex, non-gaussian data distributions. The experimental results validate the ef-
fectiveness of TreeFlow across a range of regression tasks, highlighting its potential to
improve decision-making in various real-world applications.

Contribution I was primarily responsible for conducting the literature review, design-
ing the method, carrying out experiments, analyzing data, and writing the manuscript.
My supervisor, Maciej Zięba, contributed by providing guidance on experimental design
and analysis, assisting with result interpretation, and offering feedback during the writ-
ing and revision stages. The work was presented at CORE A conference ECAI 2023 in
October 2023 and has received 4 citations as of October 2024.

2.3 NodeFlow: Towards End-to-end Flexible Proba-
bilistic Regression on Tabular Data

This section covers results from Publication [II], which overcomes the limitation of Pub-
lication [I] by introducing an end-to-end training approach for integrating tree-based
methods with normalizing flows.

9



Neural Oblivious Decision Ensemble
Layer 1

Conditional Continuous 
Normalizing Flow

...

Neural Oblivious Decision Ensemble
Layer L

Input

Neural Oblivious Decision Ensemble (NODE)

...

Figure 2.3: NodeFlow architecture. The method leverages a Neural Oblivious Decision
Ensemble (NODE) to process the input vector, extracting a hierarchical representation.
This representation conditions a Continuous Normalizing Flow (CNF), enabling flexible
modeling of the probabilistic distribution of the multidimensional response vector.

Motivation While TreeFlow demonstrated significant improvements in probabilistic
regression, its two-stage training process potentially limited the model’s ability to fully
optimize the interaction between the tree-based feature extractor and the normalizing flow
component. NodeFlow addresses this limitation by proposing an end-to-end approach to
flexible probabilistic regression on tabular data, aiming to further enhance the modeling
capabilities and performance in uncertainty estimation.

Contents NodeFlow introduces an innovative framework that seamlessly integrates
Neural Oblivious Decision Ensembles (NODEs) with Conditional Continuous Normalizing
Flows (CNFs) in an end-to-end trainable architecture as presented in Figure 2.3.

At its core, NodeFlow utilizes a Neural Oblivious Decision Ensemble to process the
input vector, extracting a hierarchical representation of tabular data. This NODE com-
ponent combines differentiable oblivious decision trees in a multi-layer structure, enabling
complex feature interactions. Building upon this foundation, NodeFlow incorporates a
Conditional Continuous Normalizing Flow component. This CNF leverages the NODE
output as a conditioning factor to model flexible probability distributions for regres-
sion outputs. The synergy between these two components allows NodeFlow to capture
intricate relationships within the data while providing accurate and adaptable uncer-
tainty estimates. A key strength of NodeFlow is its end-to-end training approach using
gradient-based optimization. This unified training process facilitates joint learning of
feature representation and uncertainty modeling, enhancing the system’s overall perfor-
mance.

To validate its effectiveness, comprehensive experiments were conducted on both uni-
variate and multivariate regression benchmarks. These tests pitted NodeFlow against
state-of-the-art probabilistic regression methods. The results clearly demonstrated Node-
Flow’s superior performance, with particularly impressive outcomes on multivariate tasks
and datasets characterized by complex underlying distributions.

10



Summary NodeFlow represents a significant advancement in probabilistic regression
for tabular data by offering an end-to-end trainable framework combining the strengths
of Neural Oblivious Decision Ensembles and Normalizing Flows. This approach enables
more accurate and flexible uncertainty modeling, particularly for high-dimensional, com-
plex regression tasks. The experimental results validate NodeFlow’s effectiveness across
a range of benchmarks, showcasing its potential to improve decision-making in various
real-world applications involving tabular data.

Contribution I was primarily responsible for conducting the literature review, design-
ing the methodology, creating and implementing the initial version of the experiments,
analyzing the data, and writing the manuscript. Oleksii Furman played a key role in
executing the experiments and refining the experimental design. My supervisor, Maciej
Zięba provided invaluable feedback throughout all phases of the research. The work was
published in Entropy (IF: 2.1) in July 2024.

2.4 Modeling Uncertainty in Personalized Emotion
Prediction with Normalizing Flows

This section covers results from Publication [III], which adapts the ideas from Publications
[I] and [II] to the domain of personalized natural language processing. It introduces
a probabilistic framework that combines end-to-end training and normalizing flows for
improved emotion prediction.

Motivation Emotion recognition in text is a challenging task due to its inherent sub-
jectivity and the variability in individual perceptions. Traditional approaches often rely
on generalized point-prediction models that fail to capture personal biases and contex-
tual nuances. The motivation behind this work is to develop a probabilistic framework
that can model the uncertainty in personalized emotion prediction, taking into account
individual differences and the inherent ambiguity in emotional responses to text.

Contents This work introduces Emotional Normalizing Flow, a novel probabilistic
framework designed to model uncertainty in personalized emotion prediction. The ap-
proach is centered around three key components: a profile extractor, a text encoder, and
a conditional normalizing flow, as presented in Figure 2.4.

The profile extractor generates a representation of the individual, capturing character-
istics that are crucial for understanding their emotional responses. Meanwhile, the text
encoder transforms the input text into an embedding using transformer-based language
models. These two components are then integrated by the conditional normalizing flow,
which models the conditional probability distribution of emotional responses, combining
the personalized user representation with the text embedding. This framework supports
both generalized and personalized approaches to emotion prediction, with the person-
alized method incorporating specific user information to enhance prediction accuracy.
The entire model is trained end-to-end by optimizing the negative log-likelihood of the
conditional probability distribution.

Extensive experiments across multiple datasets, including emotion recognition and
hate speech detection tasks, reveal the superiority of the personalized approach over

11



Figure 2.4: Emotional Normalizing Flow architecture: Personalized user profiles and text
embeddings are combined through a conditional normalizing flow to model the probability
distribution of emotional responses.

generalized models. Additionally, the use of normalizing flows proves more effective than
simpler probabilistic baselines such as Gaussian Mixture Models.

Summary Emotional Normalizing Flow represents a significant advancement in per-
sonalized emotion prediction by providing a flexible probabilistic framework that can
capture individual differences and model complex uncertainty patterns. The proposed ap-
proach demonstrates superior performance in both emotion recognition and hate speech
detection tasks, highlighting its potential to improve the understanding and analysis of
subjective emotional responses in natural language processing applications.

Contribution I contributed to conceptualizing the method and assessing its applica-
bility to the domain, provided feedback on the method’s implementation, designed the
experiments, and contributed to the writing and review of the manuscript. The article
was published in the CORE A conference, the 23rd IEEE International Conference on
Data Mining (ICDM 2023), specifically in the Sentiment Elicitation from Natural Text
for Information Retrieval and Extraction (SENTIRE) Workshop in December 2023 has
received a 1 citation as of October 2024.

12



CHAPTER 3

Part II: Normalizing Flows for
Generative Tasks

3.1 Research Scope

Chapter 3 investigates the application of normalizing flows in generative modeling tasks,
focusing on conditional generation and manipulation of complex data such as images and
3D point clouds. The research aims to enhance the flexibility and control of existing
generative models by integrating normalizing flows, thereby expanding their applicability
across diverse tasks.

Conventional generative models like Variational Autoencoders (VAEs) [19] and Gen-
erative Adversarial Networks (GANs) [24] have shown success in generating high-quality
samples but often struggle with conditional generation, particularly for high-dimensional
and complex data structures. State-of-the-art models such as StyleGAN [36], Point-
Flow [37] or LION [38], while capable of generating photorealistic images or 3D point
clouds, lack native support for fine-grained control over individual attributes within the
generated outputs. This limitation poses significant challenges for applications requiring
precise and flexible generation in fields like graphics, design, and scientific simulations.

To address these challenges, this chapter introduces two novel methodologies: the Flow
Plugin Network (FPN) and PluGeN (Plugin Generative Network). These approaches
leverage plugin network framework [39] and normalizing flows to learn invertible map-
pings between complex distributions and simpler, tractable ones. By enabling more
sophisticated manipulation of the latent space of pre-trained generative models, FPN
and PluGeN facilitate conditional generation and the disentanglement of latent repre-
sentations. This research examines the adaptation of these methods to different data
modalities, including both 2D images and 3D point clouds, and assesses their effective-
ness in generating samples and manipulating attributes with rare or previously unseen
attribute combinations.

The significance of this work lies in its proposal of a comprehensive framework for
enhancing generative models through normalizing flows, offering novel solutions to ex-
isting challenges in conditional generation and attribute manipulation. By advancing
the state of the art in generative modeling, this research establishes a foundation for
future improvements in the control and expressiveness of generative models, with poten-
tial applications spanning various domains where high-quality, controlled generation is
essential.

13



Figure 3.1: The Flow Plugin Network, when connected to the latent space of a pre-trained
autoencoder (whether generative or non-generative), facilitates the generation of objects
with specified attributes.

3.2 Flow Plugin Network for Conditional Generation

This section covers results from Publication [IV], which explores enabling conditional
object generation from pre-trained generative models using normalizing flows utilized as
a plug-in network.

Motivation While modern generative models like GANs and VAEs can produce high-
quality samples, they often lack fine-grained control over the generated outputs. Condi-
tional variants of these models typically require training from scratch, which is computa-
tionally expensive and time-consuming. The Flow Plugin Network (FPN) aims to address
this limitation by enabling conditional generation capabilities in pre-trained generative
models without modifying their original parameters.

Contents The Flow Plugin Network (FPN) introduces a novel architecture that extends
the functionality of pre-trained generative models by integrating a conditional normalizing
flow within the latent space. This approach builds upon a pre-existing encoder-decoder
framework, leveraging the latent representations generated by the base model. Central to
the FPN is the conditional normalizing flow, which establishes a bidirectional mapping
between a simple base distribution and the latent space of the generative model. This
mapping is conditioned on specific attributes, enabling the flow to incorporate additional
information into the transformation process.

In FPN, the primary objective is to model the conditional distribution p(z|y), where
z denotes the latent vector and y represents the desired attributes. This modeling ca-
pability facilitates both conditional generation and attribute manipulation. The training
process involves encoding a dataset of samples to obtain their corresponding latent rep-
resentations. The conditional flow is then trained to map these latent representations
to a simple base distribution, with the mapping conditioned on the attributes. The op-

14



timization process focuses on minimizing the conditional negative log-likelihood of the
latent representations. It is crucial to note that throughout this process, the weights of
the base generative model remain fixed, ensuring that the original model’s capabilities
are preserved.

Once trained, the FPN is capable of performing conditional generation by sampling
from the base distribution and passing the sample through the conditional flow, followed
by the decoder, to produce an output that exhibits the desired attributes. Attribute
manipulation is achieved by encoding an input into the latent space, mapping it to the
base distribution, modifying the attributes as needed, and then decoding back to the
output space to reflect these changes.

Extensive evaluations on multiple datasets, including MNIST, CelebA, and ShapeNet,
demonstrate the effectiveness of the FPN architecture. These experiments illustrate the
model’s ability to extend the capabilities of pre-trained generative models, facilitating
tasks such as conditional image and 3D point cloud generation, attribute manipulation,
and even classification. The results underscore the FPN’s potential to enhance the flexi-
bility and functionality of existing generative models by enabling conditional generation
capabilities while maintaining the integrity of the original model’s latent space.

Summary The Flow Plugin Network provides a flexible approach for adding conditional
generation capabilities to pre-trained generative models. By leveraging normalizing flows,
FPN enables fine-grained control over generated outputs without requiring retraining of
the base model. This allows for efficient adaptation of existing models to new tasks or
attribute-based generation requirements.

Contribution I was responsible for conducting the literature review, designing the
research methodology, executing the experiments, analyzing and interpreting the data,
and writing the manuscript. Maciej Zięba and Michał Koperski contributed by providing
guidance on methodological and experimental design, assisting with result interpretation,
and offering critical feedback during the manuscript’s writing and revision stages. This
work was presented at the 15th Asian Conference on Intelligent Information and Database
Systems, a CORE B conference, in July 2023, and has been cited twice as of October
2024.

3.3 PluGeN: Multi-Label Conditional Generation From
Pre-Trained Models

This section covers results from Publications [V, VI], which extends the ideas from Publi-
cation [IV] and enables multi-label conditional generation of rare attribute combinations
from both VAEs and GANs models.

Motivation While FPN demonstrated the potential of using normalizing flows for con-
ditional generation, it was limited in its ability to handle multiple attributes simultane-
ously. PluGeN (Plugin Generative Network) extends this concept to enable multi-label
conditional generation and manipulation, providing even greater control over generated
outputs. Additionally, PluGeN aims to disentangle the latent space to allow for more
precise attribute control and generation of rare attribute combinations.

15



(a) PluGeN for conditional generation.

Original Straight Swivel Cantilever Club

(b) FPN for attribute manipulation.

Figure 3.2: The samples generated using PluGeN (a) illustrate different chair types:
cantilever armchairs in the first row and swivel armchairs in the second row. The results
of point cloud attribute manipulation for the Flow Plug-in Network (FPN) (b) show
transformations to straight, swivel, cantilever, and club chair types.

Contents PluGeN introduces several key enhancements and novel concepts that build
upon and improve the FPN approach. One of the primary innovations is the transfor-
mation of the entangled latent representation of the base model into a factorized latent
space, where each dimension corresponds to a distinct, interpretable attribute. This dis-
entangled representation allows for more precise control over individual attributes, as the
conditional probability distribution within the latent space is modeled as a product of
independent factors.

Additionally, PluGeN offers a flexible attribute parameterization system, providing
continuous parameterization for both binary and continuous attributes. This enables
smooth interpolation and extrapolation of attribute values, enhancing the model’s adapt-
ability. Moreover, PluGeN is designed to be trained on partially labeled datasets, which
makes it particularly suitable for real-world scenarios where complete labeling is often
impractical. This semi-supervised training capability is complemented by improved dis-
entanglement, as PluGeN factorizes the true data distribution into independent compo-
nents. This allows the model to generate samples with rare or unseen combinations of
attributes, broadening its applicability.

The effectiveness of the PluGeN approach is demonstrated through evaluations on var-
ious datasets, including CelebA for facial attribute manipulation, FFHQ for high-quality

16



face generation, ShapeNet for 3D point clouds, and a dataset of chemical compounds for
molecular property optimization. These experiments highlight PluGeN’s ability to gen-
erate high-quality samples with precise attribute control, manipulate existing samples
effectively, and even produce samples with uncommon attribute combinations.

Summary PluGeN advances the concept of flow-based plug-in networks for condi-
tional generation by enabling multi-label control, attribute disentanglement, and semi-
supervised training. This provides a powerful and flexible tool for enhancing the capa-
bilities of pre-trained generative models across various domains.

Contribution As the author of Publications [V, VI], I contributed to the development
of the method and the formulation of the experimental methodology. I was primarily
responsible for conducting all experiments involving 3D point clouds, including those
related to the PluGeN and FPN methods, as well as all FPN-related experiments on
image datasets. Publication [V], presented at the 36th AAAI Conference on Artificial
Intelligence in February 2022, has garnered five citations as of October 2024. Publication
[VI], on the other hand, appeared in Transactions on Pattern Analysis and Machine
Intelligence in March 2024.

17





CHAPTER 4

Part III: Normalizing Flows for
Combined Tasks

4.1 Research Scope

In the rapidly evolving landscape of machine learning, the boundaries between discrim-
inative and generative tasks are becoming increasingly blurred. This chapter explores a
novel approach that leverages the strengths of both paradigms, focusing on the domain
of Explainable AI. By combining these traditionally distinct areas, we aim to enhance
the interpretability and transparency of complex machine learning models, addressing a
critical need in the deployment of AI systems across sensitive domains.

At the heart of this research lies the development of a new method for generating
counterfactual explanations, a key tool in XAI [22]. Counterfactual explanations provide
insights into model decisions by illustrating how input features would need to change
to alter the model’s prediction [40]. However, traditional approaches to counterfactual
generation often focus solely on finding minimal changes to flip model predictions without
considering whether these changes result in plausible data points [22].

To address this limitation, we introduce Probabilistically Plausible Counterfactual
Explanations using Normalizing Flows (PPCEF). This novel approach integrates nor-
malizing flows into the process of counterfactual generation. By modeling the underlying
data manifold of the training set, normalizing flows allows us to generate counterfac-
tuals that not only achieve the desired class change but also align with the true data
distribution, enhancing their plausibility and interoperability.

The use of normalizing flows in this context represents a significant advancement
in the field of Explainable AI (XAI). These models provide unique flexibility in model-
ing complex data distributions, surpassing traditional methods such as Kernel Density
Estimation or Gaussian Mixture Models. By leveraging these capabilities, the PPCEF
method achieves a delicate balance between the discriminative task of altering model pre-
dictions and the generative task of modeling the underlying training data distribution.

The implications of this research extend beyond the realm of technical innovation.
By providing a principled method for generating plausible counterfactual explanations,
the work addresses crucial ethical and practical considerations in the deployment of AI
systems. This is particularly relevant in fields such as finance, healthcare, and legal
systems, where the transparency and interpretability of AI-driven decisions can have
significant real-world impacts.

19



Figure 4.1: Probabilistically Plausibile Counterfactual Explanation Estimation Process
on the Moons Dataset. The image shows an evolution of an instance from the initial
instance (black dot) to the final counterfactual (red dot) against the linear classifier’s
decision boundary (blue line) and density threshold contours, highlighting the method’s
trajectory towards achieving target classification and probabilistic plausibility condition.

4.2 Probabilistically Plausible Counterfactual Expla-
nations with Normalizing Flows

This section covers results from Publication [VII], which explores the application of nor-
malizing flows in generating probabilistically plausible counterfactual explanations for
complex machine learning models.

Motivation The work on Probabilistically Plausible Counterfactual Explanations with
Normalizing Flows (PPCEF) addresses the critical need for interpretable and reliable
AI explanations as these systems impact crucial life decisions. Existing methods for
generating counterfactuals often produce explanations that are mathematically valid but
not necessarily realistic or useful, as they fail to ensure that suggested changes align with
real-world data distributions. By using normalizing flows to enhance density estimation
in counterfactual generation, the approach aims to produce explanations that not only
alter model predictions but also remain plausible, improving the trustworthiness and
practical value of AI explanations.

Contents The work introduces a novel method for generating probabilistically plausible
counterfactual explanations using normalizing flows (as presented in Figure 4.1). Build-
ing on Artelt and Hammer’s approach [41], which incorporates a probabilistic plausibility
constraint, the method utilizes normalizing flows to model complex, high-dimensional
data distributions with exact likelihood computation, offering advantages over alterna-
tives like Gausian Mixture Models (GMMs) and Kernel Density Estimators (KDEs).

The method frames counterfactual generation as an unconstrained optimization prob-
lem. It includes a validity term to ensure the counterfactual produces the desired change

20



in model prediction, a proximity term to keep the counterfactual close to the original
input in feature space, and a plausibility term that uses density estimates from the nor-
malizing flow to ensure the counterfactual is located in a high-density region of the data
distribution.

This formulation supports efficient gradient-based optimization, enabling a balance
between validity, proximity, and plausibility. The approach is effective across various
datasets and model types, demonstrating that it generates counterfactuals that are not
only valid and proximate but also more plausible than those produced by existing meth-
ods. The practical implications of this method for improving model interpretability and
decision transparency are also discussed, addressing the trade-offs involved in balancing
these objectives.

Summary The work on Probabilistically Plausible Counterfactual Explanations with
Normalizing Flows advances Explainable AI by integrating normalizing flows to accu-
rately model complex data distributions, thus generating counterfactual explanations
that are both valid and highly plausible. The study presents an unconstrained optimiza-
tion framework that balances validity, proximity, and plausibility, demonstrating that
this method outperforms existing approaches in producing more realistic counterfactuals,
especially in high-dimensional datasets. The approach combines discriminative and gen-
erative modeling techniques to enhance model interpretability and decision transparency,
offering a significant improvement in counterfactual plausibility and utility across various
datasets and models.

Contribution I conducted the literature review, designed the methodology, oversaw
and debugged the implementation of methods and experiments, visualized the results,
and wrote the manuscript. Oleksii Furman contributed by focusing on method imple-
mentation, conducting experiments, and co-authoring the manuscript. Maciej Zięba and
Jerzy Stefnaowski provided crucial guidance on method design, experimental design, and
analysis. They also assisted with interpreting results and offered valuable feedback during
the writing and revision stages. This work is scheduled to be presented at the CORE A
conference, ECAI 2024, in October 2024.

21





CHAPTER 5

Contribution to Research Community

While the Ph.D. journey primarily focuses on publishing, the community is an inseparable
part of research. In this section, I’d like to discuss my efforts and successes in contributing
to the research community at local, national, and international levels.

I’d like to start with personally my most important contribution. Together with
my supervisor, we created a research group called genwro.ai, and I was responsible for
co-leading the group for the last 1.5 years. The tasks, while they seemed trivial, like
setting up Slack and biweekly meetings, working with other Ph.D. students to publish
the webpage 1, creating a logo (see Figure 5.1), and ensuring we all found time for a small
integration party, led to something I believe constitutes one of my biggest successes in the
non-publishing part of my Ph.D. – collaborative and supportive research environment.
It’s personally crucial for me as it represented a reconnection with research colleagues
after the challenging COVID times (which were still present at the beginning of my
Ph.D. journey in October 2021). As I complete my studies, I feel immense pride in our
entire group, particularly noting the influx of talented students from engineering degrees,
master’s programs, and Ph.D. studies joining and initiating impressive new projects.

Regarding giving back to the international community, I served as a reviewer for top
AI conferences such as NeurIPS, ICML, AISTATS, ECAI, and KDD. Moreover, I had the
opportunity to review more local initiatives like the PPRAI conference and the Eastern
European Machine Learning Summer School. Moving forward to national initiatives, I
conducted workshops titled "Conditional object generation using pre-trained models and
plug-in networks," during which I introduced normalizing flows (and their application as
FPN) to AI Master’s students in Poland. These workshops were held twice during the
AI Tech Summer School in Gdańsk (2022) and Warsaw (2023).

Furthermore, on the local level, as a continuation of my five-year-long involvement
during engineering and master studies with the Scientific Research Group of Mathemat-
ical Statistics "Gauss" at the Faculty of Pure and Applied Mathematics at Wrocław
University of Science and Technology, I served for one year as a mentor. During this
time, I delivered a presentation on academic and industry career paths (based on my
experience) to group members. Moreover, I organized a series of workshops called "Hack
the Hackathon!" where colleagues and I shared our experiences of winning multiple
hackathons. Finally, I had the pleasure of conducting laboratory classes for the Ma-
chine Learning course in the Artificial Intelligence Master’s program at the Department
of Artificial Intelligence of Wrocław University of Science and Technology. It’s wonderful
to observe the growth of these students, and I hope that the experience I shared during
these classes will benefit them, especially since I still have the opportunity to observe the
progress of some students closely.

1https://genwro.ai.pwr.edu.pl/

23

https://genwro.ai.pwr.edu.pl/


Figure 5.1: Logo for genwro.ai, a research group I co-founded with my Ph.D. supervisor,
prof. Maciej Zięba.

Contributing to the community also involves giving talks and presentations. While
it’s difficult to recall all the presentations, here is a list of some of the most significant
ones:

• Ogólnopolska Matematyczna Konferencja Studentów "OMatKo!!!", 11.2021, On-
line, Poland, "Can the lady in the photo smile?" (Talk)

• Ogólnopolska Matematyczna Konferencja Studentów "OMatKo!!!", 11.2021, On-
line, Poland, "Generation on demand" (Poster)

• 26th European Conference on Artificial Intelligence ECAI 2023, 10.2023, Krakow,
Poland, "TreeFlow: Going Beyond Tree-based Parametric Probabilistic Regression"
accepted and presented at ECAI 2023 (Talk and Poster)

• ML in PL Conference 2023, 11.2023, Warsaw, Poland, "TreeFlow: Going Beyond
Tree-based Parametric Probabilistic Regression" (Talk and Poster)

I am very proud to share that the audience appreciated my contributions by awarding
me the Best Contributed Talk Award at ML in PL Conference 2023 and 3rd Place in
the competition for the best lecture delivered during the Ogólnopolska Matematyczna
Konferencja Studentów "OMatKo!!!" in 2021.

Finally, in terms of collaboration, I’ve contributed to four initiatives:

• Contractor in NCN Grant no. 2021/43/B/ST6/02853 "Generative flow models for
modeling uncertainty in machine learning tasks"; 10.2022 - 06.2023 & 10.2023 -
Present

• Joint Publications [V, VI] with GMUM (Group of Machine Learning Research)
from Jagiellonian University during the period of 10.2021 - 03.2024

• Joint Publication [III] with CLARIN-PL from Wrocław University of Science and
Technology during the period 06.2022 - 12.2023

• Joint Publication [VII] (and more not published yet) with Jerzy Stefanowski from
Poznan University of Technology during the period 01.2024 - now

In summary, my contributions to the research community took many forms and were
at various levels, from local to international. As I move forward in my career, I aim to
continue building on these efforts, nurturing talent, sharing knowledge, and contributing
to the growth and evolution of the research community in the fields of AI and machine
learning. This journey has not only been about producing new knowledge but also about
fostering a supportive, collaborative, and innovative research environment that I hope
will continue to thrive long after my formal studies are completed.

24







CHAPTER 6

Conclusions

This doctoral thesis has explored the application of normalizing flows across a spectrum
of machine learning tasks, demonstrating their versatility and potential to advance the
field in multiple directions. The research presented here makes several key contributions
to the areas of discriminative modeling, generative modeling, and their intersection in
Explainable AI.

In the realm of discriminative tasks, I introduced novel architectures that integrate
normalizing flows with traditional machine learning models to enhance probabilistic re-
gression. TreeFlow and NodeFlow represent significant advancements in flexible uncer-
tainty modeling for tabular data, overcoming the limitations of conventional tree-based
methods. Applying these techniques to personalized emotion prediction further demon-
strates their broad applicability and potential impact on real-world problems.

For generative tasks, my work on Flow Plugin Networks (FPN) and PluGeN show-
cases how normalizing flows can extend the capabilities of pre-trained generative models.
These approaches enable fine-grained control over generated outputs and facilitate the
disentanglement of latent representations, opening new possibilities for conditional gen-
eration and attribute manipulation in both 2D and 3D domains.

My research on probabilistically plausible counterfactual explanations (PPCEF) lever-
ages normalizing flows at the intersection of discriminative and generative paradigms to
enhance the interpretability of machine learning models. By generating counterfactuals
that are both valid and plausible, this work addresses a critical need in Explainable AI,
potentially improving trust and transparency in high-stakes decision-making scenarios.

The methodologies developed in this thesis not only advance the state-of-the-art in
their respective areas but also demonstrate the broader potential of applicability of nor-
malizing flows across various machine learning tasks. By providing flexible and powerful
tools for modeling complex probability distributions, normalizing flows offers a pathway
to more accurate, controllable, and interpretable machine learning systems.

Looking forward, this research opens several promising avenues for future work:

• Scaling normalizing flow-based methods to larger datasets and more complex do-
mains, potentially leveraging recent advancements in efficient flow architectures.

• Exploring the integration of normalizing flows with other emerging paradigms in
machine learning, such as self-supervised learning or few-shot learning.

• Investigating the theoretical properties of these hybrid models, particularly in terms
of their expressiveness and generalization capabilities.

• Extending the application of these techniques to new domains, such as time-series
analysis, cluster analysis, or multi-modal learning.

27



• Further developing the use of normalizing flows in Explainable AI, potentially ex-
ploring their application to other forms of model interpretation beyond counterfac-
tual explanations.

In conclusion, this thesis has showcased the remarkable power and versatility of nor-
malizing flows across a wide range of machine learning tasks. The research presented here
makes significant contributions to the advancement of more sophisticated and reliable AI
systems. As the field of machine learning continues to evolve, the methods developed in
this work offer promising pathways for creating models that are not only more powerful
but also more transparent and adaptable to practical, real-world applications.

28



Acknowledgments

The conducted work was supported by the National Centre of Science (Poland) Grant
No. 2021/43/B/ST6/02853. Moreover, I gratefully acknowledge Polish high-performance
computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing com-
puter facilities and support within computational grant no. PLG/2023/016636.

29





Bibliography

[1] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nat., vol. 521, no. 7553,
pp. 436–444, 2015.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with
deep neural networks and tree search,” Nat., vol. 529, no. 7587, pp. 484–489, 2016.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States, pp. 1106–1114, 2012.

[6] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016 (M. Balcan and K. Q. Weinberger, eds.), vol. 48 of JMLR Workshop and Con-
ference Proceedings, pp. 1050–1059, JMLR.org, 2016.

[7] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning
for computer vision?,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5574–5584, 2017.

[8] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods,” Mach. Learn., vol. 110, no. 3,
pp. 457–506, 2021.

[9] K. P. Murphy, Machine learning - a probabilistic perspective. Adaptive computation
and machine learning series, MIT Press, 2012.

[10] C. M. Bishop, Pattern recognition and machine learning, 5th Edition. Information
science and statistics, Springer, 2007.

31



[11] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity
natural image synthesis,” in 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[12] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M. F.
Moura, and P. Eckersley, “Explainable machine learning in deployment,” in FAT*
’20: Conference on Fairness, Accountability, and Transparency, Barcelona, Spain,
January 27-30, 2020, pp. 648–657, ACM, 2020.

[13] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Springer, 1993.

[14] A. K. David M. Blei and J. D. McAuliffe, “Variational inference: A review for statis-
ticians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–
877, 2017.

[15] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 6402–6413, 2017.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning.
Adaptive computation and machine learning, MIT Press, 2006.

[17] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785–794, ACM,
2016.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu, “Light-
GBM: A Highly Efficient Gradient Boosting Decision Tree,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3146–3154,
2017.

[19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

[20] T. Duan, A. Anand, D. Y. Ding, K. K. Thai, S. Basu, A. Y. Ng, and A. Schuler,
“NGBoost: Natural Gradient Boosting for Probabilistic Prediction,” in Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, vol. 119 of Proceedings of Machine Learning Research, pp. 2690–
2700, PMLR, 2020.

[21] A. Malinin, L. Prokhorenkova, and A. Ustimenko, “Uncertainty in Gradient Boosting
via Ensembles,” in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[22] R. Guidotti, “Counterfactual explanations and how to find them: literature review
and benchmarking,” Data Mining and Knowledge Discovery, pp. 1–55, 04 2022.

32



[23] D. J. Rezende and S. Mohamed, “Variational Inference with Normalizing Flows,”
in Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, vol. 37 of JMLR Workshop and Conference
Proceedings, pp. 1530–1538, JMLR.org, 2015.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672–2680, 2014.

[25] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[26] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshmi-
narayanan, “Normalizing flows for probabilistic modeling and inference,” J. Mach.
Learn. Res., vol. 22, pp. 57:1–57:64, 2021.

[27] L. Dinh, D. Krueger, and Y. Bengio, “NICE: non-linear independent components
estimation,” in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, 2015.

[28] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real NVP,”
in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[29] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked autoregressive flow for den-
sity estimation,” in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 2338–2347, 2017.

[30] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary
differential equations,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 6572–6583, 2018.

[31] Z. Obermeyer and E. Emanuel, “Predicting the future — big data, machine learning,
and clinical medicine,” The New England journal of medicine, vol. 375, pp. 1216–
1219, 09 2016.

[32] T. Blasco, J. S. Sánchez, and V. García, “A survey on uncertainty quantification
in deep learning for financial time series prediction,” Neurocomputing, vol. 576,
p. 127339, 2024.

[33] E. Goan and C. Fookes, Bayesian Neural Networks: An Introduction and Survey,
pp. 45–87. Cham: Springer International Publishing, 2020.

[34] L. O. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Cat-
Boost: unbiased boosting with categorical features,” in Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 6639–
6649, 2018.

33



[35] O. Sprangers, S. Schelter, and M. de Rijke, “Probabilistic gradient boosting machines
for large-scale probabilistic regression,” in KDD ’21: The 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021, pp. 1510–1520, ACM, 2021.

[36] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gener-
ative adversarial networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 4401–4410,
Computer Vision Foundation / IEEE, 2019.

[37] G. Yang, X. Huang, Z. Hao, M. Liu, S. J. Belongie, and B. Hariharan, “Point-
Flow: 3D Point Cloud Generation With Continuous Normalizing Flows,” in 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Ko-
rea (South), October 27 - November 2, 2019, pp. 4540–4549, IEEE, 2019.

[38] X. Zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, and K. Kreis,
“LION: latent point diffusion models for 3d shape generation,” in Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[39] M. Koperski, T. K. Konopczynski, R. Nowak, P. Semberecki, and T. Trzcinski,
“Plugin networks for inference under partial evidence,” in IEEE Winter Conference
on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA,
March 1-5, 2020, pp. 2872–2880, IEEE, 2020.

[40] S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,” CoRR,
vol. abs/1711.00399, 2017.

[41] A. Artelt and B. Hammer, “Convex density constraints for computing plausible
counterfactual explanations,” in Artificial Neural Networks and Machine Learn-
ing - ICANN 2020 - 29th International Conference on Artificial Neural Networks,
Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part I, vol. 12396 of Lec-
ture Notes in Computer Science, pp. 353–365, Springer, 2020.

34



CHAPTER A

Full Texts of Publications

This chapter presents the publications referenced in the main text, arranged in the fol-
lowing order:

[I] P. Wielopolski, M. Zięba "TreeFlow: Going Beyond Tree-based Parametric Prob-
abilistic Regression"

[II] P. Wielopolski, O. Furman, M. Zięba "NodeFlow: Towards End-to-end Flexible
Probabilistic Regression on Tabular Data"

[III] P. Miłkowski, K. Karanowski, P. Wielopolski, J. Kocoń, P. Kazienko, M. Zięba
"Modeling Uncertainty in Personalized Emotion Prediction with Normalizing Flows"

[IV] P. Wielopolski, M. Koperski, M. Zięba "Flow Plugin Network for conditional
generation"

[V] M. Wołczyk, M. Proszewska, Ł. Maziarka, M. Zięba, P. Wielopolski, R. Kurczab,
M. Śmieja "PluGeN: Multi-Label Conditional Generation from Pre-trained Models"

[VI] M. Proszewska, M. Wołczyk, M. Zięba, P. Wielopolski, Ł. Maziarka, M. Śmieja
"Multi-Label Conditional Generation From Pre-Trained Models"

[VII] P. Wielopolski, O. Furman, J. Stefanowski, M. Zięba "Probabilistically Plausible
Counterfactual Explanations with Normalizing Flows"

35



TreeFlow: Going Beyond Tree-Based Parametric
Probabilistic Regression
Patryk Wielopolskia, b;* and Maciej Ziębaa, c

aWrocław University of Science and Technology
bDataWalk
cTooploox

Abstract. The tree-based ensembles are known for their outstanding
performance in classification and regression problems characterized
by feature vectors represented by mixed-type variables from various
ranges and domains. However, considering regression problems, they
are primarily designed to provide deterministic responses or model
the uncertainty of the output with Gaussian or parametric distribution.
In this work, we introduce TreeFlow, the tree-based approach that
combines the benefits of using tree ensembles with the capabilities of
modeling flexible probability distributions using normalizing flows.
The main idea of the solution is to use a tree-based model as a feature
extractor and combine it with a conditional variant of normalizing
flow. Consequently, our approach is capable of modeling complex
distributions for the regression outputs. We evaluate the proposed
method on challenging regression benchmarks with varying volume,
feature characteristics, and target dimensionality. We obtain the SOTA
results for both probabilistic and deterministic metrics on datasets with
multi-modal target distributions and competitive results on unimodal
ones compared to tree-based regression baselines.

1 Introduction
The modern tree-based models achieve outstanding results for prob-
lems where the data representation is tabular, the number of training
examples is limited, and the input feature vector is represented by
mixed-type variables from various ranges and domains. Most of such
algorithms focus on providing deterministic predictions, paying no at-
tention to the probabilistic nature of the provided output. However, for
many practical applications, it is impossible to deliver an exact target
value based on the given input factors. Consider the regression prob-
lem of predicting the future location of the vehicle that is approaching
a roundabout [29]. Having past coordinates and other information
aggregated in current and past states, we cannot unambiguously pre-
dict which of the three remaining exits from the roundabout will be
taken by the tracked object. Therefore, it is more beneficial to provide
multimodal probability distribution for future locations instead of a
single deterministic prediction oscillating around one mode.

Due to the tractable closed-form, the standard approaches assume
to model regression uncertainty using Gaussian or parametric distribu-
tions [17]. The well-known deterministic gradient boosting machine
method adopted those approaches to tree-based structures [6, 13, 25].
Consequently, they can capture the uncertainty of the regression out-
puts with a standard family of distributions.

∗ Corresponding Author. Email: patryk.wielopolski@pwr.edu.pl

The major limitation of the current approaches is modeling regres-
sion outputs using only Gaussians. Moreover, it is not trivial to extend
them to a mixture of Gaussians to capture the multi-modalities of the
predictions. Creating multivariate extensions of such models is also
ineffective, especially for higher dimensionality, due to the need to
estimate the complete covariance matrix.

To reduce the limitations of existing methods, we introduce
TreeFlow - a novel tree-based approach for modeling probabilistic
regression. The proposed method combines the benefits of using tree-
based structures as feature extractors with the normalizing flows [22]
capable of modeling flexible data distributions. We introduce the novel
concept of combining forest structure with a conditional flow variant
to model uncertainty for regression output. Thanks to that approach,
we can model complex non-Gaussian or in general non-parametric
data distributions even for high-dimensional predictions. We confirm
the quality of the proposed model in the experimental part, where we
show the superiority of our method over the baselines.

To summarize, our contributions are as follows:

• According to our knowledge, for the first time, tree-based models
are used to model non-parametric probabilistic regression for both
uni- and multi-variate predictions.

• We propose a novel approach for combining tree-based models with
conditional flows via binary representation of the forest structure.

• We obtain the SOTA results for both probabilistic (NLL, CRPS) and
deterministic (RMSE) metrics on datasets with multi-modal target
distributions and competitive results on unimodal ones compared
to tree-based regression baselines.

2 Background
Assume we have a dataset D = {(xn,yn)}n=1..N where xn =
(x1

n, . . . , x
D
n ) is a D-dimensional random vector of features and

yn = (y1
n, . . . , y

P
n ) is a P -dimensional vector of targets. We con-

sider regression problems, thus, we assume that yp
n ∈ R. Additionally,

when P = 1 we will refer to that as a univariate regression problem,
and when P ≥ 2 as a multivariate regression problem.

For the probabilistic regression task, we aim at modeling condi-
tional probability distribution p(y|x). Assuming some parametriza-
tion of the regression model θ, the problem of training the prob-
abilistic model can be expressed as minimisation of the condi-
tional negative log likelihood function (NLL) given by Q(θ) =
−∑N

n=1 log p(yn|xn,θ). During the training procedure we aim at
finding θ∗ = arg minθ Q(θ).

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230570

2631



Decision Tree Ensembles Decision Tree [2] recursively partition
feature space RD into K disjoint regions Rk (tree leaves) and for
each region assign value wk. Formally, the model can be written as
h(x) =

∑K
k=1 wk1{x∈Rk}.

Decision Tree Ensembles are constructed of multiple, usually shal-
low decision trees, whose results are differently aggregated depending
on the training mode. In general, we distinguish two main approaches:
independent model training with average or majority voting such as
Random Forest [1], and iterative model training with additive aggre-
gation such as Gradient Boosting Machine (GBM) [8].

For the univariate probabilistic regression, GBM optimizes the loss
function given by negative log likelihood (NLL). Then it assumes the
target variable has a Gaussian distribution, i.e.,

p(y|x,θ(t)) = N (y|μ(t), σ(t)), (1)

where {μ(t), log σ(t)} = F (t)(x) and F (t)(x) is an output of t-th
tree from GBM model consisted of T trees. In the multivariate case,
it assumes Multivariate Normal distribution and uses the parametriza-
tion trick with Cholesky decomposition of the covariance matrix
which reduces the number of parameters.

In practice, NGBoost [6] supports both uni- and multi-variate Gaus-
sian distributions and estimates each parameter using one underlying
model. CatBoost [13] supports only univariate Gaussians but esti-
mates all distribution parameters using only one model. Moreover, it
provides deterministic multivariate regression with the same property,
which keeps the total number of trees relatively small. In this case, the
loss function is Multioutput Root Mean Squared Error (MultiRMSE).

Normalizing Flows Normalizing flows [22] represent the group
of generative models that can be efficiently trained via direct like-
lihood estimation thanks to the application of a change-of-variable
formula. Practically, they utilize a series of (parametric) invertible
functions: y = fn ◦ · · · ◦ f1(z). Assuming given base distribu-
tion p(z) for z, the log likelihood for y is given by log p(y) =

log p(z)−∑N
n=1 log

∣∣∣det ∂fn
∂zn−1

∣∣∣. In practical applications p(y) rep-

resents the distribution of observable data and p(z) is usually assumed
to be Gaussian with independent components.

The sequence of discrete transformations can be replaced by con-
tinuous alternative by application of Continuous Normalizing Flows
(CNFs) [3, 9] where the aim is to solve the differential equation of the
form ∂z

∂t
= gβ(z(t), t), where gβ(z(t), t) represents the function of

dynamics, described by parameters β. Our goal is to find solution
of the equation in t1, y := z(t1), assuming the given initial state
z := z(t0) with a known prior. The transformation function fβ is
defined as:

y = fβ(z) = z +

∫ t1

t0

gβ(z(t), t)dt. (2)

The inverted form of the transformation can be easily computed us-
ing the formula: f−1

β (y) = y−
∫ t1
t0

gβ(z(t), t)dt. The log-probability
of y can be computed by:

log p(y) = log p(f−1
β (y))−

∫ t1

t0

Tr

(
∂gβ

∂z(t)

)
dt, (3)

where f−1
β (y) = z.

CNFs are rather designed to model complex probability distri-
butions for low-dimensional data, what was confirmed in various
applications including point cloud generation [27], future prediction
[29] or probabilistic few-shot regression [23]. Compared to models
like RealNVP [5] or Glow [11], they can be successfully applied to
one-dimensional data and achieve better results for tabular datasets.

3 TreeFlow

Tree-based methods obtain superior results on tabular datasets and
have developed multiple techniques to deal with categorical variables,
null values, etc. but are limited to distributions with explicitly provided
probability distribution functions, e.g., Gaussian. We want to over-
come this limitation by introducing TreeFlow - method for uni- and
multi-variate tree-based probabilistic regression with non-Gaussian
and multi-modal target distributions. The main idea of the solution
is to combine the benefits of using tree ensembles with the capabili-
ties of modeling flexible probability distributions using conditional
normalizing flows.

The architecture of TreeFlow is provided in fig. 1. The proposed
model consists of three components: Tree-based Feature Extractor,
Shallow Feature Extractor, and conditional CNF module. The role of
the first component is to extract the vector of binary features from the
structure of the tree-based ensemble model for a given input observa-
tion x. The problem of extracting a unified vector from the tree-based
ensemble model is non-trivial due to the complex structure and a large
number of base learners. Motivated by the fact that crucial informa-
tion extracted from input examples is stored in the leaves, we propose
a binary occurrence representation that is the most lightweight ap-
proach assuming thousands of trees. Formally it could be written as
hψ(x) = [o1, . . . ,oT], where hψ(x) is Tree-based Feature Extrac-
tor with parameters ψ and oi = [1{x∈Ri,1}, . . . ,1{x∈Ri,K}] where
Ri,k is a region of kth leaf of ith decision tree in the forest structure.

The size of vector o is significantly larger than the size of the regres-
sion variable y. If we deliver directly the large sparse binary vector
as a CNF conditioning component: (i) the number of CNF parameters
grows significantly, (ii) the conditioning component dominates train-
ing, and (iii) the ordinary differential equation (ODE) solver slows
down significantly and behaves in an unstable way. Therefore, we use
an additional Shallow Feature Extractor kφ(·), that is represented by
a neural network responsible for mapping high-dimensional binary
vector o returned by hψ(x) to low-dimensional feature representa-
tion w = kφ(o). The low-dimensional representation w of the sparse
embedding o is further passed to the conditional CNF module as a
conditioning factor. We postulate to use the variant of the conditional
flow-based model provided in [27, 23], where w is delivered to the
function of dynamics, gβ(z(t), t,w). The transformation function is
given by eq. (2) is represented as:

y = fβ(z,w) = z +

∫ t1

t0

gβ(z(t), t,w)dt. (4)

The inverse form of the transformation fβ(·) given the same
w in both directions is simply: z = f−1

β (y,w) = y −∫ t1
t0

gβ(z(t), t,w)dt. For a given model, we can easily calculate the
log-probability of regression output y, given the input x [9]:

log p(y|w) = log p(f
−1
β (y, w))−

∫ t1

t0

Tr

(
∂gβ(z(t), t, w)

∂z(t)

)
dt, (5)

where w = kφ(o), and o = hψ(x). With the model defined in
the following way, we can easily calculate the exact value of log-
probability for any possible regression outputs. We can also utilize
the generative capabilities of the model by generating samples from a
known prior p(z) and transforming them into the space of regression
outputs using the function given by eq. (4).

We aim at training the model by optimizing the NLL for a log
probability defined by eq. (5) and the set of trainable parameters
θ = {ψ,φ,β}. In the perfect scenario, we should optimize the entire

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression2632



Figure 1. TreeFlow architecture. The proposed model consists of three components: Tree-based Feature Extractor, Shallow Feature Extractor, and Conditional
CNF module. The role of the first component is to extract the vector of binary features from the structure of the tree-based ensemble model. The Shallow
Feature Extractor is a neural network responsible for mapping high-dimensional binary vectors returned by the Tree-based Feature Extractor to low-dimensional
feature space. The resulting vector is further passed to the conditional CNF module as a conditioning factor. The goal of the last component is to model complex
probability distribution.

model in an end-to-end fashion, jointly updating the parameters of the
Tree-based Feature Extractor ψ, Shallow Feature Extractor φ, and
conditional CNF β. However, the Shallow Feature Extractor needs to
have a constant size input which cannot be easily obtained from our
Tree-based Feature Extractor as it learns iteratively. To overcome this
limitation, we perform two-staged learning.

In the first stage, only the parameters of Tree-based Feature Ex-
tractor ψ∗ are trained by optimizing the surrogate criterion specific
to the type of tree-based architecture. In our work, we utilize the
CatBoost model as it out-of-the-box supports categorical features and
null values. Therefore, following [13] we train the Tree-based feature
extractor by optimizing NLL loss for a standard Gaussian regression
output given by eq. (1). For the multivariate case, we use the protocol
from [20] and train the feature extractor by optimizing MultiRMSE.

Given the Tree-based Feature Extractor parameters, we train the re-
maining components of our model in an end-to-end fashion. Formally,
given the estimated parameters ψ∗ for hψ(x) we train the model by
optimizing NLL with log-probability given by eq. (5) with respect
to remaining parameters φ and β using the standard gradient-based
approach.

The two-stage training has a couple of advantages compared to
the end-to-end approach. First, any trained tree-based ensemble can
be used as a feature extractor. Second, extracting the forest structure
together with optimizing the parameters of the remaining components
of the system in an end-to-end fashion is non-trivial and requires
handcrafting the training procedure for a particular type of tree-based
learner.

4 Related works

One of the best-known examples of gradient boosting methods is
XGBoost [4] which iteratively combines weak regression trees to
obtain accurate predictions. Further extensions to this method con-
sist of LightGBM [10] and CatBoost [20] which introduce multiple
novel techniques to obtain even better point estimates. Recently they
have been extended to a probabilistic framework to model the whole
probability distributions.

One such approach is NGBoost (Natural Gradient Boosting) [6] al-
gorithm, which can model any probabilistic distribution with a defined
probability density function, e.g., Univariate Gaussian, Exponential,
or Laplace. It simultaneously estimates the distribution parameters
by optimizing a proper scoring rule, e.g., negative log likelihood
(NLL) or Continuous Ranked Probability Score (CRPS). The variant
of NGBoost that utilizes Multivariate Gaussian to model multidi-
mensional predictions was presented in [19]. RoNGBa [21] is an
extension of NGBoost, which improves the performance of NGBoost
via a better choice of hyperparameters. This framework has also been
adapted to the CatBoost [13] with support to only univariate Gaus-
sian distributions, but contrary to the NGBoost, the model outputs
all distribution parameters from one model. There is also a group of
approaches that were developed in parallel to NGBoost consisting of
XGBoostLSS [15] and CatBoostLSS [16] which make a connection to
well-established statistical framework Generalized Additive Models
for Shape, Scale, and Location (GAMLSS) [26]. Like NGBoost, these
models use one XGBoost or CatBoost model per parameter, but their
training consists of two phases: independent model learning for each
parameter and iterative parameter correction. One of the most recent
approaches is Probabilistic Gradient Boosting Machine (PGBM) [25]
which treats the leaf weights in each tree as random variables. This
approach is capable to model different sets of posterior distributions
but is limited to only distributions parameterized with location and
scale parameters.

Besides the tree-based probabilistic models, several works investi-
gate the problem of probabilistic regression. In [24] the authors model
conditional density estimators for multivariate data with conditional
sum-product networks that combines tree-based structures with deep
models. In [7] the authors combine the transformer model with flows
for density estimation. The flow models were also applied for future
prediction problems in [29]. In [23] and [14] the authors propose to
integrate flows with Gaussian Processes for probabilistic regression.

TreeFlow, to our best knowledge, is the first tree-based model
for uni-, and multi-variate probabilistic regression, that is capable to
model any distribution for regression outputs.

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression 2633



5 Experiments

This section evaluates our method on four different setups - univariate
regression on synthetic data, univariate regression on mixed-type data,
univariate regression on numerical data, and multivariate regression.
Our goal is a quantitative and qualitative analysis of TreeFlow in
comparison to the baseline models.

In all experiments, we measure target distribution fit using the
negative log likelihood metric in the quantitative part. It is a natural
choice as we expect to deal with heavy-tailed and multimodal distri-
butions. Additionally, we calculate the CRPS metric which is defined
as the mean squared difference between the forecasted probabilities
and the actual outcomes, over all possible thresholds. It is not the
best-suited metric for multimodal distributions, although it is often
used for probabilistic forecasting and we would like to understand dif-
ferences between TreeFlow and baselines. Moreover, we investigate
point estimates that are usually necessary from the application point
of view. For that purpose, we use the standard Root Mean Squared
Error (RMSE) metric and introduce Root Mean Squared Error at K
(RMSE@K) metric. The latter is a version of the RMSE metric that is
adjusted for multimodal distributions and takes into account multiple
predictions from the model. More details and justifications are pro-
vided in the Appendix in sec. A.1. In the qualitative part, we analyze
and discuss the characteristics of obtained probability distributions.
Finally, we perform the ablation study whose goal was to justify the
design choices. The results of this part are presented in the Appendix
in sec. D.

