
Improving Visual Simultaneous
Localization and Mapping

robustness.

Author:
Marcin OCHMAN

Supervisor:
prof dr hab. inż. Ewaryst

RAFAJŁOWICZ

Faculty of Information and Communication Technology

September 10, 2024

https://wit.pwr.edu.pl/en

iii

“Science means constantly walking a tightrope between blind faith and curiosity;
between expertise and creativity; between bias and openness; between experience
and epiphany; between ambition and passion; and between arrogance and conviction
– in short, between and old today and a new tomorrow.”

Henrich Rohrer

v

Abstract

Improving Visual Simultaneous Localization and Mapping robustness.

by Marcin OCHMAN

Keywords: Image Processing, SLAM, VSLAM, Localization, Mapping,
RGBD camera, RGB camera

This thesis presents new advancements in the field of Visual Simultane-
ous Localization and Mapping (VSLAM), focusing on enhancing the robust-
ness and flexibility of VSLAM systems. The motivation behind this research
stems from the growing significance of computer vision and its applications.
The thesis offers several key contributions.

At the beginning of this work, both SLAM and VSLAM systems are dis-
cussed in detail. Forty years of research on localization and mapping have
been compiled and analyzed, providing a comprehensive overview of the
development and current state of VSLAM systems. A table of various SLAM
systems has been created, serving as a guide for researchers, facilitating the
effective comparison of these systems and aiding in the identification of their
strengths and weaknesses. The thesis also identifies and addresses key chal-
lenges, such as outlier errors, dynamic environments, map maintenance, long-
term operation, and others. These challenges are discussed and illustrated in
detail to highlight their impact on the robustness of VSLAM.

It also redefines the concept of robustness in VSLAM, proposing a multi-
faceted approach that considers algorithmic robustness, software resilience,
and computational efficiency. Each of these aspects is thoroughly analyzed
and addressed in subsequent chapters of the thesis.

The concept of Modular SLAM, an extensible architecture designed to
overcome the limitations of existing SLAM systems, is introduced. It sup-
ports rapid prototyping, allowing researchers to explore new solutions effi-
ciently. Modular SLAM combines advancements in system architecture and
VSLAM to build a modular and flexible solution.

Additionally, two novel methods are introduced: VSLAM SuperPoint,
a deep learning-based feature detection technique that leverages image se-
quence data to improve keypoint repeatability, and VSLAM RANSAC, an
enhanced pose estimation method utilizing historical data to increase robust-
ness.

Finally, directions for future research are outlined, highlighting the poten-
tial for further innovations and applications of Modular SLAM.

vii

Streszczenie
Metody zwiększające odporność procesu lokalizacji i mapowania z

wykorzystaniem systemów wizyjnych.

Marcin OCHMAN

Słowa kluczowe: Przetwarzanie obrazów, SLAM, VSLAM, Lokalizacja,
Mapowanie, Kamera RGBD, Kamera RGB

Niniejsza rozprawa przedstawia nowe rozwiązania w dziedzinie Lokaliza-
cji i Mapowania Wizualnego (VSLAM), koncentrując się na zwiększeniu od-
porności i elastyczności systemów VSLAM. Motywacją do przeprowadzenia
badań było rosnące znaczenie wizji komputerowej oraz jej zastosowań. W
pracy zaprezentowano szereg istotnych osiągnięć.

Na początku rozprawy szczegółowo omówiono zarówno systemy SLAM,
jak i VSLAM. Czterdzieści lat badań nad lokalizacją i mapowaniem zostało
zebranych i przedstawionych w przystępny sposób, dostarczając szerokiej
analizy rozwoju oraz aktualnego stanu systemów VSLAM. Opracowano także
tabelę różnych systemów SLAM, która służy jako przewodnik dla badaczy,
umożliwiając efektywne porównanie tych systemów oraz ułatwiając identy-
fikację ich mocnych i słabych stron. Praca identyfikuje i opisuje wyzwania,
takie jak błędy grube, dynamiczne środowisko, utrzymanie mapy, długoter-
minowe działanie i inne. Wyzwania te są szczegółowo omówione i zilus-
trowane, aby podkreślić ich wpływ na odporność systemów VSLAM.

Rozprawa redefiniuje pojęcie odporności w kontekście VSLAM, proponu-
jąc wieloaspektowe podejście, które obejmuje odporność algorytmiczną, opro-
gramowania oraz czas przetwarzania. Każdy z tych aspektów został szcze-
gółowo przeanalizowany i zaadresowany w dalszej części pracy.

Wprowadzono koncepcję Modular SLAM o rozszerzalnej architekturze,
zaprojektowaną w celu przezwyciężenia istniejących ograniczeń systemów
SLAM. Modular SLAM wspiera szybkie prototypowanie, umożliwiając na-
ukowcom efektywne eksplorowanie nowych rozwiązań. System ten wyko-
rzystuje zalety różnych zasad budowy oprogramowania oraz wzorców pro-
jektowych, tworząc modułowe i elastyczne rozwiązanie.

Dodatkowo, w pracy zaprezentowano dwie nowatorskie metody: VSLAM
SuperPoint, technikę detekcji cech opartą na uczeniu głębokim, która wyko-
rzystuje sekwencyjność obrazów do poprawy powtarzalności wykrywania
punktów charakterystycznych, oraz VSLAM RANSAC, usprawnioną metodę
estymacji pozycji, która korzysta z danych historycznych w celu zwiększenia
odporności systemu.

Na zakończenie, zarysowano kierunki przyszłych badań, wskazując na
potencjał dalszych rozwiązań i zastosowań Modular SLAM.

ix

Acknowledgements
I would like to express my deepest appreciation to those who have made

the completion of this PhD thesis possible. Foremost, I am profoundly grate-
ful to my mother, father and family, whose support and belief in my capabil-
ities have been the backbone of my academic journey. Your love, encourage-
ment, and sacrifices have been instrumental in reaching this milestone.

A special acknowledgment must be reserved for my supervisor, whose
wisdom, guidance, and encouragement have been invaluable. Your unwa-
vering commitment to academic excellence and your belief in my potential
have significantly enriched this journey.

Lastly, but by no means least, I want to express my sincere gratitude to my
fiancée. Your patience, understanding, and love have been a constant refuge
during the demanding periods of this research. Your belief in my work and
your support have made this journey easier and more fulfilling.

xi

Contents

Abstract v

PL Abstract vii

Acknowledgements ix

PhD thesis introduction in Polish 1

1 Introduction 7
1.1 Thesis Scope and Motivation 8
1.2 Thesis Contribution . 8
1.3 Thesis structure . 10
1.4 Author contribution . 11

2 Visual Simultaneous Localization and Mapping Overview 13
2.1 Fundamentals of SLAM problem. Probabilistic approach . . . 15
2.2 SLAM categorization . 18

2.2.1 Sensors type . 19
Ultrasonic sensor . 19
Sonar . 20
LIDAR . 20
Camera . 21
RGB-D camera . 21
Inertial measurement unit 22
Sensor fusion . 23
Sensors comparison and choice 24

2.2.2 Operating environment 25
2.2.3 Backend type . 28

Filter-based backend . 29
Optimization-based backend 35

2.2.4 Map representation . 39
2.3 SLAM Related work . 42
2.4 Visual Odometry, Visual SLAM and Structure from Motion . . 50
2.5 Visual SLAM . 57

2.5.1 Visual SLAM problem formulation 58
2.5.2 State and observation representation 61

xii

2.6 Visual SLAM components . 63
2.6.1 Sensors data collection 65
2.6.2 Frontend . 66

Feature detection . 67
Feature matching and data association 69
Keyframe creation . 72

2.6.3 Backend . 74
Map optimization . 74
Map maintenance . 74

2.6.4 Loop Closure . 75
2.6.5 Semantic VSLAM . 77

2.7 VSLAM related work . 81

3 VSLAM challenges and robustness 89
3.1 Keypoints distribution on image 90
3.2 Mapping in dynamic environments 93
3.3 Long-Term operation . 94
3.4 Loop Closure . 98
3.5 Real-time performance . 102
3.6 Outliers handling . 106
3.7 Map maintenance . 108
3.8 Keyframe creation . 108
3.9 Introduction to Robustness . 111

3.9.1 Software robustness . 113
Simplicity . 114
Modularity . 115
Reliability . 116
Portability . 117
Maintainability . 117

3.9.2 Algorithms robustness 117
3.9.3 Execution efficiency robustness 118
3.9.4 VSLAM datasets . 119

3.10 VSLAM evaluation . 123

4 Concept of Modular SLAM 133
4.1 Motivation . 134
4.2 Modular SLAM Overview . 136
4.3 System design . 136

4.3.1 Design principles . 137
Simplicity . 137
Modularity . 139
Reliability . 139
Portability . 140
Scalability . 141

xiii

4.3.2 Design patterns . 141
4.3.3 Visualization . 148
4.3.4 Evaluation . 150

4.4 Practical Application of Modular SLAM 152

5 New VSLAM robust methods 157
5.1 Keypoints detections . 158

5.1.1 SuperPoint for VSLAM 163
Dataset generation . 164
Model overview . 170
Training stage . 172
Evaluation . 174

5.2 VSLAM RANSAC . 177
5.2.1 Evaluation . 180

6 Conclusions 187
6.1 Future Work . 189

A SLAM projects 193

B Additional resources 199

Bibliography 201

xv

List of Figures

2.1 Simultaneous Localization and Mapping 17
2.2 Typical SLAM architecture . 18
2.3 Commonly used sensors in SLAM system. 22
2.4 Examples of structured and unstructured environments. . . . 27
2.5 Examples of indoor, outdoor and underwater environment. . 28
2.6 Timeline of backend types research. 29
2.7 Single iteration of Bayesian filter. 31
2.8 Comparison of Dynamic Bayesian Network with keyframe-

based approach. 37
2.9 Example of SLAM factor graph. 38
2.10 Relationships between level of abstraction and type of the map 42
2.11 Timeline of SLAM. 47
2.12 Visual odometry problem. 52
2.13 Flow of the basic VO algorithms. 53
2.14 Structure from motion problem. 54
2.15 Flow of the basic SfM algorithms. 55
2.16 VSLAM correspondences. 59
2.17 Visual SLAM problem with two keyframes and current frame

marked with dashed line . 60
2.18 Example of VSLAM. 64
2.19 Visual SLAM components . 65
2.20 Data synchronization challenge from various sensors 66
2.21 Mobile platform equipped with various sensors. 66
2.22 Comparison of various keypoint detectors 70
2.23 Result of matching procedure. 71
2.24 Various types of data correspondences [You+17]. 71
2.25 Comparison of sparse and dense VSLAM map. 73
2.26 Example of Loop Closure . 78
2.27 Kimera VSLAM Semantic Mapping. 80
2.28 Timeline of VSLAM with the most important VSLAM systems. 82

3.1 Comparison of keypoint detection techniques. 91
3.2 Comparison of two systems with and without keypoints dis-

tribution technique with the ground-truth. 92
3.3 Example of scene containing moving objects – humans walk-

ing in the laboratory. 94

xvi

3.4 Visualization of a section of a city mapped using data from the
KITTI dataset. 95

3.5 Different conditions of the same scene. 97
3.6 Comparison of APE for systems with and without drift com-

pensation. 99
3.7 Examples of very similar environments but they represent var-

ious locations – perceptual aliasing 100
3.8 StellaVSLAM and loop detection misses 102
3.9 Comparison of tracking and mapping times. 104
3.10 Relationship between tracking time and number of local land-

marks. 105
3.11 Examples of outlier sources in VSLAM 107
3.12 Example of map maintenance. 109
3.13 Tracked landmarks over time. 111
3.14 Diagram illustrating the various aspects of VSLAM robustness

examined in this thesis. 112
3.15 Diagram illustrating the various aspects of software robust-

ness in VSLAM examined in this thesis. 115
3.16 Diagram illustrating the various aspects of algorithmic robust-

ness in VSLAM examined in this thesis. 118
3.17 Diagram illustrating the various aspects of execution efficiency

robustness in VSLAM examined in this thesis. 120
3.18 Examples of VSLAM datasets including TUM, KITTI, TartainAir

and Bonn. 124
3.19 Comparative Analysis of VSLAM System Performances. . . . 127
3.20 Comparison of VSLAM’s APE distribution. 128
3.21 Trajectories plot in 3D. 130
3.22 Trajectories plot in 2D. 130
3.23 Trajectory and temporal position relationships. 131
3.24 Trajectory and temporal angles relationships. 131

4.1 The fundamental components of Modular SLAM and its re-
sponsibilities. 137

4.2 UML Diagram of SLAM System Components. 138
4.3 Builder pattern . 143
4.4 Observer pattern for handling parameters change 145
4.5 An example of GUI for parameters handling. 146
4.6 Visitor Pattern in VSLAM . 147
4.7 Strategy pattern for pose estimation in Modular SLAM 149
4.8 Two aspects of Modular SLAM visualization: real-time opera-

tions and final plots. 151
4.9 Strategy pattern for storing trajectory data in Modular SLAM 152

xvii

5.1 Detected keypoints on consecutive frames from a VSLAM se-
quence . 159

5.2 Illustration of a sequence from the TartanAir dataset. 160
5.3 Tracked landmarks over time. 162
5.4 Top-down view illustrating the concept of occlusion. 167
5.5 Visualisation of training dataset preparation. 168
5.6 SuperPoint architecture . 171
5.7 Determining keypoints from heatmap. 171
5.8 VSLAM SuperPoint architecture 172
5.9 Changing details of heatmap over the training. 175
5.10 Results of landmarks’ observations analysis using StellaVS-

LAM and KITTI dataset. 181

6.1 Roadmap of future studies. 191

xix

List of Tables

2.1 Comparison of commonly used exteroceptive sensors in SLAM. 26
2.2 The SLAM surveys and overview articles excluding papers

dedicated to VSLAM specifically. 48
2.3 Comparison of three interconnected 3D problems utilizing com-

puter vision. 57
2.4 Comparison of descriptors [GHT11; TS18] 69
2.5 Overview of key surveys and papers in VSLAM and VO. . . . 87

3.1 StellaVSLAM performance using distributed keypoints detec-
tor compared to classic keypoint detector. 91

3.2 Mapped area of KITTI sequences 96
3.3 List of most popular Visual SLAM datasets. 121
3.4 Comparative Analysis of VSLAM System Performances. . . . 126

5.1 Tracked landmarks in various TUM sequences 164
5.2 Comparison of various detectors and VSLAM SuperPoint. . . 177
5.3 Evaluation results of RANSAC and VSLAM RANSAC – inliers

ratio. 183
5.4 Evaluation results of RANSAC and VSLAM RANSAC – abso-

lute position error. 184

A.1 The most significant VSLAM systems I 194
A.2 The most significant VSLAM systems II 195
A.3 The most significant VSLAM systems III 196
A.4 The most significant VSLAM systems IV 197

B.1 List of resources developed for this thesis. 199
B.2 List of Docker images. 200

xxi

Listings

4.1 Creating VSLAM system using Modular SLAM 153
4.2 Strategy pattern in Modular SLAM for pose estimation 154
4.3 Combination of strategy and observer pattern for trajectory

saving. 155
4.4 Handling parameters in Modular SLAM 155
4.5 Visualisation in Modular SLAM 156
5.1 Algorithm of generating samples for VSLAM SuperPoint. . . . 169
5.2 Algorithm for transforming keypoints from previous frame to

current frame. 170
5.3 RANSAC pseudocode . 179
5.4 VSLAM RANSAC pseudocode 182

xxiii

List of Abbreviations

AI Artificial Intelligence
AR Augmented Reality
BR Bundle Adjustment
CLM Concurrent Mapping and Localization
EKF Compressed Extended Kalman Filter
EKF Extended Kalman Filter
LIDAR Light Detection And Ranging
SLAM Simultanous Localization And Mapping
VO Visual Odometry
VI Visual-Intertial
VR Virtual Reality
XR EXtended Reality
SONAR SOund NAvigation Ranging
VSLAM Visual Simultanous Localization And Mapping

1

Wstęp

Zakres rozprawy

Wizja komputerowa jest niezwykle istotną dziedziną badań. Naukowcy sza-
cują, że nawet 80% percepcji człowieka zależy od wzroku [RP10], co czyni
go najważniejszym zmysłem. Z tego powodu badacze dostrzegają ogromny
potencjał, jaki niesie ze sobą wizja. W ostatnich latach społeczność zajmu-
jąca się wizją komputerową poczyniła znaczące postępy w zakresie sztucznej
inteligencji w takich dziedzinach jak rolnictwo [KP18], opieka zdrowotna
[Jia+17] czy robotyka [Mou21].

Dodatkowo, kamery, które są stosunkowo tanie w porównaniu do in-
nych typów, takich jak czujniki ultradźwiękowe czy LIDAR, oferują znacznie
większą ilość informacji o otoczeniu. Dlatego też niektóre duże firmy techno-
logiczne rezygnują z innych sensorów na rzecz systemów opartych wyłącznie
na wizji [Tes23].

Rosnące zainteresowanie i znaczenie systemów wizyjnych skłoniły au-
tora do podjęcia badań nad nimi. Początek prac nad Modular SLAM wynikał
z potrzeby rozwiązania wyzwań i ograniczeń, które istnieją w dotychcza-
sowych systemach SLAM, takich jak brak elastyczności i możliwości rozbu-
dowy, co utrudnia dostosowanie systemów do różnych konfiguracji sensorów,
środowisk czy specyficznych wymagań. Motywacją do opracowania Modu-
lar SLAM było przezwyciężenie tych ograniczeń poprzez dostarczenie wszech-
stronnej i modułowej biblioteki do badań i rozwoju SLAM. Dzięki elasty-
cznej architekturze i bogatemu zestawowi narzędzi i funkcjonalności, Mod-
ular SLAM umożliwia szybkie prototypowanie. W rezultacie, szerokie grono
osób zaangażowanych w VSLAM, w tym badacze, praktycy oraz początku-
jący, mogą w krótszym czasie opracowywać nowe algorytmy. Uważa się, że
Modular SLAM może stać się ważnym narzędziem wielu badaczy SLAM.
Ponadto, niniejsza rozprawa koncentruje się na zwiększeniu odporności sys-
temów VSLAM. Dzięki Modular SLAM łatwiej jest testować i porównywać
proponowane metody z innymi rozwiązaniami.

2

Wkład pracy

Najważniejszymi osiągnięciami tej rozprawy jest szereg rozwiązań mających
na celu poprawę odporności systemów VSLAM. Nie tylko wypełniają ist-
niejące luki w literaturze, ale także otwierają nowe możliwości badań i prak-
tycznych wdrożeń w VSLAM. Osiągnięcia te obejmują:

• Kompleksowy przegląd literatury z ostatnich czterech dekad, który
dostarcza szeroką analizę rozwoju i obecnego stanu VSLAM. Przegląd
ten podkreśla kluczowe kamienie milowe oraz najbardziej znaczące al-
gorytmy i podejścia. Dodatkowo, stworzono rozszerzoną tabelę różnych
systemów SLAM, która służy jako przewodnik dla badaczy umożliwia-
jąc efektywne porównanie tych systemów, ułatwiając identyfikację ich
mocnych i słabych stron.

• Identyfikacja kluczowych wyzwań, które są istotne dla wydajności i
niezawodności systemów VSLAM. Niniejsza rozprawa dostarcza szcze-
gółowy opis i analizę wyzwań, takich jak błędy grube, dynamiczne
środowisko, utrzymywanie mapy, długoterminowe działanie i inne. Te
wyzwania są szczegółowo omówione i zilustrowane, aby podkreślić
ich wpływ na odporność VSLAM.

• Redefinicja odporności, z uwzględnieniem różnorodnych interpretacji
tego pojęcia w środowisku naukowym. W rozprawie zaproponowana
jest nowa, bardziej wszechstronna definicja odporności VSLAM, która
obejmuje kilka kluczowych aspektów, takich jak odporność algoryt-
miczna, odporność oprogramowania i czas przetwarzania. Ta definicja
różni się od tradycyjnego podejścia w literaturze, które często koncen-
truje się tylko na pierwszym, podstawowym aspekcie. Ponadto, każdy
z tych elementów jest szczegółowo opisany, z wyjaśnieniem, jak przy-
czyniają się do rozwoju niezawodnego systemu VSLAM.

• Modular SLAM stanowi znaczący wkład, będąc fundamentem prze-
prowadzonych badań. Koncepcja Modular SLAM wprowadza mod-
ułową architekturę umożliwiającą elastyczność i rozszczerzalność sys-
temu SLAM. Dostarcza wszechstronnych narzędzi do szybkiego proto-
typowania i oceny algorytmów SLAM, umożliwiając eksplorację i im-
plementację różnych strategii dla poszczególnych komponentów sys-
temu. Dzięki swojej adaptacyjnej konstrukcji i bogatej funkcjonalności,
Modular SLAM otwiera nowe możliwości eksperymentowania oraz do-
konywania szybszych postępów w dziedzinie SLAM, stanowiąc cenne
narzędzie dla badaczy i praktyków.

• VSLAM SuperPoint wprowadza nową metodę detekcji punktów cha-
rakterystycznych (ang. feature detection) na obrazie za pomocą uczenia

3

głębokiego. Tradycyjne systemy VSLAM zazwyczaj wykrywają punkty
kluczowe (ang. landmark), wykorzystając aktualny obraz. Jednakże, w
VSLAM przetwarza się sekwencje kolejnych obrazów, dlatego istnieje
możliwość wykorzystania informacji o pozycjach wcześniej wykrytych
punktów kluczowych. W rozprawie nie tylko zaproponowano udoskon-
aloną architekturę modelu zdolną do generowania mapy cieplnej wcze-
śniej wykrytych punktów kluczowych, ale także wprowadza zmody-
fikowaną funkcję straty. Dodatkowo, zamiast polegać na macierzy ho-
mografii, opracowano nową metodę generowania pozycji punktów kluc-
zowych opartą na sekwencjach VSLAM, rzeczywistych ruchach kamery
oraz mapy głębi.

• VSLAM RANSAC jest ulepszonym podejściem, które wykorzystuje
dane historyczne w systemie VSLAM do dokładniejszego oszacowa-
nia pozycji kamery. RANSAC radzi sobie z wartościami odstającymi
poprzez losowe próbkowanie i iteracyjne testowanie części wybranych
punktów w celu oszacowania bieżącej pozycji. Jednakże w VSLAM
można użyć dwóch dodatkowych miar do bardziej efektywnego wyboru
punktów i poprawy szybkości estymacji. Reliable RANSAC wykorzys-
tuje miarę niezawodności punktu orientacyjnego i odległość deskryp-
torów dopasowanych punktów kluczowych.

Struktura Rozprawy

Pozostałe rozdziały rozprawy wyglądają następująco:
Rozdział 2 – jest wprowadzeniem do zagadnień SLAM oraz VSLAM.

Formułuje problem oraz definiuje kilka podstawowych pojęć używanych
w rozprawie. Opisuje również niemal cztery dekady badań dotyczących
lokalizacji i mapowania oraz architekturę SLAM.

Rozdział 3 – zagłębia się w wyzwania związane z VSLAM, koncentrując
się na kwestiach i potencjalnych błędach w jego implementacji. Złożoności
wynikające z dynamicznych, nieznanych środowisk rzeczywistych oraz ich
wpływ na dokładność mapowania i lokalizacji są dokładnie zbadane. Stara
się odpowiedzieć na pytanie „Czy SLAM jest rozwiązany?”, które również
zadał Frese, Wagner, and Röfer w [FWR10]. Omówiono również wady za-
stosowania kamer w systemach VSLAM, z uwzględnieniem ich wpływu na
ogólną wydajność systemu. Problemy związane z obliczeniami i skalowal-
nością, szczególnie istotne w kontekście dużych i długoterminowych VSLAM,
zostały również omówione szczegółowo.

Rozdział 4 – przedstawia przegląd koncepcji Modular SLAM, która stanowi
fundament badań prowadzonych w tej rozprawie. Rozdział rozpoczyna się
szczegółowym opisem architektury, omawiając jej modułową konstrukcję

4

oraz kluczowe elementy składające się na jej ramy. Ponadto, omówiono za-
lety, jakie oferuje Modular SLAM, podkreślając jego elastyczność, rozszerzal-
ność oraz dostosowanie do różnych zastosowań VSLAM.

Rozdział 5 – opisuje opracowane metody zwiększenia odporności sys-
temów VSLAM poprzez wprowadzenie dwóch kluczowych innowacji. Pier-
wszą z nich jest VSLAM SuperPoint, nowatorska metoda detekcji cech oparta
na uczeniu głębokim, która poprawia detekcję punktów kluczowych poprzez
wykorzystanie sekwencyjnych danych obrazowych, co prowadzi do dokład-
niejszego i bardziej niezawodnego śledzenia punktów kluczowych. Drugą
jest VSLAM RANSAC, udoskonalone podejście do szacowania pozycji, które
wykorzystuje dane historyczne, takie jak niezawodność punktów orienta-
cyjnych i odległości deskryptorów, aby podejmować bardziej świadome i
efektywne decyzje, zmniejszając tym samym wpływ wartości odstających i
zwiększając ogólną odporność systemu.

Rozdział 6 – przedstawia przegląd otrzymanych rezultatów i podkreśla
znaczenie badań. Dodatkowo, w rozdziale zaproponowano potencjalne przy-
szłe kierunki i obszary dalszych badań, wskazując możliwe drogi rozwoju
badań i eksploracji nowych możliwości. Na końcu przedstawia komplek-
sową i ostateczną perspektywę na badania, podsumowując ich wpływ i wyz-
nacza drogę dla przyszłych prac i postępów w tej dziedzinie.

Wkład autora

W trakcie studiów doktoranckich autor opublikował kilka artykułów zwią-
zanych z wizją komputerową. Poniżej przedstawiono listę wszystkich przy-
gotowanych artykułów naukowych:

1. Marcin Ochman, Magda Skoczeń, Damian Krata, Marcin Panek, Krys-
tian Spyra, and Andrzej Pawłowski. “RGB-D Odometry for Autonomous
Lawn Mowing”. In: Artificial Intelligence and Soft Computing. Springer
International Publishing, 2021, pp. 81–90. [Link]

2. Magda Skoczeń, Marcin Ochman, Krystian Spyra, Maciej Nikodem,
Damian Krata, Marcin Panek, and Andrzej Pawłowski. “Obstacle De-
tection System for Agricultural Mobile Robot Application Using RGB-
D Cameras”. In: Sensors 21.16 (Aug. 2021), p. 5292. [Link]

3. Wojciech Macherzyński, Marcin Ochman, Zbigniew Kulas, Krzysztof
Dudek, Mateusz Didyk, and Dawid Sroczyński. “The Use of Thermo-
vision for Leak Detection in the Automotive Sector”. In: Pomiary Au-
tomatyka Robotyka 25.3 (Sept. 2021), pp. 79–85. [Link]

4. D. Krata, M. Ochman, M. Panek, M. Skoczen, K. Spyra, Z. Kulas, D.
Sroczynski, and A. Pawlowski. “Adaptive Smith Predictor Control Scheme

https://doi.org/10.1007/978-3-030-87897-9_8
https://doi.org/10.3390/s21165292
https://doi.org/10.14313/par_241/79

5

for a Nonlinear Hydraulic System”. In: 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
Sept. 2021. [Link]

5. Marcin Ochman. “Hybrid approach to road detection in front of the
vehicle”. In: IFAC-PapersOnLine 52.8 (2019), pp. 245–250. [Link]

Wiedza oraz umiejętności zdobyte na przestrzeni lat, które zostały wyko-
rzystane w rozprawie doktorskiej oraz w niektórych publikacjach naukowych,
jest również wynikiem prac nad grantami badawczymi finansowanymi przez
Narodowe Centrum Badań i Rozwoju. Autor brał udział w trzech grantach
wymienionych poniżej:

1. Connected Worker / POIR.01.01.01-00-1229/20
„Technologia AR wykorzystująca przestrzenne mapowanie i śledzenie otoczenia
w czasie rzeczywistym oraz przetwarzanie brzegowe lub chmurowe w celu za-
pewnienia efektywności komunikacji i współpracy w obszarach działania sieci
3G/4G/5G”

2. Kosiarka Autonomiczna POIR.01.01.01-00-1069/18
„Zaprojektowanie i zwalidowanie w warunkach rzeczywistych autonomicznej
kosiarki do trawy do użytku profesjonalnego, w tym opracowanie nowators-
kich, dedykowanych algorytmów sterowania”

3. Leak Detector / POIR.01.01.01-00-0773/17
„Opracowanie i weryfikacja w warunkach rzeczywistych innowacyjnego de-
tektora nieszczelności opartego o metodę termografii, dedykowanego w szczegól-
ności branży automotive”

Jednym z istotnych osiągnięć autora było opracowanie i uzyskanie polskiego
patentu:

1. Wojciech Macherzyśnki, Marcin Ochman, Mateusz Didyk, Krzysztof
Dudek, Zbigniew Kulas, and Dawid Sroczyński. Method of leak detection,
especially in closed-volume systems. Pat.242047. Oct. 2022

https://doi.org/10.1109/etfa45728.2021.9613268
https://doi.org/10.1016/j.ifacol.2019.08.078

7

Chapter 1

Introduction

Overview

This chapter aims to answer several questions regarding the thesis: “What is
it about?”, “What problems does it solve?” and “What is its main contribution?”.
It highlights author’s motivation and goals. Moreover, it is a brief summary
of its content, conducted research, developed methods and achievements.

At the beginning it focuses on the role of computer vision with reference
to localization and mapping. It explains why progress made on Visual Simul-
taneous Localization and Mapping may be important for other scientists and
engineers. Second, it introduces thesis scope and issues raised in this work.
Then, there is a section focusing on main contributions of the thesis. Finally,
to ease navigation through this work document structure is presented and
briefly described.

In addition, this thesis is a result of many years of PhD studies and re-
search. That is why author’s research papers, grants and contributions were
listed.

“Scientific research is one of the most exciting and rewarding of occupations.”
— Frederick Sanger

8 Chapter 1. Introduction

1.1 Thesis Scope and Motivation

Computer vision is a very important field of study due to several reasons.
Researchers suppose that up to 80% of human’s perception and cognition are
dependent on sight [RP10], becoming the most important sense. That is why
scientists are aware of the possibilities brought by vision. In recent years,
computer vision community made a big progress with artificial intelligence
in different disciplines including agriculture [KP18], healthcare [Jia+17] or
robotics [Mou21].

Moreover, vision sensors, which are relatively inexpensive compared to
other types such as ultrasonics or LIDARs, offer a significantly greater amount
of information about the environment in comparison to the aforementioned
sensors. That’s why some big technological companies abandon other sen-
sors in favour of vision-only systems [Tes23].

The steady rise in popularity, interest and importance of vision systems
caused the author to start working with them as well. The beginning of Mod-
ular SLAM framework stems from the need to address the challenges and
limitations present in existing SLAM systems including the lack of flexibility
and extensibility, making it difficult to adapt the systems to different sen-
sor configurations, environments, or specific requirements. The motivation
behind the development of the Modular SLAM is to overcome these limita-
tions by providing a versatile and modular framework for SLAM research
and development. By offering a flexible architecture and a comprehensive
set of tools and functionalities, Modular SLAM offers fast prototyping. As a
consequence, wide range of people involved in VSLAM including advanced
researchers, practitioners as well as beginners may explore novel algorithms
in significantly shorter time. It is believed that Modular SLAM will become
important tool of many SLAM researchers. Furthermore, this thesis focuses
on robustness of VSLAM systems. By providing Modular SLAM framework,
it is easier to test and compare proposed methods to other solutions.

1.2 Thesis Contribution

The most significant contributions of this thesis include a series of advance-
ments aimed at improving the robustness of VSLAM systems. These con-
tributions not only fill existing gaps in the literature but also pave the way
for future research and practical implementations in VSLAM. These contri-
butions are:

• A comprehensive review of research conducted over the past four
decades, providing an in-depth analysis of the evolution and current
state of VSLAM. This review highlights key milestones, the most sig-
nificant algorithms and approaches. Additionally, an extended table of

1.2. Thesis Contribution 9

various SLAM systems was created, serving as a reliable guide for re-
searchers to compare these systems effectively and facilitating the iden-
tification of strengths and weaknesses across different approaches.

• Identification of key challenges, which are critical to the performance
and reliability of VSLAM systems. This thesis provides a detailed de-
scription and analysis of several significant challenges, including out-
lier handling, dynamic environments, map maintenance, long-term op-
eration and more. These challenges are thoroughly illustrated and dis-
cussed to highlight their impact on VSLAM robustness.

• Redefining robustness, recognizing that the understanding of robust-
ness can vary across the scientific community. In this thesis, a new,
more comprehensive definition of VSLAM robustness is proposed. It is
characterized as a combination of several key aspects, including algo-
rithmic robustness, system robustness, and processing time. This def-
inition differs from the traditional focus in the literature, which often
emphasizes only one primary aspect. Additionally, each of these com-
ponents is described in detail, explaining how they collectively con-
tribute to the development of a reliable VSLAM system.

• Modular SLAM stands as a significant contribution to this PhD thesis,
serving as a fundamental component of the research conducted. Devel-
oped as part of the study, this concept embodies a modular architecture
that enables flexible and extensible SLAM capabilities. It provides a
versatile framework for rapid prototyping and evaluation of SLAM al-
gorithms, facilitating the exploration and implementation of various
frontend, backend, and mapping strategies. With its adaptable de-
sign and comprehensive functionality, the Modular SLAM framework
opens new avenues for experimentation, innovation, and advancements
in the field of SLAM, serving as a valuable tool for researchers and prac-
titioners.

• VSLAM SuperPoint introduces a novel method for feature detection
using deep learning. Traditional VSLAM systems typically detect key-
points using only the current image. However, since VSLAM processes
sequences of consecutive images, there is an opportunity to incorporate
additional information about the positions of previously detected key-
points. VSLAM SuperPoint extends deep learning-based feature detec-
tion by leveraging this information. This thesis not only proposes an
enhanced model architecture capable of generating a heatmap of previ-
ously detected keypoints but also introduces a modified loss function/

10 Chapter 1. Introduction

Additionally, a new method for generating ground truth keypoint po-
sitions is developed, which is based on VSLAM sequences and real-
world camera movement, rather than relying on homography as it was
done by the authors of SuperPoint [DMR18].

• VSLAM RANSAC is an enhanced approach that leverages historical
data within the VSLAM system for more accurate pose estimation. Tra-
ditionally, RANSAC addresses outliers by randomly sampling and it-
eratively testing various data points to estimate the current pose. How-
ever, in VSLAM, two additional metrics can be used to select data points
more effectively and improve estimation speed. VSLAM RANSAC uti-
lizes the reliability metric of a landmark and the descriptor distance
of keypoint matching to make more informed and efficient data point
selections.

1.3 Thesis structure

The remaining chapters of the thesis is organized as follows.
Chapter 2 – is an introduction to Simultaneous Localization and Mapping

(SLAM) and Visual SLAM (VSLAM). It formulates the problem and defines
several basic terms used in the thesis. It also describes almost four decades
of research regarding localization and mapping and architecture of SLAM.

Chapter 3 – delves into the challenges in the field of VSLAM, focusing on
issues and potential errors inherent in its implementation. The complexities
posed by real-world dynamic, unknown environments, and their implica-
tions for accurate mapping and localization, are thoroughly explored. It tries
to give an answer to the question “Is SLAM solved”, which was also asked
by Frese, Wagner, and Röfer in [FWR10]. Computational challenges and scal-
ability issues, particularly relevant in the context of large-scale and long-term
VSLAM, are also examined in detail.

Chapter 4 – provides an overview of the Modular SLAM concept, which
serves as the foundation for the research conducted in this thesis. The chapter
begins by presenting a detailed description of the architecture of the frame-
work, outlining its modular design and the key components that constitute
its framework. Furthermore, the advantages offered by the Modular SLAM
are discussed, emphasizing its flexibility, extensibility, and adaptability to di-
verse VSLAM applications.

Chapter 5 – describes developed methods to increase robustness of VSLAM
systems by introducing two key innovations. The first is VSLAM Super-
Point, a novel deep learning-based feature detection method that enhances
keypoint detection by utilizing sequential image data, leading to more ac-
curate and reliable keypoint tracking. The second is VSLAM RANSAC, an
improved approach to pose estimation that leverages historical data, such as

1.4. Author contribution 11

the reliability of landmarks and descriptor distances, to make more informed
and efficient decisions, thereby reducing the impact of outliers and improv-
ing the overall robustness of the system.

Chapter 6 – presents an overview of the main outcomes and highlights
the significance of the study. Additionally, the chapter explores potential fu-
ture directions and areas for further investigation, outlining possible avenues
for expanding on the research and exploring new opportunities. Finally, it
provides a comprehensive and conclusive perspective on the study, encap-
sulating its impact and setting the stage for future work and advancements
in the domain.

1.4 Author contribution

During PhD studies author published several papers related to computer vi-
sion. The following list shows all prepared research articles:

1. Marcin Ochman, Magda Skoczeń, Damian Krata, Marcin Panek, Krys-
tian Spyra, and Andrzej Pawłowski. “RGB-D Odometry for Autonomous
Lawn Mowing”. In: Artificial Intelligence and Soft Computing. Springer
International Publishing, 2021, pp. 81–90. [Link]

2. Magda Skoczeń, Marcin Ochman, Krystian Spyra, Maciej Nikodem,
Damian Krata, Marcin Panek, and Andrzej Pawłowski. “Obstacle De-
tection System for Agricultural Mobile Robot Application Using RGB-
D Cameras”. In: Sensors 21.16 (Aug. 2021), p. 5292. [Link]

3. Wojciech Macherzyński, Marcin Ochman, Zbigniew Kulas, Krzysztof
Dudek, Mateusz Didyk, and Dawid Sroczyński. “The Use of Thermo-
vision for Leak Detection in the Automotive Sector”. In: Pomiary Au-
tomatyka Robotyka 25.3 (Sept. 2021), pp. 79–85. [Link]

4. D. Krata, M. Ochman, M. Panek, M. Skoczen, K. Spyra, Z. Kulas, D.
Sroczynski, and A. Pawlowski. “Adaptive Smith Predictor Control Scheme
for a Nonlinear Hydraulic System”. In: 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
Sept. 2021. [Link]

5. Marcin Ochman. “Hybrid approach to road detection in front of the
vehicle”. In: IFAC-PapersOnLine 52.8 (2019), pp. 245–250. [Link]

The knowledge gained over the years, which has been utilized in the the-
sis and some scientific publications, is the result of work on research grants
funded by the National Centre for Research and Development The author
participated in three grants listed below:

https://doi.org/10.1007/978-3-030-87897-9_8
https://doi.org/10.3390/s21165292
https://doi.org/10.14313/par_241/79
https://doi.org/10.1109/etfa45728.2021.9613268
https://doi.org/10.1016/j.ifacol.2019.08.078

12 Chapter 1. Introduction

1. Connected Worker / POIR.01.01.01-00-1229/20

2. Autonomous Mower POIR.01.01.01-00-1069/18

3. Leak Detector / POIR.01.01.01-00-0773/17

Finally, one notable contribution of the author’s research during his PhD
studies is successful filing and granting of a Polish patent:

1. Wojciech Macherzyśnki, Marcin Ochman, Mateusz Didyk, Krzysztof
Dudek, Zbigniew Kulas, and Dawid Sroczyński. Method of leak detection,
especially in closed-volume systems. Pat.242047. Oct. 2022

13

Chapter 2

Visual Simultaneous Localization
and Mapping Overview

Overview

Simultaneous Localization and Mapping (SLAM) and its variant i.e. Visual
SLAM (VSLAM) are the main subjects of the thesis. Therefore, it is crucial
to fully understand considered problems, terminology, challenges, as well as
methods developed by scientists over decades.

This chapter is an introduction to VSLAM. It contains mathematical for-
mulation of the problem and defines basic terms used in this dissertation.
One may also find detailed architecture description of representative VSLAM
algorithm. Despite of the belief that VSLAM problem is solved, it was pos-
sible to list at least several issues which requires more research to develop
better techniques in terms of efficiency, accuracy and robustness. Further-
more, fast-growing industry making use of computer vision finds novel ap-
plications in new environments leading to higher requirements and bigger
challenges which are still growing. Hence, a possible future of Visual SLAM
algorithms is taken into consideration. The chapter provides also detailed
and thorough literature review.

To understand a science, it is necessary to know its history.
– Auguste Comte

14 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Humans visiting new indoor and outdoor places such as rooms, corri-
dors, streets or squares can still know where they are. They can immediately
collect information about unfamiliar area, make reasoning about surround-
ings and their own position relative to the objects nearby. In other words,
localizing and mapping is a natural, constantly working process occurring in
their minds.

It is so common, that probably most do not recognize it as a crucial part
of living. However, it is very challenging and intriguing when it comes to
implement mentioned functional component in autonomous systems such
as mobile robots or autonomous cars. One of their key feature is ability to
continuously localize in its environment. That is why Visual Simultaneous
Localization and Mapping (VSLAM) has become an important research topic
in robotics [Cad+16].

Despite the frequent usage of VSLAM in that particular domain [Bar+22;
You+17], it should be noted that not only robotics applies techniques de-
veloped by VSLAM community. There are many areas where SLAM based
on computer vision finds its usage. For instance, Augmented Reality (AR)
and Virtual Reality (VR) also take advantage of VSLAM algorithms [Jin+19;
TC20; The+22]. That is why this thesis do not focus only on robotics. It is
believed that VSLAM may find much broader application including AR, VR
and Mixed Reality (MR) collectively named as eXtended Reality (XR) [BCL15],
3D reconstruction and mapping [LCL19], autonomous navigation [Aua+10]
and every system requiring automated perception of environment such sys-
tem operates in [Li+22b].

As a consequence, all definitions and terms used in this document will not
refer exclusively to autonomous systems or mobile robots. Instead, terminol-
ogy is selected carefully to be applicable across a wide range of disciplines.
That is why device conducting SLAM will be refereed to as mobile platform.

As stated before, localization and mapping is a natural process for ev-
ery person. Nevertheless, it is crucial to understand and be able to define
these fundamental terms. SLAM answers two basic questions about cur-
rent state, destination and path i.e. “Where am I?” and “What is my environ-
ment?” [Bou21]. Mobile platform scans its environment related to its position.
Localization is the task of position estimation while environment is known.
On the contrary, collecting and building map based on the position is called
mapping. In real world, neither map or localization are known. Position and
map have to be estimated based on the data which comes from the same sen-
sors. The problem of simultaneous estimation of both is called Simultaneous
Localization and Mapping (SLAM). In other words, the trajectory of platform
and position of landmarks are estimated online without a priori knowledge
[DRN96]. In general, localization and mapping seem to be dependent pro-
cesses. To successfully complete localization there must be a map which al-
gorithm may relate to. On the other hand, to build a reliable map accurate

2.1. Fundamentals of SLAM problem. Probabilistic approach 15

position is required. In literature, one may find that these two operations are
often compared to the chicken and egg problem [KJS16]. Although, solution
of chicken and egg problem may be considered questionable, it is proven
that simultaneous localization and mapping is solvable and converges to the
correct state [HD16].

The following section presents brief historical overview of SLAM and for-
mulates general problem referring to classical age of SLAM dated to 1986-
2004 [Cad+16].

2.1 Fundamentals of SLAM problem. Probabilis-

tic approach

SLAM’s origin reaches back to late 1986 when the IEEE Robotics and Au-
tomation Conference took place in San Francisco, California. In the second
half of the decade researchers agreed that fully autonomous systems placed
in the unknown environment is required to have algorithms for consistent
map estimation and localization. It was beginning of probabilistic methods
introduced into robotics and Artificial Intelligence (AI) [DB06].

Theoretical work by Smith [SC86] and Durrant-Whyte [Dur88] were key
papers establishing basic relationships between landmarks and geometric
uncertaintities. The main contribution of these papers was proof of increas-
ing correlation between landmarks as a result of collecting more observa-
tions. Four years later Smith published article [SSC90] which showed that all
landmarks of the map are correlated to each other due to correlation between
landmark and platform state. In other words, to estimate platform pose large
state vector would be required leading to high computational complexity.
Concurrently, researchers were working on navigation methods using vari-
ous sensors including vision or sonar. The term Simultaneous Localization and
Mapping, as well as SLAM’s architecture was introduced in 1996 by Durrant-
Whyte in survey paper [DRN96]. In literature, SLAM was also known as
Concurrent Mapping and Localization (CML) [TBF05].

According to [Aul+08], by 2008 probabilistic methods have become prin-
cipal in SLAM community. At that time SLAM was mainly applicable by
roboticists which were trying to model environment and platfom pose with
uncertaintities and sensors affected by noise. From author’s perspective, a
comprehensive understanding of the classical era of SLAM, including both
the problem formulation and historical background, is essential for conduct-
ing more advanced research referring to Visual SLAM. Before probabilistic
SLAM is defined, basic terms need to be introduced which will be referenced
throughout the remainder of the thesis.

16 Chapter 2. Visual Simultaneous Localization and Mapping Overview

While localization deduces the location based on specific map which is a set
of given landmarks, mapping is a procedure of collecting and placing land-
marks on the map. Landmark term has been already used several times in
this chapter and it appears to have an intuitive meaning. By definition, land-
mark is a typical, representative and motionless element of the scene. It will
be shown in Chapter 3 that two adjectives i.e. representative and motionless
play a key role in terms of SLAM robustness.

Figure 2.1 demonstrates SLAM problem. Mobile platform is placed into
an unknown environment containing L landmarks lj, j ∈ {1, 2, ..., L}. Plat-
form’s state at time n ∈ Z

+ is represented by xn. The detailed discussion of
platform and landmarks state representations will be covered in Section 2.5.2.
During environment exploration in consecutive time points {n, n + 1, ...},
platform observes landmarks. Due to noises of the sensors which platform is
equipped with and other issues discussed in Chapter 3, measurement zn,j of
the observed landmark’s state lj at time n differs.

Depending on type of SLAM, the goal of the algorithm may be formulated
twofold. Both definitions are similar and the distinction between them is
subtle. Researchers distinguish Online SLAM and Full SLAM. The prior is
responsible for estimating only current state xn along with the map. On the
contrary, Full SLAM estimates all poses of the platform’s trajectory [TBF05].

