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1 Introduction
This dissertation is based on the following four articles:

[I] Dyda, B., and Kijaczko, M. On density of smooth functions in
weighted fractional Sobolev spaces. Nonlinear Anal. 205 (2021), Paper
No. 112231, 10.

[II] Dyda, B., and Kijaczko, M. On density of compactly supported smooth
functions in fractional Sobolev spaces. Ann. Mat. Pura Appl. (4) 201, 4
(2022), 1855–1867.

[III] Kijaczko, M. Fractional Sobolev spaces with power weights.
Accepted in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze.
DOI: 10.2422/2036-2145.202112_002 (2023).

[IV] Kijaczko, M., and Lenczewska, J. Sharp Hardy inequalities for
Sobolev–Bregman forms. Accepted in Mathematische Nachrichten (2023).

These papers are attached at the end of this document. Moreover, during the PhD
studies, the author was also involved in the following three articles related to the main
theme of the thesis. When writing this dissertation, these articles are still under review,
so formally they cannot be included in academic achievements. The results of this work
are briefly mentioned at the end of this summary.

[V] Dyda, B. and Kijaczko, M. Sharp weighted fractional Hardy inequal-
ities. arXiv e-prints (2022).

[VI] Dyda, B. and Kijaczko, M. Sharp fractional Hardy inequalities with
a remainder for 1 < p < 2. arXiv e-prints (2023).

[VII] Kijaczko, M. Asymptotics of weighted Gagliardo seminorms. arXiv
e-prints (2023).

The concept of fractional Sobolev spaces (in the literature also called Aronszajn
or Slobodeckii spaces) appeared in the 20th century, with the development of all widely
understood problems of fractional nature. These problems refer to, for example, differen-
tial equations for nonlocal operators, or probability theory — more precisely, stable Lévy
processes or diffusions. Compared to classical Sobolev spaces, fractional Sobolev spaces
play a similar role in nonlocal-type issues. Nonlocal problems were invented to fill a gap,
where the classical differential methods are no longer applicable, for example, for describ-
ing the behaviour of a phenomenon which varies in a nonsmooth, or even discontinuous
way. The divergence between the application of classical and fractional methods is clearly
visible on a microscopic or macroscopic scale.

Perhaps the most significant application of fractional Sobolev spaces comes from the
study of integro-differential operators, such as the fractional Laplacian (−∆)s. For the
classical Laplace operator

∆ =
d∑

i=1

∂2

∂x2i
,



2 SOBOLEV SPACES AND FRACTIONAL LAPLACIAN 7

the second order Poisson partial differential equation −∆f = u, (which for the right-hand
side being zero is the condition for harmonicity) plays a crucial role in physics — especially
in potential theory. The nonlocal equation (−∆)sf = u is a fractional counterpart of this
problem. While the classical Sobolev spaces serve as spaces of (weak) solutions for partial
differential equations, so do the fractional ones for nonlocal problems.

Another intriguing interplay between the classical and fractional theory comes from
the theory of stochastic processes, which is nowadays probably one of the most rapidly
developing branches of modern mathematics, both theoretical and applied. It is well
known that the Laplace operator is deeply connected with the Brownian motion — it
is an infinitesimal generator of this process. Analogously, the fractional Laplace operator
is the infinitesimal generator of a symmetric, stable Lévy process. Fractional Sobolev
spaces connect with stochastic processes through the notion of Dirichlet forms — the
concept well known also in the classical setting.

In this dissertation, we describe results obtained while studying the properties of
fractional Sobolev spaces. The articles [I], [II] and [III] are devoted to investigation of
the form of the closure of smooth, or smooth and compactly supported functions, in
fractional Sobolev spaces — weighted or unweighted. We will present obtained results,
most of them being conditions for which both mentioned classes of functions are or are
not dense in the corresponding fractional Sobolev space. Such density properties are
important for applications, because usually any computations are easier for smooth func-
tions. The article [IV] deals with Hardy inequalities for Sobolev–Bregman forms — the
latter turns out to be an important object of study in recent years. In [IV] we general-
ize the results for fractional Hardy inequalities on halfspaces and convex domains. The
works [V] and [VI] focus on a different problem, that is fractional Hardy inequalities. We
prove there various results for this topic, such as weighted fractional Hardy inequalities,
fractional Hardy–Sobolev–Maz’ya inequalities, or fractional Hardy inequalities with ad-
ditional terms. Hardy inequalities are an important tool in the analysis and theory of
partial differential equations. Finally, the paper [VII] is devoted to asymptotics of frac-
tional Sobolev spaces endowed with power-type weights. The results obtained there can
also be applied to classical weighted Sobolev spaces.

2 Sobolev spaces and fractional Laplacian
In this chapter we will introduce and briefly discuss the most important objects and

notions, which will appear later in this dissertation. Throughout this thesis, we will
always assume that Ω is an open subset of the Euclidean space Rd, d ≥ 1. Any additional
properties of the domain will be specified, if needed.

Let us start with recalling the definition of classical Sobolev spaces W k,p.

Definition 1. Let k ∈ N and p ≥ 1. Let α = (α1, . . . , αd) be a multi-index and let
|α| = α1 + . . .+ αd denote its length. The Sobolev space W k,p(Ω) is defined as the set
of all functions f ∈ Lp(Ω) such that the mixed (weak) partial derivatives of order |α| ≤ k,
that is

Dαf =
∂|α|

∂xα1
1 . . . ∂xαd

d

f,

exist and belong to Lp(Ω).
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The norm in the Sobolev space is given by

∥f∥Wk,p(Ω) =


∑

|α|≤k

∥Dαf∥pLp(Ω)




1
p

and makes W k,p(Ω) a Banach space.
It is worth to mention here that for a given weight, i.e. a measurable, nonnegative

function on Ω, one can also define the weighted Sobolev space W k,p(Ω, w) through the
norm

∥f∥Wk,p(Ω,w) =


∑

|α|≤k

∥Dαf∥pLp(Ω,w)




1
p

,

where Lp(Ω, w) is the weighted Lebesgue space. For the survey of weighted Sobolev spaces,
we recommend the book [42] by Kufner. As we have already mentioned in the introduction,
weighted and unweighted Sobolev spaces are natural spaces for weak solutions of various
kinds of partial differential equations.

We now turn to the most important object of this thesis, the fractional Sobolev space.

Definition 2. Let 0 < s < 1 and 1 ≤ p < ∞. Then, the fractional Sobolev space is
defined as

W s,p(Ω) =

{
f ∈ Lp(Ω) :

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy dx <∞
}
.

This is a Banach space endowed with the norm

∥f∥W s,p(Ω) = ∥f∥Lp(Ω) + [f ]W s,p(Ω),

where the expression

[f ]W s,p(Ω) =

(∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy dx

) 1
p

is called the Gagliardo seminorm.
For the most important case p = 2, the space W 2,s(Ω) becomes a Hilbert space and is

usually denoted by Hs(Ω).

A very good source of information about fractional Sobolev spaces is the paper [19]
of Di Nezza, Palatucci and Valdinoci. In this dissertation, we will mostly study weighted
fractional Sobolev spaces, but we will define them later, as we focus on different kinds of
them, which leads to different notation.

The connection between classical and fractional Sobolev spaces is not easily seen on
first look. However, it turns out that the space W s,p(Ω) is an intermediary space between
Lp(Ω) and W 1,p(Ω), in the sense of complex interpolation. The latter is a complicated
issue and we will not discuss it here. In the celebrated paper [12], Bourgain, Brezis and
Mironescu established the following asymptotic of the fractional Gagliardo seminorm:

lim
s→1−

(1− s)

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy dx = Kd,p

∫

Ω

|∇f(x)|p dx, (1)
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where the constant Kd,p is given by

Kd,p =
2π

d−1
2

p

Γ
(
p+1
2

)

Γ
(
p+d
2

) .

Here Γ is the Euler Gamma function. The relation (1) holds for p > 1 and f ∈ Lp(Ω), if
Ω is an extension domain for the space W 1,p(Ω), which, roughly speaking, means that any
function from W 1,p(Ω) can be extended to a function from W 1,p(Rd). For p = 1, (1) also
holds, but the assumptions are slightly different — see the paper [18] of Dávila. Thus,
one may think that the fractional Sobolev spaces W s,p(Ω) in some way ”converge” to the
classical Sobolev space W 1,p(Ω), as s→ 1−.

Another famous result of this kind was established by Maz’ya and Shaposhnikova [51].
They proved that

lim
s→0+

s

∫

Rd

∫

Rd

|f(x)− f(y)|p
|x− y|d+sp

dy dx =
2

p

∣∣Sd−1
∣∣
∫

Rd

|f(x)|p dx. (2)

Here
∣∣Sd−1

∣∣ = 2πd/2

Γ(d/2)
is the surface measure of the unit sphere in Rd and it is assumed

that f ∈ ⋃0<s<1W
s,p(Rd). This limit has also been investigated in the magnetic setting,

see [55]. Noteworthy, the relation (1) can be used to obtain a nonlocal characterization of
the classical Sobolev space W 1,p(Ω) ( [12, Theorem 2]). In the paper [VII] the author of
this thesis obtained Bourgain–Brezis–Mironescu and Maz’ya–Shaposhnikova formulae for
Gagliardo seminorms equipped with power-type weights and, as an application, a nonlocal
characterization of weighted Sobolev spaces.

We will now shortly discuss the connection between fractional Sobolev spaces and the
fractional Laplace operator. Let us start with defining the latter.

Definition 3. For 0 < s < 1 and f ∈ C2
c (Ω) (twice differentiable in a continuous way

functions with compact support), the fractional Laplace operator is defined as

(−∆)sf(x) = C(d, s) lim
ε→0+

∫

|x−y|>ε

f(x)− f(y)

|x− y|d+2s
dy, (3)

where C(d, s) is the normalizing constant given by

C(d, s) =
π

d
2Γ(−s)

4sΓ
(
d
2
+ s
) .

Let us notice that, in order to compute ∆f(x), we only need to know the values of the
function f in a neighbourhood of x. Conversely, according to the formula (3), to find the
value of (−∆)sf(x), we need to have information about the behaviour of f in the whole
domain Rd. This is what we usually call a nonlocality. A good source of knowledge
about the fractional Laplace operator, including its various definitions, is contained in the
survey [43] of Kwaśnicki.

The connection between fractional Sobolev spaces and the fractional Laplace operator
is easily visible, once we establish an elementary relation

∥(−∆f)
s
2∥2L2(Rd) =

1

2
C(d, s)[f ]2Hs(Rd).

The above explains why the space Hs(Rd) is a natural object of investigation in the
context of the fractional Laplacian.
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Another, perhaps more mysterious and less studied operator, is the so-called regional
fractional Laplacian, which is defined for f ∈ C2

c (Ω) as

(−∆)sΩf(x) = C(d, s) lim
ε→0+

∫

{|x−y|>ε}∩Ω

f(x)− f(y)

|x− y|d+2s
dy.

It is easy to check that
∫

Ω

f(x)(−∆)sΩf(x) dx =
1

2
[f ]2Hs(Ω),

which again leads us to the fractional Sobolev space, this time it isHs(Ω). This operator is
related, through the notion of an infinitesimal generator, to the censored stable process
in Ω, which, informally speaking, is a stable process ”forced” to stay inside Ω, see Bogdan,
Burdzy and Chen [7]. For additional information on the regional fractional Laplacian, we
also refer to [31,32].

3 Density of smooth functions in weighted fractional
Sobolev spaces

In this chapter, we will present the aim and scope of the article [I]. This work is de-
voted to the problem of density of the set of smooth functions on Ω, denoted by C∞(Ω),
in fractional Sobolev spaces with weights. At first, let us mention that for classical (un-
weighted) Sobolev spaces, the celebrated Meyers–Serrin theorem [53] (the famous work
”H = W ”) states that C∞(Ω) is always dense in W k,p(Ω), without assuming any regular-
ity of the domain. A version of Meyers–Serrin theorem for weighted Sobolev spaces with
Muckenhoupt weights [40, Theorem 2.5] also holds. Moreover, the fractional counterpart
of the Meyers–Serrin theorem is also known [52, Theorem 3.25], that is C∞(Ω) is always
dense in W s,p(Ω). The similar question for weighted fractional Sobolev spaces is more
complicated and we will present our results in this field.

3.1 Whitney decomposition

In order to prove our results, we will need a Whitney decomposition of an open set
into cubes, a very important and useful tool in geometric analysis.

Definition 4. Let Ω be an open, proper subset of Rd. A Whitney decomposition of Ω
is a countable family of cubes W = {Qn}n∈N with sides parallel to the axis and satisfying
the following properties,

•
∞⋃

n=1

Qn = Ω;

• the cubes Qi have disjoint interiors;

• diamQ ≤ dist(Q, ∂Ω) ≤ 4 diamQ, for any Q ∈ W ;

• if Qi and Qj intersect, then 1
4
diam(Qi) ≤ diamQj ≤ 4 diamQi;

• for any Q ∈ W there exist at most 12d of cubes in W , which intersect Q.
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Figure 1: Whitney decomposition of a triangle. Source: [33]

In the definition above, ∂Ω is the boundary of Ω, diamA = supx,y∈A |x − y| denotes
the diameter of A, and dist(x,A) = infy∈A |x − y| is the standard distance function. It
turns out that the Whitney decomposition always exists; the details are contained in the
book [59] by Elias M. Stein. Intuitively thinking, the cubes in the Whitney decomposition
are smaller when reaching the boundary of Ω, and the sizes of two adjacent cubes are
comparable.

3.2 Operator P η

We want to construct a ”smoothing” operator, which will serve as an approximation of
an arbitrary function from the appropriate Sobolev space by smooth functions. In order
to do so, we will use a Whitney decomposition.

Let Ω ⊂ Rd be any open set and W = {Qn}n∈N be a Whitney decomposition of Ω into
cubes. Choose ε > 0 such that (1 + ε)2 < 5

4
, that is ε <

√
5
2
− 1. We define ”blown-up”

cubes Q∗
n as cubes with the same center as Qn, but the length of the side 1 + ε times

longer. Analogously, the cube Q∗∗
n is a cube with the same center as Qn, but the length

of the side (1 + ε)2 times longer. Thanks to our choice of ε, any point x ∈ Ω belongs to
at most 12d cubes Q∗∗

n .
We will need the so-called approximation of unity, that is a family {ψn : n ∈ N}

of functions of a class C∞
c (Ω) (smooth functions with compact support in Ω) such that

0 ≤ ψn ≤ 1 and ψn vanishes outside Q∗
n. Moreover,

∑
n ψn = 1 pointwise, and, for some

C > 0 independent of n it holds

|ψn(x)− ψn(y)| ≤ min

{
C|x− y|
l(Qn)

, 1

}
,

where l(Qn) denotes the length of the side of Qn.
Let h : Rd → R be a nonnegative smooth function supported in the unit ball B(0, 1)
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and integrating to one. For δ > 0 we define its dilation by

hδ(x) = δ−dh
(x
δ

)
.

It is clear that hδ belongs to C∞
c (Rd) and is supported in B(0, δ). Moreover, we have∫

Rd hδ(x) dx = 1 for any δ.
Let η : W → (0,∞) be any function on Whitney collection of cubes, which fulfills the

condition η(Q) < ε
2
l(Q) for any Q ∈ W . The simplest example is of course η(Q) = cl(Q)

for any c < ε
2
.

Definition 5. For f ∈ L1
loc(Ω), the operator P η if defined by the following formula,

P ηf =
∞∑

n=1

(fψn) ∗ hη(Qn). (4)

Here f ∗ g(x) =
∫
Rd f(y)g(x − y) dy is the standard convolution operation. Observe

first that the summation in the definition of P ηf is at each point x ∈ Ω finite and has
at most 12d terms — this is a consequence of the corresponding Whitney decomposition
property and the choice of ε.

We prove in [I] that P η is well defined, P ηf ∈ C∞(Ω) and P η maps the space of
all compactly supported, measurable functions in Ω into C∞

c (Ω) (see [I], Propositions 1
and 2). These are basically the consequences of Whitney decomposition properties and
the fact that the convolution with a smooth function makes a locally integrable function
also smooth. The operator P η will serve as a smooth approximation in an appropriate
(semi)norm. However, there are technical difficulties that we need to face to establish the
density results.

3.3 Main results

The first observation is a convergence of P ηf to f in Lp(Ω).

Theorem 6. ( [I, Theorem 3]) Let p ∈ [1,∞) and f ∈ Lp(Ω). Then

lim
k→∞

∥P ηkf − f∥Lp(Ω) = 0,

provided that limk→∞ ηk(Q) = 0 for all Q ∈ W.

The proof of this fact is quite standard — it uses basic properties of the operator P η

together with Jensen inequality combined with Whitney decomposition properties.
Next, we need to establish convergence in Gagliardo seminorms. In [I, Theorem 8],

using our methods we prove a fractional counterpart of Meyers–Serrin theorem, that
is we prove that C∞(Ω) ∩ W s,p(Ω) is always dense in W s,p(Ω), without any additional
assumptions on the domain Ω, for p ∈ [1,∞) and 0 < s < 1. Although this fact is
well known, we prove it anyway to have an excuse to modify it later, when dealing with
weighted Gagliardo seminorms.

Now, we will discuss how to extend the density results to weighted fractional Sobolev
spaces. Recall that by weight we mean a nonnegative, measurable function w on Ω.

Denote

W̃ s,p(Ω, w) =

{
f : Ω → Rd measurable :

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

w(x)w(y) dx dy <∞
}
.
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We understand W̃ s,p(Ω, w) as a seminormed space with the weighted Gagliardo seminorm
defined as

[f ]W s,p(Ω,w) =

(∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

w(x)w(y) dx dy

) 1
p

.

Of course, the weighted Lp norm is

∥f∥Lp(Ω,w) =

(∫

Ω

|f(x)|pw(x) dx
) 1

p

.

The weighted fractional Sobolev spaceW s,p(Ω, w) is defined analogously as the unweighted
one, that is we equip it with a norm which is a sum of the weighted Lp norm and the
weighted Gagliardo seminorm.

In order to establish the density result for weighted Gagliardo seminorms, we need to
limit ourselves to a special class of weights — continuous or locally bounded. Noteworthy,
these are not very restrictive assumptions.

Definition 7. A weight w : Ω → R is locally comparable to a constant if for every
compact subset K ⊂ Ω there exists CK > 0 such that 1

CK
≤ w(x) ≤ CK for almost all

x ∈ K.

The first important observation is that when w is locally comparable to a constant,
then W̃ s,p(Ω, w) ⊂ Lp

loc(Ω) ( [I, Proposition 9]). This ensures us that all integrals appear-
ing in our proofs are finite. Finally, we are in a position to formulate the main result of
the work [I], that is the density of smooth functions in weighted fractional Sobolev spaces.

Theorem 8. ( [I, Theorem 12]) Suppose that w is locally comparable to a constant or
continuous and satisfies the condition

∫

Ω

w(x)

(1 + |x|)d+sp
dx <∞. (5)

Then C∞ ∩ W̃ s,p(Ω, w) is dense in W̃ s,p(Ω, w).

Together with [I, Theorem 13], which establishes a convergence in the weighted Lp

space, we obtain that C∞ ∩ W s,p(Ω, w) is dense in W s,p(Ω, w). The proofs are based
on careful estimation of the norms of functions P ηf and are quite technical. In another
paper [III], which is devoted to a slightly different topic to be discussed later, the author
of this dissertation proved a version of [I, Theorem 12] and [I, Theorem 13] for fractional
Sobolev spaces with two different weights w and v, which are locally bounded and satisfy
(5). See [III, Theorem 19] for details.

The last result of the work [I] is a density result for fractional Sobolev-type spaces for
kernels different than |x|−d−sp. We formulate this theorem below. The proof of this fact
relies on arguments similar to those for previous results.

Theorem 9. ( [I, Theorem 15]) Let p ∈ [1,∞) and let K : [0,∞) → [0,∞) be a measurable
function such that ∫ ∞

0

min{xp, 1}K(x)xd−1 dx <∞. (6)

Denote

[f ]K =

(∫

Ω

∫

Ω

|f(x)− f(y)|pK(|x− y|) dy dx
) 1

p
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and consider the space
X(Ω) = {f ∈ Lp(Ω) : [f ]K <∞}

with the norm
∥f∥X(Ω) = ∥f∥Lp(Ω) + [f ]K .

Then C∞(Ω) ∩X(Ω) is dense in X(Ω).

Notice that for p = 2, the condition (6) states that K(|x|) is the density of a Lévy
measure, which gives a wide perspective of applications to stochastic processes.

To summarize, in the paper [I], which is the first object of this dissertation, we estab-
lished the density results for smooth functions in fractional Sobolev spaces with weights
that satisfy mild assumptions and also for spaces with kernels different from |x|−d−sp.
A research directly related to [I] is contained, for example, in papers [46], [25] and [5].

4 Density of compactly supported smooth functions in
fractional Sobolev spaces

In this chapter we will present results of the second article of this thesis, that is
the work [II]. In this paper we describe some sufficient conditions, under which smooth
and compactly supported functions are or are not dense in the fractional Sobolev space
W s,p(Ω) for an open, bounded set Ω ⊂ Rd. The density property is closely related to the
lower and upper Assouad codimension of the boundary of Ω. We also describe explicitly
the closure of C∞

c (Ω) in W s,p(Ω) under some mild assumptions about the geometry of
Ω. It is well known that C∞

c (Ω) is dense in W s,p(Ω), when Ω is a bounded Lipschitz
domain and sp ≤ 1 [30, Theorem 1.4.2.4], [60, Theorem 3.4.3]. In our research we go far
beyond the Lipschitz regularity of the boundary of the domain. Notice that in contrast to
the Meyers–Serrin theorem for smooth functions without compact support, the density of
C∞

c (Ω) functions is a much more complicated problem and the answer to this depends on
the properties of the domain. Noteworthy, it is quite easy to show that C∞

c (Rd) is always
dense in W s,p(Rd) — see [4, Theorem 7.38].

Throughout this chapter we use a notation

W s,p
0 (Ω)

for the closure of C∞
c (Ω) in W s,p(Ω) with respect to the fractional Sobolev norm.

4.1 Geometrical notions and definitons

In this section we present geometrical notions, which will appear throughout this
chapter.

Definition 10. Let r > 0. For open sets Ω ⊂ Rd we define the inner tubular neigh-
bourhood of Ω as

Ωr = {x ∈ Ω : dist(x, ∂Ω) ≤ r} ,
and for arbitrary sets E ⊂ Rd we define the tubular neighbourhood of E as

Ẽr =
{
x ∈ Rd : dist(x,E) ≤ r

}
.
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Definition 11. [38, Section 3] Let E ⊂ Rd. The lower Assouad codimension
co dimA(E) is defined as the supremum of all q ≥ 0, for which there exists a constant
C = C(q) ≥ 1 such that for all x ∈ E and 0 < r < R < diamE it holds

∣∣∣Ẽr ∩B(x,R)
∣∣∣ ≤ C |B(x,R)|

( r
R

)q
.

Conversely, the upper Assouad codimension co dimA(E) is defined as the infimum of
all s ≥ 0, for which there exists a constant c = c(s) > 0 such that for all x ∈ E and
0 < r < R < diamE it holds

∣∣∣Ẽr ∩B(x,R)
∣∣∣ ≥ c |B(x,R)|

( r
R

)s
.

We remark that having strict inequality R < diamE above makes the definitions
applicable also for unbounded sets E; for bounded sets E we could have R ≤ diamE.
Also, the Assouad codimensions may be defined in any metric measure space, with obvious
changes.

In Euclidean space Rd we have dimA(E) = d−co dimA(E), dimA(E) = d−co dimA(E),
where dimA(E) and dimA(E) denote, respectively, the well known lower and upper As-
souad dimension — see for example [38, Section 2] for this result. If co dimA(E) =
co dimA(E), we simply denote it by co dimA(E). For Lipschitz domains Ω we always have
co dimA(∂Ω) = 1 and dimA(∂Ω) = d− 1.

We recall a geometric notion from [61].

Definition 12. A set E ⊂ Rd is κ-plump with κ ∈ (0, 1) if, for each 0 < r < diam(E)
and each x ∈ E, there is z ∈ B(x, r) such that B(z, κr) ⊂ E.

Following [47, Theorem A.12], we define a notion of σ-homogenity.

Definition 13. Let E ⊂ Rd and let V (E, x, λ, r) = {y ∈ Rd : dist(y, E) ≤ r, |x−y| ≤ λr}.
We say that E is σ-homogeneous, if there exists a constant L such that

|V (E, x, λ, r)| ≤ Lrdλσ

for all x ∈ E, λ ≥ 1 and r > 0.