5.1 Univariate regression on synthetic data

This experiment is one of the motivating examples. Here, we want
to evaluate the capabilities of TreeFlow to model data when the true
probability distribution is known.

Dataset and methodology We have created a dataset with two
conditioning binary variables. For each possible combination of fea-
tures, we have proposed different continuous distributions: Normal,
Exponential, Mixture of Gaussians, and Gamma (see fig. 2 and details
in Appendix, in sec. B). After that, we trained TreeFlow and CatBoost
models. Finally, we calculated negative log likelihood and visualized
the obtained probability distributions.

Results After five repetitions of the experiment, we obtained nega-
tive log likelihood for CatBoost equal 2.52± 0.01, and for TreeFlow
equal 2.02± 0.00. We can observe, that our method effortlessly ob-
tained better results and, contrary to CatBoost, it was able to correctly
model all probability distributions (see fig. 2). This is due to its flexi-
bility in modeling probability distributions resulting from the usage
of the CNF component.

5.2 Univariate regression on mixed-type data

Our goal is to evaluate and verify our approach to univariate regres-
sion problems with mixed-type data. This experiment is the main
motivating example of this paper, as tree-based methods cannot model
non-gaussian target distributions, and normalizing flows cannot deal
with categorical variables without any additional data preparation
step.

(a) P (Y |X1 = 0, X2 = 0) (b) P (Y |X1 = 0, X2 = 1)

(c) P (Y |X1 = 1, X2 = 0) (d) P (Y |X1 = 1, X2 = 1)

Figure 2. Comparison of the estimated probability distributions for univari-
ate regression on synthetic data experiment. We can observe that contrary to
CatBoost, TreeFlow was able to correctly model all underlying true probability
distributions. Legend: Red - True probability distribution; Blue - TreeFlow;
Orange - CatBoost.

Datasets and methodology To the best of our knowledge, there
is no established standard benchmark for regression problems with
mixed-type datasets. Thus, we propose seven datasets from the well-
known data platform - Kaggle. They have various numbers of samples
ranging from a few thousand to a hundred thousand, a different num-
ber of categorical and numerical variables. All details of the datasets
can be found in tab. 6.

In terms of the methodology, we follow the standard 80%/20%
training/testing holdout split. We also split the training dataset to
train and validation datasets in the same proportion for the best
epoch/iteration selection purposes. All experiments are run 5 times
and results are averaged.

For obtaining point estimates from TreeFlow we analyze three
approaches: (i) Samples averaging (Avg) - the simple average of
samples, (ii) RMSE@1 - usage of the most probable sample, (iii)
RMSE@2 - usage of the two most probable samples. Finally, we
provide ablation studies regarding the design of the Tree-based Feature
Extractor and the Shallow Feature Extractor (see Appendix sec. D).

Baselines Currently, the only approach to work with such problems
is a CatBoost which deals out-of-the-box with mixed-type datasets
and support modeling target variable with Gaussian distribution. Ad-
ditionally, we evaluate PGBM with one hot encoding for categorical
variables as the representative method for standard tree methods with-
out support for categorical variables. Moreover, this method is also
capable of utilizing various parametric distributions. We perform
the evaluation on both probabilistic (NLL, CRPS) and deterministic
(RMSE / RMSE@K) metrics.

Results The results of the conducted experiments for probabilis-
tic metrics are provided in tab. 1 and for deterministic metrics in
tab. 2. Our method obtains better negative log likelihood scores for
most of the datasets and for most of them better CRPS values than
reference methods. Furthermore, for the majority of datasets, there

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression2634



Table 1. Comparison of TreeFlow with existing methods in terms of negative log likelihood (NLL) and Continuous Ranked Probability Score (CRPS) on
univariate regression problems with mixed-type data. Our method outperformed both CatBoost and PGBM approaches on most of the datasets thanks to its
flexibility in modeling non-gaussian distributions. One Hot Encoding was used for categorical variables for PGBM. Extended information about datasets is
provided in tab. 6.

DATASET
NLL CRPS

CATBOOST PGBM TREEFLOW CATBOOST PGBM TREEFLOW

AVOCADO -0.40 ± 0.01 -0.45 ± 0.01 -0.47 ± 0.03 0.0992 ± 0.0018 0.0870 ± 0.0013 0.0854 ± 0.0024
BIGMART -0.05 ± 0.02 -0.10 ± 0.02 -0.08 ± 0.02 0.1270 ± 0.0021 0.1259 ± 0.0023 0.1294 ± 0.0027
DIAMONDS -1.80 ± 0.02 -1.41 ± 0.76 -1.94 ± 0.03 0.0222 ± 0.0002 0.0447 ± 0.0474 0.0210 ± 0.0005
DIAMONDS 2 -1.89 ± 0.02 -1.24 ± 0.83 -2.14 ± 0.05 0.0217 ± 0.0002 0.0461 ± 0.0504 0.0197 ± 0.0005
LAPTOP -0.89 ± 0.08 -0.97 ± 0.09 -0.74 ± 0.13 0.0572 ± 0.0049 0.0474 ± 0.0034 0.0563 ± 0.0043
PAK WHEEL -1.40 ± 0.05 -0.53 ± 0.02 -1.60 ± 0.03 0.0362 ± 0.0006 0.0813 ± 0.0009 0.0327 ± 0.0007
SYDNEY -0.54 ± 0.04 0.20 ± 1.02 -0.66 ± 0.01 0.0726 ± 0.0011 0.2383 ± 0.2646 0.0721 ± 0.0008

Table 2. Comparison of TreeFlow with existing methods in terms of root mean squared error (RMSE) on univariate regression problems with mixed-type data.
TreeFlow in approach @2 significantly outperforms other baseline methods by taking advantage of multimodal distribution modeling property.

DATASET
RMSE

CATBOOST PGBM TREEFLOW(AVG) TREEFLOW(@1) TREEFLOW(@2)

AVOCADO 0.1939 ± 0.0043 0.1624 ± 0.0024 0.1676 ± 0.0058 0.1769 ± 0.0087 0.1713 ± 0.0066
BIGMART 0.2284 ± 0.0039 0.2274 ± 0.0040 0.2335 ± 0.0045 0.2514 ± 0.0087 0.2480 ± 0.0083
DIAMONDS 0.0419 ± 0.0007 0.0403 ± 0.0006 0.0407 ± 0.0009 0.0445 ± 0.0015 0.0343 ± 0.0017
DIAMONDS 2 0.0421 ± 0.0006 0.0492 ± 0.0010 0.0398 ± 0.0006 0.0460 ± 0.0014 0.0364 ± 0.0004
LAPTOP 0.1028 ± 0.0092 0.0848 ± 0.0063 0.1014 ± 0.0082 0.1015 ± 0.0076 0.0958 ± 0.0058
PAK WHEEL 0.0783 ± 0.0009 0.1630 ± 0.0018 0.0729 ± 0.0018 0.0796 ± 0.0021 0.0654 ± 0.0047
SYDNEY 0.1528 ± 0.0057 0.1561 ± 0.0047 0.1518 ± 0.0051 0.1721 ± 0.0041 0.1361 ± 0.0066

is a substantial improvement in the results. In terms of point esti-
mates, TreeFlow in @2 approach obtains superior results in most
of the datasets by the ability to provide multiple predictions for a
particular sample that could be modeled by multimodal distributions.
The detailed discussion regarding differences between point estimates
for TreeFlow is provided in the Appendix in sec. A.1 Moreover, we
investigated that the target distributions provided by TreeFlow had
more realistic properties such as a heavy tail, multimodality, or does
not provide any probability mass for impossible values, e.g., negative
values when modeling price as a target variable. The latter example is
presented in fig. 3. We analyzed estimated probability density func-
tions for the Wine Reviews datasets for CatBoost and TreeFlow. Both
methods predicted similar values for the PDF function; however, only
TreeFlow was able to model heavy-tailed distribution and recognize
that negative price values are highly unlikely.

5.3 Univariate regression on numerical data

We focus on univariate regression problems with only numerical vari-
ables in this setup. We aim to evaluate our method on standard proba-
bilistic regression benchmarks in both probabilistic and deterministic
approach. Finally, we investigate the properties of the obtained target
distributions.

Datasets and methodology We use established in the reference
methods [6, 13] probabilistic regression benchmark with the exclusion
of the Boston dataset due to ethical issues. It contains nine varying-
size datasets from the UCI Machine Learning Repository. We follow
the same protocol as used in the reference papers. We create 20
random folds for all datasets except Protein (5 folds) and Year MSD
(1 fold). We keep 10% of samples as a test set for each of these
folds, and the remaining 90% of data we split into an 80%/20%
train/validation for the best epoch selection purposes.

Figure 3. Estimated probability density functions for the Wine Reviews
datasets from the univariate regression on mixed-type data experiment. Both
methods predicted similar values for the PDF function; however, the properties
of the obtained distributions are entirely different. Contrary to the CatBoost
approach, TreeFlow was able to model heavy-tailed distribution and recognize
that negative price values are highly unlikely.

Baselines We selected four tree-based baseline models: NGBoost
[6], RoNGBa [21], CatBoost [13], PGBM [25], and one non tree-
based method - Deep Ensemble [12] which was used in [13] as a
reference method.

Results The quantitative results for negative log likelihood (NLL)
are presented in tab. 3 and for RMSE in tab. 4. In terms of the proba-
bilistic metric, our approach outperforms baseline methods on three

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression 2635



Table 3. Comparison of TreeFlow with existing methods in terms of negative log likelihood (NLL) on univariate regression problems with numerical data. Our
method outperformed the other approaches on three datasets and obtained competitive results on others. The superior results were obtained thanks to our method’s
ability to model multimodal distributions.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW

CONCRETE 3.06 ± 0.18 3.06 ± 0.13 3.04 ± 0.17 2.94 ± 0.18 2.75 ± 0.21 3.02 ± 0.15
ENERGY 1.38 ± 0.22 1.24 ± 1.28 0.60 ± 0.45 0.37 ± 0.28 1.74 ± 0.04 0.85 ± 0.35
KIN8NM -1.20 ± 0.02 - 0.63 ± 0.02 -0.49 ± 0.02 -0.60 ± 0.03 -0.54 ± 0.04 -1.03 ± 0.06
NAVAL -5.63 ± 0.05 -5.39 ± 0.04 -5.34 ± 0.04 -5.49 ± 0.04 -3.44 ± 0.04 -5.54 ± 0.16
POWER 2.79 ± 0.04 2.72 ± 0.12 2.79 ± 0.11 2.65 ± 0.08 2.60 ± 0.02 2.65 ± 0.06
PROTEIN 2.83 ± 0.02 2.73 ± 0.07 2.81 ± 0.03 2.76 ± 0.03 2.79 ± 0.01 2.02 ± 0.02
WINE 0.94 ± 0.12 0.93 ± 0.08 0.91 ± 0.06 0.91 ± 0.08 0.97 ± 0.20 -0.56 ± 0.62
YACHT 1.18 ± 0.21 0.41 ± 0.39 0.20 ± 0.26 1.03 ± 0.44 0.05 ± 0.28 0.72 ± 0.40
YEAR MSD 3.35 ± NA 3.43 ± NA 3.43 ± NA 3.46 ± NA 3.61 ± NA 3.27 ± NA

Table 4. Comparison of TreeFlow with existing methods in terms of Root Mean Squared Error (RMSE) on univariate regression problems with numerical data.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW (AVG) TREEFLOW (@1) TREEFLOW (@2)

CONCRETE 6.03 ± 0.58 5.21 ± 0.53 5.06 ± 0.61 4.71 ± 0.61 3.97 ± 0.76 5.33 ± 0.65 5.41 ± 0.72 5.41 ± 0.71
ENERGY 2.09 ± 0.29 0.57 ± 0.06 0.46 ± 0.06 0.35 ±0.07 0.35 ± 0.06 0.64 ± 0.11 0.66 ± 0.13 0.65 ± 0.12
KIN8NM 0.09 ± 0.00 0.14 ± 0.00 0.16 ± 0.00 0.14 ± 0.00 0.13 ± 0.01 0.09 ± 0.00 0.10 ± 0.01 0.10 ± 0.01
NAVAL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
POWER 4.11 ± 0.17 3.55 ± 0.27 3.70 ± 0.22 3.47 ± 0.19 3.35 ± 0.15 3.71 ± 0.26 3.79 ± 0.26 3.79 ± 0.25
PROTEIN 4.71 ± 0.06 3.92 ± 0.08 4.33 ± 0.03 4.21 ± 0.06 3.98 ± 0.06 4.00 ± 0.27 4.79 ± 0.52 3.01 ± 0.06
WINE 0.64 ± 0.04 0.63 ± 0.04 0.62 ± 0.04 0.62 ± 0.05 0.60 ± 0.05 0.66 ± 0.05 0.73 ± 0.06 0.41 ± 0.09
YACHT 1.58 ± 0.48 0.82 ± 0.40 0.50 ± 0.20 0.90 ± 0.35 0.63 ± 0.21 0.75 ± 0.26 0.75 ± 0.25 0.75 ± 0.26
YEAR MSD 8.89 ± NA 8.99 ± NA 8.94 ± NA 9.14 ± NA 9.09 ± NA 9.29 ± NAN 10.97 ± NAN 8.64 ± NA

datasets: Protein, Wine, Year MSD, and obtains competitive results
on others. For deterministic metrics, we obtain SOTA results for the
same three datasets, and for two (kin8nm and naval) we achieve the
same results as the current best methods.

To understand the results, we have investigated target distributions.
We have compared them with the CatBoost model with default hyper-
parameters and presented them in fig. 4.

The first subfigure presents results for the Protein dataset. TreeFlow
method has discovered that the underlying target distribution has a
bimodal character and was able to correctly estimate the high value
of the probability density function for the true value. In contrast, the
Gaussian-based method did not have such an ability and incorrectly
estimated the center of probability mass between two modes. The
second subfigure is a representative of naturally occurring integer
value datasets: Wine Quality and Year MSD. In this example, our
method proposes a multimodal distribution consisting of Gaussian-
like and heavy-tailed distributions. Such estimation gives us very
rich information for the decision-making process compared to the
Gaussian-based approach, which only estimated values around the
highest mode and completely ignored information about a minor
mode around 5 and a heavy tail for values 8 and 9. The last subfigure
is a representative example of the rest of the datasets for which our
method obtained similar results to baselines. Both methods proposed
Gaussian distribution as a target distribution and assuming that this
is a correct target distribution, there is no possibility of obtaining
significantly better results.

The above-mentioned analysis also explains the results of the deter-
ministic metrics. We incorporated into the decision-making process
additional information about the second modality and it resulted in
significant gains in prediction accuracy. To the best of our knowledge,
it is the first time when these properties were noticed and exploited.

5.4 Multivariate regression

In the last setup, we focus on multivariate regression problems. Our
goal is to quantitatively evaluate our method on datasets with var-
ious target dimensionality and examine the properties of obtained

distributions.

Datasets and methodology Currently, the only tree-based proba-
bilistic multivariate regression problem was approached by [19] which
proposes a task of two-dimensional oceanographic velocities predic-
tion [18]. Moreover, we evaluate our method on five more datasets
with a broad range of target and feature dimensionality introduced in
[28].

For both groups of datasets, we follow the proposed for these
datasets experiment methodology. For the Oceanographic dataset, it
is the same protocol as in the univariate regression on numerical data
experiment. For the second group, it is a standard training/testing
holdout split similar to the univariate regression on the mixed-type
data experiment. The exact number of samples is provided in the tab.
5.

Baselines For this setup, we selected two baseline models. The
first approach uses NGBoost, which assumes Multivariate Gaussian
distribution and models correlation between target variables. The
second approach also uses NGBoost, but the separate model models
each target dimension; thus, it assumes independence between targets.
We do not consider other Independent Gaussian approaches as they
similarly model target distribution.

Results The results of the experiments are provided in tab. 5. Our
method outperforms baselines by a large margin on three datasets.
In contrast to NGBoost-based methods, TreeFlow was able to cap-
ture non-gaussianity in the target distributions. It can be evident on
Parkinsons and US Flight datasets where differences between Inde-
pendent NGBoost and Multivariate NGBoost were significant. They
were probably caused by the ability to model the correlation between
target variables and TreeFlow utilized its flexibility to obtain even
better results. The other situation is for the Oceanographic dataset,
where all results are close. Here, probably true target distribution is
similar to the Independent Gaussian distribution; thus, NGBoost and
TreeFlow can not achieve better results. In the last dataset - Energy,

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression2636



(a) Multimodal distribution (b) Multimodal, heavy-tailed dist. (c) Gaussian distribution

Figure 4. Estimated probability density functions for three datasets (Protein, Wine Quality, Power Plant) from the univariate regression on numerical data
experiment. Depending on the dataset, TreeFlow is able to model distributions with various properties.

Table 5. Comparison of TreeFlow with existing methods in terms of negative
log likelihood on multivariate regression problems. Our method obtains SOTA
results on four out of the six datasets thanks to its flexibility in modeling
complex distributions. Baseline results for the Oceanographic are taken from
the reference paper.

DATASET IND NGBOOST NGBOOST TREEFLOW

PARKINSONS 6.86 5.85 5.26
SCM20D 94.40 94.81 93.41
WINDTURBINE -0.65 -0.67 -2.57
ENERGY 166.90 175.80 180.00
USFLIGHT 9.56 8.57 7.49
OCEANOGRAPHIC 7.74±0.02 7.73±0.02 7.84±0.01

the best performing model was Independent NGBoost. We suspect
that the high dimensionality of the target distribution was too hard to
learn for both NGBoost and TreeFlow methods.

Figure 5. Estimated probability density functions for the Parkinsons datasets
from the multivariate regression experiment. TreeFlow is the most flexible
method which enables target distribution to correlate between dimensions and
has multiple modes.

Moreover, we investigated target distributions for the Parkinsons
dataset. The results of all methods are presented in fig. 5. We can easily
observe how consecutive methods allow for more flexible distributions.
Multivariate NGBoost enables correlation between target variables,
while TreeFlow adds multimodality property.

6 Conclusions
In this work, we proposed a novel tree-based approach for proba-
bilistic regression. Our method combines the benefits of ensemble
decision trees with the capabilities of flow-based models in modeling
complex non-Gaussian, multimodal distributions. We evaluated our
approach using four experimental settings for both probabilistic and

deterministic metrics and achieve SOTA or comparable results on
most of them. We also illustrate some properties of TreeFlow that
show the benefits of our approach compared to reference baselines.

Limitations The main trade-off introduced by our method is be-
tween computational time and the flexibility of the target distribution.
Resource-demanding CNF component limits the scalability of our
method, but despite this, we were able to deal with datasets of up to
half a million observations. Additionally, our method has multiple
hyperparameters, which may be challenging to tune in some cases, but
we hope that a broad range of experiments provides good intuitions
for end users (see sec. C). Lastly, TreeFlow performs two-staged
learning, which might sometimes lead to sub-optimal results. Even so,
our method outperforms current baselines, and we hope that TreeFlow
will serve as a strong starting point for future end-to-end approaches.

Broader Impact The tree-based models are widely applied in re-
search and industry and often achieve SOTA results. TreeFlow can be
seen as an extension of such models, and all ethical considerations,
both positive and negative, regarding regression problems apply to
our work. However, as we consider target distribution more com-
plex than parametric, our method can better assess uncertainty in the
decision-making process or provide realistic probability distributions
(see examples in fig. 3, 4, 5). Such properties might be crucial, for ex-
ample, in medicine or finance applications, and have a largely positive
societal impact.

Acknowledgements
The work conducted by Patryk Wielopolski and Maciej Zieba was
supported by the National Centre of Science (Poland) Grant No.
2021/43/B/ST6/02853.

Appendix and Code
The code and appendix are available under the GitHub repository:
https://github.com/pfilo8/TreeFlow.

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression 2637



References

[1] Leo Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32, (2001).
[2] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifica-

tion and Regression Trees, Wadsworth, 1984.
[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud,

‘Neural ordinary differential equations’, in Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, eds., Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kris-
ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, pp. 6572–6583,
(2018).

[4] Tianqi Chen and Carlos Guestrin, ‘XGBoost: A Scalable Tree Boosting
System’, in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, pp. 785–794. ACM, (2016).

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, ‘Density esti-
mation using Real NVP’, in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net, (2017).

[6] Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu,
Andrew Y. Ng, and Alejandro Schuler, ‘NGBoost: Natural Gradient
Boosting for Probabilistic Prediction’, in Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 2690–2700. PMLR, (2020).

[7] Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, and Alexander J
Smola, ‘Trade: Transformers for density estimation’, arXiv preprint
arXiv:2004.02441, (2020).

[8] Jerome H. Friedman, ‘Greedy function approximation: A gradient boost-
ing machine.’, Annals of Statistics, 29, 1189–1232, (2001).

[9] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever,
and David Duvenaud, ‘FFJORD: free-form continuous dynamics for
scalable reversible generative models’, in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, (2019).

[10] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu, ‘LightGBM: A Highly Efficient
Gradient Boosting Decision Tree’, in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
3146–3154, (2017).

[11] Diederik P. Kingma and Prafulla Dhariwal, ‘Glow: Generative flow with
invertible 1x1 convolutions’, in Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 10236–10245, (2018).

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell,
‘Simple and scalable predictive uncertainty estimation using deep en-
sembles’, in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 6402–6413, (2017).

[13] Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko, ‘Un-
certainty in Gradient Boosting via Ensembles’, in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, (2021).

[14] Juan Maroñas, Oliver Hamelijnck, Jeremias Knoblauch, and Theodoros
Damoulas, ‘Transforming gaussian processes with normalizing flows’,
in International Conference on Artificial Intelligence and Statistics, pp.
1081–1089. PMLR, (2021).

[15] Alexander März, ‘XGBoostLSS - An extension of XGBoost to proba-
bilistic forecasting’, CoRR, abs/1907.03178, (2019).

[16] Alexander März, ‘CatBoostLSS - An extension of CatBoost to proba-
bilistic forecasting’, CoRR, abs/2001.02121, (2020).

[17] Kevin P. Murphy, Machine learning - a probabilistic perspective, Adap-
tive computation and machine learning series, MIT Press, 2012.

[18] Michael O’Malley, ‘North Atlantic Ocean Drifter Dataset for Multivari-
ate Probabilistic Regression with Natural Gradient Boosting’. Zenodo,
(2021).

[19] Michael O’Malley, Adam M. Sykulski, Rick Lumpkin, and Alejandro
Schuler, ‘Multivariate Probabilistic Regression with Natural Gradient
Boosting’, CoRR, abs/2106.03823, (2021).

[20] Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin, ‘CatBoost: unbiased boost-

ing with categorical features’, in Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 6639–6649, (2018).

[21] Liliang Ren, Gen Sun, and Jiaman Wu, ‘RoNGBa: A Robustly Opti-
mized Natural Gradient Boosting Training Approach with Leaf Number
Clipping’, CoRR, abs/1912.02338, (2019).

[22] Danilo Jimenez Rezende and Shakir Mohamed, ‘Variational Inference
with Normalizing Flows’, in Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pp.
1530–1538. JMLR.org, (2015).

[23] Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj,
Massimiliano Patacchiola, Tomasz Trzcinski, Przemysław Spurek, and
Maciej Zieba, ‘Non-Gaussian Gaussian Processes for Few-Shot Regres-
sion’, in NeurIPS, (2021).

[24] Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert
Peharz, Thomas Liebig, and Kristian Kersting, ‘Conditional sum-product
networks: Imposing structure on deep probabilistic architectures’, in
International Conference on Probabilistic Graphical Models, pp. 401–
412. PMLR, (2020).

[25] Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke, ‘Probabilis-
tic gradient boosting machines for large-scale probabilistic regression’,
in KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Virtual Event, Singapore, August 14-18, 2021,
pp. 1510–1520. ACM, (2021).

[26] D Mikis Stasinopoulos, Robert A Rigby, et al., ‘Generalized additive
models for location scale and shape (GAMLSS) in R’, Journal of Statis-
tical Software, (2007).

[27] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge J. Belongie,
and Bharath Hariharan, ‘PointFlow: 3D Point Cloud Generation With
Continuous Normalizing Flows’, in 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pp. 4540–4549. IEEE, (2019).

[28] Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, and Kristian
Kersting, ‘Leveraging probabilistic circuits for nonparametric multi-
output regression’, in Proceedings of the Thirty-Seventh Conference on
Uncertainty in Artificial Intelligence, UAI 2021, Virtual Event, 27-30
July 2021, volume 161 of Proceedings of Machine Learning Research,
pp. 2008–2018. AUAI Press, (2021).

[29] Maciej Zieba, Marcin Przewieźlikowski, Marek Śmieja, Jacek Tabor,
Tomasz Trzcinski, and Przemysław Spurek, ‘RegFlow: Probabilistic
Flow-based Regression for Future Prediction’, CoRR, abs/2011.14620,
(2020).

P. Wielopolski and M. Zięba / TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression2638



Citation: Wielopolski, P.; Furman, O.;

Zięba, M. NodeFlow: Towards

End-to-End Flexible Probabilistic

Regression on Tabular Data. Entropy

2024, 26, 593. https://doi.org/

10.3390/e26070593

Academic Editor: Friedhelm

Schwenker

Received: 28 May 2024

Revised: 26 June 2024

Accepted: 4 July 2024

Published: 11 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

NodeFlow: Towards End-to-End Flexible Probabilistic
Regression on Tabular Data
Patryk Wielopolski 1,* , Oleksii Furman 1 and Maciej Zięba 1,2

1 Department of Artificial Intelligence, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
2 Tooploox Ltd., 53-601 Wrocław, Poland
* Correspondence: patryk.wielopolski@pwr.edu.pl

Abstract: We introduce NodeFlow, a flexible framework for probabilistic regression on tabular data
that combines Neural Oblivious Decision Ensembles (NODEs) and Conditional Continuous Normal-
izing Flows (CNFs). It offers improved modeling capabilities for arbitrary probabilistic distributions,
addressing the limitations of traditional parametric approaches. In NodeFlow, the NODE captures
complex relationships in tabular data through a tree-like structure, while the conditional CNF utilizes
the NODE’s output space as a conditioning factor. The training process of NodeFlow employs stan-
dard gradient-based learning, facilitating the end-to-end optimization of the NODEs and CNF-based
density estimation. This approach ensures outstanding performance, ease of implementation, and
scalability, making NodeFlow an appealing choice for practitioners and researchers. Comprehensive
assessments on benchmark datasets underscore NodeFlow’s efficacy, revealing its achievement of
state-of-the-art outcomes in multivariate probabilistic regression setup and its strong performance in
univariate regression tasks. Furthermore, ablation studies are conducted to justify the design choices
of NodeFlow. In conclusion, NodeFlow’s end-to-end training process and strong performance make
it a compelling solution for practitioners and researchers. Additionally, it opens new avenues for
research and application in the field of probabilistic regression on tabular data.

Keywords: probabilistic regression; tabular data; normalizing flows; decision tree ensembles; neural
decision tree

1. Introduction

Tabular regression involves predicting a continuous target variable based on structured
data arranged in a tabular format. It is a vital task in machine learning with applications in
various domains, including finance, healthcare, and marketing. In these domains, making
reliable and informed decisions is of utmost importance due to potential consequences or
impacts and requires not only accurate predictions but also robust uncertainty quantifica-
tion. These kinds of properties can be obtained by the usage of probabilistic methods that
go beyond point estimation by modeling the entire conditional distribution. This approach
offers several advantages, including the ability to quantify uncertainty, capture complex
data distributions, and provide a more comprehensive understanding of the data.

Regarding deterministic tabular regression, there have been two distinct paths of
research in the field of regression on tabular data without any clear conclusion of the best
approach to the problem [1,2]. The first path focuses on gradient-boosted trees, exemplified
by popular approaches such as XGBoost [3], CatBoost [4], and LightGBM [5]. These
methods have demonstrated remarkable performance in point estimation tasks, leveraging
ensemble techniques to capture complex relationships in the data. The second research
path explores deep learning techniques for regression on tabular data with models such as
NODE [6], TabNet [7], or FT-Transfomer [8]. These methods, with their ability to capture
intricate patterns and relationships, have shown promise in surpassing the performance
of gradient-boosted trees. They offer flexibility in handling various data types, including

Entropy 2024, 26, 593. https://doi.org/10.3390/e26070593 https://www.mdpi.com/journal/entropy



Entropy 2024, 26, 593 2 of 16

categorical variables, and can capture complex interactions among features. However,
challenges specific to tabular data, such as feature interactions and interpretability, continue
to be active research areas.

In the context of probabilistic tabular regression, recent research predominantly centers
on expanding tree-based methods. The development of the new methods has resulted in
models such as NGBoost [9], PGBM [10], and a probabilistic extension of CatBoost [11].
However, these methods are predominantly based on parametric distributions, with Cat-
Boost limited to modeling only Gaussian distributions. As a result, a pressing need remains
for more flexible approaches that can accurately capture a broader range of complex data
distributions encountered in practical scenarios. The recent work on TreeFlow [12] showed
that combining tree-based methods with normalizing flows can improve the modeling
capabilities; however, a lack of end-to-end optimization might lead to suboptimal results.

To overcome the limitations associated with the absence of end-to-end optimization,
we propose NodeFlow, a novel framework for flexible probabilistic regression on tab-
ular data. NodeFlow combines the advantages of tree-based structures, deep learning
approaches, and normalizing flows to provide an accurate probabilistic regression ap-
proach that can be learned end to end. By combining Neural Oblivious Decision Ensembles
(NODEs) and Conditional Continuous Normalizing Flows (CNFs), NodeFlow offers a
unique solution that enables the modeling of complex data distributions encountered in
probabilistic tasks. Through extensive evaluations and comparative studies on benchmark
datasets, we demonstrate the effectiveness of NodeFlow in capturing the underlying data
distributions and providing state-of-the-art results for multivariate probabilistic regression
problems and competitive performance in univariate regression tasks.

Concluding, our contributions are as follows:

• We introduce NodeFlow, to the best of our knowledge, the first framework to apply
an end-to-end, tree-structured deep learning model for probabilistic regression on
tabular data;

• We demonstrate NodeFlow’s superior performance in multivariate probabilistic regres-
sion and competitive results in univariate tasks on benchmark datasets, establishing
its effectiveness;

• We conduct a focused ablation study, hyperparameter sensitivity analysis, and compu-
tational efficiency assessment, validating NodeFlow’s design and scalability.

2. Literature Review
2.1. Tree-Based Regression on Tabular Data

Standard tree-based regression approaches, including XGBoost [3], CatBoost [4],
and LightGBM [5], have emerged as state-of-the-art methods for modeling tabular data
in regression problems. These frameworks leverage ensemble techniques and advanced
optimizations to achieve remarkable performance in various domains. XGBoost is an
optimized gradient-boosting framework that combines decision trees to capture complex
relationships in tabular data. CatBoost incorporates novel techniques to handle categorical
features effectively, while LightGBM utilizes tree-based learning algorithms and efficient
data processing strategies. Their widespread adoption and success in diverse applications
highlight their effectiveness and prominence in the field of tabular regression modeling,
enabling accurate point estimation and capturing intricate patterns within the data.

2.2. Tree-Based Probabilistic Regression on Tabular Data

In recent years, several approaches have been developed for probabilistic regression
on tabular data, including NGBoost [9], CatBoost with univariate Gaussian support [11],
and the Probabilistic Gradient Boosting Machine (PGBM) [10], each offering unique meth-
ods to model probabilistic distributions and improve regression performance. NGBoost is a
versatile algorithm that can model various probabilistic distributions using a defined prob-
ability density function. It estimates distribution parameters by optimizing scoring rules
such as the negative log-likelihood (NLL) or Continuous Ranked Probability Score (CRPS).



Entropy 2024, 26, 593 3 of 16

RoNGBa [13] is an NGBoost extension that enhances performance through improved hy-
perparameter selection. CatBoost, a gradient-boosting framework, has also been adapted to
probabilistic regression but supports only univariate Gaussian distributions. PGBM treats
leaf weights as random variables and can model different posterior distributions, albeit
limited to location and scale parameters.

2.3. Deep Learning Regression on Tabular Data

In recent years, deep neural networks have achieved remarkable success in handling
unstructured data, but their effectiveness in dealing with tabular data remains inconclu-
sive. Several research papers, including [6–8,14,15], have introduced new deep learning
regression methods that demonstrate superiority over tree-based methods. However, re-
cent surveys have produced conflicting results on this topic. Notably, Borisov et al. [1]
conducted a study comparing deep models to traditional machine learning methods on
selected datasets. They found that deep models consistently outperformed traditional
methods, but no single deep model universally outperformed all others. These findings
highlight the nuanced performance of deep learning models on tabular data. Addition-
ally, recent benchmarks conducted by Grinsztajn et al. [2] compared tree-based models
and deep learning methods, specifically on tabular data. The benchmarks revealed that
tree-based models such as XGBoost and random forests remain state-of-the-art for medium-
sized datasets (with fewer than 10,000 samples). Notably, even without considering their
superior processing speed, tree-based models maintained a competitive edge over deep
learning approaches.

Neural Oblivious Decision Ensembles (NODEs), introduced by [6], are a deep learning
architecture that extends ensembles of oblivious decision trees. It combines end-to-end
gradient-based optimization with multi-layer hierarchical representation learning. DNF-
Net, proposed by [7], is a neural architecture incorporating a disjunctive normal form
(DNF) structure, allowing efficient and interpretable feature selection. It promotes localized
decisions over small feature subsets, enhancing interpretability and mitigating overfitting.
TabNet [14] is a deep learning architecture specifically tailored for tabular data. It processes
raw tabular data without preprocessing, facilitating seamless integration into end-to-end
learning. Sequential attention mechanisms identify crucial features at each decision step,
enhancing interpretability and learning efficiency. TabNet also provides interpretable fea-
ture attributions and insights into the model’s global behavior. Gorishniy et al. [8] proposed
FT-Transformer, a modified version of the Transformer architecture designed for tabular
data. FT-Transformer incorporates both categorical and continuous features, employs self-
attention mechanisms to capture feature relationships, and integrates residual connections
akin to ResNet. In addition to these approaches, SAINT (Self-Attention and Intersample
Attention Transformer) [15] is a hybrid deep learning approach designed to solve tabular
data problems. SAINT integrates attention over both rows and columns, an enhanced
embedding method, and a contrastive self-supervised pre-training technique.

2.4. Deep Learning Probabilistic Regression on Tabular Data

Recently, there has been limited research on Probabilistic Deep Learning for tabular
data. One notable method in this area is Deep Ensemble [16], which involves training an
ensemble of neural networks using negative log-likelihood optimization with a Gaussian
distribution as the modeling choice. The authors also incorporate adversarial training to pro-
duce smoother predictive estimates. Another approach, MC-Dropout [17], extends the use
of dropout to capture model uncertainty during inference. By sampling multiple dropout
masks during inference and averaging the predictions over these masks, an ensemble of
models is created to capture model uncertainty collectively. Probabilistic Backpropaga-
tion [18] treats the neural network weights as random variables and approximates their
posterior distribution using a factorized Gaussian distribution. This approximation is
updated iteratively utilizing a combination of variational inference and stochastic gradient
descent. More recently, TreeFlow [12] introduced a tree-based approach that combined the



Entropy 2024, 26, 593 4 of 16

advantages of tree ensembles with the flexibility of modeling probability distributions using
normalizing flows. By using a tree-based model as a feature extractor and combining it
with a conditional variant of normalizing flow, TreeFlow enabled the modeling of complex
distributions in regression outputs. While TreeFlow has shown superior performance in
some cases, its lack of end-to-end training may result in suboptimal results.

In conclusion, the existing methods for probabilistic regression on tabular data often
have limitations in terms of their modeling flexibility or end-to-end training. NodeFlow
addresses these limitations by combining the tree-based NODE with the flexibility of
CNFs, offering end-to-end training and a unique solution for probabilistic regression on
tabular data.

3. NodeFlow

The architecture of NodeFlow is provided in Figure 1. The real-valued input vector
x of dimensionality D is initially processed using a Neural Oblivious Decision Ensemble,
consisting of NODE Layers (details of the layer are depicted in Figure 2) arranged in a multi-
layer hierarchical structure. It allows the extraction of rich hierarchical representation w .
We use that vector as a conditioning factor for the conditional Continuous Normalizing
Flow (CNF) in the next step. This component is responsible for the flexible modeling of
the conditional probabilistic distribution of vector y . It is worth mentioning that there
are no restrictions on the response vector dimensionality. Thus, we could cover both uni-
and multivariate regression problems. The whole architecture is trained in an end-to-end
fashion using gradient-based optimization.

Neural Oblivious Decision Ensemble
Layer 1

Conditional Continuous 
Normalizing Flow

...

Neural Oblivious Decision Ensemble
Layer L

Input

Neural Oblivious Decision Ensemble (NODE)

...

Figure 1. Architectural overview: NodeFlow leverages a Neural Oblivious Decision Ensemble
(NODE) to process the input vector, extracting a hierarchical representation. This representation
conditions a Continuous Normalizing Flow (CNF), enabling the flexible modeling of the probabilistic
distribution of the multidimensional response vector.

...

Neural Oblivious 
Decision Tree

...

Neural Oblivious 
Decision Tree

...

Neural Oblivious Decision Ensemble Layer

......

...

Neural Oblivious 
Decision Tree

Figure 2. The Neural Oblivious Decision Ensemble (NODE) layer is a key component of NodeFlow’s
architecture. It comprises several Neural Oblivious Decision Trees, each generating a multidimen-
sional output vector. These vectors are then combined through concatenation to produce the final
output of the NODE Layer.



Entropy 2024, 26, 593 5 of 16

3.1. Extracting Hierarchical Representation with NODE

In order to extract a rich hierarchical representation for a given input x, we utilize
Neural Oblivious Decision Ensemble (NODE) hϕ(x) parametrized by ϕ, which is a machine
learning architecture that combines differentiable oblivious decision trees f(x) (ODTs).
In this section, we start by introducing the ODTs. Then, we discuss the composition of the
ODTs into the NODE Layer, and finally, we present the NODE component responsible for
the hierarchical representation extraction in NodeFlow.

A single differentiable oblivious decision tree f(x) of depth d is defined as:

f(x) =
2d

∑
j=1

rj · lj(x), (1)

where r = [r1, . . . , r2d ] is a 2d-dimensional vector of real-valued trainable responses for
each of the considered leaves in the tree, and l(x) = [l1(x), . . . , l2d(x)] is a 2d-dimensional
vector of real-valued entries from the range [0, 1]. The vector is called a “choice vector” and
corresponds to the probability of the sample ending up in the specific leaf.

To compute the choice vector, it is requisite to perform a multiplication of the probabil-
ities associated with selecting either the left or right path across successive depth levels
within the tree structure. It is important to note that in an oblivious decision tree, only one
decision is made at each level of depth, which is referred to as ci(x) at depth i. The final
choice vector l is derived using the formula:

l(x) =
[

c1(x)
1 − c1(x)

]
⊗
[

c2(x)
1 − c2(x)

]
⊗ · · · ⊗

[
cd(x)

1 − cd(x)

]
, (2)

where ⊗ denotes the Kronecker product.
To ensure differentiability during training in the tree split, we utilized the α-entmax

function [19], which generalizes the Softmax (α = 1) and Sparsemax (α = 2) functions
and allows for the learning of sparse choices through gradient-based learning methods.
The feature choice function ci(x) is then calculated as a two-class entmax function over the
transformed output of the feature selection function ki(x). This can be expressed formally
as:

ci(x) = entmaxα

(
[
ki(x)− bi

τi
, 0]
)

(3)

where bi and τi are learnable threshold and scale parameters, and α is the entmax function’s
hyperparameter that controls the level of “sparsity” in the output. In addition, the function
for selecting differentiable features can be written as follows:

ki(x) =
D

∑
j=1

xj · p(i)j , (4)

where p(i) is the D-dimensional vector of feature selection weights given by the formula
p(i) = entmaxα(Fi,·). Moreover, F ∈ Rd×D is called the feature selection matrix, and it is a
real-valued, learnable matrix.

In summary, the differentiable oblivious decision tree, denoted as f, is parameterized
by the response vector r, threshold values τ, scale factors b, and the feature selection matrix
F, facilitating gradient-based learning.

To form the Neural Oblivious Decision Ensemble layer Fl (depicted in Figure 2), we
need to concatenate all outputs of the T individual f1, . . . , fT ODTs forming the layer.
The final output can be written as

Fl(·) = [f1(·), . . . , fT(·)]. (5)

Finally, the NODE architecture hϕ(x) is composed of L stacked NODE layers in a
similar fashion to the DenseNet model. It means that each layer takes the concatenated



Entropy 2024, 26, 593 6 of 16

outputs of all previous layers as input, allowing the model to learn both low-level and
high-level features. It can be written as:

w0 = x; ∀l∈[1,L] wl = [Fl(wl−1), wl−1]. (6)

The outputs from each layer are concatenated to create the final representation extracted
using NODE, w = [w1, . . . , wL] = hϕ(x). The representation w is further delivered to
CNFs as a conditioning factor.

3.2. Probabilistic Modeling with CNFs

We consider the conditional variant of CNFs provided in [20,21], where the conditional
factor w = hϕ(x) is delivered to the function of the dynamics of z(t), gβ(z(t), t, w),
parametrized by β. In the CNF setting, we aim at finding a solution y := z(t1) for the
differential equation, assuming the given initial state z := z(t0) with a known prior, where
z is a random variable, z(t0) is a base distribution, and z(t1) constitutes our observable
data. Moreover, t0 and t1 denote the start and end points, respectively, of the continuous
transformation process. The transformation function between y and z is represented as:

y = uβ,ϕ(z, x) = z +
∫ t1

t0

gβ(z(t), t, hϕ(x))dt. (7)

The inverse form of the transformation uβ,ϕ(·) is given by equation:

z = u−1
β,ϕ(y, x) = y −

∫ t1

t0

gβ(z(t), t, hϕ(x))dt. (8)

Finally, we can calculate the log-probability of target variable y given the vector of
features x by the following formula:

log p(y|x) = log p(z)−
∫ t1

t0

Tr

(
∂gβ(z(t), t, hϕ(x))

∂z(t)

)
dt, (9)

which can be solved analogously to FFJORD [22] by employing the adjoint method to
backpropagate through the solution of the neural ODE.

3.3. Training NodeFlow

Using the formula (9) that directly defines log-probability, we can train NodeFlow
by directly optimizing the negative log-likelihood function. Let us assume we are given a
dataset D = (xn, yn)n=1..N , where xn = (x1

n, . . . , xD
n ) represents a D-dimensional random

feature vector, and yn = (y1
n, . . . , yP

n ) is the P-dimensional vector of targets. The training
of the probabilistic model involves minimizing the conditional negative log-likelihood
function (NLL), defined as:

Q(β, ϕ) = −
N

∑
n=1

log p(yn|xn, β, ϕ). (10)

The goal during the training process is to find the optimal parameters β∗ and ϕ∗ such that:

β∗, ϕ∗ = arg min
β,ϕ

Q(β, ϕ). (11)

All model parameters β, ϕ are trained end to end by optimizing the above-mentioned
NLL using the standard gradient-based approach. Such an approach simplifies the model-
ing process by allowing the entire model to be trained using a single optimization algorithm.
Moreover, the model can automatically learn relevant hierarchical representations of the
data directly from the raw input data, capturing both low-level and high-level features.
This eliminates the need for manual feature engineering, which can be time-consuming
and require domain expertise.



Entropy 2024, 26, 593 7 of 16

4. Experiments

In this section, we present a comprehensive set of experiments to evaluate the perfor-
mance and effectiveness of NodeFlow in the context of tabular regression problems. We
aimed to assess NodeFlow’s capabilities in capturing complex data distributions, generating
accurate point estimates, and quantifying uncertainty. To achieve this, we conducted evalu-
ations on univariate and multivariate benchmark datasets, comparing NodeFlow with other
reference methods. We measured the performance using various evaluation metrics such as
the negative log-likelihood (NLL), Continuous Ranked Probability Score (CRPS), and Root-
Mean-Square Error (RMSE). Through these experiments, we aimed to demonstrate the
performance and flexibility of NodeFlow in probabilistic regression tasks, contributing to
the advancement of the field and providing insights for practical applications.

4.1. Methodology

In our evaluation, we adhered to the established probabilistic regression benchmark,
as delineated in previous studies [9,11,12], excluding the Boston dataset in consideration of
ethical concerns [23]. For univariate regression, we employed nine datasets from the UCI
Machine Learning Repository and six datasets for multivariate regression as suggested
by [12], with comprehensive dataset details provided in the Appendix A. In alignment with
protocols from the referenced literature, we generated 20 random folds for the univariate
regression datasets (with the exception of Protein at five folds and Year MSD at a single
fold), designating 10% of the data for testing in each fold. The remainder was divided into
an 80%/20% training/validation split for epoch selection. Our results are presented as the
mean and standard deviation across validation folds. We benchmarked NodeFlow against
a suite of models, including four tree-based probabilistic models (NGBoost, RoNGBa, Cat-
Boost, PGBM), a deep learning approach (Deep Ensemble), and a hybrid model (TreeFlow)
for univariate tasks. For multivariate regression challenges, we adopted training/testing
splits as per the referenced protocols, comparing NodeFlow against NGBoost variants
and TreeFlow. The architecture specifics and hyperparameter tuning methodology for
NodeFlow are detailed in the Appendix B.

4.2. Probabilistic Regression Framework

This segment evaluates NodeFlow’s performance within a probabilistic framework,
analyzing its negative log-likelihood (NLL) scores against benchmark datasets for both
univariate and multivariate regression tasks previously outlined.

In Table 1, we present the evaluation results for the univariate regression task, where
NodeFlow exhibited competitive performance across a range of datasets, frequently achiev-
ing the best or second-best NLL scores. Notably, NodeFlow excelled on the Year MSD
dataset and secures commendable second-best results on the Wine, Protein, Power, and
Kin8nm datasets. Our analysis extended to a detailed comparison of NodeFlow against
various methodological approaches, including deep learning-based methods, tree-based en-
semble methods, and the hybrid method TreeFlow. Against the Deep Ensemble, NodeFlow
consistently demonstrated superior or at least equivalent performance, with particularly
noteworthy achievements on the Energy, Power, Protein, Wine, and Yacht datasets. This is
especially significant for the Protein and Wine datasets, which are characterized by their
underlying multimodal target distributions—a scenario where NodeFlow’s capabilities
of flexible distribution modeling were especially advantageous (refer to [12] for details).
When compared to tree-based methods such as CatBoost, NGBoost, RoNGBa, and PGBM,
NodeFlow maintained a competitive edge, often outperforming or matching the best results,
underscoring its robust ability to model complex data relationships within tabular datasets.
In direct comparison with TreeFlow, NodeFlow and TreeFlow exhibited closely matched
performance, with each method surpassing the other under different circumstances. This
comparative analysis not only highlights NodeFlow’s versatile efficacy across a broad
spectrum of univariate regression challenges but also its capacity to address the intricacies
of tabular data modeling through its advanced, adaptive learning framework.



Entropy 2024, 26, 593 8 of 16

Table 1. Benchmark for univariate probabilistic regression problem with tabular data using negative
log-likelihood (NLL) as the metric. The best results are marked by bold text, and the second best
results are underlined.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW NODEFLOW

CONCRETE 3.06 ± 0.18 3.06 ± 0.13 3.04 ± 0.17 2.94 ± 0.18 2.75 ± 0.21 3.02 ± 0.15 3.15 ± 0.21
ENERGY 1.38 ± 0.22 1.24 ± 1.28 0.60 ± 0.45 0.37 ± 0.28 1.74 ± 0.04 0.85 ± 0.35 0.90 ± 0.25
KIN8NM −1.20 ± 0.02 −0.63 ± 0.02 −0.49 ± 0.02 −0.60 ± 0.03 −0.54 ± 0.04 −1.03 ± 0.06 −1.10 ± 0.05
NAVAL −5.63 ± 0.05 −5.39 ± 0.04 −5.34 ± 0.04 −5.49 ± 0.04 −3.44 ± 0.04 −5.54 ± 0.16 −5.45 ± 0.08
POWER 2.79 ± 0.04 2.72 ± 0.12 2.79 ± 0.11 2.65 ± 0.08 2.60 ± 0.02 2.65 ± 0.06 2.62 ± 0.05
PROTEIN 2.83 ± 0.02 2.73 ± 0.07 2.81 ± 0.03 2.76 ± 0.03 2.79 ± 0.01 2.02 ± 0.02 2.04 ± 0.04
WINE 0.94 ± 0.12 0.93 ± 0.08 0.91 ± 0.06 0.91 ± 0.08 0.97 ± 0.20 −0.56 ± 0.62 −0.21 ± 0.28
YACHT 1.18 ± 0.21 0.41 ± 0.39 0.20 ± 0.26 1.03 ± 0.44 0.05 ± 0.28 0.72 ± 0.40 0.79 ± 0.55
YEAR MSD 3.35 ± NA 3.43 ± NA 3.43 ± NA 3.46 ± NA 3.61 ± NA 3.27 ± NA 3.09 ± NA

In Table 2, we detail NodeFlow’s performance across multivariate probabilistic re-
gression tasks, where it consistently outperformed competing approaches in five of the six
datasets examined. Compared with TreeFlow, NodeFlow’s superiority was particularly
evident in datasets with multiple target dimensions, such as scm20d (16 target dimensions)
and Energy (17 target dimensions). For two-dimensional target datasets like Parkinsons
and US Flight, NodeFlow continued to outperform, albeit with a narrower margin. The dis-
tinction became more nuanced with one-dimensional targets, as presented in prior analyses,
where NodeFlow and TreeFlow showed competitive yet comparable results. This dif-
ferentiation underscores the strength of NodeFlow’s end-to-end learning model, which
excels in complex, high-dimensional settings by providing finely tuned representations.
Such comprehensive learning is absent in TreeFlow, limiting its effectiveness in compari-
son. This evidence reinforces the indispensable value of end-to-end learning in achieving
optimal performance, particularly in addressing the intricate demands of multivariate
regression problems.