Let X be an unknown variable being estimated. Typically, it contains
platform’s trajectory as well as landmarks poses. In that case, Full SLAM is
involved. Online SLAM is performed when X includes only current pose
and set of landmarks, Set Z = {zn,j : n ∈ Z

+, j ∈ {1, . . . , L}} is a set of all
observations gathered during scene exploration. Next, let un be an action at
time n. The system state is altered by the action [Mor15]. Finally, Full SLAM
may be defined as a problem of calculating posterior (Equation 2.1).

p(Xonline|Z, u1:n) = p(x1:n, l1:L|Z, u1:n) (2.1)

The online version is a simplified form of Full SLAM and may be expressed
by Equation 2.2.

p(Xfull|Z, u1:n) = p(xn, l1:L|Z, u1:n) (2.2)

Using Bayes formula, it is possible to construct SLAM problem recursively.
It is worth noting that such form requires two models to be defined i.e. state
transition model and observation model. The former is described by the
probability of observation zn given platform state and landmarks position:

p(zn|xn, l1:L) (2.3)

The latter is a probability of next state xn given previous state xn−1 and oc-
cured action un:

p(xn|xn−1, un) (2.4)

2.1. Fundamentals of SLAM problem. Probabilistic approach 17

FIGURE 2.1: Simultaneous Localization and Mapping [Kaz+22]. Mobile platform
(camera in the example), moves around the scene and observes landmarks lj, j ∈
1, . . . , L at specified moments of time n, n + 1, . . . , n + 3. Observations are affected
by sensor’s noise and other issues discussed in Chapter 3, as a result, collected ob-

servations {zn,j}, i ∈ 1, . . . , L are not aligned with real values.

18 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Determining an appropriate representation for the observation model (Equa-
tion 2.3) and motion model (Equation 2.4) is crucial for an efficient, iterative
solution to the probabilistic SLAM problem.

Theoretical research regarding SLAM has also been made over the years.
Convergence of the SLAM algorithm is an important topic. A survey arti-
cle states [Dis+11] that under additional assumptions including observabil-
ity and stationary features, uncertaintities related to features state decreases
over time. However, there are still open problems regarding convergence,
for instance, what time is required to build a map of the environment with
given accuracy or is quality of the map sufficient.

The probabilistic SLAM’s introduction was only the beginning of SLAM’s
wide research description. This formulation was related to core of the prob-
lem which is an estimation of the map and platform’s state. By convention,
this part is called backend. The backend will be discussed in detail in Sec-
tion 2.2.3 and Section 2.6.3. Moreover, backend uses abstracted data acquired
by other component called frontend. The frontend module is described in Sec-
tion 2.6.2.

Frontend BackendSensors

LIDAR

Map estimation

and maintenance
Feature detection
Data association

Feedback

Data Data

relationships

FIGURE 2.2: Typical SLAM architecture. It is composed of a data acquisition mod-
ule, tasked with gathering and forwarding data to the frontend. Subsequently, the
frontend identifies data correlations and conveys them to the backend, which is ac-
countable for map estimation. The architecture is further enhanced by a feedback

loop that relays any modifications from the backend to the frontend [Cad+16].

Many methods and improvements have been proposed for almost 40 years
of research. The next two sections (Section 2.2 and Section 2.3) will give a
brief description about SLAM categorization and related work focusing on
innovative solutions. Section 2.5 is fully dedicated to VSLAM.

2.2 SLAM categorization

SLAM techniques can be categorized based on several key components in-
cluding type of sensors used by a platform, frontend type, backend type and

2.2. SLAM categorization 19

platform’s target environment. The frontend is mainly responsible for ob-
servations determination and motion estimation and for that purpose can
use various methodologies classified as feature-based, direct or semi-direct.
The backend focuses on map estimation with loop closure and can use filter-
based or graph-based approaches. Finally, operating environment plays im-
portant role for SLAM system. Depending on whether environment is ar-
ranged in predictable manner it can be called structured or unstructured.

All these categories determine the wide range of SLAM systems, adapted
to various scenarios and operational requirements. The next section describes
each categorization scheme in detail.

2.2.1 Sensors type

Every SLAM pipeline begins with data acquisition block, which is responsi-
ble for gathering and combining data from all sensors placed on the mobile
platform [SK18]. These sensors, functioning as the perceptual eyes and ears
of the platform, play a cardinal role in determining the effectiveness and reli-
ability of the SLAM system. It is well know fact that every sensor has its own
strengths and weaknesses . As a result, there is no sensor which can fulfill all
requirements [Cen+20].

A sensor is a device which detects or measures certain inputs from the
physical environment. Depending on type of sensors such qualities may be
distance to object, light, speed, acceleration etc. They can be divided into two
categories proprioceptive sensors and exteroceptive sensors [Mor15]. Propri-
oceptive sensors provide information for platform’s internal state i.e. wheel en-
coders, accelerometers, and gyroscopes. Their main drawback is being prone
to cumulative errors over time. To compensate errors it is required to equip
the platform with exteroceptive sensors. They help to perceive and interpret
the external environment, and capture data that allows the SLAM system to
identify and localize landmarks, detect obstacles, and consequently, build a
comprehensive map of the environment.

In the subsequent subsections, a comprehensive exploration and analy-
sis of various sensor modalities used in SLAM including the most popular
i.e. LiDARs, RGB cameras, RGB-D cameras, and acoustic sensors will be
presented [Kha+22]. Each sensor’s unique characteristics, capabilities, and
the role they play in the intricate process of environment mapping and robot
navigation will be discussed.

Ultrasonic sensor

Ultrasonic sensor emits high-frequence waves and detects their reflection. By
measuring time of they offer distance measurements. These sensors provide
advantages such as cost-effectiveness, simplicity in integration, and reliable

20 Chapter 2. Visual Simultaneous Localization and Mapping Overview

performance in detecting objects and measuring distances within a defined
range.

On the other hand, they generally offer lower spatial resolution, which
can affect the accuracy and detail of the captured data. Additionally, they
may struggle with complex environments containing multiple reflective sur-
faces, objects with irregular shapes. According to [Zaf+18], due to lack of
medium, they cannot operate in vacuum.

Sonar

Sonar sensors provide valuable distance measurements by emitting sound
waves and detecting their echoes as they bounce off objects in the environ-
ment. These sensors offer distinct advantages, including underwater navi-
gation capabilities, reliable object detection, and suitability for applications
in environments with low visibility. They are commonly used in uderwater
environments.

Due to many similarities to ultrasonic sensors, sonars has analogous draw-
backs. They tend to have lower spatial resolution compared to other sensors,
which can affect the accuracy and detail of the captured data [Apa+22]. Ad-
ditionally, sonar signals can experience interference and noise in cluttered
environments, leading to potential inaccuracies in distance measurements.
Moreover, the range of sonar sensors is generally limited, which can con-
strain their applicability in certain large-scale mapping scenarios.

LIDAR

A Light Detection and Ranging (LiDAR) sensor provides three-dimensional
information about the environment by emitting laser beams and measuring
the time taken for the light to return after reflecting objects. An example
of LiDAR sensor is shown in Figure 2.3c. The primary advantages of LiDAR
include high-resolution depth information, ability to function well in various
lighting conditions, and capability to accurately measure distances over a
relatively large range.

However, LiDAR sensors also present certain limitations. Firstly, they are
generally more expensive and consume more power than cameras, which
can be a significant consideration in cost and resource-sensitive applications.
They also typically produce a large volume of data, demanding higher com-
putational resources for processing. In addition, while LiDAR sensors pro-
vide excellent depth and distance information, they do not capture color or
texture details like cameras do, which can limit their utility in certain appli-
cations.

2.2. SLAM categorization 21

Camera

A monocular camera is a single-lens camera that captures images from one
viewpoint. It is equivalent of a human eye. The basic parameters of a monoc-
ular camera are focal length and resolution. The focal length determines the
camera’s zoom level and have influence on the area the camera can capture
in a single frame. The resolution affects the detail level of the captured image.

In SLAM systems, monocular cameras offer crucial visual insights into
the environment. Their principal benefits include lightweight design, ease
of integration, and a favorable balance between the cost and the information
they provide.

Nevertheless, the use of monocular cameras is not without its limitations.
A significant drawback is the scale ambiguity, which presents a challenge
when deriving actual distances or dimensions from 2D images, due to the
absence of depth information. This shortcoming can result in inaccuracies
in the map building or localization processes. Moreover, creating an accu-
rate map with monocular SLAM often necessitates more observations. Addi-
tional complications can arise in low-light scenarios or with moving objects,
as these conditions may lead to motion blur and resultant errors. Lastly, the
increase in data volume necessitates greater computing performance. In gen-
eral, higher resolutions significantly influence the power consumption and
costs associated with processing units. Figure 2.3a shows an example of RGB
camera.

RGB-D camera

RGB-D camera is an extension of RGB one by combining color and depth
data. An example of an RGB-D camera is depicted in Figure 2.3b. Its pri-
mary advantages include the provision of rich 3D information, enhanced ob-
ject recognition, and relatively straightforward integration into various plat-
forms. Given its ability to provide both color and depth data, it can overcome
the scale ambiguity problem which has been mentioned discussing monocu-
lar cameras, leading to more accurate mapping and localization.

However, like all sensors, RGB-D cameras also present certain limitations.
These cameras generally have a limited range and field of view, which can
impact the completeness and accuracy of the captured data. They may strug-
gle in outdoor environments or bright light due to interference with the in-
frared projector used for depth estimation [Cho+15]. Furthermore, they are
usually more expensive and consume more power than monocular cameras,
which can be a factor to consider when designing mobile or resource-limited
platforms.

22 Chapter 2. Visual Simultaneous Localization and Mapping Overview

(A) RGB Camera (B) RGB-D Camera

(C) LIDAR (D) Ultrasonic sensor

FIGURE 2.3: Commonly used sensors in SLAM system.

Inertial measurement unit

An Inertial Measurement Unit (IMU) provides information about the motion
and orientation of a mobile platform. It is proprioceptive sensors. As a con-
sequence, it has to be used with other devices to be able to build a map. IMUs
play a crucial role in complementing other sensors like cameras or LIDAR,
especially when navigating in challenging conditions, such as underground
or indoor environments. IMUs also offer valuable information for sensor
fusion algorithms, allowing for more accurate and reliable localization and
mapping.

IMUs also have certain limitations that must be considered. Over time,
their measurements can drift due to integration errors, leading to positional
inaccuracies in long-term SLAM operations. Moreover, IMUs are sensitive
to external disturbances and vibrations, which can introduce noise and af-
fect the quality of their measurements. To mitigate these limitations, IMUs
are often used in combination with other sensors to compensate provided
errors [Leu+14].

2.2. SLAM categorization 23

Sensor fusion

Based on the previous paragraphs, it can be concluded that each sensor has
its strengths and weaknesses. Therefore, ideas have emerged to equip the
platform with not just one, but multiple types of sensors. As a consequence,
it is very common to encounter platforms that utilize two ore more various
kinds of sensors. Sensor fusion is a process of combining data from various
sensors to provide coherent information [KJD18]. For instance, to overcome
the limitation of an RGB camera, which does not provide information about
the distance from objects, additional sensors such as LIDAR are used leading
to Visual-LIDAR approaches by combining two advantages of each sensor
i.e. rich visual information with depth measurements [DV20]. Another ex-
ample that frequently appears in scientific literature is the utilization of an
RGB camera and an IMU sensor [Che+18]. Visual-Inertial (VI) approaches
use Intertial Measurement Unit (IMU) to provide real scale [Qua+19]. By
fusing data from different sensors, the system can compensate for individual
sensor limitations and enhance the overall perception and understanding of
the surroundings.

The utilization of multiple sensors introduces additional requirements for
the data acquisition component. One significant challenge arises from the
varying update frequencies of the sensors. For instance, while IMU sensor
measurements arrive at a rate of 200Hz, the camera’s framerate is usually
limited to 30 or 60Hz. Consequently, the synchronization of data between
these sensors plays a crucial role in ensuring accurate and coherent infor-
mation. Similarly, in the case of Visual-LiDAR SLAM, there are additional
challenges to address. Apart from the data synchronization aspect, the fu-
sion of RGB images and LiDAR point clouds requires the association of data
from these distinct sensor sources. This data association task is a complex
task due to the diverse coordinate systems and characteristics of the sensors
involved.

In general, choosing right data association algorithm is not an easy task.
There are many options including nearest neighbor algorithm, probabilist
approaches, Kalman filter, machine learning and many more [WWN20]. The
following articles and books are recommended to deepen understanding of
multisensor fusion, which is a critical concept in sensor data integration and
the improvement of perception systems. A comprehensive overview of the
field’s fundamentals can be found in [LHL08] by Liggins, Hall, and Llinas.
Practical applications in the automotive industry are explored in [GS22]. The
fusion of data provided by many sensors is also discussed in [SK16]. It ex-
plores the challenges and advancements in sensor fusion algorithms, mak-
ing it a valuable reference not only in the field of robotics. For those inter-
ested in advanced and state-of-the-art techniques, both articles [TLZ23] and
[Men+20] explore the intersection of machine learning and data fusion.

24 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Sensors comparison and choice

There are many possibilities when it comes to chose sensors for SLAM plat-
form. Numerous sensors, which can be combined together give so many op-
tions. Thus, one can ask a simple question “What sensors should be chosen?”.
While question seems to be not difficult, the answer is usually much more
complicated.

The requirements of the SLAM application play a key role in determin-
ing the optimal sensor choice. When selecting the most suitable sensors
for a SLAM system, several crucial factors must be taken into considera-
tion [Che+18].

In Table 2.1 the previously described sensors have been compared with
respect to various aspects that need to be taken into consideration when se-
lecting suitable sensors for the SLAM system. Factors such as the desired
level of accuracy, the complexity of the environment, real-time performance,
and cost constraints must be carefully considered. By weighing these require-
ments against the strengths and weaknesses of each sensor, a well-informed
decision can be made regarding the most suitable sensor or sensor fusion
approach for the given SLAM application. Furthermore, numerous factors
are intricately linked. To give an example, higher levels of detail require
increased processing power and better hardware to handle larger data vol-
umes, potentially leading to a higher energy demand. Moreover, a sensor’s
cost constitutes just one component of the overall SLAM system expenses.
The price of the processing unit, and consequently the total cost, is also re-
lated to its computing capabilities i.e. faster CPUs cost more.

In general, choosing the best sensors for SLAM involves a thorough as-
sessment of factors such as level of detail, system’s update time, integration,
and power consumption. Balancing these considerations and selecting sen-
sors that align with the specific requirements of the SLAM application can
significantly impact the success and its effectiveness.

The PhD thesis focuses on solutions that utilize cameras for a reason.
The author believes that visual approaches are the best choice due to sev-
eral compelling advantages they offer Visual SLAM leverages the wealth
of information present in images, providing rich visual cues and detailed
2D or 3D representations of the environment [LWG18]. Cameras are widely
available, cost-effective, and easily integrated into various platforms, making
them accessible for a broad range of applications. The visual data captured
by cameras allows for more accurate and robust feature extraction, which is
crucial for reliable mapping and localization in complex and dynamic envi-
ronments [Yu+18]. Additionally, the large amount of visual data available al-
lows for the application of advanced computer vision and machine learning
techniques, enhancing the system’s perception and decision-making capabil-
ities. Moreover, visual approaches offer the potential for more intuitive and
human-like interaction with the environment. Cameras provide a natural

2.2. SLAM categorization 25

and familiar way to perceive the world, which can facilitate human-robot in-
teraction [Li+19] and collaborative tasks [ZN20]. VSLAM also benefits from
the ability to perform tasks such as object recognition, tracking, and scene un-
derstanding [Fav23], which can further enhance the overall functionality and
versatility of the system [Ros+21a]. By leveraging the rich visual informa-
tion, VSLAM systems can adapt and learn from their surroundings, making
them more adaptable and suitable for a wide range of real-world scenarios.
Moreover, the generated map may include color information, enhancing its
usability for human interpretation and utilization. This feature allows people
to reuse the maps for various purposes and applications.

Overall, the author’s belief in the superiority of visual approaches is rooted
in their ability to harness the power of visual perception and leverage it to
overcome challenges in SLAM, making them a promising choice for future
advancements in the field.

2.2.2 Operating environment

Choosing sensors for SLAM mobile platform requires well specified operat-
ing environment. With the domain of SLAM algorithms, the operating en-
vironment plays a crucial role in shaping the efficacy and performance of
these systems. Level of environment’s complexity has big impact on possible
assumptions which SLAM system can make.

Depending on capability of making simplifying assumptions operating
environments may be classified into two categories i.e. structured and un-
structured ones. The former refers to settings where there is a well-defined
and recognizable layout, such as indoor spaces including offices, factories,
or corridors. In structured environments, the presence of distinctive features
like lines [ZZZ19] being part of walls, corridors and doors or known land-
marks provide references for SLAM algorithms. Figure 2.4a shows an exam-
ple of structured environments. The image depicts a well-structured environ-
ment featuring a road for cars. Clear and recognizable traffic signs, distinct
road lanes, and evenly spaced traffic bollards contribute to its classification
as a structured setting. These elements, spaced at consistent intervals, under-
line the organized layout of the environment, demonstrating the presence of
discernible features

Conversely, the latter comprises settings that lack well-defined layouts
or recognizable features, often encountered in outdoor landscapes, rugged
terrains, or cluttered urban scenes. Figure 2.4b illustrates structured environ-
ment. The image captures a rugged mountainous landscape, exemplifying
an unstructured environment characterized by its irregular topography, lack
of discernible patterns, and absence of recognizable landmarks. The varied
terrain and absence of predefined references underscore the complexities in

26 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Sensor Environment
Depth Range

m
Price

€
Power

W

LIDAR
Indoor,

Outdoor
0.1 - 185 500-5000 5-200

Sonar Underwater 0.1 - 6000 500 - 5000 0.01-5

Ultrasonic Indoor 0.1-10 2-500 0.1-1.5

Monocular
Camera

Indoor,
Outdoor

N/A 100-5000 0.01-10

RGB-D
Indoor,

Outdoor
0.1-10 100-500 0.3-5

Sensor
Update

frequency
Hz

Data
bandwidth Mbps

Compute
requirements

Notes

LIDAR 10-30 Hz 1-100 ••
No color

information

Sonar 0.1 - 10 1-10 ••

No color
information;

Range depends
on wave

frequency

Ultrasonic 1-50Hz ∼ 10−6 •

No color
information,

Many sensors
required

Monocular
Camera

30-60 Hz 20-300 ••• Scale ambiguity

RGB-D 30-60Hz 30-500 •••
Color and 3D
information

TABLE 2.1: Comparison of commonly used exteroceptive sensors in SLAM [Kaz+22;
Li+22a; Cen+20].

2.2. SLAM categorization 27

accurately mapping and navigating through such intricate landscapes. Ac-
cording to [Gui+04] mapping large unstructured environments is the most
challenging task. It arises from the fact that this is general problem. Being
capable of mapping unstructured environments implies ability to map struc-
tured environments, although the reverse relationship does not hold. That is
why researchers have been trying to develop methods which can handle any
kind of environment for decades [Bai02; Gui+04].

(A) Structured environment [GLU12]

(B) Unstructured environment

FIGURE 2.4: Examples of structured and unstructured environments.

Another classification commonly encountered in scientific literature is the
differentiation between indoor and outdoor [Tan+16; Kaz+22]. In many cases
indoor spaces such as factories, offices and warehouses have well-defined
structure including walls, doors, windows and corners. Figure 2.5a shows
an example of indoor space. As a consequence, they are often identified with
structured environments. Nevertheless, it is not difficult to give an example
of structured environment which is not indoor i.e. well marked urban streets
composed of road lanes, traffic lights and road signs.

On the contrary, there are outdoor environments like open roads, forests,
or natural terrains which introduces another difficulties for SLAM systems.
Figure 2.5b shows an example of city park which is an outdoor space. Chang-
ing weather conditions, varying lighting, and occlusions from natural ele-
ments like trees or terrain irregularities are only a few examples of challenges

28 Chapter 2. Visual Simultaneous Localization and Mapping Overview

that can impact data quality and algorithm performance. Outdoor environ-
ments often feature a dynamic scene with vehicles, pedestrians, and wildlife
constantly in motion which if are not handled properly may cause tracking
errors and inconsistency in created map. To address all these challenges, out-
door SLAM systems may incorporate advanced techniques like loop closure
detection, simultaneous multi-sensor fusion, and deep learning scene under-
standing.

Despite the fact that underwater environment falls into the category of
an outdoor setting, it’s worth distinguishing it as a separate type due to its
significant differences from the terrestrial outdoor environment.

Unlike terrestrial outdoor settings, underwater environments lack clear
visual cues and easily identifiable landmarks. The turbidity of water, fluc-
tuating currents, and limited visibility hinder the effectiveness of traditional
methods. Underwater SLAM systems must contend with the 3D nature of
water bodies, including vertical movement and potential changes in water
depth. The irregular topography of the seabed, coupled with underwater
vegetation and marine life, contributes to the absence of consistent visual
references, making it difficult to implement traditional feature-based SLAM
approaches. Furthermore, the corrosive nature of water poses challenges
to the durability of sensors and equipment. Finally, the presence of water
significantly influences the accuracy of sensor measurements. Variations in
the speed of wave propagation underwater and shifts in focal length can in-
troduce considerable distortions to the data collected by sensors [Wan+23;
Zha+22; Jia+19; Zha+19a].

(A) Indoor (B) Outdoor (C) Underwater [Zha+22]

FIGURE 2.5: Examples of indoor, outdoor and underwater environment.

2.2.3 Backend type

Section 2.2.1 and Section 2.2.2 mostly applied to the frontend part of a SLAM
system. The frontend serves as a component that generates abstractions from
sensor data, while the backend utilizes these abstractions to make inferences
based on the abstracted information. Initially, it was mainly responsible for
map estimation. In other words, backend processes the data collected from

2.2. SLAM categorization 29

sensors and transformed by frontend, and refines the platforms’s pose and
the map over time. Based on the backend algorithm employed to accomplish
the described task, it can be categorized into three distinct groups. First two
types of backend are filter-based and optimization-based. Furthermore, due
to recent advances in machine learning and scene reconstruction [SS23], a
third category referred to as deep learning approaches has emerged. All three
kinds of backend are discribed in next sections (Section 2.2.3 – Section 2.2.3).

According to Chen et al., contribution to the different kinds of backends
may be visualised by timeline presented in Figure 2.6. Although, clear sep-
aration can be seen between three periods, it is worth noting that authors
claim that this division does not have an absolute endpoint. Additionally, an
attentive reader will notice that the Figure 2.6 is closely related to the timeline
presented in Figure 2.11 regarding SLAM Related work.

Classical Age
Machine learning and

optimization age
Deep Learning Age

Motion framework and observation
model of early SLAM.

The improvement and optimization
of SLAM algorithm.

SLAM combined with deep learning.

2006 2016

FIGURE 2.6: Timeline depicting the evolution of research on different backend
types [Che+22b].

Filter-based backend

Filter-based SLAM approaches formulates the SLAM as a state-estimation
problem. In this context, state means both platform pose and map. The state
undergoes continual refinement through a filtering procedure. Relying on
actions and measurements, it makes ongoing estimations about state. As ad-
ditional data becomes available, the estimation process continues, progres-
sively enhancing and perfecting the state representation [Pal+22].

30 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Let recall probabilistic SLAM formulation, specifically motion (in liter-
ature also referred to as transition) and observation model given by Equa-
tion 2.4 and Equation 2.3 respectively. With assumptions of landmarks’ time-
invariance and the platform’s Markov motion model, SLAM can be recur-
sively given by Equation 2.5 [WTT03], where m represents a map.

p(xn, m|zn, un) =

= η p(zn|xn, m)
︸ ︷︷ ︸

Observation model

∫

p(xn|xn−1, un)
︸ ︷︷ ︸

Motion model

p(xn−1, m|zn−1, un−1)
︸ ︷︷ ︸

Previous posterior

dxn−1 (2.5)

From the Equation 2.5 defining the SLAM process recursively as a Bayesian
filter, three algorithmic steps emerge [Kuz18]. Before diving into details of
the algorithm, let introduce transition and observation model. The transi-
tion model given by Equation 2.6 predicts how the system state evolves over
time based on control inputs and incorporates process noise. The observa-
tion model (Equation 2.7) relates the true state to sensor measurements and
considers measurement noise. In the following equations, Xn is a state of
SLAM systems combined of platform pose and a map.

Xn = f (Xn−1, un) + wk (2.6)

zn,j = h(yj, Xn) + vn,j (2.7)

These models are central to Bayesian filtering techniques, enabling the filter
to estimate and update the state of a dynamic system using sensor data and
dynamics models while accounting for uncertainty. The following list de-
scribes mentioned steps of filter’s single iteration, while Figure 2.7 presents
them in graphical form:

1. Prediction – in this step, the filter uses a mathematical model to pre-
dict how the state of the system i.e. platform’s pose is expected to
evolve from its current estimate. This is accomplished by propagat-
ing the state estimate forward in time using the system’s motion model
and control commands. The platform’s current pose is predicted by the
motion model given by Equation 2.6. Essentially, it predicts where the
system will likely be in the next time step based on its current state and
the applied controls.

2. Observation – the filter compares the predicted state, generated in the
previous prediction step, with actual sensor measurements obtained
from the environment. These measurements provide valuable infor-
mation about the real-world state of the system, helping to correct any

2.2. SLAM categorization 31

discrepancies between the predicted and observed values. This step is
expressed with the Equation 2.7.

3. Update – the final step of the filter is to update platform’s pose and
landmarks positions with formula given by Equation 2.5.

Action

Motion
model

Observation

Observation
model

Posterior
estimation

Prior
estimation

Posterior
estimation

FIGURE 2.7: Single iteration of Bayesian filter based on recursive formula given by
Equation 2.5.

Following an overview of Bayesian filtering, the subsequent sections will
provide detailed descriptions of three distinct Bayesian filters, each offering a
unique approach to state estimation. These filters, namely the Kalman Filter,
the Extended Kalman Filter, and the Particle Filter has their strengths and
limitations.

Kalman filter One of the most popular implementations of the Bayesian fil-
ter is technique proposed by Kalman in [Kal60], referred to in the literature
as the Kalman filter. It relies on a set of assumptions that define its scope
and functionality. The primary assumption is the linearity of the system dy-
namics. In other words, both transition model and observation model are
linear. It means that function f (Xn−1, un) from Equation 2.6 takes a linear
form f (Xn−1, un) = AXn−1 + Bun. Matrix A establishes the relationship be-
tween the state at time-step n − 1 and the subsequent time-step excluding
noise wn and control un. On the other hand matrix B, links the action un

with the present state. As a result, transition model is given by Equation 2.8.

Xn = AXn−1 + Bun + wn (2.8)

32 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Similarly, the function h(yj, Xn) becomes h(yj, Xn) = Cxn−1 where matrix C
links state Xn−1 with observation zn. There is also additive noise vn. Equa-
tion 2.9 represents the observation model used in Kalman filter.

zn,j = CXn−1 + vn,j (2.9)

Secondly, all uncertainties, including the state estimate and measurement
noise, follow Gaussian distributions. In particular, wn ∼ N (0, σw) and vn ∼
N (0, σv) represent zero-mean Gaussian noise with standard deviations σw

and σv for the transition and observation models, respectively.
By this assumptions, Kalman filter ensures Gaussianity of the estimates.

It means that based on the posterior estimation at time n − 1, which are pa-
rameters of Gaussian distribution i.e. mean µn−1 and covariance Σn−1, the
prior estimation µ̄n, Σ̄n can be calculated with Equation 2.10. With regard to
the three mentioned steps of the Bayesian filter, this corresponds to the first
step, which is prediction.

µ̄n = Aµn−1 + Bun

Σ̄n = AΣn−1AT + σv

(2.10)

Then, observation takes place and a posterior estimation µn, Σn is determined
with formula given by Equation 2.11, where yn = zn − Cnµ̄n is called inno-
vation and Kn = Σ̄nCT

n (Cn
¯ΣnCT
n + Q)−1 is the Kalman gain. The posterior

estimation refers to the third step of Bayesian filter.

µn = µ̄n + Knyn

Σn = Aµn−1 + Bun
(2.11)

Extended Kalman Filter Kalman filter is known for its simplicity, optimal-
ity and robustness [JU97]. However, one of its significant drawbacks is re-
liance on system linearity. Consequently, it cannot be applied to many real-
world systems that are characterized by nonlinear functions f (·) and g(·)
in their transition and observation models introduced in Equation 2.6 and
Equation 2.7. Moreover, Gaussianity is not preserved in nonlinear systems.
To address these issues, the Extended Kalman Filter (EKF) has been intro-
duced, which involves the linearization of models using Taylor expansion.
Similarly to the standard Kalman filter, first, a prediction is carried out, ex-
pressed by Equation 2.12.

µ̄n = g(un, µn−1)

Σ̄n = JnΣn−1JT
n + σv

(2.12)

Jn is Jacobian matrix of the motion model in a form given by Equation 2.13.

2.2. SLAM categorization 33

J =

∂ f1
∂x1

n
. . . ∂ f1

∂xS
n

...
∂ fP

∂x1
n

. . . ∂ fP

∂xS
n

(2.13)

Subsequently, the system updates its state based on new observations, fol-
lowing Equation 2.14, where Kn = ΣnHT

n (HΣ̄HT
n + σw)−1 is Kalman gain and

the innovation is defined as yn = zn − g(µ̄n). Hn is a Jacobian of observation
model. For a more comprehensive understanding of this topic, mathemat-
ical derivations and further insights into the Extended Kalman Filter, inter-
ested readers are encouraged to refer to the works of Newman and Welch
and Bishop [WB94; New99].

µn = µ̄n + Knyn

Σn = (I − KnHn)Σ̄n
(2.14)

After introducing Kalman filter and its variant for nonlinear systems, let’s
discuss their advantages, limitations and drawbacks. As it was mentioned
earlier, Kalman filter is a parametric filter. Therefore, it is easily interpretable
and does not require huge memory. Another advantage lies in its simplicity.
Thus, it is computational efficient. In comparison to more complex nonlinear
filters, the EKF is relatively low, making it suitable for real-time processing.

On the contrary, one of the major disadvantages of the filter is strong re-
liance on known and accurately specified models. Any mismatches between
these models and the true system behavior can introduce bias and compro-
mise estimation accuracy. Kalman filter assumes an absence of modeling
errors. In practice, differences between mathematical models and the actual
system can lead to estimation inaccuracies. While it handles moderately non-
linear systems, it may fail to converge in the face of highly nonlinear or non-
Gaussian systems. The next concern related to SLAM is the quadratic cost
associated with map size [Dis+01]. This can lead to significant computational
overhead, especially in applications with large maps.

Despite the acknowledged constraints and the scientific community’s em-
phasis on optimization-based approaches, the Extended Kalman Filter (EKF)
is still employed in SLAM. An example of this can be found in [Ull+20].

Particle Filter Due to assumptions that the system’s state and measure-
ment noise follow Gaussian distributions fully characterized by their means
and variances, KF and EKF are examples of parametric filters. In contrast
to parametric filters there are also non-parametric ones, which do not make
specific assumptions about the probability distribution and can represent a
wide range of distributions using a set of Ns particles {Xi

n, i = 0, . . . , Ns}. As

34 Chapter 2. Visual Simultaneous Localization and Mapping Overview

a result, particle filter solves one of the main disadvantages of KF and EKF
which is requirement for Gaussianity.

A particle refers to a sample Xi
n which is a possible representation of the

state sequence. Each particle has corresponding weight wi
n. The weights are

normalized i.e. ∑i wi
n = 1.

The fundamental idea behind particle filters in SLAM is to estimate the
platforms’s pose and map by propagating particles {Xi

n, i = 0, . . . , Ns} through
time. The higher weight wi

n is, the closer to the true state is particular sam-
ple. Each particle represents potential trajectory of the platform and the cor-
responding map. The algorithm iteratively updates the particles based on
sensor measurements and control inputs. Consequently, a discrete weighted
approximation to the true posterior p(Xn|zn, un) is obtained [Aru+02]. It is
given by Equation 2.15, where δ(·) is Dirac delta function.

p(Xn|zn, un) ≈
Ns

∑
i=1

wi
nδ(Xn − Xi

n) (2.15)

Particle filter, as an example of a Bayesian filter, retains its recursive struc-
ture. An additional step is resampling.

1. Prediction – each particle is moved forward in time using transition
model given by Equation 2.6. This step simulates how the system’s
state evolves.

2. Update – particles are weighted based on their likelihood of produc-
ing the observed sensor measurements p(zn|Xi

n). Particles that better
match the measurements receive higher weights.

3. Resampling – is a process of creating a new set of particles focusing
on regions of high probability. It replicates particles based on their
weights, with particles associated with higher weights being more likely
to be duplicated. This process ensures that particles representing more
probable states are given greater influence in the estimation, enhancing
the filter’s performance and preventing from the degeneracy [LBD15].

Particle filters have limitations that can be grouped into three key aspects.
To begin, maintaining an adequate number of particles in the set is crucial.
Small sample size can introduce bias into posterior estimations, potentially
causing the filter to lose track of the true state, especially in high-dimensional
spaces [DFG01]. On the other hand, big size of particle set has significant im-
pact on filter’s performance which can lead to high computational require-
ments. This is a trade-off between filter’s accuracy and execution time. Sec-
ondly, the resampling procedure has to be chosen wisely. It depends on the
specific requirements of the application, computational resources available,

2.2. SLAM categorization 35

and the nature of the probability distribution being estimated. It often in-
volves a trade-off between maintaining diversity and controlling computa-
tional costs while aiming for accurate state estimation. Too frequent resam-
pling may also introduce variance [ETM21]. Finally, due to their nonpara-
metric nature, particle filters demand more computational resources com-
pared to KF or EKF. The latter recursively obtain next estimates with simple
formulas(Equation 2.11 and Equation 2.14) for the state of the system, while
the former needs update state of every particle. This might be a notable issue
especially for large state spaces.

Optimization-based backend

In the previous sections, backend filtering approach was discussed that in-
volve the maintenance of probability distribution functions. It employs a
Bayesian Network (BN) to represent SLAM, which is a graphical model de-
picting stochastic processes in the form of a graph [Gri+10]. In a BN, each
node corresponds to a random variable, and directed edges between nodes
capture their dependencies [Ji19].

Figure 2.8a shows an example of SLAM problem modeled by BN. In this
scenario, there are four poses denoted as x1, . . . , x4, each corresponding to
the platform’s position at a specific time step n. At n = 1, the platform ob-
serves three landmarks, namely l1, l2, l2, and these observations are modeled
by measurements z1, z2, z3. Subsequently, at n = 2, the platform detects two
landmarks, l2 and l3, using measurements z4 and z5. Moving on to n = 3,
three landmarks are observed via measurements z6, z7, z8, while at n = 4,
there is a single landmark, l5, with observation z9. The motion and observa-
tion models (Equation 2.4 and Equation 2.4) are represented by particular set
of edges. The former is represented by edge connecting current pose xn with
previous pose xn−1. The latter is described by two edges i.e. the current pose
of platform xn and map, which is represented by static landmark xk.

In Figure 2.8b process of Bayesian filter inference is shown. In filtering
approaches, the joint probability distribution typically involves the current
state of the platform and the map. However, not all of these variables are
required. For instance, past measurements and past poses are marginalized
to keep graph relatively small. On the other hand, graph may become fully
inter-connected. As a consequence, the computational cost of joint distribu-
tion propagation is highly correlated with number of variables and its per-
formance especially for big maps may be poor. To preserve time constraints
one have to limit map size. This is significant disadvantage of filtering ap-
proaches.

At the beginning of SLAM research, mainly because of noise, the prob-
lem was characterized in terms of probabilistic language. However, question
arises whether other approaches exist. Indeed, the answer to this question is
positive. Lu and Milios were first scientists who proposed a method which

36 Chapter 2. Visual Simultaneous Localization and Mapping Overview

used spatial relations as a constraints to refine a map [LM97]. Therefore, an
alternative to BN is to model SLAM as a graph which is constructed out of
measurements. Every graph node represent a platform’s pose or landmark,
while edges are constraints.

Figure 2.8c is an example of optimization-based approach. There are sev-
eral differences comparing to the filter-based methods. First, there are no
node’s related to measurements zi. In graph-based approach measurements
are represented as graph’s edge. For instance, in Figure 2.8c, there are three
measurements z1, z2, z3 related to x1 platform’s pose and three landmarks
l1, l2, l3. In Figure 2.8c, measurements nodes are represented by edges from
x1 to l1, l2, l3. Furthermore, graph contains less platform’s pose nodes. It
should be emphasized that number of nodes in graph should be maintained
carefully. It means that adding all poses, landmarks and constraints would
result in highly inefficient solution. To overcome that problem only specific
poses and their corresponding set of sensor’s measurements can be added to
the graph. In comparison to filtering methods, only small subset of all poses
are retained, while other poses are not marginalized but explicitly discarded.
As a consequence, two poses in the described example, namely x2 and x4,
were removed from the graph due to their insignificance.

In such scenario, the SLAM backend can be structured as a two-step pro-
cess. Initially, there is the construction of a graph. This step involves incorpo-
rating new nodes and edges into the graph, reflecting the spatial constraints
of the scene and the platform’s trajectory, relying on the past measurements.
Subsequently, optimization is performed to refine the map and all poses, with
the goal of maximizing function f (·) based on the collected measurements
(Equation 2.16).

x∗ = argmax f (x, l, z) (2.16)

The question which may arise is what function f (·) is? In the research
papers, typically optimization-based SLAM backend is formulated as a max-
imum a posteriori estimation (MAP). The idea behind MAP is straightfor-
ward. The X ∗ variable is seeked which maximizes posterior probability
p(X |Z), where p(Z|X) is the probability of measurements Z given X , and
p(X) is a prior probability of X . MAP may be formulated by Equation 2.17.
It is also noteworthy that in linear Gaussian case, Kalman filtering and MAP
give the same estimates.

X ∗ = argmax
X

p(X |Z) (2.17)

By assumption of independent measurements, MAP may be factorized into
form shown in Equation 2.18.

2.2. SLAM categorization 37

x1 x2 x3 x4

l1 l2 l3 l4 l5

z1 z2 z3 z4 z5 z6 z7 z8 z9

(A) Dynamic Bayesian Network

x1 x2 x3 x4

l1 l2 l3 l4 l5

(B) Inference in Bayesian filter

x1 x3

l1 l2 l3 l4 l5

(C) Keyframe optimization-based approach

FIGURE 2.8: Comparison of Dynamic Bayesian Network with keyframe
optimization-based approach [SMD12; Gri+10].

X ∗ = argmax
X

p(X)
M

∏
k=1

p(zk|Xk) (2.18)

Optimization-based SLAM or alternatively, Graph SLAM utilizes factor
graphs and factorization to represent complex models efficiently. A factor
graph is a graphical representation of process which consist of variables and
factors. The variables correspond to unknown quantities within the problem,
while the factors correspond to functions that operate on specific subsets of
these variables. The edges within the factor graph link factors with vari-
ables, signifying that a given factor relies on specific variables for its compu-
tations [KF09; Loe04]. An example of SLAM represented by a factor graph
is presented in Figure 2.9. There are four poses represented by x1, . . . , x4.
Odometry constraints are modeled by factors u1, . . . u3. For every odometry
constraint there are two edges connecting consecutive poses. Furthermore,
there are second type of nodes representing landmarks. In the example there
are two landmarks l1, l2.

By assuming a Gaussian noise distribution, MAP estimation can be fur-
ther reformulated as a least squares problem, as represented in Equation
Equation 2.19. For a comprehensive understanding of the transformations
from MAP to the least squares problem, additional insights can be gained
from the following references: [Gri+10; Cad+16; Gao+17]. To clarify, hk is a

38 Chapter 2. Visual Simultaneous Localization and Mapping Overview

x1 x2 x3 x4

l1 l2

K

. . .
u1 u2 u3

v1 v2 v3 v4 v5

p

c1

FIGURE 2.9: Example of factor graph of SLAM.

nonlinear function representing the observation model (Equation 2.7), and
Ωk is the information matrix, which is the inverse of a covariance matrix.

argmin
M

∑
k=0

(hk(Xk)− zk)
TΩk(hk(Xk)− zk) (2.19)

Those with experience in computer vision may notice that Equation 2.19
bears a resemblance to the bundle adjustment formulation. For a more de-
tailed discussion and comparison between VSLAM and bundle adjustment,
which represents a special case of the structure from motion problem, please
refer to Section 2.4. However, it is worth mentioning two significant differ-
ences at this point. In bundle adjustment (BA), only cameras are employed,
whereas SLAM has the flexibility to utilize various types of sensors. Addi-
tionally, SLAM operates as an incremental process, in contrast to BA, where
estimation takes place after all the data has been gathered [Cad+16].

Recent research has shown that optimization-based approaches are bet-
ter in terms of scalability, accuracy and performance. Strasdat, Montiel, and
Davison in their work [SMD12] suggest that in most cases optimization-
based approaches are better than filtering methods. Further scientific pa-
pers seem to support that statements. One may observe that in the 2010s,
optimization-based methods gained the attention of researchers, leading to
the majority of developed algorithms utilizing optimization [You+17].

2.2. SLAM categorization 39

2.2.4 Map representation

In order to develop SLAM system it is important to chose proper map repre-
sentation. The generation and maintenance of maps are fundamental aspects
in every mapping process. Maps not only allow proper environment recon-
struction but, as will be explored further, also may help in navigation and
understanding platform’s surroundings.

In the preceding sections that focused on SLAM categorization, the atten-
tion was primarily directed towards SLAM as an estimation problem. As-
pects related to both the frontend and backend of SLAM were discussed,
inherently involving the mapping process. However, it is important to ac-
knowledge that certain assumptions were made regarding the map repre-
sentation. So far, the map was a set of landmarks which were represented as
a point in R3. While this definition of the map was convenient for mathemat-
ical formulation of the SLAM problem, one should be aware of other options
which may be taken into considerations. There are at least several kinds of
map. However, they can be grouped into two categories i.e. metric maps and
topological maps.

Each of them will be described in the following paragraphs. The choice
of map type depends on the specific requirements of the SLAM application,
the available sensor data, and the desired level of accuracy and detail in rep-
resenting the environment. Different SLAM algorithms may utilize different
types of maps to perform tasks like localization, mapping, and path planning
effectively.

Metric maps are types of maps which represent the environment in met-
rical manner. It means that they allow for measurements of distances and
angles. They provide a quantitative representation of the environment, al-
lowing localization, navigation and other activities requiring spatial infor-
mation. There are several kinds of metric maps including occupancy grid,
voxel map, point cloud maps, semantic maps and hybrid ones.

Occupancy grid maps represent the environment as a grid of cells, each
associated with a value indicating its occupancy status. This value can be bi-
nary (occupied or not) or within a range, representing the likelihood of occu-
pancy. In a formal sense, occupancy maps model the configuration space of
a platform [Lat90]. They find common use in structured environments like
factories and warehouses due to their simplicity, ease of construction, and
map maintenance regardless of the environment’s size. However, they come
with certain limitations. One key consideration is selecting an appropriate
cell size, which requires a trade-off between the accuracy of environmental
representation and memory constraints, as larger maps demand more mem-
ory. Additionally, most implementations use a fixed cell size, limiting their

40 Chapter 2. Visual Simultaneous Localization and Mapping Overview

adaptability when higher levels of detail are needed. Next, occupancy grids
may struggle to scale when approaching map boundaries. Finally, it’s impor-
tant to note that occupancy grid maps typically represent 2D environments.

Voxel map is an extension of occupancy grid map to 3D environments.
Instead of cells, environment is divided into a grid of volumetric elements
called voxels. This representation is essential for applications involving au-
tonomous vehicles, 3D scanning, and mapping of complex indoor or outdoor
spaces. Due to the fact that voxel maps are a generalized form of 2D occu-
pancy maps, they share advantages and disadvantageous. Again, their rep-
resentation simplicity leads to easy creation and updates. However, the prob-
lem related to the resolution trade-off becomes even more apparent. Adding
an extra dimension means that reducing the voxel size by a factor of 2 while
keeping the size of the mapped environment constant results in an eightfold
increase in memory requirements. It is clear that this relationship is cubic.
Their drawbacks also include limited dynamic adaptability and scalability
issues near the map boundaries.

Point Cloud Maps store information about the environment as a collection
of 3D points. They provide a detailed and accurate representation of the
world by capturing the spatial information of objects. High level of detail
is especially useful in application where fine-grained environmental knowl-
edge is crucial i.e. mobile systems operating in small, cluttered spaces. An-
other advantage is their sensor-agnostic nature. It means that they can be
generated from various sensors like depth sensors, LIDARs or RGB-D cam-
eras. On the contrary, relatively high level of detail is associated with data
volume and computational complexity. Pointclouds may contain large num-
ber of points which can be hard to process in real-time applications. More-
over, such high levels of detail may not be necessary, particularly when deal-
ing with distant objects.

Feature maps represents environment created by detecting and describing
distinctive features. These features may be objects, edges, corners or other
typical elements of the environment. In such approach these maps reduce
required size of the memory compared to other solutions. As a consequence
of decreased data volume, faster processing may be achieved. However, they
may be less suitable for applications that require detailed environment repre-
sentation or where feature-rich data is fundamental. Furthermore, they rely
on feature detection and description algorithms. As a consequence, represen-
tation of places where such algorithms struggle to detect such features may
be not possible.

2.2. SLAM categorization 41

Semantic maps offer a representation of the environment that incorporates
semantically meaningful details about objects and relationships [Ros+20b].
For instance, in the context of autonomous vehicles, this process involves not
only constructing a traditional map of the environment using point cloud
data but also concurrently executing a classification algorithm. This algo-
rithm categorizes points within the cloud, distinguishing between elements
such as humans, roads, bicycles, and more. Subsequently, this information is
integrated into the map. Semantic maps enhance environmental perception
and provide valuable information for decision-making processes. However,
creating and maintaining accurate semantic maps can be challenging, pri-
marily due to the need for advanced perception algorithms. Consequently,
achieving the requirements of these algorithms may require better hardware.

Hybrid map combines the advantages of several other map types to create
a more versatile and comprehensive representation of the environment. The
key idea is to provide a map that not only represents the spatial aspects of the
environment but also captures semantic information about objects and their
relationships or other information which may be beneficial for specific appli-
cation [Gao+24]. For instance, a map can be a combination of a semantic map
to retain information about objects and an voxel map to enable navigation al-
gorithms. This fusion of information enables mobile platforms to perform
complex tasks in diverse environments. The another advantage is improved
situational awareness. Despite their versatility, one of their most significant
issue is the complexity of construction and maintenance. Moreover, they
can become computationally intensive especially when maps are large. As a
consequence, their utilization may be limited to high-performance hardware
only.