If 0 < r < R < diam(E), then taking λ = R/r in the definition gives

∣∣∣Ẽr ∩B(x,R)
∣∣∣ =

∣∣∣∣V
(
E, x,

R

r
, r
)∣∣∣∣ ≤ C |B(x,R)|

( r
R

)d−σ

,

where C = C(d,E) is a constant. This means that if co dimA(E) = s, then (d − s)-
homogeneous sets are precisely these sets E, for which the supremum in the definition of
the lower Assouad codimension is attained. For the definition of the concept of homogenity
from a different point of view the Reader may also see [47, Definition 3.2].

To give an example of the introduced definitions, consider the set Ω ⊂ R2 bounded
by the Koch curve — that is the Koch snowflake. It may be shown that Ω is plump,
σ-homogeneous for σ = log3 4 and the Assouad codimension of its boundary is 2− log3 4,
while the Assouad dimension is log3 4. Despite that ∂Ω is an example of a fractal and it
is a very irregular object, all results from this chapter can be applied to an appropriate
space W s,p(Ω).
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Figure 2: Koch snowflake. Source: Wikipedia

4.2 Main results

Let us describe our methods. As we already have mentioned, the operator P ηf defined
by (4) maps the space of compactly supported functions into C∞

c (Ω). That means that the
closures of both these classes of functions in the space W s,p(Ω) coincide [II, Proposition
12]. According to this, for given f ∈ W s,p(Ω), we can construct explicitly a sequence of
compactly supported functions approximating f in W s,p(Ω) and we do not need to care
about its smoothness. As a first step, we also show that if the measure of Ω is finite,
then W s,p

0 (Ω) = W s,p(Ω) if and only if the nonzero constant function is in W s,p
0 (Ω) —

[II, Lemma 13]. That reduces the problem of density for finding the sequence of compactly
supported functions, which approximate in W s,p(Ω) the function constantly equal to one.
In order to do so, we use functions vn defined by

vn(x) = max {min {2− ndΩ(x), 1} , 0} =





1 when dΩ(x) ≤ 1/n,
2− ndΩ(x) when 1/n < dΩ(x) ≤ 2/n,
0 when dΩ(x) > 2/n.

We denote here dΩ(x) = dist(x, ∂Ω). Notice that vn are continuous, but clearly nons-
mooth, which is not a problem, as the appropriate closures are the same. In [II, Lemma
10] we derive an inequality

[fvn]
p
W s,p(Ω) ≤ Cnsp

∫

Ω 3
n

|f(x)|p dx+ C

∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dy dx, (7)

which is a key to further computations. Of course, when f is constant, the second term
in (7) vanishes.

Let us see that it is relatively easy to state when C∞
c (Ω) is not dense in W s,p(Ω).

If Ω is bounded and plump and un → 1 in W s,p(Ω) (in particular in Lp(Ω)), there is
a subsequence unk

convergent to 1 almost everywhere. Therefore, if sp > co dimA(∂Ω),



4 DENSITY OF COMPACTLY SUPPORTED SMOOTH FUNCTIONS... 17

by the fractional Hardy inequality from [24, Corollary 3]

[unk
− 1]pW s,p(Ω) = [unk

]pW s,p(Ω) =

∫

Ω

∫

Ω

|unk
(x)− unk

(y)|p
|x− y|d+sp

dy dx

≥ c

∫

Ω

|unk
(x)|p

dΩ(x)sp
dx,

and by Fatou’s lemma,

0 = lim
k→∞

[unk
]pW s,p(Ω) ≥ c

∫

Ω

lim inf
k→∞

|unk
(x)|p

dΩ(x)sp
dx

= c

∫

Ω

dx

dΩ(x)sp
> 0.

That leads to a contradiction. Therefore, if sp > co dimA(∂Ω), then W s,p
0 (Ω) ̸= W s,p(Ω).

We now present main results of the work [II]. They are collected in three theo-
rems. The first one gives necessary and sufficient conditions under which smooth com-
pactly supported functions are or are not dense in fractional Sobolev space. The second
theorem describes explicitly the form of the space W s,p

0 (Ω), and the third provides the
embedding of the weighted Lebesgue space into the fractional Sobolev space, that is
Lp(Ω, dist(x, ∂Ω)−sp) ⊂ W s,p(Ω).

Theorem 14. ( [II, Theorem 2]) Let Ω ⊂ Rd be a nonempty bounded open set, let
0 < s < 1 and 1 ≤ p <∞.
(I) If sp < co dimA(∂Ω), then W s,p

0 (Ω) = W s,p(Ω).
(II) If Ω is a (d − sp)-homogeneous set, sp = co dimA(∂Ω) and p > 1, then W s,p

0 (Ω) =
W s,p(Ω).
(III) If Ω is κ-plump and sp > co dimA(∂Ω), then W s,p

0 (Ω) ̸= W s,p(Ω).

Theorem 15. ( [II, Theorem 3]) Let 0 < s < 1 and 1 ≤ p <∞. Suppose that Ω ̸= ∅ is a
bounded, open κ-plump set. If co dimA(∂Ω) < sp, then

W s,p
0 (Ω) =

{
f ∈ W s,p(Ω) :

∫

Ω

|f(x)|p
dist(x, ∂Ω)sp

dx <∞
}
.

Theorem 16. ( [II, Theorem 4]) Let 0 < s < 1 and 1 ≤ p < ∞. Suppose that Ω ̸= ∅
is a bounded, open κ-plump set. If co dimA(∂Ω) > sp, then there exists a constant c such
that ∫

Ω

|f(x)|p
dist(x, ∂Ω)sp

dx ≤ c∥f∥pW s,p(Ω) <∞, for all f ∈ W s,p(Ω).

The statement of the part (I) of Theorem 14 remains true if we assume that sp <
d − dimM(∂Ω), where dimM(∂Ω) is the upper Minkowski dimension introduced in the
Definition 20. Our results have classical (non-fractional) counterparts, see [42, Example
9.11] or [41]. Moreover, similar issues were investigated in [20], [15], [13], [25], [20] and [5].

The last theorem of the article [II] is the following version of a fractional Hardy in-
equality in the case (T’). Although it is an interesting result itself, we need it in the proof
of Theorem 16. A special case of (T’) for p = 2 can be found in [52, Lemma 3.32] and [17].

Theorem 17 ( [24] in cases (T) and (F)). Let 0 < p <∞, H ∈ (0, 1] and η ∈ R. Suppose
Ω ̸= ∅ is a proper κ-plump open set in Rd and ϕ : (0,∞) → (0,∞) is a function so that
either condition (T), or condition (T’), or condition (F) holds
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(T) η + dimA(∂Ω)− d < 0, Ω is unbounded, ϕ ∈ WUSC(η, 0, H−1),

(T’) η + dimA(∂Ω)− d < 0, Ω is bounded, ϕ ∈ WUSC(η, 0, H−1),

(F) η + dimA(∂Ω)− d > 0, Ω is bounded or ∂Ω is unbounded, and ϕ ∈ WLSC(η, 0, H).

Then there exist constants c = c(d, s, p,Ω, ϕ) and R such that the following inequality
∫

Ω

|u(x)|p
ϕ(dΩ(x))

dx ≤ c

∫

Ω

∫

Ω∩B(x,RdΩ(x))

|u(x)− u(y)|p
ϕ(dΩ(x))dΩ(x)d

dy dx + cξ∥u∥pLp(Ω), (8)

holds for all measurable functions u for which the left hand side is finite, with ξ = 0 in
the cases (T ) and (F ) and ξ = 1 in the case (T ′).

Recall that a function ϕ : (0,∞) → (0,∞) satisfies WLSC(η, 0, H) (respectively,
WUSC(η, 0, H−1)) and write ϕ ∈ WLSC(η, 0, H) (ϕ ∈ WUSC(η, 0, H−1)), if

ϕ(st) ≥ Htηϕ(s), s > 0 ,

for every t ≥ 1 (respectively, for every t ∈ (0, 1]). The inequality (8) is an example of the
fractional Hardy-type inequality. We describe such inequalities wider in Section 6.

To summarize, in the work [II] we focus on bounded domains Ω and give necessary
and sufficient conditions for which C∞

c (Ω) functions are or are not dense in the fractional
Sobolev space W s,p(Ω). The conditions are given in terms of geometric properties of the
domain Ω, such as plumpness and the Assouad codimension of its boundary, as well as the
values of parameters s and p. We also prove a variant of a fractional Hardy inequality. Our
results generalize some partially known before, as well as an analogy to local phenomena,
and shed light on a structure of fractional Sobolev spaces on irregular domains.

5 Fractional Sobolev spaces with power weights
This chapter is devoted to the description of the article [III]. In this work we investigate

the form of the closure of the smooth, compactly supported functions in the weighted
fractional Sobolev space for bounded Ω. We focus on the weights w, v being powers of
the distance to the boundary of the domain. Our results depend on the lower and upper
Assouad codimension of the boundary of Ω, similarly as for the unweighted case. For such
weights we also prove the comparability between the full weighted fractional Gagliardo
seminorm and the truncated one, which is an interesting and nontrivial result itself.

5.1 Uniform domains and comparablity

Dealing with the closure of C∞
c (Ω) in weighted fractional Sobolev spaces combines

techniques from both previously described here works [I] and [II] — it is also more involved.
The main difference is that we need to establish a comparability between the full and
truncated weighted fractional Gagliardo seminorms.

In this chapter we will use the notation dΩ(x) = dist(x, ∂Ω). The fractional Sobolev
space with power weights is the space

W s,p;α,β(Ω) =
{
f ∈ Lp(Ω) : [f ]W s,p;α,β(Ω) <∞

}
,
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where

[f ]W s,p;α,β(Ω) =

(∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

) 1
p

(9)

is the corresponding weighted Gagliardo seminorm. One can also exchange the Lp space
appearing above to any weighted Lp space for continuous or locally bounded weight —
the Lp component is essentially irrelevant for our purposes, as the fractional seminorms
are the most important. Weighted fractional Sobolev spaces like ours appeared in the
literature during past decades — it is worth to quote here the papers [20], [3] or [2].

One of our main results is the comparability between the full and truncated Gagliardo
seminorms. For 0 < θ ≤ 1 the truncated seminorm is

(∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−βdΩ(x)

−α dy dx

) 1
p

, (10)

where B(x,R) is the Euclidean ball centered at x with radius R. Observe that the inner
integral in (10) is localized around x, therefore it is obvious that the truncated Gagliardo
seminorm is strictly smaller than the full seminorm (9). The comparability asserts that,
in some cases, the converse inequality also holds for all f ∈ L1

loc(Ω), with a global constant
depending on α, β, θ, d,Ω, s and p. This is a very nontrivial property. The unweighted
cases have been studied before by many authors — for example Dyda [22] proved the
comparability for cones instead of balls in the inner integral. Prats and Saksman [56] and
Rutkowski [57] studied Triebel–Lizorkin spaces, generalizing fractional Sobolev spaces for
two exponents p and q. Some versions of the reduction of the integration theorems can
also be found in [14], [16], [39] and [58].

The comparability will hold for a special class of domains, usually called uniform
domains. We present the definition below.

Definition 18. A domain (i.e. connected, open set) Ω ⊂ Rd is uniform, if there ex-
ists a constant C ≥ 1 such that for all points x, y ∈ Ω there is a curve γ : [0, l] → Ω
joining them, parameterized by arc length and satisfying l ≤ C|x− y| and dist(z, ∂Ω) ≥
1
C
min{|z − x|, |z − y|} for all z ∈ γ.

One can also define the uniformity property using Whitney decomposition and chains
of cubes — see Prats and Saksman [56] for details. Uniform domains and various refor-
mulations of the definitions above appear also in [28], [49] and [50]. To give a concrete,
nontrivial example, we remark here that the Koch snowflake is known to be uniform,
despite the highly irregular behaviour of its boundary. Loosely speaking, a domain is uni-
form if any two points can be connected by a curve with length in some way proportional
to the distance between them.

As the first main result of the article [III], we present the comparability theorem.

Theorem 19. ( [III, Theorem 2]) Let Ω be a nonempty, bounded, uniform domain, let 0 <
s < 1 and 1 ≤ p < ∞. Moreover, let 0 < θ ≤ 1. Suppose that 0 ≤ α, β < co dimA(∂Ω).
Then the full seminorm [f ]W s,p;α, β(Ω) and the truncated seminorm

(∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−βdΩ(x)

−α dy dx

) 1
p

are comparable, that is there exists a constant C = C(θ, d, s, p, α, β,Ω) > 0 such that
∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy

dΩ(y)β
dx

dΩ(x)α
≤ C

∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dy

dΩ(y)β
dx

dΩ(x)α
dy dx,
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Figure 3: The first and the second set are uniform, even despite some narrowness around
the middle. The third domain is not uniform — taking two points from the opposite
sides of the excluded segment and bringing them closer together, we will not find a curve
joining them and satisfying the demanded properties. Source: maths.ed.ac.uk

for all f ∈ L1
loc(Ω).

Our proof is very technical and relies on methods introduced by Prats and Saksman
in [56] for the unweighted case — it uses chains of cubes and other complicated notions
connected with Whitney decomposition. The difference that weights give is that we need
a Muckenhoupt A1 property of the function d−α

Ω to obtain some maximal–type estimates
appearing in the proof. Recall that a weight w belongs to the class A1 if there exists
a constant A > 0 such that for all cubes Q ⊂ Rd it holds

1

|Q|

∫

Q

w(x) dx ≤ A inf
y∈Q

w(y).

It turns out that d−α
Ω ∈ A1 if and only if 0 ≤ α < co dimA(∂Ω), see [23, Theorem 1.1 (B)].

This result allows as to obtain our comparability theorem for 0 ≤ α, β < co dimA(∂Ω).

5.2 Results on density

In the work [III], together with the Assouad codimension we use the Minkowski di-
mension. We present the definition below. Recall that Ẽr is defined in Section 4.1.

Definition 20. The upper Minkowski dimension of a set E ⊂ Rd is defined as

dimM(E) = inf{s ≥ 0 : lim sup
r→0

∣∣∣Ẽr

∣∣∣ rd−s = 0},

see for example [35, Section 2].

It is not hard to see that co dimA(E) ≤ d − dimM(E) and the equality holds if E is
(d− co dimA(E))- homogeneous. Moreover (considering again open, bounded sets Ω), the
distance zeta function

ζΩ(q) :=

∫

Ω

dx

dΩ(x)q

is finite if q < d− dimM(∂Ω) and infinite if q > d− dimM(∂Ω) (see [35, Lemma 3.3 and
Lemma 3.5]).

At first sight, it is not obvious that the space W s,p;α,β(Ω) is nontrivial and contains
C∞

c (Ω) as a subset. We prove in [III, Lemma 16], using the comparability, that for
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bounded, uniform domains we indeed have C∞
c (Ω) ⊂ W s,p;α,β(Ω) if 0 < s < 1, 1 ≤ p <∞,

0 ≤ α, β < co dimA(∂Ω) and α + β < d − dimM(∂Ω) + p(1 − s). When we abandon the
assumption about the uniformity, then the same holds for α + β < d− dimM(∂Ω). That
ensures as that all considered spaces are nontrivial.

Similarly as before, by

W s,p;α,β
0 (Ω)

we denote the closure of C∞
c (Ω) in W s,p;α,β(Ω) with respect to the weighted Sobolev-

type norm. We are interested in describing the form of the space W s,p;α,β
0 (Ω), as for the

unweighted case.
Finally, we are in position to list the main results from the paper [III]. They generalize

the previous results from [II] to power weights.

Theorem 21. ( [III, Theorem 3]) Let Ω ⊂ Rd be a nonempty, bounded, open set, let
0 < s < 1, 1 ≤ p <∞ and α, β ≥ 0.
(I) If sp+ α + β < d− dimM(∂Ω), then W s,p;α,β

0 (Ω) = W s,p;α,β(Ω).
(II) If Ω is (d − sp − α − β)-homogeneous, p > 1 and sp + α + β = co dimA(∂Ω), then
W s,p;α,β

0 (Ω) = W s,p;α,β(Ω).
(III) If Ω is κ-plump and sp+ α + β > co dimA(∂Ω), then W s,p;α,β

0 (Ω) ̸= W s,p;α,β(Ω).

Theorem 22. ( [III, Theorem 4]) Let Ω ⊂ Rd be a nonempty, bounded, uniform and open
set, let 0 < s < 1, 1 ≤ p <∞ and 0 ≤ α, β < co dimA(∂Ω). If sp+α+ β > co dimA(∂Ω),
then

W s,p;α,β
0 (Ω) =

{
f ∈ W s,p;α,β(Ω) :

∫

Ω

|f(x)|p
dΩ(x)sp+α+β

dx <∞
}
.

Theorem 23. ( [III, Theorem 7]) Let 1 ≤ p < ∞ and 0 < s < 1. Suppose that Ω ̸= ∅
is an open, uniform, bounded set such that 0 ≤ α, β < co dimA(∂Ω) and sp + α + β <
co dimA(∂Ω). Then there exists a constant c such that

∫

Ω

|f(x)|p
dΩ(x)sp+α+β

dx ≤ c∥f∥p
W s,p;α,β(Ω)

<∞,

for all f ∈ W s,p;α,β(Ω).

Our proofs are based on similar methods as in previous two works. The comparability
is a completely new ingredient. Notice that in Theorems 22 and 23 we have the assumption
about the uniformity of the domain Ω, which was not needed in the unweighted case. This
is because in the proofs we need a comparability from Theorem 19. We do not know if
these results can be extended to some non-uniform domains.

To summarize, in the article [III] we extended previously obtained results for un-
weighted fractional Sobolev spaces to the weighted ones with weights being powers of the
distance to the boundary of the domain. The main difference is that in the weighted case
we need the comparability between the full and truncated weighted Gagliardo seminorms,
which is itself an interesting result.
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6 Sharp Hardy inequalities for Sobolev–Bregman forms
In this section we describe results obtained in [IV]. We now drift away from fractional

Sobolev spaces and focus on a related topic — fractional Hardy inequalities. Recall
that the classical Hardy inequality in Rd has a form

∫

Rd

|∇f(x)|p dx ≥
( |d− p|

p

)p ∫

Rd

|f(x)|p
|x|p dx, (11)

where f ∈ C1
c (Rd) for p < d and f ∈ C1

c (Rd \ {0}), when p > d. The constant
(

|d−p|
p

)p

appearing in (11) is optimal, i.e. it cannot be replaced by a bigger one.
We say that an open set Ω ⊂ Rd and parameters p and d admit the Hardy inequal-

ity, if ∫

Ω

|∇f(x)|p dx ≥ C(d, p,Ω)

∫

Ω

|f(x)|p
dΩ(x)p

dx, f ∈ C1
c (Ω). (12)

It is a classical fact that (12) holds when Ω is convex and p > 1. The optimal constant
is then independent on Ω and given by

(
p−1
p

)p
. Hardy inequalities were also investigated

in abstract metric measure spaces, see the article [44] by Lehrbäck and the refereneces
therein. The role of Hardy inequalities in analysis and PDE’s is not to be underestimated.
This inequality allows to control the behaviour of a function by its derivative. A good
survey for Hardy inequalities is the book [54] by Kufner and Opic.

In the context of this thesis, we are interested in fractional Hardy inequalities. A gen-
eral form of these inequalities is

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy dx ≥ C(d, s, p,Ω)

∫

Ω

|f(x)|p
dΩ(x)sp

dx, f ∈ C1
c (Ω). (13)

Let us briefly sketch the history of the fractional Hardy inequalites. One-dimensional
versions of (13) appeared in the ’60s in the works of Jakovlev [37] and Grisvard [29]. For
p = 2 and Ω = Rd (then we put dΩ(x) = |x|), the optimal constant in (13) has been
computed by Herbst [36] and independently by Yafaev [62] and Beckner [6]. Multidi-
mensional fractional Hardy inequalities became an object of interest in the ’90s — for
example in the articles of Heinig, Kufner and Persson [34], Mamedov [48], and a bit later
of Chen and Song [17] (for p = 2). A big step forward in this theory was Dyda’s work [21],
where it is shown that (13) is satisfied, among others, when Ω is a Lipschitz domain and
sp > 1. In [8] Bogdan and Dyda computed the optimal constant for p = 2 and the half-
space D = {(x1 . . . , xd) ∈ Rd : xd > 0} and conjected that the same optimal constant is
valid for all convex domains, similarly to the classical case. The optimal constant for the
halfspace is given by

κd,α =
π

d−1
2 Γ
(
1+α
2

)

Γ
(
α+d
2

) B
(
1+α
2
, 2−α

2

)
− 2α

α2α
, (14)

where B is the Euler Beta function. This conjecture was proved a few years later by Loss
and Sloane [45]. In 2008 Frank and Seiringer published a celebrated paper [26] presenting
a new abstract approach to fractional Hardy inequalities, which they use to compute the
sharp constant in (13) for Rd and general p ≥ 1, and later also for the halfspace [27].

Our contribution [IV] to the fractional Hardy inequalities is devoted to the parallel
topic, related to Bregman divergence and Sobolev–Bregman forms. The right-hand
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side of (13) is replaced with the following form:

Ep[u] :=
1

2

∫

D

∫

D

(u(x)− u(y))(u(x)⟨p−1⟩ − u(y)⟨p−1⟩)|x− y|−d−α dy dx, (15)

defined for p ∈ (1,∞) and u : Rd → R, where

a⟨k⟩ := |a|k sgn a, a, k ∈ R

is the French power. The parameter α plays the role of sp, so the notation is not
consistent to previous works, but fits better for stochastic processes and is taken straightly
from the work [8]. We call such integral forms the Sobolev-Bregman forms. In [IV]
we extend the results of Bogdan and Dyda [8] and Loss and Sloane [45]. Also, our
work is motivated by a recent paper of Bogdan, Jakubowski, Lenczewska and Pietruska-
Pałuba [11], where similar ideas on Rd lead to results about the contractivity of the
Feynman–Kac semigroup generated by fractional Laplacian with Hardy potential. Forms
related to (15) and Bregman divergence appeared recently in [10] or [9].

For α ̸= 1 let

κd,p,α = −π
d−1
2 Γ
(
1+α
2

)

Γ
(
α+d
2

)
(
B
(

α−1
p

+ 1,−α
)
+ B

(
α− α−1

p
,−α

)
+ 1

α

)
≥ 0. (16)

Recall that B(x, y) = Γ(x)Γ(y)/Γ(x+y) and 1/Γ can be extended analytically to the whole
of R, hence B(x, y) is well defined for all x, y ̸= 0,−1,−2, . . . . Noteworthy, κd,p,1 = 0
(understood as the limit of κd,p,α as α → 1).

The following is the first main result of [IV]. It is an analogue of the fractional Hardy
inequalities for Sobolev–Bregman form.

Theorem 24. ( [IV, Theorem 2]) Let 0 < α < 2, d = 1, 2, . . . and 1 < p <∞. For every
u ∈ Cc(D),

Ep[u] ≥ κd,p,α

∫

D

|u(x)|p
xαd

dx , (17)

and the constant in (17) is the best possible, i.e. it cannot be replaced by a bigger one.

In [11], a similar inequality for the whole space Rd instead of D is proved. Our second
main result is a direct generalization of Loss–Sloane work [45] — we prove a variant of
fractional Hardy inequality for general domains and Sobolev–Bregman forms.

Theorem 25. ( [IV, Theorem 2]) Let Ω be an open, proper subset of Rd and let 1 < α < 2.
Then, for u ∈ Cc(Ω),

1

2

∫

Ω

∫

Ω

(u(x)− u(y))(u(x)⟨p−1⟩ − u(y)⟨p−1⟩)

|x− y|d+α
dx dy ≥ κd,p,α

∫

Ω

|u(x)|p
mα(x)α

dx, (18)

where

mα(x)
α =

∫
Sd−1 |ωd|α dω∫

Sd−1 dω,Ω(x)−α dω
, dω,Ω(x) = min{|t| : x+ tω /∈ Ω}.

In particular, if Ω is convex, then

1

2

∫

Ω

∫

Ω

(u(x)− u(y))(u(x)⟨p−1⟩ − u(y)⟨p−1⟩)

|x− y|d+α
dx dy ≥ κd,p,α

∫

Ω

|u(x)|p
dist(x, ∂Ω)α

dx. (19)

The constant in (19) is optimal.
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Our proofs rely on methods from [8], [11], [45]. We also provide an abstract form of the
Hardy inequality form Sobolev–Bregman forms in the spirit of Frank and Seiringer [26]
and [27], see [IV, Lemma 2]. This is required to obtain Hardy inequality for general
domains. The most difficult thing to prove is the verification of the optimality of the
constant κd,p,α in the inequalities (17) and (19).