Table 2. Benchmark for multivariate probabilistic regression problem with tabular data using negative
log-likelihood (NLL) as the metric. The best results are marked by bold text, and the second best
results are underlined.

DATASET IND. NGBOOST NGBOOST TREEFLOW NODEFLOW

PARKINSONS 6.86 5.85 5.26 5.06
SCM20D 94.40 94.81 93.41 91.98
WIND −0.65 −0.67 −2.57 −3.20
ENERGY 166.90 175.80 180.00 163.86
USFLIGHT 9.56 8.57 7.49 7.38
OCEAN. 7.74 7.73 7.84 7.81

4.3. Point-Prediction Regression Setup

This section assesses the effectiveness of our method in a point-prediction context
by comparing its Root-Mean-Square Error (RMSE) scores on the univariate regression
datasets. To calculate the RMSE results for the TreeFlow and NodeFlow methods, we
used the RMSE@K metric introduced in [12], where K = 2. This metric is suitable for
uni- and multivariate regression problems with multiple-point predictions. We present
the results in Table 3. Our method achieved the best results on two datasets and ranked
second on two others. For the remaining datasets, it remained competitive with benchmark
methods. Notably, these results are commendable, considering our approach is designed for
probabilistic setups. Providing point estimates, particularly from multimodal distributions,
presents unique challenges compared to simply taking the mean of parametric distributions
like Gaussian. This context underscores the strength of our method’s performance across
various datasets.



Entropy 2024, 26, 593 9 of 16

Table 3. Benchmark for univariate point prediction regression problem with tabular data using Root-
Mean-Square Error (RMSE). Note that for TreeFlow and NodeFlow, we used the RMSE@2 metric,
which is more relevant. The best results are marked by bold text, and the second best results
are underlined.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW (@2) NODEFLOW(@2)

CONCRETE 6.03 ± 0.58 5.21 ± 0.53 5.06 ± 0.61 4.71 ± 0.61 3.97 ± 0.76 5.41 ± 0.71 5.51 ± 0.66
ENERGY 2.09 ± 0.29 0.57 ± 0.06 0.46 ± 0.06 0.35 ±0.07 0.35 ± 0.06 0.65 ± 0.12 0.70 ± 0.40
KIN8NM 0.09 ± 0.00 0.14 ± 0.00 0.16 ± 0.00 0.14 ± 0.00 0.13 ± 0.01 0.10 ± 0.01 0.08 ± 0.00
NAVAL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
POWER 4.11 ± 0.17 3.55 ± 0.27 3.70 ± 0.22 3.47 ± 0.19 3.35 ± 0.15 3.79 ± 0.25 3.94 ± 0.16
PROTEIN 4.71 ± 0.06 3.92 ± 0.08 4.33 ± 0.03 4.21 ± 0.06 3.98 ± 0.06 3.01 ± 0.06 4.32 ± 0.03
WINE 0.64 ± 0.04 0.63 ± 0.04 0.62 ± 0.04 0.62 ± 0.05 0.60 ± 0.05 0.41 ± 0.09 0.44 ± 0.03
YACHT 1.58 ± 0.48 0.82 ± 0.40 0.50 ± 0.20 0.90 ± 0.35 0.63 ± 0.21 0.75 ± 0.26 1.18 ± 0.47
YEAR MSD 8.89 ± NA 8.99 ± NA 8.94 ± NA 9.14 ± NA 9.09 ± NA 8.64 ± NA 8.84 ± NA

4.4. Summary

In summary, our evaluation of NodeFlow across both probabilistic and point-prediction
scenarios demonstrates its efficacy. While NodeFlow’s performance on tasks with one-
dimensional targets aligns with existing benchmarks, it distinctly excels in handling prob-
lems with two or more target dimensions. The results unequivocally indicate that the
greater the dimensionality of the target variable, the more pronounced NodeFlow’s superi-
ority becomes. This superior performance is attributed to NodeFlow’s flexible probabilistic
modeling and comprehensive end-to-end learning approach, ensuring highly tailored
representations for complex problems. Consequently, NodeFlow stands out as a superior
method for probabilistic regression tasks involving high-dimensional targets, affirming its
suitability for addressing advanced modeling challenges.

5. Ablation Studies

In the pursuit of a comprehensive understanding of NodeFlow method, a series of
ablation studies were undertaken to scrutinize the impacts of critical design choices therein.
Specifically, this investigation focused on two integral constituents: the feature represen-
tation component, in NodeFlow attained by the usage of NODEs, and the probabilistic
modeling segment, which was realized through the utilization of CNFs. We evaluated
our methods using both probabilistic and point-prediction frameworks. Additionally, we
conducted a qualitative analysis of the learned representations and estimated probability
density functions. Moreover, the results of the computational time comparison are included
in Section 6.

5.1. Feature Representation Component

In our ablation study, we assessed the critical role of the Neural Oblivious Decision
Ensemble (NODE) component in enhancing feature extraction within our proposed frame-
work, NodeFlow. To this end, we conducted both quantitative and qualitative analyses,
employing two benchmarking variants for comparison: one with the NODE component
removed, relying solely on min-max scaling (termed as CNF), and another replacing the
NODE with a shallow Multilayer Perceptron (MLP), labeled as CNF + MLP.

Quantitative results, detailed in Table 4, evaluate the performance across probabilistic
and point-prediction metrics: negative log-likelihood (NLL), Continuous Ranked Probabil-
ity Score (CRPS), and Root-Mean-Square Error at 2 (RMSE@2), presented as mean values
alongside their standard deviations. The experimental setup was kept consistent with the
main experiments.

Our findings reveal that NodeFlow, with the NODE component integrated, consis-
tently delivered the lowest NLL values across a majority of datasets, highlighting its
exceptional data modeling and prediction accuracy capabilities. Additionally, NodeFlow
surpassed comparative approaches in CRPS, indicating its enhanced precision in proba-



Entropy 2024, 26, 593 10 of 16

bilistic forecasting. Furthermore, NodeFlow achieved the most favorable RMSE scores,
underlining the NODE component’s pivotal role in achieving precise point predictions.

Table 4. Ablation study of the feature representation component in terms of negative log-likelihood (NLL),
Continuous Ranked Probability Score (CRPS), and Root-Mean-Square Error at 2 (RMSE@2) metrics.

DATASET
NLL CRPS RMSE

CNF CNF + MLP NODEFLOW CNF CNF + MLP NODEFLOW CNF CNF + MLP NODEFLOW
CONCRETE 3.24 ± 0.28 3.15 ± 0.13 3.15 ± 0.21 3.80 ± 1.33 3.39 ± 0.34 2.80 ± 0.34 7.16 ± 2.22 6.43 ± 0.54 5.51 ± 0.66
ENERGY 2.90 ± 0.45 2.43 ± 0.31 0.90 ± 0.25 2.73 ± 1.45 1.73 ± 0.77 0.35 ± 0.14 4.90 ± 2.41 3.26 ± 1.26 0.70 ± 0.40
KIN8NM −0.66 ± 0.12 −0.86 ± 0.07 −1.10 ± 0.05 0.07 ± 0.01 0.06 ± 0.00 0.04 ± 0.00 0.14 ± 0.02 0.11 ± 0.01 0.08 ± 0.00
NAVAL −3.42 ± 0.34 −3.55 ± 0.21 −5.45 ± 0.08 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
POWER 2.92 ± 0.24 2.90 ± 0.26 2.62 ± 0.05 2.59 ± 1.00 2.61 ± 1.15 1.95 ± 0.06 4.69 ± 1.71 4.77 ± 1.94 3.94 ± 0.16
PROTEIN 2.57 ± 0.03 2.56 ± 0.02 2.04 ± 0.04 2.69 ± 0.04 2.67 ± 0.03 1.75 ± 0.03 5.88 ± 0.11 5.81 ± 0.10 4.32 ± 0.03
WINE 0.07 ± 0.62 0.34 ± 0.63 −0.21 ± 0.28 0.36 ± 0.04 0.37 ± 0.04 0.34 ± 0.02 0.54 ± 0.14 0.61 ± 0.14 0.44 ± 0.09
YACHT 1.92 ± 1.67 1.35 ± 1.82 0.79 ± 0.55 2.45 ± 3.06 1.26 ± 2.35 0.50 ± 0.19 5.06 ± 5.42 2.71 ± 4.33 1.18 ± 0.47

In our qualitative analysis, we visualized feature representations derived from the
models, utilizing dimensionality reduction via the UMAP algorithm [24] and color-coding
each point according to its target variable. Figure 3 illustrates these representations for
the Energy dataset. The leftmost visualization corresponds to the CNF model, which,
lacking additional processing layers, essentially reflects the rescaled raw dataset within
the (−1, 1) range. The middle image depicts the representation from the CNF + MLP
model, while the rightmost image shows the outcome of employing a NODE within the
NodeFlow method. Comparatively, the NodeFlow method’s representation, facilitated by
NODE processing, showcases a significantly enhanced separation and disentanglement
of observations, with distinct clusters forming around similar target values. This level of
disentanglement, absent in the CNF models’ representations, likely plays a crucial role in
NodeFlow’s superior performance across quantitative metrics.

6 3 0 3 6 9 12 15
UMAP Dimension 1

12

8

4

0

4

8

12

16

UM
AP

 D
im

en
sio

n 
2

CNF

9 6 3 0 3 6 9 12 15 18
UMAP Dimension 1

CNF+MLP

4 0 4 8 12 16 20 24
UMAP Dimension 1

NodeFlow

Figure 3. Feature representations for the Energy dataset via UMAP for the ablation study. Left:
CNF model, showing rescaled data within (−1, 1). Center: CNF + MLP model, indicating improved
structuring. Right: NodeFlow with NODE, illustrating the superior hierarchical organization. Points
are color-coded by the target variable.

Collectively, these outcomes validate the NODE component’s indispensable contribu-
tion to NodeFlow’s architecture, ensuring competitive or superior performance in NLL,
CRPS, and RMSE metrics and disentangled and more clearly separated representations
compared to the alternatives examined.

5.2. Probabilistic Modeling Component

In this ablation study, we evaluated the effectiveness and fit of the probabilistic model-
ing component within our framework. Specifically, we substituted the CNF component
with standard probabilistic distributions, labeling these variants as NodeGauss (using a
Gaussian distribution) and NodeGMM (employing a mixture of Gaussians). This experi-
mental design mirrors the setup of our previous ablation studies.



Entropy 2024, 26, 593 11 of 16

The findings, detailed in Table 5, indicate that NodeFlow consistently surpassed both
NodeGauss and NodeGMM in the negative log-likelihood (NLL) across the majority of
the datasets, with NodeGMM outperforming NodeFlow only in a single dataset instance.
In terms of the Continuous Ranked Probability Score (CRPS), NodeFlow attained the lowest
scores universally, indicating a more accurate calibration of predictive uncertainty relative
to the alternatives. Point-prediction results further underscored NodeFlow’s superiority as
the most effective approach. Notably, these outcomes underscored the benefit of integrating
a versatile probabilistic modeling component, as evidenced by the enhanced performance
across all evaluated metrics.

Table 5. Ablation study of the probabilistic modeling component in terms of negative log-likelihood (NLL),
Continuous Ranked Probability Score (CRPS), and Root-Mean-Square Error at 2 (RMSE@2) metrics.

DATASET
NLL CRPS RMSE

NODEGAUSS NODEGMM NODEFLOW NODEGAUSS NODEGMM NODEFLOW NODEGAUSS NODEGMM NODEFLOW
CONCRETE 3.13 ± 0.39 3.03 ± 0.18 3.15 ± 0.21 8.54 ± 0.49 9.04 ± 0.49 2.80 ± 0.34 15.52 ± 0.86 16.08 ± 0.86 5.51 ± 0.66
ENERGY 1.84 ± 0.23 1.70 ± 0.21 0.90 ± 0.25 5.16 ± 0.27 5.59 ± 0.27 0.35 ± 0.14 9.53 ± 0.41 9.94 ± 0.41 0.70 ± 0.40
KIN8NM −0.90 ± 0.07 −0.97 ± 0.06 −1.10 ± 0.05 0.14 ± 0.00 0.15 ± 0.00 0.04 ± 0.00 0.18 ± 0.01 0.22 ± 0.01 0.08 ± 0.00
NAVAL −4.91 ± 0.29 −4.95 ± 0.15 −5.45 ± 0.08 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
POWER 2.84 ± 0.05 2.76 ± 0.04 2.62 ± 0.05 8.88 ± 0.12 9.59 ± 0.12 1.95 ± 0.06 16.10 ± 0.22 16.88 ± 0.23 3.94 ± 0.16
PROTEIN 2.84 ± 0.07 2.36 ± 0.12 2.04 ± 0.04 3.39 ± 0.02 3.39 ± 0.03 1.75 ± 0.03 6.03 ± 0.06 7.40 ± 0.36 4.32 ± 0.03
WINE 0.97 ± 0.08 0.51 ± 0.37 −0.21 ± 0.28 0.45 ± 0.03 0.45 ± 0.03 0.34 ± 0.02 0.82 ± 0.05 0.59 ± 0.16 0.44 ± 0.09
YACHT 2.26 ± 0.72 1.84 ± 0.63 0.79 ± 0.55 6.67 ± 1.52 6.62 ± 1.58 0.50 ± 0.19 14.19 ± 3.02 14.26 ± 2.95 1.18 ± 0.47

Figure 4 illustrates the probability density functions estimated by NodeFlow, Node-
Gauss, and NodeGMM for selected samples from the Wine Quality and Protein datasets.
These datasets were chosen due to their complex distributions and the significant differ-
ences in results among the models. In the Wine Quality example, NodeFlow produced a
distribution concentrated between values six and seven, lacking the distinct peak character-
istic of Gaussian distributions. The Protein dataset example showcased NodeFlow’s ability
to model a bimodal distribution with significant probability mass between peaks and a
heavy right tail. Notably, both NodeGauss and NodeGMM struggled to fully capture the
complexity of these sample distributions. This observation underscored the necessity for
more sophisticated distributional modeling, as provided by our Conditional Normalizing
Flow (CNF) component in NodeFlow.

2 4 6 8 10
Y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
De

ns
ity

True value
NodeGauss
NodeGMM
NodeFlow

(a) Wine Quality

10 0 10 20 30 40
Y

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y 
De

ns
ity

True value
NodeGauss
NodeGMM
NodeFlow

(b) Protein
Figure 4. Comparison of probability density functions estimated by NodeFlow, NodeGauss,
and NodeGMM for selected samples from the Wine Quality and Protein datasets.

Overall, NodeFlow’s uniform advantage across diverse metrics and datasets together
with supporting visualizations robustly validates the integral role of the CNF component in
its architecture, underscoring its indispensability for achieving optimal model performance.

6. Computational Time Comparison

In this analysis, we evaluated the training duration of NodeFlow relative to benchmark
models from ablation studies, including CNF, CNF + MLP from the feature representation
study, and NodeGauss and NodeGMM from the probabilistic modeling investigation.
Our objective was to elucidate the computational demands of training each model across



Entropy 2024, 26, 593 12 of 16

various datasets, as detailed in Table 6. The table delineates the mean training times and
their standard deviations, offering insights into both average performance and variability.

Table 6. Comparative analysis of training duration for NodeFlow and ablation study approaches.

DATASET CNF CNF + MLP NODEGAUSS NODEGMM NODEFLOW

CONCRETE 335.23 ± 64.91 S 431.65 ± 232.73 S 43.82 ± 15.28 S 25.20 ± 9.74 S 482.69 ± 127.31 S
ENERGY 70.63 ± 6.34 S 80.83 ± 7.33 S 23.25 ± 7.35 S 15.48 ± 6.36 S 687.24 ± 99.62 S
KIN8NM 137.19 ± 9.76 S 169.22 ± 40.49 S 45.72 ± 13.31 S 55.14 ± 16.32 S 308.89 ± 61.57 S
NAVAL 213.13 ± 61.62 S 228.93 ± 20.99 S 56.22 ± 20.75 S 47.74 ± 27.42 S 2413.23 ± 649.67 S
POWER 141.333 ± 12.30 S 180.81 ± 17.90 S 40.19 ± 15.56 S 43.93 ± 15.51 S 1360.29 ± 192.94 S
PROTEIN 373.255 ± 40.39 S 417.45 ± 52.54 S 217.13 ± 22.18 S 224.45 ± 63.75 S 3018.98 ± 616.95 S
WINE 352.964 ± 69.65 S 353.93 ± 67.75 S 26.82 ± 10.80 S 11.92 ± 6.41 S 614.85 ± 136.68 S
YACHT 203.561 ± 117.80 S 259.64 ± 135.60 S 19.50 ± 10.33 S 13.31 ± 4.60 S 567.44 ± 216.81 S

In the feature representation study, the marginal difference in training times among
NodeFlow, CNF, and CNF + MLP suggests that the NODE component’s integration is
cost-effective, enhancing the model output without a corresponding surge in training dura-
tion. Conversely, the probabilistic modeling study indicates a more pronounced disparity
in training times, particularly between NodeFlow and the NodeGauss and NodeGMM
variants, with NodeFlow achieving superior results with a proportional increase in compu-
tational time.

Overall, NodeFlow presents itself as a robust solution for probabilistic regression
tasks on tabular data, adeptly balancing efficiency in training time with excellence in
performance. This equilibrium makes NodeFlow a compelling option for both academic
research and practical implementation, highlighting its potential as a preferred method in
the domain.

7. Conclusions

In this study, we introduced NodeFlow, a novel framework for probabilistic regression
on tabular data, leveraging Neural Oblivious Decision Ensembles (NODEs) and Condi-
tional Continuous Normalizing Flows (CNFs). Our evaluations confirmed NodeFlow’s
exceptional capability in managing high-dimensional multivariate probabilistic regression
tasks, effectively aligning with benchmarks for tasks with one-dimensional targets. Abla-
tion studies elucidated the critical roles of the NODE and CNF components in NodeFlow’s
architecture, enhancing feature processing and complex distribution modeling, respectively.
Moreover, NodeFlow emerges as a robust solution for advanced modeling and uncertainty
quantification in regression tasks, adeptly balancing performance with computational effi-
ciency. It not only establishes a significant presence in the domain of probabilistic regression
but also lays a foundation for future advancements in machine learning interpretability and
robustness. The differentiability of NodeFlow’s architecture is particularly conducive to
further research in interpretability techniques, including counterfactual explanations, fea-
ture attribution, and adversarial example generation, promising substantial contributions
to the field’s evolution.

Author Contributions: Conceptualization, P.W. and M.Z.; methodology, P.W.; software, P.W. and O.F.;
validation, P.W. and O.F.; formal analysis, P.W. and O.F.; investigation, P.W. and O.F.; resources, P.W.;
data curation, P.W.; writing—original draft preparation, P.W.; writing—review and editing, M.Z.;
visualization, P.W.; supervision, M.Z.; project administration, P.W.; funding acquisition, M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: The work conducted by Patryk Wielopolski, Oleksii Furman, and Maciej Zieba was
supported by the National Centre of Science (Poland) grant no. 2021/43/B/ST6/02853. Moreover,
we gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center:
ACK Cyfronet AGH) for providing computer facilities and support within computational grant no.
PLG/2023/016636.



Entropy 2024, 26, 593 13 of 16

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in
https://github.com/pfilo8/NodeFlow (accessed date: 28 May 2024).

Conflicts of Interest: Author Maciej Zięba was employed by the company Tooploox Ltd. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A. Datasets

In this section, we delve into the details of the datasets used in our study to validate
the capabilities of NodeFlow empirically. These datasets are the standard in assessing
method effectiveness and were chosen to evaluate NodeFlow’s performance across various
domains and to demonstrate its versatility in addressing complex probabilistic regression
tasks. Table A1 furnishes comprehensive details on the datasets employed, encompassing
the number of data points (N), the quantity of cross-validation (CV) splits or test dataset
observations, along with the feature dimensionality (D) and target dimensionality (P).

What is important and different from the reference methods is that the datasets utilized
in our study were scaled to the range (−1, 1), encompassing both the features and target
variables. This crucial preprocessing step was undertaken with a specific purpose in mind—
to enhance the stability of the learning process within the neural network framework.
By scaling both the features and targets to this common range, we aimed to mitigate
potential issues related to the magnitude of data values, which can impact the convergence
and performance of neural networks during training.

It is worth noting that the tree-based methods with which we compared NodeFlow
did not require the extensive scaling of both features and targets as they inherently possess
a scale-invariance property. This characteristic stems from the way decision trees partition
the feature space, making them less sensitive to variations in feature and target scales and
thereby obviating the need for such preprocessing.

Table A1. An overview of the datasets employed in our study to assess the performance of NodeFlow.
The table includes information on the number of data points (N), the number of cross-validation (CV)
splits or observations in the test dataset, feature dimensionality (D), and target dimensionality (P).

DATASET N CV SPLITS/NTEST D P

CONCRETE 1030 20 CV 8 1
ENERGY 768 20 CV 8 1
KIN8NM 8192 20 CV 8 1
NAVAL 11,934 20 CV 16 1
POWER 9568 20 CV 4 1
PROTEIN 45,730 5 CV 9 1
WINE 1588 20 CV 11 1
YACHT 308 20 CV 6 1
YEAR MSD 515,345 1 CV 90 1

PARKINSONS 4112 1763 16 2
SCM20D 7173 1793 61 16
WINDTURBINE 4000 1000 8 6
ENERGY 57,598 14,400 32 17
USFLIGHT 500,000 200,000 8 2
OCEANOGRAPHIC 373,227 41,470 9 2

Appendix B. Implementation Details

The research methodology adhered to the standard practices characteristic of machine
learning projects. All models under consideration were implemented using Python 3.8,
leveraging the deep learning library PyTorch. The training employed the usage of the
PyTorch Lightning framework. We used the following infrastructure for the experiments:



Entropy 2024, 26, 593 14 of 16

Intel(R) Xeon(R) Silver 4108 32-Core CPU, 4 NVIDIA GeForce GTX 1080 Ti GPUs, and 126
GB RAM.

In our research paper, we employed a Hyperband Pruner [25] as the hyperparameter
search method to optimize our machine learning models. Hyperband Pruner is a highly
efficient technique that focuses on identifying promising hyperparameter configurations
while discarding less promising ones. To explore the hyperparameter space effectively, we
uniformly sampled parameters within the specified ranges, as detailed in Table A2. Each
dataset underwent a comprehensive search process, with each fold requiring a maximum
duration of three hours. This approach allowed us to tune our models efficiently and select
the best-performing hyperparameters, ultimately enhancing the predictive capabilities of
our machine learning algorithms.

Based on the results of the hyperparameter search, we conducted a comprehensive
analysis to evaluate the significance of hyperparameters in the tuning process. To assess
this, we employed the fANOVA Hyperparameter Importance Evaluation algorithm [26],
which involves fitting a random forest regression model to predict the objective values of
successfully completed trials based on their parameter configurations. The outcomes of
this analysis are illustrated in Figure A1.

As depicted in the figure, three particular hyperparameters were identified as crucial
in our hyperparameter tuning process. These critical hyperparameters are the number of
layers and the depth of the trees within the NODE (Neural Oblivious Decision Ensemble)
component and the dimensionality of the hidden layers within the CNF (Conditional
Continuous Normalizing Flow) component. These specific hyperparameters played a
pivotal role in influencing the model’s performance and its ability to generalize effectively.
Interestingly, the hyperparameter related to the output dimension of the NODE’s tree did
not exhibit a significant impact on the results.

NUM LAYERS DEPTH TREE OUTPUT DIM NUM TREES FLOW HIDDEN DIMS

CONCRETE

ENERGY

KIN8NM

NAVAL

POWER

PROTEIN

WINE

YACHT

Da
ta

se
t

0.20 0.27 0.06 0.19 0.28

0.25 0.25 0.06 0.26 0.18

0.32 0.45 0.03 0.11 0.10

0.17 0.17 0.16 0.17 0.32

0.33 0.17 0.06 0.21 0.23

0.25 0.24 0.00 0.10 0.41

0.58 0.06 0.02 0.19 0.15

0.25 0.33 0.10 0.17 0.14
0.0

0.1

0.2

0.3

0.4

0.5

Figure A1. Hyperparameter importance analysis in the NodeFlow tuning process. Importance scores
for each dataset and searched hyperparameter were calculated using the fANOVA Hyperparameter
Importance Evaluation algorithm, with the highest scores underlining their pivotal role in the
optimization process.

Table A2. Comprehensive overview of the hyperparameters employed in our research for optimizing
the NodeFlow method. The hyperparameter ranges and settings for various datasets are detailed,
allowing for a clear understanding of the tuning process.

DATASET NUM LAYERS DEPTH TREE OUTPUT DIM NUM TREES FLOW HIDDEN DIMS N EPOCHS # OF ITERATIONS

CONCRETE 1–8 1–7 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 400 400
ENERGY 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 400 300
KIN8NM 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 100 100
NAVAL 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 300 100
POWER 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 200 100
PROTEIN 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 100 100
WINE 1–8 1–6 1–3 100–600 [4,4], [8,8], [16,16], [32,32] 400 500
YACHT 1–8 1–6 1–3 100–500 [4,4], [8,8], [16,16], [32,32] 400 400
YEAR MSD 6 2, 4 1 100, 300 [4,4], [8,8], [16,16], [32,32] 10 16



Entropy 2024, 26, 593 15 of 16

References
1. Borisov, V.; Leemann, T.; Seßler, K.; Haug, J.; Pawelczyk, M.; Kasneci, G. Deep Neural Networks and Tabular Data: A Survey.

arXiv 2021, arXiv:2110.01889.
2. Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? In

Proceedings of the Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, 28 November–9 December 2022.

3. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

4. Prokhorenkova, L.O.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In
Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; pp. 6639–6649.

5. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154.

6. Popov, S.; Morozov, S.; Babenko, A. Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data. In Proceedings of
the 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

7. Abutbul, A.; Elidan, G.; Katzir, L.; El-Yaniv, R. DNF-Net: A Neural Architecture for Tabular Data. arXiv 2020, arXiv:2006.06465 .
8. Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; Babenko, A. Revisiting Deep Learning Models for Tabular Data. In Proceedings of

the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, Virtual, 6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W., Eds.;
pp. 18932–18943.

9. Duan, T.; Anand, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.Y.; Schuler, A. NGBoost: Natural Gradient Boosting for Probabilistic
Prediction. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, PMLR, Virtual Event, 13–18
July 2020; Volume 119, pp. 2690–2700.

10. Sprangers, O.; Schelter, S.; de Rijke, M. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. In
Proceedings of the KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, 14–18 August 2021; pp. 1510–1520. [CrossRef]

11. Malinin, A.; Prokhorenkova, L.; Ustimenko, A. Uncertainty in Gradient Boosting via Ensembles. In Proceedings of the 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, 3–7 May 2021.

12. Wielopolski, P.; Zięba, M. TreeFlow: Going Beyond Tree-Based Parametric Probabilistic Regression. In ECAI 2023; Frontiers in
Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands , 2023; Volume 372, pp. 2631–2638. [CrossRef]

13. Ren, L.; Sun, G.; Wu, J. RoNGBa: A Robustly Optimized Natural Gradient Boosting Training Approach with Leaf Number
Clipping. arXiv 2019, arXiv:1912.02338.

14. Arik, S.Ö.; Pfister, T. TabNet: Attentive Interpretable Tabular Learning. In Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021; AAAI
Press: Washington, DC, USA, 2021; pp. 6679–6687.

15. Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss, C.B.; Goldstein, T. SAINT: Improved Neural Networks for Tabular Data
via Row Attention and Contrastive Pre-Training. arXiv 2021, arXiv:2106.01342.

16. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In
Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 6402–6413.

17. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In JMLR
Workshop and Conference Proceedings, Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York,
NY, USA, 19–24 June 2016; Balcan, M., Weinberger, K.Q., Eds.; Microtome Publishing: Brookline, MA, USA, 2016; Volume 48,
pp. 1050–1059.

18. Hernández-Lobato, J.M.; Adams, R.P. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. In
JMLR Workshop and Conference Proceedings, Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6–11 July 2015; Bach, F.R., Blei, D.M., Eds.; Microtome Publishing: Brookline, MA, USA, 2016; Volume 37, pp. 1861–1869.

19. Peters, B.; Niculae, V.; Martins, A.F.T. Sparse Sequence-to-Sequence Models. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2 August 2019; Volume 1: Long Papers; Korhonen,
A., Traum, D.R., Màrquez, L., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 1504–1519.
[CrossRef]

20. Yang, G.; Huang, X.; Hao, Z.; Liu, M.; Belongie, S.J.; Hariharan, B. PointFlow: 3D Point Cloud Generation With Continuous
Normalizing Flows. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Republic of Korea, 27 October–2 November 2019; pp. 4540–4549. [CrossRef]

21. Sendera, M.; Tabor, J.; Nowak, A.; Bedychaj, A.; Patacchiola, M.; Trzcinski, T.; Spurek, P.; Zieba, M. Non-Gaussian Gaussian
Processes for Few-Shot Regression. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual, 6–14 December 2021; pp. 10285–10298.



Entropy 2024, 26, 593 16 of 16

22. Grathwohl, W.; Chen, R.T.Q.; Bettencourt, J.; Sutskever, I.; Duvenaud, D. FFJORD: Free-Form Continuous Dynamics for Scalable
Reversible Generative Models. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, 6–9 May 2019.

23. Carlisle, M. Racist Data Destruction? 2019. Available online: https://medium.com/@docintangible/racist-data-destruction-11
3e3eff54a8 (accessed on 7 October 2023).

24. McInnes, L.; Healy, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018,
arXiv:1802.03426.

25. Li, L.; Jamieson, K.G.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperpa-
rameter Optimization. J. Mach. Learn. Res. 2017, 18, 185:1–185:52.

26. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. An Efficient Approach for Assessing Hyperparameter Importance. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014; JMLR Workshop and
Conference Proceedings; Volume 32, pp. 754–762.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



Modeling Uncertainty in Personalized Emotion
Prediction with Normalizing Flows

Piotr Miłkowski†1, Konrad Karanowski†1, Patryk Wielopolski1, Jan Kocoń1, Przemysław Kazienko1, Maciej Zięba1,2

1 Department of Artificial Intelligence, Wrocław University of Science and Technology, Poland
2 Tooploox, ul. Tęczowa 7, 53-601 Wrocław, Poland

{piotr.milkowski,konrad.karanowski,patryk.wielopolski,jan.kocon,kazienko,maciej.zieba}@pwr.edu.pl

Abstract—Designing predictive models for subjective problems
in natural language processing (NLP) remains challenging. This
is mainly due to its non-deterministic nature and different
perceptions of the content by different humans. It may be solved
by Personalized Natural Language Processing (PNLP), where
the model exploits additional information about the reader to
make more accurate predictions. However, current approaches
require complete information about the recipients to be straight
embedded. Besides, the recent methods focus on deterministic
inference or simple frequency-based estimations of the probabil-
ities. In this work, we overcome this limitation by proposing
a novel approach to capture the uncertainty of the forecast
using conditional Normalizing Flows. This allows us to model
complex multimodal distributions and to compare various models
using negative log-likelihood (NLL). In addition, the new solution
allows for various interpretations of possible reader perception
thanks to the available sampling function. We validated our
method on three challenging, subjective NLP tasks, including
emotion recognition and hate speech. The comparative analysis
of generalized and personalized approaches revealed that our
personalized solutions significantly outperform the baseline and
provide more precise uncertainty estimates. The impact on the
text interpretability and uncertainty studies are presented as well.
The information brought by the developed methods makes it
possible to build hybrid models whose effectiveness surpasses
classic solutions. In addition, an analysis and visualization of the
probabilities of the given decisions for texts with high entropy of
annotations and annotators with mixed views were carried out.

Index Terms—artificial neural networks, natural language
processing, human profile modelling, probabilistic technique

I. INTRODUCTION

Human affective states, including emotions, strongly depend
on the individual, the stimulant eliciting them, and the as-
sociated context [1]. Therefore, the reasoning of a person’s
perception based on machine learning bears a significant
degree of uncertainty. It refers to the reaction to any content,
including text reading. We can say that disagreements in
human textual inferences are inherent [2]. Most solutions to
subjective problems in natural language processing (NLP),
like recognition of emotions, hate speech, sarcasm, sense
of humor, sentiment, and many others, rely on generalized
perspectives. They consider only text and its single generalized
interpretation. Then, the commonly used solution is to simplify
multiple distinct views, i.e., annotations provided by many
annotators using majority voting or other methods to achieve

†These authors contributed equally to this work.

a sole perception. Overall, we can identify two sources of
uncertainty: (1) humans, who are unsure and imprecise in their
annotations (this is a hidden factor), and (2) a community of
annotators. The latter refers to discrepancies between people
in understanding the problem, and perception of a given
text [3]–[5]. The standard measures for inter-rater agreement
are Krippendorff’s alpha [6] or Fleiss’ kappa [7]. However,
they provide only a single value characterizing the set of all
annotations for all texts. Yet another (3) source of uncertainty:
the trained model itself. It means that the model is not capable
of precisely learning about concepts (what is joy or hate
speech?) and relations from the available learning samples.
This leads to errors and proximate reasoning. Simultaneously,
emotions can be considered multidimensional objects, which
requires multi-task learning [8] and further complicates the
problem of uncertainty modeling. Most of the proposed ap-
proaches for subjective modeling in the NLP domain focus on
deterministic predictions. In this work, we propose to enrich
the family of emotional methods by introducing Emotional
Normalizing Flow – an entirely probabilistic framework that
utilizes conditional Normalizing Flows to model uncertainty.
We postulate to represent the considered tasks as multivariate
regression problems and represent the distribution of the
outputs with conditional flows. This approach allows us to
model complex multimodal distributions of multidimensional
outputs. The experiments and validation were carried out on
emotion detection (ten tasks) and hate speech (two tasks).
We examine various choices of flow models and compare
their performance with the mixture of Gaussians, showing
the superiority of Emotional Normalizing Flow compared to
the selected baseline. Moreover, we show that incorporating
personalization into our model leads to better distribution ad-
justment measured with negative log-likelihood (NLL) value.

To summarize, the contributions of this work are as follows:

• We introduce a novel approach for probabilistic modeling
in subjective NLP-based problems;

• We examine the impact of personalization on the quality
of the model and show that in most of the considered ex-
perimental cases, additional information about the reader
leads to better probability adjustment;

• We show that our approach outperforms the standard
baseline that utilizes a mixture of Gaussians;



• We propose a hybrid approach utilizing Normalizing
Flows and personalization that outperform previous mod-
els.

II. RELATED WORK

Initial work on emotion recognition in the text was based
mainly on frequency analysis of words defined in lexicons
of emotions [9], [10]. These lexicons contained words with
assigned categories of basic emotions, e.g., joy, anger, sadness
[11], [12]. Emotions occurring most frequently at the lexical
level were then assigned to the entire text. With the develop-
ment of text classification methods based on machine learning,
datasets containing texts manually annotated with emotions
began to emerge [13]–[20]. Due to annotators’ subjective per-
ception of emotions, and thus low inter-annotator agreement,
it was common to assign emotion labels to text based on
majority voting [13], [18]. Based on such prepared data, text
classification models were trained. Initially, such models as
SVM [21], BiLSTM, and GRU [22] were used. Currently,
transformer-based models such as BERT perform best in the
task of emotion recognition [18], [23]. The aforementioned
approaches require data for which the inter-annotator agree-
ment is high. However, there are some data sets such as
Wiki-Detox [24], Sentimenti [16] or Measuring Hate Speech
[25], which contain an annotator identifier linked to their
affective annotation. They also include multiple annotations
for a given text from multiple annotators. For such data,
new personalized approaches have recently been developed, in
which the context of the annotator is taken into account in the
model learning process [26]–[36]. This makes it possible, for
example, to answer the question of what emotions a particular
text evokes for a particular user. Recent method proposals
also focus on neuro-symbolic approaches to explain decisions
made [37], usage of large-scale pre-trained language model
(PLM) for prompt-based classification tasks such as sentiment
analysis and emotion detection [38], using recently popular
large language models (LLMs) [39], or methods of complex
persona attribute extraction [40]. However, the methods men-
tioned above do not model the uncertainty associated with the
community’s subjective perception of emotions and the degree
of indecision of the annotators themselves.

In this paper, to model uncertainty described in the In-
troduction we adapt the concept of Normalizing Flows. The
best-known Normalizing Flow models such as NICE [41],
RealNVP [42], MAF [43], and CNF [44] were originally
used for density estimation and image generation tasks. These
models were further extended and used as components for
more sophisticated tasks or even for other domains of ap-
plications. In Computer Vision, there were proposed mod-
els such as RegFlow [45] for probabilistic future location
prediction, Flow Plugin Network [46], PluGeN [47], and
StyleFlow [48] models for conditional image generation. For
the tabular data, recently, TreeFlow [49] was proposed that
utilizes a combination of tree-based models with conditional
Normalizing Flows to estimate uncertainty for uni- and multi-
variate regression problems. In terms of Natural Language

Processing and Normalizing Flows, only Discrete Flow [50]
was proposed to model character-level datasets using Nor-
malizing Flows dedicated to the discrete data. To the best of
our knowledge, no probabilistic approach has been proposed
to model distributions of uncertainty in personalized natural
language processing, and our Emotional Normalizing Flow is
the first probabilistic model proposed for multi-task prediction
of personalized emotions.

III. BACKGROUND

a) Generalized and Personalized Approach to Subjective
NLP Problems.: In the classic approach to the task of text
classification or regression, we assume a training set of the
form D = {(ti,yi)}N

i=1, where ti 2 T is the i-th text
document and yi is its annotation. However, many NLP tasks,
such as recognizing emotions in a text or detecting hate
speech, can be subjective because each person perceives these
phenomena. This leads to a situation when we can have more
than one annotation y for the same text t, as different people
may annotate the same texts differently. Therefore, a training
set is in the form of D = {(ti,pi,yi)}N

i=1, where yi is the
annotation given by person pi 2 P for text ti 2 T .

One approach to subjective tasks in NLP is the so-called
generalized. It assumes that the model predicts the result based
solely on the text and returns the same prediction for every
user. Generalized models usually consist of two parts: text
encoder (language model), which creates text representation
et and classifier or regressor (usually fully-connected layer)
that gives prediction ŷ. However, recent studies [28], [51], [52]
show that this approach should not be considered correct, as
adding information about the annotator significantly improves
model quality and yields better results. The approach that
combines information about the text and the human is so-
called personalized. Compared to the generalized, personal-
ized model adds another component called profile extractor,
that creates human representation ep. The comparison of
generalized and personalized approaches is shown in Fig 1.

There are few existing architectures [28], [51] utilizing this
fact. Still, all of them are deterministic, meaning none model
uncertainty as a direct optimization of negative log-likelihood.

b) Normalizing Flows.: Normalizing Flows [53] are a
class of generative models that enables estimation of the
uncertainty of prediction thanks to the access to log probability
function and thus enable direct optimization of negative log-
likelihood (NLL). The goal of the model is to transform
base distribution pU (u) (usually Gaussians with independent
components) to the complex distribution of the data pY (y)
using a series of K invertible functions that can be written
as u = fK � · · · � f1(y). For that purpose, Normalizing Flows
utilize the change-of-variable formula and then the NLL y is
given by

log pY (y) = log pU (u) �
KX

k=1

log

����det
@fn

@zk�1

���� . (1)

To specify the exact Normalizing Flow model, we need to
define transformations f1, . . . , fK . Here, multiple models were



Input text
Text 

encoder
Classifier/
Regressor

(a) Generalized deterministic model.

Input text

Person

Profile 
extractor

Text 
encoder

Classifier/
Regressor

(b) Personalized deterministic model.

Fig. 1: Comparison of (a) generalized and (b) personalized
deterministic models. (a) consists of two parts: a text en-
coder (language model) that creates text embedding et and
a classifier or regressor (mostly fully-connected layer) that
provides prediction ŷ. This approach is not considered suitable
for subjective NLP tasks, like emotion recognition, because it
does not respect the individual perception of the text. Model
(b) fixes this problem by adding a profile extractor in the form
of user representation ep. It allows human individual charac-
teristics to be included in the inference process. Both models
are deterministic, giving us limited, spolight information about
subjective tasks.

proposed such as NICE [41], RealNVP [42], MAF [43] or
Continuous Normalizing Flows [44].

IV. OUR APPROACH

In this section, we introduce Emotional Normalizing Flow
- the probabilistic model for subjective uncertainty modeling
in the NLP domain. The general schema of the proposed
approach is provided in Fig. 2. The model is composed of
Profile extractor that is responsible for creating the repre-
sentation of the person, ep, and Text encoder that creates
embedding et directly from the input text. Both components
can be represented by various models (trainable and fixed),
and we elaborate on this further in this section.

The extracted vectors ep and et are further delivered to the
conditional flow represented by the complex transformation
function f(·). The role of the function is to transform multi-
variate regression outputs y to z that represents the variable in
the base space, assuming given vectors, ep and et. Formally,
we have z = f(y, ep, et), where f is invertible with respect to

Input text
Text 

encoder

Conditional 
normalizing 

flow

(a) Generalized flow-based probabilistic model.

Input text

Person

Profile 
extractor

Text 
encoder

Conditional 
normalizing 

flow

(b) Personalized flow-based probabilistic model.

Fig. 2: Comparison of (a) generalized and (b) personalized
flow-based probabilistic models. Model (a), as in the case
of generalized deterministic, uses only information about the
text. However, unlike it, it models the conditional probability
distribution pY (y|et) using Normalizing Flow. Model (b)
extends the concept of the personalized deterministic model in
a similar way to (a) but it exploits representations of both the
text et and user ep to model conditional probability distribution
pY (y|ep, et) for the subjective output predictions representing
emotions.

y, y = f�1(z, ep, et). Moreover, the complex transformation
f can be decomposed into a sequence of simple functions,
z = fK � · · · � f1(y, ep, et), where the K is number discrete
transformations. With such assumptions, the probability distri-
bution for y that represents the distribution over the regression
outputs can be calculated using the formula:

pY (y|ep, et) = pZ(z) ·
KY

k=1

����det
@fk

@zk�1

���� , (2)

where z0, . . . , zK are intermediate steps after discrete trans-
formations, assuming z0 := y, and zK := z. pZ(z) is
the assumed base distribution for z with the known density



function, usually represented by Gaussian. Consequently, we
have direct access to the density function for that conditional
distribution. Therefore we can calculate the likelihood function
for a set of input-output pairs to evaluate the quality of the
model. We can sample an infinite number of output values
assuming given inputs and interpret the results.

The proposed model can quickly adapt to the problems
without personalization, simply skipping ep conditioning in
the flow. Our approach is independent of the conditional
Normalizing Flow type, and we experimentally compare the
performances of the most popular models. We follow the
methodology of incorporating conditional components de-
scribed in [46].

a) Profile extractor.: Vector ep contains information
about the user specific to the personalization architecture
used. This can include information such as the deviation of
responses from the majority voice, metadata about the user,
user identifier [28], the correlation of the text’s context with
historical evaluations, or other features unique to the recipient
of the text. It also can be randomly initialized and tuned during
the learning process by backpropagation [51].

b) Text encoder.: In the case of et vector, text represen-
tation is implemented using Transfomer language models. An
attentional weight is assigned for a given text input, divided
into individual tokens. The assigned values are then used to
calculate the weighted sum of the resulting vectors [54]. It
is possible to fine-tune the language model using the loss
function of the final model.

c) Training the model.: To trained Emotional Normaliz-
ing Flow we use the dataset D = {(tn, pn,yn)}N

n=1, composed
of tn textual input, pn features of the person, and correspond-
ing subjective annotation yn given by the person pn for text
tn. We train our model directly by optimizing the negative
log-likelihood function:

L = �
NX

n=1

log pY (yn|en,p, en,t), (3)

where en,p is a vector, that represents profile of the person
pn, and en,t is an embedding of the text tn. The model
can be trained in a two-stage mode or end-to-end paradigm
depending on the form of Profile extractor and Text encoder.
In the first case, the embeddings ep and et are extracted in
the first stage, and parameters of the flow are trained while
optimizing L. Alternatively, suppose the Profile extractor or
Text encoder are represented by differentiable architectures.
In that case, the entire system can be optimized end-to-end,
directly minimizing the negative log-likelihood function.

V. EXPERIMENTS

In this subsection, we evaluate our approach on a set
of challenging datasets, investigating the impact of adding
contextual information about the person in the model. More-
over, we compare flow-based probabilistic models to a simple
Gaussian Mixture Model. Then, we compare our solution
to the deterministic models using sampling from flow and

discretization. Finally, we mix deterministic and probabilistic
approaches to create a hybrid model.

A. Datasets

a) Wikipedia-Detox.: The Wikipedia Detox project has
created a crowd-sourced dataset that contains one million
annotations covering 100,000 discussions of page edits on
Wikipedia [24]. These were often filled with toxic statements,
verbal aggression, and even personal attacks. Each comment
was annotated by about ten annotators provided by the Crowd-
flower service.

The collection containing toxic statements consists of
160,000 texts. It includes a binary determination of toxicity
(where: 0 = non-toxic, 1 = toxic), as well as a rating from
-2 to 2 (where: 2 = very healthy, 0 = neutral, and -2 = very
toxic).

Sets for personal attacks and verbal aggression consist of
100,000 of the same comments. In addition to the binary marks
for aggression (0 = neutral or friendly comment, 1 = aggressive
or attacking), aggression is put on a scale analogous to toxicity
from -2 to 2 (where: 2 = very friendly, 0 = neutral, and -2
= very aggressive). Personal attacks are divided into types:
quoting, recipient, third party, or another type of attack. In
addition to texts shared between these collections, the same
applies to annotators. Thus, we can use knowledge from one
collection to benefit from it in another or a collective approach.
Those willing to participate in the study also completed
questionnaires so that we have demographic information about
them available.

b) Emotion Simple.: This collection consists of 100 texts
marked on 10 scales by 5,365 annotators [55]. Texts are
opinions posted on websites. This gives 53.65 annotations per
text and 1.69 markings from a single user. The texts were
rated for eight basic emotions (sadness, anticipation, joy, fear,
surprise, disgust, trust, and anger) and emotional arousal on a
scale from 0 to 4 for each dimension. In addition, the tenth
aspect rated is the valence expressed on a scale from -3 to 3
(where -3 = negative, 0 = neutral, and 3 = positive). In the
set of individuals with two marks, those with three or more
annotations also appear.

c) Emotion Meanings.: In [56], a huge collection con-
taining 6,000 assessed word collocations was prepared and
published. It contains dimensions and scales analogous to the
Emotion Simple collection – the basic emotions from Robert
Plutchik’s Wheel of Emotions [57].

The scale of the collection makes it one of the most inter-
esting and, simultaneously, the most difficult for personalizing
emotion detection. It has 303,143 annotations from 16,101
people who participated in the study. Each collocation has been
evaluated 50.67 times, and a single annotator has an average
of 18.83 annotations.

The difficulty in working with these data is also because
these are not full-fledged textual statements containing context
but just two words. An example item from the collection:
"colorful beads". Annotator data include information such as



gender, age, education, size of residence, relationship status,
income, or political views.

B. Setups

The dataset was divided into training, validation, and testing
splits. Users and texts were not mixed between sets to bring the
evaluation as close to the real-world scenario. Each experiment
consisted of 10-fold cross-validation, and obtained results were
averaged. Statistical significance tests were performed: t-test
with Bonferroni correction to address the problem of multiple
comparisons. In the tables within the rows, comparisons were
made between models without and with personalization. Bold
indicates the best result, and underline indicates the absence
of statistically significant differences for each dataset. Within
the “Type“ column, the best probabilistic model type or no
significant difference between the two was similarly marked
for each dataset separately.

a) Baselines.: We have three reference points. To check
the impact of personalization, we compared personalized
models with a baseline that uses only textual information
(TXT-Baseline); it is a generalized approach. To investigate
the impact of normalizing flows, we compared them with a
Gaussian Mixture Model to have a reference point in the
form of another, less complex probabilistic method. Finally,
we compared our method with deterministic approaches.

b) Models for conditional normalizing flows.: In our
experimental evaluation, we consider Emotional Normalizing
Flow with various types of conditional normalizing flows.
For single-dimensional datasets: Wikipedia Detox: Toxicity,
Wikipedia Detox: Aggression and Wikipedia Detox: Attack,
we used MAF (maf) and CNF (cnf). For multi-dimensional
Emotions Meanings and Emotions Simple, we used two extra
flows: RealNVP (real_nvp) and NICE (nice). We compared
the results against the baseline that uses mixtures of Gaussians
to model the probability (gmm).

c) Models for personalization.: We investigate three
approaches to respect the personalization context: OneHot,
HuBi-Formula, and HuBi-Medium [51]. They are confronted
with TXT-Baseline (generalized, non-personalized) that does
not contain any information about the annotator. We exploit
LaBSE [58] as a language model in every experiment.

C. Experimental scenarios

a) Experiment 1 - Comparison of generalized and per-
sonalized solutions in the probabilistic approach.: The first
approach verifies the performance of Emotional Normalizing
Flow with fixed hyperparameters on multiple data sets and
tasks: Wikipedia Detox: Toxicity, Wikipedia Detox: Aggression,
Wikipedia Detox: Attack, Emotion Meanings and Emotion
Simple. We also verified the ability of the proposed Emotional
Normalizing Flow to transfer knowledge between thematically
similar multidimensional text labels. For this purpose, the
Wikipedia Detox: Aggression and Wikipedia Detox: Attack
datasets were joined, as they contain annotations for the
same texts performed by the same annotators. As a result,
we obtained a dataset with multi-dimensional labels. This

experiment aimed to examine the effect of personalization
models on the prediction of probability distributions, thus
verifying whether the additional information provided to the
model reduces its uncertainty and comparing Normalizing
Flows to Gaussian Mixture Model.

b) Experiment 2 - Investigating the effect of hyperparam-
eters selected for personalization and Emotional Normalizing
Flow methods on the most difficult dataset.: The second
approach was to verify the maximum possible reduction of
model uncertainty by tuning the model hyperparameters to
a given set and checking which normalizing-flow model ob-
tained the best results. Due to limited resources, we decided
to perform this experiment using only Emotion Meanings
dataset. The parameters that we tuned were: the number of
hidden features, number of layers, number of blocks per layer,
dropout probability, batch normalization within layers, batch
normalization between layers, learning rate, the size of hidden
layers used to prepare user embeddings, and the size of the
output of these embeddings.

c) Experiment 3 - Comparison of probabilistic and de-
terministic approaches.: To compare with classical methods
[8], which are deterministic, it was necessary to prepare
conversions of the Emotional Normalizing Flow output to
the form of exact values. Included in the body of the paper
is the application of two best normalizing flows (RealNVP
and CNF) for multidimensional datasets (Aggression & Attack
[classification task] and Emotion Simple [regression task]).