Topological map is a type of map which characterizes environment based
on relationships between key locations or landmarks. Unlike metric maps
focusing on spatial measurements, they abstract the mapped world into a
network of nodes and edges emphasizing spatial relationships and topology
of the world [GO15]. Due to high-level understanding of the environment
they are particularly well-suited in applications where navigation and path
planning tasks play an important role. They are efficient in terms of memory
and computations requirements due to their compactness, especially com-
paring to metric maps. Additionally, topological maps are more robust in
situations where changes occur slowly. On the other hand, they may strug-
gle when high precision is needed. Furthermore, they may have issues when
landmarks change their positions. Constructing topological maps may re-
quire manual effort to define key landmarks [CN01] and connectivity, which
can be impractical for large or complex areas. However, in literature, one

42 Chapter 2. Visual Simultaneous Localization and Mapping Overview

can find many academic papers describing methods which do not use man-
ual map preparation. Finally, the main issue of the topological maps is per-
ceptual aliasing where two locations seem to be the same for the platform’s
sensors [BSA13].

Choosing the appropriate map representation is a critical decision in the
development of a Simultaneous Localization and Mapping system. Several
factors must be carefully considered to ensure that the chosen representation
aligns with the specific requirements of the application. These factors are the
level of detail required to capture the environment accurately, the computa-
tional resources available for processing and storing map data, types of sen-
sors being employed. It is worth noting that choosing type of the map have
an impact of level of abstraction as it is illustrated in Figure 2.10. To sum-
marize, selecting the right map representation plays a pivotal role in the suc-
cess and efficiency of SLAM systems, directly impacting their performance,
adaptability, and scalability to meet the demands of various real-world sce-
narios.

Pointcloud

Occupancy

Hybrid

Topological

Semantic

In
cr

ea
sin

g
ab

str
ac

tio
n

FIGURE 2.10: Relationships between level of abstraction and type of the
map [BSA13].

2.3 SLAM Related work

Over 30 years of extensive research resulted in creation of many remarkable
SLAM algorithms. In this section, the discussion is limited to SLAM imple-
mentations that do not incorporate camera technology. For details on Visual
SLAM solutions, readers are directed to Section 2.7. The emphasis here is

2.3. SLAM Related work 43

on exploring the most prominent SLAM algorithms, along with tools and
libraries that facilitate work in this field.

At the beginning of the SLAM research most of the work was dedicated
to problem formulation and solution by the EKF. There are several, modern
implementations of proposed algorithms available. For instance, Sakai et
al. implemented several robotics related algorithms in Python programming
language for educative purposes in [Sak+18]. One of the algorithm is EKF-
SLAM. Moreover, one may also find classic EKF-SLAM implementation in
Matlab Navigation Toolbox [Inc22].

Clearly, researchers were aware of the limitations that EKF had. In the
naive approach to SLAM, the complexity of the update increases quadrati-
cally with the number of landmarks [BD06], which became a big issue for
real-time requirements. First applied technique is partitioned updates. Their
main idea is to update a small, local part of the map at sensor-rate while
global map is updated less often. In [GN01] Compressed EKF (CEKF) was
proposed which significantly reduced computational requirements by main-
taining information gained in local area and then transferring it to the global
map in single iteration being equivalent of full SLAM computational cost.
The other approach is to use submap or a local map. This approach is very
similar to algorithms employing local map in graph-based approaches. How-
ever, the main difference between local submap in terms of EKF and local
map in graph-based SLAM is that in the latter local map is used mostly for
tracking and map is extended and maintained by local optimization algo-
rithm locking positions and poses of the landmarks and keyframes which
are not part of the local map.

In 2002, the FastSLAM algorithm was introduced, marking a significant
advancement in reducing computational requirements for SLAM. This inno-
vative algorithm employs both the Rao-Blackwellized particle filter for pose
estimation and the Extended Kalman Filter (EKF) for mapping. The key dis-
tinction between FastSLAM and traditional EKF-based approaches lies in the
dimensionality of the update equations: FastSLAM reduces it to only two di-
mensions, compared to 2L + 3 in classic EKF methods, where L represents
the number of landmarks. This effective separation of the platform’s trajec-
tory and landmark estimations leads to substantially lower computational
complexity. FastSLAM is a foundation for further developments in SLAM
including FastSLAM 2.0 [Mon+03]. FastSLAM 2.0 introduces significant im-
provements over FastSLAM 1.0, notably through the adoption of an efficient
particle filtering technique, which enhances the accuracy of pose estimation
by relying not only on the motion estimate but also on measurements. A sig-
nificant contribution of this paper is a proof of convergence for linear SLAM
problems when employing just a single particle. The authors have shown
that comparing to the original version of FastSLAM, the next version im-
proved accuracy by an order of magnitude.

44 Chapter 2. Visual Simultaneous Localization and Mapping Overview

One of the most popular and widely used SLAM algorithm is GMapping.
It is designed for a range sensors including LIDAR or RADAR. Its popu-
larity stems from being an open-source implementation and a part of the
ROS ecosystem [Mac+22a]. It employs a Rao-Blackwellized particle filter to
estimate the platform’s pose and create an occupancy grid map simultane-
ously [GSB07]. One of its notable features are simplicity, real-time process-
ing and stable, well-tested implementation. While GMapping is a powerful
SLAM algorithm, it does have some limitations. It primarily works in 2D
environments, making it not suitable for mapping complex 3D spaces. Ad-
ditionally, it relies on range sensors, which may not capture certain environ-
mental features effectively like shape of the objects. In the context of ROS
libraries, OctoMap [Hor+13] is an impressive implementation of voxel maps.
Its name is derived from its primary function of creating 3D occupancy grid
maps with a focus on the octree data structure [Mea82]. This library has the
ability to represent various environments without requiring additional as-
sumptions. Unlike typical voxel maps, where the grid is simply divided into
3D voxels, OctoMap employs a tree structure to store data more efficiently.
Consequently, only voxels that are occupied or unoccupied are stored, and
information about unknown space is implicitly encoded in the map. In other
words, voxels corresponding to the unknown space are not stored, result-
ing in an optimal map size. Furthermore, OctoMap offers a high degree of
flexibility, including multi-resolution capabilities for adaptive level-of-detail
representation. Lastly, it has ability to update a single map by multiple SLAM
instances.

The last algorithm reviewed here that supports ROS is Cartographer, de-
veloped by Google, as documented in [Hes+16]. This algorithm employs
a dual-structured technique, segmenting the SLAM process into local and
global components. The local SLAM operates by processing incoming sensor
data to create multiple local submaps, each providing a small but coherent
representation of the environment. Subsequently, the global SLAM compo-
nent optimizes and aligns these submaps to generate a unified global map.
This bifurcated approach enables Cartographer to handle large volumes of
sensor data efficiently, ensuring both high accuracy and minimal latency
in map creation. Additionally, it is worth noting that two other solutions,
AMCL and Marathon, are supported in the next version of ROS, namely ROS
2, as referenced in [ROS; Mac+20].

Another publicly available SLAM algorithm worth mentioning is tinyS-
LAM, as presented by Steux and Hamzaoui in [SH10]. Contrary to the
complexity commonly associated with SLAM algorithms discussed in this
thesis, the creators of tinySLAM claim to have developed their system in

2.3. SLAM Related work 45

fewer than 200 lines of C code. A key feature of tinySLAM is its simplic-
ity. The developers aimed to design a SLAM algorithm that is straightfor-
ward, easy to understand, and delivers high performance. tinySLAM em-
ploys a laser sensor and platform odometry. However, this simplicity en-
tails several compromises. For example, the accuracy of the map and the ro-
bustness of the algorithm are limited compared to other, more sophisticated
and complex solutions. Georgia Tech Smoothing and Mapping (GTSAM)
is an open-source library written in C++ programming language suited for
SLAM [DC22]. It uses nonlinear optimization and graphical models i.e. fac-
tor graphs, to model and solve complex estimation problems efficiently. Its
core strength lies in ability to perform smoothing over a set of measurements,
allowing for more accurate state estimation than filtering methods. GTSAM
is used by many other algorithms as a part of backend including StellaVS-
LAM [SSS19] and RTAB-Map[LM18]. There is also great tutorial available
regarding GTSAM and factor graphs in [Del12]. In terms of graph optimiza-
tion there is a framework known as g2o. This open-source C++ framework
is specifically designed for the optimization of nonlinear functions modeled
as graphs [Kum+11]. Its architecture emphasizes modularity and extensi-
bility, allowing users to effortlessly define their own representations of ver-
tices and edges, corresponding to nodes and constraints, respectively. Utiliz-
ing the efficient Levenberg-Marquardt algorithm and robust data structures,
g2oachieves commendable performance in optimizing large-scale problems,
even those involving hundreds or thousands of nodes and constraints. Its
versatility is evident through its widespread applications in both robotics
and computer vision. Additionally, g2obenefits from an active community
of users and developers who contribute to its ongoing enhancement. As of
2023, it remains under active development. Regarding optimization algo-
rithms, it’s also worth recalling the second library, known as Ceres [AMT22].
It is an open-source C++ library used for modeling and solving large non-
linear optimization problems. Its main features are easy usage, high perfor-
mance and maturity. It is also used internally at Google. Similar to g2oit is
well-suited for optimization-based backend. There are many SLAM imple-
mentations where Ceres plays a major role including StellaVSLAM [SSS19]
or Cartographer [Hes+16].

There is also a big part of research regarding LIDAR based SLAM algo-
rithms. The term Lidar Odometry and Mapping (LOAM) was first intro-
duced by Zhang and Singh in two related papers [ZS14; ZS16]. Their pro-
posed method is well-known in SLAM community. It is able to achieve low-
drift and preserve real-time performance. The main idea of the proposed
approach was to divide SLAM processing into two tasks. First task is re-
sponsible for odometry while the second task performs fine matching and
pointcloud registration. As can be seen in Section 2.5 modified solution is
also used in VSLAM systems.

46 Chapter 2. Visual Simultaneous Localization and Mapping Overview

LEGO-LOAM which stands for Lightweight and Ground-Optimized Li-
dar Odometry and Mapping is efficient and effective in generating detailed
3D maps with reduced computational demands [SE18]. The authors claim
that proposed algorithm may achieve real-time performance on embedded
systems such as Nvidia Jetson. One of the key features of Lego-LOAM is
its ability to separate ground points from non-ground points in the LIDAR
data, allowing for more accurate and robust odometry in various terrains
Proposed framework is divided into five modules i.e. segmentation, fea-
ture extraction, odometry, mapping and transform integration. While first
four modules are straightforward the last one needs clarification. Transform
integration module fuses results from odometry and mapping components.
The improved loop closure method called SC-LEGO-LOAM was described
in [KK18]. The original authors of LEGO LOAM, collaborating with ad-
ditional team members, subsequently developed a method known as LIO-
SAM. The proposed method not only make use of LIDAR but also IMU sen-
sor. The integration of these two types of sensors allows LIO-SAM to effec-
tively build accurate maps and precise localization [Sha+20]. The creators of
LEGO-LOAM, in collaboration with an expanded team, subsequently intro-
duced an advanced method called LIO-SAM. This approach leverages both
LIDAR and IMU sensors, integrating their capabilities to enhance mapping
accuracy and localization precision. The fusion of LIDAR’s detailed environ-
mental scanning with the rapid, motion-sensitive data from IMUs enables
LIO-SAM to create highly accurate maps and maintain precise pose estima-
tion in diverse settings. As a result, LIO-SAM represents a significant ad-
vancement in SLAM technology [Sha+20].

To illustrate the progression of the solutions discussed in relation to the
time they were published, a timeline is provided, as shown in Figure 2.11.
The journey to the current state of research has spanned many years, marked
by gradual advancements and the emergence of new ideas that have en-
hanced both accuracy and performance. This timeline effectively highlights
the evolutionary stages of SLAM development. Initially, the focus was on
standard EKF-based solutions. This was followed by a period where par-
ticle filters gained popularity. Currently, graph-based SLAM represents the
state-of-the-art in this field.

Up to this point, the most popular or breakthrough were discussed. How-
ever, SLAM community have been very active and many various ideas have
arised over three decades of research. Therefore, it is equally important to
focus on available surveys and overviews of the methods. In Table 2.2, a
collection of papers focused on SLAM algorithms is presented. This com-
pilation illustrates that, over the years, a significant number of articles have
been published on this topic.

The two classic papers referring to probabilistic approaches are [DB06]
and [BD06] written by Durrant-Whyte and Bailey. The former presents an

2.3. SLAM Related work 47

2002
FastSLAM

2003
FastSLAM 2.0

2007
GMapping

2014
LOAM

2018
LEGO-LOAM

2020
LIO-SAM

2020
Cartographer

EKF

2000

2004

2008

2012

2016

2020

FIGURE 2.11: Timeline of SLAM.

48 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Author(s) Reference Year Notes

Durrant-Whyte
and Bailey

[DB06] 2006 SLAM Tutorial I

Bailey and
Durrant-Whyte

[BD06] 2006 SLAM Tutorial II

Aulinas et al. [Aul+08] 2008 Methods review

Grisetti et al. [Gri+10] 2010 Graph SLAM

Dissanayake et al. [Dis+11] 2011 Methods review

Saeedi et al. [Sae+15] 2015 Multi SLAM

Huang and
Dissanayake

[HD16] 2016 Theoretical aspects

Takleh
Omar Takleh et al.

[Tak+18] 2018
SLAM for Autonomous

Vehicles

Jia, Yan, and Xu [JYX19] 2019 Robot SLAM

Khan et al. [Kha+21] 2021 LIDAR SLAM

Khan et al. [Kha+22] 2022 Sensors used in SLAM

TABLE 2.2: The SLAM surveys and overview articles excluding papers dedicated to
VSLAM specifically.

2.3. SLAM Related work 49

overview of the SLAM problem and describes fundamental implementations.
The latter emphasizes three aspects of SLAM i.e. computational complexity,
data association and the representation of environment. Two years later, in
2008, Aulinas et al. published another SLAM survey [Aul+08]. This paper
primarily concentrates on filtering methods, encompassing EKF, CEKF, In-
formation Filters, Particle Filters, and Expectation Maximization. Addition-
ally, the authors address unresolved challenges, including large-scale SLAM,
computational complexity, and the handling of dynamic objects in SLAM
environments. They also highlight the significant potential of vision systems
for future research. In contrast to filtering methods, Grisetti et al. in [Gri+10]
published a comprehensive SLAM tutorial in 2010 focusing on graph-based
SLAM. This article introduces readers to the graph-based SLAM methodol-
ogy by defining the problem, illustrating the construction of the graph, for-
mulating the optimization problem, and discussing the state-of-the-art solu-
tions available at that time. The paper’s primary goal is to present graph-
based approaches in a manner that empowers readers to independently de-
velop the proposed solutions from the ground up. In 2011, Dissanayake et
al. provides another review of recent SLAM algorithms [Dis+11]. This con-
cise survey primarily addresses the formulation of the SLAM problem, while
also covering aspects related to observability, convergence, and consistency.
Essentially, the paper focuses on outlining the fundamental properties of the
SLAM problem and its associated challenges. Evidently, [HD16] emerges as
one of the most distinctive articles among those mentioned so far. The ar-
ticle published in 2016, similarly to [Dis+11], but in a more comprehensive
manner, delves into the observability of different SLAM formulations and
assesses the convergence, accuracy, and consistency of various SLAM algo-
rithms. Additionally, it highlights that, despite significant progress in solv-
ing SLAM, a complete theoretical understanding of this essential problem
remains only partial.

While LIDAR in one of the most popular sensor used in SLAM [Kha+22]
it is also worth mentioning paper [Kha+21] from 2021 prepared by Khan et al.
The authors describe different kinds of available LIDARs and compare them
to other sensor technologies. Afterwards, LIDAR SLAM is introduced and
again is compared to SLAM algorithms which utilize other types of sensors.

Although it was noted at the beginning of this chapter that robotics is
only one area where SLAM is applied, it is also worth mentioning articles
related to mobile robots or autonomous vehicles. It is still wide source of
knowledge. An interesting field of study is SLAM for multiple instances of
mobile platforms. Saeedi et al. in [Sae+15] cover an introduction to the multi-
SLAM, reviews existing solutions, and evaluates the pros and cons of these
approaches. With the rising popularity of autonomous vehicles on public
roads, a specific survey of SLAM in the context of autonomous vehicles was
published. In a concise paper [Tak+18], Takleh Omar Takleh et al. explore

50 Chapter 2. Visual Simultaneous Localization and Mapping Overview

the concept of the SLAM problem, its categorization, and its significance in
modern applications. The paper particularly focuses on three types of SLAM:
EKF SLAM, FastSLAM, and Graph SLAM. Similarly, with an additional sec-
tion dedicated to deep learning, Jia, Yan, and Xu discusses SLAM for robots
in [JYX19].

Finally, there is also survey regarding sensors used in SLAM [Kha+22].
Khan et al. conduct a detailed literature review of most common SLAM sen-
sors like acoustic sensor, RADAR, camera, LIDAR and RGB-D camera. One
may also find comparison of SLAM performance depending on utilized sen-
sors using analytical hierarchy process and indicators including accuracy,
range, cost and computational requirements.

While the last 30 years have seen remarkable advancements in SLAM
research, as detailed in this section, the field still presents open challenges
and opportunities for innovation, as noted by [Pit+11]. In the 2010s, a no-
table shift occurred in SLAM research, with many experts beginning to inte-
grate cameras into their systems. This was driven by the potential of cam-
eras to yield more accurate maps and enhance pose estimation. Transition-
ing from these developments, the subsequent sections focus specifically on
vision-based solutions, delving into the realms of Visual Odometry and Vi-
sual SLAM.

2.4 Visual Odometry, Visual SLAM and Structure

from Motion

The first significant paper in the field of Visual SLAM is the article by Davi-
son in 2003 [Dav03]. This paper introduced a pioneering real-time SLAM
system using a single camera, marking a groundbreaking development at
the time. It signified a major departure from the traditional reliance on range
sensors and established the groundwork for future advancements in Visual
SLAM technology. A year later, the term ’Visual Odometry’ (VO) was coined
by Nister, Naroditsky, and Bergen in [NNB]. According to Scaramuzza and
Fraundorfer VO involves estimating the 3-D motion of a camera based on a
sequence of images capturing its environment [SF11]. There is a clear con-
nection between VO and VSLAM systems. In this section, the primary differ-
ences between VO and VSLAM are outlined. Additionally, due to the notable
similarities between VSLAM and the structure from motion (SfM) problem,
a comparative analysis of these two areas is also provided.

At the beginning of the SLAM evolution, most solutions used range-based
sensors. Cameras were not popular, due to several reasons including compu-
tational requirements and difficulty in finding correspondences. On the other

2.4. Visual Odometry, Visual SLAM and Structure from Motion 51

hand, in well-known PhD thesis [Mor80], 23 years before VO term was intro-
duced, researchers noticed that computer vision may be also worth regard-
ing motion estimation of a mobile platform. Alongside the advancements in
VO, there was parallel development of algorithms capable of reconstructing
a 3D environment using images captured from a variety of cameras. These
algorithms are known as structure from Motion (SfM). It seems that with the
development of VSLAM, the two previously mentioned, independent fields
of computer vision have become interconnected.

First, let formulate the VO problem. As it has been already stated, the VO
is a process for estimating the motion of a camera in real-time by analyzing
the changes in its pose over consecutive images.

Set of N cameras is moving through a scene and capturing frames at
discrete time instants k. Each taken frame of the camera i is expressed by
Ii,0:n = {Ii,0, ..., Ii,n}. Transformation of the rigid body setup of the cameras
between k − 1 and k frame is given by Equation 2.20,

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]

(2.20)

where Rk,k−1 ∈ SO(3) is rotation matrix and tk,k−1 ∈ R
3 is the translation

vector.
Camera poses Ck can be calculated using recursive formula given by Equa-

tion 2.21.
Ck = TkCk−1 (2.21)

Nonrecursive solution of the platfom’s pose may be expressed with Equa-
tion 2.22.

Ck = C0

k

∏
l=1

Tl,l−1 (2.22)

Equation 2.22 shows that leading task of VO is to calculate transforma-
tions of the successive frames. To find Tk,k−1 there are several necessary steps
which are: detection of features, feature matching, motion estimation and
local optimization. The whole process of VO was shown in figure 2.13.

The remaining step involves estimating the camera transformation Tk,k−1.
This represents a typical optimization problem, where the goal is to mini-
mize the squared error between the estimated transformation and the actual
transformation across multiple keypoints. Depending on the type of data
available, three different types of correspondences can be established, which
guide the choice of the appropriate error function i.e. 2D to 2D, 3D to 3D,
and 3D to 2D correspondences. Each type influences how the transformation
is computed and optimized.

VO stands out with significant advantages in localization when compared
to other techniques, as highlighted by [Aqe+16]. Notably, VO demonstrates
superior accuracy, with a relative error margin of just 0.1%-2% as reported

52 Chapter 2. Visual Simultaneous Localization and Mapping Overview

FIGURE 2.12: Visual odometry problem. Consecutive frames and transformations
between them [SF11].

2.4. Visual Odometry, Visual SLAM and Structure from Motion 53

Image capturing

Detection of Features

Feature Matching

Motion Estimation

Bundle Adjustment

FIGURE 2.13: Flow of the basic VO algorithms [SF11].

in [SF11], surpassing other common methods. An important aspect to con-
sider alongside its low error rates is cost-effectiveness. VO proves to be more
economical than traditional techniques such as GPS or wheel odometry, par-
ticularly when accuracy is a priority. One of the key benefits of VO over GPS
is its effectiveness in indoor environments, where GPS often loses signal and
becomes unreliable. In contrast, wheel odometry, while useful, can accumu-
late significant drift over extended periods, affecting its long-term accuracy.
VO, grounded in its fundamental principles, offers greater robustness against
such drift. Additionally, the rich data captured in images used for VO can be
leveraged for other computer vision tasks, enhancing scene understanding
through obstacle or working area detection. Expanding on its advantages,
VO’s reliance on camera technology makes it highly adaptable for a wide
range of vehicles. Its versatility, combined with the previously mentioned
benefits, positions VO as a highly viable option for diverse localization ap-
plications, both in terms of functionality and cost [Moh+19].

Another problem closely related to VSLAM is Structure from Motion (SfM).
As with the VO section, it is essential first to define what SfM entails. SfM
is a computer vision problem that involves creating a 3D structure of a scene
from a set of two-dimensional images [Özy+17]. Interestingly, its origins can
be traced back to the influential work [Lon81] of Longuet-Higgins in 1981, a
period close to the early developments of VO in 1980. Since then, numerous
methods and improvements have been introduced in the field.

54 Chapter 2. Visual Simultaneous Localization and Mapping Overview

To conceptualize the SfM problem, reference is made to Figure 2.14. Sim-
ilar to VO, a set of Nc cameras moves through a scene, capturing frames.
The frames taken by camera i are denoted as Ii,0:Ni

= {Ii,0, ..., Ii,Ni
}, where Ni

is the number of images captured by camera i. Each camera has its unique
calibration parameters ki, and each frame n taken with camera i has its spe-
cific pose Ci,n. The goal of SfM is straightforward: to determine all cam-
era poses C = {Ci,n : i ∈ {1, . . . , Ni}, n ∈ {1, . . . , Ni}, camera parameters
K = {ki : i ∈ {1, . . . , Ni}}}, and reconstruct the 3D structure of the scene,
represented by a set of Np points P = {pi : i ∈ {1, . . . , Np}}, corresponding
to the keypoints detected in the captured frames.

FIGURE 2.14: Structure from motion problem. The order of the captured frames is
arbitrary.

Overall, as illustrated in Figure 2.15, SfM encompasses three core stages:

2.4. Visual Odometry, Visual SLAM and Structure from Motion 55

feature detection and matching, motion estimation, and 3D structure recov-
ery. A widely-used technique for executing the latter two stages — motion
estimation and 3D structure recovery—is Bundle Adjustment (BA). BA repre-
sents a substantial geometric parameter estimation challenge, involving the
determination of 3D feature coordinates, camera poses, and camera calibra-
tion parameters [Tri+00]. BA is also a crucial stage in VSLAM’s mapping
process, that is why it is discussed further in Section 2.5.

Feature Detection and Matching

Camera Motion Estimation

3D structure recovery

FIGURE 2.15: Flow of the basic SfM algorithms [Özy+17].

Following a brief introduction to three key topics – VO, Visual SLAM, and
SfM – the subsequent paragraphs will provide an overview of these three ar-
eas. The discussion will particularly emphasize the differences in their com-
plexity, the nature of their input and output data, and the constraints related
to time.

Input and Output The first major difference between all three problems –
VO, VSLAM, and SfM – lies in their input and output data. For VO and
VSLAM, the input typically comprises either a single image or a set of im-
ages, particularly when the system is equipped with multiple cameras. This
data is drawn from a continuous stream of images captured by the sensors
as they traverse through an environment. In simpler terms, VO and VSLAM
process consecutive frames iteratively. The input for SfM differs significantly.
Rather than relying on the iterative processing of consecutive frames, SfM
typically utilizes a collection of unordered images that capture various views
of a scene. Distinct from VO and VSLAM, SfM does not necessitate a tempo-
ral sequence of images. It operates with static images, which can be sourced

56 Chapter 2. Visual Simultaneous Localization and Mapping Overview

from different times, perspectives, and even various cameras. All these im-
ages are provided simultaneously, at once. It operates with static images,
which can originate from various times, perspectives, and even different
cameras. All images are provided at once.

The differences are even more clear comparing the output of three prob-
lems. VO’s output is the incremental motion information, typically presented
as a series of relative transformations or poses over time. VO does not aim to
construct a complete map of the environment or maintain a global reference.
In contrast, VSLAM provides not only the current pose of the platform but
also constructs and maintains a map of the environment. To put it simply,
as its name states, VSLAM is responsible for both localization and mapping.
Lastly, SfM outputs the pose of each provided image, the overall map, and
camera parameters.

Complexity Complexity is a broad concept, so it’s important to first define
how it is understood. In the context of comparing VO, VSLAM, and SfM,
a suitable candidate for defining complexity appears to be the number of
parameters that are estimated. Being armed with such definition distinct dif-
ferences emerge. VO, focused primarily on estimating the camera’s motion,
typically involves fewer parameters. It calculates the camera’s pose frame-
by-frame without the need for a comprehensive map of the environment,
thereby limiting its parameter set to the camera’s position and orientation or
transformation between them. In contrast, VSLAM encompasses a broader
range of parameters, as it not only estimates the camera’s pose like VO but
also builds and updates a map of the environment. This requirement signif-
icantly increases the number of parameters in VSLAM, as it must keep track
of both the camera’s trajectory and the positions of numerous environmen-
tal landmarks. SfM, on the other hand, operates with a static set of images
and aims to reconstruct a 3D model of the scene. This involves not just esti-
mating the scene’s 3D points and the camera’s pose for each image, but also
additional camera parameters, increasing the complexity significantly, espe-
cially in situations involving numerous images or intricate environments. To
summarize, in terms of parameter estimation complexity, VO is generally the
simplest, followed by VSLAM, with SfM being the most complex.

Time constraints As a final point of the distinction between compared prob-
lems, time constraints also should be take into considerations. Clearly, VO
has real-time operation constraints, processing images sequentially and in-
stantly to estimate the camera’s motion. VSLAM, while also often operating
in real-time, faces greater time constraints due to its dual objectives of track-
ing the camera’s position and building a map of the environment. In contrast,
SfM typically does not operate under strict real-time constraints. It is often
used in post-processing scenarios, where a set of static images is analyzed

2.5. Visual SLAM 57

to reconstruct a 3D model of the scene. This lack of real-time requirement
allows SfM to focus on accuracy over speed, dealing with extensive compu-
tational processes that are impractical for on-the-fly execution. To conclude,
while VO and VSLAM are designed for immediate or near-immediate re-
sponse scenarios, SfM operates under more relaxed time constraints, prior-
itizing detailed and accurate reconstruction over speed. Consequently, VO
faces the strictest time constraints, followed by VSLAM, while SfM allows
for more flexibility in terms of time.

Table 2.3 provides a summary of the considerations described previously.
At first glance, Visual Odometry (VO), Visual Simultaneous Localization and
Mapping (VSLAM), and Structure from Motion (SfM) may appear similar,
but they are fundamentally different problems. This is particularly evident
when examining their complexity, input data and outputs, as well as the time
constraints, where numerous distinctions among them become clear.

Property VO VSLAM SfM

Single Input Image Image Set of Images

Output Current pose
Current pose,

recent poses and
map

Poses and Map

Time
constraints

••• ••• •

Overall
complexity

• ••• •••

TABLE 2.3: Comparison of three interconnected 3D problems utilizing computer
vision.

2.5 Visual SLAM

Vision is a major sense not only for humans, but also for many animals.
According to [RP10], people’s activities including perception and acquiring
knowledge are based up to 80% on eyesight. Capabilities of human percep-
tion and interpreting images created by the advanced vision system is the
inspiration for scientists and engineers to develop systems with similar ad-
vantages. However, this is not a simple task and for many years researchers
have been studied various vision based solutions. Localization and mapping
problem is no exception. In previous sections, beginning of SLAM was de-
scribed which focused on other types of sensors. Over time cameras became

58 Chapter 2. Visual Simultaneous Localization and Mapping Overview

better in terms of resolution and image quality, they also got cheaper. Com-
puter’s performance also leveled up. These several factors caused that vision
based solutions got attention of scientists. Although SLAM has already been
introduced in previous sections discussing the SLAM problem (Section 2.1–
Section 2.4), it is beneficial to revisit some terminology and definitions, this
time focusing exclusively on the context of VSLAM.

One significant advantage of using cameras in VSLAM over other sen-
sors, such as LiDAR or ultrasonic sensors, is the richness of the data they
provide. Cameras capture detailed visual information that includes textures,
colors, and patterns, enabling more nuanced and context-aware mapping
and localization. This high-resolution data facilitates the identification and
differentiation of various environmental features, which is crucial for accu-
rate mapping and navigation in complex and dynamically changing environ-
ments. Moreover, cameras are highly versatile in terms of their adaptability
to different lighting conditions and environments, ranging from indoor sce-
narios to outdoor landscapes.

Another notable benefit of employing cameras in VSLAM systems is their
cost-effectiveness and accessibility compared to more other sensors. Cam-
eras, particularly those used in consumer electronics, have undergone sig-
nificant advancements in terms of quality and affordability, making VSLAM
systems more scalable and economically viable for a wider range of applica-
tions. Additionally, the use of cameras allows for the implementation of ad-
vanced computer vision algorithms, such as deep learning techniques, which
can further enhance the system’s ability to understand and interpret complex
visual scenes. This integration of sophisticated image processing methods
not only improves the accuracy of localization and mapping but also opens
up possibilities for additional functionalities like object recognition and scene
understanding, thereby broadening the scope of VSLAM systems in various
fields including autonomous vehicles, robotics, AR, and smart city infras-
tructure.

In the following sections, continuing the approach from earlier chapters
on SLAM, the VSLAM problem is defined, its architecture and categoriza-
tion are described. Additionally, key publications and research in the field of
VSLAM are highlighted.

2.5.1 Visual SLAM problem formulation

The formulation of the VSLAM problem does not significantly differ from the
standard SLAM formulation. In this scenario, a mobile platform is placed in
an unknown environment populated with L landmarks, denoted as lj, j ∈
{1, 2, ..., L}. The state of the platform at any given time point n is repre-
sented by xn. A comprehensive discussion regarding the representations
of the platform’s and landmarks’ states is forthcoming in Section 2.5.2. As

2.5. Visual SLAM 59

FIGURE 2.16: VSLAM correspondences between landmark, keypoints and world
coordinate system, camera coordinate system. Landmark l1 was observed current
frame by detecting keypoint l1. Respectively, landmark l2 is also observed by detect-

ing keypoint k3. It is also worth noting

60 Chapter 2. Visual Simultaneous Localization and Mapping Overview

the platform navigates through the environment at successive time intervals
{n, n + 1, . . .}, it observes these landmarks. However, due to sensor noise
and other issues, which are elaborated in Chapter 3, the measurement zn,j
of a landmark’s state lj at time n is approximate, not exact. The goal of the
VSLAM problem is to estimate the current pose of the platform xn as well
as the set of all landmarks l, corresponding to the localization and mapping
processes.

In Figure 2.17

FIGURE 2.17: Visual SLAM problem with two keyframes and current frame marked
with dashed line

2.5. Visual SLAM 61

2.5.2 State and observation representation

To allow deep understanding of VSLAM it is required to dive into details
and discuss common representation. In previous section platform’s pose xn

at given time point n and map being set of all landmarks lj were introduced.
Accurate and efficient representation is pivotal, as it directly influences the
system’s ability to accurately localize itself and build a map.

Firstly, let’s define the platform’s position. To describe a position in the
Euclidean R3 space, three variables are necessary which is given by Equa-
tion 2.23.

t =

x
y
z

 ∈ R3 (2.23)

In parallel, the state of a landmark can be defined similarly. Given that a
landmark is a point in 3D Euclidean space, it is represented as described in
Equation 2.24:

lj =

x
y
z

 ∈ R3 (2.24)

Continuing our exploration of state representation in VSLAM, let’s now
focus on the platform’s orientation. Orientation in a three-dimensional space
can be represented in various ways. This representation typically involves
rotational components about the three principal axes. Intuitively, orientation
can be simplified to three angles: yaw, pitch, and roll, commonly known as
Euler angles. While Euler angles offer simplicity, they are fraught with dis-
advantages, including ambiguity and computational inconvenience in trans-
formations.

Therefore, orientation is often represented using rotation matrices. The
following form is utilized to express orientation in terms of rotation matrices:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ∈ SO(3) (2.25)

The rotation matrix R is an element of the Special Orthogonal group SO(3),
possessing two essential properties. Firstly, its inverse is equal to its trans-
pose. The definition of SO(3) can be formally expressed as:

SO(3) = {R ∈ R
3×3 | RTR = I3, det(R) = 1} (2.26)

In this definition, I3 represents the 3x3 identity matrix. The conditions RTR =
I3 and det(R) = 1 ensure that R maintains the properties of orthogonality
and unit determinant, which are characteristic of matrices in SO(3). The or-
thogonality property may be formulated by Equation 2.27.

62 Chapter 2. Visual Simultaneous Localization and Mapping Overview

R−1 = RT =

r11 r21 r31
r12 r22 r32
r13 r23 r33

 (2.27)

Following the initial discussion on how orientation and position are rep-
resented within a platform, the transition to a combined representation can
be made.

After the brief introduction of the orientation and position representation
of the platform it is now possible to introduce a unified representation. The
Special Euclidean group in three dimensions, denoted as SE(3), serves this
purpose by providing a comprehensive framework for modeling the rigid
body transformations in a three-dimensional space. SE(3) is a mathematical
group that combines the rotation of an object, described by the Special Or-
thogonal group SO(3), with its position in space, denoted by R3. Elements
of SE(3) are typically represented as 4x4 homogeneous transformation ma-
trices, which consist of a 3x3 rotation matrix from SO(3) that encodes the
object’s orientation, and a 3x1 translation vector from SO(3). This is denoted
by Equation 2.28

SE(3) =
{

T =

[
R t
0 1

]

∈ R
4×4 | R ∈ SO(3), t ∈ R

3
}

(2.28)

Finally, the platform’s pose x can be expressed as a SE(3) (Equation 2.29).
For an discussion on state representation, readers are directed to [Gao+17],
and for an in-depth understanding of rotation representation, the work of
Diebel is recommended [Die06].

C =

[
R t
0 1

]

∈ SE(3) (2.29)

To fully define the VSLAM problem it is required to introduce several
variables. Their meanings are defined as follows:

• Cn — This symbol represents the state of the nth keyframe within the
system, encapsulating both the orientation and the position of the keyframe
at a given instant. It serves as a snapshot of the system’s pose in space
at the time associated with the keyframe.

• ln — Denotes the nth landmark in the environment. It is a fixed point
in space that the VSLAM system uses as a reference to understand and
navigate the surrounding area.

• zn,k — Represents the observation of the kth landmark from the perspec-
tive of the nth keyframe. It is the measurement data that correlates the
observed landmark with a specific keyframe, contributing to the sys-
tem’s awareness of its environment.

2.6. Visual SLAM components 63

• C0:n = {C0, C1, . . . , CK} — This set contains all the states from the initial
keyframe C0 up to the state of the Kth keyframe, offering a chronologi-
cal sequence of the system’s spatial orientation and position up to that
point.

• l = {l1, l2, . . . , lL} — Signifies the entire collection of landmarks within
the environment that the VSLAM system has recognized and utilized.
This set is foundational for the system to lock onto the physical world
and maintain a coherent internal map.

• Z0:n = {z1, z2, . . . , zn} — Constitutes the aggregation of all observa-
tions made by the system from the initial observation z1 through to the
observation zn. It embodies the cumulative sensory data that informs
the VSLAM system’s understanding of its spatial relationship with the
landmarks.

Let consider the illustrative instance of a VSLAM process as depicted in
Figure 2.18. The platform explores the very simple environment consisted
of L = 7 landmarks. The set of all landmarks may be formulated as l =
{l1, l2, . . . , lL}. During the process VSLAM system created K = 13 keyframes.
For each keyframe n, there is a state Cn representing rotation and position.
The set of keyframes is given by C = {C1, C1, . . . , C13}. Finally, there are
observations marked as zn,j referring to keyframe n and landmark j. The set
of all observations is given by Z = {z1,1, z2,1, . . . z13,2}.

It is worth noting that this particular example generally shares similarities
with the scenario illustrated in Figure 2.1. However, there are major elements
which are not visible in the latter. Namely, there is a distinction between typ-
ical frames and keyframes. Frames are primarily utilized for real-time pose
estimation, allowing the system to estimate its current position and orienta-
tion. In contrast, keyframes carry additional significance. Not only do they
contribute to the immediate pose estimation like frames, but they are also
selected to be part of the map construction.

2.6 Visual SLAM components

The big picture of the VSLAM system does not differ significantly comparing
to general scheme of SLAM systems. As a result, three basic components
remain the same (see Figure 2.2).

As illustrated in Figure 2.19, the essential building blocks of VSLAM sys-
tems also encompass the frontend, backend, and loop closure mechanisms.
Furthermore, VSLAM systems have the capability to augment their function-
ality by incorporating semantic information extracted from visual data. This
feature is highlighted on the VSLAM architecture diagram by the optional

64 Chapter 2. Visual Simultaneous Localization and Mapping Overview

FIGURE 2.18: Example of VSLAM [Mor15]

2.6. Visual SLAM components 65

semantic component. The subsequent sections, from Section 2.6.2 to Sec-
tion 2.6.5, will provide an in-depth exposition of each individual component.

Frontend BackendSensors

LIDAR

Semantic
Component

Map estimation

and maintenance
Feature detection

Data association

Feedback

Data Data

relationships

AI

FIGURE 2.19: Visual SLAM components

2.6.1 Sensors data collection

The first task which every VSLAM system is responsible for is data collec-
tion. This component communicates with the available sensors of the plat-
form and gathers the data. Despite the fact that initially it may seem that the
component responsible for data collection is relatively easy to implement,
attention should be paid to several things for which it is responsible.

First, the data collection component of a VSLAM system plays a crucial
role in data synchronization. This task involves ensuring that the data from
various sensors are temporally aligned, which is essential for accurate data
fusion and interpretation. Time synchronization ensures that the timestamps
of data from all sensors match up, allowing the system to construct a coherent
representation of the environment. This is particularly pivotal when combin-
ing data from high-speed sensors or when dealing with systems that operate
in dynamic environments, as any discrepancy in time can lead to errors in
localization or mapping. For instance, consider a platform equipped with an
RGB camera and a LIDAR sensor. The RGB camera captures frames 30 times
per second, whereas the LIDAR sensor takes 0.1s to deliver 3D data. Clearly,
the data rates between these two sensors vary significantly. The problem is
shown in Figure 2.20.

66 Chapter 2. Visual Simultaneous Localization and Mapping Overview

LIDAR LIDAR LIDAR LIDAR LIDAR LIDAR LIDAR LIDAR

RGB RGB

t

FIGURE 2.20: Data synchronization challenge from various sensors

Secondly, another critical function of the data collection component is the
alignment of data from different sensors. This process, known as sensor fu-
sion, involves aligning data spatially to ensure that the information from one
sensor corresponds accurately with that from others. Visual data from cam-
eras must be precisely aligned with inertial measurements from accelerom-
eters and gyroscopes or depth information from LIDAR sensor. This align-
ment is essential for creating a unified and accurate 3D map of the environ-
ment but also for pose estimation. To give an example, Figure 2.21 presents
a mobile platform equipped with a LIDAR and two cameras. Their distance
between them is ∆d. Due to various coordinate systems they operate it is re-
quired to align not only those two image but also LIDAR data which is above
the two mentioned cameras.

LIDAR

FIGURE 2.21: Mobile platform equipped with various sensors.

2.6.2 Frontend

As depicted in Figure 2.19, the frontend receives data from the data acquisi-
tion component. Its main task is to process this data in a manner that makes it
compatible with the backend. This processing involves several critical tasks

2.6. Visual SLAM components 67

including data preprocessing, feature detection, feature tracking, data associ-
ation, pose estimation, and triggering keyframe creation. The frontend effec-
tively acts as the initial filter and organizer of incoming visual information,
preparing it for the more complex analytical processes handled by the back-
end.

The frontend’s role is pivotal as it directly influences the efficiency and
accuracy of the VSLAM system. By efficiently detecting and tracking visual
features, it can provide reliable input for constructing a preliminary map of
the environment and for estimating the camera’s motion relative to its sur-
roundings. Additionally, the frontend is responsible for identifying key mo-
ments or positions—known as keyframes—which are essential for reducing
computational load and improving the map’s accuracy. These keyframes
serve as reference points in the map optimization processes carried out by
the backend.

In subsequent sections, each of these tasks will be examined in detail,
with an exploration of their contributions to the robustness and reliability
of the VSLAM system. The discussion will encompass the algorithms and
techniques used in the frontend, how they are integrated into the VSLAM
pipeline, and their effects on the system’s overall performance. This detailed
breakdown will not only highlight the functionalities of the frontend but also
underscore its critical role within the context of VSLAM’s operational hierar-
chy.

Feature detection

Feature detection is a process of finding features i.e. pattern of the image which
is characteristic and easily identifiable. It must be different from its neighbor
region concerning intensity, color and texture [FS12]. There are many algo-
rithms which search image for the features. These may be points but there
are also other types like lines or circles [Li+15]. Especially, there are numer-
ous algorithms available that looks for keypoints. The keypoint is defined as
a small patch which is highly recognizable and unique [KB17]. Computer vi-
sion community developed many feature detectors including SIFT [Low04],
SURF [BTG06], CENSURE [AKB08], ORB [Rub+11], KAZE [ABD12] and its
improved version A-KAZE [ANB13] or DAISY [TLF10].

SIFT developed by Lowe in 2004, detects and describes local features in
images, renowned for its robustness to changes in scale, rotation, and illumi-
nation. These features are extensively utilized in object recognition, robotic
mapping, and 3D modeling due to their stability and accuracy. In contrast,
SURF, introduced by Bay, Tuytelaars, and Gool, accelerates the feature de-
tection process compared to SIFT. It employs a Hessian matrix-based mea-
sure for detection and a distribution-based descriptor, making it suitable for
real-time applications due to its efficiency and resistance to viewpoint and
illumination changes.

68 Chapter 2. Visual Simultaneous Localization and Mapping Overview

BRISK is created by Leutenegger, Chli, and Siegwart. It is a feature detec-
tor and descriptor that is designed for speed without sacrificing robustness.
BRISK uses a novel method of sampling points in a pattern around a cen-
tral pixel and compares their intensity pairs to create a binary string that
serves as the descriptor. This method allows BRISK to be scale-invariant and
rotation-invariant, making it highly effective in diverse imaging conditions.

CENSURE, offers a scale and rotation-invariant feature detector known
for its computational speed, particularly useful in stereo vision tasks in robotics
and mobile vision systems. Following this, ORB (Oriented FAST and Rotated
BRIEF) by Rublee et al. in 2011, combines the FAST keypoint detector with
the BRIEF descriptor [Cal+10], providing a cost-effective, fast alternative to
SIFT and SURF, ideal for real-time video analysis and mobile applications.

KAZE, distinguishes itself by employing non-linear scale spaces instead
of the traditional Gaussian blurs, improving the accuracy and robustness in
detecting features in images with natural noise and fine textures, particularly
effective for high-resolution images and complex motion patterns. Its vari-
ant, A-KAZE, introduced in 2013 by Alcantarilla, Nuevo, and Bartoli speeds
up the process by using fast explicit diffusion for scale-space construction,
maintaining the effectiveness of KAZE while enhancing efficiency.

DAISY, introduced by [TLF10] in 2010, serves as a dense feature descrip-
tor designed for efficient matching in wide-baseline stereo images, aiding
significantly in high-speed and high-accuracy stereo matching tasks, com-
monly used in 3D scene reconstruction and visual SLAM applications.

SuperPoint [DMR18], introduced by DeTone, Malisiewicz, and Rabinovich,
represents a significant advancement in feature detection by leveraging deep
learning techniques. This detector is unique as it integrates both interest
point detection and feature description into a single convolutional neural
network. SuperPoint is trained on synthetic and real-world data to auto-
matically learn and generalize salient and repeatable interest points across a
wide variety of images. The strength of SuperPoint lies in its ability to oper-
ate effectively across different conditions and environments, demonstrating
high robustness and precision in feature detection. It is especially proficient
in handling scenarios with significant changes in viewpoint, scale, and il-
lumination, which are challenging for traditional detectors. Moreover, its
design enables it to perform both detection and descriptors calculation si-
multaneously, enhancing processing speeds and making it highly suitable
for real-time applications.