To summarize, in the work [IV] we focus on fractional Hardy inequalites for Sobolev–
Bregman forms defined via Bregman divergence. Our main results are the analogues of
fractional Hardy inequality for the halfspace and general convex domains.

7 Information about other research
In this chapter we briefly describe other results obtained during the PhD studies,

which has not been published yet. When writing these words, the articles based on them
are still under review and are available on the arXiv webpage.

7.1 Sharp weighted fractional Hardy inequalities

In the work [V] we focus on weighted fractional Hardy inequalities. A basic form
of such inequality is
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|d+sp

dist(x, ∂Ω)−α dist(y, ∂Ω)−β dy dx ≥ C

∫

Ω

|f(x)|p
dist(x, ∂Ω)sp+α+β

dx,

(20)
where u ∈ Cc(Ω). We compute explicitly the sharp constant C in (20) when Ω = Rd,
Ω is a halfspace or a convex domain. Sharpness of the obtained constants is proved.
Some partial results for Rd were known before, see Abdellaoui and Bentifour [1]. We also
present a limit of the inequality (20) for s→ 0+, which is not possible in the unweighted
case. Finally, assuming among others that p ≥ 2, we derive a weighted fractional
Hardy–Sobolev–Maz’ya inequality

∫

Rd
+

∫

Rd
+

|u(x)− u(y)|p
|x− y|d+sp

xαd y
β
d dy dx−D

∫

Rd
+

|u(x)|p
xsp−α−β
d

dx

≥ C

(∫

Rd
+

|u(x)|qx
q
p
(α+β)

d dx

) p
q

,

where C = C(α, β, d, s, p) > 0 is a constant, D is an optimal constant for the halfspace
Rd

+ in the inequality (20) and q = dp
d−sp

. Hardy–Sobolev–Maz’ya-type inequalities are
interesting itself, because they combine both Hardy and Sobolev inequalities in one result.

7.2 Sharp fractional Hardy inequalities with a remainder for 1 <
p < 2

The paper [VI] is devoted to fractional Hardy inequalities like (12), but with the
additional term on the left-hand side, which we call a remainder. Such inequalities were
proved before by Frank and Seiringer in [26] and [27], but only for p ≥ 2. We propose
a different form of the remainder for this case, which is a new result. As an application, we
prove that the fractional Hardy–Sobolev–Maz’ya inequality for the halfspace and convex
domains is valid also in the range of 1 < p < 2, which is a new result even for the
unweighted case.
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7.3 Asymptotics of weighted Gagliardo seminorms

In the paper [VII] we establish limits involving Gagliardo seminorms with power
weights, as s → 1− or s → 0+. Under appropriate assumptions on parameters and
functions, we prove the relations

lim
s→1−

(1− s)

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx = Kd,p

∫

Ω

|∇f(x)|p
dΩ(x)α+β

dx,

lim
α→0+

α

∫

Rd

∫

Rd

|f(x)− f(y)|p
|x− y|d|x|α|y|α dy dx = 2

∣∣Sd−1
∣∣
∫

Rd

|f(x)|p dx,

and
lim

α→d−
(d− α)

∫

Rd

∫

Rd

|f(x)− f(y)|p
|x− y|d|x|α|y|α dy dx = 2

∣∣Sd−1
∣∣
∫

Rd

|f(x)|p
|x|2d dx.

Moreover, we provide a nonlocal characterisation of classical Sobolev spaces with power
weights. All results from [VII] generalize the well known papers of Bourgain, Brezis and
Mironescu [12] and Maz’ya and Shaposhnikova [51].
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also obtain a similar result in non-weighted spaces defined by some kernel similar
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1. Introduction

We discuss the problem of density of smooth functions in the fractional Sobolev space W s,p(Ω), as well
as in the weighted fractional Sobolev space W s,p(Ω , w); for the definition of the latter we refer the reader
to Section 4. It turns out that for weights w which are locally comparable to a constant on Ω or continuous,
and which satisfy certain integrability property (9), smooth functions C∞(Ω) are dense in W s,p(Ω , w), see
Theorem 12.

Our strategy of the proof follows the approach of [5, proof of Theorem 3.25], in that we first decompose the
function f being approximated into the sum of functions fn supported on the (enlarged) Whitney cubes,
which is done by using a partition of unity. Then we convolve each fn with a dilation of a fixed smooth
function. In the non-weighted case, the scale of the dilation is dependent on the size of the Whitney cube,
to make sure that the support of the convolution does not grow too much. That way we obtain a family
of linear operators P ηk , each mapping the function to a smooth approximating function, with the error of
approximation going to zero when ηk are sufficiently small. In the weighted case, the scale of the dilation
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is dependent also on the function being approximated, and the resulting approximating operators are no
longer linear.

The proof works for general open sets Ω ⊂ Rd, and the result seems to be new in the case of the weighted
Sobolev spaces, see Theorem 12, or a more general kernel, see Theorem 15. The other standard approach to
prove such a density result is to use the extension theorem [8], however it does not hold for all open sets Ω .

Our paper is motivated by the article [2], where the authors consider a similar problem for weights
w(x) = |x|−a in Rd (or, translated to our setting, in Rd \ {0}). They consider however the density of the
compactly supported smooth functions, the problem that we do not address. We note here that if one knows
that the compactly supported functions (not necessarily smooth) are dense in W s,p(Ω , w), then our result
immediately gives the density of the space C∞

C (Ω), see Proposition 2.
Let us also mention other articles on similar topics. In [4] Luiro and Vähäkangas considered slightly

different fractional Sobolev spaces, that are equipped with the seminorm

|f |W s,p,K (Rd) =
(∫

Rd

∫

Rd

|f(x) − f(y)|p
|x− y|sp K(x− y) dx dy

) 1
p

,

where the kernel K does not have to be radial. The authors find some condition which is sufficient for the
space C∞(Rd) ∩W s,p,K(Rd) to be dense in W s,p,K(Rd) (see [4], (3.8) and Lemma 3.4). We obtain a similar
result, Theorem 15, with more general sets Ω , but less general kernels K.

In [3] Fiscella, Servadei and Valdinoci considered similar Sobolev space Xs,p
0 (Ω) of functions f with the

finite norm
∥f∥Lp(Rd) +

(∫

Rd×Rd
|f(x) − f(y)|pK(x− y) dx dy

)1/p

,

but vanishing outside Ω , with some assumptions on the kernel K. The authors proved that the space C∞
C (Ω)

of smooth functions that are compactly supported in Ω , is dense in Xs,p
0 (Ω), when Ω is either a hypograph

or a domain with continuous boundary (see [3], Theorems 2 and 6).
In [1] Baalal and Berghout considered fractional Sobolev spaces with variable exponents W s,q(·),p(·,·)(Ω)

and proved that under certain conditions for the functions p and q, compactly supported, smooth functions
are dense in W s,q(·),p(·,·)(Ω).

The authors would like to thank Antti V. Vähäkangas and Victor Nistor for helpful discussions on the
subject, and the anonymous reviewer for useful comments. We have been informed that a result similar to
our Theorem 15 has been independently obtained by Foghem Gounoue Guy Fabrice, to be published in his
Ph.D. thesis.

2. Operator P η

2.1. Definition

Let Ω ⊂ Rd be an open set and W = {Q1, Q2, . . . } be a Whitney decomposition of Ω into cubes, like
in [6]. Choose ε such that (1 + ε)2 < 5

4 . Let also {ψn : n ∈ N} be a partition of unity, that is ψn(x) = 1,
when x ∈ Qn, ψn = 0 outside Q∗

n, where Q∗
n is the cube Qn ”blown up” 1 + ε times (the cube with the same

center, but the length of the edge 1 + ε times longer), ψn is a class of C∞
C and

∑∞
n=1 ψn = 1. Let p ∈ [1,∞)

and f ∈ Lp(Ω).
We note that |ψn(x) − ψn(y)| ≤ C|x−y|

l(Qn) ∧ 1 for some constant C > 0.
Let us fix a function h : Rd → R such that h ≥ 0,

∫
Rd h(x) dx = 1, supph = B(0, 1) and h ∈ C∞(Rd). For

δ > 0 we define the dilation
hδ(x) = 1

δd
h
(x
δ

)
, (x ∈ Rd).

The function hδ is a class of C∞
C (Rd) and

∫
Rd hδ(x) dx = 1 for every δ > 0.

2
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For a function g : Rd → R and t ∈ Rd we define its translation τtg by the formula

τtg(x) = g(x− t), (x ∈ Rd).

Let η : W → (0,∞) be a function such that η(Q) < ε
2 l(Q) for every Q ∈ W, where l(Q) denotes the

length of the edge of the cube Q. In particular, we may take η = δl, where δ ∈ (0, ε/2). For such a function η
we define the operator P η as

P ηf =
∞∑

n=1
(fψn) ∗ hη(Qn), f ∈ L1

loc(Ω), (1)

where we put f = 0 on Rd \ Ω .

Proposition 1. The operator P η is well defined and P ηf ∈ C∞(Ω) for f ∈ L1
loc(Ω).

Proof. We observe that the function (fψn) ∗ hη(Qn),

(fψn) ∗ hη(Qn)(x) =
∫

Rd
f(x− y)ψn(x− y)hη(Qn)(y) dy,

vanishes outside Q∗∗
n . Indeed, if x /∈ Q∗∗

n , then either x − y /∈ Q∗
n, which implies ψn(x − y) = 0, or

y /∈ B(0, η(Qn)), which implies hη(Qn)(y) = 0, because if x−y ∈ Q∗
n, then x ∈ Q∗

n +y ⊂ Q∗∗
n for |y| < η(Qn),

thanks to our choice of ε.
Since Q∗∗

n ⊂ 5
4Qn by our choice of ε, each point x ∈ Ω belongs to at most 12d cubes Q∗∗

n (see [6],
chapter VI). Therefore the sum (1) has at each point only finitely many nonzero terms, thus the result
follows. □

Proposition 2. If f ∈ L1
loc(Ω) satisfies f = 0 outside a compact set K ⊂ Ω , then also P η(f) = 0 outside

some compact set K ′ ⊂ Ω .

Proof. We observe that only finitely many of the functions fψn are not identically zero. Since supp(fψn)∗
hη(Qn) ⊂ Q∗∗

n , it follows that suppP η(f) is contained in a finite union of cubes Q∗∗
n , which is a compact

subset of Ω . □

2.2. Convergence of the operator P η in Lp(Ω)

Theorem 3. Let p ∈ [1,∞) and f ∈ Lp(Ω). Then

lim
k→∞

∥P ηkf − f∥Lp(Ω) = 0,

provided limk→∞ ηk(Q) = 0 for every Q ∈ W.

Proof. We have

∥P ηkf − f∥p
Lp(Ω) =

∫

Ω

|P ηkf(x) − f(x)|pdx

=
∫

Ω

⏐⏐⏐⏐⏐
∞∑

n=1
(fψn) ∗ hηk(Qn)(x) −

∞∑

n=1
f(x)ψn(x)

⏐⏐⏐⏐⏐

p

dx

≤
∫

Ω

( ∞∑

n=1

⏐⏐(fψn) ∗ hηk(Qn)(x) − f(x)ψn(x)
⏐⏐
)p

dx.

3
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The sum above is finite at each point x and has at most 12d nonzero terms. Thus, recalling that
∫
Rd ht(x)dx =

1 for every t > 0 and using Jensen inequality we obtain
∫

Ω

( ∞∑

n=1

⏐⏐(fψn) ∗ hηk(Qn)(x) − f(x)ψn(x)
⏐⏐
)p

dx

≤ M

∫

Ω

∞∑

n=1

⏐⏐(fψn) ∗ hηk(Qn)(x) − f(x)ψn(x)
⏐⏐p dx

= M

∫

Ω

∞∑

n=1

⏐⏐⏐⏐
∫

Rd
(f(x− y)ψn(x− y) − f(x)ψn(x))hηk(Qn)(y)dy

⏐⏐⏐⏐
p

dx

≤ M

∞∑

n=1

∫

Ω

∫

Rd
|f(x− y)ψn(x− y) − f(x)ψn(x)|p hηk(Qn)(y) dy dx

= M

∞∑

n=1

∫

Rd
∥τy (fψn) − fψn∥p

Lp(Rd)hηk(Qn)(y) dy

= M

∞∑

n=1

∫

Rd
∥τηk(Qn)u (fψn) − fψn∥p

Lp(Rd)h(u) du, (2)

where M = 12d(p−1). Furthermore,
∫

Rd
∥τηk(Qn)u (fψn) − fψn∥p

Lp(Rd)h(u) du ≤ 2p∥fψn∥p

Lp(Rd),

and ∞∑

n=1
∥fψn∥p

Lp(Rd) =
∞∑

n=1

∫

Q∗
n

|f(x)ψn(x)|p dx ≤ 12d∥f∥p

Lp(Rd) < ∞.

Since lim
k→∞

∥τηk(Qn)u (fψn) − fψn∥p

Lp(Rd) = 0, using Lebesgue dominated convergence theorem twice in (2)
we get the assertion of the theorem. □

3. Sobolev Spaces

For a measurable function f defined on Ω ⊂ Rd, we define its Gagliardo seminorm by

[f ]W s,p(Ω) =
(∫

Ω

∫

Ω

|f(x) − f(y)|p

|x− y|d+sp
dy dx

)1/p

.

For 0 < s < 1 and 1 ≤ p < ∞ we define the fractional Sobolev space W s,p(Ω) as

W s,p(Ω) = {f ∈ Lp(Ω) : [f ]W s,p(Ω) < ∞}.

3.1. Convergence of the operator P η in Gagliardo seminorm

Lemma 4. Suppose that Ω ⊂ Rd and f ∈ W s,p(Ω). Then

[P ηkf − f ]pW s,p(Ω) ≤ M

∞∑

n=1

∫

Rd
∥τηk(Qn)u (gn) − gn∥p

Lp(R2d)h(u) du, (3)

where M = 12d(p−1), and

gn(x, y) =

⎧
⎪⎨
⎪⎩

f(x)ψn(x) − f(y)ψn(y)
|x− y| d

p +s
, x, y ∈ Ω ;

0, (x, y) ∈ (Rd × Rd) \ (Ω × Ω).
(4)

4
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Furthermore,
∥gn∥p

Lp(R2d) ≤ c(p, d, s)
(

[f ]pW s,p(Q∗
n) + ∥f∥p

Lp(Q∗
n)l(Qn)−sp

)
< ∞ (5)

for some constant c(p, d, s) depending only on p, d, s.

Proof. By arguments similar to that from the proof of Theorem 3,

[P ηkf − f ]pW s,p(Ω) =
∫

Ω

∫

Ω

|P ηkf(x) − f(x) − P ηkf(y) + f(y)|p

|x− y|d+sp
dx dy

≤ M

∞∑

n=1

∫

Ω

∫

Ω

∫

Rd

|(fψn)(x− t) − (fψn)(x) − (fψn)(y − t) + (fψn)(y)|p

|x− y|d+sp

× hηk(Qn)(t) dt dx dy

≤ M

∞∑

n=1

∫

Rd
∥τt (gn) − gn∥p

Lp(R2d)hηk(Qn)(t) dt (6)

= M

∞∑

n=1

∫

Rd
∥τηk(Qn)u (gn) − gn∥p

Lp(R2d)h(u) du, (7)

which proves the first part of the Lemma. To prove the remaining part, we observe that

|f(x)ψn(x) − f(y)ψn(y)|p = |f(x)ψn(x) − f(x)ψn(y) + f(x)ψn(y) − f(y)ψn(y)|p

≤ 2p−1(|f(x)|p|ψn(x) − ψn(y)|p + |ψn(y)|p|f(x) − f(y)|p).

Since suppψn ⊂ Q∗
n,

∥gn∥p

Lp(R2d) =
∫

Ω

∫

Ω

|f(x)ψn(x) − f(y)ψn(y)|p

|x− y|d+sp
dx dy

≤ 2
∫

Ω

∫

Q∗
n

|f(x)ψn(x) − f(y)ψn(y)|p

|x− y|d+sp
dx dy

≤ 2p

∫

Ω

∫

Q∗
n

|f(x)|p|ψn(x) − ψn(y)|p

|x− y|d+sp
dx dy + 2p

∫

Ω

∫

Q∗
n

|ψn(y)|p|f(x) − f(y)|p

|x− y|d+sp
dx dy

=: 2p(I1 + I2).

We have |ψn(y)| ≤ 1, thus

I2 ≤
∫

Q∗
n

∫

Q∗
n

|f(x) − f(y)|p

|x− y|d+sp
dx dy = [f ]pW s,p(Q∗

n) < ∞.

Since |ψn(x) − ψn(x+ w)| ≤ C|w|
l(Qn) ∧ 1, therefore

I1 =
∫

Q∗
n

∫

Ω−x

|f(x)|p|ψn(x) − ψn(x+ w)|p

|w|d+sp
dw dx

≤
∫

Q∗
n

|f(x)|p
∫

Ω−x

(
Cp|w|p
l(Qn)p

∧ 1
)

|w|−d−sp
dw dx

≤ Csp

∫

Q∗
n

|f(x)|p
∫

Rd
(|z|p ∧ 1) |z|−d−sp

l(Qn)−sp dz dx

= C ′∥f∥p
Lp(Q∗

n)l(Qn)−sp,

with C ′ depending on s, d, p only. □
5
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Theorem 5. Suppose that Ω ⊂ Rd, f ∈ W s,p(Ω) and
∫

Ω

|f(x)|p
γ(x)sp

dx < ∞, (8)

where γ(x) = dist(x,Ωc). Then
lim

k→∞
[P ηkf − f ]W s,p(Ω) = 0,

provided limk→∞ ηk(Q) = 0 for every Q ∈ W.

Proof. By (3) and lim
k→∞

∥τηk(Qn)u (gn) − gn∥p

Lp(R2d) = 0, it is enough to justify applications of Lebesgue
dominated convergence theorem in Lemma 4. To this end, we observe that

∫

Rd
∥τηk(Qn)u (gn) − gn∥p

Lp(R2d)h(u) du ≤ 2p∥gn∥p

Lp(R2d).

Furthermore,
∞∑

n=1
[f ]pW s,p(Q∗

n) ≤ 12d[f ]pW s,p(Ω) < ∞

and, by Whitney decomposition properties, l(Qn) ≥ γ(x)
(5+ε)

√
d

≥ γ(x)
6

√
d

for x ∈ Q∗
n, thus,

∞∑

n=1
∥f∥p

Lp(Q∗
n)l(Qn)−sp ≤

(
6
√
d
)sp ∞∑

n=1

∫

Q∗
n

|f(x)|p
γ(x)sp

dx ≤
(

6
√
d
)sp

12d

∫

Ω

|f(x)|p
γ(x)sp

dx < ∞. □

We recall a geometric notion from [7].

Definition 6. A set A ⊂ Rd is κ-plump with κ ∈ (0, 1) if, for each 0 < r < diam(A) and each x ∈ Ā, there
is z ∈ B̄(x, r) such that B(z, κr) ⊂ A.

Corollary 7. Suppose that Ω ⊂ Rd is an open set such that its complement Ωc is κ-plump with some
κ ∈ (0, 1), and |∂Ω | = 0. Let f ∈ W s,p(Rd) with f = 0 on Ωc. Then

lim
k→∞

[P ηkf − f ]W s,p(Rd) = 0,

provided limk→∞ ηk(Q) = 0 for every Q ∈ W.

Proof. We will show that such a function f satisfies the assumptions of Theorem 5 with the set Rd \ ∂Ω
in place of Ω . Indeed, thanks to our assumptions we have

∫
Ω

∫
Rd\Ω |f(x)|p|x− y|−d−sp

dy dx < ∞. Fix
R < diam(Ωc) and let x ∈ Ω with γ(x) = dist(x,Ωc) < R. Then

∫

Rd\Ω

dy

|x− y|d+sp
≥
∫

B(x,2γ(x))∩Ωc

dy

|x− y|d+sp

≥ Cγ(x)−d−sp|B(x, 2γ(x)) ∩ Ωc| ≥ C ′γ(x)−sp,

where the last inequality follows from the κ-plumpness of Ωc. Thus
∫

{x∈Ω : γ(x)<R}
|f(x)|pγ(x)−sp dx < ∞.

Since f ∈ Lp(Rd) and f = 0 on Ωc, it follows that
∫
Rd\∂Ω

|f(x)|p
γ(x)sp dx < ∞. □

6
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The next result is essentially a fractional counterpart of the Meyers–Serrin theorem. The proof may be
found for example in [5, Theorem 3.25]. We nevertheless provide the proof using our notation, as it is going
to be modified in the next section.

Theorem 8 ([5]). Let p ∈ [1,∞) and s ∈ (0, 1). Then the functions of a class C∞(Ω) ∩ W s,p(Ω) are dense
in W s,p(Ω).

Proof. Let us fix a function f ∈ W s,p(Ω). Using notation (4) from Lemma 4, for all natural numbers k
and n, we choose ηk(Qn) < ε

2k l(Qn) small enough so that the following inequality holds,

∥τt (gn) − gn∥p

Lp(R2d) <
1
k 2n

, 0 < t < ηk(Qn).

Then from Lemma 4 it follows that

[P ηkf − f ]pW s,p(Ω) = M

∞∑

n=1

∫

Rd
∥τηk(Qn)u (gn) − gn∥p

Lp(R2d)h(u) du

≤ M

∞∑

n=1

1
k 2n

= M

k
→ 0,

when k → ∞. The convergence P ηkf → f in Lp(Ω) follows from Theorem 3, because ηk(Q) → 0 for each
Q ∈ W. Finally, P ηkf ∈ C∞(Ω) by Proposition 1. □

4. Convergence in weighted spaces

In this section we extend our results to the case of weighted Sobolev spaces. Namely, for a weight w,
i.e., a nonnegative measurable function, we define the seminorm

[f ]W s,p(Ω,w) =
(∫

Ω

∫

Ω

|f(x) − f(y)|p

|x− y|d+sp
w(y)w(x) dy dx

) 1
p

,

and the weighted Lp norm

∥f∥Lp(Ω,w) =
(∫

Ω

|f(x)|pw(x) dx
)1/p

.

We also denote

W̃ s,p(Ω , w) =
{
f : Ω → R : f measurable, [f ]W s,p(Ω,w) < ∞

}
.

Proposition 9. If w is locally comparable to a constant, that is for every compact K ⊂ Ω there is a constant
CK > 0 such that 1

CK
≤ w(x) ≤ CK for all x ∈ K, then W̃ s,p(Ω , w) ⊂ Lp

loc(Ω).

Proof. Fix two compact sets K,L ⊂ Ω of positive measure and let C = supx∈K supy∈L |x− y| < ∞. To
prove the inclusion, let us see that

∞ >

∫

L

∫

K

|f(x) − f(y)|p

|x− y|d+sp
w(x)w(y) dx dy ≥ C−d−sp

∫

L

∫

K

|f(x) − f(y)|pw(x)w(y) dx dy.

By Fubini–Tonelli theorem, the inner integral
∫

K
|f(x) − f(y)|pw(x) dx is finite for almost all f(y). Hence,

for such f(y), using the triangle inequality and the local boundedness of w, we have
∫

K

|f(x)|pw(x) dx ≤ 2p−1
(∫

K

|f(x) − f(y)|pw(x) dx+ |f(y)|p
∫

K

w(x) dx
)
< ∞.

7
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Now, ∫

K

|f(x)|p dx ≤ CK

∫

K

|f(x)|pw(x) dx < ∞. □

Remark 10. If w is continuous, then we can change Ω to Ω ′ = Ω \ {x : w(x) = 0}. The set Ω ′ is still
open and w is locally comparable to a constant on Ω ′, so we can consider the space W s,p(Ω ′, w) instead of
W s,p(Ω , w).

Lemma 11. If y ∈ Q∗
n and x /∈ Q∗∗

n , then |x− y| ≥ ε
ε+

√
d
|x− xn|, where xn is the center of cube Qn.

Proof. We have |x− y| ≥ (1+ε)2l(Qn)−(1+ε)l(Qn)
2 = ε(1+ε)l(Qn)

2 and |y − xn| ≤ diamQ∗
n/2 = (1 +

ε)l(Qn)
√
d/2. Hence, |x− y| ≥ ε(1+ε)

2
2

(1+ε)
√

d
|y − xn| = ε√

d
|y − xn|. The assertion of the lemma follows

from triangle inequality |x− xn| ≤ |x− y| + |y − xn|. □

Theorem 12. Suppose that w is locally comparable to a constant or continuous and satisfies the condition
∫

Ω

w(x)
(1 + |x|)d+sp

dx < ∞ (9)

Then C∞(Ω) ∩ W̃ s,p(Ω , w) is dense in W̃ s,p(Ω , w).