For the first type of task, each text or text-user pair was
sampled using an iterative method. In the preparation step, we
increased the number of samples in the test part of the dataset
so that the value from 0 to 1 with a step of 0.1 for the class
was tested as a possible context. Iterations were done twice for
values of 0 and 1 in the opposite class. Next, an exponential
was applied to the 44 probabilities of the resulting sample (22
per class for each text). Within the values for the opposite
sampling, (e.g., [0.5, 0] and [0.5, 1]) of a given dimension
were summed, and then for each stopper (0.0, 0.1, ..., 1.0)
divided by the sum of all values for the dimension. If the
probability mass prevailed on the side from 0.0 to 0.5, it was
considered that the class was not assigned and vice versa for
the other part of the axis.

It was impossible for a 10-dimensional set for the regression
task to sample each possible dimension in all values separately
because of the number of possible combinations. Each item
from the test subset was replicated 100 times containing
random real values from 0 to 1 in each class. Majority voting
was then conducted to determine the most likely response for
the scale of each dimension. In the collection, each dimension
had a value analogous to the slider setting during annotation.
For this reason, the task was treated as an ordinary regression,
and the resulting values were rounded to the nearest possible
position. This assumption was used for both values from the
deterministic and probabilistic approaches.

d) Experiment 4 - Hybrid approach (utilizing knowledge
from the text and uncertainty modeling).: The combined
approach, hereafter referred to as hybrid, was done in two



steps. In the first, the learned Emotional Normalizing Flow
models were sampled in the same way as in Experiment 3,
but for all the texts in the collection. Then, the network input
was extended to the deterministic model with an additional
feature. A vector containing the resulting probabilities for each
text was entered along with its embeddings and, in the case of
approaches with personalization, the user profile. This vector
contained all the values from the sampling, and no additional
mathematical operations were performed on it.

D. Results

a) Results of Experiment 1.: The first experiment proved
that adding personalization reduces the uncertainty of proba-
bilistic models, Tab. I. For Wikipedia Detox datasets (Aggres-
sion, Attack and Toxicity), all personalized models received
significantly lower negative log-likelihood values compared
to the non-personalized TXT-Baseline. For all three tasks,
the best architecture was HuBi-Medium combined with CNF.
For Aggression & Attack dataset, personalization improved
most cases’ results. The best results were obtained by OneHot
combined with RealNVP and HuBi-Formula combined with
CNF. In the case of Emotion Simple and Emotion Meaning,
personalization also reduced model uncertainty in most of the
cases. For both datasets, the best results were obtained by
the HuBi-Medium model combined with RealNVP. It is worth
noting that compared to Gaussian Mixture Model, Normalizing
Flows always obtain lower negative log-likelihood values. It
suggests that target variables, i.e., emotions, have complex
distributions, and using a simple probabilistic approach is not
enough.

b) Results of Experiment 2.: In the second experiment,
we carried out hyperparameter tuning on the most challenging
dataset: Emotion Meanings, Tab. II. All possible combinations
of hyperparameters were considered when performing the grid
search. The results seem to confirm earlier speculations about
MAF’s better ability to deal with multidimensional problems
compared to other approaches. Moreover, none of the variants
indicated the benefit of using text alone as input.

c) Results of Experiment 3.: In the third experiment,
we compared results obtained by deterministic models and
Emotional Normalizing Flow, Tab. III. It was carried out
on two datasets: combined Wikipedia Detox: Aggression &
Attack and Emotions Simple. We also decided to use only two
Normalizing Flow Models that performed the best on both of
these datasets: RealNVP and CNF.

In the case of Aggression & Attack dataset, the results
obtained by deterministic models were better for every ar-
chitecture, including the non-personalized one. In the case of
Emotion Simple dataset, the results obtained by probabilistic
models significantly outperformed deterministic models. The
best model was a combination of HuBi-Medium and CNF.
This result seems to confirm that the probabilistic approach is
especially effective on complex multi-dimensional tasks.

d) Results of Experiment 4.: In the fourth experiment,
we mixed the deterministic approach with the probabilistic, to
create a hybrid model, Tab. IV. In both Aggression & Attack

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Toxicity maf 0.0702 -0.0197 -0.0947 0.0053
cnf 0.1231 -0.0707 -0.1202 -0.1378
gmm 0.6422 0.6164 0.5829 0.5072

Aggression maf 0.1705 0.1695 0.0526 0.0859
cnf 0.1685 0.0978 0.0180 -0.0431
gmm 0.8948 0.7783 0.7841 0.7446

Attack maf 0.1669 0.1180 -0.0229 -0.0250
cnf 0.1474 0.0811 -0.0427 -0.0950
gmm 0.7512 0.7318 0.7105 0.6911

Aggression & Attack maf -1.3788 N/A -0.3966 -0.3834
nice -0.8678 -1.1281 -1.0524 -1.0914
real_nvp -3.3482 -3.6181 -3.0235 -1.7208
cnf -3.5113 -2.7339 -3.7002 -2.1357
gmm 3.1729 2.4028 2.5673 2.6858

Emotion Meanings maf 0.5337 -0.0135 0.8525 0.1936
nice -1.9099 -1.8707 -2.0283 -1.4792
real_nvp -5.4775 -2.9377 -5.5189 -5.6377
cnf -3.7186 -1.9640 -3.4632 -4.8458
gmm 5.9559 5.4858 4.8034 4.4719

Emotion Simple maf 1.9130 2.6398 2.6393 1.9314
nice 2.4254 1.8163 2.3502 1.9613
real_nvp 2.5583 1.7845 2.3726 1.4355
cnf 2.1220 1.8197 2.3347 1.9702
gmm 4.2706 3.7496 4.2312 4.0910

TABLE I: Experiment 1 - negative log-likelihood values for
all datasets, without hyperparameter tuning.

and Emotion Simple tasks, the results obtained by the hybrid
approach outperformed previous methods by a large margin.
For Aggression & Attack dataset, the best model turned out
to be HuBi-Medium with CNF. For Emotion Simple dataset,
HuBi-Medium with both RealNVP and CNF performed com-
parably well. The results of this experiment prove, that adding
information about the model uncertainty makes big difference
in the inference process, and helps to predict better for difficult
and subjective tasks.

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Emotion Meanings maf -11.5380 -14.0785 -10.6476 -12.1934
nice 4.2167 -2.0243 -1.0978 -1.9208
real_nvp -2.3509 -4.5813 -5.2833 -7.0285
cnf -1.9623 -3.9381 -5.2247 -4.9381
gmm 12.6564 9.6047 7.8908 8.4545

TABLE II: Experiment 2 - negative log-likelihood values for
Emotion Meanings dataset, with hyperparameter tuning.

VI. CONCLUSIONS

In this paper, we proposed a novel Emotional Normalizing
Flow approach to personalized NLP that opens up new per-
spectives on predicting reader behavior in a non-deterministic
way. From the perspective of psychology and the variability
of emotion sensation over time, the problem of emotion
recognition is one of the most difficult and subjective tasks
facing NLP. People do not perceive their emotions as zero-
one, and most of the attempts so far classified their feelings
in this way. The presented probabilistic approach based on
normalizing flows provides more complex information about
the uncertainty and diversity of possible emotional states.
A comparative analysis of models for emotion recognition
without and with personalization indicated that new methods
are also effectively applicable in a non-deterministic setup. The
generalized, non-personalized solution generates a completely
different concentration of probability mass, directed toward a



Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] discrete(real_nvp) 0.4829 0.4682 0.5860 0.6788

discrete(cnf) 0.5189 0.4738 0.6397 0.7374

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] discrete(real_nvp) 0.4472 0.6535 0.6582 0.6835

discrete(cnf) 0.4428 0.6274 0.6685 0.7005

TABLE III: Experiment 3 - Comparison of classification and
regression using the classical deterministic method and the
result of sampling Emotional Normalizing Flow. Macro F-
1 score for Aggression & Attack and R-squared for Emotion
Simple datasets.

Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] hybrid(real_nvp) 0.8479 0.8254 0.8233 0.8743

hybrid(cnf) 0.8693 0.9052 0.8400 0.9553

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] hybrid(real_nvp) 0.4722 0.7149 0.7237 0.7376

hybrid(cnf) 0.4867 0.6899 0.69223 0.7388

TABLE IV: Experiment 4 - Comparison of the classical
deterministic approach and hybrid models, which in addition
use probabilistic knowledge. Macro F-1 score for Aggression
& Attack and R-squared for Emotion Simple datasets.

quantitative approach. Personalization can shift the view of
the problem in a contextual way by dedicating reasoning to a
single user. Finally, we showed that adding information about
model uncertainty significantly improves the ability to predict
complex and subjective behaviors such as recognizing hate
speech or emotions in a text. The hybrid model we created
significantly outperformed the previous methods, becoming a
new state-of-the-art on two very challenging tasks. Our future
work will focus on applications of our approach to some other
tasks such as active or reinforcement learning.

LIMITATIONS

One important issue related to the nature of normalizing
flows is their ability to convert probabilities to disambiguate
uncertain answers. At the moment, there are no reference
datasets available that contain text and annotator information
simultaneously with multiple markings of the same text by the
same person. This is due to cost constraints in preparing such
data. However, we have conducted experiments on datasets
with different characteristics in which (1) one person marked
several hundred texts [Wikipedia Detox Datasets] and (2)
one text was evaluated dozens of times by different people
[Emotions Simple and Emotion Meanings datasets]. In order
to address the problem mentioned in the introduction, one text
should have N annotations from the same person, e.g., a few
days apart. If we gain access to or prepare such a dataset, we
would be happy to conduct in-depth studies on it.

Due to the language of one of the datasets being different
from English, a multilingual model was used to embed the
text. This decision was made in order to allow for direct
comparisons and cross-referencing. This would have added an
unnecessary layer to the already relatively complex problem

that was addressed. It is possible to experiment with other
language models as well using the source codes provided†.

ACKNOWLEDGMENTS

This work was financed by (1) the National Science Centre,
Poland, project no. 2021/41/B/ST6/04471; (2) Contribution
to the European Research Infrastructure ’CLARIN ERIC
- European Research Infrastructure Consortium: Common
Language Resources and Technology Infrastructure’, 2022-
23 (CLARIN Q); (3) the Polish Ministry of Education and
Science, CLARIN-PL; (4) the European Regional Develop-
ment Fund, as a part of the 2014-2020 Smart Growth Op-
erational Programme, projects no. POIR.04.02.00-00C002/19,
POIR.01.01.01-00-0923/20, POIR.01.01.01-00-0615/21, and
POIR.01.01.01-00-0288/22; (5) the statutory funds of the
Department of Artificial Intelligence, Wroclaw University of
Science and Technology; (6) the Polish Ministry of Education
and Science within the programme “International Projects Co-
Funded”; (7) the European Union under the Horizon Europe,
grant no. 101086321 (OMINO). However, the views and
opinions expressed are those of the author(s) only and do
not necessarily reflect those of the European Union or the
European Research Executive Agency. Neither the European
Union nor European Research Executive Agency can be held
responsible for them. The work conducted by Maciej Zieba
and Patryk Wielopolski was supported by the National Centre
of Science (Poland) Grant No. 2021/43/B/ST6/02853.

REFERENCES

[1] L. F. Barrett, How emotions are made: The secret life of the brain. Pan
Macmillan, 2017.

[2] E. Pavlick and T. Kwiatkowski, “Inherent Disagreements in Human
Textual Inferences,” Transactions of the Association for Computational
Linguistics, vol. 7, pp. 677–694, 11 2019.

[3] C. Beck, H. Booth, M. El-Assady, and M. Butt, “Representation
problems in linguistic annotations: Ambiguity, variation, uncertainty,
error and bias,” in Proceedings of the 14th Linguistic Annotation
Workshop, (Barcelona, Spain), pp. 60–73, Association for Computational
Linguistics, Dec. 2020.

[4] A. M. Davani, M. Díaz, and V. Prabhakaran, “Dealing with disagree-
ments: Looking beyond the majority vote in subjective annotations,”
Transactions of the Association for Computational Linguistics, vol. 10,
pp. 92–110, 2022.

[5] E. Troiano, S. Padó, and R. Klinger, “Emotion ratings: How intensity,
annotation confidence and agreements are entangled,” in Proceedings of
the Eleventh Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, (Online), pp. 40–49, Association
for Computational Linguistics, Apr. 2021.

[6] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” Annen-
berg School for Communication Departmental Papers: Philadelphia,
2011.

[7] J. L. Fleiss, “Measuring nominal scale agreement among many raters.,”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[8] P. Miłkowski, S. Saganowski, M. Gruza, P. Kazienko, M. Piasecki, and
J. Kocoń, “Multitask personalized recognition of emotions evoked by
textual content,” in EmotionAware 2022: Sixth International Workshop
on Emotion Awareness for Pervasive Computing Beyond Traditional
Approaches at PerCom 2022, (online), pp. 347–352, mar 2022.

[9] C. Strapparava and R. Mihalcea, “Learning to identify emotions in text,”
in Proceedings of the 2008 ACM symposium on Applied computing,
pp. 1556–1560, 2008.

†https://github.com/CLARIN-PL/personalized-emotion-prediction-with-
normalizing-flows



[10] F. S. Tabak and V. Evrim, “Comparison of emotion lexicons,” in 2016
HONET-ICT, pp. 154–158, IEEE, 2016.

[11] R. Plutchik, “A general psychoevolutionary theory of emotion,” in
Theories of emotion, pp. 3–33, Elsevier, 1980.

[12] P. Ekman, “An argument for basic emotions,” Cognition & emotion,
vol. 6, no. 3-4, pp. 169–200, 1992.

[13] L. A. M. Oberländer and R. Klinger, “An analysis of annotated corpora
for emotion classification in text,” in Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, pp. 2104–2119, 2018.

[14] J. Kocoń, A. Janz, and M. Piasecki, “Context-sensitive sentiment propa-
gation in wordnet,” in Proceedings of the 9th global wordnet conference,
pp. 329–334, 2018.

[15] J. Kocoń and A. Janz, “Propagation of emotions, arousal and polarity
in wordnet using heterogeneous structured synset embeddings,” in Pro-
ceedings of the 10th Global Wordnet Conference, pp. 336–341, 2019.

[16] J. Kocoń, A. Janz, P. Miłkowski, M. Riegel, M. Wierzba, A. Marchewka,
A. Czoska, D. Grimling, B. Konat, K. Juszczyk, et al., “Recognition of
emotions, valence and arousal in large-scale multi-domain text reviews,”
in 9th Language & Technology Conference, 2019.

[17] J. Kocoń, P. Miłkowski, M. Wierzba, B. Konat, K. Klessa, A. Janz,
M. Riegel, K. Juszczyk, D. Grimling, A. Marchewka, et al., “Multilin-
gual and language-agnostic recognition of emotions, valence and arousal
in large-scale multi-domain text reviews,” in Language and Technology
Conference, pp. 214–231, Springer, 2019.

[18] D. Demszky, D. Movshovitz-Attias, J. Ko, A. Cowen, G. Nemade, and
S. Ravi, “Goemotions: A dataset of fine-grained emotions,” in Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 4040–4054, 2020.

[19] J. Kocoń, J. Radom, E. Kaczmarz-Wawryk, K. Wabnic, A. Za-
jączkowska, and M. Zaśko-Zielińska, “Aspectemo: multi-domain corpus
of consumer reviews for aspect-based sentiment analysis,” in 2021 In-
ternational Conference on Data Mining Workshops (ICDMW), pp. 166–
173, IEEE, 2021.

[20] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch,
A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, et al., “Beyond
the imitation game: Quantifying and extrapolating the capabilities of
language models,” Transactions on Machine Learning Research, 2023.

[21] S. Mohammad, “# emotional tweets,” in * SEM 2012: The First
Joint Conference on Lexical and Computational Semantics–Volume 1:
Proceedings of the main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pp. 246–255, 2012.

[22] M. Abdul-Mageed and L. Ungar, “Emonet: Fine-grained emotion detec-
tion with gated recurrent neural networks,” in Proceedings of the 55th
annual meeting of the association for computational linguistics (volume
1: Long papers), pp. 718–728, 2017.

[23] C.-C. Hsu and L.-W. Ku, “Socialnlp 2018 emotionx challenge overview:
Recognizing emotions in dialogues,” in Proceedings of the sixth inter-
national workshop on natural language processing for social media,
pp. 27–31, 2018.

[24] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks
seen at scale,” in Proceedings of the 26th international conference on
world wide web, pp. 1391–1399, 2017.

[25] C. J. Kennedy, G. Bacon, A. Sahn, and C. von Vacano, “Constructing
interval variables via faceted rasch measurement and multitask deep
learning: a hate speech application,” arXiv preprint arXiv:2009.10277,
2020.

[26] S. Akhtar, V. Basile, and V. Patti, “Modeling annotator perspective and
polarized opinions to improve hate speech detection,” in Proceedings
of the AAAI Conference on Human Computation and Crowdsourcing,
vol. 8, pp. 151–154, 2020.

[27] J. Kocoń, A. Figas, M. Gruza, D. Puchalska, T. Kajdanowicz, and
P. Kazienko, “Offensive, aggressive, and hate speech analysis: From
data-centric to human-centered approach,” Information Processing &
Management, vol. 58, no. 5, p. 102643, 2021.

[28] F. Mireshghallah, V. Shrivastava, M. Shokouhi, T. Berg-Kirkpatrick,
R. Sim, and D. Dimitriadis, “Useridentifier: implicit user representations
for simple and effective personalized sentiment analysis,” arXiv preprint
arXiv:2110.00135, 2021.

[29] K. Kanclerz, A. Figas, M. Gruza, T. Kajdanowicz, J. Kocoń, D. Puchal-
ska, and P. Kazienko, “Controversy and conformity: from generalized
to personalized aggressiveness detection,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 5915–5926, 2021.

[30] P. Milkowski, M. Gruza, K. Kanclerz, P. Kazienko, D. Grimling,
and J. Kocon, “Personal bias in prediction of emotions elicited by
textual opinions,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (ACL-IJCNLP 2021):
Student Research Workshop, (Online), pp. 248–259, Association for
Computational Linguistics, Aug. 2021.

[31] A. Ngo, A. Candri, T. Ferdinan, J. Kocoń, and W. Korczynski, “Studemo:
A non-aggregated review dataset for personalized emotion recognition,”
in Proceedings of the 1st Workshop on Perspectivist Approaches to
NLP@ LREC2022, pp. 46–55, 2022.

[32] K. Kanclerz, M. Gruza, K. Karanowski, J. Bielaniewicz, P. Miłkowski,
J. Kocoń, and P. Kazienko, “What if ground truth is subjective? per-
sonalized deep neural hate speech detection,” in Proceedings of the 1st
Workshop on Perspectivist Approaches to NLP@ LREC2022, pp. 37–45,
2022.

[33] J. Bielaniewicz, K. Kanclerz, P. Miłkowski, M. Gruza, K. Karanowski,
P. Kazienko, and J. Kocoń, “Deep-sheep: Sense of humor extraction from
embeddings in the personalized context,” in 2022 IEEE International
Conference on Data Mining Workshops (ICDMW), pp. 967–974, IEEE,
2022.

[34] T. Ferdinan and J. Kocoń, “Personalized models resistant to malicious
attacks for human-centered trusted ai,” in The AAAI-23 Workshop on Ar-
tificial Intelligence Safety (SafeAI 2023), CEUR Workshop Proceedings,
2023.

[35] W. Mieleszczenko-Kowszewicz, K. Kanclerz, J. Bielaniewicz,
M. Oleksy, M. Gruza, S. Woźniak, E. Dzięcioł, P. Kazienko, and
J. Kocoń, “Capturing human perspectives in nlp: Questionnaires,
annotations, and biases,” in The ECAI 2023 2nd Workshop on
Perspectivist Approaches to NLP, CEUR Workshop Proceedings, 2023.

[36] J. Kocoń, J. Baran, K. Kanclerz, M. Kajstura, and P. Kazienko, “Differ-
ential dataset cartography: Explainable artificial intelligence in compar-
ative personalized sentiment analysis,” in International Conference on
Computational Science, pp. 148–162, Springer, 2023.

[37] E. Cambria, Q. Liu, S. Decherchi, F. Xing, and K. Kwok, “Senticnet 7:
A commonsense-based neurosymbolic ai framework for explainable sen-
timent analysis,” in Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pp. 3829–3839, 2022.

[38] R. Mao, Q. Liu, K. He, W. Li, and E. Cambria, “The biases of pre-trained
language models: An empirical study on prompt-based sentiment analy-
sis and emotion detection,” IEEE Transactions on Affective Computing,
2022.

[39] M. M. Amin, R. Mao, E. Cambria, and B. W. Schuller, “A wide
evaluation of chatgpt on affective computing tasks,” arXiv preprint
arXiv:2308.13911, 2023.

[40] L. Zhu, W. Li, R. Mao, V. Pandelea, and E. Cambria, “Paed: zero-
shot persona attribute extraction in dialogues,” in Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9771–9787, 2023.

[41] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv, 2014.

[42] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
Real NVP,” in 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, OpenReview.net, 2017.

[43] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive
flow for density estimation,” 2018.

[44] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duve-
naud, “Ffjord: Free-form continuous dynamics for scalable reversible
generative models,” arXiv preprint arXiv:1810.01367, 2018.

[45] M. Zieba, M. Przewieźlikowski, M. Śmieja, J. Tabor, T. Trzcinski, and
P. Spurek, “RegFlow: Probabilistic Flow-based Regression for Future
Prediction,” CoRR, vol. abs/2011.14620, 2020.

[46] P. Wielopolski, M. Koperski, and M. Zieba, “Flow plugin network for
conditional generation,” arXiv preprint arXiv:2110.04081, 2021.

[47] M. Wolczyk, M. Proszewska, L. Maziarka, M. Zieba, P. Wielopolski,
R. Kurczab, and M. Smieja, “Plugen: Multi-label conditional generation
from pre-trained models,” in Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2022, The Twelveth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 8647–8656, AAAI Press, 2022.



[48] R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka, “Styleflow: Attribute-
conditioned exploration of stylegan-generated images using conditional
continuous normalizing flows,” ACM Trans. Graph., vol. 40, no. 3,
pp. 21:1–21:21, 2021.

[49] P. Wielopolski and M. Zieba, “Treeflow: Going beyond tree-based
gaussian probabilistic regression,” CoRR, vol. abs/2206.04140, 2022.

[50] D. Tran, K. Vafa, K. K. Agrawal, L. Dinh, and B. Poole, “Discrete
flows: Invertible generative models of discrete data,” in Advances in
Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada (H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, eds.),
pp. 14692–14701, 2019.

[51] J. Kocoń, M. Gruza, J. Bielaniewicz, D. Grimling, K. Kanclerz,
P. Miłkowski, and P. Kazienko, “Learning personal human biases and
representations for subjective tasks in natural language processing,” in
2021 IEEE International Conference on Data Mining (ICDM), pp. 1168–
1173, IEEE, 2021.

[52] P. Kazienko, J. Bielaniewicz, M. Gruza, K. Kanclerz, K. Karanowski,
P. Miłkowski, and J. Kocoń, “Human-centred neural reasoning for
subjective content processing: Hate speech, emotions, and humor,”
Information Fusion, 2023.

[53] D. J. Rezende and S. Mohamed, “Variational Inference with Normalizing
Flows,” in Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, vol. 37 of JMLR
Workshop and Conference Proceedings, pp. 1530–1538, JMLR.org,
2015.

[54] J. Vig and Y. Belinkov, “Analyzing the structure of attention in a
transformer language model,” arXiv preprint arXiv:1906.04284, 2019.

[55] P. Miłkowski, M. Gruza, K. Kanclerz, P. Kazienko, D. Grimling,
and J. Kocoń, “Personal bias in prediction of emotions elicited by
textual opinions,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing: Student Research
Workshop, pp. 248–259, 2021.

[56] M. Wierzba, M. Riegel, J. Kocoń, P. Miłkowski, A. Janz, K. Klessa,
K. Juszczyk, B. Konat, D. Grimling, M. Piasecki, et al., “Emotion norms
for 6000 polish word meanings with a direct mapping to the polish
wordnet,” Behavior Research Methods, pp. 1–16, 2021.

[57] R. Plutchik, The emotions. University Press of America, 1991.
[58] F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang, “Language-

agnostic BERT sentence embedding,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), (Dublin, Ireland), pp. 878–891, Association for Compu-
tational Linguistics, May 2022.

APPENDIX

A. Personalization architectures

Architectures for personalization have been modified to
return a probability distribution instead of the probability of
a class. Input features are passed to the normalizing flow as
context. We are dealing with four architectures:

• Baseline (Fig. 3) - the input is just an embedding of text
• OneHot (Fig. 4) - the user represented as a one-hot vector

is concatenated to the text embedding
• HuBi-Formula (Fig. 5) - the deviation of the user’s

response is taken as its representative feature
• HuBi-Medium (Fig. 6) - annotation-based learned user

embedding combined with text embeddings provides the
context

B. Implementation details

Experiments were performed using the code provided in the
“Anonymous”.

Grid search for hyperparameters of Normalizing Flows in
experiment 2 was performed with the values specified in
Tab. V and Tab. VI.

Flow

0 1 0 0 0 0

Text

Text embedding 
(frozen) 

Prediction

Fig. 3: TXT-Baseline architecture utilizing normalizing flows.

Flow

OneHot 

Text

0 0 1 0 0 0

Prediction

Text embedding 
(frozen) 

0 1 0 0 0 0

C

Concatenation

Fig. 4: OneHot architecture utilizing normalizing flows.

For all experiment purposes, we used a machine with AMD
Ryzen Threadripper PRO 3955WX 16-Core Processor CPU,
2 x NVIDIA GeForce RTX 3090 GPUs, and 256 GB RAM.

C. Visualization of probabilities

For the combined set of Aggression & Attack, visualizations
of the waveform of the probability function were prepared as
a result of Experiment 3. described in the publication, are
presented in Fig. 7 and Fig. 8.



Flow

HB feature 

Text

0 0 1 0 0 0

Prediction

Text embedding 
(frozen) 

0 1 0 0 0 0

C

Concatenation

Fig. 5: HuBi-Formula architecture utilizing normalizing flows.

Softplus 

FC

Flow

0 0 1 0 0 0
0 1 0 0 0 0

Text

Element-wise
addition

Human 
embedding

Prediction

Text embedding 
(frozen) 

Fig. 6: HuBi-Medium architecture utilizing normalizing flows.

Hyperparameter Values
hidden features [2, 4, 6, 8]
num layers [1, 2, 3, 4, 5]
num. blocks per layer [1, 2, 3, 4]
dropout probability [0.0, 0.1, 0.2, 0.4]
batch norm within layers [True, False]
batch norm between layers [True, False]

TABLE V: Hyperparameters for Normalizing Flows and their
possible values during experiment 2. Note that for MAF, the
dropout probability hyperparameter was not used at all.

Hyperparameter Values for TXT-Baseline & OneHot & HuBi-Formula Values for HuBi-Medium
embedding dim. 50 50
hidden dim. 50 [128, 256, 512, 786]
output dim. - [128, 256, 512, 768]
learning rate [1e-5, 1e-4] [1e-5, 1e-4]

TABLE VI: Hyperparameters for training and architectures,
and their possible values during experiment 2.

(a) (b)

(c) (d)

Fig. 7: Visualizations of the waveform of the probability
function for RealNVP with different architectures and for
Attack and Aggression.

(a) (b)

(c) (d)

Fig. 8: Visualizations of the waveform of the probability
function for CNF with different architectures and for Attack
and Aggression.

View publication stats



Flow Plugin Network for Conditional Generation

Patryk Wielopolski1[0000�0003�2579�8293], Michał
Koperski2[0000�0000�0000�0000], and Maciej Zięba1,2[0000�0003�4217�7712]

1 Faculty of Information and Communication Technology, Wroclaw University of
Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

{patryk.wielopolski,maciej.zieba}@pwr.edu.pl
2 Tooploox Ltd., ul. Teczowa 7, 53-601 Wrocław, Poland

michal.koperski@tooploox.com

Abstract. Generative models have gained many researchers’ attention
in the last years resulting in models such as StyleGAN for human face
generation or PointFlow for 3D point cloud generation. However, by de-
fault, we cannot control its sampling process, i.e., we cannot generate
a sample with a specific set of attributes. The current approach is model
retraining with additional inputs and different architecture, which re-
quires time and computational resources. We propose a novel approach
that enables generating objects with a given set of attributes without
retraining the base model. For this purpose, we utilize the normalizing
flow models - Conditional Masked Autoregressive Flow, and Conditional
Real NVP, as a Flow Plugin Network (FPN).

Keywords: Plugin networks · Normalizing Flows · Conditional Image
Generation · Deep generative models

1 Introduction

In the last years, generative models have achieved superior performance in object
generation with leading examples such as StyleGAN [8] for human face synthesis
and PointFlow [22] for 3D point cloud generation and reconstruction area. These
models perform exceptionally well in the case of the unconditional generation
process. However, by default, we cannot control its generating process, i.e., we
cannot out-of-the-box generate a sample with a specific set of attributes. To
perform such a conditional generation, we must put additional effort into creating
a new model with such functionality. In the case of images, specific solutions
were proposed, e.g., conditional modification of the well-known unconditional
generative models - Conditional Variational Autoencoders [20] and Conditional
Generative Adversarial Networks [14]. These approaches provide a good result in
conditional image generation; however, they require additional effort for training
and model design. The ideal solution would consist of a robust transformation
of the unconditional base model to a conditional one.

This work proposes a novel approach that enables a generation of objects
with a given set of attributes from an already trained unconditional generative



2 P. Wielopolski et al.

model (a base model) without its retraining. We assume that the base model
has an autoencoder architecture, i.e., an encoder and a decoder network that
enables the transformation of an object to the latent space representation and
inverts that transformation, respectively. In our method, we utilize the concept
of the plugin network [10], whose task is to incorporate information known dur-
ing the inference time to the pretrained model and extend that approach to
generative models. As the Flow Plugin Network backbone model, we use the
conditional normalizing flow models - Conditional Masked Autoregressive Flow
and Conditional Real NVP. Finally, we perform several experiments on three
datasets: MNIST, ShapeNet, and CelebA, including conditional object genera-
tion, attribute manipulation, and classification tasks. The code for the method
and experiments is publicly available.3

Concluding, our contributions are as follows:

– we propose a method for conditional object generation from already trained
models with an autoencoder architecture, both generative and non-generative;

– we show that the proposed method could be used for non-generative variants
of the autoencoder models, thus making them generative;

– we show that it also could be successfully used for classification tasks or as
a tool for attribute manipulation.

The rest of the paper is organized as follows. In the next section, we de-
scribe the theoretical background. Afterward, we describe in detail our proposed
method. In the following section, we shortly describe related works. Then we
present the results of the experiments, and in the last section, we summarize our
work and propose directions for future research.

2 Background

2.1 Autoencoders

Autoencoder [4] is a neural network primarily designed to learn an informative
representation of the data by learning to reconstruct its input. Formally, we
want to learn the functions E� : Rn ! Rq and D✓ : Rq ! Rn where � and
✓ are parameters of the encoder and decoder. The model is usually trained by
minimizing the reconstruction loss: Lrec =

PN
n=1 ||xn�D✓ �E�(xn)||22, assuming

training XN = {xn} is given. Some regularization terms can enrich the simple
architecture of the autoencoder to obtain the generative model. For Variational
Autoencoder (VAE) [9] models, it is achieved by enforcing the latent represen-
tation to be normally distributed using Kullback-Leibler divergence. For the
adversarial autoencoders, [13], the assumed prior on the embeddings is obtained
via adversarial training. With such extensions, the model is not only capable of
representing the data on a low-dimensional manifold, but it is also capable of
generating samples from an assumed prior in latent space.

3 https://github.com/pfilo8/Flow-Plugin-Network-for-conditional-generation



Flow Plugin Network for Conditional Generation 3

2.2 Normalizing Flows

Normalizing flows [18] represent the group of generative models that can be
efficiently trained via direct likelihood estimation. They provide a general way of
constructing flexible probability distributions over continuous random variables.
Suppose we have a D-dimensional real vector x, and we would like to define a
joint distribution over x. The main idea of flow-based modeling is to express x
as a transformation T of a real vector u sampled from a base distribution pu(u)
with a known density function:

x = T (u) where u ⇠ pu(u) (1)

It is common to chain multiple transformations T1, . . . , TK to obtain transfor-
mation T = TK � · · · � T1, where each Tk transforms zk�1 into zk, assuming
z0 = u and zK = x. In practice we implement either Tk or T�1

k using a neu-
ral network f�k

with parameters �k. Assuming given training data XN = {xn}
the parameters �k are estimated in the training procedure by minimizing the
negative log-likelihood (NLL):

� log px(xn) = �
NX

n=1

[log pu(un) �
KX

k=1

log | det JTk
(zn,k�1)|], (2)

where pu(u) is usually a Gaussian distribution with independent components.
The most challenging aspect of training flow-based models is an optimization of
log | det JTk

(zk�1)|, where the Jacobian JT (u) is the D⇥D matrix of all partial
derivatives of T , that may be challenging to compute for high-dimensional data.
That issue is usually solved by enforcing the Jacobian matrix to be triangular,
for which the determinant is easy to calculate.

3 Flow Plugin Network

3.1 Overview

We consider the base pretrained model M with an autoencoder architecture,
i.e., it has an encoder E , a bottleneck with latent space Z, and decoder D,
which was previously trained on dataset X . We also assume we have a set
of attributes Y for samples in the dataset X . The main idea in the proposed
method is to use a conditional normalizing flow model F to learn a bidirectional
conditional mapping between a simple base distribution N (usually standard
normal distribution) and a latent space representation which will be conditioned
by some attributes (classes) from the set Y . This approach will enable us to
generate a random sample from the specific region of the latent space, which
should correspond to object representation with a particular set of attributes.
In the last step, using a decoder D, we can generate an object with a requested
set of attributes. The schema of the proposed method can be found in Figure 1.



4 P. Wielopolski et al.

Fig. 1: High-level schema of the Flow Plugin Network method.

3.2 Training

We assume that we have a pretrained model M , samples x from the dataset
X , and attributes y from the attribute set Y . Our training objective is to learn
a bidirectional mapping between a simple base distribution and a latent space
representation. For that reason, we need to have a dataset consisting of pairs
(zi,yi) where zi is a latent space representation of the vector xi. In the first step,
we obtain such a dataset by encoding vectors xi to vectors zi using encoder E .
In the second step, we train conditional normalizing flow F using obtained pairs
(zi,yi), by minimizing the conditional negative log-likelihood function:

�
NX

i=1

log p(zi|yi) = �
NX

i=1

�
log pu(T�1(zi|yi)) + log | det JT�1(zi|yi)|

�
. (3)

It is essential to highlight that weights of the base model M are frozen during
training, and only parameters of transformation T are optimized.

As plugin networks, we use a conditional version of the normalizing flows. For
MAF [17], the conditioning component is concatenated to the inputs to mean
and log standard deviation functions:

µi = fµi
(x1:i�1,y), ↵i = f↵i

(x1:i�1,y) (4)

For RealNVP [6] model, the same operation is applied to scaling and shifting
functions for each of the coupling layers:

x1:d = u1:d (5)
xd+1:D = ud+1:D � exp (s(u1:d,y)) + t(u1:d,y), (6)

3.3 Conditional object generation

In this section, we will present how the proposed approach can be applied to
conditional image generation. First, we generate a sample from the base distri-
bution N and construct a vector that encodes the attributes y of the desired



Flow Plugin Network for Conditional Generation 5

object that will be generated. Then, the generated sample is passed via the flow
conditioned on the vector of attributes embeddings to obtain a vector in the
latent space Z of the base model M . After that, we process that vector to the
decoder and obtain the requested object.

3.4 Attribute manipulation

We could also use the proposed approach for object attribute manipulation,
e.g., we may want to change the color of the person’s hair on the image. First, to
perform such an operation, we need to encode an input object to a latent space
representation. In the next step, we need to pass the obtained sample through
the normalizing flow F with attributes corresponding to the original image and
obtain a sample in the base distribution domain. Subsequently, we need to change
the selected attributes. Then, we go back to the latent space representation
using the previously obtained sample from the base distribution and the new
attributes. Finally, we decode the obtained representation and obtain the final
result.

3.5 Classification

The proposed approach can be easily applied as a generative classification model
that utilizes the autoencoder’s feature representation Z. Assuming that a set Y
is a set of all possible classes, we can use the Bayes rule to calculate predictive
distribution P (y|z), which is a probability of specific class y given the vector of
the latent space representation z: P (y|z) = P (z|y)P (y)

P (z) , where P (y) is an assumed
class prior and P (z) =

P
y2Y P (z|y)P (y). As a consequence, we can omit the

denominator as it is a normalizing factor and perform classification according to
the rule given by the formula ŷ = argmaxy2Y P (z|y)P (y).

4 Related works

The problem of conditional generation is solved using a variety of generative ap-
proaches. Some of them extend traditional VAE architectures to construct the
conditional variants of this kind of model for tasks like visual segmentation [20],
conditional image [21], or text generation [23]. Conditional variants of GANs
(cGANs) [14] are also popular for class-specific image [16] or point cloud [15]
generation. Conditioning mechanisms are also implemented in some variants of
flow models, including Masked Autoregressive Flows (MAF) [17], RealNVP [6],
and Continuous Normalizing Flows [7]. The conditional flows are successively ap-
plied to semi-supervised classification [3], super-resolution generation [12], noise
modeling [2], structured sequence prediction [5], or 3D points generation [19].
The presented methods achieve outstanding results in solving a variety of tasks.
However, they are trained in an end-to-end fashion, and any changes in the
model require very expensive training procedures from scratch.



6 P. Wielopolski et al.

That issue is tackled by plugin models introduced in [10]. The idea behind
plugins is to incorporate additional information, so-called partial evidence, into
the trained base model without modifying the parameters. It can be achieved by
adding small networks named plugins to the intermediate layers of the network.
The goal of these modules is to incorporate additional signals, i.e., information
about known labels, into the inference procedure and adjust the predicted output
accordingly. Plugin models were successively applied to the classification and
segmentation problems. The idea of incorporating an additional, conditional flow
model into a pretrained generative model was introduced in StyleFlow model
[1]. This approach was designed for StyleGAN [8], the state-of-the-art model for
generating face images. MSP [11] utilizes manipulation of VAE latent space via
matrix subspace projection to enforce desired features on images.

Compared to the reference approaches, we present a general framework for
utilizing conditional flow for various tasks, including conditional image genera-
tion, attribute manipulation, and classification. Our model can be applied to any
base autoencoder with bottleneck latent space without additional requirements.

5 Experiments

This section evaluates the proposed method for three tasks: conditional object
generation, attribute manipulation, and classification. We perform experiments
on two domains: images (MNIST, CelebA) and 3D point clouds (ShapeNet).
Our goal in the experiments is to qualitatively and quantitatively validate our
method.

5.1 Conditional object generation

Our goal in this section is qualitative validation of conditional image and con-
ditional 3D point cloud generation capabilities of Flow Plugin Network (FPN).
In this experiment, we utilize the already trained non-conditional autoencoder-
like models and plug in our FPN to make the whole architecture conditionally
generative.

Methodology The first part of the experiment we performed on the MNIST
dataset. Due to the lack of the standard baseline VAE and AE models, we
trained these models by ourselves. The model’s bottleneck with latent space has
a dimensionality equal to 40.

The second part of the experiments we performed on the ShapeNet dataset.
It has more classes, which additionally are imbalanced, and it’s an application
to a different domain. We used PointFlow [22], a de-facto standard model for
Point Clouds. The model has an autoencoder-like architecture and operates on a
128-dimensional latent space. We used an already trained non-generative version
of the model for all 55 classes. For both datasets, we trained two models with
different normalizing flow architectures for each dataset: Conditional Masked
Autoregressive Flow (C-MAF) and Conditional Real NVP (C-RNVP).



Flow Plugin Network for Conditional Generation 7

(a) Autoencoder (b) Flow Plugin Network (FPN)

Fig. 2: Comparison of the latent spaces obtained using Autoencoder on MNIST
dataset. We can observe that FPN could correctly fit and then sample the latent
space distributions for all models. The results were visualized in the 2D space
after UMAP transformation, and colors represent different classes.

Results We started experiments by evaluating conditional generative capabil-
ities on latent spaces. The goal of this experiment was to evaluate if the Flow
Plugin Network is capable of correctly learning the conditional mapping between
base distributions and latent spaces of the models. A successful experiment will
inform us that our model correctly generates embeddings, and possible errors on
the final object could be caused by the decoder part of the autoencoder.

We generated latent space of the Autoencoder model for the MNIST dataset.
It was generated by encoding images using the encoder part of the models. On
the other hand, the latent space for Flow Plugin Networks with MAF backbone
was generated by sampling 1000 data points conditioned on the specific class.
The results are presented in Figure 2. We can observe that our method generates
samples in the proper locations of the latent space, which confirms its ability to
reconstruct the latent space properly.

In the next experiment, we go one step further, and we sample latent space
vectors using the Flow Plugin Network model and decode them by the decoder
from the base model. The experiment aims to evaluate the model in an end-to-
end conditional generation process.

In this experiment, we utilize the already trained non-conditional autoencoder-
like model and plug in our FPN to make the whole architecture conditionally
generative. The results for the MNIST dataset are presented in Figure 3. We
can observe samples generated from the VAE model on the left - the samples’
classes are entirely random. On the right, our method generated samples with
specific digit classes. What is essential here is that the weights of the already
trained model are not changed during the FPN training phase. Thanks to that,
we showed that we could extend the standard autoencoder-like models to the
new task - conditional generation, without changes to any of the base model pa-



8 P. Wielopolski et al.

(a) Samples from Autoencoder. (b) Samples from Flow Plugin Network.

Fig. 3: Motivating example of the paper. Autoencoder correctly generates hand-
written digits from the MNIST dataset (on the left), but numbers are completely
random. Flow Plugin Network can utilize an already trained model to generate
samples of the specific class (on the right).

Fig. 4: Examples of 3D Point Clouds generated from PointFlow latent space
using Flow Plugin Network model.

rameters. Moreover, we also observed that choosing the normalizing flow model
used as a Flow Plugin Network did not impact the qualitative results.

We also performed the same experiment for the ShapeNet dataset using only
the C-MAF backbone. The resulting objects are in Figure 4, and the model
correctly generated the requested examples. The original PointFlow model was
a pure autoencoder without generative capabilities. The authors created sepa-



Flow Plugin Network for Conditional Generation 9

Fig. 5: Results of the feature manipulation experiment on the CelebA dataset.
Legend: +/- corresponds to adding or removing a particular feature from the
conditioning attributes.

rate models for different classes. Still, we used the general model trained on all
classes to generate samples from all classes, effectively turning a non-generative
autoencoder model into a generative one.

5.2 Attribute manipulation

Methodology In this experiment, we use the CelebA dataset, Variational Au-
toencoder with Latent Space Factorization via Matrix Subspace Projection [11]
(MSP) as a base model and Conditional Masked Autoregressive Flow as a Flow
Plugin Network model.

Results The results are presented in Figure 5. We have the original image on
the left, the middle reconstruction from the base model, and the image with
changed attributes on the right. We can notice that the base model introduces
some artifacts in the reconstruction. The same artifacts are visible in the images
generated with our method, as our method uses the base model decoder to
generate the image. However, more importantly, the qualitative results show
that our proposed method can control the attributes of the reconstructed image.
Our model can do it without retraining or modifying the base model.



10 P. Wielopolski et al.

Table 1: MNIST and ShapeNet Classification experiment results. Our Flow Plu-
gin Network architecture extends unsupervised autoencoders to the classification
task. The proposed method achieves a similar level of accuracy as the supervised
classification models.

Model MNIST ShapeNet
Logistic Regression 0.8833 0.8443
Linear SVM 0.9164 0.8503
RBF SVM 0.9603 0.8643
FPN (Conditional-MAF) 0.9677 0.8404
FPN (Conditional-RealNVP) 0.9616 0.8370

5.3 Classification

In this section, we show the results of the classification experiment in which
we use the proposed Flow Plugin Network model as a classifier as described
in Section 3.5. It is a fascinating property of our model, as we can extend ei-
ther generative or non-generative models (trained in an unsupervised way) to
classification models.

Methodology Similar to the Conditional Object Generation part of the experi-
ments, we use MNIST and ShapeNet datasets. Additionally, we use the same base
and Flow Plugin Network models described for Conditional Object Generation.
This experiment compares our method with other classification baselines trained
in a supervised way. Specifically, we compare our method to Logistic Regression,
SVM with linear kernel, and SVM with RBF kernel. We performed a hyperpa-
rameter grid search for each baseline method using 5-fold cross-validation.

Results The accuracy assessment obtained by all models is presented in Table 1.
We can observe that the Flow Plugin Network models were the best-performing
ones on the MNIST dataset, and the ShapeNet dataset obtained comparable
results to the baseline methods. Moreover, we can observe that both normaliz-
ing flows backbones - Conditional MAF and Conditional RealNVP performed
comparably.

6 Summary

In this work, we have proposed and successfully tested a method for conditional
object generation based on a model with an autoencoder architecture. In the
case of non-generative autoencoders, this method makes them generative. More-
over, we used a trained Flow Plugin Network for classification and attribute
manipulation tasks.

During experiments, we have shown that using the proposed method, we
can conditionally generate images and 3D point clouds from generative models



Flow Plugin Network for Conditional Generation 11

such as Variational Autoencoder and non-generative ones such as Autoencoder
or PointFlow. Moreover, we have performed a classification task on MNIST
and ShapeNet datasets and compared the results with shallow machine learning
models. We obtained the best results using our model on the former dataset and
the latter comparable ones. Lastly, we have successfully manipulated images of
human faces.

7 Acknowledgements

The work of M. Zieba was supported by the National Centre of Science (Poland)
Grant No. 2020/37/B/ST6/03463.

References

1. Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: Styleflow: Attribute-conditioned ex-
ploration of stylegan-generated images using conditional continuous normalizing
flows. ACM Trans. Graph. 40(3), 21:1–21:21 (2021)

2. Abdelhamed, A., Brubaker, M., Brown, M.S.: Noise flow: Noise modeling with
conditional normalizing flows. In: 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019. pp. 3165–3173. IEEE (2019)

3. Atanov, A., Volokhova, A., Ashukha, A., Sosnovik, I., Vetrov, D.P.:
Semi-conditional normalizing flows for semi-supervised learning. CoRR
abs/1905.00505 (2019)

4. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. CoRR abs/2003.05991
(2020)

5. Bhattacharyya, A., Hanselmann, M., Fritz, M., Schiele, B., Straehle, C.: Con-
ditional flow variational autoencoders for structured sequence prediction. CoRR
abs/1908.09008 (2019)

6. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017)

7. Grathwohl, W., Chen, R.T.Q., Bettencourt, J., Sutskever, I., Duvenaud, D.:
FFJORD: free-form continuous dynamics for scalable reversible generative mod-
els. In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

8. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for genera-
tive adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 4401–4410.
Computer Vision Foundation / IEEE (2019)

9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings (2014)

10. Koperski, M., Konopczynski, T.K., Nowak, R., Semberecki, P., Trzcinski, T.: Plu-
gin networks for inference under partial evidence. In: IEEE Winter Conference
on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA,
March 1-5, 2020. pp. 2872–2880. IEEE (2020)



12 P. Wielopolski et al.

11. Li, X., Lin, C., Li, R., Wang, C., Guerin, F.: Latent space factorisation and manip-
ulation via matrix subspace projection. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event.
Proceedings of Machine Learning Research, vol. 119, pp. 5916–5926. PMLR (2020)

12. Lugmayr, A., Danelljan, M., Gool, L.V., Timofte, R.: Srflow: Learning the super-
resolution space with normalizing flow. In: Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V.
Lecture Notes in Computer Science, vol. 12350, pp. 715–732. Springer (2020)

13. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders.
CoRR abs/1511.05644 (2015)

14. Mateos, M., González, A., Sevillano, X.: Guiding gans: How to control
non-conditional pre-trained gans for conditional image generation. CoRR
abs/2101.00990 (2021)

15. Milz, S., Simon, M., Fischer, K., Pöpperl, M., Gross, H.: Points2pix: 3d point-cloud
to image translation using conditional gans. In: Pattern Recognition - 41st DAGM
German Conference, DAGM GCPR 2019, Dortmund, Germany, September 10-13,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11824, pp. 387–400.
Springer (2019)

16. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
gans. In: Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine
Learning Research, vol. 70, pp. 2642–2651. PMLR (2017)

17. Papamakarios, G., Murray, I., Pavlakou, T.: Masked autoregressive flow for density
estimation. In: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. pp. 2338–2347 (2017)

18. Papamakarios, G., Nalisnick, E.T., Rezende, D.J., Mohamed, S., Lakshmi-
narayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach.
Learn. Res. 22, 57:1–57:64 (2021)

19. Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: Conditional gen-
erative flow models for images and 3d point clouds. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020. pp. 7946–7955. Computer Vision Foundation / IEEE (2020)

20. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Information Processing Systems 2015, De-
cember 7-12, 2015, Montreal, Quebec, Canada. pp. 3483–3491 (2015)

21. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2image: Conditional image gener-
ation from visual attributes. In: Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
IV. Lecture Notes in Computer Science, vol. 9908, pp. 776–791. Springer (2016)

22. Yang, G., Huang, X., Hao, Z., Liu, M., Belongie, S.J., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019. pp. 4540–4549. IEEE (2019)

23. Zhao, T., Zhao, R., Eskénazi, M.: Learning discourse-level diversity for neural di-
alog models using conditional variational autoencoders. In: Barzilay, R., Kan, M.
(eds.) Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers. pp. 654–664. Association for Computational Linguistics (2017)



PluGeN: Multi-Label Conditional Generation from Pre-trained Models

Maciej Wołczyk1*, Magdalena Proszewska1∗, Łukasz Maziarka1,
Maciej Zieba2,4, Patryk Wielopolski2, Rafał Kurczab3, Marek Śmieja1†

1Jagiellonian University
2Wroclaw University of Science and Technology

3 Institute of Pharmacology PAS
4 Tooploox

Abstract
Modern generative models achieve excellent quality in a vari-
ety of tasks including image or text generation and chemical
molecule modeling. However, existing methods often lack the
essential ability to generate examples with requested proper-
ties, such as the age of the person in the photo or the weight
of the generated molecule. Incorporating such additional con-
ditioning factors would require rebuilding the entire architec-
ture and optimizing the parameters from scratch. Moreover,
it is difficult to disentangle selected attributes so that to per-
form edits of only one attribute while leaving the others un-
changed. To overcome these limitations we propose PluGeN
(Plugin Generative Network), a simple yet effective genera-
tive technique that can be used as a plugin to pre-trained gen-
erative models. The idea behind our approach is to transform
the entangled latent representation using a flow-based mod-
ule into a multi-dimensional space where the values of each
attribute are modeled as an independent one-dimensional dis-
tribution. In consequence, PluGeN can generate new sam-
ples with desired attributes as well as manipulate labeled at-
tributes of existing examples. Due to the disentangling of the
latent representation, we are even able to generate samples
with rare or unseen combinations of attributes in the dataset,
such as a young person with gray hair, men with make-up,
or women with beards. We combined PluGeN with GAN
and VAE models and applied it to conditional generation and
manipulation of images and chemical molecule modeling.
Experiments demonstrate that PluGeN preserves the quality
of backbone models while adding the ability to control the
values of labeled attributes. Implementation is available at
https://github.com/gmum/plugen.