Each detected keypoint is paired with a corresponding descriptor. Several
of the detectors previously discussed have the dual capability of identifying
keypoints and generating descriptors for these features. A Descriptor math-
ematically characterizes a visual feature identified in an image. Typically,
this descriptor d is expressed as a vector in R

Nd , where Nd is the length of
the descriptor. The primary function of a descriptor is to enable comparison

2.6. Visual SLAM components 69

with other descriptors. If the calculated distance l = f (di, dj) between two
descriptors di and dj approaches zero, it indicates that the descriptors are
similar. On the other hand, a greater distance suggests that the descriptors
relate to different keypoints. The closer the distance value l is to zero, the
more precise the match between the keypoints. This process, known as fea-
ture matching, is essential for correlating features across various images and
is thoroughly discussed in Section 2.6.2. A summary of various descriptors
can be found in Table 2.4, and Figure 2.22b illustrates examples of keypoints
detected by various detectors.

Descriptor Type Notes

ORB Binary Efficient, good for real-time applications.

SIFT Gradient-based
Robust to scale and rotation changes,

computationally intensive.

SURF Hessian-based
Faster than SIFT, good for real-time

applications, moderately invariant to scale and
rotation.

CENSURE Binary
Fast, suitable for stereo vision tasks, not scale or

rotation invariant.

A-KAZE
Non-linear scale

spaces
Offers robustness to noise and fine textures,

computationally expensive.

KAZE
Non-linear scale

spaces
Similar to A-KAZE but slower, robust to noise

and texture.

DAISY Gradient-based
Efficient for dense matching in stereo vision, not

well-suited for large scale changes.

SuperPoint
Deep

learning-based
Excels in diverse conditions, handles viewpoint

and illumination changes well.

TABLE 2.4: Comparison of descriptors [GHT11; TS18]

Feature matching and data association

After obtaining features of the current image VO algorithm has to detect
which features are still visible on the new obtained frame and which features
of the previous frame relate to the new one. These steps are called feature
matching. The quality of the feature matching in a great extent relies on the
feature descriptor, which transforms found feature into a vector of numbers

70 Chapter 2. Visual Simultaneous Localization and Mapping Overview

(A) SIFT (B) ORB

(C) KAZE (D) STAR

FIGURE 2.22: Comparison of various keypoint detectors

representing compressed information about the region. Invariance of rota-
tion, translation and scaling is profoundly demanded attribute. Figure 2.23
shows an example of matching ORB keypoints.

There are two classic feature matching methods: brute-force and k-nearest
neighbors. The brute-force method is one of the simplest approaches, where
each descriptor in one image is compared to every descriptor in another im-
age using a distance metric. The pairs with the smallest distances are selected
as matches. This method is straightforward but can be computationally in-
tensive. In the k-nearest neighbors method, for each descriptor in the first
set, the k closest descriptors in the second set are identified based on the cho-
sen distance metric. Typically, k is set to 2. Additionally, Lowe’s ratio test,
as proposed by David Lowe in [Low04], is used. This test checks the ratio
of distances between the closest and second-closest match. If the ratio is be-
low a threshold (commonly 0.75), the match is considered good. This helps
in reducing the number of false matches by eliminating those that are not
significantly better than the second-best match.

In recent years, a novel approach has emerged within the field of fea-
ture matching, leveraging advancements in machine learning. As detailed
in [Sar+20], a machine learning-based matcher was introduced, represent-
ing a significant shift from traditional algorithms. This matcher utilizes deep
neural networks to learn optimal feature matching strategies directly from

2.6. Visual SLAM components 71

FIGURE 2.23: Result of matching procedure. Only several matches is drawn.

data. Unlike conventional methods that rely on handcrafted descriptors and
heuristic matching rules, this machine learning approach can adapt to a wide
range of visual conditions and dynamically improve through continuous
learning. Such capabilities enable the matcher to handle complex variations
in appearance and geometry that often pose challenges in traditional visual
odometry and VSLAM systems.

It is also worth noting that not only is the keypoints matching approach
possible. Figure 2.24 illustrates various potential correspondences that can
be used in visual processing tasks. The most straightforward among these is
the 2D-2D correspondences, which involve matching features between two
2D images. This method is typically used in stereo vision or when process-
ing sequential frames in video. By establishing correspondences between
two images, depth information can be inferred, which is essential for recon-
structing scenes in 3D and estimating the relative motion between cameras or
successive frames. Furthermore, 2D-3D correspondences are commonly uti-

FIGURE 2.24: Various types of data correspondences [You+17].

lized when 2D features detected in images are matched with a pre-existing
3D model or map. This approach allows each 2D feature in the image to be

72 Chapter 2. Visual Simultaneous Localization and Mapping Overview

associated with a specific 3D point in the world coordinate system, enabling
precise localization and camera pose estimation. Additionally, 3D-3D corre-
spondences are crucial in applications like 3D reconstruction, where multi-
ple scans or images of the same scene are taken from different viewpoints.
Matching 3D points from different datasets or different times in a dynam-
ically changing environment allows for the integration of various datasets
into a comprehensive 3D model. This facilitates tasks such as complex scene
analysis and virtual reality modeling, where accurate and detailed environ-
mental representation is required.

In the context of data association, it is imperative to differentiate between
sparse and dense VSLAM approaches. Sparse VSLAM selectively focuses
on a limited number of significant features within the environment, such
as keypoints or landmarks. These features are specifically chosen for their
distinctiveness and their ease of tracking, simplifying the mapping process
by prioritizing these critical elements. In contrast, dense VSLAM seeks to
construct an exhaustive representation of the environment by processing ex-
tensive data at the pixel or voxel level, aiming to produce a detailed and
continuous map. The distinction between these two methods becomes ap-
parent when viewing the same scene: sparse VSLAM emphasizes only the
key features, while dense VSLAM offers a comprehensive and finely detailed
visualization of the entire environment, as depicted in Figure 2.25.

Keyframe creation

In graph-based VSLAM systems, keyframes are essential components that
significantly influence both the localization and mapping processes. Serving
as foundational elements of the map, keyframes not only help in reducing
the size of data required for map representation but also play a crucial role in
outlier rejection during the optimization process, as highlighted in [DLD23].
The strategic selection of keyframes is therefore critical to the overall perfor-
mance of the system.

There exists a balance between achieving high accuracy and maintaining
low compute times. If too few keyframes are selected, the map may lack nec-
essary detail, which can impact on the accuracy of the localization module,
potentially causing it to lose tracking. Conversely, an excessive number of
keyframes can slow down the system significantly. Therefore, the process
of choosing keyframes must be carefully managed to optimize both the ef-
ficiency and effectiveness of the VSLAM system. This involves determining
the optimal intervals at which keyframes should be selected to provide suf-
ficient coverage and detail of the environment while avoiding redundancy
that could impair system performance. This trade-off is pivotal in design-
ing systems that are both fast and reliable, ensuring robust localization and
accurate mapping.

2.6. Visual SLAM components 73

(A) Sparse SLAM

(B) Dense SLAM

FIGURE 2.25: Comparison of sparse and dense VSLAM map. The dense VSLAM
map contains much more points and it is clear that scene shows a desk with a com-
puter, while the sparse VSLAM map is not reach with the details and it is difficult to

recognize this is the same scene.

74 Chapter 2. Visual Simultaneous Localization and Mapping Overview

The frontend of a VSLAM system is responsible for monitoring the qual-
ity of both the localization and mapping processes. Its key function is to
assess when a new keyframe is needed. If specific conditions are fulfilled
such as significant changes in the environment or inadequate data from cur-
rent keyframes—the system triggers the creation of a new keyframe. This
involves generating new data associations and landmarks, which are essen-
tial for updating and refining the map. By continuously monitoring and re-
sponding to these conditions, the frontend ensures that the system maintains
high accuracy and efficiency in its mapping and localization tasks.

2.6.3 Backend

After frontend finishes its processing, the next step might be backend. In
most cases backend task is not performed every frame. The backend com-
plements the frontend by performing tasks critical to maintaining the consis-
tency and accuracy of the map over time. In particular, backend is responsi-
ble for map optimization and its maintenance. As backend is very similar to
the backend of typical SLAM, only brief overview of these two task is pro-
vided.

Map optimization

Map optimization is a crucial process in VSLAM systems, aimed at refining
the accuracy and consistency of the 3D map generated from visual data. This
involves the use of algorithms such as bundle adjustment, which seeks to
minimize the reprojection error across all observed features by fine-tuning
both camera poses and landmark positions. By iteratively adjusting these
parameters, the map optimization process ensures that the virtual represen-
tation of the environment aligns closely with the actual world. This is es-
pecially important when the camera moves through extensive environments
or revisits previously mapped areas, as it helps maintain the reliability of
the SLAM system’s navigational and interactive capabilities. The success of
map optimization directly impacts the system’s performance in tasks requir-
ing high levels of precision, such as robotic navigation in complex, dynamic
settings.

Map maintenance

Map maintenance, on the other hand, involves the ongoing management and
updating of the map to keep it relevant and usable over time. This includes
handling the addition and removal of features from the map to avoid clut-
ter and redundancy, which can degrade system performance. Effective map
maintenance also requires identifying and correcting any inconsistencies that
arise from dynamic changes within the environment, such as moving objects

2.6. Visual SLAM components 75

or alterations in the layout of a space. Furthermore, the backend of a VSLAM
system manages data association, ensuring that new observations are cor-
rectly matched to existing map elements, which is critical for accurate local-
ization and robust map updates. Additionally, map maintenance strategies
must deal with issues like scale drift and loop closures to ensure long-term
consistency and usability of the map, supporting applications that depend on
prolonged and repeated use of the SLAM system in evolving environments.

2.6.4 Loop Closure

In many scenarios, a platform exploring an environment will eventually re-
turn to a location it has previously visited. This event is known as a loop
closure in the context of VSLAM systems. Detecting and properly handling
loop closures is crucial for maintaining the robustness and accuracy of the
system.

Loop closures are pivotal for correcting drift that accumulates over time
as the platform navigates through the environment. Drift, or the gradual de-
viation from the true trajectory, is a common issue in VSLAM due to small er-
rors in measurement and estimation that accumulates during continuous op-
eration. When a loop closure is detected, it provides a unique opportunity to
correct this drift by aligning the current position with a previously recorded
position in the map. Furthermore, effective management of loop closures
helps in optimizing the map’s efficiency by preventing redundancy. Recog-
nizing when the system has returned to a previously mapped area allows it to
reconnect with and utilize existing map data instead of redundantly adding
similar data i.e. keyframes and landmarks.. This not only saves computa-
tional resources but also simplifies the map, making it easier to manage. To
ensure the system remains robust against errors and efficient in its operation,
sophisticated algorithms are employed to detect loop closures reliably. These
algorithms compare newly captured data with existing data in the map to
identify potential revisits to locations. Upon confirmation of a loop closure,
the system can then adjust the entire map by realigning it to minimize the
total error across all measurements, thereby enhancing the overall accuracy
and reliability of the VSLAM system.

Historically, researchers were aware of the loop closure importance, even
in classic SLAM problem. Around year 2000, one may already find scien-
tific articles about the loop closure and experimental results indicating better
performance [GK99; New+02]. Over the years, loop closure has become an
important part of the whole system, being an obligatory component to obtain
state-of-the-art performance. For instance, ORB-SLAM, StellaVSLAM, LSD-
SLAM, all these systems implement loop closure component [ESC14; MT17;
SSS19].

76 Chapter 2. Visual Simultaneous Localization and Mapping Overview

Visual loop closure detection is a crucial aspect of Visual Simultaneous
Localization and Mapping (VSLAM) as it employs visual data to recognize
locations previously visited. This process is closely linked to another com-
puter vision task known as visual place recognition [Low+16; TBG22]. Loop
closure primarily consists of two essential steps to ensure the accuracy and
continuity of the system’s map. The first step involves searching for keyframe
candidates that resemble the current frame, a process deeply intertwined
with visual place recognition. In fact, many algorithms used for visual place
recognition are also applicable here, highlighting the strong connection be-
tween these two tasks. For those interested in deeper insights, a tutorial
paper on this subject is highly recommended [Sch+23]. Within the VSLAM
community, where execution time is crucial, bag of words methods like DBoW2
or FBoW [GT12; MM20] have become popular due to their efficiency. Re-
cently, due to popularity gain of machine learning methods, techniques uti-
lizing deep learning are also developed and evaluated [ZWS21; AK21].

Selecting the correct keyframes is vital as it directly impacts the system’s
ability to accurately recognize a revisited location. After identifying potential
keyframes, the system evaluates them to determine the best matches, focus-
ing on visual similarity and geometric consistency.

Following the selection of the most suitable keyframes, the system per-
forms data association, where it matches features from the current frame with
features from each selected keyframe. This stage is crucial for verifying the
presence of a loop closure. If a keyframe meets the predefined conditions of
the loop closure algorithm, such as a sufficient number of matching features
and geometric alignment, the system confirms a loop closure event. Once a
loop closure is detected, new constraints are added to the VSLAM system, en-
abling it to adjust and optimize the overall map. This optimization often in-
volves minimizing the cumulative error across the map, thereby refining the
trajectory and enhancing the accuracy of the entire system’s spatial under-
standing. This iterative process of detection, verification, and optimization
is essential for maintaining the integrity and usability of the map in dynamic
environments.

Visual loop closure detection is strictly related with VSLAM as it lever-
ages visual data to identify previously visited locations. This process is closely
associated with another computer vision task known as visual place recogni-
tion [TBG22]. In general, loop closure consists of two steps. First, keyframe
candidates are searched which are similar to the current frame. After the best
keyframes are selected, then for every keyframe data association takes place.
If the selected keyframe met conditions of the algorithm then loop closure is
detected, new constraints are added to the system and finally optimization
of the map is performed. A good survey is also

Loop closure can significantly enhance the quality of both the map and
the trajectory in a VSLAM system, provided that loops are correctly detected.

2.6. Visual SLAM components 77

However, there are scenarios where challenges arise. In some cases, loop clo-
sure might fail to be detected; this leads to the uncorrected drift accumula-
tion, as illustrated in Figure 2.26a. This failure to identify a loop means that
the system’s estimate of its own trajectory deviates increasingly from the true
trajectory. Conversely, incorrect loop closure detection—where a false loop is
mistakenly confirmed—can also be problematic. Such false positives in loop
detection can lead to erroneous corrections in the map, ultimately causing
failures in the optimization process or wrong map estimation. These inaccu-
racies can disrupt the overall integrity and reliability of the system, making
robust loop detection critical for successful VSLAM operation.

Figure 2.26 presents an example of loop closure in a VSLAM system us-
ing a sequence from the KITTI dataset. The first image 2.26a illustrates a
comparison of two trajectories: one that incorporates loop closure correction
(blue line) and one that does not (green line). The reference trajectory is in-
dicated by the dashed line. The noticeable alignment of the blue trajectory
with the reference in the area marked by a red circle indicates the effective-
ness of loop closure in correcting drift that accumulates over the course of
the sequence. The second 2.26b and third 2.26c images below depict the start
and end frames of the sequence, respectively. These images provide a visual
context to the trajectory paths shown in the first image, illustrating the urban
environment in which the VSLAM system was tested. The presence of loop
closure significantly enhances the accuracy of the trajectory mapping by en-
suring that the end frame aligns closely with the starting frame, despite the
complex urban setting and the lengthy route taken, as seen in the trajectory
plot. This example effectively demonstrates how loop closure is crucial for
maintaining consistent and accurate trajectory in navigation and mapping
applications.

2.6.5 Semantic VSLAM

Cameras provide an abundance of information about the environment, en-
abling the implementation of not only VSLAM but also various scene under-
standing algorithms. In contemporary systems, it is increasingly common to
integrate additional modules that analyze this data for semantic interpreta-
tion of the surroundings, adding a layer of contextual understanding to the
environmental data. Such systems go beyond mapping and localization, of-
fering a deeper insight into the environment’s characteristics and features.
This integration of semantic analysis represents a significant advancement in
the field, as referenced in various studies [Xia+20]. To elaborate, semantic
VSLAM is a variant of the VSLAM system that not only offers the current
platform’s position and environmental mapping but also enriches this data
with additional semantic information. There are numerous semantic seg-
mentation algorithms available [JK20].

78 Chapter 2. Visual Simultaneous Localization and Mapping Overview

−200 −150 −100 −50 0 50
−100

−50

0

50

100

loop closure
no loop closure
reference

(A)

(B)

(C)

FIGURE 2.26: Example of Loop Closure

2.6. Visual SLAM components 79

Semantic VSLAM offers significant advancements over traditional VSLAM
by integrating semantic understanding into the mapping process [Fre23].
This integration allows the system to not only perceive and map the environ-
ment geometrically but also to understand and classify different elements
within it. One major advantage of semantic VSLAM is improved naviga-
tion and interaction capabilities in complex environments. By recognizing
and categorizing objects and areas, such as distinguishing between walka-
ble surfaces and obstacles, semantic VSLAM enables autonomous systems,
like robots and autonomous vehicles, to make more informed decisions and
interact more naturally and safely with their surroundings. This level of un-
derstanding is crucial in environments where dynamic changes occur and
where interaction with humans and other moving objects is frequent. An-
other advantage of semantic VSLAM is its robustness in localization accu-
racy. Traditional VSLAM systems are prone to errors due to dynamic objects
and changes in the environment, which can lead to inaccuracies in the map
and subsequently in the localization of the robot or vehicle. By identifying
and categorizing objects, semantic VSLAM can differentiate between static
and dynamic components of the environment, focusing localization efforts
on stable landmarks that are less likely to change over time. This capability
significantly enhances the system’s ability to maintain accurate localization
even in environments that undergo frequent changes or contain moving ob-
jects, such as busy urban scenes or industrial settings with moving machin-
ery. Furthermore, semantic VSLAM enhances user experiences in augmented
reality (AR) applications by enabling more contextually aware AR content.
For instance, in an educational or tourist setting, an AR system equipped
with semantic VSLAM could recognize and interpret various historical land-
marks, art pieces, or natural features, providing users with real-time, interac-
tive information overlays that enhance learning and engagement. This tech-
nology can adapt content delivery based on the specific elements within the
user’s view, such as detailing architectural features on buildings or offering
narratives tied to specific locations or objects. By integrating semantic un-
derstanding, AR applications can become significantly more interactive and
tailored to the user’s immediate environment, thus improving the informa-
tional depth and engagement level of the AR experience.

Figure 2.27 illustrates the capabilities of the Kimera VSLAM [Ros+20b]
system, an advanced approach that integrates VSLAM with semantic seg-
mentation. In Figure 2.27a, a 3D reconstruction of an indoor environment
where different objects and structural elements are distinctly color-coded is
presented. This semantic segmentation allows for a clear distinction between
various types of surfaces and objects, such as walls, furniture, and floor, en-
hancing the scene’s comprehension for both humans and autonomous sys-
tems. Figure 2.27b shows image segmentation results.

80 Chapter 2. Visual Simultaneous Localization and Mapping Overview

(A)

(B)

FIGURE 2.27: Kimera VSLAM Semantic Mapping. (a) A 3D semantic reconstruction
of an indoor environment showcasing distinct color-coded elements. (b) Detailed

view of semantic segmentation within the same environment.

2.7. VSLAM related work 81

2.7 VSLAM related work

As it was already stated in Section 2.7, SLAM has a very long research tradi-
tion. Clearly, at the beginning of the VSLAM, many researchers based on the
scientific achievements of the SLAM. In Figure 2.28 an illustrative timeline of
the most important systems discussed in this section is presented.

According to [You+17] paper by Younes et al., one of the pionieering pa-
pers related to VSLAM is [Dav03]. This foundational paper in the field of
Visual SLAM was published by Davison in 2003. This paper marked a sub-
stantial shift away from the conventional use of range sensors and laid the es-
sential foundation for subsequent developments in Visual SLAM technology.
Four years after, in 2007, Davison et al. introduced MonoSLAM. This system
utilizes EKF to estimate the camera pose and map features from a sequence
of images. Notably, MonoSLAM continues to operate within a probabilis-
tic framework, a consistent theme in the evolution of VSLAM technologies.
Further expanding on this concept, [Cza+20] unified various approaches to
VSLAM, incorporating learned priors and addressing the multi-view opti-
mization problem within the probabilistic framework. This approach under-
scores the ongoing relevance and adaptability of probabilistic methods in the
advancement of VSLAM technologies.

In the same year as MonoSLAM release, PTAM was introduced [KM07].
Klein and Murray proposed a new VSLAM architecture, which is used even
by the contemporary system. PTAM separates the camera tracking and map
building processes into two parallel threads, allowing the system to main-
tain high accuracy and real-time performance even on standard computing
hardware. This separation enables the tracking thread to operate at high
frame rates, ensuring smooth camera motion tracking, while the mapping
thread focuses on building a detailed, accurate map of the environment.
PTAM also incorporates keyframe-based mapping and bundle adjustment,
which optimizes the map’s structure continuously as new information be-
comes available. Moreover, it has been demonstrated that VSLAM extends
beyond robotics and can be successfully applied in AR applications. Further
research, including [LZB16], also shows that VSLAM is still a good approach
for AR.

In 2014, the innovative LSD-SLAM algorithm was introduced [ESC14],
marked by its direct method approach that bypasses traditional keypoints in
favor of using image intensities. LSD-SLAM is capable of creating detailed,
semi-dense maps on a large scale without requiring explicit feature extraction
or stereo vision. It tracks the camera’s pose and builds a depth map by min-
imizing photometric error, a method that allows it to function effectively in
environments with minimal texture, enhancing its versatility in visual SLAM
applications. This photometric error minimization technique is also a funda-
mental component of DSO [EKC18]. Additionally, researchers from TUM,

82 Chapter 2. Visual Simultaneous Localization and Mapping Overview

2007
MonoSLAM

2007
PTAM

2014
LSD-SLAM

2019
Stella VSLAM

2017
ORB-SLAM2

2021
ORB-SLAM3

2020
Deep Factors

2020
D3VO

2021
DROID SLAM

2006

2008

2010

2020

2012

2014

2016

2018

2022

2024

FIGURE 2.28: Timeline of VSLAM with the most important VSLAM systems.

2.7. VSLAM related work 83

who are highly active in the VSLAM community, have developed DM-VIO,
which builds upon DSO by integrating deep learning to enhance motion es-
timation and 3D mapping through the combined use of visual and inertial
data [SC22].

Interestingly, direct methods was not a direction which all researchers has
followed. The great example is ORB-SLAM. Developed in three iterations i.e.
ORB-SLAM, ORB-SLAM2, and ORB-SLAM3, represents a significant evolu-
tion in the field of Visual SLAM [MMT15; MT17; Cam+21]. These algorithms
utilize ORB features, which are highly efficient for real-time operation. ORB-
SLAM1 laid the groundwork by providing robust monocular SLAM, while
ORB-SLAM2 expanded capabilities to include stereo and RGB-D cameras,
enhancing its versatility and accuracy in 3D space reconstruction. The latest,
ORB-SLAM3, further advances this technology by incorporating multi-map
SLAM and the ability to handle visual-inertial datasets, significantly improv-
ing its robustness and utility in varied and challenging environments.

StellaVSLAM [SSS19] is a modern adaptation and extension of the well-
established ORB-SLAM framework, designed to enhance and expand its ca-
pabilities. Like ORB-SLAM, StellaVSLAM employs ORB features for feature
detection and description, maintaining the efficient and robust characteristics
that is typical for ORB-SLAM family. StellaVSLAM builds on the founda-
tional principles of ORB-SLAM but introduces several significant improve-
ments. For instance, it offers better support for various camera models and
configurations, such as fisheye and wide-angle lenses, which broadens its
applicability in scenarios where expansive field-of-view capture is crucial.
Moreover, StellaVSLAM offers a good code quality, which is crucial for the
beginners to understand the VSLAM architecture and algorithms behind it.

Researchers have explored various innovative methods to refine the clas-
sical approach to SLAM. [SSP19] introduces BAD-SLAM, a novel implemen-
tation featuring a fast, direct bundle adjustment formulation within a real-
time dense RGB-D SLAM algorithm. The paper also addresses the vulnera-
bility of direct RGB-D SLAM systems to issues such as rolling shutter effects,
sensor synchronization, and calibration errors, proposing a new benchmark
that utilizes synchronized global shutter RGB and depth cameras. Addi-
tionally, [Gom+19] presented PL-SLAM, a specialized version of SLAM that
improves upon traditional feature-based methods by integrating both point
features and line segments into the mapping process, thereby enhancing the
robustness and accuracy of the mapping in diverse environments.

Since 2018, there has been a significant shift into incorporating machine
learning techniques into VSLAM systems. DynaSLAM is an enhancement of
ORB-SLAM2 that incorporates dynamic object detection and background in-
painting to address the limitations posed by the rigidity assumption in tradi-
tional SLAM algorithms. DynaSLAM excels in dynamic environments across

84 Chapter 2. Visual Simultaneous Localization and Mapping Overview

monocular, stereo, and RGB-D configurations, utilizing multi-view geome-
try and deep learning to detect moving objects and inpaint occluded back-
grounds, creating accurate static maps of scenes [Bes+18]. Another approach
is presented by Fusion++ [Mcc+18]. Mccormac et al. proposed a method
with an advanced 3D reconstruction framework that extends the capabilities
of traditional scene reconstruction by incorporating semantic segmentation
into the process. This integration allows Fusion++ to not only capture geo-
metric details of the environment but also to understand and categorize dif-
ferent elements within the scene, such as distinguishing furniture from walls
In [Yan+20] D3VO was proposed. It implemented deep depth, deep pose and
deep uncertainty estimation for monocular VSLAM. It is not full machine
learning solution, but it rather solves many subproblems of the VSLAM us-
ing deep learning. Yang et al. claim that D3VO robustly integrates predicted
depth, pose, and uncertainty measurements into a direct visual odometry ap-
proach, enhancing both the front-end tracking and the back-end non-linear
optimization processes. On the other hand, DROID-SLAM represents an-
other approach [TD21]. Unlike D3VO, DROID-SLAM fully integrates deep
learning into the SLAM pipeline. This integration allows DROID-SLAM to
handle a wider range of complex environments and dynamic scenarios more
effectively than methods like D3VO, which rely more heavily on geometry
and traditional optimization techniques. Currently, DROID-SLAM is state-
of-the-art system. However, its computations requirements are very high,
especially when dealing with training.

In the literature, several methods also capitalize on deep learning to en-
hance SLAM capabilities. For instance, DeepSLAM represents a monocular
SLAM paradigm that leverages unsupervised training with stereo imagery.
This system integrates critical components for tasks such as pose estima-
tion, loop detection, mapping, and graph optimization, allowing it to gen-
erate pose estimates, depth maps, and outlier rejection masks [LWG21]. An-
other deep learning-based approach, LIFT-SLAM, introduced by Bruno and
Colombini, employs a novel method for extracting features from images,
which can lead to a higher number of correct matches due to its enhanced
feature extraction capabilities [BC21]. Additionally, research in VSLAM has
been effectively applied to Augmented Reality (AR). A notable example is
the work by Marchesi et al., who developed a system that integrates ORB-
SLAM2 with the Fast-SCNN network [PLC19]. This integration facilitates
the creation of a 3D map that is enriched with semantic information, en-
hancing the environmental understanding necessary for realistic AR appli-
cations [Mar+21].

Due to progress of machine learning in rendering, especially methods
based on NERF [Mil+20], gaussian splatting [Ker+23] and tools like Nerf
Studio[Tan+23], new VSLAM involving these algorithms and classic VSLAM
systems like ORB-SLAM in mapping process were proposed. [Chu+22] and

2.7. VSLAM related work 85

[RLC23] use Nerf. In algorithms proposed in [Mat+23], authors employed
gaussian splatting. These cutting-edge techniques enable the creation of con-
tinuous, high-fidelity 3D envrionments from standard camera inputs, facil-
itating more immersive and visually accurate mappings. By combining the
precise localization capabilities of systems like ORB-SLAM with the dense,
photorealistic rendering offered by NeRF or gaussian splatting, these hy-
brid VSLAM systems set new standards for accuracy and detail in real-time
spatial mapping applications. However, the integration of machine learn-
ing rendering techniques into VSLAM systems also brings with it several
disadvantages. One major concern is the potential degradation in perfor-
mance, particularly in terms of computational efficiency. These technique are
computationally intensive, requiring significant processing power and po-
tentially leading to slower frame rates in real-time applications. This can be
a substantial drawback in scenarios where speed and low latency are critical.
Moreover, the usefulness of such sophisticated rendering methods in practi-
cal VSLAM applications can sometimes be questioned. While they offer en-
hanced visual fidelity, the complexity and resource demands of implement-
ing these methods may not always justify the incremental improvements in
map.

The literature on VO and VSLAM is extensive, as demonstrated by Ta-
ble 2.5 which summarizes over twenty papers on these topics, providing
a rich source of knowledge. While this table captures a significant portion
of research, there are numerous additional surveys and overviews available
that delve deeper into various aspects of these fields.

The first significant paper by [SF11] introduces the basics of VO, includ-
ing fundamental algorithms and terminology, serving as an excellent starting
point for newcomers. [Sae+15] explores the specific challenges of multi-agent
SLAM, discussing existing solutions and their efficacy. [Car+15] evaluates
methods for estimating 3D rotation, providing insights into their practical
applications. For those new to the field, [YBH15] offers a broad introduction
to robot localization and mapping, covering everything from simple tech-
niques like wheel odometry to more complex VO and SLAM systems.

In [TUI17] progress in the VSLAM community from 2010 to 2016 is de-
tailed, while [Cad+16] serves as both a tutorial and a critique, posing critical
questions about the necessity and completion of SLAM. The incorporation of
deep learning into VSLAM is reviewed by [Dua+19], highlighting the sub-
stantial advancements these models have contributed to computer vision.
Challenges and future directions in VSLAM are the focus of [LWG18], and
[SMT18] identifies key challenges in dynamic environments, offering a com-
prehensive taxonomy of current methods and discussing their practicality
and robustness.

[DV20] reviews VSLAM algorithms that integrate camera and LIDAR

86 Chapter 2. Visual Simultaneous Localization and Mapping Overview

technologies, while [Azz+20] concentrates on feature-based approaches. Mod-
ern VSLAM algorithms are compared by [MM21]. [Xia+20] provides a re-
view of the latest developments in semantic VSLAM. In the context of mo-
bile and embedded devices, [YI21] evaluates power consumption, a criti-
cal consideration due to the battery dependency of these platforms. The
role of deep learning in VSLAM is further examined by [Li+22b], and the
evolution of VSLAM technologies, including traditional and semantic ap-
proaches, is reviewed by [Che+22a]. Looking forward, [Tou+22] speculates
on future advancements in VSLAM. [SSM23] provides an extensive review
focused on long-term SLAM challenges for mobile robots, and the impor-
tance of keyframe selection is emphasized by [DLD23], who seek to catalog
and evaluate various selection methods. Lastly, [DWW23] analyzes common
methods, architectures, and techniques employed in VSLAM systems, pro-
viding a comprehensive overview of the field.

This overview has traced the history and development of both SLAM
and VSLAM, examining key advancements and various algorithms that have
shaped its evolution. The next chapter will transition into a focused discus-
sion on Modular SLAM. It details the specific contributions of this thesis, ex-
ploring innovative approaches and enhancements that have been developed
to further advance the capabilities of VSLAM systems.

2.7. VSLAM related work 87

Author(s) Topic Year

Scaramuzza and Fraundorfer [SF11] Introduction to VO 2011

Saeedi et al. [Sae+15] Multi-agent SLAM 2015

Carlone et al. [Car+15] 3D Rotation Estimation Methods 2015

Yousif, Bab-Hadiashar, and
Hoseinnezhad [YBH15]

Fundamentals of Robot Localization and
Mapping 2015

Cadena et al. [Cad+16] SLAM: State, Challenges, and Future 2016

Taketomi, Uchiyama, and Ikeda [TUI17] Progress in VSLAM 2010-2016 2017

Jamiruddin et al. [Jam+18] RGB-D VSLAM 2018

Duan et al. [Dua+19] Deep Learning Applications in VSLAM 2019

Li, Wang, and Gu [LWG18] Challenges and Opportunities in VSLAM 2018

Saputra, Markham, and Trigoni
[SMT18] VSLAM in Dynamic Environments 2018

Debeunne and Vivet [DV20] VSLAM Algorithms using Cameras and
LIDARs 2020

Azzam et al. [Azz+20] Feature-based VSLAM Approaches 2020

Xia et al. [Xia+20] Recent Advances in VSLAM 2020

Merzlyakov and Macenski [MM21] Comparison of Modern VSLAM Algorithms 2021

Li et al. [Li+22b] Deep Learning in VSLAM 2022

Chen et al. [Che+22a] Evolution of VSLAM Technologies 2022

Tourani et al. [Tou+22] Trends in VSLAM 2022

Sousa, Sobreira, and Moreira [SSM23] Long-term SLAM Problems 2023

Dias, Laureano, and Da Costa [DLD23] Importance of Keyframe Selection in SLAM 2023

Dai, Wu, and Wang [DWW23] Common Methods and Techniques in VSLAM 2023

TABLE 2.5: Overview of key surveys and papers in VSLAM and VO. It lists promi-
nent authors and their contributions to the fields, focusing on specific aspects and

advancements in VO and VSLAM.

89

Chapter 3

VSLAM challenges and robustness

Overview

This chapter evaluates the ongoing challenges in VSLAM and positions the
research within this thesis in the broader VSLAM landscape. It addresses a
range of issues such as the distribution of keypoints, mapping in environ-
ments that change over time, maintaining the map’s accuracy, ensuring the
system’s real-time responsiveness, managing outliers, and more. This discus-
sion is an introduction for the subsequent two chapters, which are focused
on proposing solutions to these identified problems.

Next, a detailed exploration of the concept of robustness within the con-
text of VSLAM is undertaken. It is initiated with a comprehensive definition
of robustness, which is constructed through the integration of three critical
aspects: methods of computer vision, software reliability, and execution per-
formance. This approach, characterized by its multifaceted nature, improves
understanding of robustness, thereby setting a foundation for an in-depth
examination of the combined impact of these elements on the effectiveness
and reliability of VSLAM systems and their further development.

You cannot teach a man anything, you can only help him discover it in himself.
– Galileo Galilei

90 Chapter 3. VSLAM challenges and robustness

In the previous chapter, the fundamentals of the VSLAM problem were
introduced, with not only a definition provided but also a historical overview
of its development, including key breakthrough systems. This exploration
has highlighted the various problems that have had to be navigated and the
challenges that have emerged over time. This chapter aims to delve into sev-
eral significant difficulties that must be considered when VSLAM systems
are being designed including outliers handling, accumulative error in loop
scenarios, map maintenance and more. Moreover, it provides a foundational
context for the innovative methods and systems introduced in Chapter 5 and
Chapter 4, setting the stage for a comprehensive understanding of their de-
velopment and the rationale behind their design.

3.1 Keypoints distribution on image

One of the initial tasks performed by the VSLAM systems’s frontend, which
relies on keypoints, is to determine the position of these keypoints across the
image. In other words, one of the frontend’s resposibility is keypoint detec-
tion. As discussed in Chapter 2, there exists a wide array of keypoint detec-
tors. However, it is noteworthy that these detectors generally do not consider
the spatial distribution of keypoints during the detection process. The distri-
bution of keypoints across the image could potentially enhance pose estima-
tion accuracy. This is particularly evident in scenarios where a single part
of the image contains a high density of details. To visualize how the output
of two detectors may differ, two images with marked detected keypoints are
presented in Figure 3.1. In Figure 3.1a keypoints are grouped into several
parts. Those parts characterize with highly changing texture. It can be ob-
served that several parts of the image contains significantly more keypoints
than the others. On the other hand, Figure 3.1b presents results of the detec-
tor which is aware of distribution and it tries to spread keypoints over the
image.

To ensure that the mentioned assumption is indeed true, tests were con-
ducted that involved comparing the estimated trajectory in two cases. In
the first case, the default detector for StellaVSLAM was used. In the second
test, the source code of StellaVSLAM was modified in such a way as to use
standard detector from OpenCV library [Ope24]. The comparative results
presented in Table 3.1 demonstrate that the distribution of keypoints signif-
icantly enhances performance across all evaluated metrics. Both APE and
RPE metrics indicate that the distributed keypoints method achieves reduc-
tions in RMSE, Mean, Median, and Sum of Squared Errors (SSE). Moreover,
it leads to lower minimum and maximum values, underscoring the effective-
ness of distributed keypoints in improving accuracy. Furthermore, Figure 3.2
illustrates the trajectories of two systems, one employing keypoint distribu-
tion and the other not, in comparison to a reference trajectory. It is evident

3.1. Keypoints distribution on image 91

(A) Standard detector (B) Distribution-aware detector

FIGURE 3.1: Comparison of keypoint detection techniques: distributed vs. non-
distributed approaches, with detected keypoints marked on the image.

that several segments of the trajectories deviate from the reference. These
discrepancies are consistent with the findings from the APE and RPE met-
rics.

APE

System RMSE Mean Median Std Min Max SSE

Distributed 0.01641 0.01386 0.01137 0.00879 0.00071 0.06394 0.16077

Standard 0.02521 0.02104 0.01714 0.01389 0.00272 0.07933 0.37942

RPE

System RMSE Mean Median Std Min Max SSE

Distributed 0.00987 0.00793 0.00625 0.00588 0.00041 0.0429 0.0581

Standard 0.01139 0.00942 0.00749 0.00641 0.00070 0.0375 0.0773

TABLE 3.1: StellaVSLAM performance using distributed keypoints detector com-
pared to classic keypoint detector.

Along with enhanced localization accuracy, distributed detectors offer ad-
ditional benefits. In keyframe-based systems, the number of keyframes sig-
nificantly impacts map size and execution time. A better distribution of key-
points across the image greatly influences landmark creation. A prevalent
criterion for initiating new keyframe creation is tied to the number of land-
marks tracked in the current frame. If this number falls below a specified
threshold, then the creation of a new keyframe is triggered. Consequently,

92 Chapter 3. VSLAM challenges and robustness

−0.5 0.0 0.5 1.0 1.5
x (m)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

z (
m
)

Reference
Distributed
Standard

FIGURE 3.2: Comparison of two systems with and without keypoints distribution
technique with the ground-truth.

3.2. Mapping in dynamic environments 93

if the keypoints—and, by extension, the landmarks—are well-distributed, it
may lead to less frequent generation of new keyframes.

3.2 Mapping in dynamic environments

Dynamic environments are characterized by the presence of moving objects
or environmental changes occurring within relatively short periods of time.
This presents a challenge for VSLAM systems, which must adapt to these
environmental changes. However, a core assumption underpinning every
SLAM system is the constancy of the map over time. This assumption sig-
nificantly affects the system’s operational effectiveness, as it presupposes a
static environment without dynamic changes or moving objects. Essentially,
the principle that ensures the accurate functioning of SLAM systems inher-
ently requires the absence of dynamic elements within the scene. What’s
interesting, according to Ballester et al., most of the SLAM systems, event the
state-of-the-art methods still assume static environment [Bal+21].

Let recall the definition of the VSLAM problem. For each landmark, de-
noted as li, there exists a set of measurements Zi associated with that specific
landmark li, along with the keyframes during which the landmark was ob-
served. The position of the landmark is represented by a three-dimensional
vector in Euclidean space. The error term e(li, zi,j) for li, utilized in the op-
timization step of the backend, is detailed in Equation 3.1. This equation
underscores the previously mentioned assumption i.e. the position of the
landmark is considered invariant across all observations.

e(li, zi,j) = ∑(li − zi,j)
2 (3.1)

Figure 3.3 showcases a sequence from the Bonn dataset. This sequence
captures a laboratory scene through an RGB-D camera, where two individu-
als are observed walking while the camera remains stationary. In scenarios
like this, landmarks associated with moving objects can significantly impact
camera pose estimation. A VSLAM system that is robust against moving
objects must be capable of recognizing such movements, ensuring that the
estimated camera pose remains unaffected and stable despite the dynamic
elements in the environment.

There are multiple strategies to mitigate this challenge. The first method
retains the original definition of the VSLAM system. Systems like StellaVS-
LAM or ORBSLAM 3 treat landmarks associated with moving objects as typi-
cal outliers. These systems remove landmarks if they detect that the observa-
tions of the landmarks are irrelevant. Secondly, a more sophisticated method
incorporates moving object detectors within the VSLAM framework. This
technique actively discriminates between static and dynamic landmarks. Then
landmarks associated with moving objects are filtered out and only static

94 Chapter 3. VSLAM challenges and robustness

landmarks are used for both localization and mapping. Lastly, the most so-
phisticated solution involves redefining the VSLAM problem itself to accom-
modate the modeling of movement within its framework. This approach
aims to integrate dynamic object movement into the core algorithm, allow-
ing for a more robust understanding and representation of the environment.

FIGURE 3.3: Example of scene containing moving objects – humans walking in the
laboratory.

3.3 Long-Term operation

The primary objective of a VSLAM system is to achieve accurate localiza-
tion and mapping. However, achieving these capabilities requires careful
implementation, particularly with respect to the system’s long-term opera-
tion. Key challenges to consider for sustained functionality include manag-
ing large map sizes and memory management efficiency, reducing the time
required for relocalization, accommodating changes in the environment or
drift accumulation.

3.3. Long-Term operation 95

Figure 3.4 visualizes a map generated using Stella VSLAM and data from
a KITTI sequence. This map represents a relatively large area, covering ap-
proximately 0.25, km2. It contains 50,087 landmarks and 704 keyframes. Stor-
ing all the landmarks, keyframes, keypoints, and observations requires ap-
proximately 201MB of disk space. While this file size is manageable for PCs
and powerful embedded devices like Nvidia Jetson, it may pose challenges
for less capable devices such as Raspberry Pi.

FIGURE 3.4: Visualization of a section of a city mapped using data from the KITTI
dataset.

Furthermore, aside from disk space concerns, it’s important to note that
a significant portion of the required data is stored in RAM during the oper-
ation of the VSLAM system. Such constraints have a significant impact on
the entire system. For example, a Raspberry Pi typically has only 512MB of
available RAM. Rough calculations suggest that the device can store data for
an area of approximately 0.5, km2, assuming no other processes are running
concurrently on the machine. Another issue related to long-term operation
and hardware resources is the relocalization time. With a high number of
keyframes, the relocalization process, typically a two-step procedure involv-
ing selecting keyframe candidates and estimating poses, takes considerably
more time when dealing with large maps. On the other hand, usually relo-
calization is a component of the tracking system, which has real-time con-
straints.

The Table 3.2 provides a detailed comparison of various KITTI sequences
by detailing the number of keyframes and landmarks created in StellaVS-
LAM, along with the mapped areas in square kilometers for each sequence.

96 Chapter 3. VSLAM challenges and robustness

A notable observation is that larger mapped areas tend to correspond with
increased numbers of keyframes and landmarks. However, the KITTI se-
quences do not always require a high level of detail, unlike situations where
cameras are positioned close to the objects being mapped before moving to
other fragments of the environment. In such detailed scenarios, the count of
keyframes and landmarks can escalate even further. This implies that map-
ping larger areas, especially those densely packed with landmarks, poses a
significant challenge to real-time processing. It highlights the critical need for
sophisticated algorithms and robust hardware designed to efficiently man-
age large datasets without compromising performance.

Sequence Keyframes Landmarks
Area
[km2]

00 1254 92060 0.27962

01 — — 2.11580

02 1733 138189 0.56592

03 170 11887 0.09363

04 99 6317 0.00022

05 705 50196 0.20420

06 371 24189 0.01046

07 290 22439 0.04008

08 1371 101825 0.31546

09 628 46131 0.26395

10 401 28725 0.11871

TABLE 3.2: Mapped area of KITTI sequences

Long-term operation also encompasses variations in lighting conditions
or scene appearance, which can result from changes in weather the time of
day or season. It is crucial to ensure that the algorithm can effectively handle
these diverse conditions, as they can significantly alter the visual appear-
ance of the scene. Adapting to such changes ensures the robustness and
reliability of the algorithm across different environments and scenarios. In
Figure 3.5, four distinct images depict the same location under varying con-
ditions. These visuals underscore how different times of the day and sea-
sonal changes can drastically alter the appearance of a scene. For exam-
ple, the absence of leaves on trees during winter significantly impacts visual

3.3. Long-Term operation 97

features. This becomes particularly relevant when considering Figure 2.22,
which highlights that many keypoints are detected on trees. Furthermore,
the time of day plays a crucial role due to variations in lighting, such as
changes in shadow intensity and overall luminosity, affecting the system’s
ability to accurately detect and track keypoints. The issue of lighting appears
to be particularly relevant to dense systems that utilize photogrammetric er-
ror.

FIGURE 3.5: Different conditions of the same scene.

In the context of long-term operation, accumulative drift emerges as a
critical challenge for VSLAM systems. Effectively compensating for this drift
is essential for ensuring accurate performance over extended periods. Loop
closure is a pivotal technique for error compensation, thoroughly discussed
in Section 2.6.4 and Section 3.4. This strategy helps the system to recog-
nize previously visited locations, thereby correcting the cumulative error that
builds up over time. Illustrations of the APE on the trajectory are provided in
Figure 3.6a and Figure 3.6b. The former demonstrates the error in scenarios
where loop closure effectively mitigates drift, while the latter depicts scenar-
ios lacking loop closure support, highlighting the significance of this mecha-
nism in maintenance of long-term VSLAM accuracy. The accumulated drift
becomes particularly noticeable towards the end of the trajectory. With drift
compensation, the system can achieve localization accuracy, maintaining an

98 Chapter 3. VSLAM challenges and robustness

APE below 10 meters. Conversely, without compensation, the system’s accu-
racy significantly declines, resulting in an APE of approximately 30 meters

3.4 Loop Closure

Humans do not have problems with recognizing places. It is especially true
when there are various lightning conditions or some environmental changes
have taken place. To give an example, roadworks frequently occur in urban
areas, altering parts of the environment temporarily. Similarly, as previously
mentioned, the changing seasons, leading to the shedding of leaves, serve
as another example Another example which was already given is change of
seasons and consequently leaves fall. Despite these changes, people can still
identify the specific location based on the remaining, unchanged features of
the environment. Another example was already mentioned in Section 3.3.
Due to lightning conditions the environment may change a lot. Figure 3.5
proves that.

Loop closure is essential for VSLAM systems. The loop closure compo-
nent, which was previously discussed in Section 2.6.4, is a key feature that
sets VSLAM apart from standard VO systems. Therefore, it’s crucial for this
component to be both reliable and accurate. In the context of loop closure,
these two qualities refer to several functions. Initially, loop detection is per-
formed, which from a computer vision standpoint is a typical classification
problem. The objective is to determine whether two images —- the current
frame and those associated with previously created keyframes -— depict the
same location. In this task there are at least several challenges which have to
be taken into considerations.