Proof. We extend w to be 0 outside Ω . If w is continuous, then we use Remark 10 and change Ω to Ω ′ in
all the computations below. Similarly as in the previous cases, using the notations (4) from Lemma 4, we
have

[P ηkf − f ]pW s,p(Ω,w) ≤ M

∞∑

n=1

∫

Rd
∥τηk(Qn)u(gn) − gn∥p

Lp(R2d,w×w)h(u) du.

We obtain for t < ηk(Qn),

∥τt(gn) − gn∥p

Lp(R2d,w×w)

≤
∫

Q∗
n

∫

Q∗∗
n

|f(x− t)ψn(x− t) − f(y − t)ψn(y − t) − f(x)ψn(x) + f(y)ψn(y)|p

|x− y|d+sp
w(y)w(x) dy dx

+ 2
∫

Q∗
n

∫

Ω\Q∗∗
n

|f(x)ψn(x) − f(x− t)ψn(x− t)|p

|x− y|d+sp
w(y)w(x) dy dx

=: I1 + 2I2.

For the integral I1 we have the following estimate

I1 ≤ C2
n

∫

Q∗
n

∫

Q∗∗
n

|f(x− t)ψn(x− t) − f(y − t)ψn(y − t) − f(x)ψn(x) + f(y)ψn(y)|p

|x− y|d+sp
dy dx

≤ C2
n∥τt(gn) − gn∥p

Lp(R2d),

where Cn = sup
x∈Q∗∗

n

w(x). Let us now focus on the integral I2. Using Lemma 11, if x ∈ Q∗
n and y /∈ Q∗∗

n , then

|x− y| ≥ c|y − xn| for c = ε/(ε+
√
d), when xn is the center of the cube Qn. Thus, we obtain

I2 ≤ c−d−sp

∫

Q∗
n

∫

Ω\Q∗∗
n

|f(x)ψn(x) − f(x− t)ψn(x− t)|p

|y − xn|d+sp
w(y)w(x) dy dx

≤ Cnc
−d−sp

∫

Q∗
n

|f(x)ψn(x) − f(x− t)ψn(x− t)|p dx
∫

Ω\Q∗∗
n

w(y)
|y − xn|d+sp

dy

≤ Dn∥τt (fψn) − fψn∥p

Lp(Rd),

8
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where, thanks to Proposition 9 the norm above is finite and

Dn = Cnc
−d−sp

∫

Ω\Q∗∗
n

w(y)
|y − xn|d+sp

dy.

The integral above is finite, because for y ̸∈ Q∗∗
n it holds |y − xn| ≥ l(Qn)/2 and |y − xn| ≥ |y| − |xn|,

therefore |y − xn| is bounded from below by a constant multiple of 1 + |y|.
Now we need to repeat the proof of Theorem 8: for all natural numbers k and n, we choose ηk(Qn) <

ε
2k l(Qn) such that

∥τt (gn) − gn∥p

Lp(R2d) <
1

k2n+1C2
n

and
∥τt (fψn) − fψn∥p

Lp(Rd) <
1

k2n+2Dn
,

for 0 < t < ηk(Qn). Hence,

[P ηkf − f ]pW s,p(Ω,w) ≤ M

∞∑

n=1

∫

Rd
∥τηk(Qn)u(gn) − gn∥p

Lp(R2d,w×w)h(u) du

≤ M

k
→ 0,

when k → ∞. □

Theorem 13. Suppose that w is locally comparable to a constant or continuous. Then C∞(Ω) ∩ Lp(Ω , w)
is dense in Lp(Ω , w).

Proof. If w is continuous, then, according to Remark 10 we should replace Ω by Ω ′. Analogously as in the
proof of Theorem 3 we obtain that

∥P ηkf − f∥p
Lp(Ω,w) ≤ M

∞∑

n=1
Cn

∫

Rd
∥τηk(Qn)u(fψn) − fψn∥p

Lp(Ω,w)h(u) du.

Since the function τηk(Qn)u(fψn) has support in Q∗∗
n for u ∈ supph, taking Cn = sup

x∈Q∗∗
n

w(x) we obtain

∥τηk(Qn)u(fψn) − fψn∥p
Lp(Ω,w) ≤ Cn∥τηk(Qn)u(fψn) − fψn∥p

Lp(Rd).

We proceed as in the proof of Theorem 12 by choosing ηk(Qn) < ε
2k l(Qn) such that ∥τt(fψn)−fψn∥p

Lp(Rd) <
1

k2n+1Cn
for 0 < t < ηk(Qn) and we obtain the desired result. □

Remark 14. Suppose that Ω = Rd \ {0} and w(x) = |x|−a. The condition (9) becomes
∫

Rd\{0}

dx

|x|a (1 + |x|)d+sp
< ∞,

which is equivalent to
a ∈ (−sp, d).

Analogous, but slightly different weighted Sobolev spaces were considered in [2]. Dipierro and Valdinoci
considered density of compactly supported smooth functions in weighted Sobolev space Ẇ s,p(Rd) =
W̃ s,p(Rd, w)∩Lp∗

s (Rd, | · |−2a/p) for a ∈ [0, d−sp
2 ) and p∗

s = dp
d−sp . Notice that however we do not have density

of compactly supported functions, Theorems 12 and 13 combined provide a larger scale of the parameter a
and a general exponent q instead of p∗

s. We can also change Rd \ {0} for any open set Ω .

9
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Appendix

In this section we show how to generalise the results to the case of Sobolev spaces defined by some
kernel K, see below.

Theorem 15. Let p ∈ [1,∞), Ω ⊂ Rd be an open set and let K : [0,∞) → [0,∞) be a measurable function
such that ∫ ∞

0
(xp ∧ 1)K(x)xd−1 dx < ∞.

Denote
[f ]K :=

(∫

Ω

∫

Ω

|f(x) − f(y)|pK(|x− y|) dy dx
)1/p

and consider the space
X(Ω) = {f ∈ Lp(Ω) : [f ]K < ∞}

with the norm

∥f∥X(Ω) =
(∫

Ω

|f(x)|p dx+ [f ]pK
) 1

p

.

Then the functions of a class C∞(Ω) ∩X(Ω) are dense in (X(Ω), ∥ · ∥X(Ω)).

Proof. First we go through the proof of Lemma 4, where we now estimate the seminorm [P ηkf − f ]pK and
take

gn(x, y) = (f(x)ψn(x) − f(y)ψn(y))K(|x− y|) 1
p , for x, y ∈ Ω .

The only part of the proof that essentially changes is the estimate of I1, which becomes

I1 =
∫

Q∗
n

∫

Ω−x

|f(x)|p|ψn(x) − ψn(x+ w)|pK(|w|) dw dx

= C ′∥f∥p
Lp(Q∗

n)

∫

Rd

(
Cp|w|p
l(Qn)p

∧ 1
)
K(|w|) dw dx.

We observe that
∫

Rd

(
Cp|w|p
l(Qn)p

∧ 1
)
K(|w|) dw ≤

(
Cp

l(Qn)p
∨ 1
)∫

Rd
(|w|p ∧ 1)K(|w|) dw < ∞.

Having established an analogous version of Lemma 4, we proceed as in the proof of Theorem 8 and obtain
the desired result. □
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Abstract
We describe some sufficient conditions, under which smooth and compactly supported 
functions are or are not dense in the fractional Sobolev space Ws,p

(Ω) for an open, bounded 
set Ω ⊂ ℝd . The density property is closely related to the lower and upper Assouad codi-
mension of the boundary of Ω . We also describe explicitly the closure of C∞

c
(Ω) in Ws,p

(Ω) 
under some mild assumptions about the geometry of Ω . Finally, we prove a  variant of 
a fractional order Hardy inequality.

Keywords Fractional Sobolev spaces · Smooth functions · Density · Assouad 
codimension · Assouad dimension · Fractional Hardy inequality
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1 Introduction

We discuss the problem of density of compactly supported smooth functions in the frac-
tional Sobolev space Ws,p

(Ω) , which is well known to hold when Ω is a bounded Lipschitz 
domain and sp ≤ 1 [14, Theorem  1.4.2.4],[26, Theorem  3.4.3]. We extend this result to 
bounded, plump open sets with a dimension of the boundary satisfying certain inequalities. 
To this end, we use the Assouad dimensions and codimensions. We also describe explicitly 
the closure of C∞

c
(Ω) in the fractional Sobolev space, provided that Ω satisfies the frac-

tional Hardy inequality.
Let Ω ⊂ ℝd be an open set. Let 0 < s < 1 and 1 ≤ p < ∞ . We recall that the fractional 

Sobolev space is defined as
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This is a Banach space endowed with the norm

where [f ]Ws,p(Ω)
=

(∫
Ω
∫
Ω

|f (x)−f (y)|p
|x−y|d+sp dy dx

)1∕p

 is called the Gagliardo seminorm. Through-
out the paper we consider only real-valued functions, but we note that all results are clearly 
valid also for complex-valued functions, by means of decomposing them into a sum of real 
and imaginary part.

Definition 1 By Ws,p

0
(Ω)  we denote the closure of C∞

c
(Ω) (the space of all smooth func-

tions with compact support in Ω ) in Ws,p
(Ω) with respect to the Sobolev norm.

The following theorem is our main result on the connection between Ws,p

0
(Ω) and 

Ws,p
(Ω) . For the relevant geometric definitions, we refer the Reader to Sect. 2. Here we 

only note that for bounded Lipschitz domains one has co dim
A
(�Ω) = co dim A(�Ω) = 1 

and the other geometrical assumptions of Theorem 2 do hold (that is, bounded Lipschitz 
domains are (d − 1)-homogeneous and �-plump), hence the classical case is included.

Theorem 2 Let Ω ⊂ ℝd be a nonempty bounded open set, let 0 < s < 1 and 1 ≤ p < ∞ . 

 (I) If sp < co dim
A
(𝜕Ω) , then Ws,p

0
(Ω) = Ws,p

(Ω).
 (II) If Ω is a (d − sp)-homogeneous set, sp = co dim

A
(�Ω) and p > 1 , then 

W
s,p

0
(Ω) = Ws,p

(Ω).
 (III) If Ω is �-plump and sp > co dim A(𝜕Ω) , then Ws,p

0
(Ω) ≠ Ws,p

(Ω).

We remark that a result similar to the part (I) and (III) in the Theorem 2 was obtained 
by Caetano in [6] in the context of Besov spaces and Triebel–Lizorkin spaces, but with 
the Minkowski dimension instead of Assouad dimension. That result is not directly 
comparable with ours, as for less regular domains spaces Ws,p do not necessarily coin-
cide with the appropriate Triebel–Lizorkin spaces. We refer the Reader to [5] for a dis-
cussion on the space Ws,p

0
 and different similarly defined spaces. We also want to men-

tion that analogous, but slightly different problems were considered in [12] (spaces of 
functions vanishing outside Ω ), [8] (the weighted case) and [1] (spaces with variable 
exponents).

In the case (III) above, we also obtain the following characterization of the space 
W

s,p

0
(Ω) . For the proof, see Sect. 5.

Theorem 3 Let 0 < s < 1 and 1 ≤ p < ∞ . Suppose that Ω ≠ � is a bounded, open �-plump 
set. If co dim A(𝜕Ω) < sp , then

Ws,p
(Ω) =

{
f ∈ Lp(Ω) ∶ ∫

Ω
∫
Ω

|f (x) − f (y)|p
|x − y|d+sp dy dx < ∞

}
.

‖f‖Ws,p(Ω)
= ‖f‖Lp(Ω) + [f ]Ws,p(Ω)

,

(1)W
s,p

0
(Ω) =

{
f ∈ Ws,p

(Ω) ∶ ∫
Ω

|f (x)|p
dist (x, 𝜕Ω)sp

dx < ∞

}
.
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In the case (I) of Theorem 2 equality (1) also holds, or in other words, we have an inclu-
sion between the Sobolev and weighted Lp space, Ws,p

(Ω) ⊂ Lp(Ω, dist (x, 𝜕Ω)−sp) . This 
fact is made quantitative in the next theorem; for its proof, see Sect. 5 as well.

Theorem 4 Let 0 < s < 1 and 1 ≤ p < ∞ . Suppose that Ω ≠ � is a bounded, open �-plump 
set. If co dim

A
(𝜕Ω) > sp , then there exists a constant c such that

Theorem 3 and 4 have classical (non-fractional) counterparts, see [20, Example 9.11] or 
[19].

Finally, we extend the results of [11, Theorem 1, Corollary 3]. Namely, we prove the 
case (T’) in the following version of the fractional Hardy inequality. For the definitions of 
the conditions WLSC and WUSC , we refer the reader to the Appendix, while the plump-
ness and Assouad dimensions are defined in Sect. 2. We would also like to note that a spe-
cial case of (T’) (assuming in particular p = 2 ) was proved in [25, Lemma 3.32] and [7].

Theorem  5 ([11] in cases (T) and (F)) Let 0 < p < ∞ , H ∈ (0, 1] and � ∈ ℝ . Suppose 
Ω ≠ � is a proper �-plump open set in ℝd and � ∶ (0,∞) → (0,∞) is a function so that 
either condition (T), or condition (T’), or condition (F) holds 

(T)  𝜂 + dimA(𝜕Ω) − d < 0 , Ω is unbounded, � ∈ WUSC (�, 0,H−1
),

(T’)  𝜂 + dimA(𝜕Ω) − d < 0 , Ω is bounded, � ∈ WUSC (�, 0,H−1
),

(F)  𝜂 + dim
A
(𝜕Ω) − d > 0 , Ω is bounded or �Ω is unbounded, and � ∈ WLSC (�, 0,H).

 Then there exist constants c = c(d, s, p,Ω,�) and R such that the following inequality

holds for all measurable functions u for which the left hand side is finite, with � = 0 in the 
cases (T) and (F) and � = 1 in the case (T �

).

There is a huge literature about fractional Hardy inequalities; we refer the Reader to [9, 
11, 17] and the references therein. We would also like to draw Reader’s attention to a paper 
[23] from 1999 by Farman Mamedov. This not very well-known paper is one of the first to 
deal with multidimensional fractional order Hardy inequalities.

The authors would like to thank Lorenzo Brasco for helpful discussions on the subject, 
in particular for providing a part of the proof of Theorem 2, and the anonymous referee for 
numerous comments which led to an improvement of the manuscript.

2  Geometrical definitions

We denote the distance from x ∈ ℝd to a set E ⊂ ℝd by dist (x,E) = inf
y∈E

|x − y| ; for open 
sets Ω ⊂ ℝd we write d

Ω
(x) = dist(x, �Ω).

(2)�
Ω

�f (x)�p
dist (x, 𝜕Ω)sp

dx ≤ c‖f‖p
Ws,p(Ω)

< ∞, for all f ∈ Ws,p
(Ω).

(3)�
Ω

�u(x)�p
�(d

Ω
(x))

dx ≤ c�
Ω
�
Ω∩B(x,Rd

Ω
(x))

�u(x) − u(y)�p
�(d

Ω
(x))d

Ω
(x)d

dy dx + c�‖u‖p
Lp(Ω)

,
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Definition 6 Let r > 0 . For open sets Ω ⊂ ℝd , we define the inner tubular neighbourhood 
of Ω as

and for arbitrary sets E ⊂ ℝd , we define the tubular neighbourhood of E as

Definition 7 [18, Section 3] Let E ⊂ ℝd . The lower Assouad codimension co dim
A
(E) is 

defined as the supremum of all q ≥ 0 , for which there exists a constant C = C(q) ≥ 1 such 
that for all x ∈ E and 0 < r < R < diamE , it holds

Conversely, the upper Assouad codimension co dim A(E) is defined as the infimum 
of all s ≥ 0 , for which there exists a constant c = c(s) > 0 such that for all x ∈ E and 
0 < r < R < diamE , it holds

We remark that having strict inequality R < diamE above makes the definitions 
applicable also for unbounded sets E; for bounded sets E we could have R ≤ diamE.

In Euclidean space ℝd , we have dim
A
(E) = d − co dim

A
(E) , dim

A
(E) = d − co dim

A
(E) , 

where dim
A
(E) and dimA(E) denote, respectively, the well known lower and upper 

Assouad dimension – see for example [18, Section  2] for this result. Recall that the 
upper Assouad dimension of a given set E is defined as the infimum of all expo-
nents s ≥ 0 for which there exists a constant C = C(s) ≥ 1 such that for all x ∈ E and 
0 < r < R < diamE the ball B(x,R) ∩ E can be covered by at most C(R∕r)s balls with 
radius r, centered at E. Analogously, the lower Assouad dimension is characterized by 
the supremum of all exponents t ≥ 0 for which there is a constant c = c(t) > 0 such that 
the ball B(x,R) ∩ E can be covered by at least c (R∕r)t balls with radius r and centered at 
E. If co dim

A
(E) = co dim A(E), we simply denote it by co dim A(E).

We recall a geometric notion from [27].

Definition 8 A set E ⊂ ℝ
d is � -plump with � ∈ (0, 1) if, for each 0 < r < diam (E) and 

each x ∈ E , there is z ∈ B(x, r) such that B(z, 𝜅r) ⊂ E.

Following [22, Theorem A.12], we define a notion of �-homogenity.

Definition 9 Let E ⊂ ℝ
d and let V(E, x, �, r) = {y ∈ ℝd

∶ dist (y,E) ≤ r, |x − y| ≤ �r} . 
We say that E is �-homogeneous, if there exists a constant L such that

for all x ∈ E , � ≥ 1 and r > 0.

If 0 < r < R < diam (E) , then taking � = R∕r in the definition gives

Ωr =
{
x ∈ Ω ∶ d

Ω
(x) ≤ r

}
,

Ẽr =
{
x ∈ ℝd

∶ dist (x,E) ≤ r
}
.

|||Ẽr ∩ B(x,R)
||| ≤ C|B(x,R)|

(
r

R

)q

.

|||Ẽr ∩ B(x,R)
||| ≥ c|B(x,R)|

(
r

R

)s

.

|V(E, x, �, r)| ≤ Lrd��
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where C = C(d,E) is a constant. This means that if co dim
A
(E) = s , then (d − s)-homoge-

neous sets are precisely these sets E, for which the supremum in the definition of the lower 
Assouad codimension is attained. For the definition of the concept of homogenity from a 
different point of view, the Reader may also see [22, Definition 3.2].

Finally, let us note that for example in part I of Theorem 2, we need the assumption 
sp < co dim

A
(𝜕Ω) only to obtain the bound (5). For that a slightly weaker assumption in 

terms of Minkowski (co)dimension would suffice, however, we need Assouad (co)dimen-
sions for other parts of the paper, and therefore, we prefer to use only them. Let us only 
recall that the upper Minkowski dimension of a set E ⊂ ℝd is defined as

see for example [15, Section 2]. The statement of the part (I) of Theorem 2 remains true if 
we assume that sp < d − dimM(𝜕Ω).

3  Lemmas

The following lemma is the key to our further computations. We recall that Ω 3

n

 appearing in 
(4) is the inner tubular neighbourhood of Ω , see Definition 6.

Lemma 10 Let

There exists a constant C = C(d, s, p,Ω) > 0 such that the following inequality holds for all 
functions f ∈ Ws,p

(Ω)

Proof Fix f ∈ Ws,p
(Ω) and define fn = fvn . We have

First we estimate J1,

|||Ẽr ∩ B(x,R)
||| =

||||V
(
E, x,

R

r
, r
)|||| ≤ C|B(x,R)|

(
r

R

)d−�

,

dimM(E) = inf{s ≥ 0 ∶ lim sup
r→0

|||Ẽr

|||r
d−s

= 0},

vn(x) = max
�
min

�
2 − nd

Ω
(x), 1

�
, 0
�
=

⎧
⎪⎨⎪⎩

1 when d
Ω
(x) ≤ 1∕n,

2 − nd
Ω
(x) when 1∕n < d

Ω
(x) ≤ 2∕n,

0 when d
Ω
(x) > 2∕n.

(4)[fvn]
p

Ws,p(Ω)
≤ Cnsp �

Ω 3
n

|f (x)|p dx + C �
Ω 3

n

�
Ω 3

n

|f (x) − f (y)|p
|x − y|d+sp dy dx.

[fn]
p

Ws,p(Ω)
= ∫

Ω
∫
Ω

|f (x)vn(x) − f (y)vn(y)|p
|x − y|d+sp dy dx

= ∫
Ω 3

n

∫
Ω 3

n

|f (x)vn(x) − f (y)vn(y)|p
|x − y|d+sp dy dx

+ 2∫
Ω 2

n

∫
Ω⧵Ω 3

n

|f (x)vn(x)|p
|x − y|d+sp dy dx

=∶ J1 + 2J2.
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Since |vn| ≤ 1 , we obtain

Furthermore, |vn(x) − vn(y)| ≤ min{1, n|x − y|} , hence, for K1 we can compute that

Since |vn| ≤ 1 , for J2 we have

Hence, we obtain for some (new) constant C that

  ◻

Definition 11 By Ws,p
c (Ω) , we denote the closure of all compactly supported functions in 

Ws,p
(Ω) (not necessarily smooth) with respect to the Sobolev norm.

The key property, which allows us to get rid of the smoothness and rely only on the 
compactness of the support, is the result below.

21−pJ1 ≤ �
Ω 3

n

�
Ω 3

n

|f (x)|p|vn(x) − vn(y)|p
|x − y|d+sp dy dx

+ �
Ω 3

n

�
Ω 3

n

|vn(y)|p|f (x) − f (y)|p
|x − y|d+sp dy dx

=∶ K1 + K2.

K2 ≤ �
Ω 3

n

�
Ω 3

n

|f (x) − f (y)|p
|x − y|d+sp dy dx.

K1 ≤ �
Ω 3

n

�
Ω 3

n

|f (x)|p(min{1, n|x − y|})p
|x − y|d+sp dy dx

≤ �
Ω 3

n

|f (x)|p dx�|x−y|>1∕n
dy

|x − y|d+sp + np �
Ω 3

n

|f (x)|p dx�|x−y|<1∕n
dy

|x − y|d−(1−s)p

≤ Cnsp �
Ω 3

n

|f (x)|p dx.

J2 =�
Ω 2

n

�
Ω⧵Ω 3

n

|f (x)|p|vn(x)|p
|x − y|d+sp dy dx

≤ �
Ω 2

n

|f (x)|p dx�
Ω⧵Ω 3

n

dy

|x − y|d+sp

≤ �
Ω 2

n

|f (x)|p dx�B(x,1∕n)c

dy

|x − y|d+sp

≤ Cnsp �
Ω 2

n

|f (x)|p dx.

[fn]
p

Ws,p(Ω)
≤ Cnsp �

Ω 3
n

|f (x)|p dx + C �
Ω 3

n

�
Ω 3

n

|f (x) − f (y)|p
|x − y|d+sp dy dx.
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Proposition 12 We have Ws,p

0
(Ω) = W

s,p
c (Ω).

Proof This is a straightforward consequence of [10, Proposition 2 and proof of Theo-
rem 8].   ◻

It turns out that to prove the density of compactly supported functions in the fractional 
Sobolev space, we only need to find a sequence which approximates the function  (the indi-
cator of Ω).

Lemma 13 Let Ω be an open set such that |Ω| < ∞ . We have

Proof Implication “ ⟹ ” is obvious, therefore we proceed to prove the implication from 
right to left. According to Proposition 12, we need to prove that if the function  can be 
approximated by some family of functions gn ∈ W

s,p
c (Ω) , then every function f ∈ Ws,p

(Ω) 
can be approximated by functions from Ws,p

c (Ω) . Since L∞(Ω) ∩Ws,p
(Ω) is dense in 

Ws,p
(Ω) (because the truncated functions f N = min {max {f ,−N},N} tend to f in Ws,p

(Ω) , 
as N ⟶ ∞ ), we may assume that f ∈ L∞(Ω) . Moreover, we may also assume that 
0 ≤ gn ≤ 1 , because if  in Ws,p

(Ω) , then also  , 
since we have |g̃n(x) − g̃n(y)| ≤ |gn(x) − gn(y)|.

Define fn = fgn ∈ W
s,p
c (Ω) . Observe that

Since  in Lp(Ω) , there is a subsequence  almost everywhere. Hence, 
for such a subsequence we have

The first term above is convergent to 0, since  in Ws,p
(Ω) . The convergence of 

the second term follows from Lebesgue dominated convergence theorem. Moreover, it is 
trivial to show that fn ⟶ f  in Lp(Ω) , and hence, the proof is finished.   ◻

[f − fn]
p

Ws,p(Ω)
= �

Ω
�
Ω

�f (x)(1 − gn(x)) − f (y)(1 − gn(y))�p
�x − y�d+sp dy dx

≤ 2p−1 �
Ω
�
Ω

�f (x)�p�gn(x) − gn(y)�p
�x − y�d+sp dy dx

+ 2p−1 �
Ω
�
Ω

�1 − gn(y)�p�f (x) − f (y)�p
�x − y�d+sp dy dx

≤ 2p−1‖f‖p
∞
[gn]

p

Ws,p(Ω)

+ 2p−1 �
Ω
�
Ω

�1 − gn(y)�p�f (x) − f (y)�p
�x − y�d+sp dy dx.