Introduction
Generative models such as GANs and variational autoen-
coders have achieved great results in recent years, especially
in the domains of images (Brock, Donahue, and Simonyan
2018; Brown et al. 2020) and cheminformatics (Gómez-
Bombarelli et al. 2018; Jin, Barzilay, and Jaakkola 2018).
However, in many practical applications, we need to con-
trol the process of creating samples by enforcing particular
features of generated objects. This would be required to reg-
ulate the biases present in the data, e.g. to assure that people

*Equal contribution
†Corresponding author: marek.smieja@uj.edu.pl

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

input gender glasses smile

Figure 1: Attributes manipulation performed by PluGeN us-
ing the StyleGAN backbone.

of each ethnicity are properly represented in the generated
set of face images. In numerous realistic problems, such as
drug discovery, we want to find objects with desired prop-
erties, like molecules with a particular activity, non-toxicity,
and solubility.

Designing the conditional variants of generative models
that operate on multiple labels is a challenging problem
due to intricate relations among the attributes. Practically,
it means that some combinations of attributes (e.g. a woman
with a beard) might be unobserved or rarely observed in the
training data. In essence, the model should be able to go
beyond the distribution of seen data and generate examples
with combinations of attributes not encountered previously.
One might approach this problem by building a new condi-
tional generative model from the ground up or design a solu-
tion tailored for a specific existing unsupervised generative
model. However, this introduces an additional effort when
one wants to adapt it to a newly invented approach.

To tackle this problem while leveraging the power of ex-
isting techniques, we propose PluGeN (Plugin Generative
Network), a simple yet effective generative technique that
can be used as a plugin to various pre-trained generative
models such as VAEs or GANs, see Figure 1 for demon-
stration. Making use of PluGeN, we can manipulate the at-
tributes of input examples as well as generate new samples
with desired features. When training the proposed module,
we do not change the parameters of the base model and thus

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8647



(a) Factorization of true data distribution (b) Probability distribution covered by PluGeN.

Figure 2: PluGeN factorizes true data distribution into components (marginal distributions) related to labeled attributes, see
(a), and allows for describing unexplored regions of data (uncommon combinations of labels) by sampling from independent
components, see (b). In the case illustrated here, PluGeN constructs pictures of men with make-up or women with beards,
although such examples rarely (or never) appear in the training set.

we retain its generative and reconstructive abilities, which
places our work in the emerging family of non-invasive net-
work adaptation methods (Wołczyk et al. 2021; Rebuffi,
Bilen, and Vedaldi 2017; Koperski et al. 2020; Kaya, Hong,
and Dumitras 2019; Zhou et al. 2020).

Our idea is to find a mapping between the entangled la-
tent representation of the backbone model and a disentan-
gled space, where each dimension corresponds to a single,
interpretable attribute of the image. By factorizing the true
data distribution into independent components, we can sam-
ple from each component independently, which results in
creating samples with arbitrary combinations of attributes,
see Figure 2. In contrast to many previous works, which
are constrained to the attributes combinations visible in the
training set, PluGeN gives us full control of the generation
process, being able to create uncommon combinations of at-
tributes, such as a woman with a beard or a man with heavy
make-up. Generating samples with unseen combinations of
attributes can be viewed as extending the distribution of gen-
erative models to unexplored although reasonable regions of
data space, which distinguishes our approach from existing
solutions.

Extensive experiments performed on the domain of im-
ages and a dataset of chemical compounds demonstrate that
PluGeN is a reusable plugin that can be applied to various
architectures including GANs and VAEs. In contrast to the
baselines, PluGeN can generate new samples as well as ma-
nipulate the properties of existing examples, being capable
of creating uncommon combinations of attributes.

Our contributions are as follow:
• We propose a universal and reusable plugin for multi-

label generation and manipulation that can be attached to
various generative models and applied it to diverse do-
mains, such as chemical molecule modeling.

• We introduce a novel way of modeling conditional distri-
butions using invertible normalizing flows based on the
latent space factorization.

• We experimentally demonstrate that PluGeN can pro-
duce samples with uncommon combinations of attributes
going beyond the distribution of training data.

Related work
Conditional VAE (cVAE) is one of the first methods which
includes additional information about the labeled attributes
in a generative model (Kingma et al. 2014). Although this
approach has been widely used in various areas ranging from
image generation (Sohn, Lee, and Yan 2015; Yan et al. 2016;
Klys, Snell, and Zemel 2018) to molecular design (Kang and
Cho 2018), the independence of the latent vector from the
attribute data is not assured, which negatively influences the
generation quality. Conditional GAN (cGAN) is an alterna-
tive approach that gives results of significantly better qual-
ity (Mirza and Osindero 2014; Perarnau et al. 2016; He et al.
2019), but the model is more difficult to train (Kodali et al.
2017). cGAN works very well for generating new images
and conditioning factors may take various forms (images,
sketches, labels) (Park et al. 2019; Jo and Park 2019; Choi
et al. 2020), but manipulating existing examples is more
problematic because GAN models lack the encoder network
(Tov et al. 2021). Fader Networks (Lample et al. 2017) com-
bine features of both cVAE and cGAN, as they use encoder-
decoder architecture, together with the discriminator, which
predicts the image attributes from its latent vector returned
from the encoder. As discussed in (Li et al. 2020), the train-
ing of Fader Networks is even more difficult than standard
GANs, and disentanglement of attributes is not preserved.
MSP (Li et al. 2020) is a recent auto-encoder based architec-
ture with an additional projection matrix, which is respon-
sible for disentangling the latent space and separating the
attribute information from other characteristic information.
In contrast to PluGeN, MSP cannot be used with pre-trained
GANs and performs poorly at generating new images (it was
designed for manipulating existing examples). CAGlow (Liu
et al. 2019) is an adaptation of Glow (Kingma and Dhariwal

8648



2018) to conditional image generation based on modeling
a joint probabilistic density of an image and its conditions.
Since CAGlow does not reduce data dimension, applying it
to more complex data might be problematic.

While the above approaches focus on building conditional
generative models from scratch, recent works often focus on
manipulating the latent codes of pre-trained models. Style-
Flow (Abdal et al. 2021) operates on the latent space of
StyleGAN (Karras, Laine, and Aila 2019) using a condi-
tional continuous flow module. Although the quality of gen-
erated images is impressive, the model has not been applied
to other generative models than StyleGAN and domains
other than images. Moreover, StyleFlow needs an additional
classifier to compute the conditioning factor (labels) for im-
ages at test time. Competitive approaches to StyleGAN ap-
pear in (Gao et al. 2021; Tewari et al. 2020; Härkönen et al.
2020; Nitzan et al. 2020). InterFaceGAN (Shen et al. 2020)
postulates that various properties of the facial semantics can
be manipulated via linear models applied to the latent space
of GANs. Hijack-GAN (Wang, Yu, and Fritz 2021) goes be-
yond linear models and designs a proxy model to traverse
the latent space of GANs.

In disentanglement learning, we assume that the data has
been generated from a fixed number of independent factors
of underlying variation. The goal is then to find a transfor-
mation that unravels these factors so that a change in one di-
mension of the latent space corresponds to a change in one
factor of variation while being relatively invariant to changes
in other factors (Bengio, Courville, and Vincent 2013; Kim
and Mnih 2018; Higgins et al. 2017; Brakel and Bengio
2017; Kumar, Sattigeri, and Balakrishnan 2017; Chen et al.
2019; Spurek et al. 2020; Dinh, Krueger, and Bengio 2014;
Sorrenson, Rother, and Köthe 2020; Chen et al. 2016). As
theoretically shown in (Locatello et al. 2019), the unsuper-
vised learning of disentangled representations is fundamen-
tally impossible without inductive biases on both the models
and the data. In this paper, we solve a slightly different prob-
lem than typical disentanglement, as we aim to deliver an
efficient plug-in model to a large variety of existing models
in order to manipulate attributes without training the entire
system. Creating compact add-ons for large models saves
training time and energy consumption.

Plugin Generative Network
We propose a plugin generative network (PluGeN), which
can be attached to pre-trained generative models and allows
for direct manipulation of labeled attributes, see Figure 3
for the basic scheme of PluGeN. Making use of PluGeN we
preserve all properties of the base model, such as genera-
tion quality and reconstruction in the case of auto-encoders,
while adding new functionalities. In particular, we can:
• modify selected attributes of existing examples,
• generate new samples with desired labels.

In contrast to typical conditional generative models, PluGeN
is capable of creating examples with rare or even unseen
combinations of attributes, e.g. man with makeup.

Probabilistic model. PluGeN works in a multi-label set-
ting, where every example x ∈ X is associated with a K-

Figure 3: PluGeN maps the entangled latent space Z of pre-
trained generative models using invertible normalizing flow
into a separate space, where labeled attributes are modeled
using independent 1-dimensional distributions. By manipu-
lating label variables in this space, we fully control the gen-
eration process.

dimensional vector of binary labels1 y = (y1, . . . , yK) ∈
{0, 1}K . We assume that there is a pre-trained generative
model G : Z → RD, where Z ⊂ RN is the latent space,
which is usually heavily entangled. That is, although each
latent code z ∈ Z contains the information about the labels
y, there is no direct way to extract or modify it.

We want to map this entangled latent space Z into a sepa-
rate latent space D ⊂ RN which encodes the values of each
label yk as a separate random variable Ck living in a single
dimension of this space. Thus, by changing the value of Ck,
going back to the entangled space Z and generating a sam-
ple, we can control the values of yk. Since labeled attributes
usually do not fully describe a given example, we consider
additional N −K random variables Sk, which are supposed
to encode the information not included in the labels. We call
C = (C1, . . . , CK) the label variables (or attributes) and
S = (S1, . . . , SN−K) the style variables.

Since we want to control the value of each attribute in-
dependently of any other factors, we assume the factorized
form of the probability distribution of the random vector
(C,S). More precisely, the conditional probability distribu-
tion of (C,S) given any condition Y = y imposed on la-
beled attributes is of the form:

pC,S|Y=y(c, s) =
K∏

i=1

pCi|Yi=yi
(ci) · pS(s), (1)

for all (c, s) = (c1, . . . , cK , s1, . . . , sN−K) ∈ RN . In other
words, modifying Yi = yi influences only the i-th factor Ci

leaving other features unchanged.
Parametrization. To instantiate the above probabilistic

model (1), we need to parametrize the conditional distribu-
1Our model can be extended to continuous values, which we

describe in the supplementary materials due to page limit.

8649



tion of Ci given Yi = yi and the distribution of S. Since
we do not impose any constraints on style variables, we use
standard Gaussian distribution for modeling density of S:

pS = N (0, IN−K).

To provide the consistency with pS and avoid potential
problems with training our deep learning model using dis-
crete distributions, we use the mixture of two Gaussians for
modeling the presence of labels – each component corre-
sponds to a potential value of the label (0 or 1). More pre-
cisely, the conditional distribution of Ci given Yi = yi is
parametrized by:

pCi|Yi=yi
= N (m0, σ0)

(1−yi) · N (m1, σ1)
yi , (2)

where m0, m1, σ0, σ1 are the user-defined parameters. If
yi = 0, then the latent factor Ci takes values close to m0;
otherwise we get values around m1 (depending on the value
of σ0 and σ1). To provide good separation between compo-
nents, we put m0 = −1, m1 = 1; the selection of σ0, σ1

will be discussed is the supplementary materials.
Thanks to this continuous parametrization, we can

smoothly interpolate between different labels, which would
not be so easy using e.g. Gumbel softmax parametrization
(Jang, Gu, and Poole 2016). In consequence, we can grad-
ually change the intensity of certain labels, like smile or
beard, even though such information was not available in
a training set (see Figure 4 in the experimental section).

Training the model To establish a two-way mapping be-
tween entangled space Z and the disentangled space D, we
use an invertible normalizing flow (INF), F : RN → Z .
Let us recall that INF is a neural network, where the inverse
mapping is given explicitly and the Jacobian determinant
can be easily calculated (Dinh, Krueger, and Bengio 2014).
Due to the invertibility of INF, we can transform latent codes
z ∈ Z to the prior distribution of INF, modify selected at-
tributes, and map the resulting vector back to Z . Moreover,
INFs can be trained using log-likelihood loss, which is very
appealing in generative modeling.

Summarizing, given a latent representation z ∈ Z of a
sample x with label y, the loss function of PluGeN equals:

− log pZ|Y=y(z) =

− log

(
pC,S|Y=y(c, s) ·

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣
)

=

− log

(
K∏

i=1

pCi|Yi=yi
(ci) · pS(s)

)
− log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ =

−
K∑

i=1

log pCi|Yi=yi
(ci)−log pS(s)−log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ ,

(3)

where (c, s) = F−1(z). In the training phase, we collect
latent representations z of data points x. Making use of la-
beled attributes y associated with every x, we modify the
weights of F so that to minimize the negative log-likelihood
(3) using gradient descent. The weights of the base model G
are kept frozen.

In contrast to many previous works (Abdal et al. 2021),
PluGeN can be trained in a semi-supervised setting, where
only partial information about labeled attributes is available
(see supplementary materials for details).

Inference. We may use PluGeN to generate new samples
with desired attributes as well as to manipulate attributes of
input examples. In the first case, we generate a vector (c, s)
from the conditional distribution pC,S|Y=y with selected
condition y. To get the output sample, the vector (c, s) is
transformed by the INF and the base generative network G,
which gives us the final output x = G(F(c, s)).

In the second case, to manipulate the attributes of an ex-
isting example x, we need to find its latent representation
z. If G is a decoder network of an autoencoder model, then
x should be passed through the encoder network to obtain
z (Li et al. 2020). If G is a GAN, then z can be found by
minimizing the reconstruction error between x′ = G(z) and
x using gradient descent for a frozen G (Abdal et al. 2021).
In both cases, z is next processed by INF, which gives us its
factorized representation (c, s) = F−1(z). In this represen-
tation, we can modify any labeled variable ci and map the
resulting vector back through F and G as in the generative
case.

Observe that PluGeN does not need to know what are
the values of labeled attributes when it modifies attributes
of existing examples. Given a latent representation z, Plu-
GeN maps it through G−1, which gives us the factorization
into labeled and unlabeled attributes. In contrast, existing
solutions based on conditional INF, e.g StyleFlow (Abdal
et al. 2021), have to determine all labels before passing z
through INF as they represent the conditioning factors. In
consequence, these models involve additional classifiers for
labeled attributes.

Experiments
To empirically evaluate the properties of PluGeN, we com-
bine it with GAN and VAE architectures to manipulate at-
tributes of image data. Moreover, we present a practical use-
case of chemical molecule modeling using CharVAE. Due
to the page limit, we included architecture details and addi-
tional results in the supplementary materials.

GAN backbone First, we consider the state-of-the-art
StyleGAN architecture (Karras, Laine, and Aila 2019),
which was trained on Flickr-Faces-HQ (FFHQ) containing
70 000 high-quality images of resolution 1024 × 1024. The
Microsoft Face API was used to label 8 attributes in each
image (gender, pitch, yaw, eyeglasses, age, facial hair, ex-
pression, and baldness).

PluGeN is instantiated using NICE flow model (Dinh,
Krueger, and Bengio 2014) that operates on the latent vec-
tors w ∈ R512 sampled from the W space of the StyleGAN.
As a baseline, we select StyleFlow (Abdal et al. 2021),
which is currently one of the state-of-the-art models for con-
trolling the generation process of StyleGAN. In contrast to
PluGeN, StyleFlow uses the conditional continuous INF to
operate on the latent codes of StyleGAN, where the condi-
tioning factor corresponds to the labeled attributes. For eval-

8650



uation, we modify one of 5 attributes2 and verify the success
of this operation using the prediction accuracy returned by
Microsoft Face API. The quality of images is additionally
assessed by calculating the standard Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017).

Figure 1 (first page) and 4 present the effects of how Plu-
GeN and StyleFlow manipulate images sampled by Style-
GAN. It is evident that PluGeN can switch the labels to op-
posite values as well as gradually change their intensities. At
the same time, the requested modifications do not influence
the remaining attributes leaving them unchanged. One can
observe that the results produced by StyleFlow are also ac-
ceptable, but the modification of the requested attribute im-
plies the change of other attributes. For example, increasing
the intensity of ”baldness” changes the type of glasses, or
turning the head into right makes the woman look straight.

The above qualitative evaluation is supported by the quan-
titative assessment presented in Table 1. As can be seen,
StyleFlow obtains a better FID score, while PluGeN out-
performs StyleFlow in terms of accuracy. Since FID com-
pares the distribution of generated and real images, creating
images with uncommon combinations of attributes that do
not appear in a training set may be scored lower, which can
explain the relation between accuracy and FID obtained by
PluGeN and StyleFlow. In consequence, FID is not an ad-
equate metric for measuring the quality of arbitrary image
manipulations considered here, because it is too closely tied
to the distribution of input images.

It is worth mentioning that PluGeN obtains these very
good results using NICE model, which is the simplest type
of INFs. In contrast, StyleFlow uses continuous INF, which
is significantly more complex and requires using an ODE
solver leading to unstable training. Moreover, to modify
even a single attribute, StyleFlow needs to determine the val-
ues of all labels, since they represent the conditioning factors
of INF. In consequence, every modification requires apply-
ing an auxiliary classifier to predict all image labels. The
usage of PluGeN is significantly simpler, as subsequent co-
ordinates in the latent space of INF correspond to the labeled
attributes and they are automatically determined by PluGeN.
Finally, our approach is less computationally expensive as
we verified that, using the same hardware, PluGeN can be
trained 3 times faster than StyleFlow and is around 100 times
faster in inference.

Image manipulation on VAE backbone In the following
experiment, we show that PluGeN can be combined with au-
toencoder models to effectively manipulate image attributes.
We use CelebA database, where every image of the size
256 × 256 is annotated with 40 binary labels.

We compare PluGeN to MSP (Li et al. 2020), a strong
baseline, which uses a specific loss for disentangling the la-
tent space of VAE. Following the idea of StyleFlow, we also
consider a conditional INF attached to the latent space of
pre-trained VAE (referred to as cFlow), where conditioning
factors correspond to the labeled attributes. The architecture
of the base VAE and the evaluation protocol were taken from

2The remaining 3 attributes (age, pitch, yaw) are continuous and
it is more difficult to assess their modifications.

Requested value PluGeN StyleFlow

female 0.95 0.95
male 0.92 0.87
no-glasses 1.00 0.99
glasses 0.90 0.70
not-bald 1.00 1.00
bald 0.53 0.54
no-facial-hair 1.00 1.00
facial-hair 0.72 0.65
no-smile 0.99 0.92
smile 0.96 0.99
Average Acc 0.90 0.86
Average FID 46.51 32.59

Table 1: Accuracy and FID scores of attributes modification
using StyleGAN backbone.

the original MSP paper. More precisely, for every input im-
age, we manipulate the values of two attributes (we inspect
20 combinations in total). The success of the requested ma-
nipulation is verified using a multi-label ResNet-56 classifier
trained on the original CelebA dataset.

The sample results presented in Figure 5 demonstrate that
PluGeN attached to VAE produces high-quality images sat-
isfying the constraints imposed on the labeled attributes. The
quantitative comparison shown in Table 2 confirms that Plu-
GeN is extremely efficient in creating uncommon combina-
tions of attributes, while cFlow performs well only for the
usual combinations. At the same time, the quality of im-
ages produced by PluGeN and MSP is better than in the case
of cFlow. Although both PluGeN and MSP focus on disen-
tangling the latent space of the base model, MSP has to be
trained jointly with the base VAE model and it was designed
only to autoencoder models. In contrast, PluGeN is a sepa-
rate module, which can be attached to arbitrary pre-trained
models. Due to the use of invertible neural networks, it pre-
serves the reconstruction quality of the base model, while
adding manipulation functionalities. In the following experi-
ment, we show that PluGeN also performs well at generating
entirely new images, which is not possible using MSP.

Image generation with VAE backbone In addition to
manipulating the labeled attributes of existing images, Plu-
GeN generates new examples with desired attributes. To ver-
ify this property, we use the same VAE architecture as be-
fore trained on CelebA dataset. The baselines include cFlow
and two previously introduced methods for multi-label con-
ditional generation3: cVAE (Yan et al. 2016) and ∆-GAN
(Gan et al. 2017). We exclude MSP from the comparison
because it cannot generate new images, but only manipulate
the attributes of existing ones (see supplementary materials
for a detailed explanation).

Figure 6 presents sample results of image generation with
the specific conditions. In each row, we fix the style variables
s and vary the label variables c in each column, generating

3For cVAE and ∆-GAN we use images of the size 64 × 64
following their implementations.

8651



(a) PluGeN (b) StyleFlow

Figure 4: Gradual modification of attributes (age, baldness, and yaw, respectively) performed on the StyleGAN latent codes.

Figure 5: Examples of image attribute manipulation using VAE backbone.

the same person but with different characteristics such as
hair color, eyeglasses, etc. Although cVAE manages to mod-
ify the attributes, the quality of obtained samples is poor,
while ∆-GAN falls completely out of distribution. PluGeN
and cFlow generate images of similar quality, but only Plu-
GeN is able to correctly manipulate the labeled attributes.
The lower quality of generated images is caused by the poor
generation abilities of VAE backbone, which does not work
well with high dimensional images (see supplementary ma-
terials for a discussion). For this reason, it is especially no-
table that PluGeN can improve the generation performance
of the backbone model in contrast to MSP.

Disentangling the attributes The attributes in the CelebA
dataset are strongly correlated and at times even contradic-
tory, e.g. attributes ’bald’ and ’blond hair’ cannot both be
present at the same time. In this challenging task, we aim to
disentangle the attribute space as much as it is possible to
allow for generating examples with arbitrary combinations
of attributes. For this purpose, we sample the conditional
variables ci independently, effectively ignoring the underly-
ing correlations of attributes, and use them to generate im-

ages. Since the attributes in the CelebA dataset are often im-
balanced (e.g. only in 6.5% of examples the person wears
glasses), we calculate F1 and AUC scores for each attribute.

The quantitative analysis of the generated images pre-
sented in Table 3 confirms that PluGeN outperforms the
rest of the methods with respect to classification scores. The
overall metrics are quite low for all approaches, which is
due to the difficulty of disentanglement mentioned above,
as well as the inaccuracy of the ResNet attribute classifier.
Deep learning models often fail when the correlations in
the training data are broken, e.g. the classifier might use the
presence of a beard to predict gender, thus introducing noise
in the evaluation (Beery, Horn, and Perona 2018).

Chemical molecules modeling Finally, we present a prac-
tical use-case, in which we apply PluGeN to generate chem-
ical molecules with the requested properties. As a back-
bone model, we use CharVAE (Gómez-Bombarelli et al.
2018), which is a type of recurrent network used for process-
ing SMILES (Weininger 1988), a textual representation of
molecules. It was trained on ZINC 250k database (Sterling
and Irwin 2015) of commercially available chemical com-

8652



Requested value PluGeN MSP cFlow

male x beard 0.80 0.79 0.85
female x beard 0.59 0.33 0.31

male x no-beard 0.88 0.92 0.91
female x no-beard 0.85 0.82 0.95

male x makeup 0.44 0.43 0.29
male x no-makeup 0.72 0.92 0.96
female x makeup 0.42 0.41 0.58

female x no-makeup 0.55 0.40 0.85
smile x open-mouth 0.97 0.99 0.79

no-smile x open-mouth 0.79 0.82 0.77
smile x calm-mouth 0.84 0.91 0.72

no-smile x calm-mouth 0.96 0.97 0.99
male x bald 0.26 0.41 0.34

male x bangs 0.58 0.74 0.45
female x bald 0.19 0.13 0.39

female x bangs 0.52 0.49 0.60
no-glasses x black-hair 0.92 0.93 0.74

no-glasses x golden-hair 0.92 0.91 0.81
glasses x black-hair 0.76 0.90 0.58

glasses x golden-hair 0.75 0.85 0.61

Average Acc 0.69 0.70 0.67
Average FID 28.07 30.67 39.68

Table 2: Accuracy and FID scores of image manipulation
performed on the VAE backbone.

Figure 6: Examples of conditional generation using VAE
backbone. Each row contains the same person (style vari-
ables) with modified attributes (label variables).

PluGeN cFlow ∆-GAN cVAE

F1 0.44 0.29 0.39 0.39
AUC 0.76 0.68 0.70 0.73

Table 3: Results of the independent conditional generation
using VAE backbone.

Figure 7: Distribution of attributes of generated molecules,
together with distribution for the training dataset. Each color
shows the value of a labeled attribute that was used for gen-
eration. PluGeN is capable of moving the density of gen-
erated molecules’ attributes towards the desired value. The
average of every distribution is marked with a vertical line.

pounds. For every molecule, we model 3 physio-chemical
continuous (not binary) labels: logP, SAS, TPSA, which val-
ues were calculated using RDKit package 4. Additional ex-
planations and more examples are given in the supplemen-
tary materials.

First, we imitate a practical task of de novo design (Olive-
crona et al. 2017; Popova, Isayev, and Tropsha 2018), where
we force the model to generate new compounds with de-
sirable properties. For every attribute, we generate 25k
molecules with 3 different values: for logP we set the la-
bel of generated molecules to: 1.5, 3.0, 4.5; for TPSA we
set generated labels to: 40, 60, 80; for SAS we set them to:
2.0, 3.0, 4.0, which gives 9 scenarios in total. From density
plots of labels of generated and original molecules presented
in Figure 7, we can see that PluGeN changes the distribu-
tion of values of the attributes and moves it towards the de-
sired value. A slight discrepancy between desired and gen-
erated values may follow from the fact that values of labeled
attributes were sampled independently, which could make
some combinations physically contradictory.

Next, we consider the setting of lead optimization (Jin
et al. 2019; Maziarka et al. 2020), where selected com-
pounds are improved to meet certain criteria. For this pur-
pose, we encode a molecule into the latent representation
of INF and force PluGeN to gradually increase the value of
logP by 3 and decode the resulting molecules. The obtained
molecules together with their logP are shown in Figure 8.
As can be seen, PluGeN generates molecules that are struc-
turally similar to the initial one, however with optimized de-
sired attributes.

Obtained results show that PluGeN is able to model the
physio-chemical molecular features, which is a non-trivial
task that could speed up a long and expensive process of

4https://www.rdkit.org/

8653



(a) Molecules decoded from
path

(b) LogP of presented
molecules

Figure 8: Molecules obtained by the model during an opti-
mization phase (left side), and their LogP (right side).

designing new drugs.

Conclusion
We proposed a novel approach for disentangling the latent
space of pre-trained generative models, which works per-
fectly for generating new samples with desired conditions as
well as for manipulating the attributes of existing examples.
In contrast to previous works, we demonstrated that PluGeN
performs well across diverse domains, including chemical
molecule modeling, and can be combined with various ar-
chitectures, such as GANs and VAEs backbones.

Acknowledgements
The research of M. Wołczyk was supported by the Foun-
dation for Polish Science co-financed by the European
Union under the European Regional Development Fund
in the POIR.04.04.00-00-14DE/18-00 project carried out
within the Team-Net programme. The research of M.
Proszewska, Ł. Maziarka, M. Zieba and R. Kurczab
was supported by the National Science Centre (Poland),
grant no. 2018/31/B/ST6/00993, 2019/35/N/ST6/02125,
2020/37/B/ST6/03463 and the Polish National Centre
for Research and Development (Grant LIDER/37/0137/L-
9/17/NCBR/2018). The research of M. Śmieja was funded
by the Priority Research Area DigiWorld under the program
Excellence Initiative -– Research University at the Jagiel-
lonian University in Kraków.

Ethical Impact
We did not identify ethical issues concerning our work, as
we do not collect data, and we do not foresee malicious ap-
plications or societal harm. However, we believe that dis-
entangling factors of variation can have a positive effect on
reducing unjust correlations in the data. For example, even
though CelebA dataset contains twice as many old men as
old women, our method can generate an equal proportion of
samples from those classes, thus avoiding amplifying bias in
the data.

References
Abdal, R.; Zhu, P.; Mitra, N. J.; and Wonka, P. 2021.
Styleflow: Attribute-conditioned exploration of stylegan-

generated images using conditional continuous normalizing
flows. ACM Transactions on Graphics (TOG), 40(3): 1–21.
Beery, S.; Horn, G. V.; and Perona, P. 2018. Recognition in
Terra Incognita. In ECCV.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Represen-
tation learning: A review and new perspectives. IEEE trans-
actions on pattern analysis and machine intelligence, 35(8):
1798–1828.
Brakel, P.; and Bengio, Y. 2017. Learning independent fea-
tures with adversarial nets for non-linear ica. arXiv preprint
arXiv:1710.05050.
Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large Scale
GAN Training for High Fidelity Natural Image Synthesis. In
International Conference on Learning Representations.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Mod-
els are Few-Shot Learners. In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neu-
ral Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.
Chen, R. T.; Li, X.; Grosse, R.; and Duvenaud, D. 2019. Iso-
lating Sources of Disentanglement in VAEs. In Proceedings
of the 32nd International Conference on Neural Information
Processing Systems, 2615–2625.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever,
I.; and Abbeel, P. 2016. Infogan: Interpretable representation
learning by information maximizing generative adversarial
nets. arXiv preprint arXiv:1606.03657.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8188–8197.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Gan, Z.; Chen, L.; Wang, W.; Pu, Y.; Zhang, Y.; Liu, H.;
Li, C.; and Carin, L. 2017. Triangle generative adversarial
networks. arXiv preprint arXiv:1709.06548.
Gao, Y.; Wei, F.; Bao, J.; Gu, S.; Chen, D.; Wen, F.; and
Lian, Z. 2021. High-Fidelity and Arbitrary Face Editing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16115–16124.
Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.;
Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; She-
berla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams,
R. P.; and Aspuru-Guzik, A. 2018. Automatic chemical
design using a data-driven continuous representation of
molecules. ACS central science, 4(2): 268–276.
Härkönen, E.; Hertzmann, A.; Lehtinen, J.; and Paris, S.
2020. Ganspace: Discovering interpretable gan controls.
arXiv preprint arXiv:2004.02546.

8654



He, Z.; Zuo, W.; Kan, M.; Shan, S.; and Chen, X. 2019.
Attgan: Facial attribute editing by only changing what you
want. IEEE Transactions on Image Processing, 28(11):
5464–5478.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. In
Guyon, I.; von Luxburg, U.; Bengio, S.; Wallach, H. M.;
Fergus, R.; Vishwanathan, S. V. N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, 6626–
6637.
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.;
Botvinick, M.; Mohamed, S.; and Lerchner, A. 2017. beta-
vae: Learning basic visual concepts with a constrained vari-
ational framework. In International Conference on Learning
Representations.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.
Jin, W.; Barzilay, R.; and Jaakkola, T. 2018. Junction
tree variational autoencoder for molecular graph generation.
In International Conference on Machine Learning, 2323–
2332. PMLR.
Jin, W.; Yang, K.; Barzilay, R.; and Jaakkola, T. 2019.
Learning multimodal graph-to-graph translation for molec-
ular optimization. International Conference on Learning
Representations.
Jo, Y.; and Park, J. 2019. Sc-fegan: Face editing genera-
tive adversarial network with user’s sketch and color. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 1745–1753.
Kang, S.; and Cho, K. 2018. Conditional molecular design
with deep generative models. Journal of chemical informa-
tion and modeling, 59(1): 43–52.
Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 4401–4410.
Kaya, Y.; Hong, S.; and Dumitras, T. 2019. Shallow-Deep
Networks: Understanding and Mitigating Network Over-
thinking. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learn-
ing Research, 3301–3310. PMLR.
Kim, H.; and Mnih, A. 2018. Disentangling by factorising.
In International Conference on Machine Learning, 2649–
2658. PMLR.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Genera-
tive flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039.
Kingma, D. P.; Rezende, D. J.; Mohamed, S.; and Welling,
M. 2014. Semi-supervised learning with deep generative
models. arXiv preprint arXiv:1406.5298.

Klys, J.; Snell, J.; and Zemel, R. 2018. Learning la-
tent subspaces in variational autoencoders. arXiv preprint
arXiv:1812.06190.
Kodali, N.; Abernethy, J.; Hays, J.; and Kira, Z. 2017.
On convergence and stability of gans. arXiv preprint
arXiv:1705.07215.
Koperski, M.; Konopczynski, T.; Nowak, R.; Semberecki, P.;
and Trzcinski, T. 2020. Plugin Networks for Inference un-
der Partial Evidence. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, 2883–
2891.
Kumar, A.; Sattigeri, P.; and Balakrishnan, A. 2017. Vari-
ational inference of disentangled latent concepts from unla-
beled observations. arXiv preprint arXiv:1711.00848.
Lample, G.; Zeghidour, N.; Usunier, N.; Bordes, A.; De-
noyer, L.; and Ranzato, M. 2017. Fader networks: Ma-
nipulating images by sliding attributes. arXiv preprint
arXiv:1706.00409.
Li, X.; Lin, C.; Li, R.; Wang, C.; and Guerin, F. 2020. La-
tent space factorisation and manipulation via matrix sub-
space projection. In International Conference on Machine
Learning, 5916–5926. PMLR.
Liu, R.; Liu, Y.; Gong, X.; Wang, X.; and Li, H. 2019. Con-
ditional adversarial generative flow for controllable image
synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 7992–8001.
Locatello, F.; Bauer, S.; Lucic, M.; Raetsch, G.; Gelly, S.;
Schölkopf, B.; and Bachem, O. 2019. Challenging com-
mon assumptions in the unsupervised learning of disentan-
gled representations. In international conference on ma-
chine learning, 4114–4124. PMLR.
Maziarka, Ł.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel,
T.; and Warchoł, M. 2020. Mol-CycleGAN: a generative
model for molecular optimization. Journal of Cheminfor-
matics, 12(1): 1–18.
Mirza, M.; and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Nitzan, Y.; Bermano, A.; Li, Y.; and Cohen-Or, D. 2020.
Disentangling in latent space by harnessing a pretrained gen-
erator. arXiv preprint arXiv:2005.07728, 2(3).
Olivecrona, M.; Blaschke, T.; Engkvist, O.; and Chen, H.
2017. Molecular de-novo design through deep reinforce-
ment learning. Journal of cheminformatics, 9(1): 1–14.
Park, T.; Liu, M.-Y.; Wang, T.-C.; and Zhu, J.-Y. 2019. Se-
mantic image synthesis with spatially-adaptive normaliza-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2337–2346.

Perarnau, G.; Van De Weijer, J.; Raducanu, B.; and Álvarez,
J. M. 2016. Invertible conditional gans for image editing.
arXiv preprint arXiv:1611.06355.
Popova, M.; Isayev, O.; and Tropsha, A. 2018. Deep rein-
forcement learning for de novo drug design. Science ad-
vances, 4(7): eaap7885.
Rebuffi, S.; Bilen, H.; and Vedaldi, A. 2017. Learning multi-
ple visual domains with residual adapters. In Guyon, I.; von

8655



Luxburg, U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vish-
wanathan, S. V. N.; and Garnett, R., eds., Advances in Neu-
ral Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, 506–516.
Shen, Y.; Yang, C.; Tang, X.; and Zhou, B. 2020. Inter-
facegan: Interpreting the disentangled face representation
learned by gans. IEEE transactions on pattern analysis and
machine intelligence.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning struc-
tured output representation using deep conditional genera-
tive models. Advances in neural information processing sys-
tems, 28: 3483–3491.
Sorrenson, P.; Rother, C.; and Köthe, U. 2020. Disentan-
glement by nonlinear ica with general incompressible-flow
networks (gin). arXiv preprint arXiv:2001.04872.
Spurek, P.; Nowak, A.; Tabor, J.; Maziarka, Ł.; and Jastrzeb-
ski, S. 2020. Non-linear ICA based on Cramer-Wold metric.
In International Conference on Neural Information Process-
ing, 294–305. Springer.
Sterling, T.; and Irwin, J. J. 2015. ZINC 15–ligand discovery
for everyone. Journal of chemical information and model-
ing, 55(11): 2324–2337.
Tewari, A.; Elgharib, M.; Bernard, F.; Seidel, H.-P.; Pérez,
P.; Zollhöfer, M.; and Theobalt, C. 2020. Pie: Portrait im-
age embedding for semantic control. ACM Transactions on
Graphics (TOG), 39(6): 1–14.
Tov, O.; Alaluf, Y.; Nitzan, Y.; Patashnik, O.; and Cohen-Or,
D. 2021. Designing an encoder for stylegan image manipu-
lation. ACM Transactions on Graphics (TOG), 40(4): 1–14.
Wang, H.-P.; Yu, N.; and Fritz, M. 2021. Hijack-gan:
Unintended-use of pretrained, black-box gans. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7872–7881.
Weininger, D. 1988. SMILES, a chemical language and in-
formation system. 1. Introduction to methodology and en-
coding rules. Journal of chemical information and computer
sciences, 28(1): 31–36.
Wołczyk, M.; Wójcik, B.; Bałazy, K.; Podolak, I.; Tabor, J.;
Śmieja, M.; and Trzciński, T. 2021. Zero Time Waste: Re-
cycling Predictions in Early Exit Neural Networks. arXiv
preprint arXiv:2106.05409.
Yan, X.; Yang, J.; Sohn, K.; and Lee, H. 2016. At-
tribute2image: Conditional image generation from visual at-
tributes. In European Conference on Computer Vision, 776–
791. Springer.
Zhou, W.; Xu, C.; Ge, T.; McAuley, J. J.; Xu, K.; and Wei, F.
2020. BERT Loses Patience: Fast and Robust Inference with
Early Exit. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M.; and Lin, H., eds., Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

8656



1

Multi-Label Conditional Generation from
Pre-trained Models

Magdalena Proszewska, Maciej Wołczyk, Maciej Zieba, Patryk Wielopolski, Łukasz Maziarka,
Marek Śmieja

Abstract—Although modern generative models achieve excellent quality in a variety of tasks, they often lack the essential ability to
generate examples with requested properties, such as the age of the person in the photo or the weight of the generated molecule. To
overcome these limitations we propose PluGeN (Plugin Generative Network), a simple yet effective generative technique that can be
used as a plugin for pre-trained generative models. The idea behind our approach is to transform the entangled latent representation
using a flow-based module into a multi-dimensional space where the values of each attribute are modeled as an independent
one-dimensional distribution. In consequence, PluGeN can generate new samples with desired attributes as well as manipulate labeled
attributes of existing examples. Due to the disentangling of the latent representation, we are even able to generate samples with rare or
unseen combinations of attributes in the dataset, such as a young person with gray hair, men with make-up, or women with beards. In
contrast to competitive approaches, PluGeN can be trained on partially labeled data. We combined PluGeN with GAN and VAE models
and applied it to conditional generation and manipulation of images, chemical molecule modeling and 3D point clouds generation.

Index Terms—deep generative models, conditional generation, pre-trained models, invertible normalizing flows, GANs, VAEs.

✦

1 INTRODUCTION

input gender glasses smile

Fig. 1: Attributes manipulation performed by PluGeN using
the StyleGAN backbone.

Generative models such as GANs and variational au-
toencoders have achieved great results in recent years, es-
pecially in the domains of images [1] and cheminformatics
[2]. However, in many practical applications, we need to
control the process of creating samples by enforcing partic-
ular features of generated objects. This would be required
to regulate the biases present in the data, e.g. to assure
that people of each ethnicity are properly represented in
the generated set of face images. In numerous realistic

• M. Proszewska, M. Wołczyk, Ł. Maziarka, M. Śmieja are with Faculty of
Mathematics and Computer Science, Jagiellonian University.
E-mail: marek.smieja@uj.edu.pl

• P. Wielopolski is with Wroclaw University of Science and Technology.
• M. Zieba is with Tooploox and Wroclaw University of Science and

Technology.

This is the extended version of a paper accepted to AAAI 2022 and IEEE
Transactions on Pattern Analysis and Machine Intelligence March 14th, 2024.

problems, such as drug discovery, we want to find objects
with desired properties, like molecules with a particular
activity, non-toxicity, and solubility.

Designing the conditional variants of generative models
that operate on multiple labels is a challenging problem
due to intricate relations among the attributes. Practically, it
means that some combinations of attributes (e.g. a woman
with a beard) might be unobserved or rarely observed in
the training data. In essence, the model should be able
to go beyond the distribution of seen data and generate
examples with combinations of attributes not encountered
previously. One might approach this problem by building
a new conditional generative model from the ground up
or designing a solution tailored to a specific existing un-
supervised generative model. However, this introduces an
additional effort when one wants to adapt it to a newly
invented approach.

To tackle this problem while leveraging the power of
existing techniques, we propose PluGeN (Plugin Generative
Network), a simple yet effective generative technique that
can be used as a plugin to various pre-trained generative
models such as VAEs or GANs, see Figure 1 for demon-
stration. Making use of PluGeN, we can manipulate the at-
tributes of input examples as well as generate new samples
with desired features. When training the proposed module,
we do not change the parameters of the base model and thus
we retain its generative and reconstructive abilities, which
places our work in the emerging family of non-invasive net-
work adaptation methods [3], [4]. In contrast to competitive
approaches [5], [6], [7], PluGeN can be trained on partially
labeled data, which is of great practical importance in real-
life problems because of the substantial cost of labeling.

Our idea is to find a mapping between the entangled
latent representation of the backbone model and a dis-
entangled space, where each dimension corresponds to a



2

(a) Factorization of true data distribution (b) Probability distribution covered by PluGeN.

Fig. 2: PluGeN factorizes true data distribution into components (marginal distributions) related to labeled attributes,
see (a), and allows for describing unexplored regions of data (uncommon combinations of labels) by sampling from
independent components, see (b). In the case illustrated here, PluGeN constructs pictures of men with make-up or women
with beards, although such examples rarely (or never) appear in the training set.

single, interpretable attribute of the image. By factorizing
the true data distribution into independent components,
we can sample from each component independently, which
results in creating samples with arbitrary combinations of
attributes, see Figure 2. In contrast to many previous works,
which are constrained to the attributes combinations visible
in the training set, PluGeN gives us full control of the
generation process, being able to create uncommon com-
binations of attributes, such as a woman with a beard or a
man with heavy make-up. Generating samples with unseen
combinations of attributes can be viewed as extending the
distribution of generative models to unexplored although
reasonable regions of data space, which distinguishes our
approach from the existing solutions.

Extensive experiments performed on the domain of im-
ages, chemical molecules and 3D point clouds demonstrate
that PluGeN is a reusable plugin that can be applied to
various architectures including GANs and VAEs. In contrast
to the baselines, PluGeN can generate new samples as well
as manipulate the properties of existing examples, being
capable of creating uncommon combinations of attributes.
PluGeN preserves its impressive performance in a semi-
supervised setting even if less than 15% of labels are avail-
able in training on the StyleGAN backbone. In addition to
the experimental study, we present an in-depth discussion
comparing the proposed mechanism of modeling condi-
tional distribution with the baseline conditioning approach
used e.g. in StyleFlow [5] or FPN (flow plug-in network) [6].

This paper extends our conference publication [8] in the
following aspects:

• We introduce a semi-supervised learning approach for
training PluGeN on partially labeled data and examine
its performance on a dataset of face images (Section 3.4).

• We discuss our conditioning mechanism in relation to
the baseline one applied in StyleFlow (Section 3.6). Both
approaches are illustrated on a toy example (Figure
4) and evaluated across various large-scale datasets
(Section 5).

• We apply PluGeN in the domain of 3D point clouds,

which further confirms that our model can be used in
diverse applications (Section 6.2).

• Additionally, we clarify the parameterization of Plu-
GeN in the case of continuous target attributes (last
paragraph in Section 3.2).

2 RELATED WORK

Conditional VAE (cVAE) is one of the first methods that
include additional information about the labeled attributes
in a generative model [9]. Although this approach has been
widely used in various areas ranging from image genera-
tion [10] to molecular design [11], the independence of the
latent vector from the attribute data is not assured, which
negatively influences the generation quality. Conditional
GAN (cGAN) is an alternative approach that gives results of
significantly better quality [12], but the model is more diffi-
cult to train [13]. cGAN works very well for generating new
images and conditioning factors may take various forms
(images, sketches, labels) [14], but manipulating existing
examples is more problematic because GAN models lack
the encoder network [15]. Fader Networks [16] combine
features of both cVAE and cGAN, as they use encoder-
decoder architecture, together with the discriminator, which
predicts the image attributes from its latent vector returned
from the encoder. As discussed in [7], the training of Fader
Networks is even more difficult than standard GANs, and
disentanglement of attributes is not preserved. MSP [7] is a
recent auto-encoder based architecture with an additional
projection matrix, which is responsible for disentangling
the latent space and separating the attribute information
from other characteristic information. In contrast to PluGeN,
MSP cannot be used with pre-trained GANs and performs
poorly at generating new images (it was designed for ma-
nipulating existing examples). CAGlow [17] is an adaptation
of Glow [18] to conditional image generation based on
modeling a joint probabilistic density of an image and its
conditions. Since CAGlow does not reduce data dimension,
applying it to more complex data might be problematic.



3

While the above approaches focus on building condi-
tional generative models from scratch, recent works often fo-
cus on manipulating the latent codes of pre-trained models.
StyleFlow [5] operates on the latent space of StyleGAN [19]
using a conditional continuous flow module. Although the
quality of generated images is impressive, the model has
not been applied to other generative models than StyleGAN
and domains other than images. Moreover, StyleFlow needs
an additional classifier to compute the conditioning factor
(labels) for images at test time. Competitive approaches to
StyleGAN appear in [20], [21], [22]. InterFaceGAN [23], [24]
postulates that various properties of the facial semantics can
be manipulated via linear models applied to the latent space
of GANs. Hijack-GAN [25] goes beyond linear models and
designs a proxy model to traverse the latent space of GANs.

To reduce the need for labeled data, unsupervised la-
tent semantic factorizations in GANs were proposed. In
GANSpace [26], the key latent directions are identified
based on the Principal Component Analysis applied in
the latent space of pre-trained GAN. Following this direc-
tion, the authors of SeFa [27] decomposed the pre-trained
weights of the generator. Although these techniques are
very attractive from a practical point of view, the user has
to put extra effort into understanding the meaning of the
output directions. Since there is no direct correspondence
between the labeled attributes and the features returned by
these methods, they cannot be easily compared with our
approach.

In disentanglement learning, we assume that the data
has been generated from a fixed number of independent
factors of underlying variation. The goal is then to find a
transformation that unravels these factors so that a change
in one dimension of the latent space corresponds to a
change in one factor of variation while being relatively
invariant to changes in other factors [28], [29], [30]. As
theoretically shown in [31], the unsupervised learning of
disentangled representations is fundamentally impossible
without inductive biases on both the models and the data.
In this paper, we solve a slightly different problem than
typical disentanglement, as we aim to deliver an efficient
plug-in model to a large variety of existing models in order
to manipulate attributes without training the entire system.
Creating compact add-ons for large models saves training
time and energy consumption.

3 PLUGIN GENERATIVE NETWORK

We propose a plugin generative network (PluGeN), which
can be attached to pre-trained generative models and allows
for direct manipulation of labeled attributes, see Figure 3
for the basic scheme of PluGeN. Making use of PluGeN we
preserve all properties of the base model, such as generation
quality and reconstruction in the case of auto-encoders,
while adding new functionalities. In particular, we can:

• modify selected attributes of existing examples,
• generate new samples with desired labels.

In contrast to typical conditional generative models, Plu-
GeN is capable of creating examples with rare or even
unseen combinations of attributes, e.g. man with a makeup.
Moreover, it can be trained on partially labeled datasets.

Fig. 3: PluGeN maps the entangled latent space Z of pre-
trained generative models using invertible normalizing flow
into a separate space, where labeled attributes are modeled
using independent 1-dimensional distributions. By manip-
ulating label variables in this space, we fully control the
generation process.

3.1 Probabilistic model
PluGeN works in a multi-label setting, where every exam-
ple x ∈ X is associated with a K-dimensional vector of
attributes y = (y1, . . . , yK) ∈ RK . Each attribute yk can
be a continuous, discrete, or binary variable. We assume
that there is a pre-trained generative model G : Z → RD ,
where Z ⊂ RN is the latent space, which is usually heavily
entangled. That is, although each latent code z ∈ Z contains
the information about the labels y, there is no direct way to
extract or modify it.

We want to map this entangled latent space Z into a
separate latent space D ⊂ RN which encodes the values of
each label yk as a separate random variable Ck living in a
single dimension of this space. Thus, by changing the value
of Ck, going back to the entangled space Z and generating
a sample, we can control the values of yk. Since labeled
attributes usually do not fully describe a given example,
we consider additional N −K random variables Sk, which
are supposed to encode the information not included in the
labels. We call C = (C1, . . . , CK) the label variables (or
attributes) and S = (S1, . . . , SN−K) the style variables.