One of the primary issues is the high similarity between different places,
which may only differ in subtle details, such as floor numbers in a build-
ing. Distinguishing between such nuances requires the system to be highly
discerning and sensitive to minor variations. Such scenario is shown in Fig-
ure 3.7. This is called perceptual aliasing. According to Lajoie et al., it is a
phenomenon where different places generate a similar visual and leads to
the wrong estimates of the VSLAM system. What is more, perceptual alias-
ing may be used as an adversarial attack for VSLAM system [Ikr+22].

Additionally, varying lighting conditions can drastically change the ap-
pearance of a scene, complicating the process of recognizing the same place
across different times of day or weather conditions. Finally, the presence of
moving objects can introduce discrepancies between two images of the same
location, as these objects may appear in one image and not the other, leading
to erroneous classification and wrong loop closures. Addressing these chal-
lenges is crucial for the robust performance of the loop detection component
in VSLAM systems.

3.4. Loop Closure 99

200 100 0 100 200
x (m)

0

100

200

300

z (
m

)
APE w.r.t. translation part (m)

(with Sim(3) Umeyama alignment)
reference

0.398

6.155

11.912

(A) With drift compensation.

200 100 0 100 200
x (m)

0

100

200

300

400

z (
m

)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

reference

2.493

39.634

76.775

(B) Without drift compensation.

FIGURE 3.6: Comparison of APE for systems with and without drift compensation.
The first plot (a) shows the APE for a system implementing drift compensation,

while the second one (b) illustrates the APE for a system lacking this feature.

100 Chapter 3. VSLAM challenges and robustness

(A)

(B)

FIGURE 3.7: Examples of very similar environments but they represent various lo-
cations – perceptual aliasing

3.4. Loop Closure 101

Within the framework of loop detection for VSLAM systems, the concepts
of reliability and accuracy are pivotal to asses the system’s performance. This
evaluation is conducted through metrics such as classification accuracy, pre-
cision, and recall, which offer a nuanced view of the system’s effectiveness.
A critical aspect of this analysis involves understanding the system’s error
rates, encompassing both false positives and false negatives. False positives,
or erroneous loop detections, directly impact precision by indicating loops
where none exist, while false negatives, which are overlooked actual loops,
affect recall by highlighting missed detection opportunities. Thus, a balanced
assessment of these errors provides a more complete picture of the system.
Keeping both, recall and precision metrics high is a big challenge.

Recall =
TP

TP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Following the identification of a potential loop by the loop detection mod-
ule, the process advances to the crucial stage of loop closure. This step is re-
sponsible for finding correspondences to validate the detected loop. It’s im-
portant to recognize that the loop detection component might suggest multi-
ple keyframe candidates for this purpose. As a consequence, this step not
only validates but also chooses the best keyframe candidate. Finally, the
keyframe with the best score is chosen and if the conditions are met than
the new constraints resulting from loop are created and the map optimiza-
tion is performed. In this stage, several critical issues need to be tackled. A
primary concern is the execution time of the entire process. Given the com-
plexity of this approach, it is essential to develop an efficient algorithm that
can complete calculations quickly and update the map in a short period of
time to provide updated map for localization module. Another significant
challenge is managing the new constraints introduced by loop closure. It is
vital to design the system in a way that prevents loop closure from being
triggered repeatedly for the same location where a loop has already been
identified. Addressing these scenarios within the algorithm can pose a con-
siderable challenge.

To demonstrate the accuracy of the loop detection, a test was performed
using the KITTI sequence 00 with the Stella VSLAM system. The Figure 3.8
depicts the system’s generated map and trajectory, where the red circles mark
the areas that should be identified as loops. These specific locations are places
where the system revisits them. Ideally, they should trigger the loop closure
mechanism to correct any trajectory drift. However, it was observed that
out of all the marked potential loops, the system detected only two as actual
loops. This suggests that improvements are possible in the system’s ability
to detect loop closures reliably.

102 Chapter 3. VSLAM challenges and robustness

FIGURE 3.8: Map generated using KITTI 00 sequence and StellaVSLAM. The red
circles highlight potential loop closure points within the trajectory. Of the marked
locations, only two were successfully identified as loops by the system’s loop detec-

tion algorithm, demonstrating areas for potential improvements in detection.

3.5 Real-time performance

It has been already discussed in Section 2.4 that one of the main difference
between SfM and VSLAM problem is the time constraints. In VSLAM, exe-
cution time of processing single frame is very limited. For instance, typical
camera is able to provide 30 frames per second. It means that VSLAM sys-
tem has only 33 milliseconds to use the image for localization and mapping
purposes before the next frame arrives. Clearly, there are applications where
higher throughput is required, and even more frames per second should be
handled. Furthermore, resolution of the image has also vital impact on the
performance. This is especially a challenge when high resolution images are
considered such as FullHD or 4K.

These constraints are the reason why localization and mapping processes
are typically separated into two various tasks. In VSLAM systems, the pri-
ority is often given to pose estimation over the immediate delivery of the
current map. This is because accurate pose estimation is crucial for real-
time navigation and interaction with the environment. Therefore, in many
VSLAM approaches, pose estimation is integrated into the core pipeline of
frame processing. Meanwhile, mapping including keyframe creation and
map optimization is performed in parallel. This parallel processing allows

3.5. Real-time performance 103

for the system to maintain a rapid understanding of its position and orienta-
tion, while concurrently building and refining the map without compromis-
ing the speed and responsiveness of pose estimation.

To have an intuition about localization and mapping tasks and their ex-
ecution time tests were conducted. Stella VSLAM was modified to measure
the time of localization and mapping processes. The tests were performed
on the KITTI sequence and results are shown in Figure 3.9 and Figure 3.10.
The histogram of mapping times shows a broader distribution with a longer
tail, indicating that mapping operations typically require more time to com-
plete, with some instances taking upwards of 250 milliseconds. This suggests
that the mapping process is computationally intensive especially in compar-
ison to the second plot which depicts localization times. The histogram has a
much narrower distribution, concentrated primarily under 30 milliseconds.
The peak of this distribution is quite sharp, indicating that localization times
are generally consistent and remarkably faster than mapping times. This also
reflects the system’s prioritization of pose estimation, which is essential for
real-time operation and a confirmation that the localization process is signif-
icantly faster than mapping.

Moreover, another evaluation was conducted to illustrate the relationship
between the number of local landmarks, the number of tracked landmarks,
and the tracking time. This is shown in Figure 3.10. It was observed that
an increase in the number of local landmarks corresponds to an increase in
tracking time, a result that aligns with expectations, given that tracking a
greater number of landmarks requires additional computational effort and
time. The data points are color-coded based on the number of landmarks
currently being tracked. Again, a similar trend is visible: a higher number of
currently tracked landmarks has a significant impact on the tracking time.

The conducted tests underscore the necessity for careful consideration of
VSLAM performance and the conscious selection of algorithms. The evi-
dence indicates that several critical factors significantly affect system per-
formance. These factors include not only the size of the map consisting of
keyframes, landmarks and observations. In addition, factors such as the res-
olution of the images processed by the system also play a significant role. The
balance is crucial for the practical application of VSLAM in various scenarios
and this is also a challenging task.

104 Chapter 3. VSLAM challenges and robustness

0 50 100 150 200 250
Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

(A)

10 20 30 40 50
Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

(B)

FIGURE 3.9: Comparison of tracking and mapping times.

3.5. Real-time performance 105

2K 4K 6K 8K 10K 12K 14K 16K
Number of Local Landmarks

10

20

30

40

50

Tr
ac

ki
ng

 T
im

e
[m

s]

Tracked landmarks
400
800
1200
1600

FIGURE 3.10: Relationship between tracking time and number of local landmarks.

106 Chapter 3. VSLAM challenges and robustness

3.6 Outliers handling

Every system is exposed to various errors, and VSLAM systems are no excep-
tion. The foundation of robustness in such systems lies in effectively manag-
ing these errors. Outliers in VSLAM may originate from multiple sources, in-
cluding sensor noise, dynamic objects in the environment, and incorrect fea-
ture matching due to repetitive or similar textures. Sensor inaccuracies, espe-
cially in challenging lighting or weather conditions, can significantly distort
the data, leading to errors in landmarks position estimation. Dynamic ob-
jects, such as moving vehicles or pedestrians, introduce changes in the scene
that can mislead the tracking process. Furthermore, the algorithm’s reliance
on feature matching can struggle in environments with high levels of visual
ambiguity, causing mismatches and, consequently, inaccuracies in pose esti-
mation and map construction. Handling these outliers efficiently is essential
for maintaining the integrity and accuracy of the VSLAM system, supporting
the system’s ability to explore complex environments reliably.

The example of the significant outliers which may have major influence
on pose estimation and consequently also in mapping process are shown in
Figure 3.11a. Despite the fact that Lowe’s ratio was used to lower the number
of bad correspondences [Low04]. This technique is expected to significantly
reduce the number of false matches, improving the robustness of feature
matching. However, the problem still occurs. Indeed, the image proves that
there are still cases where not relevant keypoints are matched. Errors may
also emerge from keypoint matches that seem accurate but actually belong
to different instances of identical or very similar objects, representing a sim-
ilar category of matching errors as previously described. This phenomenon
is illustrated in Figure 3.11b. While numerous matches accurately identify
components of computer mice, complications arise due to the presence of
two almost identical mice on the desk. In this scenario, the matches mistak-
enly associate keypoints with the incorrect instances of the mice

Lastly, Figure 3.11c illustrates a scenario where a mouse has been moved
yet is still recognized as being in its origin. This situation leads to errors
concerning the 2D-3D correspondences. To clarify, each keypoint is matched
with a specific landmark in the environment. When an object like the mouse
is relocated, its actual position in the 3D space changes, rendering previous
keypoint-to-landmark associations obsolete. Consequently, any observations
based on these now-incorrect associations become irrelevant, highlighting
the challenges VSLAM systems face with dynamic objects in the environ-
ment.

3.6. Outliers handling 107

(A) Incorrect keypoint matching

(B) Similar objects in the scene

(C) Moved objects

FIGURE 3.11: Examples of outlier sources in VSLAM

108 Chapter 3. VSLAM challenges and robustness

3.7 Map maintenance

The map plays a crucial role in VSLAM system, serving as the basis for
both localization and mapping tasks. As a consequence, map maintenance
emerges as a integral process that every VSLAM system must carefully un-
dertake to guarantee its consistent functionality.

First, let’s clarify the concept of map maintenance. It refers to the continu-
ous process of updating and refining the map to accurately represent the en-
vironment over time. This task involves addressing dynamic changes in the
space, which may manifest as outlier landmarks during optimization pro-
cesses. Effective map maintenance seeks for a balance between the precision
of localization and mapping and the overall size of the map. Consequently,
it involves not only the elimination of outliers but also the removal of ac-
curate landmarks and keyframes that are supposed redundant, to optimize
both performance and storage efficiency.

The Figure 3.12 illustrates the dynamic nature of map visualization and
maintenance in the StellaVSLAM system over time. The Figure 3.12a presents
the initial scene captured by the system. The remaining images sequentially
demonstrate the progressive development of the map. These stages show
the addition of new keyframes, indicated by the green shapes, and the estab-
lishment of interconnections, depicted as purple lines. As time passes, the
map evolves. Some keyframes and their associated landmarks are deleted to
optimize the map’s structure and resource utilization, reflecting the ongoing
map maintenance process. This frequent addition and deletion of keyframes
help maintain an accurate and efficient map, highlighting the system’s ability
to adapt to changes within the environment and its own internal representa-
tions.

3.8 Keyframe creation

In keyframe-based VSLAM systems, keyframes are crucial for constructing
the map, with landmarks being generated at the time of keyframe creation.
These components are essential for the functionality of the system, under-
scoring the importance of an effective method for keyframe creation. It’s
also vital to have well-defined criteria for the introduction of new keyframes
to ensure the system operates efficiently. The performance of the system,
measured by execution time as well as localization and mapping accuracy, is
greatly influenced by the map’s size. As previously discussed in Section 3.5
and illustrated by Figure 3.10, the size of the map is a critical factor affecting
real-time performance. Furthermore, it has been already shown in Section 3.5
that mapping is much more complex problem than localization.

Due to the reasons mentioned above, it is not feasible for researchers to
force the system to generate a large number of keyframes in a short period of

3.8. Keyframe creation 109

(A) (B)

(C) (D)

FIGURE 3.12: Example of map maintenance where keyframes are dynamically
added and removed during the mapping process.

110 Chapter 3. VSLAM challenges and robustness

time. In scenarios where an excessive number of keyframes are created too
quickly, the mapping component which is tasked with creating keyframes
and landmarks often queues these requests or, in some instances, ignore them
entirely. It’s important to remember that in VSLAM systems, the interac-
tion between the localization and mapping components is tightly integrated.
Consequently, ignored or postponed keyframe creation requests can lead to
localization failures, necessitating a switch to relocalization mode.

In StellaVSLAM system evaluates multiple criteria to decide whether a
new keyframe should be created, reflecting the system’s adaptability to var-
ious conditions for accurate mapping and localization. Key factors like the
time elapsed since the last keyframe insertion, the distance traveled, changes
in the field of view, and the number of reliable landmarks are carefully as-
sessed. For example, a new keyframe is considered necessary if the elapsed
time or traveled distance exceeds predefined thresholds, or if there’s a sig-
nificant change in the scene observed by the current frame compared to the
reference keyframe. Additionally, the system’s current state, including the
stability of tracking and the sufficiency of landmarks, plays a crucial role in
this decision-making process. The system avoids keyframe insertion when
tracking is unstable or almost all landmarks are reliably tracked, to prevent
redundant data that could have impact on the system’s efficiency. Further-
more, the presence of a sufficient number of keyframes and the avoidance
of local bundle adjustment are also taken into account, balancing the need
for new keyframes against the potential for overloading the system. This
multi-faceted approach ensures that keyframe creation is both necessary for
enhancing the map’s accuracy and feasible within the system’s operational
constraints [SSS19].

On the other hand, such approach to keyframe insertion is not without
its criticisms. One significant challenge lies in determining the relative im-
portance of each condition considered by the system. With numerous factors
influencing the decision to create a new keyframe the prioritization of these
conditions can be complex. Furthermore, the reliance on thresholds to pa-
rameterize many of these conditions introduces an additional layer of com-
plexity. These thresholds must be carefully chosen to ensure they accurately
reflect the system’s needs in various scenarios. However, finding the optimal
settings can be challenging, as it requires a delicate balance between sensi-
tivity to environmental changes and the system’s operational efficiency. This
complexity underscores the need for ongoing research and refinement to en-
hance the system’s decision-making process in keyframe creation, aiming for
an optimal balance of accuracy and resource management.

In Figure 3.13 number of tracked landmarks over time is shown. What
is interesting about this relationship are peaks in many parts of this plot.

3.9. Introduction to Robustness 111

This is related to the mapping process and the reliability of the created land-
marks. After mapping module creates the new landmarks, typically local-
ization module is able to track high number of them. However, after short
period of time they neither are detected or are not inliers anymore. Conse-
quently, the mapping module is then required to eliminate these short-lived
landmarks. This seems to be another challenge for the mapping module to
create landmarks that contribute to the global map consistently over time.

0 100 200 300 400 500 600
Frame

250

500

750

1000

1250

1500

1750

2000

Tr
ac

ke
d

la
nd

m
ar

ks

Tracked landmarks
Moving average

FIGURE 3.13: Tracked landmarks over time with visible peaks related to the finish
of keyframe creation.

3.9 Introduction to Robustness

In the preceding chapter, numerous challenges faced by VSLAM systems
were explored, revealing a range of issues that highlight the importance of ro-
bustness within these systems. The concept of robustness, particularly in the
realm of computer vision, is considered essential for the effective functioning
of VSLAM. However, it has been noted that the term robustness encompasses
a broad spectrum of interpretations across various studies and implementa-
tions. As highlighted by Drenkow et al., the term robustness in the computer
vision context is often regarded as an overloaded term, encompassing a wide
array of criteria and expectations [Dre+21].

112 Chapter 3. VSLAM challenges and robustness

The broad range of meanings attributed to robustness contributes to the
challenges in defining and measuring this concept within VSLAM systems.
This situation underscores the necessity for a more refined understanding
and methodical approach in tackling the notion of robustness. In light of the
ambiguity surrounding this term, the following section will aim to provide a
clear definition of robustness in the context of this thesis and VSLAM.

Robustness is a term full of ambiguity and is often overloaded with mean-
ings. Its definition varies significantly across different fields. Especially for
VSLAM which is a field where various For instance, what constitutes ro-
bustness for scientists working on mobile robots differs remarkably from the
interpretation of robustness by those in the field of computer vision. Fur-
thermore, researchers which are interested in AR technology may have com-
pletely different criteria of assessing VSLAM robustness than scientists of 3D
reconstruction.

The broad spectrum of meanings attributed to robustness prompts a reeval-
uation of its definition. For the purposes of this thesis, robustness in VSLAM
is characterized by three key aspects: algorithms, software, and performance.
These aspects are illustrated in Figure 3.14.

Robustness

Software
(System)

Methods and
Algorithms

Processing time

FIGURE 3.14: Diagram illustrating the various aspects of VSLAM robustness exam-
ined in this thesis.

The dashed connections at the bottom of the diagram represent the influ-
ence among the different components of VSLAM robustness: Methods and
Algorithms, Software, and Processing Time. These interconnections suggest
that changes in one area can impact the others. For instance, more sophisti-
cated algorithms may improve algorithmic robustness but could also lead to
increased processing time. Conversely, enhancements in software efficiency
might reduce processing time and also allow for the implementation of more
complex algorithms without compromising system performance. Similarly,
optimizing processing time can contribute to software stability, making it

3.9. Introduction to Robustness 113

more robust, which in turn can affect the choice and implementation of meth-
ods and algorithms. This interconnections highlight the need for a balanced
approach in VSLAM system design, where each component is tuned not only
for its direct contribution to robustness but also for its integration with the
others.

3.9.1 Software robustness

SLAM research spans almost four decades. Over such a long period, the field
has matured significantly, with numerous breakthroughs emerging. The de-
velopment of VSLAM algorithms particularly intensified during the 2010s.
Throughout these years, a multitude of research articles were published,
proposing innovative approaches to the VSLAM problem ([Cad+16]). The
fact that many new methods were developed around the year 2010 is not sur-
prising, as this was a period of significant change in the approach to VSLAM.
Researchers understood that keyframe-based solution is better in terms of
scalability, lower computational power and improved robustness.

However, the increased focus on research within the field has not nec-
essarily translated into the number of high quality tools and source code
available for the developed systems. This discrepancy poses a significant
challenge for newcomers to the field, who encounter a high barrier to en-
try. There are only a few handful libraries or tools, such as GTSAM [Del12],
g2o [Kum+11], ATLAS [Bos+03] and [Gru17], available to assist with spe-
cific subproblems in VSLAM. Nonetheless, these tools do not offer an all-
encompassing solution to the wide-ranging VSLAM challenge, thus restrict-
ing their applicability to more general uses.

In the existing literature, there are a few works that recognize the sig-
nificance of software, including tools and libraries, in the research process.
These contributions, while not numerous, underline the benefits of facilitat-
ing rapid experimentation and minimizing the need for redundant imple-
mentation of identical methods. For instance, the researchers in [Sem+22]
emphasize the advantages of modularity and concurrency for enhancing re-
search efficiency. Similarly, ProSLAM, a VSLAM system discussed in [SCG18],
is noted for its emphasis on implementation simplicity. Unlike many studies
that concentrate on the mathematical intricacies of VSLAM, Schlegel, Colosi,
and Grisetti shift the focus towards the software aspects and the C++ code,
highlighting the importance of software engineering principles in the devel-
opment of VSLAM systems. Moreover, the significance of educational as-
pects cannot be overlooked. The researchers in [Xu+24] have emphasized
that educational platforms play a crucial role in facilitating students’ transi-
tion into the industrial sector. These platforms not only enhance their aware-
ness but also contribute to the reduction of the time required for training.

114 Chapter 3. VSLAM challenges and robustness

ROS is a widely recognized framework within the VSLAM community,
offering a comprehensive suite of tools, libraries, and programs primarily for
robotics use [Mac+22a]. Despite its popularity, the employment of ROS in
VSLAM, which has a broad range of applications across various disciplines,
has drawn some criticisms. Firstly, leveraging robotics-focused software for
VSLAM might not always align with optimal design principles due to the
diverse requirements of VSLAM applications. Secondly, the intricate archi-
tecture of ROS can present a significant learning barrier, particularly for in-
dividuals new to robotics and VSLAM, potentially prolonging the initial de-
velopment phase. The framework’s general approach may also introduce
processing inefficiencies, impacting the speed and responsiveness critical in
real-time VSLAM tasks. Moreover, reliance on ROS could restrict the versatil-
ity and deployability of VSLAM systems. For instance, deploying ROS-based
solutions on mobile devices, such as smartphones, might be challenging due
to their operational constraints.

To summarize, the VSLAM community lacks a comprehensive frame-
work specifically tailored to encompass the entire VSLAM research needs. In
the context of this thesis, identifying these features is pivotal as they are con-
sidered integral to the software robustness aspect of VSLAM. Such a frame-
work should ideally support a wide range of functionalities. Let try to iden-
tify what features such framework should have.

In this thesis, it is proposed that multiple key aspects contribute to the
robustness of software. These aspects are shown in Figure 3.15, specifically
highlighting simplicity, adaptability, modularity, reliability, portability, and
maintainability. Subsequent sections will delve into each of these aspects,
providing a comprehensive description of their significance and impact on
software robustness.

Simplicity

Particularly, recent systems suffer from a lack of clarity because they intro-
duce many components that are tightly coupled. Yet, it is feasible to cre-
ate advanced and expansive systems that remain accessible and simple to
comprehend. Simplicity ensures that even a beginner can grasp the over-
all concept of the system and, over time, acquire in-depth knowledge. This
approach helps lower the barrier to entry for newcomers to the field.

The simplicity of software is the result of adhering to several popular
rules found in the literature on design and software architecture. The first
one is the KISS principle, which stands for ’Keep It Simple, Stupid’. It empha-
sizes the importance of keeping designs and systems as straightforward and
uncomplicated as possible [Mar08]. This principle advocates for simplicity
to enhance usability, maintainability, and effectiveness. By avoiding unnec-
essary complexity, the KISS principle aids in creating more reliable, efficient,

3.9. Introduction to Robustness 115

Software
Robustness

Scalability SimplicityModularity

Portability ReliabilityMaintainability

FIGURE 3.15: Diagram illustrating the various aspects of software robustness in
VSLAM examined in this thesis.

and user-friendly solutions that are easier to understand, develop, and main-
tain. The next principle is DRY, an abbreviation for ’Don’t Repeat Yourself’. It
highlights the importance of avoiding duplication in code and aims to reduce
redundancy, facilitate changes, and improve source code quality. Adherence
to the DRY principle leads to more maintainable, clearer, testable, and error-
free codebases [OG21]. Finally, there is the YAGNI principle. ’You Aren’t
Gonna Need It’ encourages developers to focus on immediate requirements
without getting sidetracked by features or capabilities that might be needed
in the future.

Following these rules is essential to preserve simplicity and ensure a low
barrier to entry for beginners.

Modularity

Modular architecture is one of the most desired features of software, espe-
cially in scientific domains where the need to conduct numerous experiments
in a short period of time is pivotal. Modularity refers to designing software
in discrete components, each responsible for a specific piece of the system’s
functionality. This approach allows individual modules to be developed,
tested, and debugged independently of one another, facilitating parallel de-
velopment and enhancing the speed at which improvements can be made.

In the context of VSLAM systems, modularity makes it possible to iso-
late different tasks such as feature detection, data association, and mapping
into separate, interchangeable components. This not only accelerates the pro-
cess of experimentation by allowing researchers to adjust or replace modules

116 Chapter 3. VSLAM challenges and robustness

without affecting the entire system but also contributes to cleaner, more un-
derstandable code, which is crucial for collaborative work and ongoing re-
search. Furthermore, modular systems are more adaptable and maintainable,
since updates and improvements can individual components without neces-
sitating a full-scale software changes. A well-designed modular architecture
thus forms the backbone of scalable and robust scientific software, aligning
with the needs of a fast-paced, evolving research environment [JH18].

The absence of modularity in VSLAM systems has directly led to the
proposition of Modular SLAM described in Chapter 4. This concept empha-
sizes the need for rapid prototyping of new solutions that allow not only the
tweaking of individual component parameters but also the swift exchange
and evaluation of novel algorithms. This strategy is aimed at accelerating
research and the development of new systems. Additionally, it offers an ad-
vantageous platform for new students to engage with, learn from, and exper-
iment on pre-existing systems, thereby fostering an educational environment
conducive to innovation and discovery in the field of VSLAM.

Reliability

Software reliability is a critical factor in the VSLAM systems. Long-term op-
eration discussed in Section 3.3 without well tested and reliable software is
not achievable. Achieving continuous and dependable performance over ex-
tended periods is dependent on the deployment of well-tested and reliable
software. This necessity stems not only from the operational demands of
VSLAM technologies but also from the foundational requirement for precise
and trustworthy experimental outcomes.

Moreover, it is imperative for researchers to have confidence in the cor-
rectness of the algorithms they employ. The presence of software bugs can
significantly distort experimental results, leading to incorrect conclusions
and potentially derailing the development of new technologies. To miti-
gate these risks, a rigorous testing framework is essential—one that encom-
passes a variety of scenarios, from controlled environments to unpredictable
real-world conditions. Such a framework ensures that software reliability is
maintained across diverse operational contexts, bolstering the integrity of the
research.

In addition to careful testing, the application of best practices in soft-
ware development plays a vital role in enhancing software reliability. This
includes the adoption of version control systems like git, continuous inte-
gration and deployment pipelines, and code review processes [Tsi24]. Im-
plementing these practices facilitates early detection of errors, simplifies the
debugging process, and contributes to the overall robustness of VSLAM sys-
tems. In the long run, the goal is to create a software foundation that not only
supports the current state of VSLAM research but is also adaptable enough
to accommodate future advancements in the field.

3.9. Introduction to Robustness 117

Portability

Modern software is designed to run on a wide array of devices that differ not
only in their memory, storage capacity, and processor speed, but also in their
underlying architecture. For example, in the field of VSLAM, systems are
no longer confined to the conventional x86 architecture. There is a growing
trend to deploy these systems on devices with different architectures, such as
the Raspberry Pi, which utilizes ARM architecture. This shift necessitates a
focus on portability – the ease with which software can be adapted, moved,
and executed on various hardware platforms. Ensuring portability means
that VSLAM applications can be more universally used, allowing researchers
and practitioners to implement these sophisticated mapping and localization
systems in a diverse range of environments and contexts.

Maintainability

In the scientific community, it is frequently observed that systems with open-
sourced code eventually become unmaintainable. This predicament often
arises because many researchers, moving forward to new projects, finish sup-
porting their previous works. The implications of this practice are significant,
leading to a landscape where once cutting-edge software quickly becomes
obsolete, lacking critical updates or compatibility with evolving technolo-
gies. Such a trend not only slows down the progression of research but also
diminishes the potential long-term impact of these projects like cooperation
with the industry. Ensuring maintainability requires a commitment to on-
going support, adequate documentation, and a framework that encourages
other contributors to adapt and build upon the existing codebase, thereby
fostering a sustainable and collaborative environment for scientific innova-
tion. Especially, the last point i.e. encourage of other users for further con-
tribution by the quality and simplicity is crucial. In this thesis, it is believed
that providing such framework can boost the maintainability of the VSLAM
projects.

3.9.2 Algorithms robustness

Within the realm of VSLAM, a significant portion of the scientific literature
emphasizes the concept of robustness, frequently incorporating it within the
titles of research papers. This emphasis largely centers on the algorithmic
dimensions of robustness. Specifically, algorithmic robustness refers to the
capability of VSLAM systems to maintain high levels of performance in lo-
calization and mapping accuracy. This form of robustness is vital as it en-
sures the algorithms underpinning VSLAM systems can produce accurate
and dependable outcomes, even when navigating through complex and un-
predictable environments. As outlined in Chapter 3, there are numerous,

118 Chapter 3. VSLAM challenges and robustness

various challenges that relates to algorithmic robustness. These challenges
encompass dealing with dynamic changes within environments, preserv-
ing accuracy over extended periods i.e. long-term operation, compensating
for drift, and accurately detecting loops, properly close them and robust-
ness to the different weather and light conditions [JKK22]. Addressing these
challenges is paramount for enhancing the resilience of VSLAM algorithms,
thereby making them more adept at handling the complexities inherent in
real-world applications. To summarize, Figure 3.16 shows the diagram of
different aspects of algorithm robustness.

Algorithm
Robustness

Long-term
operation Light conditionsWeather

conditions

Dynamic scenes Loop Closure
Drift Com-
pensation

FIGURE 3.16: Diagram illustrating the various aspects of algorithmic robustness in
VSLAM examined in this thesis.

3.9.3 Execution efficiency robustness

A key distinction between VSLAM and SfM is the requirement for real-time
operation in VSLAM systems. This necessitates that performance is critically
important throughout the VSLAM process. Typically, the processing of each
frame should be completed within 30ms being a relatively tight span given
the complexity of the computations involved. This strict time constraint un-
derscores the challenge of balancing the demand for rapid processing with
the need for accurate localization and mapping.

Scalability is of paramount importance; as environments grow in size and
complexity, VSLAM systems must scale efficiently without compromising on
the speed and accuracy of processing. Efficient scalability can be achieved
by employing smart resource management strategies. These strategies en-
sure optimal use of available computational resources, such as intelligently

3.9. Introduction to Robustness 119

allocating tasks across processors and managing memory usage to prevent
bottlenecks.

Furthermore, the choice of algorithms and their parameters plays a sig-
nificant role in maintaining robust execution efficiency. Selecting the right
algorithms that balance speed and precision, and tuning their parameters
for optimal performance, are essential steps in designing a VSLAM system
suited for real-time applications. Efficient code optimizations are another
cornerstone of robust VSLAM systems. Optimized code that can execute
tasks rapidly and accurately is crucial, as it directly affects the frame pro-
cessing rate and overall system responsiveness.

Concurrency, or the ability of the system to perform multiple operations
in parallel, is also instrumental in achieving execution efficiency robustness.
By leveraging multi-threading and modern multi-core processors, VSLAM
systems can handle several tasks simultaneously, such as processing incom-
ing sensor data while updating the map and determining the localization, all
within the critical 30ms window. Utilizing technologies like high paralleliza-
tion using GPU and CUDA [HKE22] or C++ high performance code [ASG20]
may also benefit in the reduction of computing time.

Computational efficiency has a profound impact on energy savings, es-
pecially in resource-constrained environments where power consumption is
a critical concern. Efficient algorithms and streamlined code not only speed
up processing and reduce execution time but also minimize the energy re-
quired to perform computations. When a system operates with higher com-
putational efficiency, it utilizes processor power more effectively, leading to
a decrease in the overall energy demand.

In summary, each aspect of execution efficiency robustness from algo-
rithm choice and parameter tuning to code optimization must be considered
and balanced. This ensures that VSLAM systems not only work in smaller,
controlled environments but also demonstrate the same level of precision
and reliability when scaling to larger, more complex scenarios. It’s these
considerations that underpin the development of robust VSLAM systems ca-
pable of meeting the rigorous demands of real-time operation across a vast
array of applications. Figure 3.17 presents all aspects of the execution time
robustness discussed in this section.

3.9.4 VSLAM datasets

Evaluating VSLAM systems across a variety of scenarios and conditions is
crucial for ensuring their effectiveness and robustness. The broad range of
applications for VSLAM demands that these systems operate reliably under
diverse environmental conditions and operational constraints. Factors such
as lighting variations, the presence of dynamic objects, and scene complex-
ity can significantly influence VSLAM performance. Testing these systems

120 Chapter 3. VSLAM challenges and robustness

Execution Time
Robustness

Parameters
Choice

ScalabilityAlgorithm choice

Code Op-
timizations

Concurrency
Resource

Management

FIGURE 3.17: Diagram illustrating the various aspects of execution efficiency robust-
ness in VSLAM examined in this thesis.

in multiple scenarios allows researchers and developers to indicate the spe-
cific strengths and weaknesses of their algorithms. This process aids in opti-
mizing VSLAM algorithms for accuracy, efficiency, and reliability. Moreover,
thorough evaluation ensures that VSLAM systems are equipped to manage
the real-world challenges they will encounter in practical deployments. For
these reasons, utilizing a variety of datasets that represent diverse environ-
ments with varying levels of difficulty is essential. Over the years, numer-
ous datasets have been developed to support this process. Table 3.3 presents
datasets which are the most used by the community.

The KITTI dataset [GLU12] is the most widely used in the VSLAM com-
munity. It features extensive driving scenarios captured with a range of sen-
sors, including RGB, grayscale stereo cameras, and LIDAR. This dataset is
especially valuable for testing VSLAM systems in automotive and outdoor
contexts. Examples from the KITTI dataset are shown in the third and fourth
rows of Figure 3.18.

Above the KITTI dataset, in the first and second rows of Figure 3.18, is
the TUM dataset [Stu+12]. This dataset is ideal for evaluating VSLAM algo-
rithms in indoor settings using RGB-D cameras. According to Sturm et al.,
the provided sequences encompass a wide array of scenes and camera mo-
tions. Additionally, the dataset includes simpler sequences featuring only
translational or rotational movements, or those without loop closures, which
are useful for straightforward debugging of algorithms. The TUM dataset
contains 39 sequences depicting office and industrial environments.

Next, Burri et al. prepared dataset for Micro Aerial Vehicle (MAV). The
EuRoC dataset is a set of 11 sequences with a various difficulty level from

3.9. Introduction to Robustness 121

Name Reference Sensors Notes

KITTI [GLU12]
Stereo

cameras,
LiDAR

Widely used for benchmarking
algorithms in autonomous driving

scenarios; focuses on outdoor
environments

TUM [Stu+12]
RGB-D,
Stereo

Features indoor environments, suitable
for evaluating depth-based SLAM

techniques

EuRoC [Bur+16] Stereo, IMU
Contains challenging MAV flight

sequences in indoor and outdoor setups

Bonn [Pal+19] RGB-D
Focused on navigation with dynamic

elements

TartanAir [Wan+20]
Synthetic

RGB, Depth

Offers visually and dynamically
diverse environments with adverse
weather conditions for simulation

Hilti [Zha+23]
LiDAR,

Cameras

Targets applications in construction
environments, includes high-resolution

sensors for detailed mapping

TABLE 3.3: List of most popular Visual SLAM datasets.

122 Chapter 3. VSLAM challenges and robustness

slow flights with good visibility to fast, motion blurred and poor light con-
ditions. It is worth underlining that ground-truth is very precise thanks to
laser tracking system. Due to nature of MAV, captured images has different
characteristics and is also a good test for the VSLAM algorithm. It consists
not only of visual data but also IMU output was collected.

Following these resources, the EuRoC dataset [Bur+16] is uniquely tai-
lored for Micro Aerial Vehicles (MAVs). It encompasses 11 sequences, rang-
ing from slow flights with clear visibility to fast, motion-blurred flights under
poor lighting conditions. The EuRoC dataset is distinguished by its highly
accurate ground truth data, provided by a laser tracking system. The distinct
dynamics of MAVs mean the captured images have unique characteristics,
making this dataset a valuable tool for testing VSLAM algorithms. Further-
more, the dataset includes IMU outputs along with visual data.

The Bonn dataset, published by Palazzolo et al. in [Pal+19], focuses on the
challenges posed by dynamic environments on the accuracy of VSLAM sys-
tems. This dataset is designed with a variety of scenes that include multiple
dynamic objects, allowing researchers to test and evaluate the robustness of
algorithms in handling dynamic changes.

In the development of the TartanAir dataset [Wan+20], the authors ad-
dressed the challenge of collecting accurate ground-truth data under specific
conditions by using a simulation-based approach. Generated using Unreal
Engine and AirSim [Sha+17], this dataset offers a diverse array of synthetic
data featuring various lighting conditions, weather scenarios, and surface
textures. An automated pipeline facilitates the evaluation of how different
factors impact VSLAM performance, highlighting the ongoing complexities
and challenges in solving VSLAM. Examples from TartanAir are depicted in
the fifth and sixth rows of Figure 3.18.

Similarly, the creators of the Hilti-Oxford dataset aim to push the limits
of VSLAM systems. However, their methodology differs markedly. Rather
than relying on simulated data, this dataset was produced using a specially
designed data collection device that includes LIDAR, five cameras, and an
IMU, combined with a novel ground-truth collection technique that achieves
millimeter-level accuracy. Like other datasets, the Hilti-Oxford dataset cate-
gorizes its sequences into three levels of difficulty, offering a structured ap-
proach to testing VSLAM systems under varied conditions.

To summarize, the VSLAM community recognizes the critical role of datasets
in advancing the field. Numerous open-source datasets are available, facili-
tating the comparative evaluation of various VSLAM systems across differ-
ent scenarios. It is important to highlight that the datasets mentioned previ-
ously—such as KITTI, TUM, EuRoC, TartanAir, and Bonn—are just a few ex-
amples of the resources available to researchers. The literature also references
several other datasets, including GSLAM [Zha+19b] and VECtor [Gao+22].

3.10. VSLAM evaluation 123

These datasets not only offer diverse environmental conditions and chal-
lenges but also enable consistent and reliable benchmarking of performance,
driving forward the development and refinement of VSLAM technologies.
By providing a standardized basis for comparison, these datasets play an in-
dispensable role in the evolution and enhancement of VSLAM systems.

The next section describes how these datasets can be used to evaluate and
compare VSLAM systems. It will delve into the methodologies for conduct-
ing systematic tests using these datasets, including the metrics for measuring
system accuracy, efficiency, and robustness in various environmental condi-
tions.

3.10 VSLAM evaluation

After introduction to the most popular datasets in the VSLAM field of study,
discussion about performance evaluation is needed. The evaluation plays
a pivotal role in determining the effectiveness and applicability of different
systems. These metrics serve as critical benchmarks that not only facilitate
a comprehensive understanding of a VSLAM system’s capabilities but also
guide the development and refinement of more advanced algorithms.

To compare various VSLAM systems it is crucial to provide not only vi-
sual data but essentially quantitative metrics facilitating an accurate compar-
ison of these systems. The evaluation of VSLAM systems through objective
metrics is vital for several reasons. Fundamentally, it enables scientists and
developers to assess both the accuracy and robustness of a system’s capabil-
ities for various conditions and scenarios. Such analysis may help in iden-
tifying advantages and disadvantages of specific VSLAM algorithm provid-
ing a guidance for further improvements. Secondly, quantitative evaluation
plays a pivotal role in benchmarking. By applying a standardized set of met-
rics different VSLAM systems can be directly compared against each other.
Benchmarking is crucial not only for academic research but also for practical
applications, ensuring that the chosen VSLAM solution meets the specific re-
quirements of real-world tasks, such as autonomous navigation, augmented
reality, and robotics. Furthermore, performance evaluation highlights the
trade-offs inherent in VSLAM systems. For instance, a system might prior-
itize real-time processing speed over absolute accuracy, making it suitable
for applications requiring high responsiveness but tolerating minor localiza-
tion errors. Conversely, another system might focus on generating highly ac-
curate maps, benefiting applications where precision is paramount. Under-
standing these trade-offs through quantitative metrics allows for informed
decision-making when selecting or designing VSLAM systems for particular
applications. Additionally, the performance evaluation of VSLAM systems is
critical for validating theoretical advancements. Quantitative metrics enable
researchers to substantiate claims of improvements over previous methods,

124 Chapter 3. VSLAM challenges and robustness

FIGURE 3.18: Examples of VSLAM datasets including TUM, KITTI, TartainAir and
Bonn.

3.10. VSLAM evaluation 125

demonstrating how new algorithms enhance localization accuracy, reduce
drift, or improve the system’s robustness against environmental changes and
dynamic obstacles.

Bearing all these considerations in mind, it becomes evident that there
is a necessity for dedicated tools aimed at SLAM evaluation. Among these,
one of the most popular and robust tool for this purpose is evo [Gru17]. Evo
is a collection of libraries and tools for VO and SLAM evaluation. It sup-
ports various trajectories formats including TUM [Stu+12], KITTI [GLU12]
and EuRoC [Bur+16]. It provides both metrics calculation as well as generat-
ing trajectory related plots. Additionally, it is noteworthy that evo can align
trajectory points utilizing Umeyama’s method [Ume91], with the capability
to introduce scale correction.

In terms of metrics calculation, evo provides two major metrics i.e. Ab-
solute Pose Error(APE) and Relative Pose Error(RPE). The former metric as-
sesses the global consistency of the estimated SLAM trajectory, whereas the
latter examines its local consistency.

Let assume that Cref,n is a reference pose at time n. Then, inverse compo-
sition operator ⊖ may be introduced. Its input is two poses and the results is
the relative pose En given by Equation 3.4 [LM97], where || · ||F is a Frobenius
norm and logSO(3)(·) is the inverse of expSO(3)(·).

En = Cn ⊖ Cref,n = C−1
n Cref,n (3.4)

Based on En, several variants of APE may be defined depending on cho-
sen pose relations including translation part, rotation angle, rotation part and
full transformation given by Equation 3.5–3.8.

APE = ||trans(En)|| (3.5)

APE = |angle(logSO(3)(rot(En)))| (3.6)

APE = ||rot(En)− I3×3||F (3.7)

APE = ||En − I4x4||F (3.8)

By default, evo package calculates APE as a translation part. Similarly, in
this thesis, it is assumed that APE is equivalent to Equation 3.5. Finally, sev-
eral statistics may be formulated including APERMSE, APE, APEstd, APEmax,
APEmin and APESSE given by following equations.

APERMSE =

√
√
√
√ 1

N

N

∑
n=1

APE2
n (3.9)

APE =
1
N

N

∑
n=1

APEn (3.10)

126 Chapter 3. VSLAM challenges and robustness

APEstd =

√
√
√
√ 1

N − 1

N

∑
n=1

(APEn − APE)2 (3.11)

APEmax = max(APEn) (3.12)

APEmin = max(APEn) (3.13)

APESSE =
N

∑
n=1

(APEn − APE)2 (3.14)

To summarize the results, there are two prevalent methods. First, the
aforementioned statistics can be compiled and displayed in tabular form. Al-
ternatively, visualization through graphs, particularly histograms, serves as
another effective approach. To give an example, an evaluation of StellaVS-
LAM and ORB-SLAM3 on rgbd_dataset_freiburg2_desk TUM sequence has
been performed. The results are presented in Table 3.4. Figure 3.19 is an
equivalent of the table mentioned. In particular, such histograms may be
useful when many VSLAM systems are compared.

APE

System RMSE Mean Median Std Min Max SSE

ORB-SLAM3 0.01076 0.00971 0.00933 0.00464 0.00070 0.02662 0.25178

StellaVSLAM 0.01094 0.01042 0.01006 0.00331 0.00204 0.02369 0.26391

RPE

System RMSE Mean Median Std Min Max SSE

ORB-SLAM3 0.00361 0.00308 0.00276 0.00187 0.00010 0.03607 0.02828

StellaVSLAM 0.00294 0.00255 0.00227 0.00146 0.00016 0.01535 0.01905

TABLE 3.4: Comparative Analysis of VSLAM System Performances. This ta-
ble presents a comprehensive evaluation of ORBSlam3 and StellaVSLAM systems,
showcasing key statistical measures of Absolute Pose Error (APE) including the Root
Mean Square Error (RMSE), Mean, Median, Standard Deviation (Std), Minimum

(Min), Maximum (Max) values, and the Sum of Squared Errors (SSE).

Despite the apparent benefits of presenting numerical data, such figures
may not always be adequate in certain analytical contexts. Particularly when
the objective is to analyze the distribution of the APE metric, violin plots
become essential. They provide a more comprehensive visual representation
of the data’s distribution. Figure 3.20 illustrates the APE distributions for

3.10. VSLAM evaluation 127

0.000 0.005 0.010 0.015 0.020 0.025
APE (m)

rmse

mean

median

std

min

max

ORBSlam3
StellaVSLAM

FIGURE 3.19: Comparative Analysis of VSLAM System Performances.

two evaluated systems, offering insight into the spread and tendency of the
errors.

In similar manner, RPE may be introduced. Let define delta pose differ-
ence En,m given by Equation 3.15.

En,m = δn,m ⊖ δref,n,m = (Cref,nCref,m)
−1(CnCm) (3.15)

Leveraging En,m, multiple variations of RPE can be established, contin-
gent on the selected pose relations. Again, these include the translational
component, rotational angle, rotational component, and the comprehensive
transformation characterized by Equation 3.16–3.19.

RPE = ||trans(En,m)|| (3.16)

RPE = |angle(logSO(3)(rot(En,m)))| (3.17)

RPE = ||rot(En,m)− I3×3||F (3.18)

RPE = ||En,m − I4×4||F (3.19)

Lastly, a range of metrics including RPERMSE, RPE, RPEstd, RPEmax,
RPEmin, and RPESSE can be derived, as delineated by the equations that
follow. Compared to APE, RPE appears to be more complex owing to the
necessity of computing En,m for each pair of n, m ∈ {1, . . . , N}.

128 Chapter 3. VSLAM challenges and robustness

ORBSlam3 StellaVSLAM
estimate

0.000

0.005

0.010

0.015

0.020

0.025

0.030

AP
E

(m
)

FIGURE 3.20: Comparison of VSLAM’s APE distribution.

RMSE =

√
√
√
√ 1

N

N

∑
n=1

RPE2
n (3.20)

RPE =
1
N

N

∑
n=1

RPEn (3.21)

RPEstd =

√
√
√
√ 1

N − 1

N

∑
n=1

(RPEn − RPE)2 (3.22)

RPEmax = max(RPEn) (3.23)

RPEmin = max(RPEn) (3.24)

RPESSE =
N

∑
n=1

(RPEn − RPE)2 (3.25)

The second way of evaluation provided by evo package is generating tra-
jectory plots. It is a fundamental tool which offers a graphical representation
of the trajectory taken by platform over time. There are numerous advan-
tages of such plots. First, they provide an immediate visuals of the trajectory

3.10. VSLAM evaluation 129

characteristics. Second, by comparing the plotted trajectory against a refer-
ence trajectory, one can assess the accuracy of a navigation system. Devia-
tions from the reference trajectory are easily spotted and quantified. More-
over, such comparison may be considered not only in terms of reference tra-
jectory, but also for other SLAM systems. This is especially useful in scenar-
ios where several algorithms are being tested under the same conditions. The
plots can help in understanding the dynamic behavior of the system, such as
how quickly and accurately it corrects its course in response to environmen-
tal changes. Furthermore, they can be overlaid on maps, providing context
for the trajectory and helping to identify environmental factors affecting per-
formance.