[f − fnk ]
p

Ws,p(Ω)
≤ 2p−1‖f‖p

∞
[gnk ]

p

Ws,p(Ω)

+ 2p−1 �
Ω
�
Ω

�1 − gnk (y)�p�f (x) − f (y)�p
�x − y�d+sp dy dx.
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4  Proof of Theorem 2

Proof of Theorem 2, case I According to Lemma 13, we only need to prove that the function 
 can be approximated by compactly supported functions. Let fn = fvn , where vn is as 

in the Lemma 10 and let d = co dim
A
(�Ω) . By Lemma 10 (note that in this case the sec-

ond term in inequality (4) is 0), we have

If sp < d , then, by the definition of lower Assouad codimension, for every 𝜀 > 0 we have

Hence, for some new constant C we have

when n ⟶ ∞ , by choosing 0 < 𝜀 < d − sp , which is feasible thanks to our assumption.  
 ◻

Proof of Theorem 2, case II We proceed like in the above proof of the first part of the Theo-
rem 2 and obtain

Since Ω is (d − sp)-homogeneous and co dim
A
(�Ω) = sp , then it follows that |||Ω 3

n

||| ≤ C�n−sp 
and, in consequence, the sequence {fn}n∈ℕ is bounded in Ws,p

(Ω).
The following argument was kindly pointed out to us by Lorenzo Brasco, see also [4, 

Theorem 4.4] for a similar argument. It is well known that for p > 1 the space Ws,p
(Ω) is 

reflexive. Hence, by Banach–Alaoglu and Eberlein–Šmulian theorem, there exists a sub-
sequence {fnk}k∈ℕ weakly convergent to some f. Since Ws,p

0
(Ω) is both closed and convex 

subset of Ws,p
(Ω) , by [3, Theorem 2.3.6] it is also weakly closed, so we have f ∈ W

s,p

0
(Ω) . 

Then it suffices to see that  by the uniqueness of the limit, since fnk strongly con-
verges to  in Lp(Ω) . This ends the proof.   ◻

Proof of Theorem  2, case III Let d = co dim A(�Ω) . We will show that the indicator of Ω 
cannot be approximated by functions with compact support. Indeed, let un be any sequence 
of compactly supported functions such that  In particular  
in Lp(Ω), so there is a subsequence unk convergent almost everywhere to  . If sp > d , we 
can use the fractional Hardy inequality from [11, Corollary 3] in the case (F) with � = 0 to 
obtain

[fn]
p

Ws,p(Ω
≤ Cnsp �

Ω 3
n

dx = Cnsp
|||Ω 3

n

|||.

(5)|||Ω 3

n

||| ≤ C�

(
1

n

)d−�

.

[fn]
p

Ws,p(Ω)
≤ Cnspn�−d ⟶ 0,

[fn]
p

Ws,p(Ω)
≤ Cnsp

|||Ω 3

n

|||.

[unk−]
p

Ws,p(Ω)
= [unk ]

p

Ws,p(Ω)
= �

Ω
�
Ω

|unk (x) − unk (y)|p
|x − y|d+sp dy dx

≥ c�
Ω

|unk (x)|p
d
Ω
(x)sp

dx.
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By Fatou’s lemma,

We obtain a contradiction.   ◻

Example 14 (Lipschitz domains) Let Ω be a bounded Lipschitz domain. In this case, we 
have co dim A(�Ω) = 1 and, by the cone property, ||Ωr

|| = O(r) , hence, Theorem 2 general-
ises the classical result [14, Theorem 1.4.2.4].

Example 15 (Koch snowflake) Let Ω ⊂ ℝ2 denote the domain bounded by the Koch snow-
flake. It is well known that the Hausdorff dimension of the Koch curve is log 4

log 3
 . Thus, also its 

Assouad dimension is log 4
log 3

 , since it is a self-similar set satisfying open set condition, see 
[13, Corollary 2.11]. The Koch snowflake is a finite union of copies of Koch curves, there-
fore its Assouad dimension is again log 4

log 3
 , see [13, Theorem 2.2] and [22, Theorem A.5(3)]. 

Hence co dim A(�Ω) = 2 −
log 4

log 3
.

Moreover, by [21, Theorem 1.1] the volume of the inner tubular neighbourhood of Ω is 
described by the formula

where G1 and G2 are continuous, periodic functions (in consequence bounded). Hence, for 
r < 1 we have ||Ωr

|| = O

(
r
2−

log 4

log 3

)
 . Since in addition Ω is � - plump, by Theorem 2 we obtain 

that if p = 1 , then C∞

c
(Ω) is dense in Ws,p

(Ω) if s < 2 −
log 4

log 3
 and is not dense if s > 2 −

log 4

log 3
 . 

Moreover, if p > 1 , then the density result holds if and only if sp ≤ 2 −
log 4

log 3
 . We do not 

know what is happening in the remaining case p = 1 and s = 2 −
log 4

log 3
.

5  The space Ws,p

0
(Ä)

Based on our previous results, we are able to describe explicitly the space Ws,p

0
(Ω) in some 

particular cases. Namely, we can describe this space for Ω, s and p satisfying the following 
weak fractional Hardy inequality.

Definition 16 We say that Ω admits a weak (s,  p)–fractional Hardy inequality, if there 
exists a constant c = c(d, s, p,Ω) such that for every f ∈ C∞

c
(Ω) it holds

In the case when the norm ‖f‖Ws,p(Ω)
 above can be replaced by the seminorm [f ]Ws,p(Ω)

 , we 
say that Ω admits an (s, p)–fractional Hardy inequality.

0 = lim
k→∞

[unk ]
p

Ws,p(Ω)
≥ c�

Ω

lim inf
k→∞

|unk (x)|p
d
Ω
(x)sp

dx

= c�
Ω

dx

d
Ω
(x)sp

> 0.

||Ωr
|| = G1(r)r

2−
log 4

log 3 + G2(r)r
2,

�
Ω

�f (x)�p
d
Ω
(x)sp

dx ≤ c‖f‖p
Ws,p(Ω)

.
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Theorem 17 Suppose that Ω admits a weak (s, p)-fractional Hardy inequality. Then

Proof By Lemma 10, if ∫
Ω

|f (x)|p
d
Ω
(x)sp

dx < ∞ , then f ∈ W
s,p

0
(Ω) , because in this case

when n ⟶ ∞ . In fact, for that part we do not need the assumption about Hardy inequality.
Suppose that Ω admits a weak (s,  p)–Hardy inequality and f ∈ W

s,p

0
(Ω) . Let fn be a 

sequence of smooth and compactly supported functions convergent to f in Ws,p
(Ω). In par-

ticular, fn ⟶ f  in Lp(Ω) , so there exists a subsequence fnk convergent to f almost every-
where. We have by Fatou lemma

  ◻

Proof of Theorem 3 From part (F) of Theorem 5 with � = sp , �(t) = tsp , Ω admits an (s, p)-
fractional Hardy inequality and also a weak (s, p)-fractional Hardy inequality. Thus, the 
result follows from Theorem 17.   ◻

Proof of Theorem 4 From part (T’) of Theorem 5, inequality (2) holds for all functions f 
for which the left hand side of (2) is finite. Thus by Theorem 3, it holds for all functions 
f ∈ W

s,p

0
(Ω) . However, by part (I) of Theorem 2, Ws,p

0
(Ω) = Ws,p

(Ω) , and the result fol-
lows.   ◻

Appendix

We recall from [2, Section 3] the notion of a global weak lower (or upper) scaling condi-
tion ( WLSC or WUSC for short). As in [11], we will use a different, but equivalent formu-
lation. We note that in our setting the middle parameter in WLSC or WUSC is always zero, 
and thus, we could omit it, however we prefer to keep the notation consistent with [2, 11].

Definition 18 Let � ∈ ℝ and H ∈ (0, 1] . We say that a function � ∶ (0,∞) → (0,∞) 
satisfies WLSC (�, 0,H) (resp., WUSC (�, 0,H−1

) ) and write � ∈ WLSC (�, 0,H) 
( � ∈ WUSC (�, 0,H−1

) ), if

W
s,p

0
(Ω) =

{
f ∈ Ws,p

(Ω) ∶ ∫
Ω

|f (x)|p
d
Ω
(x)sp

dx < ∞

}
.

nsp �
Ω 3

n

|f (x)|p dx ≤ 3sp �
Ω 3

n

|f (x)|p
d
Ω
(x)sp

dx ⟶ 0,

�
Ω

�f (x)�p
d
Ω
(x)sp

dx = �
Ω

lim
k→∞

�fnk (x)�p
d
Ω
(x)sp

dx

≤ lim inf
k→∞ �

Ω

�fnk (x)�p
d
Ω
(x)sp

dx

≤ c lim inf
k→∞

‖fnk‖pWs,p(Ω)

= c‖f‖p
Ws,p(Ω)

< ∞.

(6)𝜙(st) ≥ Ht𝜂𝜙(s), s > 0 ,
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for every t ≥ 1 (resp., for every t ∈ (0, 1]).

We begin with the following observation:

For the proof, we will provide the following argument by the user rpotrie from [24]. Since 
�Ω disconnects ℝd , its topological dimension has to be at least d − 1 , see [16, Theorem 
IV.4]. But the topogical dimension does not exceed Hausdorff dimension [16, page 107], 
and the latter in turn does not exceed the upper Assouad dimension [22, Theorem A.5(10)], 
consequently (7) holds.

Proof of case (T’) in Theorem 5 It seems possible to adapt the original proof for this case, 
however, since the proof was quite involved and technical, we prefer to choose another 
strategy. Namely, we will reduce (T’) to the case (T). Let us assume that the general 
assumptions of Theorem 5 and the assumptions in (T’) hold.

Let us fix x0 ∈ Ω and put M = diamΩ . We consider an open set Ω1 = ℝd ⧵ B(x0, 2M) . 
Let G = Ω ∪ Ω1 . Observe that dist (Ω,Ω1) ≥ M , hence �G = �Ω ∪ �Ω1 . Therefore,

by [22, Theorem A.5(3)] and (7).
We may also need to redefine the function � . To this end, put �0 = � if 𝜂 > 0 , while in 

the case when � ≤ 0 , we choose 𝜂0 > 0 such that

We note that this is possible, because �-plumpness of Ω implies that �Ω is porous, and that 
in turn by [22, Theorem 5.2] implies that dimA(𝜕Ω) < d . We define

We claim that such a  function � satisfies the condition WUSC (�0, 0,H
−1
) . We omit a 

straightforward check of (6) in three possible cases, when the two numbers st ≤ s in that 
equation lie in either (0, M] or (M,∞).

We apply the case (T) of the Theorem 5 (proved in [11]) to the open set G, the number 
�0 and the function � ∈ WUSC (�0, 0,H

−1
) . It follows that there exist constants c and R 

such that

holds for all measurable functions u ∶ G → ℝ for which the left hand side is finite.
Let us consider an arbitrary measurable functions u ∶ Ω → ℝ for which 

∫
Ω

|u(x)|p
𝜙(dG(x))

dx < ∞ , and extend it by zero on Ω1 to obtain a function defined on the whole set 
G. Inequality (8) for this function u has the following form,

(7)If Ω ⊂ ℝdis a nonempty open bounded set, then dimA(𝜕Ω) ≥ d − 1.

dimA(�G) = max{dimA(�Ω), dimA(�Ω1)} = max{dimA(�Ω), d − 1} = dimA(�Ω),

𝜂0 + dimA(𝜕Ω) − d < 0.

�(x) =

{
�(x), when x ∈ (0,M];

�(T)(
x

T
)
�0 , when x ∈ (M,∞).

(8)�G

|u(x)|p
�(dG(x))

dx ≤ c�G�G∩B(x,RdG(x))

|u(x) − u(y)|p
�(dG(x))dG(x)

d
dy dx
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In the integral I2 , when x ∈ Ω1 and y ∈ Ω ∩ B(x,RdG(x)) , then M ≤ |x − y| ≤ RdG(x) and 
therefore dG(x) ≥ M∕R . Consequently,

From the definition of the function � and the fact that � ∈ WUSC (�0, 0,H
−1
) , it follows 

that there exists a constant c(M∕R,H, �0) such that

Therefore, the integral in (9) is convergent and so I2 ≤ c�‖u‖p
Lp(Ω)

.
For the integral I3 , we observe that when x ∈ Ω and y ∈ Ω1 ∩ B(x,RdG(x)) , 

then dG(x) = d
Ω
(x) and M ≤ |y − x| ≤ RdG(x) , so dG(x) ≥ M∕R . Therefore, 

by (10) the function �(dG(x))
−1dG(x)

−d is bounded from above. Furthermore, 
since |y − x0| ≤ M + |y − x| ≤ M + RdG(x) ≤ M(1 + R) , the following inclu-
sion Ω1 ∩ B(x,RdG(x)) ⊂ B(x0,M(1 + R)) holds for all x ∈ Ω . Thus also in this case 
I3 ≤ c�‖u‖p

Lp(Ω)
.

Consequently, I1 is equal to the first term on the right side of (3), while I2 and I3 are 
bounded by the second term.   ◻

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10231- 021- 01181-8.
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FRACTIONAL SOBOLEV SPACES WITH POWER WEIGHTS

MICHAŁ KIJACZKO

Abstract. We investigate the form of the closure of the smooth, compactly supported
functions C∞

c (Ω) in the weighted fractional Sobolev space W s,p;w,v(Ω) for bounded Ω.
We focus on the weights w, v being powers of the distance to the boundary of the domain.
Our results depend on the lower and upper Assouad codimension of the boundary of Ω.
For such weights we also prove the comparability between the full weighted fractional
Gagliardo seminorm and the truncated one.

1. Introduction and preliminaries

Let Ω ⊂ Rd be an open set. Let 0 < s < 1 and 1 ≤ p <∞. We recall that the fractional
Sobolev space is defined as

W s,p(Ω) =

{
f ∈ Lp(Ω) :

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy dx <∞
}
.

This is a Banach space endowed with the norm

∥f∥W s,p(Ω) = ∥f∥Lp(Ω) + [f ]W s,p(Ω),

where [f ]W s,p(Ω) =
(∫

Ω

∫
Ω

|f(x)−f(y)|p
|x−y|d+sp dy dx

)1/p
is called the Gagliardo seminorm.

In this paper we consider weighted fractional Sobolev spaces. For weights w, v (i.e.
measurable nonnegative functions on Ω) we define the weighted Gagliardo seminorm as

[f ]W s,p;w,v(Ω) =

(∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

w(y)v(x) dy dx

) 1
p

and the weighted fractional Sobolev space as

W s,p;w,v(Ω) =
{
f ∈ Lp(Ω) : [f ]W s,p;w,v(Ω) <∞

}
.

For bounded Ω the space defined above is always nonempty, because it contains constant
functions. Moreover, if wα(x) = dist(x, ∂Ω)−α and vβ(y) = dist(y, ∂Ω)−β for α, β ∈ R, we
denote

W s,p;wα,vβ(Ω) =: W s,p;α,β(Ω).

The space W s,p;w,v(Ω) is equipped with the natural norm

∥f∥W s,p;w,v(Ω) = ∥f∥Lp(Ω) + [f ]W s,p;w,v(Ω).

We remark here that all results of the paper remain true if we replace the space Lp(Ω)
appearing in the definition of W s,p;w,v(Ω) by the weighted analogue Lp(Ω,W ) for any
almost everywhere positive weight W , which is locally comparable to a constant (see
Definition 18) or continuous and satisfies

∫
Ω
W (x) dx <∞. Notice that the last condition

ensures that the constant function 1Ω is in Lp(Ω,W ). However, for simplicity we consider
only the unweighted case.

For an open set Ω we use the notation dΩ(x) = dist(x, ∂Ω).

2010 Mathematics Subject Classification. Primary 46E35; Secondary 35A15.
Key words and phrases. fractional Sobolev spaces, smooth functions, compact support, density, As-

souad codimension, Assouad dimension, fractional Hardy inequality, weight.
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Definition 1. By W s,p;w,v
0 (Ω) we denote the closure of C∞

c (Ω) ∩ W s,p;w,v(Ω) (smooth
functions with compact support in Ω) in W s,p;w,v(Ω) with respect to the weighted frac-
tional Sobolev norm and by W s,p;w,v

c (Ω) we denote the closure of all compactly sup-
ported, measurable functions in Ω (not necessarily smooth) in W s,p;w,v(Ω) with respect
to the weighted fractional Sobolev norm. We also denote W s,p;wα,vβ

0 (Ω) =: W s,p;α,β
0 (Ω),

W
s,p;wα,vβ
c (Ω) =: W s,p;α,β

c (Ω).

We refer to Section 3 for a discussion on the cases when C∞
c (Ω) is or is not a subset of

W s,p;α,β(Ω). In general, it may occure that the space W s,p;α,β
0 (Ω) is empty.

The main result of this paper is a generalization of the density result for unweighted
fractional Sobolev spaces, which can be found in [9, Theorem 2]. We present some nec-
essary and sufficient conditions for the space C∞

c (Ω) to be dense in W s,p;α,β(Ω). In the
negative case, under some additional assumptions we also find explicitly the form of the
space W s,p;α,β

0 (Ω). The necessary geometrical and technical definitions are contained in
Section 2. In Section 3 we present Lemmas, most of them being generalization of these
from [9] and [10] for the weighted case.

Let us remark that the weighted fractional Sobolev spaces related to the weighted
Sobolev-type norm [ · ]W s,p;α,β(Ω) + ∥ · ∥Lp∗ (Ω,W ) and the problem of density of C∞

c (Ω)

were investigated before by Dipierro and Valdinoci in [6] for the case Ω = Rd \ {0},
α = β ∈ [0, (d − sp)/2), p∗ = dp/(d − sp) and W (x) = |x|− 2αd

d−sp . However, this problem
is not directly comparable to ours, because we consider only bounded sets Ω. Similar
weighted fractional Sobolev spaces were an object of study in [1] in connection with
weighted Caffarelli–Kohn–Nirenberg and fractional Hardy inequalities. Moreover, related
results for unweighted Sobolev-type spaces can be found for example in [12], where the
authors considered spaces of functions vanishing on Rd \Ω and in [2], where the problem
of density of C∞

c (Ω) functions was investigated in the context of the fractional Sobolev
spaces with variable exponents.

Section 4 is devoted to the comparability result between the full weighted seminorm
and the truncated one in the space W s,p;w,v(Ω). This comparability is important to us in
proving our main results (to be more specific - in Lemma 16 and Lemma 22). However, it
is also very interesting and nontrivial property itself. Similar results were obtained before
by Dyda [7] for Gagliardo-type seminorms with the additional homogeneous kernels (like
indicators of cones), by Prats and Saksman [23] in a more general context of Triebel-
Lizorkin spaces and generalized later by Rutkowski [24] for the kernels of the form |x −
y|−dφ(|x − y|)−q, with φ satisfying certain technical assumptions. Some versions of the
reduction of the integration theorems can also be found in [4], [5] and [16]. We want to
point here that a variant of comparability is nonexplicitly contained in the early work of
Seeger [25]. We prove a weighted analogue of the reduction of the integration theorem for
the space W s,p;α,β(Ω), provided that 0 ≤ α, β < co dimA(∂Ω). This result is stated below.

Theorem 2. Let Ω be a nonempty, bounded, uniform domain, let 0 < s < 1 and 1 ≤
p < ∞. Moreover, let 0 < θ ≤ 1. Suppose that 0 ≤ α, β < co dimA(∂(Ω). Then the full
seminorm [f ]W s,p;α, β(Ω) and the truncated seminorm

(∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−βdΩ(x)

−α dy dx

) 1
p

are comparable, that is there exists a constant C = C(θ, d, s, p, α, β,Ω) > 0 such that
∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dy

dΩ(y)β
dx

dΩ(x)α
≤ C

∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dy

dΩ(y)β
dx

dΩ(x)α
dy dx,

for all f ∈ L1
loc(Ω).
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It is clear that the reverse inequality is trivial with constant equal to one, hence we
indeed obtain the comparability between the full and the truncated weighted Gagliardo
seminorms. Moreover, when p = 1, the comparability can be formulated in a more general
setting, for all A1 class Muckenhoupt weights, see Theorem 23.

Section 5 contains proofs of our main results, Theorems 3 and 4. Theorem 3 is a
generalization of [9, Theorem 2] and Theorem 4 is a generalization of [9, Theorem 3],
provided that Ω is a uniform domain.

Theorem 3. Let Ω ⊂ Rd be a nonempty, bounded, open set, let 0 < s < 1, 1 ≤ p < ∞
and α, β ≥ 0.
(I) If sp+ α + β < d− dimM(∂Ω), then W s,p;α,β

0 (Ω) = W s,p;α,β(Ω).
(II) If Ω is (d − sp − α − β)-homogeneous, p > 1 and sp + α + β = co dimA(∂Ω), then
W s,p;α,β

0 (Ω) = W s,p;α,β(Ω).
(III) If Ω is κ-plump and sp+ α + β > co dimA(∂Ω), then W s,p;α,β

0 (Ω) ̸= W s,p;α,β(Ω).

Theorem 4. Let Ω ⊂ Rd be a nonempty, bounded, uniform and open set, let 0 < s < 1,
1 ≤ p <∞ and 0 ≤ α, β < co dimA(∂Ω). If sp+ α + β > co dimA(∂Ω), then

W s,p;α,β
0 (Ω) =

{
f ∈ W s,p;α,β(Ω) :

∫

Ω

|f(x)|p
dΩ(x)sp+α+β

dx <∞
}
.

Theorem 4 reveals the property known partially also for classical (unweighted) Sobolev
spaces W 1,p(Ω), see [18, Example 9.12] or [17].

Remark 5. In the proof of the case II in the Theorem 3 we use a reflexivity property of
the space W s,p;αβ(Ω) (see Proposition 25). This explains why p = 1 is excluded from the
assumptions. It is not clear if the density property holds in this case and we leave it as
an open problem.

To prove the case (III) of the Theorem 3, we use a (weak) weighted fractional Hardy
inequality, which can can be easily derived from the (weak) fractional (s, p, a)-Hardy
inequality, given in [11, Corollary 3] and also in [9, Theorem 5] in the case (T’) of the
result below. It suffices to take the function ϕ(x) = xsp+α+β and notice that dist(y, ∂Ω) ≲
dist(x, ∂Ω) on the ball B(x,R dist(x, ∂Ω)). We present this version below.

Theorem 6. ( [11, Corollary 3], [9, Theorem 5]) Let 0 < p <∞, 0 < s < 1 and α, β ≥ 0.
Suppose that Ω ̸= ∅ is an open, κ-plump set so that either condition (T), or condition
(T’), or condition (F) holds

(T) sp+ α + β < co dimA(∂Ω), Ω is unbounded and ξ = 0,
(T’) sp+ α + β < co dimA(∂Ω), Ω is bounded and ξ = 1,
(F) sp+ α + β > co dimA(∂Ω), Ω is bounded or ∂Ω is unbounded and ξ = 0.

Then there exist constants c and R such that the following inequality

(1)
∫

Ω

|u(x)|p
dΩ(x)sp+α+β

dx ≤ c

∫

Ω

∫

Ω∩B(x,R dΩ(x))

|u(x)− u(y)|p
|x− y|d+sp

dy

dΩ(y)β
dx

dΩ(x)α
+ cξ∥u∥pLp(Ω),

holds for all measurable functions u for which the left-hand side is finite.

As an easy corollary in the case (T’), deriving directly from Theorem 3 and Theorem
6, we obtain the embedding W s,p;α,β(Ω) ⊂ Lp(Ω, dist(·, ∂Ω)−sp−α−β).

Theorem 7. Let 1 ≤ p < ∞ and 0 < s < 1. Suppose that Ω ̸= ∅ is an open, uniform,
bounded set such that 0 ≤ α, β < co dimA(∂Ω) and sp+α+β < co dimA(∂Ω). Then there
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exists a constant c such that∫

Ω

|f(x)|p
dΩ(x)sp+α+β

dx ≤ c∥f∥p
W s,p;α,β(Ω)

<∞,

for all f ∈ W s,p;α,β(Ω).

Theorem 7 is a generalization of the unweighted case from [9, Theorem 4], provided
that Ω is a uniform domain.

Notation. Having two nonnegative functions A and B we use a symbol ,≲’ if there
exists a constant c > 0 such that A ≤ cB. The constant c usually depends on some
parameters, like α, β, d, s, p, Ω, but not on the arguments of the functions A,B and the
set of these parameters arises from context. Moreover, we write A ≈ B when A ≲ B and
B ≲ A.