Since we want to control the value of each attribute
independently of any other factors, we assume the factor-
ized form of the probability distribution of the random
vector (C,S). More precisely, the conditional probability
distribution of (C,S) given any condition Y = y imposed
on labeled attributes is of the form:

pC,S|Y=y(c, s) =
K∏

i=1

pCi|Yi=yi
(ci) · pS(s), (1)

for all (c, s) = (c1, . . . , cK , s1, . . . , sN−K) ∈ RN . In other
words, modifying Yi = yi influences only the i-th factor
Ci leaving other features unchanged. We assume that label
variables represent the first K dimensions in the target
latent space D while the style variables are the subsequent
dimensions.



4

3.2 Parameterization

To instantiate the above probabilistic model (1), we need to
parametrize the conditional distribution of Ci given Yi = yi
and the distribution of S. Since we do not impose any
constraints on style variables, we use standard Gaussian
distribution for modeling density of S:

pS = N (0, IN−K).

Binary attributes. To provide the consistency with pS and
avoid potential problems with training our deep learning
model using discrete distributions, we use the mixture of
two Gaussians for modeling the presence of labels – each
component corresponds to a potential value of the label (0
or 1). More precisely, the conditional distribution of Ci given
Yi = yi is parametrized by:

pCi|Yi=yi
= N (m0, σ0)

(1−yi) · N (m1, σ1)
yi , (2)

where m0,m1, σ0, σ1 are the user-defined parameters. If
yi = 0, then the latent factor Ci takes values close to m0;
otherwise we get values around m1 (depending on the
value of σ0 and σ1). To provide good separation between
components, we put m0 = −1,m1 = 1; the selection of
σ0, σ1 will be discussed is the supplementary materials.

Thanks to this continuous parametrization, we can
smoothly interpolate between different labels, which would
not be so easy using e.g. Gumbel softmax parametrization
[32]. In consequence, we can gradually change the intensity
of certain labels, like smile or beard, even though such
information was not available in a training set (see Figure 5
in the experimental section).
Continuous attributes. Without loss of generality, we as-
sume that yi ∈ [−1, 1]. Analogically to the case of binary
labels, we assume that the conditional distribution of label
variable Ci given Yi = yi is parametrized by

pCi|Yi=yi
= N (yi, σ),

where σ > 0 is the user-defined parameter controlling
smoothness.

For high values of σ there is a huge overlap between
Gaussian components. This results in small penalties in
terms of negative log-likelihood for incorrect assignments.
From a practical perspective, we start the training process
with high values of σ, which provides reasonable initializa-
tion of PluGeN. Next, we gradually decrease σ to match the
correct assignments.

3.3 Training the model

To establish a two-way mapping between entangled space
Z and the disentangled space D, we use an invertible
normalizing flow (INF), F : RN → Z . Let us recall that INF
is a neural network, where the inverse mapping is given
explicitly and the Jacobian determinant can be easily calcu-
lated [30]. Due to the invertibility of INF, we can transform
latent codes z ∈ Z to the prior distribution of INF, modify
selected attributes, and map the resulting vector back to
Z . Moreover, INFs can be trained using log-likelihood loss,
which is very appealing in generative modeling.

Summarizing, given a latent representation z ∈ Z of a
sample x with label y, the loss function of PluGeN equals:

− log pZ|Y=y(z) =

− log

(
pC,S|Y=y(c, s) ·

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣
)
=

− log

(
K∏

i=1

pCi|Yi=yi
(ci) · pS(s)

)
− log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ =

−
K∑

i=1

log pCi|Yi=yi
(ci)− log pS(s)− log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ ,

(3)

where (c, s) = F−1(z). In the training phase, we collect
latent representations z of data points x. Making use of
labeled attributes y associated with every x, we modify the
weights of F so that to minimize the negative log-likelihood
(3) using gradient descent. The weights of the base model G
are kept frozen.

3.4 Semi-supervised training

In contrast to many previous works [5], [6], [7], PluGeN
can be trained in a semi-supervised setting, where only
partial information about labeled attributes is available. The
proposed approach is based on the fact that the labeled
attributes are modeled as target variables. In other words,
to apply the INF mapping F−1 on the latent vector z we do
not need to know the values of labels. They are predicted by
the model itself by finding a factorized representation into
attributes and style variables for the raw input z taken from
the latent space of the backbone generative model.

To train PluGeN, we need to evaluate the negative log-
likelihood of the latent vector z representing a training
example x. Suppose that we only know the values of the
subset of attributes YI = {Yi}i∈I , where I ⊂ {1, . . . ,K}
denotes selected indices. The negative log-likelihood of z
with known attributes YI = yI equals:

−log pZ|YI=yI
(z) = −

∑

i∈I

log pCi|Yi=yi
(ci)−

∑

i/∈I

log pCi
(ci)

− log pS(s)− log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ . (4)

The known values of attributes affect only the variables
{Ci}i∈I because we use the factorized form of the base
distribution (1). For the remaining variables {Ci}i/∈I , we
use the total probability calculated from the conditional base
distribution:

pCi
(ci) =

∑

yi∈Yi

pYi
(yi)pCi|Yi=yi

(ci). (5)

Due to the assumption of the independence between latent
variables, we compute the total probability in each dimen-
sion individually, which is numerically efficient.

In the following parts, we discuss two strategies of
estimating the total probability, Eq. (5).
KDE approach. In the most straightforward strategy, we
use all training examples with the known i-th attribute for



5

evaluating pCi
. More precisely, given training set X , the

total probability can be estimated by:

pCi
=

1

|X |
∑

(x,y)∈X
pCi|Yi=yi

,

where y = (y1, . . . , yK) denotes the label vector of x.
In the case of binary attributes, this distribution equals:

pCi
= p0N (m0, σ0) + p1N (m1, σ1),

where p0, p1 are the fractions of negatively and positively
labeled examples in a training set X . For continuous case, it
is given by:

pCi
=

1

|X |
∑

(x,y)∈X
N (yi, σ).

Observe that these densities coincide with 1-dimensional
kernel density estimators (KDEs). Although KDE does
not work well in high-dimensional spaces, it is a reli-
able estimate of the probability density function in the 1-
dimensional situation considered here.
Uniform distribution. In the previous strategy, we attach
a higher probability to more likely values of attributes. In
consequence, we encourage the model to map the unlabeled
examples to more common values of a given attribute.
While this is logically correct, this situation represents an
unbalanced case and can lead to ignoring less likely events.
Moreover, evaluating KDE can be slow for continuous at-
tributes.

To cope with these problems, we propose a second ap-
proach, which relies on using uniform distribution instead
of KDE. More precisely, we assume that the likelihood of
any value in pCi

is the same. In this case, the formula (4)
reduces to:

− log pZ|YI=yI
(z) = −

∑

i∈I

log pCi|Yi=yi
(ci)− const

− log pS(s)− log

∣∣∣∣det
∂F−1(z)

∂z

∣∣∣∣ .

The constant term can be ignored in the optimization. In
consequence, we evaluate the likelihood only for the known
values of the attribute, which further speeds up the training.

3.5 Inference
We may use PluGeN to generate new samples with desired
attributes as well as to manipulate attributes of input ex-
amples. In the first case, we generate a vector (c, s) from the
conditional distribution pC,S|Y=y with selected condition y.
To get the output sample, the vector (c, s) is transformed by
the INF and the base generative network G, which gives us
the final output x = G(F(c, s)).

In the second case, to manipulate the attributes of an
existing example x, we need to find its latent representation
z. If G is a decoder network of an autoencoder model,
then x should be passed through the encoder network
to obtain z [7]. If G is a GAN, then z can be found by
minimizing the reconstruction error between x′ = G(z) and
x using gradient descent for a frozen G [5]. In both cases,
z is next processed by INF, which gives us its factorized
representation (c, s) = F−1(z). In this representation, we
can modify any labeled variable ci and map the resulting
vector back through F and G as in the generative case.

3.6 Relation to the baseline conditioning
In this section, we discuss the proposed conditioning mech-
anism (instantiated by PluGeN) in relation to the baseline
conditioning used in StyleFlow.
Baseline conditional INF. Many recent works, including
StyleFlow [5] and FPN [6], use conditional INF to directly
model conditional distribution. In this case, we do not
factorize the base distribution into label and style variables
(C,S), but use a standard Gaussian N (0, IN ) as a base
distribution pW. The condition given by the attribute vector
y is introduced by parameterizing the flow transformation
F with y. The form of incorporating conditional information
depends strictly on the type of the INF, see [6] for details.
The log-likelihood of a sample represented by a latent vector
z ∈ Z with the attributes y is given by:

− log pZ|Y=y(z) =

− log

(
pW(F−1(z|y)) ·

∣∣∣∣det
∂F−1(z|y)

∂z

∣∣∣∣
)
=

− log (pW(w))− log

∣∣∣∣det
∂F−1(z|y)

∂z

∣∣∣∣ (6)

where w = F−1(z|y).
Observe that the selection of the conditioning factor y

induces an individual form of INF transformation. In conse-
quence, we do not obtain the formula for the likelihood of
the latent vector z but only the conditional likelihood of z
given y. To calculate the (unconditional) likelihood of z, we
have to integrate over all conditioning factors:

pZ(z) =
∑

y∈Y

pY(y)pZ|Y=y(z).

Evaluating this likelihood is difficult if the number of possi-
ble values of Y is large or the attribute vector is continuous.
We need to perform as many forward passes as the cardi-
nality of the value set of Y. Consequently, if one wants to
use conditional INF as a classifier for predicting attributes y
from z, then it is necessary to find:

argmax
y∈Y

pY(y)pZ|Y=y(z).

As before, this formula is expensive and cannot be used for
attributes with large cardinality. Moreover, as we show in
Figure 4, decision boundaries generated by such a classifier
are highly irregular.

There is another practical disadvantage of modeling
conditional distribution using conditional INF. Suppose that
we want to modify the attributes of a given input example
x represented by the latent vector z. If y is the attribute
vector of x, then we pass z using conditional INF and obtain
w = F−1(z|y). Next, we apply the inverse transformation
but with the requested condition y′. This gives us the new
latent representation z′ = F(w|y′), which can be decoded
using generator network x′ = G(z′). This procedure is
feasible if we know the true attribute vector y of the input
example x we want to modify. If this information is not pro-
vided, we need to employ an auxiliary classifier to predict
the attributes. This introduces a bias to the manipulation
procedure related to the classifier errors. Additionally, this
makes the whole procedure more complex as we need
to train the classifier and collect its predictions for each



6

Fig. 4: Comparison of handling data with the baseline condi-
tional INF vs. PluGeN. On the left, we show the dataset with
one of the groups (corresponding to attributes vector [1, 1])
missing. In the middle and on the right we show samples
obtained from, respectively, baseline conditional INF and
PluGeN. The background color represents the probability of
the most likely class induced by the conditional distribu-
tions of the models.

example we want to modify. This reasoning also prevents us
from applying the semi-supervised training as we need to
know labels before mapping the latent representations using
conditional INF. As we show in supplementary materials,
conditional INF performs poorly if we use incorrect labels
for its parameterization.
PluGeN conditioning Making use of PluGeN, we model the
joint distribution of attribute and style variables. Since we
use a factorized form of the base distribution, we can easily
calculate and evaluate the conditional distribution, see Eq.
(3). One could argue that modeling the joint distribution is a
more difficult task, but conducted experiments confirm that
our model gives comparable or even better results than the
conditional INF.

Moreover, the attributes modification is more viable in
practice as we do not need to know the true attributes
of manipulated examples, see Section 3.5. Given the la-
tent representation of the input example, PluGeN directly
predicts its attributes together with the style variables. In
consequence, we can modify any of the attributes by setting
the value of the corresponding coordinate to the requested
value. In addition, modeling attributes as target variables
instead of conditioning factors enables us to train the model
using partially labeled data.

Since we use a single (unconditional) INF and directly
split the latent space into regions corresponding to class
labels, PluGeN might be better suited to understand the
geometry of data. In order to investigate this question, we
consider a simple example of two-dimensional data with
two binary attributes shown in Figure 4 (left), where the
group with attributes vector [1, 1] (yellow triangles) is not
present in the data. We train the baseline conditional INF
and PluGeN on the data and check where they generate
missing class. Although samples representing the combina-
tions present in the dataset look similar for both models, the
position of the unseen attribute class is different, see Figure
4 (middle and right). While the baseline model generates
these points somewhat randomly, the geometrical formu-
lation of PluGeN serves as an inductive bias to position
the remaining class between the existing ones. Additionally,
for the conditional INF, the regions representing the most
likely class regions are non-regular and less predictable as

we go away from the data. In the case of PluGeN, decision
boundaries are smooth over the whole data space, which
allows for better extrapolation. This example justifies our
thesis that PluGeN is capable of generating samples with
unseen combinations of attributes (compare this example
with Figure 2).

4 EXPERIMENTS ON FULLY LABELED IMAGE DATA

To empirically evaluate the properties of PluGeN, we com-
bine it with two GAN models and one VAE architecture to
manipulate attributes of image data.

4.1 StyleGAN backbone

First, we consider the state-of-the-art StyleGAN architecture
[19], which was trained on Flickr-Faces-HQ (FFHQ) contain-
ing 70 000 high-quality images of resolution 1024 × 1024.
The Microsoft Face API was used to label 8 attributes in
each image (gender, pitch, yaw, eyeglasses, age, facial hair,
expression, and baldness).

PluGeN is instantiated using NICE flow model [30] that
operates on the latent vectors w ∈ R512 sampled from
the W space of the StyleGAN. As a baseline, we select
StyleFlow [5], which is currently one of the state-of-the-art
models for controlling the generation process of StyleGAN.
In contrast to PluGeN, StyleFlow uses the conditional con-
tinuous INF to operate on the latent codes of StyleGAN,
where the conditioning factor corresponds to the labeled
attributes.

Figures 1 (first page) and 5 present the effects of how
PluGeN and StyleFlow manipulate images sampled by
StyleGAN. It is evident that PluGeN can switch the labels
to opposite values as well as gradually change their inten-
sities. At the same time, the requested modifications do not
influence the remaining attributes leaving them unchanged.
One can observe that the results produced by StyleFlow
are also acceptable, but the modification of the requested
attribute implies the change of other attributes. For example,
increasing the intensity of ”baldness” changes the type of
glasses, or turning the head into right makes the woman
look straight.

For qualitative evaluation, we modify one of 5 attributes1

and inspect the resulting image. First, we measure the
accuracy of changing a certain attribute using Microsoft Face
API. Second, we verify how much of the image content was
modified when manipulating the requested attributes. To
this end, we compare the altered picture with the original
image (before modification). To compare the difference be-
tween images, we calculate the mean square error (MSE)
between embeddings of the original and modified images
taken from a pre-trained network. We employ two networks
applicable to processing face images: ArcFace2 [?] (AF) and
FaceRecognition3 (FR). A model with a lower MSE preserves
more features (including identity) from the original image.
The quality of images is additionally assessed by calculating
the standard Fréchet Inception Distance (FID) [33].

1. The remaining 3 attributes (age, pitch, yaw) are continuous and it
is more difficult to assess their modifications.

2. https://github.com/deepinsight/insightface
3. https://github.com/ageitgey/face recognition



7

(a) PluGeN (b) StyleFlow

Fig. 5: Gradual modification of attributes (age, baldness, and yaw, respectively) performed on the StyleGAN latent codes.

As can be seen from Table 1, PluGeN performs the
requested modifications more accurately and is less invasive
in modifying the content of the original image than Style-
Flow. High accuracy of modification and low discrepancy
between input and output images suggest that PluGeN
better disentangles the latent space of the backbone model
and precisely alters the desired attribute. One can observe
that StyleFlow obtains a better FID score than PluGeN. Since
FID compares the distribution of generated and real images,
creating images with uncommon combinations of attributes
that do not appear in a training set may be scored lower,
which partially explains the relation between accuracy and
FID obtained by PluGeN and StyleFlow. In consequence,
FID is not an adequate metric for measuring the quality of
arbitrary image manipulations considered here, because it
is too closely tied to the distribution of input images ( [15]
shows similar findings).

It is worth mentioning that PluGeN obtains these very
good results using NICE model, which is the simplest type
of INFs. In contrast, StyleFlow uses continuous INF, which
is significantly more complex and requires using an ODE
solver leading to unstable training. Moreover, to modify
even a single attribute, StyleFlow needs to determine the
values of all labels, since they represent the conditioning
factors of INF. In consequence, every modification requires
applying an auxiliary classifier to predict all image labels.
The usage of PluGeN is significantly simpler, as subsequent
coordinates in the latent space of INF correspond to the
labeled attributes and they are automatically determined
by PluGeN. Finally, our approach is less computationally
expensive as we verified that, using the same hardware,
PluGeN can be trained 3 times faster than StyleFlow and
is around 100 times faster in inference.

4.2 PGGAN backbone

PluGeN is not restricted to the StyleGAN backbone and
can be applied to other types of GAN models. In this
experiment, we used PGGAN trained on images taken from
the CelebAHQ dataset as a backbone model. PGGAN has a
simpler architecture than StyleGAN and, in particular, does
not contain the style space W. In this case, PluGeN was
directly attached to the latent space Z, which has a prior
Gaussian distribution. We use analogical NICE architecture
for instantiated PluGeN.

TABLE 1: Attributes modification using StyleGAN back-
bone. High accuracy means the PluGeN correctly modifies
the requested attributes while low values of FR MSE and
AF MSE show that it preserves most features of the original
image.

Plugen StyleFlow

Requsted Acc ↑ FR ↓ AF ↓ Acc ↑ FR ↓ AF ↓
value MSE MSE MSE MSE

gender 0.94 0.26 0.38 0.91 0.35 0.57
glasses 0.95 0.23 0.27 0.85 0.33 0.50
bald 0.77 0.32 0.53 0.77 0.34 0.60
beard 0.86 0.32 0.45 0.83 0.40 0.65
smile 0.98 0.20 0.19 0.96 0.25 0.32

AVG 0.90 0.27 0.36 0.86 0.34 0.53

AVG FID 25.95 18.55

PluGeN was trained on 100,000 images generated from
PGGAN, which were labeled using an independent face
attribute classifier. Due to licensing issues, we could not
use the Microsoft Face API to label training images and
evaluate the resulting model. For this reason, we trained the
ResNet-18 model [34] on the FFHQ dataset. The model was
trained with 8 attributes in a multi-label manner, treating
the Microsoft Face API labels as targets.

As a baseline, we selected InterFaceGAN, which reports
state-of-the-art performance for manipulating face attributes
in the case of the PGGAN model. InterFaceGAN learns a
disentangled representation after some linear transforma-
tions and proposes a technique for semantic face editing.
Following the experimental setup of InterFaceGAN, we
evaluated the modification of 5 face attributes. For eval-
uation, we used the accuracy of modification and MSE
between the image embedding taken from the FR and AF
models. For continuous attributes, such as age and yaw,
we calculated the accuracy of exceeding a fixed threshold,
e.g., age lower than 25 corresponds to negative labels, while
values higher than 50 denote positive label.

The results presented in Table 2 show that PluGeN
obtains at least 94% accuracy for manipulating 4 attributes.
Although the score for modifying the age attribute is lower
than 50%, it is still higher than that achieved by Inter-
FaceGAN. The highest discrepancy between PluGeN and
InterFaceGAN is observed for the smile attribute. A signifi-
cantly higher score of PluGeN shows that the smile attribute



8

TABLE 2: Attributes modification using PGGAN backbone.

PluGeN InterFaceGAN

Acc ↑ FR ↓ AF ↓ Acc ↑ FR ↓ AF ↓
MSE MSE MSE MSE

gender 0.95 0.54 0.92 0.98 0.55 0.92
glasses 0.94 0.51 0.85 0.99 0.59 1.04
age 0.48 0.57 1.00 0.46 0.60 1.08
smile 0.99 0.33 0.41 0.77 0.33 0.37
yaw 0.98 0.41 0.57 1.00 0.40 0.53

AVG 0.87 0.47 0.75 0.84 0.49 0.79

TABLE 3: Attributes disentanglement measured by the ac-
curacy (higher is better). For each image, we change of the
values of attributes listed in rows and verify whether the
remaining attributes (listed in columns) stay unchanged.

gender glasses age smile yaw AVG

PluGeN

gender - 0.91 0.80 0.85 0.85 0.87
glasses 0.85 - 0.83 0.84 0.84 0.86
age 0.40 0.45 - 0.41 0.42 0.43
smile 0.93 0.96 0.91 - 0.89 0.94
yaw 0.90 0.96 0.90 0.87 - 0.92

AVG 0.81 0.85 0.78 0.79 0.80 0.80

InterFaceGAN

gender - 0.91 0.90 0.66 0.88 0.86
glasses 0.63 - 0.90 0.82 0.89 0.85
age 0.31 0.44 - 0.30 0.44 0.39
smile 0.70 0.76 0.73 - 0.73 0.74
yaw 0.93 0.98 0.93 0.90 - 0.95

AVG 0.71 0.82 0.79 0.69 0.79 0.76

cannot be fully controlled using the linear operation applied
by InterFaceGAN and the nonlinear model implemented by
PluGeN is necessary. MSE values delivered by the FR and
AF models confirm that PluGeN is less invasive to the image
content than InterFaceGAN. These effects are illustrated in
Figure 6.

Additionally, we verified the disentanglement between
labeled attributes in a strict quantitative way. That is, we
forced the change of a single attribute and verified whether
the values of other labeled attributes changed as well. Ide-
ally, the values of the remaining attributes should remain
intact. We applied a standard accuracy measure, which tests
whether the classifier keeps its original prediction on non-
modified attributes. The results presented in Table 3 confirm
that PluGeN provides better disentanglement than Inter-
FaceGAN. In consequence, the proposed non-linear map-
ping works better than the linear transformation applied by
InterFaceGAN.

4.3 Image manipulation on VAE backbone
In the following experiment, we show that PluGeN can be
combined with autoencoder models to effectively manipu-
late image attributes. We use CelebA database, where every
image of the size 256 × 256 is annotated with 40 binary
labels.

We compare PluGeN to MSP [7], a strong baseline, which
uses a specific loss for disentangling the latent space of
VAE. Moreover, we also use flow plug-in network (FPN)

TABLE 4: Accuracy and FID scores of image manipulation
performed on the VAE backbone.

Requested value PluGeN MSP FPN

male x beard 0.80 0.79 0.85
female x beard 0.59 0.33 0.31

male x no-beard 0.88 0.92 0.91
female x no-beard 0.85 0.82 0.95

male x makeup 0.44 0.43 0.29
male x no-makeup 0.72 0.92 0.96
female x makeup 0.42 0.41 0.58

female x no-makeup 0.55 0.40 0.85
smile x open-mouth 0.97 0.99 0.79

no-smile x open-mouth 0.79 0.82 0.77
smile x calm-mouth 0.84 0.91 0.72

no-smile x calm-mouth 0.96 0.97 0.99
male x bald 0.26 0.41 0.34

male x bangs 0.58 0.74 0.45
female x bald 0.19 0.13 0.39

female x bangs 0.52 0.49 0.60
no-glasses x black-hair 0.92 0.93 0.74

no-glasses x golden-hair 0.92 0.91 0.81
glasses x black-hair 0.76 0.90 0.58

glasses x golden-hair 0.75 0.85 0.61

Average Acc 0.69 0.70 0.67
Average FID 28.07 30.67 39.68

[6], which analogically to StyleFlow uses a conditional
INF to introduce labeled attributes. The architecture of the
base VAE and the evaluation protocol were taken from the
original MSP paper. More precisely, for every input image,
we manipulate the values of two attributes (we inspect 20
combinations in total). The success of the requested manip-
ulation is verified using a multi-label ResNet-56 classifier
trained on the original CelebA dataset.

The sample results presented in Figure 7 demonstrate
that PluGeN attached to VAE produces high-quality images
satisfying the constraints imposed on the labeled attributes.
The quantitative comparison shown in Table 4 confirms
that PluGeN is extremely efficient in creating uncommon
combinations of attributes, while FPN performs well only
for the usual combinations. At the same time, the quality
of images produced by PluGeN and MSP is better than in
the case of FPN. Although both PluGeN and MSP focus
on disentangling the latent space of the base model, MSP
has to be trained jointly with the base VAE model and
it was designed only to autoencoder models. In contrast,
PluGeN is a separate module, which can be attached to
arbitrary pre-trained models. Due to the use of invertible
neural networks, it preserves the reconstruction quality of
the base model, while adding manipulation functionalities.
In the following experiment, we show that PluGeN also
performs well at generating entirely new images, which is
not possible using MSP.

4.4 Image generation with VAE backbone
In addition to manipulating the labeled attributes of exist-
ing images, PluGeN generates new examples with desired
attributes. To verify this property, we use the same VAE ar-
chitecture as before trained on CelebA dataset and compare
our results with FPN. We exclude MSP from the comparison
because it cannot generate new images, but only manipulate
the attributes of existing ones (see supplementary materials
for a detailed explanation).



9

input gender glasses age smile yaw input gender glasses age smile yaw

Fig. 6: Attributes manipulation performed using the PGAGAN backbone.

In
pu

t i
m

ag
e

PluGeN MSP FPN

|+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass

~+beard |-mkup open-
smile

|+bangs hair-glass ~+beard |-mkup open-
smile

|+bangs hair-glass ~+beard |-mkup open-
smile

|+bangs hair-glass

|-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass

~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass

Fig. 7: Examples of image attribute manipulation using VAE backbone.

Fig. 8: Examples of conditional generation using VAE back-
bone. Each row contains the same person (style variables)
with modified attributes (label variables).

Figure 8 presents sample results of image generation
with the specific conditions. In each row, we fix the style
variables s and vary the label variables c in each column,
generating the same person but with different characteristics
such as hair color, eyeglasses, etc. PluGeN and FPN gener-
ate images of similar quality, but only PluGeN is able to
correctly manipulate the labeled attributes. The lower qual-
ity of generated images is caused by the poor generation
abilities of VAE backbone, which does not work well with
high dimensional images (see supplementary materials for
a discussion). For this reason, it is especially notable that
PluGeN can improve the generation performance of the
backbone model in contrast to MSP.

4.5 Disentangling the attributes

The attributes in the CelebA dataset are strongly correlated
and at times even contradictory, e.g. attributes ’bald’ and
’blond hair’ cannot both be present at the same time. In this
challenging task, we aim to disentangle the attribute space
as much as it is possible to allow for generating examples
with arbitrary combinations of attributes. For this purpose,
we sample the conditional variables ci independently, ef-
fectively ignoring the underlying correlations of attributes,
and use them to generate images. Since the attributes in the
CelebA dataset are often imbalanced (e.g. only in 6.5% of



10

TABLE 5: Results of the independent conditional generation
using VAE backbone.

PluGeN FPN

F1 0.44 0.29
AUC 0.76 0.68

examples the person wears glasses), we calculate F1 and
AUC scores for each attribute.

The quantitative analysis of the generated images pre-
sented in Table 5 confirms that PluGeN outperforms the
baseline FPN with respect to classification scores. The over-
all metrics are quite low for both approaches, which is due
to the difficulty of disentanglement mentioned above, as
well as the inaccuracy of the ResNet attribute classifier.
Deep learning models often fail when the correlations in
the training data are broken, e.g. the classifier might use the
presence of a beard to predict gender, thus introducing noise
in the evaluation [35].

5 EXPERIMENTS ON PARTIALLY LABELED IMAGES

In this part, we evaluate the effects of training PluGeN on
partially labeled data.

5.1 Comparing semi-supervised strategies on CelebA
First, we compare the proposed two strategies (KDE and
uniform) of estimating the total probability (from Section
3.4) to enable a semi-supervised training of PluGeN on
partially labeled data. We use CelebA dataset and VAE
backbone. To generate a partially labeled dataset, we ran-
domly select a subset of labels for every image, which are
available for training. The remaining labels are kept hidden.
We consider the case of 20, 10, 5 and 1 labels per image
(out of 40 labels). The last situation of 1 label corresponds to
using only 2.5% of all labels.

As shown in Figure 9a both strategies give very good
results when at least 5 labels per image (12.5%) are available.
When 20 or 10 labels are given, then the performance is
very similar to the fully-labeled case, while for 5 labels we
observe 2 percentage point decrease in the accuracy. Given
only 1 label per image, both models deteriorate their results
and obtain the accuracy slightly above 50%. In consequence,
PluGeN reduces the need for the labeled data being able to
maintain its performance using only 12.5% of all labels.

More detailed inspection of Figure 9a reveals that KDE
estimate works slightly better when more labels are avail-
able, while the uniform density gives higher accuracy for
the case of 1 label. Given many labels, KDE produces reliable
density estimate and thus it is useful for inferring the values
of unknown labels. On the other hand, KDE can marginalize
the role of minor values (or even ignore them completely),
which might explain its lower accuracy in the case of 1
label per image. Applying uniform distribution does not
introduce any bias to the labeling process and treats all
values equally.

5.2 Evaluation on the StyleGAN backbone
In this experiment, we focus on comparing the performance
of semi-supervised version of PluGeN with StyleFlow. We

follow the setup introduced in Section 4.1 and train all
models on partially labeled FFHQ dataset using StyleGAN
backbone.

To generate partially labeled dataset, we consider two
strategies for labels removal. In the first one (refer to as
partial), we randomly remove a fixed percentage of labels
for every image. In consequence, every example contains
the same number of labels, but not all labels are visible. This
strategy is analogical to the one considered in Section 5.1.
In the second case (refer to as split), we keep all labels for a
fixed percentage of examples while the labels of remaining
images are removed. Thus we divide the set of images
into two subsets: fully-labeled and unlabeled. Observe that
unlabeled data can be still used for training PluGeN.

Following results from the previous section, we use
the uniform strategy for estimating the total probability
in PluGeN, given its simplicity. Since StyleFlow cannot be
trained on partially labeled dataset, we decided to train it
only on the set of fully labeled examples. In consequence,
for StyleFlow, we only considered the case where a fixed
percentage of data contains all labels while the remaining
ones are completely removed from training. For complete-
ness, we also consider the same setup for PluGeN referred
to as labeled.

Figure 9b presents the accuracy of modification discrete
attributes using 50% (4 labels), 25% (2 labels), and 12.5%
(1 label) of labels, respectively. It is evident that the perfor-
mance of PluGeN is stable even when only 1 of 8 labels is
available for training. We illustrate the manipulation effects
with sample images in Figure 10. Observe that StyleFlow,
which was trained only on fully labeled examples, keeps
its performance only on 50% of the data. For 25% of the
data, it significantly decreases its accuracy, while for the
level of 12.5%, it completely fails to generate face images
during modification. We verify that PluGeN also decreases
its performance when the unlabeled data are completely
removed from the training, but the degradation is not as
high as in the case of StyleFlow.

We also verified how much of the image content was
changed when manipulating a given attribute. Figures 9c
and 9d show that the MSE values for all versions of PluGeN
behave very stable. On the contrary, the MSE is considerably
higher for StyleFlow than for PluGeN when all labels are
available. Furthermore, the MSE for StyleFlow decreases as
the number of labels is lower, reaching a very low level
for 12.5% of labels. Further inspection revealed that for a
smaller number of labels, StyleFlow was completely unable
to perform most of the manipulations (resulting in low
accuracy) and returned the input image unchanged.

In conclusion, PluGeN is capable of correctly manipulat-
ing face images even in challenging settings where it has to
leverage unlabeled or partially labeled data, making it better
suited to a wide range of real-world problems.

5.3 Biased partial labeling
To further analyze the training of PluGeN on partially
labeled data, we consider the case of biased labeling. In
other words, instead of randomly removing a portion of
labels, we delete more labels with a given value, e.g. remove
more people with glasses than without. We verify whether
PluGeN is robust to the biased partial labeling process.



11

100% 50% 25% 12.5% 2.5%
0.50

0.55

0.60

0.65

0.70
KDE Uniform

(a) Accuracy of two strategies to include par-
tial labels in the VAE backbone and the CelebA
dataset.

100% 50% 25% 12.5%
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
PluGeN partial
PluGeN split

PluGeN labeled
StyleFlow labeled

(b) Accuracy on partially labeled FFHQ dataset
using StyleGAN backbone.

100% 50% 25% 12.5%
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
PluGeN partial
PluGeN split

PluGeN labeled
StyleFlow labeled

(c) FR MSE on partially labeled FFHQ dataset
using StyleGAN backbone.

100% 50% 25% 12.5%

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PluGeN partial
PluGeN split

PluGeN labeled
StyleFlow labeled

(d) AF MSE on partially labeled FFHQ dataset
using StyleGAN backbone.

50% 25% 12.5% 6.25% 3,12% 1,56% 0,78% 0,39%
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97
female male

(e) Accuracy on partially labeled FFHQ dataset
when the number of female label is decreasing.

Fig. 9: Evaluation of attributes modification in a semi-supervised setting.

input gender glasses smile

Fig. 10: Manipulation of binary attributes performed by the
semi-supervised version of PluGeN on the StyleGAN codes.

We first randomly remove 75% of labels (6 labels) for
every image in the FFHQ data set. Next, we only change
the distribution of the label describing the gender and
gradually remove labels with value ”female”. Since we
initially removed 75% of all labels, then the model cannot
easily deduce that hidden values of label gender denotes
the females. Otherwise, it would be a trivial task.

Figure 9e shows that PluGeN is extremely robust to
biased labeling. Performance remains stable until the level
of 6.25%. Below this value, the accuracy starts to slowly
decrease, but it is still above 90% when only 0.4% of the
female label is visible.

6 EXPERIMENTS ON NON-IMAGE DATA

In this section, we present two practical use-cases of using
PluGeN on chemical molecule generation using CharVAE
and 3D point cloud modeling using PointFlow.

6.1 Chemical molecules modeling

In this part, we apply PluGeN to generate chemical
molecules with the requested properties. As a backbone
model, we use CharVAE [2], which is a type of recurrent net-
work used for processing SMILES [36], a textual representa-
tion of molecules. It was trained on ZINC 250k database [37]
of commercially available chemical compounds. For every
molecule, we model 3 physio-chemical continuous (not bi-
nary) labels: logP, SAS, TPSA, which values were calculated
using RDKit package [38]. Additional explanations and
more examples are given in the supplementary materials.

First, we imitate a practical task of de novo design [39],
[40], where we force the model to generate new compounds
with desirable properties. For every attribute, we generate
25k molecules with 3 different values: for logP we set the
label of generated molecules to: 1.5, 3.0, 4.5; for TPSA we set
generated labels to: 40, 60, 80; for SAS we set them to: 2.0,
3.0, 4.0, which gives 9 scenarios in total. From density plots
of labels of generated and original molecules presented in
Figure 11, we can see that PluGeN changes the distribution
of values of the attributes and moves it towards the desired
value. A slight discrepancy between desired and generated
values may follow from the fact that values of labeled
attributes were sampled independently, which could make
some combinations physically contradictory.



12

Fig. 11: Distribution of attributes of generated molecules,
together with distribution for the training dataset. Each
color shows the value of a labeled attribute that was used
for generation. PluGeN is capable of moving the density of
generated molecules’ attributes towards the desired value.
The average of every distribution is marked with a vertical
line.

(a) Molecules decoded from path (b) LogP of presented molecules

Fig. 12: Molecules obtained by the model during an opti-
mization phase (left side), and their LogP (right side).

Next, we consider the setting of lead optimization [41],
[42], where selected compounds are improved to meet cer-
tain criteria. For this purpose, we encode a molecule into the
latent representation of INF and force PluGeN to gradually
increase the value of logP by 3 and decode the resulting
molecules. The obtained molecules together with their logP
are shown in Figure 12. As can be seen, PluGeN generates
molecules that are structurally similar to the initial one,
however with optimized desired attributes.

Obtained results show that PluGeN is able to model the
physio-chemical molecular features, which is a non-trivial
task that could speed up a long and expensive process of
designing new drugs.

Fig. 13: The samples generated from PluGeN assuming
particular attributes. In the first row, we generate cantilever
arm chairs, and in the second row, swivel arm chairs.

6.2 3D point clouds modelling
In this experiment, we investigate the quality of PluGeN
in application to conditional point cloud generation. We

Fig. 14: The results for attribute manipulation using PluGeN
applied to point clouds. We modify the original point cloud
from the test split by switching the particular attributes
responsible for the chair type.

use a standard benchmark dataset named ShapeNet [43],
and we focus on the chair class. For this particular class,
we distinguish 7 attributes that can describe chairs: arms,
straight, club, cantilever, swivel, folding, and rocking. As pre-
trained frozen models, we use PointFlow [44] and LION
[45], both trained directly on train split for chair class. For
PointFlow model, we postulate to use a pre-trained CNF
as a PluGeN component because this type of normalizing
flow was used to enrich the prior distribution over the latent
space of the PointFlow. Therefore, during training PluGeN,
we initialize the model with pre-trained weights and freeze
the entire PointFlow, except the flow component plugged-
in to latent, which is trained according to the PluGeN
paradigm using the defined attributes for chairs. For the
LION model, we train CNF from scratch over the shape
latent space following PluGeN training methodology. For
both backbones, we evaluate the quality of PluGeN and
compare the results with Flow Plugin Network (FPN) [6],
which uses additional embedding and a conditional variant
of the flow to model conditional distribution.

In Figure 13, we provide qualitative results for condi-
tional generation using the PluGeN model and PointFlow
backbone. In Figure 14, we present the results for point
cloud attribute manipulation, where the original point cloud
is modified by switching the value of the single attribute
representing the particular chair shape. In the first row, we
provide the samples for the attributes arms and cantilever
switched on, and in the second row, we used arms and
swivel for conditional generation. The results of conditional
generation and modification for FPN are presented in the
supplementary materials.

In Table 6, we provide the results of quantitative analysis
of the conditional generative capabilities of both models for
PointFlow and LION backbones. We analyze the generative
capabilities in the conditional framework using the test
split of chair subset of ShapeNet. We use a conditional
model to generate the same number of samples as in the
test set, preserving the same distribution of attributes. In
order to evaluate the generative capabilities of the model,
we use standard metrics used for point clouds, including
Minimum Matching Distance (MMD), Coverage (COV), 1-
nearest neighbor accuracy (1-NN) (each of them calculated
using both Chamfer Distance (CD), Earth-Mover Distance



13

TABLE 6: Results of conditional point cloud generation using Flow Plugin Network (FPN) and PluGeN (ours) for PointFlow
and LION backbones. Bold results are the best results for the specific backbone, whereas underlined results are the best
results overall.

CLASS-CD CLASS-EMD MMD-CD MMD-EMD COV-CD COV-EMD 1-NN-CD 1-NN-EMD JSD

PointFlow Backbone

FPN 0.6562 0.5769 0.0019 0.0731 0.5471 0.5421 0.5793 0.5471 0.0193
PluGeN 0.7174 0.6496 0.0016 0.0682 0.5322 0.5240 0.5719 0.5760 0.0301

LION Backbone

FPN 0.5388 0.4628 0.0027 0.0178 0.3785 0.4066 0.6562 0.7256 0.0726
PluGeN 0.5917 0.5140 0.0023 0.0151 0.4496 0.4727 0.5992 0.6397 0.0324

(EMD)) and Jensen-Shannon Divergence (JSD). The defi-
nitions of the selected measures are provided in [44]. In
order to evaluate the quality of conditioning in the process
of generating the samples, we use classification accuracy
(CLASS), which also uses both of the considered distance
measures. To calculate the accuracy, we take each generated
sample, find the closest neighbor in the test set according to
the considered distance measure, and check if the vectors of
attributes for the test example and generated sample are the
same. The number of exact matches is further divided by
the number of test cases, and the final metric is calculated.
We can observe that generative capabilities on the PointFlow
backbone for both of the considered models are comparable.
While evaluating the ability of the model to create the sam-
ples with a given vector of attributes measured by CLASS-
CD and CLASS-EMD, the PluGeN beats reference FPN by a
large margin. Moreover, for the LION backbone, PluGeN is
better than FPN for all considered metrics. Finally, we can
observe that results for the PointFlow backbone for both
methods are usually better than for the LION backbone.

7 CONCLUSION

We proposed a novel approach for disentangling the latent
space of pre-trained generative models, which works per-
fectly for generating new samples with desired conditions
as well as for manipulating the attributes of existing exam-
ples. In contrast to previous works, we demonstrated that
PluGeN performs well across diverse domains, including
chemical molecule modeling and 3D point clouds genera-
tion, and can be combined with various architectures, such
as GANs and VAEs backbones. Moreover, it can be trained
in a semi-supervised manner, which further increases its
applicability in practical use-cases.

APPENDIX A
PARAMETRIZATION OF PLUGEN
Modeling imbalanced binary labels. In many cases, the
class labels are imbalanced, which means that the number
of examples from one class significantly exceeds the other
class (e.g., only 6.5% examples in CelebA dataset have the
’glasses’ label). To deal with imbalanced data, we scale
the variance of Gaussian density modeling the conditional
distribution pCi|Yi=yi

.
We consider the conditional density of i-th attribute

represented by:

pCi|Yi=yi
= N (m0, σ0)

(1−yi) · N (m1, σ1)
yi , (7)

where m0 = −1 and m1 = 1. We assume that p0, p1 are
the fractions of examples with class 0 and 1, respectively. To
deal with imbalanced classes we put

σi = σ
√
2pi,

where σ > 0 is a fixed parameter. For a majority class,
standard deviation becomes higher, which introduces a
lower penalty in the case of negative log-likelihood loss.
The minority class has a higher penalty because we need to
stop the mixture from collapsing into a single component.

Let us calculate the log-likelihood of our conditional
prior density pCi|Yi=yi

using the parametrization σi =
σ
√
2pi. We have

− log pCi|Yi=yi
(c) = yi · λ1

(c−m1)
2

2σ2
+

(1− yi) · λ0
(c−m0)

2

2σ2
+ const, (8)

where λi =
1

2pi
is an extra weighting factor.

We observe that, for our selection of σi, the expected
value of the weighting factors with respect to labeling
variable y equals 1. In consequence,

Ey[− log pCi|Yi=yi
(c)] =

p0
(c−m1)

2

2σ2
+ p1

(c−m0)
2

2σ2
+ const,

which is a typical log-likelihood of Gaussian distribution
assuming class proportion pi.
Reducing σ in a training of PluGeN. Here, we describe
the schedule for parameter σ used for modeling conditional
distribution N (m,σ). We want to ensure the flexibility of
the INF at the beginning of the training, but we also need
the attribute values to be strictly separated. In order to
achieve both of these conditions, we impose a schedule on
the standard deviation σ. Starting with high σ we allow
for great flexibility of our model, and then we get class
separation by reducing the value of σ. Namely, we use the
following schedule for the standard deviation σ of the class
normal distributions:

σ(t) = σ0 · γt,

where t is the index of the current epoch and σ0, γ are
hyperparameters setting, respectively, the starting point and
the speed of value decay. The selection process of σ0 and γ
is described in the following sections.



14

Fig. 15: Additional experiments on the 2D dataset with the
baseline conditional INF model. On the left we show the
training dataset. In the top row we show how the dataset
is reconstructed if we flip the attributes of all examples. In
the bottom row, we show what happens if the examples are
encoded with one of the attributes flipped incorrectly and
then decoded with the correct attribute.

Additional analysis of conditional INF. In this para-
graph, we present additional experiments with the two-
dimensional toy dataset. For these experiments we use a
simple NICE flow with 4 layers and 4 blocks per layer, each
of dimenstionality 64. Here, we train the baseline model
on the whole dataset (including the previously missing
combination of attributes) and check how it performs at the
attribute manipulation task. Results presented in Figure 15
show that the model is able to correctly perform attribute
manipulation, but if we encode examples with incorrect
labels and then decode with the correct one, it tends to
extrapolate outside the dataset.

APPENDIX B
DETAILS OF IMAGE EXPERIMENTS

All experiments were run on a single NVIDIA DGX Station
with Ubuntu 20.04 LTS. The full hardware specification
includes 8 Tesla V100 GPUs with 32GB VRAM, 512GB RAM,
and Intel(R) Xeon(R) CPU E5-2698 v4. Each experiment was
run using a single GPU. The code is based on the PyTorch
[46] framework.

B.1 Architectures of the models
StyleGAN backbone. Our experiments were performed
using the pre-trained, publicly available StyleGAN2 trained
on the FFHQ dataset [47].
PGGAN backbone. For our experiments, we used the
PGGAN backbone trained on the Celeba-HQ 1024 dataset
provided in the Genforce repository: https://github.com/
genforce/genforce.
PluGeN for PGGAN and StyleGAN backbones. We use
NICE architecture with 4 coupling layers with 4 layers
in each and width 512. We use Adam optimizer with
learning rate 10−4 and train model for 1000 epochs. The
hyperparameters σ0 and γ used for modeling conditional
distributions, are set to 0.4 and 0.999, respectively.

VAE backbone. For our experiments, we reuse the VAE ar-
chitecture from [7]. We use an encoder with 5 convolutional
layers starting with 128 filters and doubling. The decoder is
symmetrical to the decoder. We use leakyReLU activations.
We train the network for 50 epochs with batch size 40 and
Adam optimizer with the learning rate set to 10−4. We
additionally train a PatchGAN model [48] to improve the
sharpness of the images.
PluGeN for VAE backbone. As previously, we use NICE
architecture with 4 coupling layers with 4 layers in each and
width 256. We train the model for 50 epochs using Adam
optimizer with learning rate 10−4 and σ0. The hyperparam-
eters γ are set to 0.7 and 0.99, respectively.
FPN. We train FPN model also on top of the base network.
We use Conditional Masked Autoregressive Flow with 5
layers of each consisting of reverse permutation and MADE
component with 2 residual blocks. Moreover, we have been
encoding attributes using 1 linear layer which was after that
passed as a context input to the flow. We train the model
for 50 epochs using Adam optimizer witht learning rate
10−3. During sampling, the temperature trick was used with
T = 0.7.
ResNet classifier. To evaluate the correctness of attribute
manipulation in the case of CelebA dataset, we used a
standard ResNet-56 classifier. We trained it on the task of
multi-label classification, with class weighting to correct for
class imbalance. We used the Adam optimizer with the
learning rate set to 3 · 10−4, batch size 256 and trained it
for 50 epochs.
Attribute classifier for FFHQ dataset To evaluate the pro-
posed an independent face attribute classifier was con-
structed. We train the ResNet-18 model on the FFHQ and 10
000 randomly generated StyleGAN face images. The model
is trained with 8 outputs in a multi-label manner, treating
the Microsoft Face API labels as targets. We standardize the
labels as well as apply the shrinkage loss as we find that
it helps with dataset imbalance. We use the same loss for
binary and continuous labels as this works equally well for
classification.

B.2 Additional Results

In this subsection, we present additional results and models
comparison, which were not included in the main paper
because of space restrictions.
Manipulating the StyleGAN latent codes. In Figures 16
and 17, we present additional results of attribute manip-
ulations performed by PluGeN and StyleFlow on the la-
tent codes of StyleGAN backbone. In most cases, PluGeN
modifies only the requested attribute leaving the remaining
ones unchanged, which is not always the case of StyleFlow
(compare 4th row of Figure 16 or 3rd row of Figure 17). This
confirms that the latent space produced by PluGeN is more
disentangled than the one created by StyleFlow.
Manipulating images using VAE backbone. In Figure 18,
we show additional results of image manipulation per-
formed by PluGeN, MSP, and FPN using VAE backbone.
One can observe that PluGeN and MSP perform the re-
quested modification more accurately than FPN.
Manipulating attributes intensity of generated images.
In this experiment, we consider images fully generated by



15

PluGeN StyleFlow
Age

Baldness

Beard

Yaw

Fig. 16: Gradual modification of attributes (age, baldness, beard, and yaw, respectively) performed by PluGeN (left) and
StyleFlow (right) using the StyleGAN backbone.

PluGeN (not reconstructed images) attached to the VAE
backbone. More precisely, we sample a single style variable
s from the prior distribution and manipulate the label vari-
ables of CelebA attributes. It is evident in Figure 21 that
PluGeN freely interpolates between binary values of each
attribute and even extrapolates outside the data distribu-
tion. This is possible thanks to the continuous form of prior
distribution we are using in the latent space, which enables
us to choose the intensity of each attribute. We emphasize
that this information is not encoded in the dataset, where
labels are represented as binary variables. However, in
reality, an attribute such as ’narrow eyes’ covers a whole
spectrum of possible eyelid positions, from eyes fully closed,
through half-closed to wide open. PluGeN is able to recover
this property without explicit supervision. Interestingly, we
also see cases of extrapolation outside of the dataset, e.g.
setting a significantly negative value of the ’bangs’ attribute,
which can be interpreted as an illogical condition ’extreme
absence of bangs’, creates a white spot on the forehead.

Figure 22 shows that the shape of the empirical distri-
butions in the latent space of PluGeN allows for this con-
tinuous change. While the positive and negative classes of

boolean attributes such as the presence of a hat or eyeglasses
are clearly separated, in more continuous variables like
youth and attractiveness they overlap significantly, allow-
ing for smooth interpolations. This phenomenon emerges
naturally, even though CelebA provides only binary labels
for all the attributes.

Generation capabilities of MSP and the VAE backbone.
In Figure 23 (top), we demonstrate that the base VAE model
taken from the MSP paper [7] cannot generate new face im-
ages, but only manipulate the attributes of input examples.
In consequence, it works similar to the autoencoder model.
For this reason it is especially notable that PluGeN can
improve the generation performance of the backbone model
(see the main paper). In contrast, MSP cannot generate new
face images using this VAE model as shown in the bottom
row of Figure 23. For very low temperatures, MSP generates
typical (not diverse) faces.

Generating images with attributes combinations taken
from test set. We present additional quantitative results
for generating images with the requested combinations of
attributes. In this experiment, we focus on typical combina-
tions, which appear in a dataset. For this purpose, we gen-



16

PluGeN StyleFlow
input gender glasses smile input gender glasses smile

Fig. 17: Attributes manipulation performed by PluGeN (left) and StyleFlow (right) using the StyleGAN backbone.

TABLE 7: Average classification metrics for generating im-
ages with the combinations of attributes taken from the test
set of CelebA.

PluGeN FPN

F1 0.69 0.49
AUC 0.92 0.85

erate 20,000 images with the same attribute combinations as
in the CelebA test set. The results presented in Table 7 show
that PluGeN outperforms both FPN, cVAE, and ∆-GAN in
terms of classification scores.
Semi-supervised generation. In Figure 24 we show the
effects of continuous attributes manipulation performed on
sample images by semi-supervised version of PluGeN.