To demonstrate the previously outlined benefits, trajectories based on
data derived from the TUM rgbd_dataset_freiburg2_desk sequence were plot-
ted for two evaluated VSLAM systems. Figure 3.21 depicts the estimated
3D trajectories of ORB-SLAM3 and StellaVSLAM in comparison to the ref-
erence trajectory. It may be observed that camera was moving around the
environment. However, it is common that such graph does not show every
detail of the trajectory, prompting the necessity for additional types of visu-
alizations. Consequently, Figure 3.23 shows the same trajectory limited to xz
plane. While the 3D plot suggested minimal variation in the z-axis, in reality,
the z value varied within the range of [1.2, 1.8]. Two presented graphs are
great tool for visualizing spatial relations. Although, time also plays very
important role. Therefore, to encompass this aspect, two further plot types
are introduced, showcasing xyz coordinates and yaw, pitch, roll angles as
functions of time. These temporal relationships are shown in Figure 3.23 and
Figure 3.24, offering a comprehensive view of the systems’ performance over
time.

130 Chapter 3. VSLAM challenges and robustness

0
1

2
3

x (m) 3

2

1

0

1

y (
m)

0

1

2

3

z (
m

)

Reference
ORBSlam3
StellaVSLAM

FIGURE 3.21: Trajectories plot in 3D.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x (m)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

z (
m

)

Reference
ORBSlam3
StellaVSLAM

FIGURE 3.22: Trajectories plot in 2D.

3.10. VSLAM evaluation 131

0

1

2

3
x

(m
)

Reference
ORBSlam3
StellaVSLAM

3

2

1

0

1

y
(m

)

0 20 40 60 80 100
t (s)

1.2

1.4

1.6

1.8

z (
m

)

FIGURE 3.23: Trajectory and temporal position relationships.

130

120

110

ro
ll

(d
eg

)

Reference
ORBSlam3
StellaVSLAM

0

5

10

pi
tc
h

(d
eg

)

0 20 40 60 80 100
t (s)

100

0

100

ya
w

 (d
eg

)

euler_angle_sequence: sxyzeuler_angle_sequence: sxyz

FIGURE 3.24: Trajectory and temporal angles relationships.

133

Chapter 4

Concept of Modular SLAM

Overview

This thesis introduces a major contribution: Modular SLAM. Modular SLAM
is designed as a flexible solution that enables researchers to rapidly construct
and assess the performance of Visual Simultaneous Localization and Map-
ping (VSLAM) systems. This chapter provides a detailed description of the
Modular SLAM concept. It begins by outlining the primary goals and under-
lying assumptions of the system. The chapter further explores the architec-
ture and main components of Modular SLAM, detailing how these elements
contribute to its flexibility and extensibility, setting the stage for future en-
hancements and research within this framework.

Design and programming are human activities; forget that and all is lost.
– Bjarne Stroustrup

134 Chapter 4. Concept of Modular SLAM

In the preceding chapters, referred to as Chapter 2 and Chapter 3, the
historical context, problem formulation, and associated challenges were ex-
plored. This chapter represents a pivotal transition towards the principal
contributions of this thesis. The concept of Modular SLAM is discussed in
the following sections. In the Chapter 5, the methods improving VSLAM
robustness are discussed.

4.1 Motivation

Visual SLAM is a complex and challenging problem, especially for novice
researchers. Building a high-quality VSLAM system requires a wide range
of skills and knowledge, including computer vision, 3D reconstruction, op-
timization algorithms, parallel computations and GPU programming, and
code optimization. The threshold for entry into this field is high, and it
requires knowledge of topics from various scientific fields and techniques.
Unfortunately, the SLAM community lacks materials and programming li-
braries that can easily introduce a beginner to the complex studies. Many
scientists have had to spend a significant amount of time getting familiar-
ized with the subject. The best references for novice researchers are [Cha20],
which provides a roadmap of the most popular SLAM systems, techniques,
and skills that every SLAM scientist or developer should know, and [Gao+17],
a book consisting of 14 lectures on VSLAM that are focused on practical as-
pects. Additionally, there are also several surveys and overview papers re-
garding SLAM mentioned in Chapter 2. However, most of them still remains
difficult for beginners and they lack an overview of practical aspects.

Another issue prevalent in VSLAM development is the tendency for ma-
jor VSLAM systems to independently implement standard algorithms, within
their own distinct codebases. This practice of not reusing existing solutions
can lead to several disadvantages. Although having separate, custom imple-
mentations might allow for optimizations specific to each system’s require-
ments, it also results in duplicated effort, increases maintenance complex-
ity, hinders compatibility between different systems. This fragmentation can
slow down collaborative advancements and the integration of improvements
across platforms. Common tools and algorithms that can be reused are cru-
cial for enhancing researchers’ productivity [RI19]. For instance, the AI re-
search community has experienced a significant acceleration in progress by
adopting common tools, such as PyTorch [Pas+19]. These frameworks al-
low for quick experimentation and easy sharing of results, underscoring the
benefits of standardization and code reuse in advancing technology.

The research associated with VSLAM systems can be extended to various
components, such as feature detection, outlier handling, mapping, localiza-
tion, among others. Typically, researchers focus on applying their newly pro-
posed algorithms to just one of these specific areas. Consequently, the ability

4.1. Motivation 135

to swiftly replace an old algorithm with a new version can significantly expe-
dite research progress. Therefore, ensuring that VSLAM systems are modular
is essential for conducting reliable and systematic research. This modularity
facilitates easier updates and enhancements, allowing for more dynamic and
responsive development in the field. Moreover, modularity also allows for
implementing a dynamic behavior in the system by substituting components
based on current conditions. This adaptability can be crucial for VSLAM sys-
tems operating in varied and unpredictable environments where conditions
can change rapidly. For instance, different feature detection algorithms might
be more effective in different lighting conditions or landscapes. By enabling
the system to automatically switch between these algorithms depending on
the environmental inputs, modularity not only enhances the system’s robust-
ness but also optimizes its performance in real-time.

In computer vision tasks, including VSLAM, visualization plays a crucial
role. It not only demonstrates whether the algorithm is functioning correctly,
but it also provides intuitive insights into how the algorithm processes and
interprets the visual data. Effective visualization helps in identifying specific
areas where the algorithm might be underperforming, such as inaccuracies
in feature detection or errors in mapping. Additionally, it enables researchers
and developers to observe the real-time performance of their systems, offer-
ing a clear, visual assessment of dynamic changes and interactions within the
environment.

Furthermore, the evaluation of VSLAM systems plays a crucial role in the
field. As it has been already discussed in Section 3.10, it facilitates an ob-
jective comparison between different systems, which is essential for identi-
fying advancements and areas that require further improvement. Providing
common functionality to export results and generate comparative analyses
offers a significant advantage. This standardized approach to evaluation en-
sures that researchers can consistently measure and compare the effective-
ness of various algorithms and configurations. It also allows for benchmark-
ing against established standards, making it easier to track progress over
time. Ultimately, this capability enhances transparency and fosters a more
collaborative environment where insights and advancements can be shared
effectively across the research community.

To summarize, simplicity and a low entry threshold, along with the reusabil-
ity of common tools, the modularity of systems, and evaluation, are essential
aspects of VSLAM research and development. These factors collectively en-
hance the efficiency, effectiveness, and accessibility of technological advance-
ments within the field. However, it’s evident that not all of these crucial
aspects are fully addressed by the community, indicating room for improve-
ments and solutions like Modular SLAM. Its goals, design, provided tools
and functionality are discovered in the next several sections.

136 Chapter 4. Concept of Modular SLAM

4.2 Modular SLAM Overview

The modularity and architecture of SLAM systems have been addressed in
existing literature, as noted by works such as those by Blanco-Claraco and
Colosi et al. [Bla19; Col+20]. However, each proposed system exhibits spe-
cific limitations. For instance, the MOLA framework, developed by Blanco-
Claraco, although it supports camera inputs, predominantly emphasizes other
sensors like LIDAR. Furthermore, while both methods have been credited
with identifying general components of SLAM systems, Colosi et al. have de-
scribed these components as "atomic", it will be demonstrated that such com-
ponents can still be further subdivided to achieve even greater modularity.
Modular SLAM provides an enhanced view of VSLAM systems. This frame-
work is deeply analyzed, revealing several major parts that significantly dif-
fer from those discussed in the scientific literature. Modular SLAM focuses
on further development, providing not only a default implementation of the
VSLAM with several core algorithms but also maintaining high extensibility.
It includes visualization and evaluation tools that facilitate the quick identi-
fication of issues. Moreover, its primary goal is to provide robust support for
camera systems.

To summarize, this thesis introduces an expanded concept of Modular
SLAM that not only builds upon these previous works but also places a
strong focus on the application of cameras. By doing so, it aims to more
fully integrate developments from the VSLAM community and capitalize on
advances in software and systems modeling. This approach seeks to push
the boundaries of modularity and adaptability in SLAM systems, catering
specifically to the dynamic requirements of visual data processing.

4.3 System design

To effectively address the concerns highlighted in Section 4.1, careful system
design is critical. An optimal VSLAM framework must incorporate three fun-
damental aspects essential for robust development and research. Firstly, the
development aspect involves devising and optimizing core algorithms and
methodologies of the VSLAM system, with a focus on enhancing accuracy
and efficiency. Secondly, evaluation is crucial and involves rigorous testing to
assess the system’s performance, benchmarking against established metrics,
and conducting comparative analyses with other VSLAM systems to ensure
reliability across diverse scenarios. Lastly, visualization plays a key role in
presenting spatial data and tracking information in a user-friendly manner,
which aids in debugging, system refinement, and provides intuitive insights
into the system’s performance and behavior in real-world settings. These el-
ements collectively form the backbone of a successful VSLAM framework,
facilitating continuous improvement and adaptation in both development

4.3. System design 137

and research environments. These three fundamental blocks are depicted in
Figure 4.1.

VisualizationEvaluation
Research and
Development

Map Visualization

Trajectory Plots

Current Parameters

Input Visualization

Various metrics

Error plots

VSLAM comparison

Modularity

Fast prototyping

Easy to use

Extensible

Modular SLAM

FIGURE 4.1: The fundamental components of Modular SLAM and its responsibili-
ties.

4.3.1 Design principles

Following the discussion in Section 4.1, which explored the underlying moti-
vations, several foundational principles have been established to guide the
design of Modular SLAM. These principles aim to address the identified
needs and challenges by emphasizing adaptability, extensibility, robust per-
formance across different environments, ease of use, rapid prototyping, and
adaptability. The key principles include simplicity, modularity, reliability,
scalability, and portability. The attentive reader will notice that these issues
have also been addressed in the chapter Section 3.9.1, where the robustness
aspects were covered. As noted, these features are major In subsequent sec-
tions, each principle will be discussed further, outlining its significance in the
overall design and the methods planned to achieve these aims. What’s inter-
esting, it will be shown that the way to achieve these features share common
denominator.

Simplicity

In this thesis, it has been established that contemporary VSLAM systems re-
quire substantial effort from beginners to comprehend a multitude of intri-
cate details. Additionally, this challenge is not exclusive to novices. Expe-
rienced researchers may also encounter difficulties in fully understanding
these systems. Therefore, simplicity is paramount in the development pro-
cess. The significance of this attribute is underscored in the literature, as

138 Chapter 4. Concept of Modular SLAM

exemplified by Steux and Hamzaoui, who demonstrated that a basic yet lim-
ited VSLAM system could be implemented in fewer than 200 lines of source
code [SH10].

Nevertheless, it is essential to understand that simplicity does not com-
promise robustness, nor does it detract from the advancements or state-of-
the-art nature of a system. There are strategies that effectively manage the
complexity of systems, and it is widely recognized that selecting an appro-
priate system architecture can facilitate this management. In Modular SLAM,
each component is designed with a clear and specific responsibility, utiliz-
ing a top-down approach to ensure coherent and efficient organization. The
top-down approach prioritizes defining the overall system architecture first,
then breaking it down into smaller, manageable subcomponents [BKC12].
Modular SLAM employs a well-established architecture comprising four ba-
sic components: the frontend, backend, data acquisition, and the semantic
component. It is shown in Figure 4.2.

SlamComponent

+ init() : bool
+ getParametersHandler() : ParametersHandler

Frontend

+ processSensorData() : void

Backend

+ process() : void

DataProvider

+ fetch() : void

SemanticComponent

+ process() : void

FIGURE 4.2: UML diagram of SLAM system components referring to Figure 2.19.

Each component within the system can be subdivided into more special-
ized subcomponents. To illustrate, consider evaluating the impact of various
pose estimation algorithms on tracking performance. The top-down architec-
ture simplifies this process significantly, focusing on two main areas. First,
the responsibility for pose estimation is assigned solely to the frontend, en-
suring that any modifications are confined to this component. Second, using

4.3. System design 139

dependency injection, the behavior of the frontend can be adapted without
altering its core structure. To integrate a new pose estimation algorithm,
one only needs to implement the designated interface. This method facil-
itates the easy swapping of algorithms and, importantly, does not require
in-depth knowledge of Modular SLAM’s intricate details. All changes are
implemented during the VSLAM system’s creation and build process. Here,
the strategy and builder design patterns play a crucial role, as detailed in
Section 4.3.2. In summary, the system’s simplicity is maintained through two
mechanisms: minimal changes are required to alter the VSLAM system, and
these changes occur only during the system creation process, while the im-
plementation of algorithms is managed on the user side. This design mini-
mizes the need for users to fully understand the entire system, thereby facil-
itating quicker experimental setups.

Modularity

The name "Modular SLAM" reflects one of its cornerstone features: modu-
larity. This design principle involves decomposing a system into distinct,
interchangeable modules, with each module encapsulating a specific subset
of the system’s functionality. The primary aim of modularization is to sim-
plify the management of system complexity by establishing clear and well-
documented boundaries within the application [Bus+96].

In Modular SLAM, this objective is achieved through a structured ap-
proach similar to the simplicity discussed previously. The system utilizes a
top-down architecture to ensure a clear separation of concerns: the backend
is tasked with map estimation; data acquisition manages sensor inputs; the
frontend employs various algorithms for data relationship analysis and pose
tracking; and the semantic component addresses the interpretation of data in
context. This architecture effectively segregates the system into well-defined
modules. Within these modules, Modular SLAM employs design patterns
such as strategy and visitor to facilitate the implementation of various algo-
rithms, enhancing the system’s adaptability and maintainability.

Reliability

Modular SLAM’s goal is to be a reliable framework for all users. The relia-
bility in that context is threefold. Firstly, as an open-source platform, Mod-
ular SLAM ensures transparency and community involvement, which sig-
nificantly enhance its reliability. Open-source code allows developers from
around the world to scrutinize, test, and improve the system’s algorithms,
thereby increasing the robustness and stability of the framework. This com-
munal approach to development helps to quickly identify and rectify bugs,
fosters innovation through collective problem-solving, and accelerates the

140 Chapter 4. Concept of Modular SLAM

evolution of the system with contributions from diverse technological cul-
tures.

Secondly, Modular SLAM is designed to enable researchers and develop-
ers to experiment with new approaches within specific components of the
system while relying on the stability and established functionality of other
parts. This modular structure facilitates flexibility and extensibility, allow-
ing users to modify or replace individual modules without affecting the en-
tire system. Such an approach reduces the risk associated with introducing
new algorithms or technologies, as the core system retains its operational
integrity, thus maintaining a stable platform for continuous experimental de-
velopment.

Lastly, the reliability of Modular SLAM is bolstered by its well-documented
and established architecture. Good documentation is crucial as it provides
a detailed understanding of the system’s design and operational mechan-
ics, which is essential for both new and experienced users. It ensures that
developers can easily navigate the system, understand how different mod-
ules interact, and implement changes or enhancements correctly. Moreover,
a well-structured and consistently maintained architecture ensures that de-
spite the system’s complexity and the depth of its capabilities, it remains ac-
cessible and maintainable. This organized and transparent structure signifi-
cantly contributes to the overall reliability of the Modular SLAM framework
by ensuring that it can be effectively used, maintained, and evolved over
time.

Portability

The capability to deploy VSLAM algorithms across a diverse array of plat-
forms is essential, given their broad applications in mobile devices, wear-
ables, robotics, and more. Ensuring that Modular SLAM can operate on a
wide range of devices is critical for reaching a broader user base. This adapt-
ability not only enhances the system’s accessibility but also maximizes its
potential impact across various technological domains.

To achieve compatibility with numerous platforms, Modular SLAM em-
ploys two key strategies. First, the core of Modular SLAM is written in C++, a
standard and inherently multiplatform language that underpins its architec-
ture. This foundation allows the system to abstract platform-specific features
into dedicated components, maintaining consistent core functionality while
adapting to different operating environments efficiently.

Secondly, to extend its reach and usability, Modular SLAM includes bind-
ings to other programming languages, notably Python, which is widely fa-
vored in the scientific community for its simplicity and powerful computa-
tional capabilities [Bar21]. By offering Python bindings, Modular SLAM en-
sures that researchers and developers accustomed to Python can easily inte-
grate and utilize the system in their projects, leveraging its robust capabilities

4.3. System design 141

in a familiar programming environment.

Scalability

To ensure that the pursuit of portability does not compromise efficiency or
scalability, it is crucial to optimally utilize the specific features of the hard-
ware. Modular SLAM’s architecture allows for the interchange of algorithms
to exploit dedicated hardware peripherals effectively. For example, systems
equipped with GPUs might employ algorithms optimized for parallel pro-
cessing, such as those utilizing CUDA for intensive computation tasks, or
mobile devices could use NEON technology for optimized vector process-
ing. This flexibility ensures that Modular SLAM not only adapts to different
hardware environments but also maximizes the potential of each platform to
enhance performance and processing speed. Such strategic use of hardware-
specific capabilities ensures that scalability and efficiency are maintained across
diverse deployment scenarios.

Through the use of abstraction, Modular SLAM decouples the system’s
core functionalities from the hardware-specific implementations. This sepa-
ration means that as new or more capable hardware becomes available, the
system can be adapted without extensive modifications to the core logic. Ab-
straction layers within Modular SLAM serve as intermediaries, translating
general commands into hardware-specific actions, thus allowing the system
to operate across a diverse range of devices and platforms.

4.3.2 Design patterns

The integration of design patterns, as originally proposed in [Gam95] by
Gamma, into the VSLAM system represents a significant contribution of this
thesis. Although the general architecture of VSLAM systems has been exten-
sively discussed in existing literature [Cad+16; SSM23], the novel application
of design patterns specifically to enhance the robustness of VSLAM systems
marks an important advancement from both a research and engineering per-
spective. This thesis argues that selecting an appropriate architectural frame-
work, complemented by several design patterns, is essential for addressing
and resolving issues related to software robustness. The detailed discussion
presented in this section outlines how these design patterns contribute to the
theoretical framework. Also, it will be briefly presented in Section 4.4 how
it improves practical implementation. By systematically applying these pat-
terns, the VSLAM system achieves enhanced stability and reliability, demon-
strating the profound impact of architectural choices on the overall efficacy
and robustness of the system.

In [Gam95], the authors categorized design patterns into several distinct
groups, specifically creational, structural, and behavioral. Each category serves

142 Chapter 4. Concept of Modular SLAM

a unique function in design, facilitating solutions tailored to common devel-
opment challenges and enhancing modularity and flexibility. Additionally,
SOLID principles are supported by desing patterns [Mar00; Mar17; Rot17].
Let start with the creational ones to see how the process of VSLAM system
build may be designed.

As previously mentioned, the overall architecture of a VSLAM system is
composed of several key components: the data acquisition component, the
frontend, the backend, and data semantics (refer to Figure 4.2). This struc-
tured approach is critical in efficiently managing the complex functionalities
of VSLAM systems. The objectives of organizing the VSLAM system in this
manner are dual-purpose. Firstly, the construction of the VSLAM system
must adhere to the established general architecture. This alignment ensures
that all components are integrated systematically, facilitating seamless inter-
action and data flow between the various modules. This systematic inte-
gration is crucial for maintaining the operational integrity and performance
of the VSLAM system under different conditions. Secondly, it is imperative
to provide researchers and developers with the flexibility to introduce cus-
tom and innovative features into the system. This flexibility is essential for
supporting ongoing development and experimentation within the VSLAM
field. Enabling researchers to implement new, possibly unforeseen features
without constraints encourages innovation and allows the VSLAM system
to evolve in response to emerging needs and technologies. Thus, while the
general architecture provides a necessary framework for stability and con-
sistency, the design must also accommodate the dynamic addition of new
functionalities to foster advancement in VSLAM research and applications.
This balance between structure and flexibility is key to developing VSLAM
systems. Thus, it seems that builder pattern is an appropriate choice.

According to [FR20], the builder pattern encapsulates the process of con-
structing an object, enabling it to be assembled in a step-by-step manner. The
UML diagram of the builder pattern proposed for the VSLAM is shown in
Figure 4.3. In the illustrated Builder pattern for a VSLAM system, each com-
ponent plays a critical role in the construction process. The VSLAMSystemDirector
serves as the orchestrator, responsible for managing the sequence of opera-
tions to build the VSLAM system. It delegates the tasks of constructing the
system’s components to the VSLAMBuilder, thus ensuring that the assembly
process adheres to a specific methodology and order. The VSLAMBuilder is
an abstract interface that outlines the necessary methods for adding differ-
ent components to the VSLAM system, such as the frontend, backend, and
data acquisition modules. It also includes a method to finalize and retrieve
the completed system. This interface is essential as it establishes a uniform
blueprint for building a VSLAM system, which concrete builders can im-
plement according to specific requirements. The ConcreteVSLAMBuilder is a
specific implementation of the VSLAMBuilder interface. It defines how each

4.3. System design 143

component of the VSLAM system is constructed and integrated, allowing for
the creation of a system with tailored features and functionalities. This con-
crete builder handles the practical aspects of component creation and assem-
bly, ensuring that all parts are correctly configured and work cohesively. Fi-
nally, the VSLAMSystem represents the end product, comprising various com-
ponents like the frontend, backend, and data acquisition modules. Each com-
ponent is crucial for the system’s overall functionality and is integrated dur-
ing the construction process facilitated by the ConcreteVSLAMBuilder under
the direction of the VSLAMSystemDirector. This setup not only simplifies the
construction of complex systems but also ensures that modifications to the
system’s configuration can be made with minimal disruption to the overall
architecture, thereby supporting simplicity and scalability.

VSLAMSystemDirector

+ constructVSLAMSys-
tem(builder : VSLAMBuilder)

VSLAMBuilder

+ addFrontend()
+ addBackend()
+ addDataAcquisition()
+ build() : VSLAMSystem

ConcreteVSLAMBuilder

- system : VSLAMSystem

+ addFrontend()
+ addBackend()
+ addDataAcquisition()
+ build() : VSLAMSystem

VSLAMSystem

+ frontend : Component
+ backend : Component
+ dataAcquisition : Compo-
nent

uses

builds

FIGURE 4.3: Builder pattern

The complexity of VSLAM systems is influenced by various factors, with
one significant contributor being the extensive range of parameters associ-
ated with each component of the system. For instance, within the frontend
component, parameters such as the maximum number of keypoints, edge
detection thresholds, and scale factors all play crucial roles in feature detec-
tion processes. Similarly, in pose estimation, parameters like the threshold
for RANSAC estimation errors critically impact the accuracy and reliability
of the pose data. Furthermore, during keyframe creation, parameters such as
the minimum number of tracked landmarks and the quality of tracking are
vital for maintaining the integrity of the map. Each of these parameters must

144 Chapter 4. Concept of Modular SLAM

be carefully calibrated to optimize the system’s performance, adding layers
of complexity to the design and operation of VSLAM systems.

Moreover, it is common for one parameter within a VSLAM system to
significantly influence another. Take the mapping process as an example:
the frequency of keyframe creation directly affects the size of the map. The
more frequent the creation of keyframes, the larger the map becomes. Con-
sequently, the loop detection algorithm, which activates each time a new
keyframe is added, must be optimized to handle this increased load. This
is crucial because maintaining real-time operation could be compromised by
the larger map size. To address this, adjustments might be needed, such as
tuning the maximum number of keyframe candidates tested during loop de-
tection to ensure efficient processing while preserving system performance.

To effectively manage VSLAM parameters, Modular SLAM introduces
the concept of a ParametersHandler. This mechanism allows each compo-
nent to register its specific parameters, facilitating centralized control and
accessibility. However, a critical aspect of this system is how interconnected
parameters impact each other. Especially, when the one parameters changes
its value. To address this, Modular SLAM employs the observer pattern. It
is a behavioral design pattern which has the ability to notify several objects
about the occurred event with any modifications of the notifiers and notified
components [Gam95]. In the scenario of handling parameters, the pattern
enables a system where changes to one parameter can be observed and re-
sponded to by other dependent parameters or components, ensuring that
updates are handled cohesively across the system. This integration not only
simplifies parameter management but also enhances the system’s adaptabil-
ity and responsiveness to changes within its operating environment.

The UML diagram illustrating the observer pattern can be found in Fig-
ure 4.4. In this diagram, the ParametersHandler is defined as an interface that
encapsulates the fundamental functionalities required for managing param-
eters. This interface plays a crucial role in registering new parameters and
adding observers. These observers are then notified through the handleOn-

Change method whenever there is a change in the value of a parameter. Es-
sentially, once a parameter’s value is updated, the handleOnChange method
is invoked for all observers linked to that specific parameter, ensuring that all
related components remain synchronized with the latest parameter values.

Another significant advantage of using the observer pattern is its capabil-
ity to integrate seamlessly with external modules that set parameters exter-
nally. This integration is particularly valuable for GUI applications, where
users can manually adjust system parameters. Such functionality is espe-
cially beneficial for researchers, as it allows them to quickly modify parame-
ters and immediately observe the effects on system performance. This rapid
iteration can significantly speed up experimental processes and fine-tuning.
Furthermore, the Observer pattern facilitates integration with sophisticated

4.3. System design 145

<<interface>>

ParametersHandler

+ attach(paramName: string, observer : Observer)
+ detach(paramName: string, observer : Observer)
+ setParameter(paramName: string, value: int)

<<interface>>

Observer

+ handleOnChange(paramName: string, value: int)

Frontend

+ handleOn-
Change(paramName: string,
value: int)

Backend

+ handleOn-
Change(paramName: string,
value: int)

GUIParams

+ setParameter(paramName:
string, value: int)

ROSParams

+ setParameter(paramName:
string, value: int)

notifies

uses uses

FIGURE 4.4: Observer pattern for handling parameters change

146 Chapter 4. Concept of Modular SLAM

parameter handling systems like ROS dynamic reconfigure. This tool en-
ables real-time adjustments of parameters within the ROS environment, pro-
viding a flexible and responsive interface for managing system behaviors at
a high level. The implementation of such a solution using a GUI with the
ParametersHandler is shown in Figure 4.5.

FIGURE 4.5: An example of GUI for parameters handling.

In the context of VSLAM, a map consist of landmarks and keyframes,
together with their relationships. Due to the principle of modularity, these
maps can be internally represented in various forms tailored to the specific
requirements and architectural design of the system. From an informatics
perspective, maps can be structured similarly to graphs and may be repre-
sented using data structures such as lists or matrices. However, different
algorithms need to interact with these maps to locate specific landmarks or
keyframes. For example, bundle adjustment is often applied only to a local
map, which represents a subset of the entire map. This necessitates an effi-
cient method for querying and manipulating the necessary elements within
these maps. In scenarios where dynamic access and operation on various
parts of the map are crucial, the visitor pattern provides an effective solution.
This pattern enables external operations to be performed on elements of an
object structure without changing the classes on which it operates, thereby
facilitating efficient interaction with complex map structures. As noted by
[Bus+96], the visitor pattern enables the incorporation of new functionalities
into a system without altering its existing structure.

In Figure 4.6, the scenario of querying elements of the map is shown, em-
phasizing the interaction between the map structure and visitor objects in
the VSLAM system. The BasicMap class implements the MapVisitable in-
terface, indicating its capability to interact with different types of visitors by
accepting a MapVisitor through its accept method. This allows the map to
be flexible and extensible in terms of the operations that can be performed
on its elements. The CeresVisitor class is a specific implementation of the
MapVisitor interface, equipped with three distinct functions: visitLandmark,
visitKeyframe, and visitObservation. Each function is designed to handle
different types of elements within the VSLAM map—landmarks, keyframes,
and observations respectively, providing tailored operations for optimization
or data extraction. The diagram shows the utilization relationship between

4.3. System design 147

the MapVisitable and MapVisitor, with arrows indicating the direction of in-
teraction. This setup exemplifies the visitor design pattern, where operations
can be added to objects without altering their structures, thereby promoting
loose coupling and enhancing the system’s adaptability to future changes or
extensions.

<<interface>>

MapVisitor

+ visitLandmark(landmark : Landmark)
+ visitKeyframe(keyframe : Keyframe)
+ visitObservation(observation : Observation)

<<interface>>

MapVisitable

+ accept(visitor : MapVisitor)

BasicMap

+ accept(visitor : MapVisitor)

CeresVisitor

+ visitLandmark(landmark : Landmark)
+ visitKeyframe(keyframe : Keyframe)
+ visitObservation(observation : Observation)

uses

FIGURE 4.6: Visitor Pattern in VSLAM

From the general perspective of the Modular SLAM architecture, the most
important design pattern is the strategy pattern. This pattern is crucial be-
cause it allows for the encapsulation of a family of algorithms, making it pos-
sible to interchange them seamlessly within the system. The strategy pattern
is particularly pivotal for ensuring modularity, as it provides the flexibility to
switch between different algorithms or behaviors based on varying require-
ments without altering the core architecture of the system. The adoption of
the strategy pattern in Modular SLAM also enables the system to adapt dy-
namically to different environments or objectives by simply switching out the

148 Chapter 4. Concept of Modular SLAM

algorithmic strategies at runtime. For instance, in scenarios where precision
is prioritized over speed, a more detailed but computationally intensive al-
gorithm might be employed. Conversely, in time-critical applications, faster
algorithms that trade off some accuracy for speed could be utilized. This
capability not only enhances the system’s versatility but also significantly
boosts its efficiency and effectiveness in real-world applications.

The strategy pattern is used in Modular SLAM in many various areas. To
give an example, let consider the pose estimation problem. In literature, there
are many methods described to estimate the movement of the platform. That
is why, it is useful to provide not only one single algorithm in the system,
but rather specify the interface for the algorithm and decide which algorithm
may be used in the process of VSLAM creation or in the runtime as it was
stated.

The UML diagram of the strategy pattern for pose estimation used in
Modular SLAM, as shown in Figure 4.7, illustrates how the Frontend com-
ponent effectively utilizes the PoseEstimationStrategy interface to dynami-
cally estimate poses based on sensor data. This modular approach allows the
Frontend to switch between different pose estimation strategies without al-
tering its underlying implementation, thereby enhancing both flexibility and
functionality. In this setup, the Frontend class acts as a context in the strategy
pattern, maintaining a reference to the PoseEstimationStrategy interface.
This setup facilitates the easy switching of algorithms depending on the sce-
nario’s requirements or the specific characteristics of the input data. For ex-
ample, while the RansacPoseEstimation might be suitable for environments
with a high degree of visual noise, the ReliableRansacPoseEstimation could
be optimized for scenarios where accuracy and reliability are paramount.
The Frontend can switch between these strategies seamlessly during run-
time, which is particularly beneficial in dynamic environments typical of
SLAM applications. This strategy integration not only supports optimal per-
formance adaptation but also encapsulates the pose estimation logic, keeping
the system’s architecture clean and maintainable.

4.3.3 Visualization

While working on the VSLAM system, visualization is critical for providing
insights into the system’s performance and current state. Effective visualiza-
tion serves not only to display the final trajectory of the system but also to
clarify the real-time operational status and data processing stages.

Visualization in Modular SLAM encompasses several key aspects, start-
ing with the raw input from sensors. This initial visualization is fundamental
as it allows for the assessment and verification of the data quality that the
system processes, which is crucial for tuning and preprocessing steps. As

4.3. System design 149

<<interface>>

PoseEstimationStrategy

+ estimatePose(data : SensorData) : Pose

RansacPoseEstimation

+ estimatePose(data :
SensorData) : Pose

ReliableRansacPoseEstimation

+ estimatePose(data : SensorData) :
Pose

Frontend

- strategy : PoseEstimationStrategy

+ setStrategy(strategy : PoseEstimationStrategy)
+ estimatePose(data : SensorData) : Pose

FIGURE 4.7: Strategy pattern for pose estimation in Modular SLAM

the system progresses, visualization extends to displaying the spatial rela-
tionships and features identified, such as landmarks and keyframes in 3D or
positions of the keypoints on the original image. This not only helps in track-
ing the map construction over time but also provides essential feedback on
the accuracy of localization and mapping efforts.

Additionally, the final trajectory visualization offers a detailed depiction
of the system’s movement through the environment, clearly illustrating the
path taken based on the data collected. This aspect of visualization is signifi-
cantly enhanced by using evo [Gru17], which provides comprehensive capa-
bilities for trajectory analysis and comparison with ground truth. Such com-
parisons are essential for validating the performance of the system. Impor-
tantly, Modular SLAM is designed with versatility in mind, capable of con-
ducting tests on established VSLAM systems like ORB-SLAM3 or StellaVS-
LAM. It can not only generate but also compare trajectories from these sys-
tems, establishing a robust framework for assessing and benchmarking var-
ious VSLAM algorithms. This ability to compare trajectories offers valuable
insights into the effectiveness of different algorithms under similar condi-
tions. Figure 4.8b showcases an example of a trajectory generated using Mod-
ular SLAM and the scripts provided, highlighting the practical application of
these capabilities in real-world scenarios.

150 Chapter 4. Concept of Modular SLAM

The visualization interface of Modular SLAM includes also a display of
the current system settings, showcasing the parameters set for operation.
This feature is crucial as it allows users to see and adjust settings in real-time,
ensuring optimal system performance under varying conditions. Alongside
parameter settings, the interface also presents a range of metrics related to
real-time performance. These metrics include the time taken for pose esti-
mation, mapping durations, and other pertinent data that provide insights
into the system’s efficiency. Displaying these metrics helps operators and re-
searchers to monitor the system’s performance closely and make informed
decisions about potential adjustments or optimizations needed to improve
accuracy and processing speed.

Integrating these visual tools within Modular SLAM ensures a multi-
faceted approach to system analysis and development. Effective visualiza-
tion aids in immediate troubleshooting and enhancements and supports strate-
gic development for future iterations of the system. The integrated viewer,
as shown in Figure 4.8a, exemplifies how such tools are embedded within
the Modular SLAM framework, facilitating both real-time adjustments and
thorough post-operation analysis. This comprehensive approach not only en-
ables detailed monitoring and modification of the system but also enriches
research and practical applications.

4.3.4 Evaluation

Evaluation is a critical component of Modular SLAM, playing a pivotal role
due to its emphasis on iterative research and development. Modular SLAM
incorporates several features specifically designed to facilitate thorough eval-
uation processes.

At the forefront, Modular SLAM integrates tools that enable comprehen-
sive analysis of the platform’s entire trajectory. This functionality is largely
supported by the evo library [Gru17], but Modular SLAM extends these ca-
pabilities with significant enhancements. Not only does Modular SLAM pro-
vide the ability to calculate basic metrics, but it also allows for comparative
analyses using other VSLAM systems. This feature is particularly valuable as
it enables users to run benchmarks with other well-known systems such as
StellaVSLAM, ORBSLAM, or LSD SLAM on the same dataset and machine.
By doing so, researchers can directly compare the performance of the devel-
oped system against established alternatives, offering a robust framework
for evaluating accuracy, efficiency, and other critical performance metrics.

Secondly, Modular SLAM includes a component specifically designed for
storing trajectories, which can be utilized by various analysis tools within the
community. In the field, there are primarily two recognized formats for rep-
resenting the platform’s trajectory: the KITTI format and the TUM format.
Researchers can specify their preferred format effortlessly by selecting the

4.3. System design 151

(A) Real-time visualization with Modular SLAM.

1

0

1

x
(m

)

Reference
ORBSlam3
StellaVSLAM

0.5

0.0

0.5

1.0

y
(m

)

0 5 10 15 20 25
t (s)

1.2

1.4

1.6

z (
m

)

(B) Visualization with Modular SLAM and evo comparing ORB-SLAM and StellaVSLAM
for TUM rgbd_dataset_freiburg1_desk2 sequence.

FIGURE 4.8: Two aspects of Modular SLAM visualization: real-time operations and
final plots.

152 Chapter 4. Concept of Modular SLAM

appropriate concrete strategy for storing trajectories. This flexibility is made
possible again through the implementation of the strategy pattern in Mod-
ular SLAM, allowing for easy adaptation to the diverse needs of different
research projects or operational environments.

The strategy pattern’s application is evident in how trajectory data man-
agement is handled within Modular SLAM. By abstracting the trajectory
dumping process into a strategy interface, TrajectoryDumper, Modular SLAM
permits seamless interchange between different storage strategies. Whether
it is the KittiLocalizationDumper or the TumLocalizationDumper, each im-
plements the TrajectoryDumper interface, ensuring that they can be used in-
terchangeably without affecting the rest of the system’s architecture. This
approach not only simplifies the configuration and extension of the system
but also enhances its robustness by encapsulating the functionality needed
for trajectory storage within well-defined classes, as illustrated in the pro-
vided UML diagram in Figure 4.9.

<<interface>>

TrajectoryDumper

+ dumpPose(pose : Pose, timestamp :
Time) : void

KittiLocalizationDumper

+ dumpPose(pose : Pose,
timestamp : Time) : void

TumLocalizationDumper

+ dumpPose(pose : Pose,
timestamp : Time) : void

FIGURE 4.9: Strategy pattern for storing trajectory data in Modular SLAM

4.4 Practical Application of Modular SLAM

While a detailed exploration of the implementation lies beyond the primary
focus of this thesis, it is essential to illustrate how the design patterns and
principles discussed here find their practical application within the Modu-
lar SLAM framework. This section aims to briefly demonstrate the benefits
of such approach by showing how they can be effectively implemented to
enhance the functionality and flexibility of Modular SLAM system.

For a comprehensive understanding of the practical applications of the
Modular SLAM, including detailed insights into its API and illustrative, ex-
tended C++ examples, it is strongly encouraged to consult its repository and

https://github.com/marcin-ochman/modular-slam

4.4. Practical Application of Modular SLAM 153

Appendix B. It is designed to bridge the gap between theoretical concepts
discussed in the main text and their real-world implementations. It serves
as a valuable resource for developers and researchers interested in apply-
ing the Modular SLAM to their projects, offering a hands-on approach that
elucidates the system’s functionality and adaptability. It not only enhances
understanding but also provides practical tools and code snippets that can be
directly utilized or adapted for various applications. By exploring these sup-
plementary materials, a deeper understanding of the system’s capabilities
and the design considerations that underpin its architecture will be achieved.

To demonstrate how careful design significantly contributes to simplic-
ity, both from a theoretical and practical perspective, let examine the creation
process of a SLAM system. As previously discussed, this process is struc-
tured and streamlined through the use of the builder pattern. As illustrated
in Listing 4.1, setting up the VSLAM system involves configuring several
main components, a method that emphasizes clarity and ease of integration.
The builder pattern facilitates a modular setup where components like the
parameter handler, data provider, frontend, backend, and the map are me-
thodically assembled. The Listing 4.1 shows how the slamBuilder object
sequentially adds components, ensuring that each is correctly configured be-
fore it moves to the next. This not only streamlines the construction process
but also allows for custom actions to be registered easily, such as setting the
most recent frame or updating observations once the frontend processing
completes.

1 // ...

2 slamBuilder.addParameterHandler(std::make_shared<mslam::

BasicParameterHandler>())

3 .addDataProvider(dataProvider)

4 .addFrontend(frontend)

5 .addBackend(backend)

6 .addMap(map)

7 .registerDataFetchedAction([slamThread](std::shared_ptr<mslam::

RgbdFrame> frame)

8 { slamThread−>setRecentFrame(frame);

})

9 .registerFrontendFinishedAction([slamThread](const

FrontendOutputType& output) −> void

10 { slamThread−>

setRecentObservations(output.landmarkObservations); });

11

12 auto slam = slamBuilder.build();

LISTING 4.1: Creating VSLAM system using Modular SLAM

Next, it was highlighted that strategy pattern is crucial for Modular SLAM

154 Chapter 4. Concept of Modular SLAM

functioning. This pattern is fundamental to achieving modularity and adapt-
ability within the system, allowing for flexible adjustments and improve-
ments in real-time. As demonstrated in Listing 4.2, the strategy pattern facili-
tates the use of various strategies for critical tasks including pose estimation,
which can be configured and modified during runtime without disrupting
the overall system’s operations. The provided listing illustrates how differ-
ent pose estimation strategies can be integrated into the system. For example,
an instance of mslam::OpenCvRansacPnp is initially used for pose estimation
and is attached to a frontend processing unit.

1 auto poseEstimation = std::make_shared<mslam::OpenCvRansacPnp>();

2 auto frontend = std::make_shared<mslam::RgbdFeatureFrontend>(

3 poseEstimation, /* ... */);

4

5 // or

6

7 frontend.setPoseEstimation(poseEstimation);

LISTING 4.2: Strategy pattern in Modular SLAM for pose estimation

The strategy pattern’s utility is further exemplified in its application for
saving trajectories in Modular SLAM systems. As detailed in the code snip-
pet shown in Listing 4.3, the system can output trajectory data in two promi-
nent formats: TUM and KITTI. Depending on the operational requirements
or the preferred data analysis tools, the system can dynamically select ei-
ther the KittiLocalizationDumper or the TumLocalizationDumper to han-
dle the trajectory data. The listing further integrates the observer pattern
by registering actions to be performed once the frontend processing finishes.
Each action involves using the chosen strategy to write out the trajectory
data, demonstrating a seamless combination of strategy and observer pat-
terns. This dual-pattern approach not only simplifies the code by decoupling
format-specific processing from the main SLAM logic but also ensures that
the system’s behavior can be modified without extensive changes.

The observer pattern plays a crucial role within the parameters handler
framework, particularly in notifying relevant components about changes to
specific parameters. The first part of the Listing 4.3 illustrates how several
parameters of the frontend are registered. These parameters include the min-
imum number of matched keypoints required to maintain tracking without
forcing relocalization and the minimum number of landmarks needed to trig-
ger the creation of a new keyframe. When these parameters are set, other
components can use the registerParameter method to subscribe to notifica-
tions of changes. This registration enables the components to execute specific
actions in response to parameter modifications, effectively adapting their be-
havior based on the updated configuration.

4.4. Practical Application of Modular SLAM 155

1 if(args.output−>format == TrajectoryFileFormat::KITTI)

2 {

3 auto dumper = std::make_shared<KittiLocalizationDumper>(args.

output−>trajectoryFilePath);

4 slamBuilder.registerFrontendFinishedAction(

5 [dumper](const auto& frontendOutput)

6 {

7 auto& dumperRef = *dumper;

8 dumperRef(frontendOutput);

9 });

10 }

11 else

12 {

13 auto dumper = std::make_shared<TumLocalizationDumper>(args.

output−>trajectoryFilePath);

14 slamBuilder.registerFrontendFinishedAction(

15 [dumper](const auto& frontendOutput)

16 {

17 auto& dumperRef = *dumper;

18 dumperRef(frontendOutput);

19 });

20 }

21

22 mslam::SlamBuilder builder;

23 mslam::VSLAM vslam = builder.build();

LISTING 4.3: Combination of strategy and observer pattern for trajectory saving.

1 // registering parameters of frontend

2 constexpr auto make_param = std::make_pair<ParameterDefinition,

ParameterValue>;

3

4 const ParamsDefinitionContainer params = {

5 make_param({"rgbd_feature_frontend/min_matched_points",

ParameterType::Number, {}, {0, 100000, 1}}, 10.f),

6 make_param({"rgbd_feature_frontend/new_keyframe_min_landmarks",

ParameterType::Number, {}, {0, 10000, 1}},

7 30.f)};

8

9 for(const auto& [definition, value] : params)

10 {

11 parametersHandler−>registerParameter(definition, value);

12 }

13

14 // registering observers

15 parametersHandler−>registerObserver("rgbd_feature_frontend/

min_matched_points", [](){std::cout <<"Parameter changed"});

LISTING 4.4: Handling parameters in Modular SLAM

156 Chapter 4. Concept of Modular SLAM

Finally, the visualization aspect of the VSLAM system is thoroughly ad-
dressed. To enable real-time visualization of the VSLAM system, one simply
needs to instantiate a ViewerMainWindow and a SlamThread to run the algo-
rithm in the background. Once the SLAM system is activated, everything op-
erates automatically, and the visualization appears as shown in Figure 4.8a.

1 mslam::ViewerMainWindow mainWindow;

2 SlamThread* slamThread = new SlamThread(&mainWindow);

3

4 auto slam = buildSlam(args, slamThread);

5 slamThread−>setSlam(std::move(slam));

6 slamThread−>start();

LISTING 4.5: Visualisation in Modular SLAM

The concept of Modular SLAM is not only powerful but also intention-
ally designed for ongoing development and maintenance by the scientific
open-source community. It is anticipated that as this community continues
to contribute, Modular SLAM will evolve to become even more robust and
effective. Future enhancements and versions are expected to expand its ca-
pabilities and applications. This concludes the discussion on the concept of
Modular SLAM. The next chapter will shift focus to additional contributions
of this thesis, specifically exploring robust methods that further enhance sys-
tem performance and reliability. It is worth noting that these methods are
also integral components of the Modular SLAM framework.

157

Chapter 5

New VSLAM robust methods

Overview

This chapter provides an overview of the advanced computer vision algo-
rithms implemented in ModularSLAM, specifically focusing on two robust
methods: VSLAM SuperPoint and VSLAM RANSAC. These methods aim to
significantly improve the accuracy and reliability of VSLAM in challenging
environments marked by dynamic changes, variable lighting conditions, and
significant occlusions.