Acknowledgements. The author would like to thank Artur Rutkowski for careful
reading of the manuscript and useful remarks, in particular helpful discussions on the proof
of Theorem 2 and Bartłomiej Dyda for careful reading of the manuscript and valuable
comments.

2. Definitions

We will use the same definitions as in [9, Section 2]; for Reader’s convenience we repeat
them below.

2.1. Assouad and Minkowski dimensions. Recall that we denote the distance from
x ∈ Rd to a set E ⊂ Rd by dist(x,E) = inf

y∈E
|x− y|.

Definition 8. Let r > 0. For open sets Ω ⊂ Rd we define the inner tubular neighbourhood
of Ω as

Ωr = {x ∈ Ω : dΩ(x) ≤ r} ,
and for arbitrary sets E ⊂ Rd we define the tubular neighbourhood of E as

Ẽr =
{
x ∈ Rd : dist(x,E) ≤ r

}
.

Definition 9. [15, Section 3] Let E ⊂ Rd. The lower Assouad codimension co dimA(E)
is defined as the supremum of all q ≥ 0, for which there exists a constant C = C(q) ≥ 1
such that for all x ∈ E and 0 < r < R < diamE it holds∣∣∣Ẽr ∩B(x,R)

∣∣∣ ≤ C |B(x,R)|
( r
R

)q
.

Conversely, the upper Assouad codimension co dimA(E) is defined as the infimum of all
s ≥ 0, for which there exists a constant c = c(s) > 0 such that for all x ∈ E and
0 < r < R < diamE it holds∣∣∣Ẽr ∩B(x,R)

∣∣∣ ≥ c |B(x,R)|
( r
R

)s
.

We remark that having strict inequality R < diamE above makes the definitions ap-
plicable also for unbounded sets E; for bounded sets E we could have R ≤ diamE.

In Euclidean space Rd (more general - in Ahlfors d-regular measure metric spaces) it
holds

dimA(E) + co dimA(E) = dimA(E) + co dimA(E) = d,

where dimA(E) and dimA(E) denote respectively the well known lower and upper Assouad
dimension – see for example [15, Section 2]. Moreover, if co dimA(E) = co dimA(E), we
simply denote both of these values by co dimA(E).

We recall a notion of σ-homogenity, coming from [20, Theorem A.12].
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Definition 10. Let E ⊂ Rd and let V (E, x, λ, r) = {y ∈ Rd : dist(y, E) ≤ r, |x−y| ≤ λr}.
We say that E is σ-homogeneous, if there exists a constant L such that

|V (E, x, λ, r)| ≤ Lrdλσ

for all x ∈ E, λ ≥ 1 and r > 0.

If 0 < r < R < diam(E), then taking λ = R/r in the definition gives
∣∣∣Ẽr ∩B(x,R)

∣∣∣ =
∣∣∣∣V
(
E, x,

R

r
, r
)∣∣∣∣ ≤ C |B(x,R)|

( r
R

)d−σ

,

where C = C(d,E) is a constant. This means that if co dimA(E) = s, then (d − s)-
homogeneous sets are precisely these sets E, for which the supremum in the definition of
the lower Assouad codimension is attained. For the definition of the concept of homogenity
from a different point of view the Reader may also see [20, Definition 3.2].

Definition 11. The upper Minkowski dimension of a set E ⊂ Rd is defined as

dimM(E) = inf{s ≥ 0 : lim sup
r→0

∣∣∣Ẽr

∣∣∣ rd−s = 0},

see for example [14, Section 2].

It is not hard to see that co dimA(E) ≤ d − dimM(E) and the equality holds if E is
(d − co dimA(E)) - homogeneous. Moreover (considering again open, bounded sets Ω),
the distance zeta function

ζΩ(q) :=

∫

Ω

dx

dΩ(x)q

is finite if q < d− dimM(∂Ω) and infinite if q > d− dimM(∂Ω) (see [14, Lemma 3.3 and
Lemma 3.5]).

We recall a geometric notion from [27], appearing among other assumptions in Theorem
6.

Definition 12. A set E ⊂ Rd is κ-plump with κ ∈ (0, 1) if, for each 0 < r < diam(E)
and each x ∈ E, there is z ∈ B(x, r) such that B(z, κr) ⊂ E.

2.2. Whitney decomposition and operator P η. Let Ω be an open, nonempty, proper
subset of Rd. Let Q be any closed cube in Rd. We denote by l(Q) the length of the
side of Q and by xQ the center of Q. Following [23], there exists a family of dyadic
cubes W = {Qn}n∈N, called the Whitney decomposition, satisfying for all Q,S ∈ W the
conditions:

• Ω =
⋃

nQn;
• if Q ̸= S, then IntQ ∩ IntS = ∅;
• there exists a constant C = C(W) such that C diamQ ≤ dist(Q, ∂Ω) ≤ 4C diamQ;
• if Q ∩ S ̸= ∅, then l(Q) ≤ 2l(S);
• if Q ⊂ 5S then l(S) ≤ 2l(Q).

The dilation of the cube Q, cQ for c > 0, is always taken with respect to its center,
that is cQ is a cube with the same center as Q, but the length of the side cl(Q).

Inspired by [23] we define a shadow of a cube Q ∈ W as

Shθ(Q) = {S ∈ W : S ⊂ B (xQ, θl(Q))}.
The „realization" of Shθ is SHθ(Q) =

⋃
Shθ(Q). When θ is fixed, we abbreviate the

notation as Shθ(Q) =: Sh(Q) and SHθ(Q) =: SH(Q).
For all Q,S ∈ W we define their long distance D as

D(Q,S) = l(Q) + dist(Q,S) + l(S).
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We say that a sequence of cubes (Q,R1, R2, . . . , Rn, S) is a chain, if all two adja-
cent cubes have nonempty intersection. We denote (Q,R1, R2, . . . , Rn, S) = [Q,S] and
[Q,S) = [Q,S] \ S.

The Whitney decomposition is admissible, if there exists a > 0 such that for all Q,S ∈
W there exists a chain [Q,S] = (Q1, Q2, . . . , Qn) satisfying

•
n∑

i=1

l(Qi) ≤
1

a
D(Q,S);

• there exists 1 ≤ i0 ≤ n such that l(Qi) ≥ aD(Q,Qi) for all 1 ≤ i ≤ i0 and
l(Qi) ≥ aD(Qi, S) for all i0 ≤ i ≤ n. We denote Qi0 =: QS. This is the so-called
central cube in the chain [Q,S].

As stated in [23], for a γ-admissible Whitney decomposition we can always take suffi-
ciently large ρ = ργ > 1 such that for every γ-admissible chain of cubes [Q,S] we have
Q ∈ Shργ (P ) for P ∈ [Q,QS] and 5Q ⊂ SHργ (Q) for every Whitney cube Q ∈ W .

Next, we recall the definition and basic properties of the operator P η, defined in [10].
From now on we fix a Whitney decomposition W such that C(W) = 1 (see [26]) and
0 < ε <

√
5/4 − 1 < 1

4
. If Q is a cube, we denote by Q∗ the cube Q „blown up”

(1 + ε) times, that is the cube with the same center xQ∗ = xQ, but the length of the
side l(Q∗) = (1 + ε)l(Q). The cube Q∗∗

n is defined in a similar way, that is Q∗∗
n = (Q∗

n)
∗.

Notice that our choice of ε guarantees that (1 + ε)2 < 5
4

and in consequence Q∗∗
n ⊂ 5

4
Qn.

Moreover, each point x ∈ Ω belongs to at most 12d cubes Q∗∗
n .

Let {ψn}n∈N be a partition of unity adjusted to the Whitney decomposition W =
{Qn}n∈N of Ω, that is a family of functions satisfying 0 ≤ ψn ≤ 1, ψn = 1 on Qn,
suppψn ⊂ Q∗

n, ψn ∈ C∞
c (Ω),

∑
n ψn = 1 and |ψn(x) − ψn(y)| ≤ C|x − y|/l(Qn) for some

positive constant C independent of Qn. Let us also fix a nonnegative function h : Rd → R
with the following properties: supph = B(0, 1),

∫
Rd h(x) dx = 1, h ∈ C∞(Rd). For

δ > 0 we define its dilation as hδ(x) = δ−dh(x/δ). Moreover, let η : W → (0,∞) be any
function satisfying η(Q) < ε

2
l(Q) for all Q ∈ W (a typical example is η(Q) = δ l(Q) for

any δ < ε/2). For f ∈ L1
loc(Ω), extended by 0 on Rd \ Ω, we define the operator P η as

P ηf =
∞∑

n=1

(fψn) ∗ hη(Qn).

Here f ∗g(x) =
∫
Rd f(y)g(x−y) dy is the standard convolution operation. It was proved

in [10] that P η is well defined, P ηf ∈ C∞(Ω) and P η maps the space of all compactly
supported, locally integrable functions into C∞

c (Ω) (see [10], Propositions 1 and 2).

2.3. Uniform domains. There are two equivalent ways to define the notion of uniform
domain. The first one comes from [27], and the second one uses the Whitney decomposi-
tion and chains of cubes and can be found for example in [23]. We present both definitions
here.

Definition 13. A domain (i.e. connected, open set) Ω ⊂ Rd is uniform, if there exists a
constant C ≥ 1 such that for all points x, y ∈ Ω there is a curve γ : [0, l] → Ω joining them,
parameterized by arc length and satisfying l ≤ C|x − y| and dist(z, ∂Ω) ≥ 1

C
min{|z −

x|, |z − y|} for all z ∈ γ. Equivalently, a domain Ω ⊂ Rd is uniform, if there exists an
admissible Whitney decomposition of Ω.

Uniform domains and various reformulations of the definitions above appear also in
[13], [21] and [22]. To give a concrete, nontrivial example, we remark here that the Koch
snowflake is known to be uniform, despite the highly irregular behaviour of its boundary.
It is also σ-homogeneous with σ = log3 4, according to [19, Theorem 1.1].
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2.4. Muckenhoupt class A1 and Hardy-Littlewood maximal operator.

Definition 14. For f ∈ L1
loc(Rd) the (non-centered) maximal Hardy-Littlewood operator

is defined as
Mf(x) = sup

Q∋x

1

|Q|

∫

Q

f(y) dy,

where supremum is taken over all cubes Q containing x. Equivalently, M can be defined
using balls containing x instead of cubes (up to a multiplicative constant). It is well
known that this operator is bounded on Lp(Rd), whenever 1 < p ≤ ∞.

Definition 15. We say that a positive weight w belongs to the Muckenhoupt class A1, if
there exists a constant A > 0 such that for all cubes Q ⊂ Rd it holds

(2)
1

|Q|

∫

Q

w(x) dx ≤ A inf
y∈Q

w(y).

Notice that by (2) we can easily see that if w ∈ A1, then the maximal Hardy-Littlewood
operator acting on the function w satisfies

(3) Mw(x) = sup
Q∋x

1

|Q|

∫

Q

w(y) dy ≤ Aw(x),

where A depends on w. This property will be important for us later in the proof of
Theorem 2. Moreover, it was proved in [8, Theorem 1.1 (B)] that the weight d−α

Ω belongs
to the Muckenhoupt class A1 if and only if 0 ≤ α < co dimA(∂Ω). Hence, by (3), Md−α

Ω

satisfies
(4) Md−α

Ω (x) ≤ AdΩ(x)
−α,

where the constant A depends on Ω and α ∈ [0, co dimA(∂Ω)).

3. Lemmas

We start with showing that under some assumptions C∞
c (Ω) is a subset of W s,p;α,β(Ω)

and in consequence the latter is not trivial. This is an analogue of [6, Lemma 2.1], where
the same fact was established for Ω = Rd \ {0}. Although we consider bounded domains,
it agrees with the cited result in some aspects, as we have co dimA({0}) = d. Noteworthy,
if one of the exponents α, β is nonpositive, then the corresponding weight is bounded and
this case is trivial.

Lemma 16. Let Ω ⊂ Rd be a bounded, uniform domain. Suppose that 0 < s < 1,
1 ≤ p < ∞, 0 ≤ α, β < co dimA(∂Ω) and α + β < d − dimM(∂Ω) + p(1 − s). Then
C∞

c (Ω) ⊂ W s,p;α,β(Ω).

Proof. Let φ ∈ C∞
c (Ω). Then φ is Lipschitz and locally integrable, so, by Theorem 2 with

θ = 1
2

we have

[φ]p
W s,p;α,β(Ω)

≲
∫

Ω

∫

B(x, 12dΩ(x))

|φ(x)− φ(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

≲
∫

Ω

dΩ(x)
−α−β dx

∫

B(x, 12dΩ(x))

|φ(x)− φ(y)|p
|x− y|d+sp

dy

≲
∫

Ω

dΩ(x)
−α−β dx

∫

B(x, 12dΩ(x))

dy

|x− y|d+sp−p

≲
∫

Ω

dΩ(x)
−α−β+p(1−s) dx <∞,

where the last inequality follows from the properties of the distance zeta function. □
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Remark 17. We make an easy observation that for any Borel subset A ⊂ Ω and α, β ≥ 0
it holds
(5)∫

A

∫

A

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx ≤ 2

∫

A

∫

A

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−α−β dy dx.

Indeed, to prove (5) it suffices to split the inner integral into integrals over A ∩ {dΩ(x) ≥
dΩ(y)} and A ∩ {dΩ(x) < dΩ(y)} and use the symmetry between variables x and y.
According to above, if we abandon the assumption about the uniformity of Ω in Lemma
16, then, using (5), if Ω is bounded, we can analogously show that C∞

c (Ω) ⊂ W s,p;α,β(Ω)
for α + β < d − dimM(∂Ω). Interestingly, this is a different range of parameters than in
the Lemma 16.

Moreover, if C∞
c (Ω) ⊂ W s,p;α,β(Ω) and Ω is bounded, then we cannot have α, β >

d− dimM(∂Ω). Indeed, if φ ∈ C∞
c (Ω), then simple calculation shows that

[φ]p
W s,p;α,β(Ω)

≥ diam(Ω)−d−sp

∫

Ω

∫

Ω

|φ(x)− φ(y)|pdΩ(y)−βdΩ(x)
−α dy dx

≥ diam(Ω)−d−sp

∫

suppφ

∫

Ω\suppφ

|φ(x)|pdΩ(y)−βdΩ(x)
−α dy dx.

The inner integral
∫
Ω\suppφ

dΩ(y)
−β dy is infinite if β > d − dimM(∂Ω). The case when

α > d− dimM(∂Ω can be obtained similarly.

Definition 18. A weight w : Ω → Rd is locally comparable to a constant if for every
compact subset K ⊂ Ω there exists CK > 0 such that 1

CK
≤ w(x) ≤ CK for almost all

x ∈ K.

The following Theorem is a generalization of [10, Theorem 12], where the same fact
was proved for w = v.

Theorem 19. Let Ω ⊂ Rd be an nonempty open set, 0 < s < 1, p ∈ [1,∞). Denote

W̃ s,p;w,v(Ω) =

{
f : Ω → Rd measurable :

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

w(x) v(y) dx dy <∞
}
.

We understand W̃ s,p;w,v(Ω) as a semi-normed space. If w and v are locally bounded and
satisfy the integral condition

(6)
∫

Ω

w(x)

(1 + |x|)d+sp
dx <∞,

∫

Ω

v(x)

(1 + |x|)d+sp
dx <∞,

then C∞(Ω) ∩ W̃ s,p;w,v(Ω) is dense in W̃ s,p;w,v(Ω). Moreover, we have

W s,p;w,v
0 (Ω) = W s,p;w,v

c (Ω).

Proof. The proof follows the proof of [10, Theorem 12]. First, we fix a Whitney decom-
position W = {Qn}n∈N of Ω with a constant C(W) = 1. We extend w and v by 0 outside
Ω. If w or v take the value zero on Ω, then we can artificially augment them by adding
a positive, locally comparable to a constant weights w′, v′, which in addition satisfy (6).
New weights w + w′ and v + v′ are also locally comparable to a constant, positive and
satisfy (6). In this case w and v should be replaced by w + w′ and v + v′ in all the
computations below.

Denote by τy the translation operator, that is τyf(x) = f(x − y), x, y ∈ Rd, and let
M = 12d(p−1). Moreover, let f ∈ W̃ s,p;w,v(Ω) and

gn(x, y) =
f(x)ψn(x)− f(y)ψn(y)

|x− y| dp+s
1Ω×Ω (x, y).
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We have

[P ηkf − f ]pW s,p;w,v(Ω) ≤M

∞∑

n=1

∫

Rd

∥τηk(Qn)ugn − gn∥pLp(R2d,w×v)
h(u) du

and, for t < ηk(Qn),

∥τtgn − gn∥pLp(R2d,w×v)

≤
∫

Q∗
n

∫

Q∗∗
n

|f(x− t)ψn(x− t)− f(y − t)ψn(y − t)− f(x)ψn(x) + f(y)ψn(y)|p
|x− y|d+sp

w(x) v(y) dx dy

+

∫

Q∗
n

∫

Ω\Q∗∗
n

|f(x)ψn(x)− f(x− t)ψn(x− t)|p
|x− y|d+sp

w(x) v(y) dx dy

+

∫

Q∗
n

∫

Ω\Q∗∗
n

|f(x)ψn(x)− f(x− t)ψn(x− t)|p
|x− y|d+sp

w(y) v(x) dx dy

=: I1 + I2 + I3.

The estimates of the integrals I1 , I2 and I3 and completely analogous to these from [9,
Proof of Theorem 12]. Notice that the properly modified version of [10, Proposition 9]
also holds. The equality between W s,p;w,v

0 (Ω) and W s,p;w,v
c (Ω) is a consequence of [10,

Proposition 2] and the fact that the approximating functions are of the form P ηkf . □
Remark 20. Suppose that Ω is bounded. Then we trivially have

1 ≤ (1 + |x|)d+sp ≤M := sup
x∈Ω

(1 + |x|)d+sp <∞,

hence, the condition (6) is equivalent to w, v ∈ L1(Ω). Moreover, if w(x) = dΩ(x)
−α,

v(x) = dΩ(x)
−β, then (6) is satisfied when 0 ≤ α, β < d − dimM(∂Ω) (we refer again

to [14]). Of course, the function dΩ(x)
−a is locally comparable to a constant on Ω for

every a ∈ R.

Lemma 21. Let Ω ⊂ Rd be a nonempty, open set such that |Ω| <∞. Then we have

W s,p;w,v
0 (Ω) = W s,p;w,v(Ω) ⇐⇒ 1Ω ∈ W s,p;w,v

0 (Ω).

Proof. Using the result of Theorem 19 about the equality betweenW s,p;w,v
0 (Ω) andW s,p;w,v

c (Ω),
the proof is a copy of [9, Lemma 13]. □
Lemma 22. Let Ω be an open, uniform, bounded domain and let

vn(x) = max {min {2− ndΩ(x), 1} , 0} =





1 when dΩ(x) ≤ 1/n,
2− ndΩ(x) when 1/n < dΩ(x) ≤ 2/n,
0 when dΩ(x) > 2/n.

There exists a constant C = C(d, s, p, α, β,Ω) > 0 such that the following inequality holds
for all functions f ∈ W s,p;α,β(Ω) and 0 ≤ α, β < co dimA(∂Ω),
(7)

[fvn]
p
W s,p;α,β(Ω)

≤ Cnsp

∫

Ω 3
n

|f(x)|p
dΩ(x)α+β

dx+C

∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx.

Moreover, without assuming the uniformity of Ω, the following weaker inequality is satis-
fied for all α, β ≥ 0, α + β < d− dimM(∂Ω) and f ∈ L∞(Ω),
(8)

[fvn]
p
W s,p;α,β(Ω)

≤ C∥f∥p∞nsp

∫

Ω 3
n

dx

dΩ(x)α+β
+C

∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx.
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Proof. The following proof is a modification of [9, Lemma 10]. By Theorem 2, taking
θ = 1

2
we have

[fvn]
p
W s,p;α,β(Ω)

≲
∫

Ω

∫

B(x, 12dΩ(x))

|f(x)vn(x)− f(y)vn(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

=

∫

Ω 3
n

∫

B(x, 12dΩ(x))∩Ω 3
n

|f(x)vn(x)− f(y)vn(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

+

∫

Ω 3
n

∫

B(x, 12dΩ(x))∩
(
Ω\Ω 3

n

)
|f(x)vn(x)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

+

∫

Ω\Ω 3
n

∫

B(x, 12dΩ(x))∩Ω 3
n

|f(y)vn(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

=: J1 + J2 + J3.

Starting with estimating the integral J1, we obtain

J1 ≲
∫

Ω 3
n

∫

B(x, 12dΩ(x))∩Ω 3
n

|vn(y)|p|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

+

∫

Ω 3
n

∫

B(x, 12dΩ(x))∩Ω 3
n

|f(x)|p|vn(x)− vn(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

=: K1 +K2.

The integral K1 can be trivially bounded from above by the remainder of the weighted
Gagliardo seminorm, that is

K1 ≤
∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx.

Moreover, using the bound |vn(x) − vn(y)| ≤ min{1, |x − y|} and the fact that dΩ(x) ≈
dΩ(y) on the ball B

(
x, 1

2
dΩ(x)

)
we can estimate K2 as follows,

K2 ≲
∫

Ω 3
n

∫

Ω 3
n

|f(x)|p (min{1, |x− y|})p
|x− y|d+sp

dΩ(x)
−α−β dy dx.

Splitting the inner integral over dy into |x − y| > 1/n and |x − y| ≤ 1/n gives the first
term in (7).

Going back to the integral J2 and remembering that vn = 0 on Ω 3
n
\ Ω 2

n
we have

J2 =

∫

Ω 2
n

∫

B(x, 12dΩ(x))∩
(
Ω\Ω 3

n

)
|f(x)vn(x)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

≲
∫

Ω 2
n

∫

B(x, 12dΩ(x))∩
(
Ω\Ω 3

n

)
|f(x)vn(x)|p
|x− y|d+sp

dΩ(x)
−α−β dy dx

≤
∫

Ω 2
n

∫

Ω\Ω 3
n

|f(x)vn(x)|p
|x− y|d+sp

dΩ(x)
−α−β dy dx

≤
∫

Ω 2
n

|f(x)|pdΩ(x)−α−β dx

∫

B(x,1/n)c

dy

|x− y|d+sp

≲ nsp

∫

Ω 2
n

|f(x)|pdΩ(x)−α−β dx.
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The integral J3 can be estimated in the similar way as J2. That ends the proof of (7).
We note that the proof of (8) is analogous to the previous part. K1 estimates by (5) and
in the integrals J2 and J3 we use the fact that dΩ(y) ≥ dΩ(x) for y /∈ Ω 3

n
and x ∈ Ω 3

n
,

hence, the comparability is not necessary here. The only thing that essentially changes is
the estimation of K2. In this case we bound |f(x)| from above by its L∞-norm, use (5)
and then proceed similarly as before to obtain the desired result. That proves (8). □

4. Proof of the comparability

Proof of Theorem 2. In the proof of this Theorem we use techniques coming from [23].
We start with fixing sufficiently fragmented Whitney decomposition W = W(θ), so that
for (x, y) ∈ Q × 5Q it holds y ∈ B(x, θ dΩ(x)). Suppose first that p > 1. Let q = p

p−1

be the Hölder conjugate exponent to p. Using the duality between spaces Lp(Ω×Ω) and
Lq(Ω×Ω) we can write the weighted Gagliardo seminorm wherewithal dual norm, that is

(∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−βdΩ(x)

−α dx

) 1
p

= sup

∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y| dp+s

dΩ(x)
−α

p dΩ(y)
−β

p g(x, y) dy dx,

where the supremum is taken over all nonnegative g ∈ Lq(Ω×Ω) satisfying ∥g∥Lq(Ω×Ω) ≤ 1.
For now on we fix such a function g. Now, we split the integration range as follows,

∫

Ω

∫

Ω

=
∑

Q

∫

Q

∫

2Q

+
∑

Q,S

∫

Q

∫

S\2Q
=: S1 + S2.

Thanks to our assumption about the Whitney decomposition, the first sum can be im-
mediately estimated by the truncated seminorm with making use of the Hölder inequality,

S1 ≤
(∑

Q

∫

Q

∫

2Q

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

) 1
p

∥g∥Lq(Ω×Ω)

≤
(∑

Q

∫

Q

∫

2Q

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

) 1
p

≤
(∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

) 1
p

.

Hence, we only need to estimate the second part, S2. We denote by fQ the average
value of f on the cube Q, that is fQ = 1

|Q|
∫
Q
f(x) dx (the latter is finite by assumption).