B.3 Ablations
CNF vs NICE. In our main experiments, we use the NICE
[30] approach to flow-based models. This choice was mo-
tivated by the computational and conceptual simplicity of
the approach. However, we also empirically evaluated a
more complex approach of continuous normalizing flows
[49] which cast the distribution modeling task as a problem
of solving differential equations. The CNF implementation
consisted of 2 stacked CNFs, each containing 3 concat-
squash layers with a hidden dimension 2048. Table 8 shows
the results of both approaches in the task of multi-label
conditional generation using VAE backbone. We use the
same combinations of attributes as in the CelebA test set.
Table 9 shows an analogical comparison when the attributes
were sampled independently, which is more challenging
setting. For both of these settings results on NICE and CNF
are comparable. Although CNF samples get better FIDs,

TABLE 8: Average classification metrics and FIDs for gener-
ating images with the combinations of attributes taken from
the test set of CelebA.

NICE CNF

FID 72.72 68.96
F1 0.69 0.63
AUC 0.92 0.89

TABLE 9: Average classification metrics and FIDs for gen-
erating images, when the values of attributes were sampled
independently.

NICE CNF

FID 77.48 73.31
F1 0.44 0.41
AUC 0.78 0.75

they also score worse on the classification metrics, which
suggests that the model might be worse at enforcing the
class conditions. Overall, both models perform similarly
and because of that, we use NICE as the approach is less
expensive computationally.
Different autoencoder backbones. In order to investigate
how the structure of the latent space of the backbone
autoencoder impacts the performance of our model, we
check multiple β-VAE models with varying values of β. For
each model we trained three architectures of INFs (small,
medium, big) and picked the best performing ones for
evaluation. The results presented in Table 10 show that the
FID scores get worse as the value of β increases. This is
caused by the drop in the reconstructive power of the base
model, which focuses more on the latent space regulariza-
tion instead. Interestingly, the statistics also fall as the value



17

In
pu

ti
m

ag
e

PluGeN MSP FPN

|+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass

~+beard |-mkup open-smile|+bangs hair-glass ~+beard |-mkup open-smile|+bangs hair-glass ~+beard |-mkup open-smile|+bangs hair-glass

|-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass

~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass

In
pu

ti
m

ag
e

PluGeN MSP FPN

|+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass |+beard |+mkup open+smile |+bald hair-glass

~+beard |-mkup open-smile|+bangs hair-glass ~+beard |-mkup open-smile|+bangs hair-glass ~+beard |-mkup open-smile|+bangs hair-glass

|-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass |-beard ~+mkup shut+smile ~+bald hair+glass

~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass ~-beard ~-mkup shut-smile ~+bangs hair+glass

Fig. 18: Examples of image attribute manipulation using VAE backbone.

TABLE 10: Results for PluGeN using β-VAE backbone for
different values of β.

β 0.5 1 2 4 8 16

FID 61.86 55.11 61.96 65.76 77.94 110.46
F1 0.45 0.66 0.63 0.59 0.57 0.53

AUC 0.79 0.90 0.88 0.87 0.86 0.83

of β gets too low. The flow-based model cannot disentangle
factors of variation from latent space which is not already at
least partially structured. This experiment shows limitations
of our model in respect to its reliance on the performance of
the backbone autoencoder. However, PluGeN is still quite
robust as it achieves good results for a wide range of β
values.

APPENDIX C
DETAILS OF MOLECULES GENERATION EXPERI-
MENTS

C.1 Background

Designing a new drug is a long and expensive process
that could cost up to 10 billion dollars and lasts even 10
years [50]. The recent spread of SARS-CoV-2 virus and the
pandemic it caused have shown how important it is to
speed up this process. Recently, deep learning is gaining
popularity in the cheminformatics community, where it
is used to propose new drug candidates. However, using
neural networks in the drug generation task is not easy and
is fraught with problems. The complexity of the chemical
space is high and thus training generative and predictive
models is challenging. Although there are around 1060 of
possible molecules [51], detailed information (such as class
labels) is known only about a small percentage of them.



18

Age

Baldness

Beard

Yaw

Fig. 19: Gradual modification of attributes (age, baldness,
beard, and yaw, respectively) performed by PluGeN on
partially labeled data using the StyleGAN backbone.

For example, the ChEMBL database [52], one of the biggest
databases with information about the molecular attributes,
contains data for 2.1 M chemical compounds. Moreover,
since obtaining labeled data requires long and costly lab-
oratory experiments, the amount of labeled molecules in
the training datasets is usually really small (often less than
1000), which is often not sufficient to train a good model.
This poses an important research problem.

Deep neural networks are mostly used in cheminformat-
ics for the following tasks:

• virtual screening – the search for potentially active
compounds in the libraries of commercially available
molecules using predictive models [53], [54],

• de novo design – generating new compounds with
desirable properties that are not present in the above-
mentioned libraries [39], [40],

• lead optimization – improving selected promising com-
pounds to meet certain criteria [41], [42].

PluGeN can be used for the two latter tasks, as our
model can generate molecules with specified values of given
attributes as well as optimize molecules by changing the
value of selected labels.

input gender glasses smile

Fig. 20: Attributes manipulation performed by PluGeN on
partially labeled data using the StyleGAN backbone.

TABLE 11: Correlations of attributes for chemical molecules
modeling.

logP TPSA SAS

logP 1.00 -0.16 0.51
TPSA -0.16 1.00 -0.18
SAS -0.51 -0.18 1.00

SMILES representation. SMILES [36] (simplified molecular-
input line-entry system) is a notation, for describing the
structure of chemical species using a sequence of charac-
ters. SMILES representation consists of a specially defined
grammar, which guarantees that a correct SMILES defines
a unique molecule. The opposite is not actually true, as
a molecule could be encoded by multiple SMILES repre-
sentations. In order to add this property, the community
introduced the canonicalization algorithm, which returns
the canonical SMILES that is unique for each molecule.

In Figure 25 we show two molecules together with their
canonical SMILES as well as other SMILES representations.
Modeled attributes. In our chemistry experiments, we mod-
eled 3 chemical attributes: logP, TPSA, and SAS. Below, we
describe their responsibilities:

• logP – logarithm of the partition coefficient. Describes
the molecule solubility in fats. It shows how well the
molecule is passing through membranes.

• TPSA – the topological polar surface area of a molecule
is the surface sum over all polar atoms or molecules
(together with their attached hydrogen atoms). TPSA
could be used as a metric of the ability of a drug to
permeate cells.

• SAS – synthetic accessibility score defines the ease of
synthesis of a drug-like molecule. When generating a
drug candidate, one would rather want it to be easily



19

Fig. 21: Manipulating the intensity of labeled attributes of
the generated sample. Since PluGeN models the values of
the attributes with continuous distributions, it can control
the intensity of each attribute and even sometimes extrap-
olate outside the data distribution (e.g. very bright blond
hair).

synthesized so that it can be obtained in the laboratory.

Dataset. We conducted our chemistry experiments us-
ing a dataset of 250k molecules sampled from the ZINC
database [37], which is a dataset of commercially available
chemical compounds. The mean number of SMILES tokens
in our dataset is equal to 38.31, with a standard deviation
equal to 8.46.

Figure 26 shows the distribution of attributes of
molecules that make up our training dataset.

Since the values of the chemical attributes are related to
the structure of the molecule, many of them will be corre-
lated in some way. In Table 11 we present the correlations
between the chemistry attributes. The correlations suggest
that it might be difficult or even impossible to manipulate
logP and SAS attributes independently, setting a difficult
challenge for PluGeN.

Fig. 22: The density of the positive and negative samples for
chosen attributes in the flow latent space estimated using
all examples from the CelebA test set. Binary attributes
(top row) are clearly separated while continuous attributes
(bottom row) overlap significantly.

C.2 Hyperparameters
VAE. The encoder consists of 3 bi-GRU [55] layers, with
hidden size equal to 256 and output size (latent dimension-
ality) equal to 100. The decoder consists of 3 GRU layers
with the hidden size equal to 256. The architecture of the
backbone model is significantly different from the one used
in the image domain, which partially confirms that PluGeN
can be combined with various autoencoder models.

We trained the VAE model for 100 epochs, using batch
size of 256 and learning rate equal to 1e-4.
NICE. The flow model consisted of 6 coupling layers, each
of which consists of 6 dense layers with a hidden size equal
to 256. We trained NICE for 50 epochs, with learning rate
equal to 1e-4 and batch size 256. We used σ0 = 1.0 and
γ = 0.9.

C.3 Additional experiments
In the following subsection, we show additional results
for the chemistry-based experiments, for both conditional
generation as well as latent space traversal. Furthermore, we
show how PluGeN works with the conditional normalizing
flow instead of NICE as a base flow model.
Conditional generation. In the main paper, we presented
results for conditional generation in the setting of a single
attribute condition (where the value of the remaining at-
tributes was sampled from their prior distribution). Here
we also show results for a situation where set conditions on
all attributes at the same time.

In particular, we tested 3 different settings:
1) LogP set to 1.0, TPSA set to 60.0, SAS set to 5.0.
2) LogP set to 3.0, TPSA set to 75.0, SAS set to 3.0.
3) LogP set to 5.0, TPSA set to 50.0, SAS set to 2.0.

The density plots of the attributes of the molecules
generated in these settings are presented in Figure 27.
Latent space traversal. We also present more results for
latent space traversals, which is a task that imitates the inter-
class interpolation experiments from the image domain.
For this purpose, we tested how PluGeN can traverse the



20

VAE

MSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 23: Samples from the base VAE (top row) and MSP (bottom row) models using increasing values of the temperature
parameter (bottom line). MSP generates typical face images only for a very low temperature, while VAE does not generate
face images at all.

Fig. 24: Manipulation of continuous (age, baldness, yaw)
performed by the semi-supervised version of PluGeN on
the StyleGAN latent codes.

latent space of CharVAE. Therefore, we selected a few
random molecules from our dataset, and for every one,
we forced PluGeN to gradually increase the value of the
specified attribute by some value and decoded the resulting
molecules back into the latent space. The goal of this task is
to generate the molecules that are structurally similar to the
initial one, except for changes in the desired attributes. This
is an important challenge in the lead optimization stage of the
drug discovery process.

LogP For LogP, we forced PluGeN to increase the molec-
ular attribute value by 3. Figures 28 and 29 show the
obtained molecules, together with the optimized attribute
values.

TPSA For TPSA, we forced PluGeN to increase the
molecular attribute value by 40. Figures 30 and 31 show the
obtained molecules, together with the optimized attribute
values.

SAS. For SAS, we forced PluGeN to increase the molecu-
lar attribute value by 2. Figures 32 and 33 show the obtained
molecules, together with the optimized attribute values.
CNF vs NICE. We also tested how replacing NICE [30]
with conditional normalizing flow [49] affects the process of
molecular generation using PluGeN. For this purpose, we
repeated the chemistry-based conditional generation exper-
iments from the main text, but with CNF as our backbone
flow model. Results are presented in Figure 34. One can see,

(a) Melatonin

(b) Vanillin

Fig. 25: Sample molecules together with their SMILES rep-
resentations.

that in this version PluGeN is also capable of moving the
density of the attributes of the generated molecules towards
the desired value. The obtained changes, however, are worse
than in the case of NICE as a flow backbone.

APPENDIX D
DETAILS OF 3D POINT CLOUD GENERATION

Comparison with FPN. In this paragraph, we conduct a
short qualitative comparison in the area of point clouds.



21

Fig. 26: Density plots of chemistry attributes present in the
training dataset.

(a) LogP = 1.0, TPSA = 60.0, SAS = 5.0

(b) LogP = 3.0, TPSA = 75.0, SAS = 3.0

(c) LogP = 5.0, TPSA = 50.0, SAS = 2.0

Fig. 27: Distribution of labeled attributes for generated
molecules (for the experiment with multiple attributes con-
dition), together with distribution for the training dataset.
The average of every distribution is marked with a vertical
line.

The results of the Flow Plug-in Network (FPN) for the con-
ditional generation experiment are presented in Figure 35
and for the attribute manipulation in Figure 36. Comparing
the results of FPN with PluGeN (Figures 12 and 13 in the
main paper), we can observe that both methods produce
results of similar quality; however, PluGeN method gives
the impression of better label preservation. The results in
Table 4 (in the main paper) confirm that observation, as most
of the metrics are comparable, except for label classification
accuracy that is in favor of PluGeN and suggests that indeed
it better behaves in terms of the correct attribution.

ACKNOWLEDGMENTS

The authors thank the Reviewers and the Editor for their
valuable comments and insightful feedback, which helped
us further improve the paper.

(a) Molecules decoded from path (b) LogP of presented molecules

Fig. 28: Molecules obtained by the model during an opti-
mization phase (left side), together with their LogP (right
side).

(a) Molecules decoded from path (b) LogP of presented molecules

Fig. 29: Molecules obtained by the model during an opti-
mization phase (left side), together with their LogP (right
side).

The research of M. Wołczyk was supported by the Foun-
dation for Polish Science co-financed by the European Union
under the European Regional Development Fund in the
POIR.04.04.00-00-14DE/18-00 project carried out within the
Team-Net program. The work carried out by Maciej Zieba
was supported by the National Centre of Science (Poland)
Grant No. 2020/37/B/ST6/03463. The work of Ł. Maziarka
was supported by the National Science Centre (Poland)
grant no. 2019/35/N/ST6/02125. The research of M. Śmieja
was funded by the National Science Centre (Poland) grant
no. 2022/45/B/ST6/01117.

For the purpose of Open Access, the author has applied
a CC-BY public copyright license to any Author Accepted
Manuscript (AAM) version arising from this submission.

REFERENCES

[1] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan train-
ing for high fidelity natural image synthesis,” in International
Conference on Learning Representations, 2018.

[2] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-
Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-
Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik,
“Automatic chemical design using a data-driven continuous rep-
resentation of molecules,” ACS central science, vol. 4, no. 2, pp.
268–276, 2018.

[3] M. Wołczyk, B. Wójcik, K. Bałazy, I. Podolak, J. Tabor, M. Śmieja,
and T. Trzciński, “Zero time waste: Recycling predictions in early
exit neural networks,” arXiv preprint arXiv:2106.05409, 2021.

[4] S. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual do-
mains with residual adapters,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA,



22

(a) Molecules decoded from path (b) TPSA of presented molecules

Fig. 30: Molecules obtained by the model during an opti-
mization phase (left side), together with their TPSA (right
side).

(a) Molecules decoded from path (b) TPSA of presented molecules

Fig. 31: Molecules obtained by the model during an opti-
mization phase (left side), together with their TPSA (right
side).

USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fer-
gus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 506–
516.

[5] R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka, “Styleflow: Attribute-
conditioned exploration of stylegan-generated images using con-
ditional continuous normalizing flows,” ACM Transactions on
Graphics (TOG), vol. 40, no. 3, pp. 1–21, 2021.

[6] P. Wielopolski, M. Koperski, and M. Zieba, “Flow plugin network
for conditional generation,” arXiv preprint arXiv:2110.04081, 2021.

[7] X. Li, C. Lin, R. Li, C. Wang, and F. Guerin, “Latent space
factorisation and manipulation via matrix subspace projection,”
in International Conference on Machine Learning. PMLR, 2020,
pp. 5916–5926.

[8] M. Wołczyk, M. Proszewska, Ł. Maziarka, M. Zieba, P. Wielopol-
ski, R. Kurczab, and M. Smieja, “Plugen: Multi-label conditional
generation from pre-trained models,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8647–
8656.

[9] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-
supervised learning with deep generative models,” arXiv preprint
arXiv:1406.5298, 2014.

[10] J. Klys, J. Snell, and R. Zemel, “Learning latent subspaces in
variational autoencoders,” arXiv preprint arXiv:1812.06190, 2018.

[11] S. Kang and K. Cho, “Conditional molecular design with
deep generative models,” Journal of chemical information and
modeling, vol. 59, no. 1, pp. 43–52, 2018.

[12] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Fa-
cial attribute editing by only changing what you want,” IEEE
Transactions on Image Processing, vol. 28, no. 11, pp. 5464–5478,
2019.

[13] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence
and stability of gans,” arXiv preprint arXiv:1705.07215, 2017.

[14] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image
synthesis for multiple domains,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020,
pp. 8188–8197.

(a) Molecules decoded from path (b) SAS of presented molecules

Fig. 32: Molecules obtained by the model during an opti-
mization phase (left side), together with their SAS (right
side).

(a) Molecules decoded from path (b) SAS of presented molecules

Fig. 33: Molecules obtained by the model during an opti-
mization phase (left side), together with their SAS (right
side).

[15] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or,
“Designing an encoder for stylegan image manipulation,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–14, 2021.

[16] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and
M. Ranzato, “Fader networks: Manipulating images by sliding
attributes,” arXiv preprint arXiv:1706.00409, 2017.

[17] R. Liu, Y. Liu, X. Gong, X. Wang, and H. Li, “Conditional ad-
versarial generative flow for controllable image synthesis,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 7992–8001.

[18] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with in-
vertible 1x1 convolutions,” arXiv preprint arXiv:1807.03039, 2018.

[19] T. Karras, S. Laine, and T. Aila, “A style-based generator ar-
chitecture for generative adversarial networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4401–4410.

[20] Y. Gao, F. Wei, J. Bao, S. Gu, D. Chen, F. Wen, and Z. Lian,
“High-fidelity and arbitrary face editing,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 16 115–16 124.

[21] A. Tewari, M. Elgharib, F. Bernard, H.-P. Seidel, P. Pérez,
M. Zollhöfer, and C. Theobalt, “Pie: Portrait image embedding for
semantic control,” ACM Transactions on Graphics (TOG), vol. 39,
no. 6, pp. 1–14, 2020.

[22] Y. Nitzan, A. Bermano, Y. Li, and D. Cohen-Or, “Disentangling in
latent space by harnessing a pretrained generator,” arXiv preprint
arXiv:2005.07728, vol. 2, no. 3, 2020.

[23] Y. Shen, C. Yang, X. Tang, and B. Zhou, “Interfacegan: Interpret-
ing the disentangled face representation learned by gans,” IEEE
transactions on pattern analysis and machine intelligence, 2020.

[24] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent space
of gans for semantic face editing,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp.
9243–9252.

[25] H.-P. Wang, N. Yu, and M. Fritz, “Hijack-gan: Unintended-use
of pretrained, black-box gans,” in Proceedings of the IEEE/CVF



23

Fig. 34: Distribution of labeled attributes for generated
molecules for PluGeN with the conditional normalizing
flow, together with distribution for the training dataset. Each
color shows the value of the labeled attribute that was used
for generation.

Conference on Computer Vision and Pattern Recognition, 2021,
pp. 7872–7881.

[26] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris,
“Ganspace: Discovering interpretable gan controls,” arXiv
preprint arXiv:2004.02546, 2020.

[27] Y. Shen and B. Zhou, “Closed-form factorization of latent seman-
tics in gans,” in CVPR, 2021.

[28] H. Kim and A. Mnih, “Disentangling by factorising,” in
International Conference on Machine Learning. PMLR, 2018, pp.
2649–2658.

[29] R. T. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating
sources of disentanglement in vaes,” in Proceedings of the
32nd International Conference on Neural Information Processing
Systems, 2019, pp. 2615–2625.

[30] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[31] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf,
and O. Bachem, “Challenging common assumptions in the
unsupervised learning of disentangled representations,” in
international conference on machine learning. PMLR, 2019, pp.
4114–4124.

[32] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[33] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to
a local nash equilibrium,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 2017, pp. 6626–6637.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[35] S. Beery, G. V. Horn, and P. Perona, “Recognition in terra incog-
nita,” in ECCV, 2018.

[36] D. Weininger, “Smiles, a chemical language and information sys-
tem. 1. introduction to methodology and encoding rules,” Journal
of chemical information and computer sciences, vol. 28, no. 1, pp.
31–36, 1988.

[37] T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for everyone,”
Journal of chemical information and modeling, vol. 55, no. 11, pp.
2324–2337, 2015.

[38] G. Landrum et al., “Rdkit: Open-source cheminformatics,” 2006.
[39] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular

de-novo design through deep reinforcement learning,” Journal of
cheminformatics, vol. 9, no. 1, pp. 1–14, 2017.

[40] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learn-
ing for de novo drug design,” Science advances, vol. 4, no. 7, p.
eaap7885, 2018.

[41] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning mul-
timodal graph-to-graph translation for molecular optimization,”
International Conference on Learning Representations, 2019.

[42] Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, and
M. Warchoł, “Mol-cyclegan: a generative model for molecular
optimization,” Journal of Cheminformatics, vol. 12, no. 1, pp. 1–18,
2020.

[43] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet:
An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[44] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Har-
iharan, “Pointflow: 3d point cloud generation with continuous
normalizing flows,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4541–4550.

[45] X. Zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler,
and K. Kreis, “LION: latent point diffusion models for 3d shape
generation,” in NeurIPS, 2022.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[47] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of StyleGAN,” in
Proc. CVPR, 2020.

[48] C. Li and M. Wand, “Precomputed real-time texture synthesis
with markovian generative adversarial networks,” in European
conference on computer vision. Springer, 2016, pp. 702–716.

[49] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366,
2018.

[50] J. Mestre-Ferrandiz, J. Sussex, A. Towse et al., “The r&d cost of a
new medicine,” Monographs, 2012.

[51] R. S. Bohacek, C. McMartin, and W. C. Guida, “The art and
practice of structure-based drug design: a molecular modeling
perspective,” Medicinal research reviews, vol. 16, no. 1, pp. 3–50,
1996.

[52] A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers,
D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte
et al., “The chembl database in 2017,” Nucleic acids research,
vol. 45, no. D1, pp. D945–D954, 2017.

[53] C. W. Coley, R. Barzilay, W. H. Green, T. S. Jaakkola, and K. F.
Jensen, “Convolutional embedding of attributed molecular graphs
for physical property prediction,” Journal of chemical information
and modeling, vol. 57, no. 8, pp. 1757–1772, 2017.

[54] K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao,
A. Guzman-Perez, T. Hopper, B. Kelley, M. Mathea et al., “Ana-
lyzing learned molecular representations for property prediction,”
Journal of chemical information and modeling, vol. 59, no. 8, pp.
3370–3388, 2019.

[55] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.



24

Fig. 35: The results of conditional point cloud generation experiment using reference method - Flow Plug-in Network
(FPN). The first row is generated using cantilever arm chairs label combination, and the second row uses swivel arm
chairs.

Original Straight Swivel Cantilever Club

Fig. 36: Point cloud attribute manipulation results for the Flow Plug-in Network (FPN) - reference method to PluGeN in
the area of point cloud domain.



Probabilistically Plausible Counterfactual Explanations
with Normalizing Flows

Patryk Wielopolskia,*, Oleksii Furmana, Jerzy Stefanowskib and Maciej Ziębaa,c

aWrocław University of Science and Technology
bPoznań University of Technology

cTooploox Sp. z o.o.

Abstract. We present PPCEF, a novel method for generating prob-
abilistically plausible counterfactual explanations (CFs). PPCEF ad-
vances beyond existing methods by combining a probabilistic formula-
tion that leverages the data distribution with the optimization of plausi-
bility within a unified framework. Compared to reference approaches,
our method enforces plausibility by directly optimizing the explicit
density function without assuming a particular family of parametrized
distributions. This ensures CFs are not only valid (i.e., achieve class
change) but also align with the underlying data’s probability density.
For that purpose, our approach leverages normalizing flows as power-
ful density estimators to capture the complex high-dimensional data
distribution. Furthermore, we introduce a novel loss function that bal-
ances the trade-off between achieving class change and maintaining
closeness to the original instance while also incorporating a proba-
bilistic plausibility term. PPCEF’s unconstrained formulation allows
for an efficient gradient-based optimization with batch processing,
leading to orders of magnitude faster computation compared to prior
methods. Moreover, the unconstrained formulation of PPCEF allows
for the seamless integration of future constraints tailored to specific
counterfactual properties. Finally, extensive evaluations demonstrate
PPCEF’s superiority in generating high-quality, probabilistically plau-
sible counterfactual explanations in high-dimensional tabular settings.

1 Introduction
Counterfactual explanations (briefly counterfactuals, and abbreviated
as CF) are one particular type of such explanations of black box model
predictions that provide information about how feature values of an
example should be changed to obtain a more desired prediction of the
model (i.e., to change its target decision) [30]. On the one hand, by
interacting with the model using counterfactuals, the user can better
understand how the system works by exploring "what would have
happened if..." scenarios. On the other hand, a good counterfactual
provides a practical recommendation to the user about what changes
are needed in order to achieve the desired outcome.

There are many practical applications for counterfactual explana-
tions, including loan or insurance decisions [31], recruitment pro-
cesses [21], the discovery of chemical compounds [32], medical diag-
nosis [17], and many others, see, e.g., the recent survey [10].

More formally, a counterfactual explanation is an alternative input
instance, denoted as x′, which is minimally modified from the descrip-
tion of the original instance x0, such that the output of the classifier h

∗ Corresponding Author. Email: patryk.wielopolski@pwr.edu.pl.

Figure 1: Probabilistically Plausibile Counterfactual Explanation Esti-
mation Process on the Moons Dataset. We show an evolution of an
instance from the initial instance (black dot) to the final counterfactual
(red dot) against the linear classifier’s decision boundary (blue line)
and density threshold contours, highlighting the method’s trajectory
towards achieving target classification and probabilistic plausibility
condition.

changes from the original decision y = h(x0) to a specific desired
outcome y′ = h(x′).

Up to now, several algorithms for generating counterfactual expla-
nations have been introduced. They are based on different principles,
and for comprehensive surveys, see, e.g., [10, 30]. Depending on the
specific method, some properties of counterfactuals are expected to
be met, such as validity of the decision change, proximity to the input
instance, sparsity of recommended changes, their actionability, i.e.,
the counterfactual should not modify immutable features or violate
monotonic constraints, and plausibility of locating the counterfactual
within a high-density region of the data, ensuring that the proposed
counterfactuals are realistic and feasible within the context of the
observed data distribution.

Many of these methods are inspired by the formulation of Wachter
et al. [31], which proposed framing counterfactual explanations as an
unconstrained optimization problem. For a prediction function h and
an input x0 ∈ Rd, a counterfactual x′ ∈ Rd is computed by solving:

arg min
x′∈Rd

ℓ(h(x′), y′) + C · d(x0,x
′). (1)

ar
X

iv
:2

40
5.

17
64

0v
2 

 [
cs

.L
G

] 
 7

 A
ug

 2
02

4



In this formulation, ℓ(·, ·) represents a classification loss function,
d(·, ·) is a penalty for deviation from the original input x0, and the
term C ≥ 0 serves as the regularization strength modifier.

An alternative approach [2] frames counterfactual explanations
as a constrained optimization problem. This perspective focuses on
directly finding the minimal perturbation required to achieve the target
prediction under the constraint that the model’s prediction for the
counterfactual instance meets the specified criterion. Mathematically,
this is represented as:

arg min
x′∈Rd

d(x0,x
′) s.t. h(x′) = y′. (2)

In our study, we want to pay special attention to the plausibility of
counterfactuals. Referring to arguments of [10], a counterfactual is
plausible if the feature values describing the example are coherent
(sufficiently similar) with those present in the original data X . This
means it should be located in sufficiently dense regions of original
instances in X from the target class. Plausibility helps in increasing
users’ trust in the explanation: it would be hard to trust a counterfac-
tual if it is a combination of features that are unrealistic with respect
to existing examples.

In previous works, plausibility has often been verified by simple
k-neighbourhood analysis of the counterfactual with respect to the
original data [26, 14, 27]. Few other approaches [3] model the con-
ditional density in the target class and try to find the counterfactual
example with the density value above the given threshold. Although
the problem is quite well mathematically defined, the current methods
apply simple approaches like kernel density estimators or a mixture of
Gaussians to model conditional distributions that are difficult to apply
for high-dimensional data. Moreover, the problem of estimating valid
and plausible counterfactuals is defined as a complex constrained
optimization problem with strict convexity assumptions [3]. Finally,
the currently proposed methods, while providing valid counterfac-
tuals, struggle to consistently produce observations that fulfill the
plausibility criteria.

In this paper, we introduce PPCEF: Probabilistically Plausibile
Counterfactual Explanations using Normalizing Flows - a novel ap-
proach to estimate counterfactual explanations for differentiable clas-
sifiers tailored for tabular problems. It includes a novel, unconstrained
formulation of the problem that enables direct estimation of the plau-
sibility property - to the best of our knowledge, a characteristic pre-
viously not achieved in the literature. For that purpose, we design
loss functions to satisfy both validity and plausibility constraints and
minimize the distance to the original example in a balanced way (see
an example in Fig. 1). Our approach incorporates plausibility in the
probabilistic sense by targeting observations with a probability density
exceeding a predefined threshold [3]. Unlike existing methods limited
to specific estimators of families of density functions, ours employs
any differentiable conditional density model. Moreover, we postulate
to utilize conditional normalizing flows for density estimation [24],
ensuring independence from specific parameterized distribution fami-
lies while enabling direct calculation of density values for complex,
high-dimensional data. Finally, PPCEF leverages efficient batch pro-
cessing utilizing gradient-based optimization techniques, leading to
significant computational gains compared to previous methods.

To summarize, our contributions are as follows:

• The formulation of counterfactual explanations within an uncon-
strained optimization framework employing direct optimization of
plausibility and novel loss functions.

• The utilization of normalizing flows as density estimators to capture
the complex high-dimensional data distribution effectively.

• The experimental evaluations demonstrating PPCEF’s ability to
efficiently generate high-quality, probabilistically plausible coun-
terfactuals in high-dimensional tabular datasets for both binary and
multiclass classification problems, outperforming existing refer-
ence methods.

2 Related Works

2.1 Plausible Counterfactual Explanations

The approaches for obtaining plausible counterfactual explanations
are primarily categorized into endogenous and exogenous ones [10].
Endogenous counterfactuals are crafted using feature values from
existing data instances, ensuring their naturally occurring status and
grounding them in real-world contexts, thereby enhancing their plau-
sibility. In contrast, exogenous counterfactuals are generated through
methods such as interpolations or random data generation, which do
not strictly rely on existing dataset features. While this offers greater
flexibility, it does not inherently assure the plausibility of these coun-
terfactuals, as they might represent feature combinations not found in
actual data.

2.1.1 Endogenous Counterfactual Explanations

Endogenous approaches to counterfactual explanations revolve around
leveraging existing instances within the dataset to generate plausible
counterfactuals. These methods, which include instance-based or case-
based approaches, primarily utilize nearest neighbors’ techniques to
identify instances that closely resemble the input but yield different
outcomes.

Examples of endogenous methods include the Nearest-Neighbor
Counterfactual Explainer (NNCE) [26], selecting similar yet outcome-
divergent instances from the dataset as counterfactuals. The Case-
Based Counterfactual Explainer (CBCE) [14] forms ’explanation
cases’ by pairing similar instances with contrasting outcomes, creat-
ing counterfactuals by merging features from these pairs. Extending
this concept, the approach by Smyth and Keane [27] adapts to k-
nearest neighbors, utilizing multiple nearest candidates for generating
counterfactuals. Feasible and Actionable Counterfactual Explanations
(FACE) [23] constructs a graph over data points, applying user-defined
parameters to find actionable paths to desired outcomes. Lastly, PRO-
PLACE [12] employs bi-level optimization and Mixed-Integer Linear
Programming, generating robust counterfactuals from ∆-robust near-
est neighbors that closely align with data distribution and model
robustness.

2.1.2 Exogenous Counterfactual Explanations

In the landscape of exogenous counterfactual explanations, meth-
ods generally involve introducing external modifications to original
instances, diverging from reliance on existing instances and their fea-
tures. These approaches utilize a range of computational techniques,
such as autoencoders, linear programming, gradient-based methods,
and generative models, to ensure that the resulting counterfactuals are
plausible.

Firstly, the Contrastive Explanation Method (CEM) [5] innovates
by adding perturbations to an instance and utilizing an autoencoder
to verify the closeness of the modified instance to known data, en-
suring plausibility. Meanwhile, the Diverse Coherent Explanations
(DCE) [25] method leverages linear programming to create varied
counterfactuals, with additional linear constraints to maintain both



diversity and plausibility. Further, the Distribution-Aware Counterfac-
tual Explanation (DACE) [13] method incorporates the Mahalanobis
distance and Local Outlier Factor (LOF) in its loss function, focusing
on minimizing this distance while keeping a low LOF score to signify
higher plausibility. The Diverse Counterfactual Explanations (DICE)
[18] approach involves solving an optimization problem to generate
multiple counterfactuals, with a specific emphasis on the diversity
and actionability of these counterfactuals to determine their plausibil-
ity. Additionally, Counterfactual Explanations Guided by Prototypes
(CEGP) [15] adopts a similar loss function to CEM but introduces a
prototype-based loss term. This guides perturbations towards a coun-
terfactual that aligns with the data distribution of a specific class,
using the encoder of an autoencoder based on the average encoding
of the nearest instances in the latent space with the same class label.

Within the field of exogenous counterfactual explanations, a sub-
category particularly relevant to our work utilizes deep generative
models. Variational Autoencoders (VAEs) are exploited in methods
like Example-Based Counterfactual (EBCF) [16] and the approach
by Vercheval and Pizurica [29]. EBCF incorporates known causal
relationships into the VAE, promoting realistic counterfactuals. The
method by Vercheval and Pizurica [29] enables visual counterfactual
generation through VAE-based latent space exploration. Generative
Adversarial Networks (GANs) play a crucial role in the PCATTGAN
approach [1]. It utilizes adversarial examples within a multi-objective
optimization framework to create plausible counterfactuals, consid-
ering validity, minimality, and a notion of plausibility defined as
human-understandable, non-automated changes. Diffusion models
underpin methods proposed in [11, 4]. While these approaches spe-
cialize in visual counterfactual generation, their focus lies primarily
on counterfactual sampling, not controlling plausibility via density-
based optimization. Lastly, Normalizing Flow-based methods [8, 9]
center on pinpointing counterfactuals within their latent spaces. These
methods leverage the invertible nature of normalizing flows to explore
counterfactual regions in the latent representation of the data.

All of the reference methods, except Artelt and Hammer [3], do
not provide an explicit probabilistic formulations of plausibility. Com-
pared to Artelt and Hammer [3], we propose an alternative problem
formulation in unconstrained form with no prior constraints on the
density model.

3 Background
In this work, we consider the problem formulation of probabilisti-
cally plausible counterfactual explanations introduced by Artelt and
Hammer [3]. This approach extends the problem formulation given
by eq. (2) by adding a target-specific density constraint to enforce the
plausibility of counterfactuals using a probabilistic framework. The
constrained optimization problem is formulated as follows:

arg min
x′∈Rd

d(x0,x
′) (3a)

s.t. h(x′) = y′ (3b)

δ ≤ p(x′|y′), (3c)

where p(x′|y′) denotes conditional probability of the counterfactual
explanation x′ under desired target class value y′ and δ represents the
density threshold.

This approach’s crucial aspect is finding the proper model to repre-
sent the conditional density function p(x|y). Typically, kernel density
estimators (KDEs) are used to model conditional densities, but the
use of non-linear kernels results in the highly non-convex optimiza-
tion problem formulation. Gaussian Mixture Model (GMM) can be

applied alternatively, but convexity constraints are still not satisfied.
To facilitate the desired optimization process, the authors of Artelt
and Hammer [3] propose to approximate the density value p(x′|y′)
using a component-wise maximum of GMM components:

p̂G(x
′|y′) = max

j

(
πj,y′N (x′|µj,y′ ,Σj,y′)

)
, (4)

where µj,y′ , Σj,y′ and πj,y′ are means, covariances and prior values
for component j considering class y.

This approximation is transformed into a convex quadratic con-
straint for each GMM component j, resulting in the following for-
mula:

(x′ − µj,y′)
TΣj,y′(x′ − µj,y′) + cj ≤ δ′, (5)

where cj is constant from the Gaussian normalization factor and
δ′ = −2 log δ.

For each component j, the optimization problem is solved, result-
ing in a set of convex programs - one for each component. This step is
crucial because knowing beforehand which component will produce a
feasible and plausible counterfactual is impossible. Finally, the coun-
terfactual x′ that yields the smallest value for the objective function
is selected.

However, this approach has few limitations. First, the number of
components should be predefined for each class. Second, the family
of parametrized distributions limits the ability to adjust to a data
distribution. Third, the approach is difficult to be applied to high-
dimensional data due to the Gaussian components.

In order to cope with the listed limitations, we postulate to model
conditional density function p(x|y) using the normalizing flows [24].
This group of models can adjust to very complex, high-dimensional
data distributions, which allows for calculating the density value from
the change-of-variable formula. Moreover, we propose an alterna-
tive unconstrained problem formulation that allows solving using
a gradient-based approach for any differentiable representation of
conditional distribution p(x|y).

4 Method
This section introduces a novel approach to the problem of plausible
counterfactual explanation formulated by eq. (3). First, we reformulate
the problem of calculating counterfactuals as unconstrained optimiza-
tion suitable for direct, gradient-based optimization. Next, we show
how to train the flow model to estimate the class-conditional distri-
butions. Finally, we show how the counterfactuals can be efficiently
estimated using a gradient-based approach.

4.1 Unconstrained Probabilistically Plausible
Counterfactual Explanations

We consider a binary classification problem, y ∈ {0, 1}. However,
our considerations can be easily extended to the multiclass case. Fur-
ther, we consider a discriminative differentiable model (e.g., Logistic
Regression or MLP) pd(y|x) and reformulate the validity constraint
h(x′) = y′ as pd(y′|x′) ≥ 0.5 + ϵ, where ϵ → 0, practically repre-
sented as small enough value close to 0.

We postulate the following unconstrained optimization problem:

arg min
x′∈Rd

d(x0,x
′) + λ ·

(
ℓv(x

′, y′) + ℓp(x
′, y′)

)
, (6)

where λ = ∞, practically, is large enough.
The loss ℓv(x′, y′) component controls the validity constraint and

is defined as follows:



ℓv(x
′, y′) = max

(
0.5 + ϵ− pd(y

′|x′), 0
)
. (7)

The Binary Cross Entropy (BCE) criterion can be used alterna-
tively. However, using such criteria enforces 100% confidence of
the discriminative model, while our approach aims at achieving the
current classification accuracy with the margin controlled with the ϵ
parameter. While using our criterion, the model can focus more on
producing closer and more plausible counterfactuals, which we show
in ablation studies.

Additionally, we extend the validity loss component to the multi-
class scenario in the following way:

ℓv(x
′, y′) = max

(
max
y ̸=y′

pd(y|x′) + ϵ− pd(y
′|x′), 0

)
, (8)

where we replace the 0.5 threshold value with the highest probability
value returned by the discriminative model, excluding the value for
target class y′. This guarantees that pd(y|x′) will be higher than the
most probable class among the remaining classes by the ϵ margin.

The loss component ℓp(x′, y′) controls probabilistic plausibility
constraint (δ ≤ p(x′|y′)) and is defined as:

ℓp(x
′, y′) = max

(
δ − p(x′|y′), 0

)
, (9)

where δ is the density threshold calculated in the same way as in [3],
i.e., by utilizing the median of the training dataset. The conditional
distribution p(x|y) can be represented by any differentiable model
(e.g., Mixture of Gaussians, KDE). In this work, we postulate to model
the distribution using conditional normalizing flow due to the flexi-
bility and ability to adjust to multidimensional complex distributions.
Thanks to the unconstrained problem formulation given by eq. (6) and
differentiation assumption for the models, the counterfactuals can be
easily calculated using a gradient-based approach.

4.2 Probabistically Plausible Counterfactual
Explanations via Normalizing Flow-based Density
Estimation

KDE or GMMs can be used to model the conditional distributions.
However, those models have limited modeling capabilities due to
the parametrized (usually Gaussian) form of p(x|y) or the inability
to model high-dimensional data (KDE). Therefore, in this work, we
postulate the use of a conditional normalizing flow model [24] to
estimate the density for the joint distribution of the attributes for each
class.

Normalizing Flows have surged in popularity within generative
models due to their adaptability and the simplicity of training via
direct negative log-likelihood (NLL) optimization. Their adaptability
stems from the change-of-variable technique, which transforms a
latent variable z with a known prior distribution p(z) into an observed
space variable x with an unknown distribution. This transformation
occurs through a sequence of invertible (parametric) functions: x =
fK ◦· · ·◦f1(z, y). Assuming a known prior p(z) for z, the conditional
log-likelihood for x is expressed as:

log p̂F (x|y) = log p(z)−
K∑

k=1

log

∣∣∣∣det
∂fk

∂zk−1

∣∣∣∣ , (10)

where z = f−1
1 ◦ · · · ◦ f−1

K (x, y) is a result of the invertible mapping.
The biggest challenge in normalizing flows is the choice of the invert-
ible functions fK , . . . , f1. Several solutions have been proposed in

the literature to address this issue with notable approaches, including
NICE [6], RealNVP [7], and MAF [19].

For a given training set D = {(xn, yn)}Nn=1 we simply train the
conditional normalizing flow by minimizing negative log-likelihood:

Q = −
N∑

n=1

log p̂F (xn|yn), (11)

where log p̂F (xn|yn) is defined by eq. (10). The model is trained
using a gradient-based approach applied to the flow parameters stored
in fk functions.

4.3 Estimating Counterfactuals

For a trained conditional normalizing flow, the counterfactual explana-
tion can be easily calculated simply by optimizing the criterion given
by eq. (6). The parameters of the flow model are frozen, and x′ is opti-
mized using the gradient-based procedure, starting from the point x0.
To enhance the efficiency of our method, we have incorporated batch
processing capabilities, allowing for the simultaneous calculation of
multiple counterfactual explanations. This is achieved by aggregating
instances and employing an average aggregation for loss calculation.
Such a feature is notably absent in the other approaches compared
to this study, providing our method with a distinct computational
advantage.

5 Experiments

In this section, we aim to demonstrate and validate our counterfactual
explanation method through a series of experiments. Initially, we il-
lustrate our method’s intuition with the Moons dataset and Logistic
Regression model. Next, we compare our approach against the only
reference method in a probabilistically plausible CFs area - Artelt and
Hammer [3], as well as other established CF methods. This compar-
ison focuses on the impact of plausibility on proximity metrics and
time efficiency. Lastly, we conduct broader comparisons using other
classifier models: Logistic Regression (LR), Multilayer Perceptron
(MLP), and Neural Oblivious Decision Ensembles (NODE) [22]. The
code for these experiments is publicly released on GitHub1.

Datasets To evaluate PPCEF’s effectiveness, we conducted experi-
ments on seven numerical-only tabular datasets. Four datasets (Law,
Heloc, Moons, and Audit) represent binary classification problems,
whereas the first two datasets (Law and Heloc) are commonly used
benchmarks for counterfactual explanation tasks. The remaining three
datasets (Blobs, Digits, and Wine) address multiclass classification
problems. Detailed descriptions of these datasets are available in the
Appendix B [33]. Overall, they represent broad diversity in sample
sizes (up to approximately 10.000), number of variables (up to 64),
and number of classes (up to 10). For preprocessing purposes, we
implemented two key steps to prepare the datasets. First, we addressed
class imbalance by downsampling the majority class to match the size
of the minority class. Second, we normalized all features across the
datasets to a [0, 1] range, enabling consistent scale and comparabil-
ity among features. Thirdly, to ensure robust method evaluation, we
employed stratified 5-fold cross-validation on each dataset. Finally,
for clarity, the main manuscript reports average values, while the
appendix [33] includes standard deviation for detailed analysis.

1 https://github.com/ofurman/counterfactuals



Table 1: Comparative Results of Probabilistically Plausible Counterfactual Explanation Methods. We contrast the performance of PPCEF method
with Artelt & Hammer [3] and other methods across Logistic Regression (LR) classifier. The results demonstrate our method’s consistently valid
and probabilistically plausible results and its ability to produce counterfactuals even in complex scenarios like high-dimensional data.

DATASET METHOD COVERAGE ↑ VALIDITY ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓

MOONS

CBCE 1.00 1.00 0.10 1.06 0.03 -5.81 0.62 0.48 0.07 S
CEGP 1.00 1.00 0.09 1.36 0.00 -6.66 0.36 0.28 904.11 S
CEM 1.00 1.00 0.14 2.03 -0.07 -10.09 0.55 0.50 211.56 S
WACH 0.98 1.00 0.11 1.55 -0.01 -6.34 0.49 0.36 198.29 S

ARTELT 1.00 1.00 0.08 1.53 -0.03 -8.74 0.32 0.32 4.15 S
PPCEF 1.00 1.00 1.00 1.01 0.04 1.69 0.45 0.36 1.85 S

LAW

CBCE 1.00 1.00 0.49 1.05 0.04 1.28 0.61 0.40 0.23 S
CEGP 1.00 1.00 0.49 1.07 0.04 1.08 0.23 0.18 1973.76 S
CEM 1.00 1.00 0.26 1.26 -0.02 -0.56 0.33 0.31 368.10 S
WACH 1.00 1.00 0.39 1.30 -0.01 -0.29 0.45 0.35 359.00 S

ARTELT 1.00 1.00 0.40 1.12 0.02 0.54 0.20 0.20 4.02 S
PPCEF 1.00 1.00 1.00 1.03 0.07 2.05 0.37 0.23 2.42 S

AUDIT

CBCE 1.00 1.00 0.79 11.70 0.14 54.97 2.55 1.24 0.04 S
CEGP 0.97 1.00 0.02 6.08·107 0.02 8.09 1.56 0.57 561.04 S
CEM 0.52 1.00 0.00 8.28·106 -0.04 20.84 1.20 0.37 105.92 S
WACH 0.99 1.00 0.02 1.42·108 0.06 -40.34 1.78 0.80 101.27 S

ARTELT 0.60 0.97 0.00 4.09·108 0.10 -3585.76 0.90 0.88 43.84 S
PPCEF 1.00 0.99 0.99 4.25·107 0.08 51.64 2.04 0.79 7.01 S

HELOC

CBCE 1.00 1.00 0.54 1.10 0.07 28.01 2.84 0.82 5.71 S
CEGP 1.00 1.00 0.29 3.50·107 0.04 24.75 0.26 0.10 9654.60 S
CEM 1.00 1.00 0.07 2.50·108 0.02 12.37 0.35 0.20 1639.16 S
WACH 1.00 1.00 0.00 2.65·108 0.03 -15.09 0.74 0.37 1600.28 S

ARTELT 0.00 - - - - - - - - S
PPCEF 1.00 1.00 1.00 6.47·107 0.07 32.42 0.90 0.23 12.44 S

BLOBS

CBCE 1.00 1.00 0.27 1.02 0.03 -35.52 0.95 0.72 0.13 S
CEGP 1.00 1.00 0.00 2.43 -0.07 -9.08 0.30 0.25 1295.36 S
CEM 0.96 1.00 0.00 3.51 -0.12 -14.95 0.46 0.45 512.56 S
WACH 1.00 1.00 0.04 2.24 -0.06 -9.52 0.51 0.38 441.59 S

ARTELT 1.00 1.00 0.00 2.11 -0.07 -3.51 0.39 0.33 6.62 S
PPCEF 1.00 1.00 1.00 1.01 0.04 3.00 0.69 0.50 3.22 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 23.72 16.28 3.09 0.51 S
CEGP 1.00 1.00 0.11 1.09 0.01 -0.39 2.53 0.63 1945.67 S
CEM 1.00 0.98 0.01 1.23 -0.03 -86.77 5.28 1.38 852.05 S
WACH 1.00 1.00 0.08 1.20 0.00 -34.97 2.47 1.20 651.00 S

ARTELT 0.80 0.93 0.04 1.69 0.01 -54.72 3.30 2.43 238.28 S
PPCEF 1.00 1.00 1.00 1.12 0.03 44.42 8.27 1.33 8.68 S

WINE

CBCE 1.00 1.00 0.37 1.06 0.05 2.13 3.38 1.12 0.01 S
CEGP 1.00 1.00 0.01 1.08 0.05 -0.15 0.82 0.32 191.09 S
CEM 1.00 1.00 0.00 1.35 -0.02 -12.94 1.20 0.63 81.33 S
WACH 1.00 1.00 0.01 1.27 0.00 -9.41 1.57 0.78 50.74 S

ARTELT 1.00 0.97 0.01 1.33 0.02 -11.73 0.68 0.65 0.96 S
PPCEF 1.00 1.00 1.00 1.01 0.09 9.72 1.65 0.53 2.03 S

Classification Models For the experiments, we include Logistic
Regression (LR), 3-layer Multilayer Perceptron (MLP), and Neural
Oblivious Decision Ensemble (NODE) catering to both linear and
non-linear scenarios. LR aligns with linear assumptions prevalent in
some baseline methods, MLP allows for the assessment of behav-
iors in non-linear model contexts, and NODE stands as an example
of a complex ensemble of neural decision trees. This triple-model
approach facilitates a thorough evaluation across varied model com-
plexities. Crucially, all models are differentiable, which is essential in
the context of our method.

Experiments Details For every combination of the classification
model and dataset, we trained both the classification model and a
Normalizing Flow as the density estimator, following the approach
detailed in Section 4.2. We opted for the Masked Autoregressive
Flow (MAF) architecture [19] as our choice for the Normalizing Flow.
This decision was based on experimental findings indicating MAF’s
superior performance in accurately fitting data distributions. For a
deeper analysis of these results, including in-depth model performance
metrics like accuracy, please refer to the Appendix [33]. See Section C
for a detailed exploration and Tab. 9 for specific performance figures.
The final step involved generating counterfactual explanations for the
entire set of test samples.

Reference Methods Our analysis includes several significant base-
lines, each selected for its relevance to the field. We first consider the
method developed by Artelt and Hammer [3], notable for its focus on
probabilistically plausible counterfactuals. Additionally, we evaluate
the approach by Wachter et al. [31], widely recognized as a founda-
tional baseline in counterfactual explanations research. To provide
both endogenous and exogenous counterfactual explanations, we com-
pare three methods: Case-Based Counterfactual Explainer (CBCE)
[14], Contrastive Explanation Method (CEM) [5], and Counterfactual
Explanations Guided by Prototypes (CEGP) [15].