VSLAM SuperPoint utilizes a deep learning approach to detect and de-
scribe features through a convolutional neural network, offering superior
performance over traditional feature detection methods. Following this, the
chapter explores VSLAM RANSAC, an improved variant of the traditional
RANSAC algorithm that adapts sampling strategies and consensus thresh-
olds dynamically to ensure efficient and accurate model estimation. Together,
these methods contribute to the robustness of ModularSLAM, enabling bet-
ter performance in real-world applications.

“A computer would deserve to be called intelligent if it could deceive a human into
believing that it was human.”

– Alan Turing

158 Chapter 5. New VSLAM robust methods

In this chapter, novel methodologies designed to enhance the robustness
of feature-based VSLAM systems are introduced. The first part of the chapter
is focused on addressing the challenges associated with keypoint detection, a
critical component in VSLAM. Traditional approaches to keypoint detection
have often struggled with robustness in dynamic and complex environments.
To overcome these limitations, a new method that leverages AI and temporal
information to improve the accuracy and reliability of keypoint detection is
proposed. This approach not only enhances the detection process but also
contributes significantly to the overall stability and performance of VSLAM
systems. Through analysis and experimentation, it is demonstrated how
these advancements can be integrated into existing frameworks to achieve
superior robustness in various real-world scenarios. Moreover, each method
is integrated with Modular SLAM.

5.1 Keypoints detections

In feature-based methods, keypoints play a crucial role in the entire VSLAM
system. As discussed in Section 2.6.2, keypoints are not only used in pose
estimation but are also fundamental building blocks of the map. Addition-
ally, keypoint detection is the first task performed by the frontend, which is
why it has a significant impact on both localization and mapping. Figure 5.1
shows several examples of detected keypoints in two consecutive frames. A
brief analysis reveals several important observations. First, despite the initial
appearance that two consecutive frames are almost identical, there are key-
points that are not detected in the subsequent frame. Furthermore, the dis-
tribution of keypoints is not always even across the images. In some cases,
keypoints are concentrated in specific areas of the image, rather than being
evenly distributed. These observations highlight the challenges and variabil-
ity in keypoint detection, which can affect the robustness and accuracy of the
VSLAM system.

A good feature detector is essential in VSLAM application. Let’s describe
the features of a good keypoint detector. One of the primary features of a
good detector is repeatability. Repeatability measures the ability of the de-
tector to consistently identify the same features across different frames or im-
ages. High repeatability ensures that these features can be reliably matched,
which is crucial for applications requiring precise tracking and mapping.

Another critical attribute is robustness to changes in lighting conditions.
A good feature detector should perform well regardless of variations in illu-
mination, such as shadows, highlights, or overall brightness changes. This
robustness is particularly important in real-world applications where light-
ing conditions can vary significantly, such as outdoor environments with

5.1. Keypoints detections 159

FIGURE 5.1: Detected keypoints on consecutive frames from a VSLAM sequence.
Each red dot represents a keypoint detected in the image. The first row depicts the
keypoints detected in the first frame, while the second row shows the keypoints
detected in the subsequent frame. The keypoint detection algorithm used in this

example is SuperPoint.

fluctuating sunlight or indoor settings with artificial lighting. By maintain-
ing performance across different lighting scenarios, the detector can ensure
consistent feature detection, which is vital for reliable visual processing.

In addition to repeatability and lighting robustness, a good feature detec-
tor should be invariant to changes in view angle. This means that the detector
should be able to recognize the same feature even when observed from dif-
ferent perspectives. This invariance is crucial for applications like VSLAM,
where the camera’s viewpoint changes continuously as it moves through the
environment. Furthermore, a good detector should be computationally ef-
ficient, allowing real-time processing on various hardware platforms, from
powerful servers to mobile devices. Other desirable attributes include scale
invariance, which ensures consistent detection across different scales, and
robustness to noise, which helps maintain performance in noisy or cluttered
environments. These features collectively contribute to a detector’s overall
effectiveness and reliability in diverse real-world scenarios.

In VSLAM systems, keypoint detection is executed for every camera frame
to identify distinctive features in the environment. Consequently, if the sys-
tem is not in relocalization state, it retains information about previously de-
tected keypoints. However, the majority of widely-used feature-based VSLAM
algorithms do not leverage this historical keypoint data. Instead, they treat
each frame independently, often re-detecting keypoints from scratch. This
approach can lead to inefficiencies and missed opportunities for improv-
ing the robustness and accuracy of the mapping and localization processes.

160 Chapter 5. New VSLAM robust methods

By integrating the information from previously detected keypoints, VSLAM
systems could potentially enhance their performance, reduce computational
overhead, and improve the consistency of keypoint tracking across frames.

In Figure 5.2 the gascola P001 sequence from the TartanAir dataset is
illustrated. Each frame in this sequence displays keypoints that were ini-
tially detected in the first frame. The subsequent positions of these keypoints
are computed based on their 3D coordinates and the ground truth camera
poses. This particular sequence spans 32 frames, and it is evident that most
of the keypoints detected in the first frame remain visible in the last frame.
Nonetheless, due to disadvantages of both feature detector and specifically
detected keypoints descriptors and feature matching algorithm the number
of reoccurred keypoints is significantly lower.

FIGURE 5.2: Illustration of a sequence from the TartanAir dataset, specifically the
gascola P001 sequence. Keypoints shown on the following images are the keypoints

detected in the first frame.

In Section 3.8, and particularly in Figure 3.13, an example of changing
tracked landmarks was presented. This section continues and expands upon
the topic of the number of tracked landmarks over time. Figure 5.3a presents
the number of tracked landmarks in a another sequence. Additionally, the

moving average n
(l)
i is expressed by Equation 5.1, where w represents the

5.1. Keypoints detections 161

window length over which the average is computed.

n
(l)
i =

1
w

i+⌊w
2 ⌋

∑
j=i−⌊w

2 ⌋
xj (5.1)

Figure 5.3b shows the detrended sequences of tracked landmarks. The de-
trended number of landmarks is given by Equation 5.2. The idea is straight-
forward. To identify local changes in the number of tracked landmarks, the

weighted mean n
(l)
i is subtracted from the current number of tracked land-

marks n
(l)
i .

ñ
(l)
i = n

(l)
i − n

(l)
i (5.2)

In fact, changes in the number of tracked landmarks are expected, espe-
cially when the system is exploring new environments and creating map.
However, if keypoints are being accurately detected and matched, the peaks
visible on the plot should be less frequent and the slope more subtle. Based
on this observation, several metrics can be defined, including standard devi-

ation ñ
(l)
σ and maximum value ñ

(l)
max, given by Equation 5.3 and Equation 5.4

respectively.

ñ
(l)
σ =

√
√
√
√
√
√

1
N

N

∑
i=1

xi −
1
w

i+⌊w
2 ⌋

∑
j=i−⌊w

2 ⌋
xj

2

(5.3)

ñ
(l)
max = max{ñ

(l)
0 , ñ

(l)
1 , ...} (5.4)

The standard deviation ñ
(l)
σ and the maximum value ñ

(l)
max may be impor-

tant metrics for evaluating the stability and variability of tracked landmarks.

The standard deviation ñ
(l)
σ measures the dispersion of the detrended num-

ber of tracked landmarks around the mean. A lower standard deviation in-
dicates that the number of tracked landmarks is more consistent over time,
suggesting robust keypoint detection and tracking. Conversely, a higher
standard deviation points to greater variability, which may indicate issues
with keypoint detection or changes in the environment. The maximum value

ñ
(l)
max, on the other hand, captures the largest deviation from the mean num-

ber of tracked landmarks. This metric highlights the most significant changes
or anomalies in the number of tracked landmarks, providing insights into
moments where the system may face challenges in maintaining consistent
tracking. Together, these metrics help in assessing the performance and reli-
ability of VSLAM feature-based systems.

162 Chapter 5. New VSLAM robust methods

0 100 200 300 400 500
frame

100

150

200

250

300

350

400

Tr
ac

ke
d

la
nd

m
ar

ks

Tracked landmarks
Moving average

(A) Tracked landmarks over time with visible peaks related to the finish
of keyframe creation.

0 100 200 300 400 500
frame

100

50

0

50

100

150

De
tre

nd
ed

 tr
ac

ke
d

la
nd

m
ar

ks

Detrended tracked landmarks

(B) Detrended tracked landmarks over time.

FIGURE 5.3: Tracked landmarks over time.

5.1. Keypoints detections 163

Table 5.1 presents the results for various sequences from the TUM RGB-D
dataset, focusing on the number of tracked landmarks and their statistical
measures for StellaVSLAM. The metrics include the mean number of tracked
landmarks n(l), the standard deviation of tracked landmarks n

(l)
σ , the stan-

dard deviation of the detrended sequence ñ
(l)
σ , and the maximum value of

the detrended sequence ñ
(l)
max. Upon examining the data, it is evident that the

sequences vary significantly in terms of every metric.
For instance, the rgbd_dataset_freiburg2_xyz sequence has the highest mean

value at 558.692, indicating a dense tracking scenario, whereas rgbd_dataset_-
freiburg1_desk2 has the lowest mean at 121.727, suggesting significantly fewer

tracked landmarks. The standard deviation of the tracked landmarks n
(l)
σ

also shows considerable variation across sequences. Higher values, such as
209.272 for ‘rgbd_dataset_freiburg2_rpy‘, indicate greater variability in the
number of tracked landmarks, reflecting dynamic changes or challenges in
the tracking process. Conversely, sequences like rgbd_dataset_freiburg1_desk2
with a standard deviation of 66.319 suggest more consistent tracking. The

detrended standard deviation ñ
(l)
σ provides insights into local fluctuations,

with values ranging from 13.498 in ‘rgbd_dataset_freiburg2_rpy‘ to 51.085 in
rgbd_dataset_freiburg1_xyz. Finally, the maximum value of the detrended se-

quence ñ
(l)
max shows the most significant deviations from the weighted mean.

The highest peak is observed in rgbd_dataset_freiburg1_xyz at 235.250, sig-
naling potential moments of significant change in the tracking environment.
These metrics together reveal the dynamic nature of different sequences and
the stability of tracked landmarks within them. Sequences with high variabil-
ity and significant peaks may indicate more challenging tracking conditions,
while those with lower variability and smoother changes suggest more stable
environments.

5.1.1 SuperPoint for VSLAM

In VSLAM systems, images are sequentially processed, which is a fundamen-
tal aspect of how these systems operate. Despite this, the sequential nature
of image processing is not typically leveraged to enhance robustness. The
traditional approach in feature-based VSLAM systems begins with feature
detection, followed by feature matching, and pose estimation based on these
matches. Utilizing historical data, particularly the positional information of
previously detected keypoints, could significantly improve the system’s per-
formance. It is anticipated that such information would prolong the tracking
duration of individual landmarks, especially under challenging conditions.

SuperPoint, one of the most effective feature detectors identified in the
literature, was proposed by DeTone, Malisiewicz, and Rabinovich [DMR18].

164 Chapter 5. New VSLAM robust methods

Sequence n(l) n
(l)
σ ñ

(l)
σ ñ

(l)
max

rgbd_dataset_freiburg2_desk 216.757 73.264 19.078 81.100

rgbd_dataset_freiburg2_rpy 389.744 209.272 13.498 65.900

rgbd_dataset_freiburg2_xyz 558.692 118.481 15.196 93.350

rgbd_dataset_freiburg1_rpy 246.823 142.775 36.566 112.300

rgbd_dataset_freiburg1_desk 209.011 67.249 34.105 166.450

rgbd_dataset_freiburg1_xyz 506.607 178.438 51.085 235.250

rgbd_dataset_freiburg1_desk2 121.727 66.319 25.768 108.350

TABLE 5.1: Tracked landmarks in various TUM sequences

This detector excels through its use of a deep learning framework to effi-
ciently detect and describe keypoints, demonstrating considerable robust-
ness across diverse lighting and environmental conditions. Such capabilities
render it highly suitable for applications that demand both high accuracy
and reliability in real-time feature tracking.

By integrating the positions of previously detected keypoints with a mod-
ified SuperPoint model, a novel feature detection algorithm can be developed
suited for VO and VSLAM systems. Subsequent sections will detail the gen-
eration of datasets, provide an overview of the model, and discuss its evalu-
ation.

Dataset generation

During the training stage of the VSLAM SuperPoint model, dataset genera-
tion plays a critical role. Each training sample is composed of two consec-
utive frames from the base sequences, including TartanAir. The reference
keypoint positions are detected by the original SuperPoint model in the ini-
tial frame. However, the generation of ground-truth keypoint positions is not
based on a single detection. Similar to the approach in the SuperPoint paper,
homography adaptation was used. The difference is that a much more pow-
erful model is employed as the base detector.

These keypoints are then tracked, and their positions are calculated in the
subsequent frame. This process ensures that the model learns to accurately
detect and track keypoints across frames, enhancing its robustness and per-
formance. The quality and diversity of the generated dataset significantly
impact the model’s ability to generalize to different scenarios, making careful
dataset preparation essential for effective training. Since sample preparation

5.1. Keypoints detections 165

involves several steps, the following paragraphs will describe this process in
detail.

The first step is to retrieve the list of all images and their corresponding
poses. In other words, every camera frame has its own pose Cn represented
as a translation tn vector and quaternion qn = q0 + q1i + q2 j + q2k, which is
shown in Equation 5.5.

Cn =

[
tn

qn

]

=
[
x y z q0 q1 q1 q1

]T (5.5)

For further transformations, it is necessary to convert the rotation represen-
tation from a quaternion to a more convenient rotation matrix. This can be
achieved using the Rodriguez formula, as given by Equation 5.6. The quater-
nion to rotation matrix conversion allows for more straightforward manipu-
lation.

Rn =

1 − 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1 − 2(q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2(q2
1 + q2

2)

 (5.6)

Given matrix Ri and translation vector ti, a transformation Ti can be defined,
which represents the transformation from global coordinate system to the
i-th pose. It is given by Equation 5.7.

Ti =

[
Ri ti

0 1

]

(5.7)

In the next step, it is necessary to calculate the 3D positions of the land-
marks associated with the detected keypoints. According to the pinhole cam-
era model, obtaining the image position of a 3D point in the camera coordi-
nate system requires multiplying the intrinsic matrix K by the 3D coordinates
of the point. The intrinsic matrix K which is shown in Equation 5.8 encapsu-
lates the camera’s internal parameters, including the focal lengths fx and fy,
and the optical center coordinates cx and cy.

K =

fx 0 cx

0 fy cy

0 0 1

 (5.8)

These parameters are determined through a camera calibration procedure
described in [Zha00; KB17]. During this calibration process, the matrix K is
estimated, which allows for accurate projection of 3D points onto the 2D im-
age plane. The formula used for this transformation is given by Equation 5.9,
where p represents the 2D coordinates of the point on the image, and l is a
3D point in the camera coordinate system, where s ∈ R.

166 Chapter 5. New VSLAM robust methods

p = s

u
v
1

 = Kl = K

xc

yc

zc

 (5.9)

The transformation given by Equation 5.9 can be explicitly expressed, assum-
ing that the distance of the point to the camera is not equal to zero i.e. zc ̸= 0.
The relationship is described by the following equations:

u

v

 =

xc
zc

fx + cx

yc

zc
fy + cy

 (5.10)

However, the inverse process is required. To be more precise, l has to be cal-
culated. Thus, based on Equation 5.10 the inverse process may be expressed
with Equation 5.11.

l =

xc

yc

zc

=

(u − cx)zc f−1
x

(v − cy)zc f−1
y

zc

(5.11)

Since the 3D point l is initially represented in the coordinate system of the
i-th camera, it is necessary to transform this point into the coordinate system
of the j-th camera for further processing. This transformation is achieved by
combining the transformation matrices of both camera poses. Specifically,
the transformation matrix of the i-th camera is multiplied by the inverse of
the transformation matrix of the j-th camera. This transformation ensures
that the 3D point is accurately referenced in the new coordinate system, as
shown in Equation 5.12.

Ti,j = TiT
−1
j (5.12)

By combining all transformations which were discussed previously, the key-
point’s position pj on the j-th image is given by Equation 5.13.

pj =
[
K 0

]
Ti,j

[
K−1 0

]
pi =

[
K 0

]
Ti,j

[
K−1 0

]
pi (5.13)

However, there is still one significant problem that needs to be solved.
The procedure of finding the position of a previously seen point is not valid
due to the fact that occlusion may occur. Occlusion happens when an ob-
ject obstructs the line of sight between the camera and the point of inter-
est, making it impossible to detect the point from a certain viewpoint. This
phenomenon can significantly impact the accuracy and reliability of visual

5.1. Keypoints detections 167

tracking systems, such as those used in VSLAM, where maintaining contin-
uous visibility of landmarks is crucial for precise mapping and localization.
Figure 5.4 illustrates the concept of occlusion from a top-down view. Two
rectangular objects of different sizes are positioned in the scene. In the first
camera position, the line of sight to a specific point is unobstructed, allow-
ing the camera to detect the point clearly. This is depicted by the dashed
lines connecting the first camera to the point. In the second camera posi-
tion, the larger rectangular object blocks the line of sight, causing occlusion.
The dashed lines from the second camera to the point intersect another ob-
ject, indicating that the point cannot be seen from this position. This visual
representation underscores the challenges posed by occlusion in maintain-
ing continuous observation of landmarks and highlights the need for robust
algorithms to handle such scenarios effectively.

FIGURE 5.4: Top-down view illustrating the concept of occlusion.

In feature detection, occlusion presents a significant problem because the
descriptor of the point can change drastically when it becomes associated
with a different object. To address issues related with occlusion, a straightfor-
ward method is employed. As illustrated in Figure 5.4, occlusion is detected
by comparing the distance between the camera and the point with the dis-
tance observed by the depth sensor. If the difference between these distances
exceeds a certain threshold ϵ, occlusion is identified. The occlusion detection
function is defined as follows:

f (d1, d2) =

{

0, if |d2 − d1| ≤ ϵ

1, if |d2 − d1| > ϵ
(5.14)

In this equation, d2 represents the distance from the camera to the point as

168 Chapter 5. New VSLAM robust methods

...

Datasets

Sample

Previous
Keypoints

Current
Keypoints

...

Occlusion Test

SuperPoint

Transform Points

FIGURE 5.5: Visualisation of training dataset preparation.

measured by the camera’s intrinsic parameters, and d1 is the observed dis-
tance from the depth sensor. The function f (d2, d1) outputs 0 when the ab-
solute difference between d2 and d1 is within the tolerance ϵ, indicating no
occlusion. Conversely, it outputs 1 when the difference exceeds ϵ, indicating
that occlusion is likely occurring.

To summarize the entire process, the diagram in Figure 5.5 illustrates all
key steps, including feature detection, point transformation, and occlusion
testing. It is important to note that the training samples comprise not only
the images but also the keypoints detected on previous image and visible in
the current one. As detailed in Section 5.1.1, the training stage allows for the
calculation of various metrics related to feature detection. These metrics eval-
uate the effectiveness and accuracy of the feature detection process, essential
for optimizing the performance of the VSLAM system. While the diagram
effectively visualizes the entire process, supplementing it with code listings

5.1. Keypoints detections 169

provides a more detailed description of the proposed method. Listing 5.1
details the initial steps of the dataset generation process. These steps include
selecting pairs of images from the sequence, preparing transformation ma-
trices, detecting keypoints, and processing their transformations. Given the
complexity of the keypoint transformation procedure, Listing 5.2 specifically
illustrates the steps involved in mapping the keypoints detected on the pre-
vious image to their new positions on the current image as well as the oc-
clusion test. This detailed approach enhances understanding and provides a
practical insight into the implementation of the method.

1algorithm GenerateSample(images, depthMaps, poses,

2index, step)

3qi, ti = poses[index]

4j = i − step

5qj, tj = poses[j]

6

7Ri = ToRotationMatrix(qi)

8Rj = ToRotationMatrix(qj)

9Ti = ToTransformationMatrix(R, qi)

10Tj = ToTransformationMatrix(R, qj)

11

12currentDepthMap = depthMaps[i]

13previousDepthMap = depthMaps[j]

14keypoints = DetectKeypoints(images[j])

15transformedKeypoints = TransformKeypoints(keypoints,

16previousDepthMap,

17currentDepthMap,

18Ti, Tj)

19return images[i], transformedKeypoints

20end algorithm

LISTING 5.1: Algorithm of generating samples for VSLAM SuperPoint.

The proposed method can be viewed as an alternative to the approach
presented in [DMR18]. In that work, the authors use pairs of images as
training samples: one original image and another warped by a homogra-
phy transformation. The loss function during training is designed to ensure
consistent feature detection across these two images. However, the approach
introduced in this thesis takes a different direction. VSLAM SuperPoint is
primarily focused on feature detection in sequences that reflect real-world
conditions.

One key distinction is that the homography-based approach does not ac-
count for real-world phenomena such as occlusions, which are common in
VSLAM scenarios. By contrast, the method proposed here is specifically de-
signed to handle these complexities, making it better suited for robust feature

170 Chapter 5. New VSLAM robust methods

1algorithm TransformKeypoints(keypoints, previousDepthMap,

currentDepthMap, Ti, Tj)

2

3Ti,j = TiT
−1
j

4previousDepths = currentDepthMap[keypoints]

5depths = previousDepthMap[keypoints]

6

7transformation =
[
K 0

]
Ti,j

[
K−1 0

]

8transformedKeypoints = transformation * keypoints

9mask = TestOcclusion(depth, transformedKeypoints[:, 2])

10

11return transformedKeypoints[mask]

12end algorithm

LISTING 5.2: Algorithm for transforming keypoints from previous frame to current
frame.

detection in VSLAM applications where environmental factors like occlu-
sions play a significant role. As demonstrated in Section 5.1.1, this approach
results in a loss function that is better aligned with the challenges faced in
practical VSLAM systems.

Model overview

As stated in the introduction of VSLAM SuperPoint, the core concept in-
volves enhancing the SuperPoint model by expanding its capabilities. In-
stead of solely processing single images, the updated model incorporates
knowledge of keypoints detected in previous images.

The SuperPoint architecture, designed by DeTone, Malisiewicz, and Ra-
binovich, is straightforward yet effective, catering specifically to real-time
applications that demand both speed and power. As illustrated in Figure 5.6,
the architecture comprises three primary components. Initially, there is a
shared encoder that reduces the image dimensionality. Subsequently, the en-
coder’s output is directed along two parallel paths: the interest point decoder
and the descriptor decoder. The interest point decoder generates a heatmap
to pinpoint keypoint locations, while the descriptor decoder produces the
corresponding descriptors [DMR18].

To illustrate how keypoints are identified using the SuperPoint model,
an inference was performed, and the results are showcased in Figure 5.7.
The process starts with a heatmap that indicates potential positions for the
keypoints, displayed in Figure 5.7a. This is followed by preprocessing steps
including non-maximum suppression to refine these positions, removal of
keypoints close to image borders, and extraction of the top-k keypoints if

5.1. Keypoints detections 171

Image Encoder Conv Softmax Reshape

Conv Interpolation L2 Norm Descriptors

Heatmap

Interest Point Decoder

Descriptor Decoder

FIGURE 5.6: SuperPoint architecture

specified. The final keypoints are then drawn on the original image, as illus-
trated in Figure 5.7.

(A) Heatmap generated by the SuperPoint
model.

(B) Final keypoints marked on the original
image.

FIGURE 5.7: Determining keypoints from heatmap.

The VSLAM SuperPoint represents a refined iteration of the original Su-
perPoint model, maintaining its core functionality and concept. It still pro-
cesses a current image to output heatmaps and point descriptors. However,
the VSLAM SuperPoint incorporates major architectural modifications to uti-
lize historical data from previously detected keypoints. The most notable
change is in the model’s input, which now includes two distinct elements i.e.
image and heatmap representing positions of previously detected keypoints.
This change has an impact on the other part of the model. Original Super-
Point does not process the previous heatmap. That is why it is also required
to provide the way to integrate that data into the pipeline of the model. There
are numerous ways to accomplish that goal. However, it would be worth to
use the learned weights of the original model to reduce the number of re-
quired training samples and as a consequence the time of learning stage.

172 Chapter 5. New VSLAM robust methods

To enhance the interest point decoder, modifications were made to the
original architecture. After the initial interest point detector produces a heatmap
Ĥ ∈ RW×H, additional layers were introduced. Specifically, to integrate in-
formation from both current and previously detected keypoints, two heatmaps
are stacked together and fed into the subsequent layer. That layer is a 3D
convolutional layer, whose primary role is to refine the final heatmap. This
refinement ensures that the knowledge of previously detected keypoints en-
hances their detection in the current frames. The complete, refined architec-
ture of the model is depicted in Figure 5.8.

Image

Heatmap

Encoder Interest Point Decoder conv3d

Descriptor Decoder Descriptors

Heatmap

FIGURE 5.8: VSLAM SuperPoint architecture

It is also important to highlight that providing previous heatmap is not
always possible. In scenarios such as initialization, relocalization, or other
situations that disrupt sequential data continuity, the heatmap is unavailable.
Consequently, it is essential for the model to be capable of accurately detect-
ing keypoints even in the absence of prior heatmap data. In these cases, the
model’s input heatmap is filled entirely with ones, signaling that every po-
sition could potentially contain a keypoint. This approach uses the heatmap
as a guide to direct the search for keypoints previously detected, thereby en-
hancing the model’s tracking capability over longer sequences.

Training stage

In the training stage of AI models, several critical aspects must be addressed:
the dataset, the model, the loss function, and the optimization algorithm. The
first twodataset and model—have already been discussed in the previous
sections. Now, let’s turn the attention to the remaining two: the loss function
and the optimization algorithm.

The primary goal of VSLAM SuperPoint is to enhance the tracking ability
of landmarks. However, this is not the only objective. A good feature detec-
tor must meet several criteria. As discussed in Section 3.1, the distribution of
keypoints across the image significantly impacts the accuracy of pose estima-
tion. Additionally, the quality of descriptors plays a crucial role; consistent or

5.1. Keypoints detections 173

similar descriptor values for a given keypoint across consecutive frames are
essential for reliable feature matching, which in turn affects pose estimation
accuracy. These considerations lead to a multi-objective loss function L as
defined in Equation 5.15. The loss function is composed of two components,
each representing a different aspect of the overall objective. The terms are
weighted by λd and λp. The first component correspond to the loss proposed
in the original SuperPoint paper, while the detector loss is modified version
to align with the additional layers.

L = λdLd + λpLp (5.15)

In this equation, Ld represents the loss associated with descriptors. It is im-
portant that the descriptor of a keypoint remains consistent across two im-
ages. This descriptor loss is defined in Equation 5.16.

Ld =
1

(HcWc)2

Hc

∑
h=1

Wc

∑
w=1

Hc

∑
h′=1

Wc

∑
w′=1

ld(dhw, d′
h′w′ ; shwh′w′) (5.16)

where,
ld(d, d′, s) = λs · s · max(0, mp − dTd′)+

(1 − s) · max(0, dTd′ − mn)
(5.17)

In this equation, Hc and Wc denote the height and width of the feature
map, respectively, which define the resolution of the grid over which the
descriptors are computed. The total number of descriptors in each feature
map is therefore Hc × Wc. The summation is performed over all pairs of
descriptors from two feature maps: the original and the corresponding one
from the next frame.

The function ld(dhw, d′
h′w′ ; shwh′w′) quantifies the difference between a pair

of descriptors dhw and d′
h′w′ located at positions (h, w) and (h′, w′) in the re-

spective feature maps. This difference is weighted by the matching score
shwh′w′ , which indicates the likelihood that these descriptors correspond to
the same keypoint in both images. λs is a weighting factor that balances the
influence of the positive and negative terms, s is the matching score between
the descriptors d and d′. mp is a margin that defines the desired similarity for
a positive match (i.e., when the descriptors should match) andmn is a margin
for a negative match. The loss function ld comprises two hinge loss terms.
The first term, max(0, mp − dTd′), penalizes the model when the similarity
between matching descriptors falls below the margin mp. The second term,
max(0, dTd′ − mn), penalizes the model when the similarity between non-
matching descriptors exceeds the margin mn. The overall descriptor loss Ld

is the average of these individual losses over all descriptor pairs in the feature
maps.

Next, Lp is the loss related to the interest point detector, as defined in

174 Chapter 5. New VSLAM robust methods

Equation 5.18. It is a binary cross-entropy, where Hi,j is a groundtruth of (i, j)

pixel and Ĥi,j is a corresponding value of the detector model’s output.

Lp = −
1

HW

H

∑
i=1

W

∑
j=1

[
Hij log(Ĥij) + (1 − Hij) log(1 − Ĥij)

]
(5.18)

The model and training process were implemented using the PyTorch
Lightning framework [FT19], leveraging a loss function and a dataset gen-
erated through the proposed method. Notably, instead of training the model
entirely from scratch, transfer learning techniques were employed [Yan+20]
to enhance the efficiency and effectiveness of the training process.

The outcomes of the training are depicted in Figure 5.9. In particular, Fig-
ure 5.9a shows the training loss curve, while Figure 5.9 demonstrates how the
detected keypoints evolved throughout the training process. It illustrates the
progression of the detector’s learning process across various training steps.
In the early stages, specifically at training step 600, the heatmap generated by
the detector is diffused and unfocused, indicating that the model has not yet
learned to localize keypoints precisely. As training progresses, particularly
by step 1700, the heatmap begins to show more concentrated areas, but it still
lacks precision. By training step 4200, the heatmap demonstrates a noticeable
improvement, with keypoints becoming more distinct and localized. Finally,
at training step 9800, the heatmap is much more precise, with the detector ac-
curately focusing on specific keypoints, reflecting the model’s learned ability
to detect features with high accuracy. This progression highlights the refine-
ment of the model’s feature detection capabilities as it undergoes training.

Evaluation

The evaluation process focuses on two key aspects: repeatability and track-
ing length. First, the repeatability r of the keypoints was measured. In this
context, repeatability is defined as the ratio of the number of keypoints suc-
cessfully tracked between two consecutive images. This metric is crucial as
it reflects the stability and reliability of the keypoint detection process across
frames. Repeatability is calculated using Equation 5.19, where Nmatches rep-
resents the number of keypoints detected on both consecutive frames, and

N
(1,2)
keypoints denotes the number of keypoints detected on the first frame that

are still visible and trackable in the subsequent frame.

r =
Nmatches

N
(1,2)
keypoints

(5.19)

5.1. Keypoints detections 175

0.0 0.5 1.0 1.5 2.0
Step 1e6

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

(A) Training loss

(B) Training step 600 (C) Training step 1700

(D) Training step 4200 (E) Training step 9800

FIGURE 5.9: Changing details of heatmap over the training.

176 Chapter 5. New VSLAM robust methods

To obtain a comprehensive evaluation, the repeatability ri was measured
for each i-th pair of consecutive frames in the dataset. The results were then
analyzed by calculating the average, standard deviation, and minimum val-
ues of repeatability across all N f frame pairs, as given by Equation 5.20,
Equation 5.21, and Equation 5.22, respectively.

r =
1

N f

N

∑
i=1

ri (5.20)

σr =

√
√
√
√ 1

N f

N

∑
i=1

(ri − r)2 (5.21)

rmin = min(r1, r2, . . . , rN f
) (5.22)

Next, the tracking length was analyzed to evaluate the persistence of key-
points across consecutive frames within the dataset. Given a set of Ns se-
quences, each consisting of Nw consecutive frames, the tracking process was
initiated for Nk keypoints detected in the first frame of each sequence. For
each initial keypoint, the tracking length Lk,s is defined as the maximum in-
dex of consecutive frames where the keypoint could be successfully tracked,
up to the first instance where tracking is lost. This means that if tracking is
lost at the 5th frame, Lk,s is assigned the value 5, even if the keypoint is suc-
cessfully tracked again in subsequent frames. The tracking length for a single
keypoint is calculated as follows:

Lk,s = max {j | ri > 0 for all i ∈ {1, 2, . . . , j}} (5.23)

where ri indicates whether the keypoint is successfully tracked between the
i-th and (i + 1)-th frames (i.e., ri = 1 if the keypoint is tracked, and ri = 0
otherwise).

To evaluate the overall performance, the average tracking length across
all keypoints and sequences is calculated as:

L =
1

Ns · Nk

Ns

∑
s=1

Nk

∑
k=1

Lk,s (5.24)

where L represents the average tracking length across all sequences and key-
points. The standard deviation of the tracking length, which measures the
variability of the tracking performance, is given by:

σL =

√
√
√
√ 1

Ns · Nk

Ns

∑
s=1

Nk

∑
k=1

(Lk,s − L)2 (5.25)

5.2. VSLAM RANSAC 177

These metrics provide a comprehensive evaluation of keypoint tracking per-
formance across the test data. By analyzing these values, the robustness of
the VSLAM SuperPoint model in maintaining accurate and consistent track-
ing across different sequences is better understood.

All results were collected in Table 5.2, which presents the performance on
a test dataset that is part of the TartanAir dataset [Wan+20] which is consid-
ered as a challenging one. The results clearly show that VSLAM SuperPoint
outperforms traditional detectors commonly used in popular VSLAM sys-
tems like ORB-SLAM3 [Cam+21] and Stella VSLAM [SSS19] in terms of the
repeatability.

The deep learning-based detector outperforms traditional methods across
nearly every metric, demonstrating superior repeatability and tracking length.
These results strongly indicate that incorporating deep learning techniques
into feature detection can significantly enhance the robustness of VSLAM
systems. Furthermore, the improvements seen with VSLAM SuperPoint,
compared to the standard SuperPoint model, suggest that the proposed train-
ing process and architectural modifications have further strengthened the
system’s robustness.

Detector r σr L σL

BRISK 57.18 9.71 0.41 0.49

ORB 54.94 9.84 0.46 0.51

SIFT 61.71 9.07 0.53 0.50

SuperPoint 74.33 10.0 0.68 0.47

VSLAM SuperPoint 74.39 10.5 0.74 0.44

TABLE 5.2: Comparison of various detectors and VSLAM SuperPoint.

5.2 VSLAM RANSAC

VSLAM SuperPoint has shown that incorporating historical data alongside
the current frame significantly enhances the performance of the VSLAM sys-
tem. This observation underscores the potential of utilizing historical in-
sights to improve the accuracy of pose estimation. RANSAC, a widely rec-
ognized algorithm for handling outliers in tasks such as pose estimation, has
evolved through numerous variants over the years, each designed to refine

178 Chapter 5. New VSLAM robust methods

its efficacy [Mar+22]. In this section, a new variant of the RANSAC algo-
rithm is proposed, specifically tailored for VSLAM systems. This novel ap-
proach leverages additional metrics collected during the operation to further
enhance the pose estimation process.

At the beginning, let recall the RANSAC algorithm. It is a robust method
for estimation of mathematical model’s parameters based on a data which
main contain outliers. An outlier is a data point that significantly deviates
from the other observations in a dataset. In the context of VSLAM, outliers
may be caused by incorrect measurements or errors in previous tasks like fea-
ture matching. RANSAC was introduced by Fischler and Bolles in [FB81]. It
operates by repeatedly selecting a random subset of the original data. These
subsets are used to estimate the model parameters, and then a consensus set
is determined by identifying the data points that fit well with the model es-
timated from the random subset. The process iterates, each time potentially
increasing the size of the consensus set. The best model is considered to be
the one which corresponds to the largest consensus set. The idea of RANSAC
is presented in Listing 5.3. At the beginning, initialization of variables occurs
(lines 3-5). Then, the algorithm iterates maxIterations times (Line 7). In each
iteration, random points are selected (Line 8) and an attempt is made to fit the
model using these points (Line 9). Subsequently, the algorithm checks (Lines
12-14) which points fit the model. If the number of points that fit the model
exceeds the threshold minInliers (Line 16), the model fitting procedure is
performed again (Line 17). Finally, the overall error is calculated (Line 18),
and if it is the lowest so far, the best model is updated and preserved (Lines
23-24).

During the mapping process, various landmarks are created and added
to the map. However, these landmarks are expected to vary in reliability.
For the purposes of this discussion, reliability is intuitively understood as the
characteristic of landmarks that consistently perform well. A precise defini-
tion of reliability, along with the formula for calculating it, will be provided
later in this section. Given this variation in reliability, landmarks with higher
reliability are anticipated to have a more positive impact on the pose esti-
mation procedure than those with lower reliability. Based on this simple yet
powerful idea, the VSLAM RANSAC is proposed. This concept is inspired
by the PROSAC methodology originally proposed by Chum and Matas.

The PROSAC algorithm is an adaptation of the traditional RANSAC, de-
signed in such way to enhance the efficiency of model fitting in scenarios
with significant inlier noise. By incorporating a prioritization scheme that
leverages the ranking, PROSAC systematically selects the most promising
data points for hypothesis testing [CM05]. Initially, PROSAC was proposed
for the feature matching task. However, the scheme may be extended to
other various tasks such as robust model fitting, object detection, motion es-
timation, and any application requiring outlier rejection or robust parameter

5.2. VSLAM RANSAC 179

1algorithm RANSAC(data, model, numSamples, maxIterations,

threshold, minInliers)

2

3bestModel = null

4bestConsensusSet = null

5lowestError = ∞

6

7for iteration in range(1, maxIterations)

8candidateInliers = SelectRandomPoints(numSamples, data)

9candidateModel = FitModel(model, candidateInliers)

10consensusSet = candidateInliers

11

12for point in data:

13if IsInlier(point, candidateModel, threshold)

14AddPoint(consensusSet, point)

15

16if Size(consensusSet) > minInliers

17refinedModel = FitModel(consensusSet)

18currentError = CalculateError(refinedModel,

19consensusSet)

20

21if currentError < lowestError

22bestModel = refinedModel

23bestConsensusSet = consensusSet

24lowestError = currentError

25end for

26

27return bestModel, bestConsensusSet

28end algorithm

LISTING 5.3: RANSAC pseudocode

estimation in the presence of noise and outliers. This progressive approach
not only accelerates the convergence towards optimal model parameters by
focusing on likely inliers first but also reduces computational overhead com-
pared to conventional RANSAC. As a result, PROSAC offers a robust so-
lution for applications requiring high precision in the presence of extensive
outlier data, making it particularly valuable in fields like computer vision.

The prioritization scheme necessitates the introduction of a measure by
which data points can be sorted. Consequently, this is a good point to in-
troduce and define the reliability metric. The reliability metric sl for a given
landmark l can be defined as the ratio of the number of observations No of a
landmark l to the total expected number of observations Ne that should take
place. It is given by Equation 5.26.

sl =
No

Ne
(5.26)

180 Chapter 5. New VSLAM robust methods

It has previously been noted that the reliability metric can vary among
different landmarks within a map. To substantiate this observation, an ex-
periment was conducted using the StellaVSLAM framework and the KITTI
dataset. For each sequence in the dataset, a map was constructed, and the
observations of landmarks were analyzed. The results are depicted in Fig-
ure 5.10. Specifically, the reliability distribution of the landmarks is illus-
trated in Figure 5.10a, and a second plot in Figure 5.10b provides insight into
the number of observations per landmark for each sequence. The analysis
confirms the earlier discussion regarding the variability in the reliability of
landmarks. The first part of the figure shows a varied distribution of land-
mark reliability across multiple sequences, indicating that some landmarks
consistently offer higher reliability than others. This variability can signif-
icantly impact the performance and accuracy of the VSLAM system. Fur-
thermore, the second part of the figure reveals that the number of observa-
tions per landmark varies significantly, ranging from 2 to 100. This variation
underscores the need for techniques in handling landmarks with differing
number of observations to optimize the mapping and navigation processes.

VSLAM RANSAC takes the idea of PROSAC algorithm, where the quality
metric is calculated as the sum of two key components: the feature matching
quality metric sK(d1, d2) between two descriptors d1, d2 and the landmark’s
l reliability sL(l). This combined quality metric, as shown in Equation 5.27,
ensures that both the precision of feature matches and the reliability of land-
marks are taken into account during the selection process.

s(d1, d2, l) = sL(l) + sK(d1, d2) (5.27)

The explicit form of sK(d1, d2) is not provided here, as it may vary depending
on the type of descriptors used. Different descriptors may require different
definitions of this metric. Next, the informed guess is performed. Based on
the quality metrics the probabilities of each observation is calculated. With
the provided probabilities a random subset is chosen. The rest of the algo-
rithm is the same as RANSAC.

This approach enhances the robustness of the RANSAC method by prior-
itizing feature matches and reliable landmarks during the model estimation
process, giving them a higher likelihood of being selected. This ensures that
the model is built on more accurate and trustworthy data. The detailed im-
plementation of this proposed algorithm can be found in Listing 5.4.

5.2.1 Evaluation

The evaluation focused primarily on two critical metrics: the ratio of inliers
and the localization accuracy of each method compared to classic RANSAC.

5.2. VSLAM RANSAC 181

0.0 0.2 0.4 0.6 0.8 1.0
Reliability

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

sequence_name
kitti_03
kitti_02
kitti_10
kitti_09
kitti_04
kitti_07
kitti_06
kitti_08
kitti_05
kitti_00

(A) Distribution of the number of landmark’s observations in StellaVSLAM.

100 101 102

Observations

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

sequence_name
kitti_03
kitti_02
kitti_10
kitti_09
kitti_04
kitti_07
kitti_06
kitti_08
kitti_05
kitti_00

(B)

FIGURE 5.10: Results of landmarks’ observations analysis using StellaVSLAM and
KITTI dataset.

182 Chapter 5. New VSLAM robust methods

1algorithm VSLAM_RANSAC(qualityMetric, numInitialPoints,

maxIterations, threshold, data)

2

3bestModel = null

4bestConsensusSet = null

5lowestError = ∞

6

7for iteration in range(1, maxIterations)

8# following line differs from RANSAC

9candidateInliers = SelectRandomPoints(numInitialPoints,

10data,

11qualityMetric)

12candidateModel = FitModel(candidateInliers, modelType)

13consensusSet = candidateInliers

14

15for point in data:

16if IsInlier(point, candidateModel, threshold)

17AddPoint(consensusSet, point)

18

19if Size(consensusSet) > minInliers

20refinedModel = FitModel(consensusSet)

21currentError = CalculateError(refinedModel,

22consensusSet)

23

24if currentError < lowestError

25bestModel = refinedModel

26bestConsensusSet = consensusSet

27lowestError = currentError

28end for

29

30return bestModel, bestConsensusSet

31

32end algorithm

LISTING 5.4: VSLAM RANSAC pseudocode

The analysis of inliers ratio provided insights into the outliers rejection. Mean-
while, the second aspect concentrated on assessing and comparing the lo-
calization accuracy, which measures how effectively each method estimates
the camera’s position and orientation over time. These comparative analy-
ses are essential for determining the effectiveness and reliability of VSLAM
RANSAC, particularly in terms of maintaining consistent performance under
challenging environmental conditions.

Before the results are presented, let define the inliers ratio ri. Inliers ratio
is a number of inliers points Ninliers divided by the number of all points used

5.2. VSLAM RANSAC 183

for estimation Nall. It is given by Equation 5.28.

rinliers =
Ninliers

Nall
(5.28)

The evaluations were carried out using sequences from the TUM dataset,
which is well-regarded for testing the performance of visual SLAM systems.
Given the real-time performance requirements of VSLAM, both the tradi-
tional RANSAC and the modified VSLAM RANSAC methods were assessed
under identical experimental conditions. Specifically, both algorithms were
configured to operate with the same parameters: a maximum of 10 iterations
and a reprojection error threshold set at 3 pixels. The detailed results from
these evaluations are summarized in Table 5.3.

Sequence
RANSAC VSLAM RANSAC

rinliers σrinliers rinliers σrinliers

freiburg1_desk 65.857 12.354 67.781 12.564

freiburg1_desk2 65.278 13.915 66.719 12.254

freiburg1_rpy 72.616 8.995 76.424 9.453

freiburg1_xyz 77.267 7.867 78.064 7.591

freiburg2_desk 73.906 9.022 75.086 8.031

freiburg2_rpy 84.918 4.453 82.971 7.080

freiburg2_xyz 80.635 4.602 80.924 4.281

TABLE 5.3: Evaluation results of RANSAC and VSLAM RANSAC – inliers ratio.

The experiments demonstrated that pose estimation within VSLAM sys-
tems is highly affected by outliers. Notably, in nearly all tested sequences,
both the RANSAC and VSLAM RANSAC methods reached their maximum
iteration limit without terminating early, despite the confidence ratio be-
ing set relatively low at 0.8. This persistent reaching of iteration limits un-
derscores the challenging nature of accurately estimating pose in environ-
ments with significant outlier data. However, the modifications incorpo-
rated into VSLAM RANSAC yielded a higher ratio of inliers across most se-
quences compared to traditional RANSAC. Additionally, there was a notice-
able reduction in the standard deviation of inlier ratios when using VSLAM
RANSAC, indicating a more consistent performance across different test sce-
narios. This suggests that the enhancements made to the RANSAC algorithm

184 Chapter 5. New VSLAM robust methods

Sequence
RANSAC VSLAM RANSAC

APE σAPE APE σAPE

freiburg1_desk 0.027 0.018 0.024 0.015

freiburg1_desk2 0.091 0.057 0.037 0.021

freiburg1_rpy 0.0230 0.012 0.0225 0.016

freiburg1_xyz 0.0161 0.010 0.0159 0.011

freiburg2_desk 0.031 0.020 0.030 0.023

freiburg2_rpy 0.015 0.008 0.026 0.015

freiburg2_xyz 0.016 0.010 0.011 0.007

TABLE 5.4: Evaluation results of RANSAC and VSLAM RANSAC – absolute posi-
tion error.

in the context of VSLAM improve its robustness and reliability in handling
outliers.

The next phase of experimentation involved measuring the APE, as de-
tailed in Section 3.10. The results, summarized in Table 5.4, reveal a pos-
itive impact on pose estimation accuracy in most of the sequences when
using VSLAM RANSAC compared to the classic RANSAC approach. This
demonstrates enhanced performance in terms of accuracy, although the im-
provements are not as pronounced as those observed in the inlier ratio. It is
suspected that other aspects of the VSLAM system, such as local map track-
ing and loop closure mechanisms, may significantly influence overall perfor-
mance.