Using similar arguments as in [23, Section 4] we observe that for x ∈ Q and y ∈ S \ 2Q
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it holds |x− y| ≈ D(Q,S), hence, triangle inequality yields

S2 ≲
∑

Q

∑

S

∫

Q

∫

S

|f(x)− f(y)|
D(Q,S)

d
p
+s

dΩ(x)
−α

p dΩ(y)
−β

p g(x, y) dy dx

≤
∑

Q

∑

S

∫

Q

∫

S

|f(x)− fQ|
D(Q,S)d+sp

dΩ(x)
−α

p dΩ(y)
−β

p g(x, y) dy dx

+
∑

Q

∑

S

∫

Q

∫

S

|fQ − fQS
|

D(Q,S)d+sp
dΩ(x)

−α
p dΩ(y)

−β
p g(x, y) dy dx

+
∑

Q

∑

S

∫

Q

∫

S

|fQS
− fS|

D(Q,S)d+sp
dΩ(x)

−α
p dΩ(y)

−β
p g(x, y) dy dx

+
∑

Q

∑

S

∫

Q

∫

S

|fS − f(y)|
D(Q,S)d+sp

dΩ(x)
−α

p dΩ(y)
−β

p g(x, y) dy dx

=: (A)+ (B)+ (C)+ (D).

Let us estimate (A) first. By Hölder inequality and Fubini-Tonelli theorem we get

(A) ≤
∑

Q

∫

Q

|f(x)− fQ|dΩ(x)−
α
p

(∑

S

∫

S

g(x, y)q dy

) 1
q
(∑

S

∫

S

dΩ(y)
−β

D(Q,S)d+sp

) 1
p

dx

≤
(∑

Q

∫

Q

|f(x)− fQ|pdΩ(x)−α
∑

S

∫

S

dΩ(y)
−β

D(Q,S)d+sp
dx

) 1
p

.

By [23, Lemma 2.7] with r = l(Q) and the Muckenhoupt condition (4) we have
∑

S

∫

S

dΩ(y)
−β

D(Q,S)d+sp
dy ≲ l(Q)−sp inf

y∈Q
Md−β

Ω (y)

≲ l(Q)−sp inf
y∈Q

dΩ(y)
−β

≲ l(Q)−spdΩ(y)
−β

for any y ∈ Q, where M is the Hardy-Littlewood maximal function. Hence, by Jensen
inequality and Whitney decomposition properties, (A) can be bounded from above as
follows,

(A)p ≲
∑

Q

∫

Q

1

|Q|

∫

Q

|f(x)− f(y)|pdΩ(x)−αdΩ(y)
−βl(Q)−sp dy dx

≲
∑

Q

∫

Q

∫

Q

|f(x)− f(y)|pdΩ(x)−αdΩ(y)
−βl(Q)−sp−d dy dx

≲
∑

Q

∫

Q

∫

Q

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

≤
∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx,

as it holds |x− y| ≲ l(Q) for x, y ∈ Q.
Now, we face the estimation of the component (B). We denote by N (P ) the successor

of the cube P in the chain [Q,S]. It holds N (P ) ⊂ 5P and Q ∈ Sh(P ) for P ∈ [Q,QS].
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Also, D(Q,S) ≈ D(P, S) for such P . Hence, analogously to [23], by triangle inequality
and Jensen inequality we can estimate (B) as follows,

(B) ≤
∑

Q,S

∫

Q

∫

S

dΩ(x)
−α

p dΩ(y)
−β

p

D(Q,S)
d
q
+s

g(x, y)
∑

P∈[Q,QS)

|fP − fN (P )| dy dx

≤
∑

Q,S

∫

Q

∫

S

∑

P∈[Q,QS)

1

|P |
1

|N (P )|

∫

P

∫

N (P )

|f(ξ)− f(ζ)| dξ dζ dΩ(x)
−α

p dΩ(y)
−β

p

D(Q,S)
d
p
+s

g(x, y) dy dx

≲
∑

P

1

|P ||5P |

∫

P

∫

5P

|f(ξ)− f(ζ)| dξ dζ
∑

Q∈Sh(P )

∑

S

∫

Q

∫

S

dΩ(x)
−α

p dΩ(y)
−β

p

D(P, S)
d
q
+s

g(x, y) dy dx.

Define

G(x) =

(∫

Ω

g(x, y)q dy

) 1
q

, x ∈ Ω.

Using again Hölder inequality, Muckenhoupt condition (4) and Whitney covering proper-
ties we have

∑

Q∈Sh(P )

∑

S

∫

Q

∫

S

dΩ(x)
−α

p dΩ(y)
−β

p

D(P, S)
d
p
+s

g(x, y) dy dx

≤
∑

Q∈Sh(P )

∫

Q

dΩ(x)
−α

p

(∑

S

∫

S

dΩ(y)
−β

D(P, S)d+sp

) 1
p

G(x) dx

≲ l(P )−
β
p
−s

∫

SH(P )

G(x)dΩ(x)
−α

p dx.

Let us take small ε > 0, to be established in a moment. We apply Hölder inequality with
exponents q − ε and q−ε

q−ε−1
to the integral above to obtain

∫

SH(P )

G(x)dΩ(x)
−α

p dx ≤
(∫

SH(P )

G(x)q−ε(x) dx

) 1
q−ε
(∫

SH(P )

dΩ(x)
− α(q−ε)

p(q−ε−1) dx

) q−ε−1
q−ε

.

Notice that
lim
ε→0+

q − ε

p(q − ε− 1)
=

q

p(q − 1)
= 1,

hence, remembering that by assumption 0 ≤ α < co dimA(∂Ω), for sufficiently small ε
we still have 0 ≤ α(q−ε)

p(q−ε−1)
< co dimA(∂Ω) (this condition defines ε, as well as q − ε > 1).

According to this, by [23, Lemma 2.7] and (4), we have
(∫

SH(P )

G(x)q−ε(x) dx

) 1
q−ε
(∫

SH(P )

dΩ(x)
− α(q−ε)

p(q−ε−1) dx

) q−ε−1
q−ε

≲
(
l(P )d inf

x∈P
MGq−ε(x)

) 1
q−ε
(
l(P )d inf

x∈P
Md

− α(q−ε)
p(q−ε−1)

Ω (x)

) q−ε−1
q−ε

≲
(
l(P )d inf

x∈P
MGq−ε(x)

) 1
q−ε (

l(P )d−
α(q−ε)

p(q−ε−1)

) q−ε−1
q−ε

≤ l(P )d−
α
p
(
MGq−ε(ζ)

) 1
q−ε



14 M. KIJACZKO

for any ζ ∈ P . Finally, summing up all the considerations above, by Jensen inequal-
ity, Hölder inequality and boundendess of the Hardy-Littlewood maximal function on
L

q
q−ε (Rd) we get the following result,

(B) ≲
∑

P

l(P )d−
α
p
−β

p
−s

|P ||5P |

∫

P

∫

5P

|f(ξ)− f(ζ)|
(
MGq−ε(ζ)

) 1
q−ε dξ dζ

=
∑

P

l(P )−
α
p
−β

p
−s

|5P |

∫

P

∫

5P

|f(ξ)− f(ζ)|
(
MGq−ε(ζ)

) 1
q−ε dξ dζ

≤
∑

P

l(P )−
α
p
−β

p
−s

(∫

P

(
1

|5P |

∫

5P

|f(ξ)− f(ζ)| dξ
)p

dζ

) 1
p
(∫

P

(
MGq−ε(ζ)

) q
q−ε dζ

) 1
q

≤
∑

P

l(P )−
α
p
−β

p
−s

(∫

P

1

|5P |

∫

5P

|f(ξ)− f(ζ)|p dξ dζ
) 1

p
(∫

P

(
MGq−ε(ζ)

) q
q−ε dζ

) 1
q

≲
(∑

P

∫

P

∫

5P

|f(ξ)− f(ζ)|p
|ξ − ζ|d+sp

dΩ(ζ)
−αdΩ(ξ)

−β

) 1
p (∫

Ω

(
MGq−ε(ζ)

) q
q−ε dζ

) 1
q

≲
(∑

P

∫

P

∫

5P

|f(ξ)− f(ζ)|p
|ξ − ζ|d+sp

dΩ(ζ)
−αdΩ(ξ)

−β

) 1
p (∫

Ω

Gq(ζ) dζ

) 1
q

≲
(∑

P

∫

P

∫

5P

|f(ξ)− f(ζ)|p
|ξ − ζ|d+sp

dΩ(ζ)
−αdΩ(ξ)

−β dξ dζ

) 1
p

≲
(∫

Ω

∫

B(x,θdΩ(x))

|f(ξ)− f(ζ)|p
|ξ − ζ|d+sp

dΩ(ζ)
−αdΩ(ξ)

−β dξ dζ

) 1
p

.

That ends (B). We observe that the case (C) is symmetric to (B) (as we may have
QS = SQ). We will obtain the same estimate as in (B), but with α and β changed,
however it holds dΩ(x) ≈ dΩ(y) for x, y ∈ 5P , hence, we will obtain exactly the same
bound. The case (D) is symmetric to (A). That ends the proof in the case p > 1. When
p = 1, we proceed similarly and actually this case is simpler and does not require the
usage of dual norms. □

When p = 1, we can formulate even a more general result.

Theorem 23. Let Ω be a nonempty, bounded, uniform domain and 0 < s < 1, 0 < θ ≤ 1.
If the weights w, v belong to the Muckenhoupt class A1, then the full seminorm [f ]W s,1;w v(Ω)

and the truncated seminorm∫

Ω

∫

B(x,θdΩ(x))

|f(x)− f(y)|
|x− y|d+s

(w(x)v(y) + w(y)v(x)) dy dx

are comparable for all f ∈ L1
loc(Ω). The comparability constant depends on Ω, s, d, w, v

and θ.

Proof. The proof is similar to the proof of Theorem 2. The additional term in the trun-
cated seminorm above follows from the fact, that components (B) and (C) are symmetric
with respect to w and v, but we cannot use the comparability of w(x) and v(y) on the
cube 5P , as for the distance weights. □
Remark 24. Interestingly, the result of Theorem 2 allow to deduce in some cases an-
other comparability property, between weighted Gagliardo seminorms [f ]W s,p;αβ(Ω) and
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[f ]W s,p;α+β,0(Ω). Suppose that Ω is a nonempty, bounded, uniform domain and the pa-
rameters α, β satisfy 0 ≤ α, β, α + β < co dimA(∂Ω). Take f ∈ L1

loc(Ω). By (5) we
have

[f ]W s,p;αβ(Ω) ≤ 2
1
p [f ]W s,p;α+β,0(Ω).

To obtain a converse inequality, we use Theorem 2 with θ = 1
2

and get

[f ]p
W s,p;αβ(Ω)

≥
∫

Ω

∫

B(x, 12dΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−βdΩ(x)

−α dy dx

≈
∫

Ω

∫

B(x, 12dΩ(x))

|f(x)− f(y)|p
|x− y|d+sp

dΩ(y)
−α−β dy dx

≳ [f ]p
W s,p;α+β,0(Ω)

.

Overall, we indeed get that

[f ]W s,p;αβ(Ω) ≈ [f ]W s,p;α+β,0(Ω).

5. Proofs of main results

Before we proceed to prove our main results, we need the following Proposition.

Proposition 25. Let Ω be a nonempty open set. Then the space W s,p;w, v(Ω) is reflexive
for 0 < s < 1, 1 < p <∞ and all weights w and v.

Proof. The proof is a modification of the proof of the reflexivity of the classical Sobolev
space W 1,p(Ω) from [3, Proposition 8.1]. We define the isometry T : W s,p;w, v(Ω) →
Lp(Ω)× Lp(Ω× Ω, w × v) (the latter endowed with the natural product norm) by

T (u) =

(
u,
u(x)− u(y)

|x− y| dp+s

)
.

The reflexitiy of W s,p;w, v(Ω) is a consequence of reflexivity of Lp(Ω)×Lp(Ω×Ω, w×v). □

Proof of Theorem 3, case I. By Lemma 21 and Theorem 19 to prove the density of C∞
c (Ω)

in W s,p;α,β(Ω) it suffices to approximate the function f = 1Ω by functions with compact
support. By (8) (keeping the same notation), we have

[fvn]
p
W s,p;α,β(Ω)

≤ Cnsp

∫

Ω 3
n

dx

dΩ(x)α+β
.

We have

nsp

∫

Ω 3
n

dΩ(x)
−α−β dx ≲

∫

Ω 3
n

dΩ(x)
−α−β−sp dx −→ 0,

when n −→ ∞, because
∫
Ω
dΩ(x)

−α−β−sp dx = ζΩ(α + β + sp) <∞. □



16 M. KIJACZKO

Proof of Theorem 3, case II. Recall that in this case we assume that Ω is (d−sp−α−β)-
homogeneous. Define the layers Ωi,n =

{
x ∈ Ω : 3

2i+1n
< dΩ(x) ≤ 3

2in

}
. We observe that

nsp

∫

Ω 3
n

dΩ(x)
−α−β dx = nsp

∞∑

i=0

∫

Ωi,n

dΩ(x)
−α−β dx

≈ nsp+α+β

∞∑

i=0

2−i(α+β) |Ωi,n|

≲ nsp+α+β−d

∞∑

i=0

2−i(α+β+d) = C,

where C is a constant independent of n. That means that the sequence {fvn}n∈N is
bounded in W s,p;α,β(Ω). Now, the proof follows [9, Proof of Theorem 2, case II]: we
use Banach–Alaoglu and Eberlein–Šmulian theorems to conclude that there exists a sub-
sequence {fvnk

}k∈N convergent to 1Ω in W s,p;α,β(Ω). The reflexivity of W s,p;α,β(Ω) is
essential here. □

Proof of Theorem 3, case III. We proceed analogously as in the unweighted case in [9,
Proof of Theorem 2, case III]. In this case we just need to use the fractional weighted
Hardy inequality (1) in the case (F) and Fatou’s lemma to prove that the function f = 1Ω

cannot be approximated by C∞
c (Ω) functions in W s,p;α,β(Ω). □

Remark 26. Notice that in the proof of the case III we use the fact that if un −→ 1Ω in
Lp(Ω), then there exists a subsequence unk

convergent to 1Ω almost everywhere; the same
fact holds if we replace Lp(Ω) by the weighted space Lp(Ω,W ) for almost everywhere
positive W ∈ L1(Ω).

Proof of Theorem 4. If
∫
Ω
|f(x)|pdΩ(x)−sp−α−β dx <∞, then f ∈ W s,p;α,β

0 (Ω), because by
Lemma 22 we have

[fvn]
p
W s,p;α,β(Ω)

≲ nsp

∫

Ω 3
n

|f(x)|p
dΩ(x)α+β

dx+

∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx

≲
∫

Ω 3
n

|f(x)|p
dΩ(x)sp+α+β

dx+

∫

Ω 3
n

∫

Ω 3
n

|f(x)− f(y)|p
|x− y|d+sp

dΩ(x)
−αdΩ(y)

−β dy dx→ 0,

when n −→ ∞. On the other side, if f ∈ W s,p;α,β
0 (Ω), then by the fractional Hardy

inequality (1) and Fatou’s lemma we obtain that
∫
Ω
|f(x)|pdΩ(x)−sp−α−β dx < ∞. That

proves the desired characterization of W s,p;α,β
0 (Ω). □

Proof of Theorem 7. This is a straightforward consequence of the fractional Hardy in-
equality (1) in the case (T’), case I of the Theorem 3 and Fatou’s lemma. We can easily
see that uniform domains are κ-plump, so (6) is applicable. □

References

[1] Abdellaoui, B., and Bentifour, R. Caffarelli-Kohn-Nirenberg type inequalities of fractional
order with applications. J. Funct. Anal. 272, 10 (2017), 3998–4029.

[2] Baalal, A., and Berghout, M. Density properties for fractional Sobolev spaces with variable
exponents. Ann. Funct. Anal. 10, 3 (2019), 308–324.

[3] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011.

[4] Bux, K.-U., Kassmann, M., and Schulze, T. Quadratic forms and Sobolev spaces of fractional
order. Proc. Lond. Math. Soc. (3) 119, 3 (2019), 841–866.



FRACTIONAL SOBOLEV SPACES WITH POWER WEIGHTS 17

[5] Chaker, J., and Silvestre, L. Coercivity estimates for integro-differential operators. Calc. Var.
Partial Differential Equations 59, 4 (2020), Paper No. 106, 20.

[6] Dipierro, S., and Valdinoci, E. A density property for fractional weighted Sobolev spaces. Atti
Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 4 (2015), 397–422.

[7] Dyda, B. On comparability of integral forms. J. Math. Anal. Appl. 318, 2 (2006), 564–577.
[8] Dyda, B., Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., and Vähäkangas, A. V. Muck-

enhoupt Ap-properties of distance functions and applications to Hardy-Sobolev–type inequalities.
Potential Anal. 50, 1 (2019), 83–105.

[9] Dyda, B., and Kijaczko, M. On density of compactly supported smooth functions in fractional
Sobolev spaces. https://arxiv.org/abs/2104.08953 .

[10] Dyda, B., and Kijaczko, M. On density of smooth functions in weighted fractional Sobolev
spaces. Nonlinear Anal. 205 (2021), 112231, 10.

[11] Dyda, B., and Vähäkangas, A. V. A framework for fractional Hardy inequalities. Ann. Acad.
Sci. Fenn. Math. 39, 2 (2014), 675–689.

[12] Fiscella, A., Servadei, R., and Valdinoci, E. Density properties for fractional Sobolev spaces.
Ann. Acad. Sci. Fenn. Math. 40, 1 (2015), 235–253.

[13] Gehring, F. W., and Osgood, B. G. Uniform domains and the quasihyperbolic metric. J. Analyse
Math. 36 (1979), 50–74 (1980).

[14] Henderson, A. M. Fractal Zeta Functions in Metric Spaces. ProQuest LLC, Ann Arbor, MI, 2020.
Thesis (Ph.D.)–University of California, Riverside.

[15] Käenmäki, A., Lehrbäck, J., and Vuorinen, M. Dimensions, Whitney covers, and tubular
neighborhoods. Indiana Univ. Math. J. 62, 6 (2013), 1861–1889.

[16] Kassmann, M., and Wagner, V. Nonlocal quadratic forms with visibility constraint.
https://arxiv.org/abs/1810.12289 .

[17] Kinnunen, J., and Martio, O. Hardy’s inequalities for Sobolev functions. Math. Res. Lett. 4, 4
(1997), 489–500.

[18] Kufner, A. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons, Inc.,
New York, 1985. Translated from the Czech.

[19] Lapidus, M. L., and Pearse, E. P. J. A tube formula for the Koch snowflake curve, with
applications to complex dimensions. J. London Math. Soc. (2) 74, 2 (2006), 397–414.

[20] Luukkainen, J. Assouad dimension: antifractal metrization, porous sets, and homogeneous mea-
sures. J. Korean Math. Soc. 35, 1 (1998), 23–76.

[21] Martio, O. Definitions for uniform domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1 (1980),
197–205.

[22] Martio, O., and Sarvas, J. Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser.
A I Math. 4, 2 (1979), 383–401.

[23] Prats, M., and Saksman, E. A T(1) theorem for fractional Sobolev spaces on domains. J. Geom.
Anal. 27, 3 (2017), 2490–2538.

[24] Rutkowski, A. Reduction of integration domain in Triebel–Lizorkin spaces. Studia Math. 259, 2
(2021), 121–152.

[25] Seeger, A. A note on Triebel-Lizorkin spaces. In Approximation and function spaces (Warsaw,
1986), vol. 22 of Banach Center Publ. PWN, Warsaw, 1989, pp. 391–400.

[26] Stein, E. M. Singular integrals and differentiability properties of functions. Princeton Mathematical
Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

[27] Väisälä, J. Uniform domains. Tohoku Mathematical Journal 40, 1 (1988), 101 – 118.

(M.K.) Faculty of Pure and Applied Mathematics, Wrocław University of Science and
Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Email address: michal.kijaczko@pwr.edu.pl





SHARP HARDY INEQUALITIES FOR SOBOLEV-BREGMAN FORMS

MICHAŁ KIJACZKO AND JULIA LENCZEWSKA

Abstract. We obtain sharp fractional Hardy inequalities for the half-space and for
convex domains. We extend the results of Bogdan and Dyda and of Loss and Sloane to
the setting of Sobolev-Bregman forms.

1. Introduction and main results

Let 0 < α < 2 and d = 1, 2, . . .. Bogdan and Dyda [2] proved the following Hardy
inequality in the half-space D = {x = (x1, . . . , xd) ∈ Rd : xd > 0}. For every u ∈ Cc(D),

(1)
1

2

∫

D

∫

D

(u(x)− u(y))2

|x− y|d+α
dx dy ≥ κd,α

∫

D

u(x)2

xαd
dx ,

where

(2) κd,α =
π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

) B
(

1+α
2
, 2−α

2

)
− 2α

α2α
,

and (1) fails to hold for some u ∈ Cc(D) if κd,α is replaced by a bigger constant. Here, Γ
is the Euler gamma function, B is the Euler beta function, and Cc(D) denotes the class
of all the continuous functions u : Rd → R with compact support in D.

The main purpose of this note is to prove a generalization of this inequality, where the
left-hand side of (1) is replaced with the following form:

(3) Ep[u] :=
1

2

∫

D

∫

D

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)|x− y|−d−α dy dx,

defined for p ∈ (1,∞) and u : Rd → R, where

a〈k〉 := |a|k sgn a, a, k ∈ R.

We call such integral forms the Sobolev-Bregman forms.
For α 6= 1 let

(4) κd,p,α = −π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

)
(

B
(
α−1
p

+ 1,−α
)

+ B
(
α− α−1

p
,−α

)
+ 1

α

)
≥ 0.

Recall that B(x, y) = Γ(x)Γ(y)/Γ(x+y) and 1/Γ can be extended analytically to the whole
of R, hence B(x, y) is well defined for all x, y 6= 0,−1,−2, . . . . Noteworthy, κd,p,1 = 0
(understood as the limit of κd,p,α as α → 1). Furthermore, observe that κd,p,α = κd,p′,α,
where p′ = p/(p− 1).

Our first main result reads as follows.
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Key words and phrases. Hardy inequality, fractional Laplacian, half-space, convex domain.
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2 M. KIJACZKO AND J. LENCZEWSKA

Theorem 1. Let 0 < α < 2, d = 1, 2, . . . and 1 < p <∞. For every u ∈ Cc(D),

(5)
1

2

∫

D

∫

D

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|d+α
dx dy ≥ κd,p,α

∫

D

|u(x)|p
xαd

dx ,

and the constant in (5) is the best possible, i.e. it cannot be replaced by a bigger one.

Our work is motivated by a recent paper of Bogdan, Jakubowski, Lenczewska and
Pietruska-Pałuba [4], who obtained a similar inequality for the whole space Rd instead
of D (see [4, Theorems 1 and 2]), namely they proved that if 0 < α < d ∧ 2, then for
u ∈ Lp(Rd),

Ad,−α
2

∫

Rd

∫

Rd

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|d+α
dx dy ≥ κ d−α

p

∫

Rd

|u(x)|p
|x|α dx ,

where Ad,−α = 2αΓ((d+α)/2)

πd/2|Γ(−α/2)| and the constant κ d−α
p

is explicit and optimal. They used this
inequality to characterize the Lp contractivity property of the Feynman-Kac semigroup
generated by ∆α/2 + κ|x|−α.

For the sake of completeness, let us mention that the sharp fractional Hardy inequality

(6)
∫

D

∫

D

|u(x)− u(y)|p
|x− y|d+sp

dy dx ≥ Dd,s,p
∫

D

|u(x)|p
xspd

dx,

where u ∈ C∞0 (D) if ps < 1 and u ∈ C∞0 (D) if ps > 1, was obtained by Frank and
Seiringer in [10]. The constant Dd,s,p is optimal and has an explicit form (see [10, (1.4)]).
However, this result is not directly comparable to ours, as the integral forms in (3) and
on the left-hand side of (6) are different for p 6= 2. The reader interested in fractional
Hardy inequalities may also see Frank and Seiringer [9] for an analogous result on Rd,
Frank, Lieb and Seiringer [8] for other optimal inequalities and [5–7] for more general
Hardy inequalities, but with unknown sharp constants.

Loss and Sloane [13] proved that if α ∈ (1, 2), then a fractional Hardy inequality
similar to (6) holds for all convex, proper subsets of Rd, with the same optimal constant
(see [13, Theorem 1.2]). We obtain an analogous formula for Sobolev-Bregman forms and
this is our second main result.