Metrics Following related works, we chose a comprehensive set
of metrics to assess the performance of counterfactual explanation
methods. We include two success metrics: coverage, evaluating the
method’s ability to generate explanations across all instances, and va-
lidity, assessing the efficacy of counterfactuals in altering the model’s
decision. In terms of proximity, we measure the L1 and L2 distances
to quantify the closeness between original instances and their coun-
terfactuals. We evaluate plausibility using a combination of metrics.
First of all, we measure the Local Outlier Factor (LOF) score, which,
when significantly greater than 1, indicates an outlier, with values
closer to 1 suggesting normalcy, highlighting anomalies through lo-
cal density deviations. Secondly, we utilize Isolation Forest, which



assigns scores between -0.5 and 0.5, with values approaching -0.5
identifying anomalies due to the ease of isolation and scores above
0 indicating normal observations. We further access counterfactuals
using probabilistic plausibility metric, the proportion of CFs meeting
the criterion defined in Eq. 3c. Moreover, we calculate log density,
which gauges the logarithmic probability density of counterfactuals
under the target class, with higher values indicating greater plausi-
bility. Finally, we calculate time metric representing time in seconds
needed for the method to process the whole test dataset.

5.1 Method Intuition via Toy Example

In our illustrative example, we present the counterfactual generation
process using the Moons dataset under a Logistic Regression model,
as depicted in Figure 1. The initial observation is represented by a
black dot, with intermediary observations during the optimization
process (after every 150 iteration steps) shown as orange dots and the
final counterfactual outcome marked by a red dot. The probability
distributions are indicated by contour lines, with the filled red contour
denoting the region exceeding the desired density threshold. The blue
line illustrates the decision boundary of the classifier. This visualiza-
tion effectively demonstrates how our method navigates toward the
target classification and probabilistic plausibility regions, adjusting its
trajectory to surpass the classifier’s decision boundary by a predefined
margin ϵ upon achieving the required density level.

5.2 Probabilistically Plausibile Counterfactual
Explanations Methods Comparison

In this section, we conduct a focused comparison of our approach,
PPCEF, against the method by Artelt and Hammer [3], which is the
primary reference in the realm of probabilistically plausible counter-
factual explanations. For that purpose, we utilize the datasets, metrics,
and classifiers described in the previous section. The evaluation is
centered on assessing and validating the accuracy of both methods in
generating counterfactuals, their plausibility, and their proximity to
original instances.

The results are presented in Tab. 1. Firstly, we can observe that
our method always returns the results that are probabilistically plau-
sible. That is not the case for Artelt’s method, which struggles in
high-dimensional datasets like Heloc (23 dimensions) or Digits (64
dimensions), doesn’t support non-linear classifiers like MLPs, and
wasn’t able to consistently fulfill the probabilistic plausibility criterion.
Secondly, in terms of distances, Artelt’s method returns better results,
which is expected due to the trade-off between distance and plausibil-
ity, i.e., the more plausible observations, the farther away they usually
are. However, the results are not clearly worse, especially in terms of
L2 distance, meaning PPCEF can balance both desired properties of
counterfactuals. Thirdly, the log density values of the observations
produced by PPCEF method are significantly better. Fourthly, our
analysis using Local Outlier Factor (LOF) and Isolation Forest (Iso-
Forest) metrics indicates that our methods generate inliers (except
for Audit and Heloc, where almost all methods struggle to obtain
reasonable values of LOF), whereas Artelt’s method underperforms
and can sometimes result in outliers. Fifthly, our method turned out
to be significantly faster, with the speed up around x2-10 on relatively
small datasets. Finally, our method was almost always able to produce
valid counterfactual explanations for MLP and NODE, contrary to
Artelt (see results in Tab. 2 and detailed results in Tab. 6 and 7 in
Appendix [33]). It’s worth mentioning that PPCEF almost always
returned probabilistically plausible observations, which, in case of

non-valid observations, might still be valuable insight for the final
user, contrary to the lack of a response at all.

5.3 Counterfactual Explanations Methods Comparison

In this comparative analysis, we evaluate our method against well-
established reference methods, with a particular focus on the impact of
integrating probabilistically plausible conditions into the optimization
process. Our primary objective is to assess our method’s performance
in terms of validity, plausibility, proximity metrics, and processing effi-
ciency. We also explore whether methods not specifically designed for
plausibility can still produce plausible counterfactuals across various
classifiers such as Logistic Regression (LR), Multilayer Perceptron
(MLP), and Neural Oblivious Decision Ensembles (NODE).

Results presented in Tab. 1 and Tab. 2 indicate that our model
excels in validity, plausibility (considering both probabilistic formu-
lation and outlier metrics), and processing times while maintaining
reasonable distances compared to competing approaches across all
datasets and classification methods. Specifically, Tab. 2 presents the
evaluation results for two selected high-dimensional datasets (one for
binary classification problem and one for multiclass problem) using
two advanced classifiers, demonstrating that our method consistently
produces valid results not only with a shallow model, such as LR but
also with deeper models, including MLP and NODE. In contrast, the
majority of existing methods encounter difficulties in producing valid
counterfactual explanations for the Multilayer Perceptron. We con-
ducted a comprehensive evaluation utilizing all methods and datasets
mentioned earlier, applying three different classifiers. Detailed out-
comes are presented in Appendix A [33]. Particularly, results for
Logistic Regression are shown in Tab. 5, while findings for the MLP
and NODE classifiers are detailed in Tab. 6 and 7, respectively.

Furthermore, our hypothesis that reference methods could inadver-
tently yield plausible outcomes without targeted optimization was not
confirmed. In terms of proximity, CEGP achieves the most favorable
outcomes, with our method typically ranking closely behind. This
demonstrates our method’s effectiveness in balancing proximity and
plausibility constraints. Notably, our method’s computational time
efficiency closely parallels the CBCE method, which does not in-
volve an optimization process. This efficiency is due to our batching
strategy, which processes all datasets collectively, as opposed to the
case-by-case optimization typical of other methods. Summarizing,
our method generates probabilistically plausible counterfactuals with
exceptional efficiency and minimal compromise on proximity. Its
ability to process high-dimensional data quickly makes it ideal for
resource-constrained, real-world applications.

6 Method Analysis
In this section, we delve into the analysis of two pivotal components
of our proposed method: the loss function and the regularization hy-
perparameter λ. Adhering to the experimental framework established
in the earlier sections, these studies are conducted specifically using
the Logistic Regression model. Our focus is on evaluating the impact
of these elements on the method’s overall performance and efficacy.

6.1 Loss Function Ablation Study

In this ablation study, we examined the influence of discriminative
loss function selection on the effectiveness of our proposed method.
While Binary Cross Entropy (BCE) and Cross Entropy (CE) losses are
conventional choices for binary and multiclass problems, respectively,



Table 2: Analysis of Counterfactual Methods Across Classification Models. We offer a detailed comparison of our method and other well-
established reference methods across two classification models: a 3-layer Multilayer Perceptron (MLP), and a Neural Oblivious Decision
Ensemble (NODE). The results emphasize the efficacy of our method in producing valid and plausible counterfactuals across various models,
including those that are deeper and more complex.

DATASET METHOD COV. ↑ VAL. ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓
MLP

HELOC

CBCE 1.00 0.94 0.54 1.09 0.08 28.85 2.87 0.82 6.47 S
CEGP 0.94 0.63 0.05 4.15·108 0.01 -3.28 1.25 0.43 31309.33 S
CEM 1.00 0.86 0.01 7.71·108 -0.01 -89.39 1.32 0.58 6938.45 S
WACH 0.99 0.81 0.00 1.34·108 -0.06 -161.68 3.11 0.90 23392.40 S
ARTELT - - - - - - - - - S
PPCEF 1.00 0.92 1.00 1.42·108 0.07 32.07 1.18 0.31 25.32 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 23.66 16.29 3.09 0.54 S
CEGP 0.95 0.46 0.02 1.24 -0.02 -138.62 6.39 1.42 2523.28 S
CEM 1.00 0.42 0.01 1.44 -0.06 -481.57 6.34 1.76 1260.54 S
WACH 1.00 0.72 0.00 1.50 -0.07 -516.44 11.04 2.13 3342.38 S
ARTELT - - - - - - - - - S
PPCEF 1.00 1.00 0.98 1.13 0.03 43.87 8.78 1.42 25.09 S

NODE

HELOC

CBCE 1.00 1.00 0.55 1.09 0.08 28.88 2.85 0.82 17.53 S
CEM 0.94 1.00 0.10 1.35 0.05 9.00 0.47 0.29 14772.66 S
WACH 0.96 1.00 0.10 2.12·108 0.05 10.75 0.85 0.36 37254.33 S
ARTELT - - - - - - - - - S
PPCEF 1.00 0.94 1.00 1.08 0.09 31.85 1.02 0.28 126.05 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 24.00 16.27 3.09 3.12 S
CEM 1.00 1.00 0.03 1.32 -0.02 -39.458 4.07 1.44 5451.835 S
WACH 1.00 1.00 0.16 1.12 0.02 7.02 2.93 1.13 15376.44 S
ARTELT - - - - - - - - - S
PPCEF 1.00 1.00 1.00 1.15 0.02 43.97 7.76 1.36 69.45 S

Table 3: Ablation Study on Loss Function Selection.

DATASET LOSS COV. VAL. PP L1 L2 LD

MOONS OURS 1.00 1.00 1.00 0.45 0.36 1.69
BCE 1.00 1.00 0.99 0.89 0.69 1.74

LAW OURS 1.00 1.00 1.00 0.37 0.23 2.05
BCE 1.00 1.00 0.98 0.97 0.60 1.67

AUDIT OURS 1.00 0.99 0.99 2.04 0.79 51.64
BCE 1.00 0.99 0.98 3.01 1.25 52.54

HELOC OURS 1.00 0.99 0.99 0.85 0.23 37.50
BCE 1.00 0.97 0.99 1.91 0.54 34.50

BLOBS OURS 1.00 1.00 1.00 0.69 0.50 3.00
CE 1.00 1.00 0.93 0.82 0.60 2.85

DIGITS OURS 1.00 1.00 1.00 8.27 1.33 44.42
CE 1.00 1.00 1.00 12.67 2.13 44.18

WINE OURS 1.00 1.00 1.00 1.65 0.53 9.72
CE 1.00 1.00 0.99 3.87 1.29 9.29

we compared them against our proposed discriminative loss function
to understand their impacts on the results. The findings, detailed in
Tab. 3, reveal a notable distinction in distance metrics. Our method,
using the specialized loss function, demonstrated significantly better
proximity to original observations compared to BCE and CE. This
improvement is attributed to our loss function’s design, which ze-
roes the classification component of the loss upon surpassing by ϵ a
classification threshold. This allows for more rapid convergence to
closer counterfactuals, while CE, by continually seeking points with
higher classification confidence, tends to push counterfactuals further
from the original samples. Consequently, this affects the final values
in proximity metrics, underscoring the advantage of our approach in
generating more proximate and plausible counterfactuals.

6.2 Regularization Hyperparameter λ Analysis

To evaluate the impact of the regularization hyperparameter λ on the
fulfillment of validity and probabilistic plausibility conditions, we
conducted a focused hyperparameter sensitivity analysis. While λ
theoretically should extend to infinity, practical considerations neces-

Table 4: Ablation Study on Regularization Hyperparameter λ.

DATASET λ COV. VAL. PP L1 L2 LD

MOONS

1 1.00 0.46 0.78 0.43 0.34 1.61
2 1.00 0.95 0.92 0.43 0.34 1.63
5 1.00 0.99 0.98 0.43 0.34 1.66
10 1.00 0.99 1.00 0.44 0.35 1.70
100 1.00 1.00 1.00 0.45 0.36 1.70
1000 1.00 1.00 1.00 0.45 0.36 1.70

LAW

1 1.00 0.48 0.98 0.19 0.12 1.85
2 1.00 0.99 0.99 0.28 0.18 1.88
5 1.00 1.00 1.00 0.29 0.18 1.94
10 1.00 1.00 1.00 0.30 0.18 2.00
100 1.00 1.00 1.00 0.34 0.21 2.08
1000 1.00 1.00 1.00 0.38 0.22 2.09

sitate setting a feasible value. Our objective is to identify an optimal
λ that not only guarantees condition fulfillment but also to under-
stand its influence on other metrics. Experiments were carried out
on the Moons and Law datasets, exploring λ values within the set
{1, 2, 5, 10, 100, 1000}. The results in Tab. 4 indicate that moderate
values of λ, like 5 or 10, deliver satisfactory outcomes, while values
around 100 or more almost invariably guarantee the fulfillment of
the conditions, leading us to adopt the value of 100 for all preceding
experiments. This experiment confirms the expected trade-off: higher
strictness in counterfactual conditions leads to decreased proximity
metrics, requiring larger deviations from the original data point.

7 Conclusions
In this work, we present PPCEF, a novel method for generating coun-
terfactual explanations that utilize normalizing flows as density estima-
tors within an unconstrained optimization framework. This technique
adeptly balances essential factors such as distance, validity, and proba-
bilistic plausibility in the counterfactuals it produces. Notably, PPCEF
is computationally efficient and capable of handling large datasets,
making it highly applicable in real-world scenarios. The method’s
flexible design allows for future enhancements, including other de-
sirable counterfactual attributes like actionability or sparsity, and to
generate plausible counterfactuals in label-scarce environments.



Acknowledgements
Patryk Wielopolski, Oleksii Furman, and Maciej Zieba’s work
was supported by the National Science Centre (Poland) Grant
No. 2021/43/B/ST6/02853, and Jerzy Stefanowski’s work was
supported by the National Science Centre (Poland) grant No.
2023/51/B/ST6/00545. Moreover, we gratefully acknowledge Pol-
ish high-performance computing infrastructure PLGrid (HPC Center:
ACK Cyfronet AGH) for providing computer facilities and support
within computational grant no. PLG/2023/016636.

References
[1] A. B. Arrieta and J. D. Ser. Plausible counterfactuals: Auditing deep

learning classifiers with realistic adversarial examples. In 2020 Inter-
national Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020, pages 1–7. IEEE, 2020.

[2] A. Artelt and B. Hammer. On the computation of counterfactual expla-
nations - A survey. CoRR, abs/1911.07749, 2019.

[3] A. Artelt and B. Hammer. Convex density constraints for computing
plausible counterfactual explanations. In Artificial Neural Networks
and Machine Learning - ICANN 2020 - 29th International Conference
on Artificial Neural Networks, Bratislava, Slovakia, September 15-18,
2020, Proceedings, Part I, volume 12396 of Lecture Notes in Computer
Science, pages 353–365. Springer, 2020.

[4] M. Augustin, V. Boreiko, F. Croce, and M. Hein. Diffusion visual
counterfactual explanations. In Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[5] A. Dhurandhar, P. Chen, R. Luss, C. Tu, P. Ting, K. Shanmugam, and
P. Das. Explanations based on the missing: Towards contrastive expla-
nations with pertinent negatives. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 590–601, 2018.

[6] L. Dinh, D. Krueger, and Y. Bengio. NICE: non-linear independent
components estimation. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Work-
shop Track Proceedings, 2015.

[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using
real NVP. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[8] A. Dombrowski, J. E. Gerken, K. Müller, and P. Kessel. Diffeomorphic
counterfactuals with generative models. CoRR, abs/2206.05075, 2022.
doi: 10.48550/ARXIV.2206.05075.

[9] T. D. Duong, Q. Li, and G. Xu. Ceflow: A robust and efficient counterfac-
tual explanation framework for tabular data using normalizing flows. In
Advances in Knowledge Discovery and Data Mining - 27th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, PAKDD 2023,
Osaka, Japan, May 25-28, 2023, Proceedings, Part II, volume 13936 of
Lecture Notes in Computer Science, pages 133–144. Springer, 2023.

[10] R. Guidotti. Counterfactual explanations and how to find them: literature
review and benchmarking. Data Mining and Knowledge Discovery,
pages 1–55, 04 2022.

[11] G. Jeanneret, L. Simon, and F. Jurie. Diffusion models for counterfactual
explanations. In Computer Vision - ACCV 2022 - 16th Asian Conference
on Computer Vision, Macao, China, December 4-8, 2022, Proceedings,
Part VII, volume 13847 of Lecture Notes in Computer Science, pages
219–237. Springer, 2022.

[12] J. Jiang, J. Lan, F. Leofante, A. Rago, and F. Toni. Provably robust
and plausible counterfactual explanations for neural networks via robust
optimisation. CoRR, abs/2309.12545, 2023.

[13] K. Kanamori, T. Takagi, K. Kobayashi, and H. Arimura. DACE:
distribution-aware counterfactual explanation by mixed-integer linear
optimization. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, pages 2855–2862.
ijcai.org, 2020.

[14] M. T. Keane and B. Smyth. Good counterfactuals and where to find them:
A case-based technique for generating counterfactuals for explainable
AI (XAI). In Case-Based Reasoning Research and Development - 28th
International Conference, ICCBR 2020, Salamanca, Spain, June 8-12,
2020, Proceedings, volume 12311 of Lecture Notes in Computer Science,
pages 163–178. Springer, 2020.

[15] A. V. Looveren and J. Klaise. Interpretable counterfactual explanations
guided by prototypes. In Machine Learning and Knowledge Discovery in
Databases. Research Track - European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13-17, 2021, Proceedings, Part II, volume
12976 of Lecture Notes in Computer Science, pages 650–665. Springer,
2021.

[16] D. Mahajan, C. Tan, and A. Sharma. Preserving causal constraints
in counterfactual explanations for machine learning classifiers. CoRR,
abs/1912.03277, 2019.

[17] S. Mertes, T. Huber, K. Weitz, A. Heimerl, and E. André. Ganterfac-
tual—counterfactual explanations for medical non-experts using genera-
tive adversarial learning. Frontiers in Artificial Intelligence, 2022.

[18] R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning
classifiers through diverse counterfactual explanations. In FAT* ’20:
Conference on Fairness, Accountability, and Transparency, Barcelona,
Spain, January 27-30, 2020, pages 607–617. ACM, 2020.

[19] G. Papamakarios, I. Murray, and T. Pavlakou. Masked autoregressive
flow for density estimation. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 2338–
2347, 2017.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[21] J. Pearl, M. Glymour, and N. Jewell. Causal Inference in Statistics: A
Primer. Wiley, 2016. ISBN 9781119186847.

[22] S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensem-
bles for deep learning on tabular data. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

[23] R. Poyiadzi, K. Sokol, R. Santos-Rodríguez, T. D. Bie, and P. A. Flach.
FACE: feasible and actionable counterfactual explanations. In AIES ’20:
AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA,
February 7-8, 2020, pages 344–350. ACM, 2020.

[24] D. Rezende and S. Mohamed. Variational inference with normalizing
flows. In International Conference on Machine Learning, pages 1530–
1538. PMLR, 2015.

[25] C. Russell. Efficient search for diverse coherent explanations. In danah
boyd and J. H. Morgenstern, editors, Proceedings of the Conference on
Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA,
USA, January 29-31, 2019, pages 20–28. ACM, 2019.

[26] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-neighbor methods
in learning and vision. IEEE Trans. Neural Networks, 19(2):377, 2008.

[27] B. Smyth and M. T. Keane. A few good counterfactuals: Generat-
ing interpretable, plausible and diverse counterfactual explanations. In
Case-Based Reasoning Research and Development - 30th International
Conference, ICCBR 2022, Nancy, France, September 12-15, 2022, Pro-
ceedings, volume 13405 of Lecture Notes in Computer Science, pages
18–32. Springer, 2022.

[28] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[29] N. Vercheval and A. Pizurica. Hierarchical variational autoencoders for
visual counterfactuals. In 2021 IEEE International Conference on Image
Processing, ICIP 2021, Anchorage, AK, USA, September 19-22, 2021,
pages 2513–2517. IEEE, 2021.

[30] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson, and
C. Shah. Counterfactual explanations and algorithmic recourses for
machine learning: A review. arXiv preprint arXiv:2010.10596, 2020.

[31] S. Wachter, B. D. Mittelstadt, and C. Russell. Counterfactual expla-
nations without opening the black box: Automated decisions and the
GDPR. CoRR, abs/1711.00399, 2017.

[32] G. P. Wellawatte, A. Seshadri, and A. D. White. Model agnostic genera-
tion of counterfactual explanations for molecules. Chem. Sci., 2022.

[33] P. Wielopolski, O. Furman, J. Stefanowski, and M. Zieba. Probabilis-
tically plausible counterfactual explanations with normalizing flows.
CoRR, abs/2405.17640, 2024. doi: 10.48550/ARXIV.2405.17640.

[34] L. F. Wightman. Lsac national longitudinal bar passage study. lsac
research report series. Technical report, Law School Admission Council,
Newtown, PA., 1998.



A Additional Results
This section supplements the main manuscript’s experimental results with a more comprehensive analysis. We include means and standard
deviations from five-fold cross-validation for greater statistical rigor and broaden the comparison with additional datasets and metrics. Tab. 5
compares the effectiveness and nuances of different approaches in generating counterfactual explanations for the Logistic Regression model. In
Tab. 6, we delve into Multilayer Perceptron, presenting a similar analysis that highlights the unique aspects and performance metrics relevant to
this model. Moving forward, we examine the performance of counterfactual methods for deep ensembles of oblivious differentiable decision
trees. Results for NODE classifier are presented in Tab. 7. Notably, Artelt’s method is incompatible with non-linear classifiers such as Multilayer
Perceptrons (MLP) or NODE, precluding the acquisition of performance data for these models using this approach. Furthermore, the application
of CEGP to the NODE classifier was prohibitively time-consuming, which prevented the generation of results for this method as well. In Tab. 8,
we provide extended results for the Ablation Study on Loss Function with additional metrics: LOF and Isolation Forest.



Table 5: Detailed Comparative Results of Probabilistically Plausible Counterfactual Explanation Methods for Logistic Regression classifier. We present a comprehensive comparison of our
method with other established reference methods across various datasets. The results presented include the mean and standard deviation obtained from a five-fold cross-validation.

DATASET METHOD COVERAGE ↑ VALIDITY ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓

MOONS

CBCE 1.00±0.00 1.00±0.00 0.10±0.23 1.06±0.02 0.03±0.00 -5.81±3.74 0.62±0.07 0.48±0.05 0.07±0.01 S
CEGP 1.00±0.00 1.00±0.00 0.09±0.04 1.36±0.03 0.00±0.00 -6.66±0.82 0.36±0.02 0.28±0.01 904.11±11.12 S
CEM 1.00±0.00 1.00±0.00 0.14±0.03 2.03±0.12 -0.07±0.01 -10.09±6.62 0.55±0.03 0.50±0.02 211.56±1.50 S
WACH 0.98±0.03 1.00±0.01 0.11±0.05 1.55±0.08 -0.01±0.00 -6.34±2.41 0.49±0.02 0.36±0.01 198.29±3.66 S
ARTELT 1.00±0.00 1.00±0.00 0.08±0.03 1.53±0.09 -0.03±0.01 -8.74±3.57 0.32±0.02 0.32±0.02 4.15±0.69 S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.02 0.04±0.01 1.69±0.07 0.45±0.01 0.36±0.01 1.85±0.01 S

LAW

CBCE 1.00±0.00 1.00±0.00 0.49±0.35 1.05±0.02 0.04±0.02 1.28±0.41 0.61±0.03 0.40±0.02 0.23±0.00 S
CEGP 1.00±0.00 1.00±0.00 0.49±0.04 1.07±0.00 0.04±0.00 1.08±0.04 0.23±0.01 0.18±0.01 1973.76±11.09 S
CEM 1.00±0.00 1.00±0.00 0.26±0.01 1.26±0.00 -0.02±0.00 -0.56±0.08 0.33±0.01 0.31±0.01 368.10±51.57 S
WACH 1.00±0.00 1.00±0.00 0.39±0.03 1.30±0.02 -0.01±0.00 -0.29±0.13 0.45±0.01 0.35±0.01 359.00±41.37 S
ARTELT 1.00±0.00 1.00±0.00 0.40±0.02 1.12±0.01 0.02±0.00 0.54±0.08 0.20±0.01 0.20±0.01 4.02±0.42 S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.03±0.00 0.07±0.00 2.05±0.02 0.37±0.01 0.23±0.01 2.42±0.10 S

AUDIT

CBCE 1.00±0.00 1.00±0.00 0.79±0.28 11.70±20.10 0.14±0.00 54.97±3.89 2.55±0.18 1.24±0.10 0.04±0.01 S
CEGP 0.97±0.02 1.00±0.00 0.02±0.03 6.08·107±5.58·107 0.02±0.02 8.09±13.27 1.56±0.13 0.57±0.06 561.04±13.04 S
CEM 0.52±0.03 1.00±0.00 0.00±0.01 8.28·106±1.85·107 -0.04±0.03 20.84±10.32 1.20±0.06 0.37±0.02 105.92±13.20 S
WACH 0.99±0.01 1.00±0.00 0.02±0.02 1.42·108±2.99·107 0.06±0.01 -40.34±34.83 1.78±0.08 0.80±0.05 101.27±10.95 S
ARTELT 0.60±0.22 0.97±0.05 0.00±0.01 4.09·108±5.89·108 0.10±0.02 -3585.76±7834.29 0.90±0.14 0.88±0.10 43.84±31.22 S
PPCEF 1.00±0.00 0.99±0.01 0.99±0.01 4.25·107±9.32·107 0.08±0.01 51.64±4.53 2.04±0.15 0.79±0.12 7.01±1.08 S

HELOC

CBCE 1.00±0.00 1.00±0.00 0.54±0.01 1.10±0.08 0.07±0.03 28.01±3.31 2.84±0.39 0.82±0.11 5.71±0.41 S
CEGP 1.00±0.00 1.00±0.00 0.29±0.03 3.50·107±7.28·106 0.04±0.00 24.75±0.52 0.26±0.03 0.10±0.01 9654.60±81.96 S
CEM 1.00±0.00 1.00±0.00 0.07±0.01 2.50·108±4.00·107 0.02±0.01 12.37±2.74 0.35±0.05 0.20±0.02 1639.16±9.35 S
WACH 1.00±0.00 1.00±0.00 0.00±0.00 2.65·108±3.04·107 0.03±0.01 -15.09±5.86 0.74±0.06 0.37±0.01 1600.28±17.36 S
ARTELT - - - - - - - - -
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 6.47·107±2.16·107 0.07±0.00 32.42±0.34 0.90±0.03 0.23±0.01 12.44±2.36 S

BLOBS

CBCE 1.00±0.00 1.00±0.00 0.27±0.15 1.02±0.03 0.03±0.02 -35.52±15.68 0.95±0.01 0.72±0.01 0.13±0.00 S
CEGP 1.00±0.00 1.00±0.00 0.00±0.00 2.43±0.12 -0.07±0.01 -9.08±2.29 0.30±0.01 0.25±0.01 1295.36±30.32 S
CEM 0.96±0.02 1.00±0.00 0.00±0.00 3.51±0.09 -0.12±0.00 -14.95±2.91 0.46±0.04 0.45±0.03 512.56±5.56 S
WACH 1.00±0.00 1.00±0.00 0.04±0.02 2.24±0.19 -0.06±0.01 -9.52±1.80 0.51±0.02 0.38±0.02 441.59±15.39 S
ARTELT 1.00±0.00 1.00±0.00 0.00±0.00 2.11±0.16 -0.07±0.01 -3.51±0.33 0.39±0.01 0.33±0.01 6.62±0.09 S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.01 0.04±0.01 3.00±0.11 0.69±0.05 0.50±0.04 3.22±0.84 S

DIGITS

CBCE 1.00±0.00 1.00±0.00 0.18±0.04 1.02±0.06 0.04±0.00 23.72±4.73 16.28±0.62 3.09±0.02 0.51±0.16 S
CEGP 1.00±0.00 1.00±0.00 0.11±0.03 1.09±0.01 0.01±0.00 -0.39±4.80 2.53±0.11 0.63±0.02 1945.67±22.30 S
CEM 1.00±0.00 0.98±0.04 0.01±0.00 1.23±0.01 -0.03±0.01 -86.77±17.24 5.28±4.93 1.38±0.75 852.05±27.68 S
WACH 1.00±0.00 1.00±0.00 0.08±0.03 1.20±0.01 0.00±0.01 -34.97±7.01 2.47±0.05 1.20±0.02 651.00±7.97 S
ARTELT 0.80±0.12 0.93±0.02 0.04±0.03 1.69±0.05 0.01±0.01 -54.72±11.81 3.30±0.13 2.43±0.14 238.28±33.28 S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.12±0.01 0.03±0.01 44.42±1.87 8.27±0.24 1.33±0.04 8.68±3.65 S

WINE

CBCE 1.00±0.00 1.00±0.00 0.37±0.05 1.06±0.05 0.05±0.02 2.13±1.28 3.38±0.14 1.12±0.05 0.01±0.00 S
CEGP 1.00±0.00 1.00±0.00 0.01±0.01 1.08±0.03 0.05±0.01 -0.15±1.54 0.82±0.08 0.32±0.03 191.09±4.00 S
CEM 1.00±0.00 1.00±0.00 0.00±0.00 1.35±0.03 -0.02±0.01 -12.94±1.94 1.20±0.09 0.63±0.05 81.33±1.88 S
WACH 1.00±0.00 1.00±0.00 0.01±0.01 1.27±0.04 0.00±0.01 -9.41±1.95 1.57±0.10 0.78±0.05 50.74±5.63 S
ARTELT 1.00±0.00 0.97±0.04 0.01±0.02 1.33±0.03 0.02±0.00 -11.73±2.36 0.65±0.05 0.96±0.08 S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.01 0.09±0.01 9.72±0.62 1.65±0.09 0.53±0.04 2.03±0.47 S



Table 6: Detailed Comparative Results of Probabilistically Plausible Counterfactual Explanation Methods for Multilayer Perceptron classifier. We provide an in-depth comparison
between our approach and other well-established methods, utilizing a range of datasets. This analysis includes both the average values and the standard deviations derived from five-fold
cross-validation.

DATASET METHOD COVERAGE ↑ VALIDITY ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓

MOONS

CBCE 1.00±0.00 0.84±0.24 0.58±0.16 1.03±0.03 0.02±0.01 1.23±0.27 0.71±0.16 0.53±0.11 0.08±0.00 S
CEGP 0.97±0.03 0.33±0.13 0.06±0.07 1.39±0.10 0.00±0.01 -3.67±1.16 0.29±0.07 0.23±0.05 1562.34±119.65 S
CEM 0.99±0.02 0.45±0.15 0.03±0.04 2.29±0.16 -0.08±0.01 -11.92±6.48 0.49±0.04 0.48±0.04 784.34±33.83 S
WACH 1.00±0.01 0.56±0.06 0.04±0.05 1.52±0.12 -0.01±0.01 -3.71±2.54 0.28±0.09 0.24±0.08 1452.01±99.08 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.98±0.01 1.00±0.00 0.99±0.02 0.03±0.01 1.62±0.04 0.44±0.05 0.34±0.04 20.44±1.75 S

LAW

CBCE 1.00±0.00 0.79±0.11 0.36±0.40 1.05±0.02 0.03±0.03 1.18±0.45 0.67±0.08 0.44±0.05 0.28±0.02 S
CEGP 0.93±0.02 0.28±0.01 0.53±0.05 1.07±0.00 0.04±0.00 1.23±0.16 0.24±0.02 0.17±0.01 2986.44±60.71 S
CEM 1.00±0.00 0.61±0.04 0.27±0.01 1.26±0.01 -0.02±0.00 -0.22±0.11 0.29±0.01 0.28±0.01 1413.03±97.23 S
WACH 1.00±0.00 0.74±0.04 0.42±0.03 1.14±0.01 0.01±0.00 0.58±0.09 0.38±0.01 0.29±0.01 2459.88±78.30 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.95±0.01 1.00±0.00 1.03±0.00 0.07±0.00 2.04±0.02 0.40±0.01 0.24±0.01 20.63±1.08 S

AUDIT

CBCE 1.00±0.00 0.93±0.07 0.61±0.21 11.10±13.30 0.14±0.00 55.02±3.49 2.77±0.25 1.34±0.14 0.16±0.01 S
CEGP 0.55±0.02 0.48±0.02 0.02±0.03 1.45·102±3.86·101 0.00±0.03 -85.64±41.77 1.42±0.12 0.57±0.03 1426.33±55.75 S
CEM 0.53±0.02 0.54±0.05 0.01±0.01 6.52·107±8.76·107 0.04±0.03 -132.43±98.13 1.19±0.14 0.61±0.04 441.85±7.56 S
WACH 0.49±0.02 0.78±0.06 0.00±0.00 1.24·102±2.75·101 -0.03±0.03 -155.20±74.93 1.49±0.07 0.65±0.01 601.77±23.34 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.99±0.02 0.99±0.01 1.44·107±1.88·107 0.08±0.01 51.72±4.59 2.14±0.11 0.83±0.10 46.60±3.82 S

HELOC

CBCE 1.00±0.00 0.94±0.01 0.54±0.03 1.09±0.08 0.08±0.03 28.85±3.95 2.87±0.40 0.82±0.11 6.47±0.69 S
CEGP 0.94±0.01 0.63±0.01 0.05±0.01 4.15·108±1.97·108 0.01±0.00 -3.28±4.79 1.25±0.11 0.43±0.03 31309.33±3342.40 S
CEM 1.00±0.00 0.86±0.01 0.01±0.00 7.71·108±1.41·108 -0.01±0.01 -89.39±56.89 1.32±0.22 0.58±0.07 6938.45±79.08 S
WACH 0.99±0.00 0.81±0.03 0.00±0.00 1.34·108±4.44·107 -0.06±0.01 -161.68±104.43 3.11±0.24 0.90±0.04 23392.40±3677.14 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.92±0.03 1.00±0.00 1.42·108±3.90·107 0.07±0.00 32.07±0.63 1.18±0.11 0.31±0.03 25.32±6.41 S

BLOBS

CBCE 1.00±0.00 1.00±0.00 0.27±0.15 1.02±0.03 0.03±0.02 -35.45±15.48 0.95±0.01 0.72±0.01 0.16±0.00 S
CEGP 0.98±0.02 0.47±0.04 0.00±0.00 2.48±0.16 -0.07±0.00 -9.54±3.30 0.35±0.01 0.29±0.01 3047.79±38.09 S
CEM 0.97±0.04 0.71±0.07 0.00±0.00 3.36±0.12 -0.11±0.00 -18.58±10.39 0.46±0.02 0.45±0.01 1046.35±14.92 S
WACH 0.99±0.01 0.57±0.04 0.00±0.00 2.67±0.15 -0.07±0.01 -10.72±3.68 0.34±0.01 0.29±0.01 1731.10±62.81 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.03±0.02 0.04±0.00 2.91±0.04 0.65±0.01 0.47±0.01 19.55±0.30 S

DIGITS

CBCE 1.00±0.00 1.00±0.00 0.18±0.04 1.02±0.06 0.04±0.00 23.66±3.76 16.29±0.61 3.09±0.02 0.54±0.16 S
CEGP 0.95±0.01 0.46±0.03 0.02±0.01 1.24±0.00 -0.03±0.00 -138.62±14.93 6.39±0.16 1.42±0.03 2523.28±54.03 S
CEM 1.00±0.00 0.42±0.01 0.01±0.01 1.44±0.01 -0.06±0.01 -481.57±68.49 6.34±0.55 1.76±0.09 1260.54±51.03 S
WACH 1.00±0.00 0.72±0.03 0.00±0.00 1.50±0.03 -0.07±0.01 -516.44±72.51 11.04±0.36 2.13±0.07 3342.38±104.14 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 0.98±0.01 1.13±0.01 0.03±0.01 43.87±2.38 8.78±0.29 1.42±0.05 25.09±0.40 S

WINE

CBCE 1.00±0.00 0.96±0.04 0.37±0.05 1.11±0.03 0.03±0.02 1.71±1.93 4.05±0.22 1.31±0.06 0.01±0.00 S
CEGP 0.98±0.02 0.42±0.05 0.06±0.08 1.12±0.03 0.04±0.01 -1.36±3.40 1.31±0.18 0.48±0.07 486.70±46.60 S
CEM 1.00±0.00 0.44±0.06 0.00±0.00 1.40±0.05 -0.02±0.01 -17.90±4.72 1.24±0.09 0.67±0.06 117.67±3.86 S
WACH 1.00±0.00 0.80±0.16 0.01±0.01 1.29±0.10 0.00±0.02 -10.69±7.38 2.07±0.23 0.80±0.06 224.63±6.95 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.97±0.03 0.99±0.01 1.01±0.01 0.09±0.01 9.79±0.59 1.71±0.10 0.55±0.04 10.32±0.73 S



Table 7: Detailed Comparative Results of Probabilistically Plausible Counterfactual Explanation Methods for Neural Oblivious Decision Ensembles classifier. We offer a detailed comparison
of our method with other established approaches using various datasets. This evaluation presents both the mean values and the standard deviations obtained through five-fold cross-validation.

DATASET METHOD COVERAGE ↑ VALIDITY ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓

MOONS

CBCE 1.00±0.00 1.00±0.00 0.50±0.01 1.04±0.03 0.02±0.01 0.90±1.11 0.62±0.06 0.48±0.04 0.41±0.09 S
CEGP - - - - - - - - - S
CEM 0.99±0.01 1.00±0.00 0.07±0.02 2.00±0.09 -0.07±0.01 -4.36±2.79 0.61±0.03 0.57±0.02 1011.68±15.44 S
WACH 1.00±0.00 1.00±0.00 0.02±0.02 1.29±0.04 0.01±0.00 -0.48±0.33 0.33±0.01 0.26±0.01 1736.54±19.44 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.01 0.03±0.01 1.60±0.03 0.42±0.03 0.33±0.03 39.68±4.48 S

LAW

CBCE 1.00±0.00 1.00±0.00 0.48±0.36 1.05±0.02 0.04±0.02 1.27±0.43 0.61±0.03 0.40±0.02 1.08±0.04 S
CEGP - - - - - - - - - S
CEM 0.97±0.01 1.00±0.00 0.29±0.01 1.27±0.02 -0.02±0.00 -0.41±0.14 0.33±0.02 0.31±0.01 2103.30±31.69 S
WACH 0.99±0.01 1.00±0.00 0.45±0.06 1.08±0.01 0.03±0.00 1.16±0.06 0.41±0.01 0.29±0.00 4401.60±240.03 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.03±0.00 0.07±0.00 2.04±0.01 0.38±0.01 0.23±0.01 61.67±2.88 S

AUDIT

CBCE 1.00±0.00 1.00±0.00 0.79±0.28 11.80±20.40 0.14±0.00 54.92±3.92 2.55±0.19 1.24±0.10 0.38±0.08 S
CEGP - - - - - - - - - S
CEM 0.52±0.03 1.00±0.00 0.00±0.01 1.52·108±1.43·108 0.11±0.00 12.63±14.72 1.06±0.10 0.56±0.04 906.63±24.07 S
WACH 0.98±0.03 1.00±0.00 0.03±0.04 6.90·107±7.94·107 0.06±0.01 -33.50±50.95 1.59±0.14 0.97±0.04 2347.91±227.09 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 0.99±0.01 2.32·107±2.99·107 0.09±0.01 51.67±4.53 2.06±0.12 0.80±0.09 80.34±21.47 S

HELOC

CBCE 1.00±0.00 1.00±0.00 0.55±0.03 1.09±0.08 0.08±0.03 28.88±4.06 2.85±0.40 0.82±0.11 17.53±0.92 S
CEGP - - - - - - - - - S
CEM 0.94±0.01 1.00±0.00 0.10±0.01 1.35±0.01 0.05±0.01 9.00±3.61 0.47±0.08 0.29±0.02 14772.66±226.75 S
WACH 0.96±0.03 1.00±0.00 0.10±0.02 2.12·108±4.23·108 0.05±0.01 10.75±10.46 0.85±0.05 0.36±0.04 37254.33±3666.87 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 0.94±0.01 1.00±0.00 1.08±0.00 0.09±0.00 31.85±0.41 1.02±0.06 0.28±0.02 126.05±33.10 S

BLOBS

CBCE 1.00±0.00 1.00±0.00 0.27±0.15 1.02±0.03 0.03±0.02 -35.52±15.68 0.95±0.01 0.72±0.01 0.77±0.08 S
CEGP - - - - - - - - - S
CEM 0.90±0.04 1.00±0.00 0.00±0.00 3.10±0.09 -0.11±0.00 -24.98±10.42 0.58±0.02 0.52±0.02 1329.91±14.61 S
WACH 0.94±0.02 1.00±0.00 0.00±0.00 2.65±0.11 -0.08±0.00 -11.76±3.58 0.37±0.02 0.33±0.01 2406.40±59.59 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.02±0.02 0.04±0.00 2.94±0.04 0.65±0.01 0.47±0.01 47.69±5.21 S

DIGITS

CBCE 1.00±0.00 1.00±0.00 0.18±0.04 1.02±0.06 0.04±0.00 24.00±4.14 16.27±0.65 3.09±0.03 3.12±0.24 S
CEGP - - - - - - - - - S
CEM 1.00±0.00 1.00±0.00 0.03±0.01 1.32±0.01 -0.02±0.00 -39.45±10.78 4.07±0.14 1.44±0.03 5451.83±19.15 S
WACH 1.00±0.00 1.00±0.00 0.16±0.03 1.12±0.01 0.02±0.01 7.02±5.00 2.93±0.05 1.13±0.01 15376.44±290.44 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.15±0.01 0.02±0.01 43.97±1.95 7.76±0.20 1.36±0.03 69.45±3.94 S

WINE

CBCE 1.00±0.00 1.00±0.00 0.39±0.03 1.11±0.04 0.02±0.02 2.04±1.86 4.05±0.22 1.31±0.06 0.10±0.07 S
CEGP - - - - - - - - - S
CEM 1.00±0.00 1.00±0.00 0.00±0.00 1.34±0.04 0.00±0.01 -21.02±14.00 1.11±0.19 0.65±0.06 225.63±11.18 S
WACH 0.99±0.01 1.00±0.00 0.08±0.06 1.12±0.04 0.04±0.01 -1.05±2.49 1.10±0.04 0.59±0.02 459.91±13.22 S
ARTELT - - - - - - - - - S
PPCEF 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.01 0.09±0.00 9.82±0.66 1.69±0.09 0.55±0.03 19.39±1.06 S



Table 8: Detailed Ablation Study on Loss Function Selection. This table includes additional metrics: LOF and IsoForest

DATASET LOSS COV.↑ VAL.↑ PROB. PLAUS.↑ LOF ISOFOREST LOG DENS.↑ L1↓ L2↓

MOONS OURS 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.02 0.04±0.01 1.69±0.07 0.45±0.01 0.36±0.01
BCE 1.00±0.00 1.00±0.00 0.99±0.00 1.04±0.03 -0.01±0.01 1.74±0.09 0.89±0.03 0.69±0.02

LAW OURS 1.00±0.00 1.00±0.00 1.00±0.00 1.03±0.00 0.07±0.00 2.05±0.02 0.37±0.01 0.23±0.01
BCE 1.00±0.00 1.00±0.00 0.98±0.01 0.99±0.00 0.01±0.01 1.67±0.01 0.97±0.02 0.60±0.01

AUDIT OURS 1.00±0.00 0.99±0.01 0.99±0.01 4.25·107±9.32·107 0.08±0.01 51.64±4.53 2.04±0.15 0.79±0.12
BCE 1.00±0.00 0.99±0.01 0.98±0.01 3.59·108±1.16·108 0.09±0.01 52.54±4.54 3.01±0.20 1.25±0.10

HELOC OURS 1.00±0.00 1.00±0.00 1.00±0.00 6.47·107±2.16·107 0.07±0.00 32.42±0.34 0.90±0.03 0.23±0.01
BCE 1.00±0.00 1.00±0.00 0.99±0.00 1.67·108±6.18·107 0.05±0.01 32.11±0.45 2.77±0.13 0.78±0.05

BLOBS OURS 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.01 0.04±0.01 3.00±0.11 0.69±0.05 0.50±0.04
CE 1.00±0.00 1.00±0.00 0.93±0.01 1.05±0.02 0.03±0.01 2.85±0.04 0.82±0.02 0.60±0.01

DIGITS OURS 1.00±0.00 1.00±0.00 1.00±0.00 1.12±0.01 0.03±0.01 44.42±1.87 8.27±0.24 1.33±0.04
CE 1.00±0.00 1.00±0.00 1.00±0.00 1.12±0.01 0.02±0.01 44.18±2.09 12.67±0.15 2.13±0.04

WINE OURS 1.00±0.00 1.00±0.00 1.00±0.00 1.01±0.01 0.09±0.01 9.72±0.62 1.65±0.09 0.53±0.04
CE 1.00±0.00 1.00±0.00 0.99±0.01 1.06±0.03 0.02±0.01 9.29±0.71 3.87±0.18 1.29±0.06

Table 9: Dataset Characteristics and Model Performances. This table provides an overview of the datasets used in our experiments, including the
number of samples (N ), number of features (d), number of classes (C), accuracy of Logistic Regression (LR Acc.), Multi-Layer Perceptron
(MLP Acc.), and the log density of the Masked Autoregressive Flow (MAF Log Dens.).

DATASET N d C LR ACC. MLP ACC. MAF LOG DENS.

MOONS 1,024 2 2 0.85 0.98 1.38
LAW 2,220 3 2 0.75 0.75 1.23
AUDIT 610 23 2 0.95 0.98 48.15
HELOC 10,459 23 2 0.70 0.70 28.67

WINE 178 13 3 0.90 0.97 7.21
BLOBS 1,500 2 3 1.00 1.00 2.58
DIGITS 5,620 64 10 0.94 0.95 35.80

B Datasets

In Tab. 9, we provide detailed descriptions of the datasets utilized in our study: Moons, Law2, Audit3, Heloc4, Wine5, Blobs and Digits6. The
Moons dataset is an artificially generated set comprising two interleaving half-circles. It includes a standard deviation of Gaussian noise set
at 0.01. The Law dataset originates from the Law School Admissions Council (LSAC) and is referred to in the literature as the Law School
Admissions dataset [34]. For our analysis, we selected three features that exhibit the highest correlation with the target variable: entrance
exam scores (LSAT), grade-point average (GPA), and first-year average grade (FYA). The Audit dataset, which encompasses comprehensive
one-year non-confidential data of firms in the years 2015 to 2016, is collected from the Auditor Office of India to build a predictor for classifying
suspicious firms. The Heloc dataset, initially utilized in the ’FICO xML Challenge’, consists of Home Equity Line of Credit (HELOC)
applications submitted by real homeowners. This dataset comprises various numeric features that encapsulate information from the applicant’s
credit report. The primary objective is to predict whether the applicant will repay their HELOC account within a two-year period. This prediction
is instrumental in determining the applicant’s qualification for a line of credit. The Wine dataset comprises chemical analysis results for wines
originating from the same region in Italy, produced from three distinct cultivars. This analysis quantified 13 different constituents present in each
of the three wine varieties. The Blobs dataset is an artificially generated isotropic Gaussian blobs, characterized by equal variance. The Digits
dataset is utilized for the optical recognition of handwritten digits. It consists of 32x32 bitmap images that are segmented into non-overlapping
4x4 blocks. Within each block, the count of ’on’ pixels is recorded, resulting in an 8x8 input matrix. Each element of this matrix is an integer
between 0 and 16.

C Density Estimator - Additional Results

This experiment assesses the efficacy of Normalizing Flow models, particularly in high-dimensional datasets, against traditional Kernel Density
Estimation (KDE). We compared KDE with three Normalizing Flow architectures: RealNVP, NICE, and Masked Autoregressive Flow (MAF).
The mean log density results for the test datasets are detailed in Tab. 10. For lower-dimensional datasets like Moons, Law and Blobs, KDE and
MAF show comparable performance, significantly outperforming RealNVP and NICE. However, in high-dimensional datasets such as Audit,
Heloc and Digits, MAF demonstrates a substantial advantage over the other density estimators. These findings reinforce our proposition to
employ Normalizing Flows, especially the MAF architecture, as effective density estimators in our method.

2 https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage
3 https://archive.ics.uci.edu/dataset/475/audit+data
4 https://community.fico.com/s/explainable-machine-learning-challenge
5 https://archive.ics.uci.edu/dataset/109/wine
6 https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits



Table 10: Comparative Analysis of Density Estimators. We present the mean log density results for KDE, RealNVP, NICE, and MAF across
various datasets. It highlights the superior performance of MAF in high-dimensional datasets (Audit and Heloc) and its comparable efficacy to
KDE in lower-dimensional datasets (Moons and Law), underscoring the effectiveness of MAF as a density estimator in our method.

DATASET KDE REALNVP NICE MAF

MOONS 0.95±0.01 -1.85±0.00 -1.86±0.00 1.38±0.07
LAW 1.16±0.03 -2.79±0.00 -2.80±0.00 1.23±0.05
AUDIT 10.75±28.15 -21.25±0.13 -21.34±0.22 48.15±8.41
HELOC 22.44±0.32 -21.12±0.00 -21.19±0.00 28.67±0.42
WINE 5.95±0.57 -12.05±0.02 -12.08±0.01 7.21±0.80
BLOBS 2.10±0.02 -1.84±0.00 -1.84±0.00 2.58±0.05
DIGITS 22.66±1.14 -59.33±0.05 -59.79±0.09 35.80±3.30

D Implementation details
In the implementation of our experiments, we utilized Python [28] as the primary programming language. The core of our computational
framework was PyTorch [20], a popular open-source machine learning library. A key feature of our implementation was the gradient optimization
approach, designed to be executed in batches. This approach was particularly effective, allowing us to process entire test sets in a single batch.
Our experiments were conducted on an M1 Apple Silicon CPU paired with 16GB of RAM. This hardware setup was more than sufficient for our
experiment needs, providing enough capacity for the computational demands of our algorithm while ensuring fast processing speeds.


	Abstract
	Streszczenie
	List of Publications
	Introduction
	Part I: Normalizing Flows for Discriminative Tasks
	Research Scope
	TreeFlow: Going Beyond Tree-based Parametric Probabilistic Regression
	NodeFlow: Towards End-to-end Flexible Probabilistic Regression on Tabular Data
	Modeling Uncertainty in Personalized Emotion Prediction with Normalizing Flows

	Part II: Normalizing Flows for Generative Tasks
	Research Scope
	Flow Plugin Network for Conditional Generation
	PluGeN: Multi-Label Conditional Generation From Pre-Trained Models

	Part III: Normalizing Flows for Combined Tasks
	Research Scope
	Probabilistically Plausible Counterfactual Explanations with Normalizing Flows

	Contribution to Research Community
	Conclusions
	Acknowledgments
	Bibliography
	Full Texts of Publications