Theorem 2. Let Ω be an open, proper subset of Rd and let 1 < α < 2. Then, for
u ∈ Cc(Ω),

(7)
1

2

∫

Ω

∫

Ω

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|d+α
dx dy ≥ κd,p,α

∫

Ω

|u(x)|p
mα(x)α

dx,

where

mα(x)α =

∫
Sd−1 |ωd|α dω∫

Sd−1 dω,Ω(x)−α dω
, dω,Ω(x) = min{|t| : x+ tω /∈ Ω}.

In particular, if Ω is convex, then

(8)
1

2

∫

Ω

∫

Ω

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|d+α
dx dy ≥ κd,p,α

∫

Ω

|u(x)|p
dist(x, ∂Ω)α

dx.

The constant in (8) is optimal.

Here, dist(x, ∂Ω) denotes the distance from the point x ∈ Ω to ∂Ω, i.e. dist(x, ∂Ω) =
infy∈∂Ω |x− y|. We note that (8) is an easy consequence of (7) since mα(x) ≤ dist(x, ∂Ω)
if Ω is convex and x ∈ Ω (see [13]). If α ≤ 1 and Ω is a bounded convex domain, then the
inequality (8) cannot hold with any positive constant, see Remark 1.

Fractional Hardy inequalities are of interest not only from the analytical point of view,
but also due to their connection with stochastic processes by means of Dirichlet forms. In
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particular, our result is related to the censored α-stable process in D, which, informally
speaking, is a stable process „forced” to stay inside D, see Bogdan, Burdzy and Chen [1].
If we denote its Dirichlet form by C(u, v), then similarly as in [2], (5) is for u ∈ C∞c (D)
equivalent to

C(u, u〈p−1〉) ≥ Ad,−ακd,p,α
∫

D

|u(x)|p
xαd

dx.

Due to the relation between C and the Dirichlet form of the α-stable process killed upon
leaving D, which we denote by K(u, v) (we again refer to [1]), we get

K(u, u〈p−1〉) ≥ Ad,−α
(
κd,p,α +

1

α

π(d−1)/2Γ ((1 + α)/2)

Γ ((α + d)/2)

)∫

D

|u(x)|p
xαd

dx,

for all u ∈ C∞c (D).
The generator of the censored α-stable process in D is the regional fractional Laplacian,

defined for u ∈ C2
c (D) by the formula

∆
α/2
D u(x) = Ad,−α lim

ε→0+

∫

D∩{|y−x|>ε}

u(y)− u(x)

|x− y|d+α
dy ,

see [11, 12]. We will use the notation L = A−1
d,−α∆

α/2
D .

For a, b ∈ R and p > 1, we define the Bregman divergence

Fp(a, b) := |b|p − |a|p − pa〈p−1〉(b− a).

The function Fp is nonnegative as the second-order Taylor remainder of the convex func-
tion x 7→ |x|p. Moreover, we have the identity Fp(a, b)+Fp(b, a) = p(b−a)(b〈p−1〉−a〈p−1〉),
and the latter expression appears on the left-hand side of (5). We refer the reader to [4]
for more references on Sobolev-Bregman forms.

We denote by |x| = (x2
1 + · · ·+x2

d)
1/2 the Euclidean norm of x = (x1, . . . , xd) ∈ Rd, and

B(x, r) stands for the Euclidean ball of radius r > 0 centered at x. For d ≥ 2 we write
x = (x′, xd), where x′ = (x1, . . . , xd−1), and we let ‖x′‖ = max

k=1,...,d−1
|xk|.

Acknowledgement. We thank Bartłomiej Dyda and Tomasz Jakubowski for com-
ments on the original version of the manuscript and inspiring discussions on related Hardy
inequalities. We would also like to thank the anonymous referee for helpful remarks.

2. Proof of Theorem 1

In order to prove our first result, we will need an analogue of [4, Theorem 1].
Let w = wβ = xβd for β ∈ (−1, α). By [1, (5.4) and (5.5)],

(9) Lwβ(x) = γ(α, β)
π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

) x−αd wβ(x) ,

where

(10) γ(a, b) =

∫ 1

0

(tb − 1)(1− ta−b−1)

(1− t)1+a
dt, a ∈ (0, 2), b ∈ (−1, a),

is absolutely convergent. We note that γ(α, β) ≤ 0 if and only if β(α− β − 1) ≥ 0.
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Lemma 1. Let w(x) = wβ(x) = xβd , β ∈ (−1, α) for p ∈ (1, 2) and β ∈
(
− 1

p−1
, α
p−1

)
for

p ∈ [2,∞), and u ∈ Cc(D). Then we have

Ep[u] =
(p− 1)γ(α, β) + γ(α, (p− 1)β)

p

π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

)
∫

D

|u(x)|p
xαd

dx

+
1

p

∫

D

∫

D

Fp

(
u(x)

w(x)
,
u(y)

w(y)

)
w(x)p−1w(y)

dy dx

|x− y|d+α
.

In particular, for β = α−1
p

,

Ep[u] = κd,p,α

∫

D

|u(x)|p
xαd

dx+
1

p

∫

D

∫

D

Fp

(
u(x)

w(x)
,
u(y)

w(y)

)
w(x)p−1w(y)

dy dx

|x− y|d+α
.

Proof. Let w = wβ, u ∈ Cc(D), x, y ∈ D. We have

pu(x)〈p−1〉(u(x)− u(y)) + |u(y)|pw(x)p−1 − w(y)p−1

w(y)p−1
+ (p− 1)|u(x)|pw(y)− w(x)

w(x)
(11)

= |u(y)|pw(x)p−1 − w(y)p−1

w(y)p−1
+ p|u(x)|pw(y)− w(x)

w(x)
− |u(x)|pw(y)− w(x)

w(x)

− pu(x)〈p−1〉(u(y)− u(x))

= |u(y)|pw(x)p−1 − w(y)p−1

w(y)p−1
− |u(x)|pw(y)− w(x)

w(x)

− p
(
u(x)〈p−1〉u(y)− |u(x)|p − |u(x)|pw(y)− w(x)

w(x)

)
.

We integrate both sides with respect to the measure µε(dx dy) := 1{|x−y|>ε}|x−y|−d−α dx dy
and use the symmetry of µε. We obtain

LHS =
p

2

∫

D

∫

D

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)µε(dx dy)

+

∫

D

∫

D

|u(x)|pw(y)p−1 − w(x)p−1

w(x)p−1
µε(dx dy)

+ (p− 1)

∫

D

∫

D

|u(x)|pw(y)− w(x)

w(x)
µε(dx dy)

and

RHS =

∫

D

∫

D

(
|u(y)|pw(x)p−1

w(y)p−1
− |u(y)|p − |u(x)|pw(y)

w(x)
+ |u(x)|p

)
µε(dx dy)

− p
∫

D

∫

D

(
u(x)〈p−1〉u(y)− |u(x)|p − |u(x)|pw(y)− w(x)

w(x)

)
µε(dx dy)

=

∫

D

∫

D

(
|u(y)|pw(x)p−1

w(y)p−1
− |u(x)|pw(y)

w(x)
− pu(x)〈p−1〉u(y) + p|u(x)|pw(y)

w(x)

)
µε(dx dy)

=

∫

D

∫

D

( |u(y)|p
w(y)p

− |u(x)|p
w(x)p

− pu(x)〈p−1〉

w(x)p−1

(
u(y)

w(y)
− u(x)

w(x)

))
w(x)p−1w(y)µε(dx dy)

=

∫

D

∫

D

Fp

(
u(y)

w(y)
,
u(x)

w(x)

)
w(x)p−1w(y)µε(dx dy).
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We note that for b ∈ {1, p− 1},
∫

{y∈D:|x−y|>ε}

w(x)b − w(y)b

|x− y|d+α
dy → −Lw(x)b as ε→ 0,

uniformly in x ∈ suppu, thus letting ε→ 0 yields

p

2

∫

D

∫

D

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)|x− y|−d−α dx dy

=

∫

D

|u(x)|p lim
ε→0

∫

{y∈D:|x−y|>ε}

(
w(x)p−1 − w(y)p−1

)
|x− y|−d−α dy dx

w(x)p−1

+ (p− 1)

∫

D

|u(x)|p lim
ε→0

∫

{y∈D:|x−y|>ε}
(w(x)− w(y)) |x− y|−d−α dy dx

w(x)

+

∫

D

∫

D

Fp

(
u(y)

w(y)
,
u(x)

w(x)

)
w(x)p−1w(y)|x− y|−d−α dx dy

=

∫

D

|u(x)|p
(−Lw(x)p−1

w(x)p−1
+ (p− 1)

−Lw(x)

w(x)

)
dx

+

∫

D

∫

D

Fp

(
u(y)

w(y)
,
u(x)

w(x)

)
w(x)p−1w(y)|x− y|−d−α dx dy.

Hence, the first assertion of the Lemma follows. Further,

(p− 1)
Lw(x)

w(x)
+
Lw(x)p−1

w(x)p−1
= ((p− 1)γ(α, β) + γ(α, (p− 1)β))

π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

) x−αd

=
π
d−1
2 Γ
(

1+α
2

)

Γ
(
α+d

2

)
∫ 1

0

(p− 1)(tβ − 1)(1− tα−β−1) + (t(p−1)β − 1)(1− tα−(p−1)β−1)

(1− t)1+α
dt x−αd .

It is easy to check that, for t ∈ (0, 1), the minimum of the function

β 7→ (p− 1)(tβ − 1)(1− tα−β−1) + (t(p−1)β − 1)(1− tα−(p−1)β−1)

is p(tβ−1)(tβ
′−1) < 0, where β = α−1

p
and β′ = (p−1)(α−1)

p
. Further, since Γ(x+1) = xΓ(x),

by [2, (2.2)] we get

γ(α, β) = B(β + 1,−α) + B(α− β,−α) +
1

α
,(12)

for α ∈ (0, 2)\{1} and β ∈ (−1, α). Hence, the second assertion of the Lemma follows. �

Proof of Theorem 1. By Lemma 1, (5) holds. To complete the proof, we will verify the
optimality of κd,p,α. Our proof is a modification of [2, Proof of Theorem 1.1]. In what
follows let β = α−1

p
. If α ≥ 1, there are real functions vn, n = 1, 2, . . ., such that

(i) vn = 1 on [−n2, n2]d−1 ×
[

1
n
, 1
]
,

(ii) supp vn ⊂ [−n2 − 1, n2 + 1]d−1 ×
[

1
2n
, 2
]
,

(iii) 0 ≤ vn ≤ 1, |∇vn(x)| ≤ cx−1
d and |∇2vn(x)| ≤ cx−2

d for x ∈ D.
If α < 1, then instead we take vn satisfying

(i’) vn = 1 on [−n2, n2]d−1 × [1, n],
(ii’) supp vn ⊂ [−n2 − n, n2 + n]d−1 ×

[
1
2
, 2n
]
,

(iii) 0 ≤ vn ≤ 1, |∇vn(x)| ≤ cx−1
d and |∇2vn(x)| ≤ cx−2

d for x ∈ D.
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Now, for any α ∈ (0, 2), we define

(13) un(x) = vn(x)
2
pxβd .

By Lemma 1,

Ep[un] = κd,p,α

∫

D

|un(x)|p
xαd

dx+
1

p

∫

D

∫

D

Fp

(
vn(x)

2
p , vn(y)

2
p

)

|x− y|d+α
w(x)p−1w(y) dx dy.

We have, for α ≥ 1,

(14)
∫

D

|un(x)|p
xαd

dx ≥
∫

{x: ‖x′‖≤n2, 1
n
<xd<1}

xα−1
d

xαd
dx = (2n2)d−1 log n,

and, for α < 1,

(15)
∫

D

|un(x)|p
xαd

dx ≥
∫

{x: ‖x′‖≤n2, 1<xd<n}

xα−1
d

xαd
dx = (2n2)d−1 log n.

Now, it suffices to show that there exists a constant c independent of n such that

∫

D

∫

D

Fp

(
vn(x)

2
p , vn(y)

2
p

)

|x− y|d+α
w(x)p−1w(y) dx dy ≤ cn2(d−1).

To this end, we adapt [2, Proof of Lemma 2.3]. Recall that by [3, Lemma 2.3], for p > 1
and a, b ∈ R, there exist cp, Cp > 0, such that

(16) cp
(
b〈p/2〉 − a〈p/2〉

)2 ≤ Fp(a, b) ≤ Cp
(
b〈p/2〉 − a〈p/2〉

)2

and hence
∫

D

∫

D

Fp

(
vn(x)

2
p , vn(y)

2
p

)

|x− y|d+α
w(x)p−1w(y) dx dy ≤ Cp

∫

D

∫

D

(vn(x)− vn(y))2

|x− y|d+α
w(x)p−1w(y) dx dy

=: CpI.

Let B(x, s, t) = B(x, t) \ B(x, s). We can bound the latter integral by cn2(d−1), as in [2].
Considering first α ≥ 1, we obtain

I ≤
∫

D

∫

B(x, 1
4n

)

+

∫

{x:xd≥ 1
2
}

∫

B(x, 1
4

)

+

∫

D

∫

D\B(x, 1
4

)

+

∫

Pn

∫

D∩B(x, 1
4n
, 1
4

)

+

∫

Rn

∫

D∩B(x, 1
4n
, 1
4

)

+

∫

Ln

∫

D∩B(x, 1
4n
, 1
4

)

= I1 + I2 + I3 + I4 + I5 + I6,

where, recalling that x = (x′, xd),

Pn = {x ∈ Rd : ‖x′‖ ≥ n2 − 1 , 0 < xd <
1
2
} ,

Rn = {x ∈ Rd : ‖x′‖ < n2 − 1 , 0 < xd <
2
n
} ,

Ln = {x ∈ Rd : ‖x′‖ < n2 − 1 , 2
n
≤ xd <

1
2
} ,

for d ≥ 2, and Pn = ∅, Rn = {x ∈ R : 0 < x < 2
n
}, Ln = ( 2

n
, 1

2
) for d = 1. For simplicity

of notation, let Kn = supp vn. Now, estimates for the integrals Ik are analogous to those
in [2], although we have the non-symmetric factor w(x)p−1w(y) here. For example, if
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x ∈ Kn and y ∈ B(x, 1
4n

), then |v(x)− v(y)| ≤ c|x− y|x−1
d , as follows from (ii) and (iii).

Hence

I1 =

∫

D

∫

B(x, 1
4n

)

(vn(x)− vn(y))2

|x− y|d+α
w(x)p−1w(y) dy dx

≤
∫

Kn

∫

B(x, 1
4n

)

(vn(x)− vn(y))2

|x− y|d+α
w(x)p−1w(y) dy dx

+

∫

Kn

∫

B(x, 1
4n

)

(vn(x)− vn(y))2

|x− y|d+α
w(x)w(y)p−1 dy dx

≤ c

∫

Kn

∫

B(x, 1
4n

)

x
(p−1)β−2
d yβd
|x− y|d+α−2

dy dx

+c

∫

Kn

∫

B(x, 1
4n

)

xβ−2
d y

(p−1)β
d

|x− y|d+α−2
dy dx

≤ c′
∫

Kn

∫

B(x, 1
4n

)

xα−3
d

|x− y|d+α−2
dy dx

≤ c′′n2(d−1),

where in the last line we used the inequality yd ≤ 3
2
xd, which follows from (ii) and the

triangle inequality. We now turn to the case α < 1. We have

I =

∫

D

∫

D

(vn(x)− vn(y))2

|x− y|d+α
w(x)p−1w(y) dx dy

≤
∫

D

∫

B(x, 1
4

)

+

∫

{x:xd≥n2 }

∫

B(x,n
4

)

+

∫

D

∫

D\B(x,n
4

)

+

∫

Pn

∫

D∩B(x, 1
4
,n
4

)

+

∫

{x:0<xd<2}

∫

D∩B(x, 1
4
,n
4

)

+

∫

Ln

∫

D∩B(x, 1
4
,n
4

)

= I1 + I2 + I3 + I4 + I5 + I6,

where

Pn = {x ∈ Rd : ‖x′‖ ≥ n2 − n , 0 < xd <
n
2
} ,

Ln = {x ∈ Rd : ‖x′‖ < n2 − n , 2 ≤ xd <
n
2
} ,

for d ≥ 2, and Pn = ∅, Ln = (2, n
2
) for d = 1.

The integrals Ik can be estimated similarly as in the case α ≥ 1.
�

3. Proof of Theorem 2

Frank and Seiringer [9] proved an abstract form of the fractional Hardy inequality in
a more general setting. Loosely speaking, they showed that under some assumptions the
inequality

(17)
∫

Ω

∫

Ω

|u(x)− u(y)|p k(x, y) dy dx ≥
∫

Ω

|u(x)|p V (x) dx

holds for symmetric kernels k(x, y) and related functions V (see [9, Proposition 2.2]). In
order to prove Theorem 2, we first need to formulate an analogue of (17) for Sobolev-
Bregman forms.
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Let Ω ⊂ Rd be a nonempty, open set. Suppose that {kε(x, y)}ε>0 is a family of mea-
surable, symmetric kernels satisfying

0 ≤ kε(x, y) ≤ k(x, y), lim
ε→0+

kε(x, y) = k(x, y),

for almost all x, y and some measurable function k(x, y). Moreover, let w be a positive,
measurable function. Define

(18) Vε(x) :=

∫

Ω

(
1

p

w(x)p−1 − w(y)p−1

w(x)p−1
+
p− 1

p

w(x)− w(y)

w(x)

)
kε(x, y) dy

and suppose that there exists a function V such that Vε → V weakly in L1
loc(Ω), that

is, for any bounded g with compact support in Ω,
∫

Ω
Vε(x)g(x) dx →

∫
Ω
V (x)g(x) dx as

ε→ 0.
In what follows, we will use the notation

Ep[u] = EΩ,k
p [u] :=

1

2

∫

Ω

∫

Ω

(u(x)− u(y))
(
u(x)〈p−1〉 − u(y)〈p−1〉) k(x, y) dy dx.

Lemma 2. For u ∈ Cc(Ω),

(19) Ep[u] ≥
∫

Ω

|u(x)|p V (x) dx.

Proof. Proceeding as in the proof of Lemma 1, we arrive at the equality

1

2

∫

Ω

∫

Ω

(u(x)− u(y))
(
u(x)〈p−1〉 − u(y)〈p−1〉) kε(x, y) dy dx

=

∫

Ω

|u(x)|p Vε(x) dx+
1

p

∫

Ω

∫

Ω

Fp

(
u(x)

w(x)
,
u(y)

w(y)

)
w(x)p−1w(y)kε(x, y) dy dx

≥
∫

Ω

|u(x)|p Vε(x) dx,

since Fp(a, b) ≥ 0. Now we let ε→ 0 and use Lebesgue’s Dominated Convergence Theorem
on the left-hand side (provided that Ep[u] <∞) and weak convergence on the right-hand
side to obtain the desired result. �

Lemma 3. Let 1 < α < 2 and J ⊂ R be an open set. Then for u ∈ Cc(J),

(20)
1

2

∫

J

∫

J

(u(x)− u(y))
(
u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|1+α
dy dx ≥ κ1,p,α

∫

J

|u(x)|p
dist(x, ∂J)α

dx.

Proof. Our proof relies on an appropriate modification of [13, Proof of Theorem 2.5]. We
will first consider the case J = (0, 1). Set w = w(α−1)/p and, for x ∈ (0, 1),

V (x) = P.V.
∫ 1

0

(
1

p

w(x)p−1 − w(y)p−1

w(x)p−1
+
p− 1

p

w(x)− w(y)

w(x)

)
|x− y|−1−α dy.

By (9), we have

V (x) = P.V.
(∫ ∞

0

−
∫ ∞

1

)(
1

p

w(x)p−1 − w(y)p−1

w(x)p−1
+
p− 1

p

w(x)− w(y)

w(x)

)
|x− y|−1−α dy

≥ P.V.
∫ ∞

0

(
1

p

w(x)p−1 − w(y)p−1

w(x)p−1
+
p− 1

p

w(x)− w(y)

w(x)

)
|x− y|−1−α dy

= κ1,p,αx
−α,
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since the integrand is nonpositive for y ∈ [1,∞). In addition, the latter principal value
integral is uniformly convergent on every compact set K ⊂ (0,∞). In consequence,

Vε(x) =

(∫ x−ε

0

+

∫ 1

x+ε

)(
1

p

w(x)p−1 − w(y)p−1

w(x)p−1
+
p− 1

p

w(x)− w(y)

w(x)

)
|x− y|−1−α dy > 0

for small ε > 0 and all x ∈ K. Hence, by the proof of Lemma 2 combined with Fatou’s
lemma,

(21)
1

2

∫ 1

0

∫ 1

0

(v(x)− v(y))
(
v(x)〈p−1〉 − v(y)〈p−1〉)

|x− y|1+α
dy dx ≥ κ1,p,α

∫ 1

0

|v(x)|p
xα

dx,

for any function v such that supp v ⊂ (0, 1]. Moreover, for u ∈ Cc((0, 1)), observe that
using (21) gives

∫ 1

0

|u(x)|p
min{x, 1− x}α dx

=

∫ 1
2

0

|u(x)|p
xα

dx+

∫ 1

1
2

|u(x)|p
(1− x)α

dx

= 2α−1

(∫ 1

0

∣∣u
(
x
2

)∣∣p

xα
dx+

∫ 1

0

∣∣u
(
1− x

2

)∣∣p

xα
dx

)

≤ 2α−1κ−1
1,p,α

(∫ 1

0

∫ 1

0

(
u
(
x
2

)
− u
(
y
2

))(
u
(
x
2

)〈p−1〉 − u
(
y
2

)〈p−1〉
)

|x− y|1+α
dy dx

+

∫ 1

0

∫ 1

0

(
u
(
1− x

2

)
− u
(
1− y

2

))(
u
(
1− x

2

)〈p−1〉 − u
(
1− y

2

)〈p−1〉
)

|x− y|1+α
dy dx

)

= κ−1
1,p,α

(∫ 1
2

0

∫ 1
2

0

+

∫ 1

1
2

∫ 1

1
2

)
(u(x)− u(y))

(
u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|1+α
dy dx

≤ κ−1
1,p,α

∫ 1

0

∫ 1

0

(u(x)− u(y))
(
u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|1+α
dy dx.

By translation and scaling, an analogous formula holds for any interval (a, b) and since
every open subset of R is a countable union of disjoint intervals, (20) is an easy consequence
of the above computations. �

Proof of Theorem 2. We will use arguments similar to those presented by Loss and Sloane
in [13]. We denote by Lω the (d−1) dimensional Lebesgue measure on the plane x ·ω = 0.
Calculations analogous to [13, Proof of Lemma 2.4] and Lemma 3 give
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1

2

∫

Ω

∫

Ω

(u(x)− u(y))(u(x)〈p−1〉 − u(y)〈p−1〉)

|x− y|d+α
dx dy

=
1

4

∫

Sd−1

dω

∫

{x:x·ω=0}
dLω(x)

∫

{x+sω∈Ω}
ds

∫

{x+tω∈Ω}

× (u(x+ sω)− u(x+ tω))
(
u(x+ sω)〈p−1〉 − u(x+ tω)〈p−1〉)

|s− t|1+α dt

≥ 1

2
κ1,p,α

∫

Sd−1

∫

{x:x·ω=0}

∫

{x+sω∈Ω}

|u(x+ sω)|p
dω,Ω(x+ sω)α

ds dLω(x) dω

=
1

2
κ1,p,α

∫

Sd−1

∫

Ω

|u(x)|p
dω,Ω(x)α

dx dω

= κd,p,α

∫

Ω

|u(x)|p
mα(x)α

dx,

where the last equality follows from
∫

Sd−1

|ωd|α dω =
2π

d−1
2 Γ
(

1+α
2

)

Γ
(
d+α

2

) .

This proves (7) and, in consequence, (8). Since Ω is convex, there exists a hyperplane Π
tangent to Ω at a point P ∈ ∂Ω. Now, calculations analogous to those in [14, Proof of
Theorem 5] yield the optimality of the constant in (8). �
Remark 1. Noteworthy, if α ≤ 1 and Ω is a bounded convex domain, then the best
constant in the inequality (7) is zero. Indeed, first notice that every convex set is a
Lipschitz domain. Dyda constructed in [5] a sequence of functions un ∈ Cc(Ω) such that
0 ≤ un ≤ 1, un → 1 pointwise and

∫
Ω

∫
Ω
|un(x)−un(y)|2
|x−y|d+α dy dx → 0 for α < 1, as n → ∞,

∫
Ω

∫
Ω
|un(x)−un(y)|2
|x−y|d+α dy dx ≤ C for α = 1. Taking vn = u

2/p
n and using (16), we see that the

inequality (7) cannot hold with a positive constant, as the right-hand side of (7) tends to
a positive value, when α < 1 and to infinity, when α = 1.
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