It is important to highlight that the freiburg2_rpy sequence, marked in red,
was singled out for a specific reason. At first, this sequence shows that the
RANSAC algorithm performs better in terms of the number of inliers and the
mean APE. However, a deeper analysis reveals that this is due to the fact that
the number of frames tracked by RANSAC is significantly lower compared
to VSLAM RANSAC. This reduced number of tracked frames results in arti-
ficially higher inlier counts and lower APE. This observation underscores the
importance of carefully interpreting VSLAM evaluation results, as multiple
factors must be considered. Furthermore, this finding suggests potential fu-
ture research in developing new metrics to more accurately assess tracking
performance. Finally, it is also evident that VSLAM RANSAC still preserves
its robustness, consistently maintaining accurate tracking and producing re-
liable estimates even in situations where traditional RANSAC fails.

5.2. VSLAM RANSAC 185

One of the primary goals of VSLAM RANSAC was to reduce the max-
imum number of iterations compared to the classic RANSAC. If the num-
ber of iterations can be reduced while maintaining the same or even better
accuracy, VSLAM RANSAC not only enhances algorithmic robustness but
also improves computational efficiency covering two aspects of robustness.
In fact, tests were conducted where the classic RANSAC was executed with
various maximum iteration limits, specifically 15, 20, 25, and 30 iterations.
The results demonstrated that classic RANSAC required roughly twice the
number of iterations to achieve similar accuracy to VSLAM RANSAC, high-
lighting the efficiency and robustness of the proposed approach.

This chapter concludes the discussion on new robust methods, a core
segment of this thesis. Various techniques aimed at enhancing the reliabil-
ity and accuracy of VSLAM systems have been explored, focusing on how
these methodologies can mitigate common challenges associated with SLAM
technology. The introduction of VSLAM SuperPoint and VSLAM RANSAC
has been showcased, exemplifying significant strides made in this area and
demonstrating the potential and complexity of integrating robust methods
into existing frameworks. As this chapter is brought to a close, the founda-
tion is established for the final chapter of the thesis, which will provide a
comprehensive summary of the entire study.

187

Chapter 6

Conclusions

Overview

This chapter provides a comprehensive summary of the research conducted
throughout the thesis, emphasizing the significant advancements made in
improving the robustness of VSLAM systems. It revisits the primary ob-
jectives and proposed methods, discussing how each has been addressed
by the findings and developments presented in the preceding chapters. It
also identifies potential directions for future research, inspired by the un-
resolved issues and emerging trends in the field. It proposes several spe-
cific areas where further investigations could yield significant improvements
in VSLAM robustness, especially using Modular SLAM. Finally, the chap-
ter concludes with reflections on the broader implications of this research for
the fields such as autonomous systems or augmented reality, suggesting how
the enhanced VSLAM capabilities could be integrated into various practical
applications.

“Somewhere, something incredible is waiting to be known.”
– Carl Sagan

188 Chapter 6. Conclusions

Throughout this thesis, the realms of Modular SLAM have been exten-
sively explored, and new, robust methods that serve as essential components
of the VSLAM pipeline have been introduced. As this work is brought to an
end, it is relevant to reflect on the significant achievements that has been cov-
ered. At the beginning, a comprehensive introduction to the challenges and
developments in SLAM and VSLAM was provided, surveying almost four
decades of research in this dynamic field. This foundation set the stage for
the subsequent examination and application of robustness-enhancing strate-
gies within VSLAM systems. The methodologies proposed and examined
aim to mitigate the vulnerabilities of traditional approaches, emphasizing
the importance of adaptability and resilience in real-world applications. Fur-
thermore, the challenges was described and initial analysis of the problems
has been conducted

Furthermore, the concept of Modular SLAM was proposed, marking a
significant contribution to this PhD thesis as a fundamental component of the
research. Specifically developed for this study, the Modular SLAM employs
a modular architecture that enhances SLAM capabilities by offering flexibil-
ity and extensibility. This versatile framework supports rapid prototyping
and comprehensive evaluation of various SLAM algorithms, thus facilitat-
ing the exploration and implementation of diverse strategies across frontend,
backend, and mapping. By enhancing the adaptability and functionality of
SLAM systems, the Modular SLAM framework fosters avenues for experi-
mentation, innovation, and advancement in the field, establishing itself as
an invaluable resource for researchers and practitioners. Notably, it has been
shown that software architecture and design patterns may be also beneficial
for the researchers. Moreover, Modular SLAM integrates disciplines such
as computer vision, 3D reconstruction, and software design, adopting best
practices to achieve robustness.

In terms of robustness, the scope of this concept was significantly ex-
panded in this work. Robustness is not only understood as algorithmic re-
silience but as a broader term encompassing multiple aspects. This thesis
proposes a model of VSLAM robustness consisting of three components: al-
gorithmic robustness, software robustness, and processing time efficiency,
each critical to the overall performance and reliability of VSLAM systems. In
this thesis, each aspect of robustness is addressed: Modular SLAM enhances
software robustness, VSLAM SuperPoint and VSLAM RANSAC contribute
to algorithmic robustness, and VSLAM RANSAC also improves performance
robustness, typically delivering better results in less number of iterations.

VSLAM SuperPoint represents a significant advancement in keypoint de-
tection by utilizing deep learning to achieve robust detection and accurate
matching. Unlike traditional VSLAM systems, which depend on single im-
ages to detect keypoints, VSLAM SuperPoint capitalizes on the sequential
processing of images inherent in VSLAM. This innovative method integrates

6.1. Future Work 189

additional data from previously detected keypoints, thereby enhancing the
detector’s ability to create comprehensive keypoint heatmaps. This enhance-
ment is crucial as it allows the detector to leverage historical data effectively.
The findings from this study indicate that the repeatability rates of tradi-
tional detectors such as ORB or SIFT are notably inferior to those achieved
with deep learning-based methods, demonstrating that VSLAM systems can
significantly benefit from incorporating these advanced approaches.

Furthermore, this thesis introduces VSLAM RANSAC, a refined variant
of the classic RANSAC algorithm that incorporates an informed selection
process for subset points based on the reliability of landmarks. This novel
approach has been proven to enhance the performance of VSLAM systems in
pose estimation tasks, surpassing the results of traditional RANSAC imple-
mentations. By using a reliability measure for landmarks, VSLAM RANSAC
optimizes the selection of data points for model estimation, resulting in more
accurate and robust pose estimation.

Both VSLAM SuperPoint and VSLAM RANSAC exemplify how histor-
ical data can be effectively used to increase the accuracy and robustness of
VSLAM systems. The research presented in this thesis not only supports but
also solidifies the proposition that integrating sophisticated data handling
and analysis techniques can lead to significant improvements in the perfor-
mance of VSLAM technologies. This thesis, therefore, confirms the critical
role of advanced data utilization strategies in enhancing the capabilities of
VSLAM systems.

Clearly, all these contributions represent a considerable step in the on-
going research within the VSLAM domain. While significant advancements
have been made, numerous challenges and open problems in VSLAM re-
main. These unresolved issues highlight the dynamic and evolving nature
of the field, underscoring the need for continued exploration and innova-
tion. Consequently, this leads to the next section of the conclusions, where
proposals for further research areas are outlined. These proposed directions
aim to address the current limitations and expand upon the work presented
in this thesis, offering a pathway for future advancements in the robustness
and efficiency of VSLAM systems.

6.1 Future Work

This thesis has introduced several methodologies aimed at enhancing the ro-
bustness VSLAM systems. However, achieving complete robustness remains
an ongoing and crucial challenge. Despite considerable advancements in the
field, the complex and dynamic nature of real-world environments highlights
the need for further research. Future studies should prioritize practical ap-
plications and real-world testing, as unique challenges often emerge only un-
der such conditions. At the outset of this thesis, a fundamental question was

190 Chapter 6. Conclusions

posed: "Is SLAM solved?" The answer is still no. Numerous issues persist
that demand comprehensive solutions and innovative approaches.

The Modular SLAM framework developed in this work represents a con-
cept that is anticipated to undergo further refinement and enhancement. This
framework offers numerous opportunities for augmentation through the in-
tegration of new algorithms and functionalities. For instance, incorporating
other pose estimation algorithms could improve the accuracy and robust-
ness of VSLAM systems. While this thesis has primarily focused on feature-
based systems, it is evident that direct methods, which typically generate
more detailed maps, are gaining popularity and will likely continue to do
so. Additionally, extending the framework to include support for Python,
language that has gained substantial popularity among researchers, would
significantly enhance its accessibility and utility. Moreover, as time execu-
tion is crucial in VSLAM systems Modular SLAM research should also focus
on the code optimization to make it possible to run on the smartphones i.e.
to serve as a core technology for AR applications.

Furthermore, the exploration of collaborative and distributed VSLAM
systems was not covered in this thesis. In today’s era of interconnected de-
vices, there exists potential to improve global mapping significantly. For ex-
ample, autonomous vehicles could share real-time data to refine and enhance
the accuracy of collective mapping efforts.

Another unresolved challenge is dynamic objects handling within VSLAM
systems. Current methodologies largely focus on excluding dynamic objects
from maps. However, recognizing and incorporating dynamic objects could
be beneficial in scenarios such as autonomous navigation where interaction
with moving objects is inevitable.

One of the most important paths for ongoing and future research is the
application of AI algorithms, which can significantly enhance the capabili-
ties of VSLAM systems. Integrating AI with traditional geometric-based ap-
proaches offers a robust synthesis that leverages the strengths of both method-
ologies. AI algorithms, particularly those based on machine learning and
deep learning, can process complex visual data at high speeds and improve
the accuracy of feature detection, data association, and environmental map-
ping. These algorithms are particularly adept at handling the high variabil-
ity and unpredictability found in real-world environments, where traditional
methods may fail.

The summary of potential research areas in VSLAM, as categorized in
the provided mindmap, demonstrates that VSLAM remains a rich field for
scientific inquiry. There are numerous areas that require further attention
from researchers, as illustrated in Figure 6.1. This mindmap of future studies
underscores the vast scope for advancements and the ongoing relevance of
VSLAM research in technological progress.

Finally, it is important to note that VSLAM can be utilized in a variety

6.1. Future Work 191

VSLAM
research areas

VSLAM

Large-
scale

SLAM

Robust
SLAM

AI

Co-
SLAM

Dynamic
Objects

Modular
SLAM

Python
support

Speed
ROS

bindings

Algorithms

FIGURE 6.1: Potential directions for future research and development.

192 Chapter 6. Conclusions

of applications. One of the most compelling uses is in AR, where VSLAM’s
precise tracking capabilities allow for the addition and tracking of markers
on the map, which can then be displayed as additional content for users.
Another significant application is autonomous navigation, where VSLAM
algorithms help localize and build an understanding of the environment.

These two use-cases open up possibilities for employing VSLAM across
various disciplines. For instance, in construction management, VSLAM can
be used for precise site reconstructions. It may also play a crucial role in secu-
rity and surveillance, logistics and warehousing, agriculture, and many other
fields. This broad applicability underscores the versatility and importance of
VSLAM technology.

Hopefully, Modular SLAM will continue to evolve, becoming an essential
tool not only for researchers but also for practitioners who contribute to the
advancement of VSLAM technology.

193

Appendix A

SLAM projects

Over the years, researchers have developed numerous solutions to address
the challenges posed by SLAM. Visual SLAM, in particular, has seen sig-
nificant advancements, resulting in a variety of systems that have been in-
strumental in advancing the field. One of the contributions of this thesis is
to provide a comprehensive summary of the most valuable and influential
VSLAM systems.

The tables in this appendix (see Table A.1–Table A.4) present an overview
of these systems, highlighting their creation date, current status, sensor com-
patibility, type of SLAM approach, and additional notes that provide context
to their significance. This summary serves as a resource for understanding
the evolution and current state of VSLAM technologies.

194 Appendix A. SLAM projects

N
a

m
e

C
rea

ted
S

ta
tu

s
S

en
so

rs
T

y
p

e
N

o
tes

D
TA

M
[N

ew
+

11]
2011

Inactive
M

onoc-
u

lar
D

irect

D
ense

Tracking
and

M
ap

p
ing,focu

sed
on

real-tim
e

d
ense

3D
reconstru

ction.

K
inect-Fu

sion
[N

L
D

11]
2011

Inactive
R

G
B

-D
D

ense

R
eal-tim

e
d

ense
m

ap
p

ing
u

sing
K

inectsensor,
highly

infl
u

entialin
R

G
B

-D
SL

A
M

.

D
V

O
-SL

A
M

[K
SC

13]
2013

Inactive
R

G
B

-D
D

irect
D

ense
visu

alod
om

etry,
u

ses
d

irectim
age

alignm
ent.

R
G

B
D

SL
A

M
v2

[E
nd

+
14]

2014
Inactive

R
G

B
-D

Featu
re-

based

E
xtend

ed
version

ofthe
originalR

G
B

D
SL

A
M

w
ith

im
p

roved
p

erform
ance.

T
A

B
L

E
A

.1:T
he

m
ostsignifi

cantV
SL

A
M

system
s

I

Appendix A. SLAM projects 195

N
a

m
e

C
re

a
te

d
S

ta
tu

s
S

en
so

rs
T

y
p

e
N

o
te

s

L
SD

-S
L

A
M

[E
SC

14
]

20
14

In
ac

ti
ve

M
on

oc
-

u
la

r
D

ir
ec

t
L

ar
ge

-S
ca

le
D

ir
ec

t
M

on
oc

u
la

r
SL

A
M

,
se

m
i-

d
en

se
m

ap
p

in
g.

SV
O

[F
P

S1
4]

20
14

In
ac

ti
ve

M
on

oc
-

u
la

r
D

ir
ec

t

Se
m

i-
D

ir
ec

tV
is

u
al

O
d

om
et

ry
,b

al
an

ce
s

sp
ee

d
an

d
ac

cu
ra

cy
,o

ft
en

u
se

d
in

d
ro

ne
s.

O
R

B
-S

L
A

M
[M

M
T

15
]

20
15

In
ac

ti
ve

M
on

oc
-

u
la

r
Fe

at
u

re
-

ba
se

d

W
id

el
y

u
se

d
,a

cc
u

ra
te

,
re

al
-t

im
e

p
er

fo
rm

an
ce

.

E
la

st
ic

Fu
si

on
[W

he
+

16
]

20
16

In
ac

ti
ve

R
G

B
-D

D
en

se
R

ea
l-

ti
m

e
d

en
se

vi
su

al
SL

A
M

,e
m

p
ha

si
s

on
su

rf
ac

e
re

co
ns

tr
u

ct
io

n.

T
A

B
L

E
A

.2
:T

he
m

os
ts

ig
ni

fi
ca

nt
V

SL
A

M
sy

st
em

s
II

196 Appendix A. SLAM projects

N
a

m
e

C
rea

ted
S

ta
tu

s
S

en
so

rs
T

y
p

e
N

o
tes

O
R

B
-SL

A
M

2
[M

T
17]

2017
A

ctive

M
onoc-
u

lar,
Stereo,
R

G
B

-D

Featu
re-

based

Im
p

roved
version

of
O

R
B

-SL
A

M
,su

p
p

orts
m

u
ltip

le
sensor

confi
gu

rations.

P
roSL

A
M

[SC
G

18]
2018

Inactive
M

onoc-
u

lar,
Stereo

Featu
re-

based

L
ightw

eightSL
A

M
system

op
tim

ized
for

effi
ciency,

sim
p

le
and

effective.

K
im

era
[R

os+
19;R

os+
20b;

R
os+

20a;R
os+

21b]
2019

A
ctive

M
onoc-
u

lar,
Stereo,
R

G
B

-D

Featu
re-

based

C
om

bines
SL

A
M

w
ith

3D
m

esh
generation,sem

antic
labeling,and

p
lanning.

R
TabM

ap
[L

M
18;L

M
17;

L
M

14;L
M

13;L
M

11]
2011

A
ctive

R
G

B
-D

,
Stereo

Featu
re-

based

R
eal-Tim

e
A

p
p

earance-B
ased

M
ap

p
ing,loop

closu
re

d
etection.

T
A

B
L

E
A

.3:T
he

m
ostsignifi

cantV
SL

A
M

system
s

III

Appendix A. SLAM projects 197

N
a

m
e

C
re

a
te

d
S

ta
tu

s
S

en
so

rs
T

y
p

e
N

o
te

s

St
el

la
V

SL
A

M
[S

SS
19

]
20

19
A

ct
iv

e

M
on

oc
-

u
la

r,
St

er
eo

,
R

G
B

-D

Fe
at

u
re

-
ba

se
d

Fo
rk

of
O

p
en

V
SL

A
M

w
it

h
ad

d
it

io
na

lf
ea

tu
re

s
an

d
im

p
ro

ve
m

en
ts

.

O
R

B
-S

L
A

M
3

[C
am

+
21

]
20

21
A

ct
iv

e

M
on

oc
-

u
la

r,
St

er
eo

,
R

G
B

-D

Fe
at

u
re

-
ba

se
d

In
tr

od
u

ce
s

su
p

p
or

tf
or

m
u

lt
i-

m
ap

an
d

in
er

ti
al

d
at

a
in

te
gr

at
io

n.

D
R

O
ID

-S
L

A
M

[T
D

21
]

20
21

In
ac

ti
ve

M
on

oc
-

u
la

r,
St

er
eo

D
ir

ec
t

D
ee

p
-l

ea
rn

in
g-

ba
se

d
SL

A
M

,k
no

w
n

fo
r

it
s

ro
bu

st
ne

ss
in

d
iv

er
se

en
vi

ro
nm

en
ts

.

N
er

f-
SL

A
M

[R
L

C
22

]
20

22
A

ct
iv

e
M

on
oc

-
u

la
r

N
eu

ra
l

N
eu

ra
lR

ad
ia

nc
e

Fi
el

d
s

fo
r

SL
A

M
,c

om
bi

ne
s

N
eR

F
w

it
h

SL
A

M
fo

r
p

ho
to

re
al

is
ti

c
sc

en
e

re
co

ns
tr

u
ct

io
n.

T
A

B
L

E
A

.4
:T

he
m

os
ts

ig
ni

fi
ca

nt
V

SL
A

M
sy

st
em

s
IV

199

Appendix B

Additional resources

This appendix serves as a comprehensive repository of resources accompa-
nying the main body of the thesis. Among these resources, readers will find
links to GitHub repositories hosting the relevant source code, Jupyter note-
books [Jup24] that detail the experiments conducted with thorough descrip-
tions, and Docker images [Mer14] that encapsulate the computational envi-
ronments used throughout the research. The inclusion of these materials un-
derscores the commitment to transparency and the advancement of knowl-
edge within the field, allowing researchers to build upon the foundational
work presented in this thesis. Table B.1 compiles a comprehensive list of re-
sources utilized throughout this thesis, providing URLs for their locations as
well as descriptions of each asset.

Resource Path Description

Modular SLAM https://github.com/marcin-
ochman/modular-slam

Source code of modular-slam library
containing C++ implementation,

Dockerfiles of other VSLAM systems
and evaluation scripts

Modular SLAM
Docs

https://github.com/marcin-
ochman/modular-slam

Documentation of modular-slam
library including classes and functions

overview, architecture and user
manual.

Docker Images https://github.com/marcin-
ochman/modular-slam

All Docker images of the systems
evaluated in this thesis including

modular-slam, Stella VSLAM,
ORB-SLAM3 and LSD-SLAM.

Jupyter Notebook https://github.com/marcin-
ochman/phd-resources.git

All experiments were conducted using
Jupyter Notebook to make them
reproducible. They contain all

commands used in the research along
with short description.

TABLE B.1: List of resources developed for this thesis.

https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/modular-slam
https://github.com/marcin-ochman/phd-resources.git
https://github.com/marcin-ochman/phd-resources.git

200 Appendix B. Additional resources

A significant contribution of this thesis and Modular SLAM is the devel-
opment of Docker images for several popular VSLAM systems. Given that
most of these systems do not offer Dockerfiles, creating these images pre-
sented numerous challenges. The decision to utilize Docker was motivated
by the need to guarantee the reliable operation of these algorithms and to
facilitate their distribution among researchers wishing to benchmark them
against their own developments. Table B.2 presents a list of these Docker
images, each accompanied by a brief description and a location in Modular
SLAM repository.

Docker Image Path Description

modular-slam/lsd-
slam

utils/tools/py/3rdparty_slam/lsd_slam LSD-SLAM [ESC14]

modular-
slam/stella-vslam

utils/tools/py/3rdparty/slam/stella_vslam StellaVSLAM [SSS19]

modular-
slam/orb-slam-3

utils/tools/py/3rdparty_slam/orb_slam_3 ORB-SLAM3[Cam+21]

TABLE B.2: List of Docker images.

201

Bibliography

[ABD12] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J.
Davison. “KAZE Features”. In: Computer Vision – ECCV 2012.
Springer Berlin Heidelberg, 2012, pp. 214–227. [Link].

[AK21] Saba Arshad and Gon-Woo Kim. “Role of Deep Learning in
Loop Closure Detection for Visual and Lidar SLAM: A Sur-
vey”. In: Sensors 21.4 (Feb. 2021), p. 1243. [Link].

[AKB08] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. “Cen-
SurE: Center Surround Extremas for Realtime Feature De-
tection and Matching”. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, pp. 102–115. [Link].

[AMT22] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team.
Ceres Solver. Version 2.1. Mar. 2022.

[ANB13] Pablo Alcantarilla, Jesus Nuevo, and Adrien Bartoli. “Fast Ex-
plicit Diffusion for Accelerated Features in Nonlinear Scale
Spaces”. In: Procedings of the British Machine Vision Conference
2013. British Machine Vision Association, 2013. [Link].

[Apa+22] Joaquin Aparicio et al. “A Survey on Acoustic Positioning Sys-
tems for Location-Based Services”. In: IEEE Transactions on In-
strumentation and Measurement 71 (2022), pp. 1–36. [Link].

[Aqe+16] Mohammad O. A. Aqel et al. “Review of visual odometry:
types, approaches, challenges, and applications”. In: Springer-
Plus 5.1 (Oct. 2016). ISSN: 2193-1801. [Link].

[Aru+02] M.S. Arulampalam et al. “A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking”. In: IEEE
Transactions on Signal Processing 50.2 (2002), pp. 174–188. [Link].

[ASG20] Bjorn Andrist, Viktor Sehr, and Ben Garney. C++ High Perfor-
mance. en. 2nd ed. Birmingham, England: Packt Publishing,
Dec. 2020.

[Aua+10] Fernando A Auat Cheein et al. “SLAM algorithm applied to
robotics assistance for navigation in unknown environments”.
In: Journal of NeuroEngineering and Rehabilitation 7.1 (Feb. 2010).
ISSN: 1743-0003. [Link].

https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.3390/s21041243
https://doi.org/10.1007/978-3-540-88693-8_8
https://doi.org/10.5244/c.27.13
https://doi.org/10.1109/tim.2022.3210943
https://doi.org/10.1186/s40064-016-3573-7
https://doi.org/10.1109/78.978374
https://doi.org/10.1186/1743-0003-7-10

202 Bibliography

[Aul+08] Josep Aulinas et al. “The SLAM problem: a survey”. In:
vol. 184. Jan. 2008, pp. 363–371. [Link].

[Azz+20] Rana Azzam et al. “Feature-based visual simultaneous local-
ization and mapping: a survey”. In: SN Applied Sciences 2.2
(Jan. 2020). ISSN: 2523-3971. [Link].

[Bai02] Tim Bailey. “Mobile Robot Localisation and Mapping in Exten-
sive Outdoor Environments”. In: 2002.

[Bal+21] Irene Ballester et al. “DOT: Dynamic Object Tracking for Visual
SLAM”. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2021. [Link].

[Bar+22] Andréa Macario Barros et al. “A Comprehensive Survey of
Visual SLAM Algorithms”. In: Robotics 11.1 (Feb. 2022), p. 24.
[Link].

[Bar21] Lorena A. Barba. “The Python/Jupyter Ecosystem: Today’s
Problem-Solving Environment for Computational Science”. In:
Computing in Science & Engineering 23.3 (May 2021), pp. 5–9.
ISSN: 1558-366X. [Link].

[BC21] Hudson Martins Silva Bruno and Esther Luna Colombini.
“LIFT-SLAM: A deep-learning feature-based monocular visual
SLAM method”. In: Neurocomputing 455 (Sept. 2021), pp. 97–
110. [Link].

[BCL15] Mark Billinghurst, Adrian Clark, and Gun Lee. “A Survey
of Augmented Reality”. In: Foundations and Trends® in Hu-
man–Computer Interaction 8.2-3 (2015), pp. 73–272. [Link].

[BD06] T. Bailey and H. Durrant-Whyte. “Simultaneous localization
and mapping (SLAM): part II”. In: IEEE Robotics & Automation
Magazine 13.3 (Sept. 2006), pp. 108–117. ISSN: 1070-9932. [Link].

[Bes+18] Berta Bescos et al. “DynaSLAM: Tracking, Mapping, and In-
painting in Dynamic Scenes”. In: IEEE Robotics and Automation
Letters 3.4 (Oct. 2018), pp. 4076–4083. ISSN: 2377-3774. [Link].

[BKC12] Len Bass, Rick Kazman, and Paul Clements. Software Architec-
ture in Practice. en. 3rd ed. SEI series in software engineering.
Boston, MA: Addison-Wesley Educational, Sept. 2012.

[Bla19] Jose Luis Blanco-Claraco. “A Modular Optimization Frame-
work for Localization and Mapping”. In: Proceedings of Robotics:
Science and Systems. FreiburgimBreisgau, Germany, June 2019.
[Link].

[Bos+03] M. Bosse et al. “An Atlas framework for scalable mapping”. In:
2003 IEEE International Conference on Robotics and Automation
(Cat. No.03CH37422). Vol. 2. 2003, 1899–1906 vol.2. [Link].

https://doi.org/10.3233/978-1-58603-925-7-363
https://doi.org/10.1007/s42452-020-2001-3
https://doi.org/10.1109/icra48506.2021.9561452
https://doi.org/10.3390/robotics11010024
https://doi.org/10.1109/mcse.2021.3074693
https://doi.org/10.1016/j.neucom.2021.05.027
https://doi.org/10.1561/1100000049
https://doi.org/10.1109/mra.2006.1678144
https://doi.org/10.1109/lra.2018.2860039
https://doi.org/10.15607/RSS.2019.XV.043
https://doi.org/10.1109/ROBOT.2003.1241872

Bibliography 203

[Bou21] Youssef Bouaziz. “Visual SLAM with automatic map update in
dynamic environments”. PhD thesis. July 2021.

[BSA13] Jaime Boal, Álvaro Sánchez-Miralles, and Álvaro Arranz.
“Topological simultaneous localization and mapping: a sur-
vey”. In: Robotica 32.5 (Dec. 2013), pp. 803–821. [Link].

[BTG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF:
Speeded Up Robust Features”. In: Computer Vision – ECCV
2006. Springer Berlin Heidelberg, 2006, pp. 404–417. [Link].

[Bur+16] Michael Burri et al. “The EuRoC micro aerial vehicle datasets”.
In: The International Journal of Robotics Research 35.10 (Jan. 2016),
pp. 1157–1163. [Link].

[Bus+96] Frank Buschmann et al. Pattern-oriented software architecture. en.
Wiley Software Patterns Series. Nashville, TN: John Wiley &
Sons, July 1996.

[Cad+16] Cesar Cadena et al. “Past, Present, and Future of Simul-
taneous Localization and Mapping: Toward the Robust-
Perception Age”. In: IEEE Transactions on Robotics 32.6 (Dec.
2016), pp. 1309–1332. [Link].

[Cal+10] Michael Calonder et al. “BRIEF: Binary Robust Indepen-
dent Elementary Features”. In: Computer Vision – ECCV 2010.
Springer Berlin Heidelberg, 2010, pp. 778–792. [Link].

[Cam+21] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source
Library for Visual, Visual–Inertial, and Multimap SLAM”. In:
IEEE Transactions on Robotics 37.6 (Dec. 2021), pp. 1874–1890.
[Link].

[Car+15] Luca Carlone et al. “Initialization techniques for 3D SLAM: A
survey on rotation estimation and its use in pose graph opti-
mization”. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2015. [Link].

[Cen+20] Linga Reddy Cenkeramaddi et al. “A Survey on Sensors for
Autonomous Systems”. In: 2020 15th IEEE Conference on In-
dustrial Electronics and Applications (ICIEA). IEEE, Nov. 2020.
[Link].

[Cha20] Hyunggi Chang. Visual SLAM Roadmap. . 2020.

[Che+18] Chang Chen et al. “A Review of Visual-Inertial Simultane-
ous Localization and Mapping from Filtering-Based and
Optimization-Based Perspectives”. In: Robotics 7.3 (Aug. 2018),
p. 45. [Link].

https://doi.org/10.1017/s0263574713001070
https://doi.org/10.1007/11744023_32
https://doi.org/10.1177/0278364915620033
https://doi.org/10.1109/tro.2016.2624754
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/tro.2021.3075644
https://doi.org/10.1109/icra.2015.7139836
https://doi.org/10.1109/iciea48937.2020.9248282
https://doi.org/10.3390/robotics7030045

204 Bibliography

[Che+22a] Weifeng Chen et al. “An Overview on Visual SLAM: From
Tradition to Semantic”. In: Remote Sensing 14.13 (June 2022),
p. 3010. ISSN: 2072-4292. [Link].

[Che+22b] Weifeng Chen et al. “SLAM Overview: From Single Sensor to
Heterogeneous Fusion”. In: Remote Sensing 14.23 (Nov. 2022),
p. 6033. [Link].

[Cho+15] T.J. Chong et al. “Sensor Technologies and Simultaneous Local-
ization and Mapping (SLAM)”. In: Procedia Computer Science 76
(2015), pp. 174–179. [Link].

[Chu+22] Chi-Ming Chung et al. Orbeez-SLAM: A Real-time Monocular Vi-
sual SLAM with ORB Features and NeRF-realized Mapping. 2022.
[Link].

[CM05] O. Chum and J. Matas. “Matching with PROSAC - progressive
sample consensus”. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1.
2005, 220–226 vol. 1. [Link].

[CN01] H. Choset and K. Nagatani. “Topological simultaneous lo-
calization and mapping (SLAM): toward exact localization
without explicit localization”. In: IEEE Transactions on Robotics
and Automation 17.2 (Apr. 2001), pp. 125–137. ISSN: 1042-296X.
[Link].

[Col+20] Mirco Colosi et al. “Plug-and-Play SLAM: A Unified SLAM Ar-
chitecture for Modularity and Ease of Use”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, Oct. 2020. [Link].

[Cza+20] Jan Czarnowski et al. “DeepFactors: Real-Time Probabilistic
Dense Monocular SLAM”. In: IEEE Robotics and Automation
Letters 5.2 (Apr. 2020), pp. 721–728. [Link].

[Dav+07] Andrew J. Davison et al. “MonoSLAM: Real-Time Single Cam-
era SLAM”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 29.6 (June 2007), pp. 1052–1067. [Link].

[Dav03] Davison. “Real-time simultaneous localisation and mapping
with a single camera”. In: Proceedings Ninth IEEE International
Conference on Computer Vision. IEEE, 2003. [Link].

[DB06] H. Durrant-Whyte and T. Bailey. “Simultaneous localization
and mapping: part I”. In: IEEE Robotics & Automation Magazine
13.2 (June 2006), pp. 99–110. [Link].

[DC22] Frank Dellaert and GTSAM Contributors. borglab/gtsam. Ver-
sion 4.2a8. May 2022. [Link].

https://doi.org/10.3390/rs14133010
https://doi.org/10.3390/rs14236033
https://doi.org/10.1016/j.procs.2015.12.336
https://doi.org/10.48550/ARXIV.2209.13274
https://doi.org/10.1109/CVPR.2005.221
https://doi.org/10.1109/70.928558
https://doi.org/10.1109/iros45743.2020.9341611
https://doi.org/10.1109/lra.2020.2965415
https://doi.org/10.1109/tpami.2007.1049
https://doi.org/10.1109/iccv.2003.1238654
https://doi.org/10.1109/mra.2006.1638022
https://doi.org/10.5281/zenodo.5794541

Bibliography 205

[Del12] Frank Dellaert. “Factor Graphs and GTSAM: A Hands-on In-
troduction”. In: 2012.

[DFG01] Arnaud Doucet, Nando de Freitas, and Neil Gordon, eds. Se-
quential Monte Carlo methods in practice. en. 2001st ed. Informa-
tion Science and Statistics. New York, NY: Springer, June 2001.

[Die06] James Diebel. “Representing Attitude : Euler Angles , Unit
Quaternions , and Rotation Vectors”. In: 2006.

[Dis+01] M.W.M.G. Dissanayake et al. “A solution to the simultane-
ous localization and map building (SLAM) problem”. In:
IEEE Transactions on Robotics and Automation 17.3 (June 2001),
pp. 229–241. [Link].

[Dis+11] Gamini Dissanayake et al. “A review of recent developments
in Simultaneous Localization and Mapping”. In: 2011 6th Inter-
national Conference on Industrial and Information Systems. IEEE,
Aug. 2011. [Link].

[DLD23] Nigel Joseph Bandeira Dias, Gustavo Teodoro Laureano, and
Ronaldo Martins Da Costa. “Keyframe Selection for Visual
Localization and Mapping Tasks: A Systematic Literature
Review”. In: Robotics 12.3 (June 2023), p. 88. ISSN: 2218-6581.
[Link].

[DMR18] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
“SuperPoint: Self-Supervised Interest Point Detection and De-
scription”. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). IEEE, June 2018.
[Link].

[Dre+21] Nathan Drenkow et al. A Systematic Review of Robustness in
Deep Learning for Computer Vision: Mind the gap? 2021. [Link].

[DRN96] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. “Lo-
calization of Autonomous Guided Vehicles”. In: Robotics Re-
search. Ed. by Georges Giralt and Gerhard Hirzinger. London:
Springer London, 1996, pp. 613–625. ISBN: 978-1-4471-0765-1.

[Dua+19] Chao Duan et al. “Deep Learning for Visual SLAM in Trans-
portation Robotics: A review”. In: Transportation Safety and En-
vironment 1.3 (Dec. 2019), pp. 177–184. [Link].

[Dur88] H.F. Durrant-Whyte. “Uncertain geometry in robotics”. In:
IEEE Journal on Robotics and Automation 4.1 (1988), pp. 23–31.
[Link].

[DV20] César Debeunne and Damien Vivet. “A Review of Visual-
LiDAR Fusion based Simultaneous Localization and Map-
ping”. In: Sensors 20.7 (Apr. 2020), p. 2068. [Link].

https://doi.org/10.1109/70.938381
https://doi.org/10.1109/iciinfs.2011.6038117
https://doi.org/10.3390/robotics12030088
https://doi.org/10.1109/cvprw.2018.00060
https://doi.org/10.48550/ARXIV.2112.00639
https://doi.org/10.1093/tse/tdz019
https://doi.org/10.1109/56.768
https://doi.org/10.3390/s20072068

206 Bibliography

[DWW23] Yong Dai, Jiaxin Wu, and Duo Wang. “A Review of Common
Techniques for Visual Simultaneous Localization and Map-
ping”. In: Journal of Robotics 2023 (Feb. 2023). Ed. by Keigo
Watanabe, pp. 1–21. ISSN: 1687-9600. [Link].

[EKC18] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct
Sparse Odometry”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 40.3 (Mar. 2018), pp. 611–625. [Link].

[End+14] Felix Endres et al. “3-D Mapping With an RGB-D Camera”.
In: IEEE Transactions on Robotics 30.1 (Feb. 2014), pp. 177–187.
[Link].

[ESC14] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-
SLAM: Large-Scale Direct Monocular SLAM”. In: Computer
Vision – ECCV 2014. Springer International Publishing, 2014,
pp. 834–849. [Link].

[ETM21] Jos Elfring, Elena Torta, and René van de Molengraft. “Parti-
cle Filters: A Hands-On Tutorial”. In: Sensors 21.2 (Jan. 2021),
p. 438. [Link].

[Fav23] Margarita N. Favorskaya. “Deep Learning for Visual SLAM:
The State-of-the-Art and Future Trends”. In: Electronics 12.9
(Apr. 2023), p. 2006. [Link].

[FB81] Martin A. Fischler and Robert C. Bolles. “Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography”. In: Communica-
tions of the ACM 24.6 (June 1981), pp. 381–395. ISSN: 1557-7317.
[Link].

[FPS14] Christian Forster, Matia Pizzoli, and Davide Scaramuzza.
“SVO: Fast semi-direct monocular visual odometry”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2014. [Link].

[FR20] Eric Freeman and Elisabeth Robson. Head first design patterns.
en. 2nd ed. Sebastopol, CA: O’Reilly Media, Dec. 2020.

[Fre23] Luigi Freda. PLVS: A SLAM System with Points, Lines, Volu-
metric Mapping, and 3D Incremental Segmentation. 2023. eprint:
arXiv:2309.10896.

[FS12] Friedrich Fraundorfer and Davide Scaramuzza. “Visual Odom-
etry : Part II: Matching, Robustness, Optimization, and Appli-
cations”. In: IEEE Robotics & Automation Magazine 19.2 (June
2012), pp. 78–90. [Link].

[FT19] William Falcon and The PyTorch Lightning team. PyTorch
Lightning. Version 1.4. Mar. 2019. [Link].

https://doi.org/10.1155/2023/8872822
https://doi.org/10.1109/tpami.2017.2658577
https://doi.org/10.1109/tro.2013.2279412
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.3390/s21020438
https://doi.org/10.3390/electronics12092006
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/icra.2014.6906584
arXiv:2309.10896
https://doi.org/10.1109/mra.2012.2182810
https://doi.org/10.5281/zenodo.3828935

Bibliography 207

[FWR10] Udo Frese, René Wagner, and Thomas Röfer. “A SLAM
Overview from a User’s Perspective”. In: KI - Künstliche Intelli-
genz 24.3 (Sept. 2010), pp. 191–198. ISSN: 1610-1987. [Link].

[Gam95] Erich Gamma. Design patterns : elements of reusable object-
oriented software. Reading, Mass: Addison-Wesley, 1995. ISBN:
978-0201633610.

[Gao+17] Xiang Gao et al. 14 Lectures on Visual SLAM: From Theory to
Practice. Publishing House of Electronics Industry, 2017.

[Gao+22] Ling Gao et al. “VECtor: A Versatile Event-Centric Benchmark
for Multi-Sensor SLAM”. In: IEEE Robotics and Automation Let-
ters 7.3 (July 2022), pp. 8217–8224. [Link].

[Gao+24] Hang Gao et al. “USV Path Planning in a Hybrid Map Using
a Genetic Algorithm with a Feedback Mechanism”. In: Journal
of Marine Science and Engineering 12.6 (June 2024), p. 939. ISSN:
2077-1312. [Link].

[GHT11] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. “Evalua-
tion of Interest Point Detectors and Feature Descriptors for Vi-
sual Tracking”. In: International Journal of Computer Vision 94.3
(Mar. 2011), pp. 335–360. ISSN: 1573-1405. [Link].

[GK99] J.-S. Gutmann and K. Konolige. “Incremental mapping of large
cyclic environments”. In: Proceedings 1999 IEEE International
Symposium on Computational Intelligence in Robotics and Automa-
tion. CIRA’99 (Cat. No.99EX375). IEEE, 1999. [Link].

[GLU12] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for au-
tonomous driving? The KITTI vision benchmark suite”. In:
2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, June 2012. [Link].

[GN01] J.E. Guivant and E.M. Nebot. “Optimization of the simultane-
ous localization and map-building algorithm for real-time im-
plementation”. In: IEEE Transactions on Robotics and Automation
17.3 (June 2001), pp. 242–257. ISSN: 1042-296X. [Link].

[GO15] Emilio Garcia-Fidalgo and Alberto Ortiz. “Vision-based topo-
logical mapping and localization methods: A survey”. In:
Robotics and Autonomous Systems 64 (Feb. 2015), pp. 1–20. ISSN:
0921-8890. [Link].

[Gom+19] Ruben Gomez-Ojeda et al. “PL-SLAM: A Stereo SLAM Sys-
tem Through the Combination of Points and Line Segments”.
In: IEEE Transactions on Robotics 35.3 (June 2019), pp. 734–746.
ISSN: 1941-0468. [Link].

https://doi.org/10.1007/s13218-010-0040-4
https://doi.org/10.1109/lra.2022.3186770
https://doi.org/10.3390/jmse12060939
https://doi.org/10.1007/s11263-011-0431-5
https://doi.org/10.1109/cira.1999.810068
https://doi.org/10.1109/cvpr.2012.6248074
https://doi.org/10.1109/70.938382
https://doi.org/10.1016/j.robot.2014.11.009
https://doi.org/10.1109/tro.2019.2899783

208 Bibliography

[Gri+10] G Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE
Intelligent Transportation Systems Magazine 2.4 (2010), pp. 31–43.
[Link].

[Gru17] Michael Grupp. evo: Python package for the evaluation of odometry
and SLAM. https://github.com/MichaelGrupp/evo. 2017.

[GS22] Sakshi Gupta and Itu Snigdh. “Multi-sensor fusion in au-
tonomous heavy vehicles”. In: Autonomous and Connected Heavy
Vehicle Technology. Elsevier, 2022, pp. 375–389. [Link].

[GSB07] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Im-
proved Techniques for Grid Mapping With Rao-Blackwellized
Particle Filters”. In: IEEE Transactions on Robotics 23.1 (Feb.
2007), pp. 34–46. ISSN: 1552-3098. [Link].

[GT12] Dorian Gálvez-López and J. D. Tardós. “Bags of Binary Words
for Fast Place Recognition in Image Sequences”. In: IEEE Trans-
actions on Robotics 28.5 (Oct. 2012), pp. 1188–1197. ISSN: 1552-
3098. [Link].

[Gui+04] Jose Guivant et al. “Navigation and Mapping in Large Un-
structured Environments”. In: The International Journal of
Robotics Research 23.4-5 (Apr. 2004), pp. 449–472. [Link].

[HD16] Shoudong Huang and Gamini Dissanayake. “A critique of cur-
rent developments in simultaneous localization and mapping”.
In: International Journal of Advanced Robotic Systems 13.5 (Sept.
2016), p. 172988141666948. [Link].

[Hes+16] Wolfgang Hess et al. “Real-time loop closure in 2D LIDAR
SLAM”. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2016. [Link].

[HKE22] Wen-Mei W Hwu, David B Kirk, and Izzat El Hajj. Program-
ming massively parallel processors. en. 4th ed. London, England:
Morgan Kaufmann, Sept. 2022.

[Hor+13] Armin Hornung et al. “OctoMap: an efficient probabilistic 3D
mapping framework based on octrees”. In: Autonomous Robots
34.3 (Feb. 2013), pp. 189–206. ISSN: 1573-7527. [Link].

[Ikr+22] Muhammad Haris Ikram et al. “Perceptual Aliasing++: Adver-
sarial Attack for Visual SLAM Front-End and Back-End”. In:
IEEE Robotics and Automation Letters 7.2 (Apr. 2022), pp. 4670–
4677. ISSN: 2377-3774. [Link].

[Inc22] The MathWorks Inc. Navigation Toolbox version: 9.4 (R2023b).
Natick, Massachusetts, United States, 2022.

[Jam+18] Redhwan Jamiruddin et al. RGB-Depth SLAM Review. 2018.
[Link].

https://doi.org/10.1109/mits.2010.939925
https://github.com/MichaelGrupp/evo
https://doi.org/10.1016/b978-0-323-90592-3.00021-5
https://doi.org/10.1109/tro.2006.889486
https://doi.org/10.1109/TRO.2012.2197158
https://doi.org/10.1177/0278364904042203
https://doi.org/10.1177/1729881416669482
https://doi.org/10.1109/icra.2016.7487258
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1109/lra.2022.3150031
https://doi.org/10.48550/ARXIV.1805.07696

Bibliography 209

[JH18] Arne Johanson and Wilhelm Hasselbring. “Software Engineer-
ing for Computational Science: Past, Present, Future”. In: Com-
puting in Science & Engineering 20.2 (Mar. 2018), pp. 90–109.
ISSN: 1558-366X. [Link].

[Ji19] Qiang Ji. Probabilistic graphical models for computer vision. en. San
Diego, CA: Academic Press, Dec. 2019.

[Jia+17] Fei Jiang et al. “Artificial intelligence in healthcare: past,
present and future”. In: Stroke Vasc Neurol 2.4 (June 2017),
pp. 230–243. [Link].

[Jia+19] Min Jiang et al. “A Survey of Underwater Acoustic SLAM Sys-
tem”. In: Intelligent Robotics and Applications. Springer Interna-
tional Publishing, 2019, pp. 159–170. [Link].

[Jin+19] Li Jinyu et al. “Survey and evaluation of monocular visual-
inertial SLAM algorithms for augmented reality”. In: Virtual
Reality & Intelligent Hardware 1.4 (Aug. 2019), pp. 386–410.
[Link].

[JK20] Zeeshan Javed and Gon-Woo Kim. “A Comparative Study of
Recent Real Time Semantic Segmentation Algorithms for Vi-
sual Semantic SLAM”. In: 2020 IEEE International Conference
on Big Data and Smart Computing (BigComp). IEEE, Feb. 2020.
[Link].

[JKK22] Youngseok Jang, Changhyeon Kim, and H. Jin Kim. “A Survey
on Vision-based Navigation Systems Robust to Illumination
Changes”. In: 2022 International Conference on Electronics, Infor-
mation, and Communication (ICEIC). IEEE, Feb. 2022. [Link].

[JU97] Simon J. Julier and Jeffrey K. Uhlmann. “New extension of the
Kalman filter to nonlinear systems”. In: SPIE Proceedings. Ed.
by Ivan Kadar. SPIE, July 1997. [Link].

[Jup24] JupyterLab. JupyterLab. 2024. URL: https : / / github . com /
jupyterlab/jupyterlab (visited on 02/18/2024).

[JYX19] Yujiao Jia, Xinying Yan, and Yihan Xu. “A Survey of simulta-
neous localization and mapping for robot”. In: 2019 IEEE 4th
Advanced Information Technology, Electronic and Automation Con-
trol Conference (IAEAC). IEEE, Dec. 2019. [Link].

[Kal60] R. E. Kalman. “A New Approach to Linear Filtering and Pre-
diction Problems”. In: Journal of Basic Engineering 82.1 (Mar.
1960), pp. 35–45. [Link].

[Kaz+22] Iman Abaspur Kazerouni et al. “A survey of state-of-the-art on
visual SLAM”. In: Expert Systems with Applications 205 (Nov.
2022), p. 117734. [Link].

https://doi.org/10.1109/mcse.2018.021651343
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1007/978-3-030-27532-7_14
https://doi.org/10.1016/j.vrih.2019.07.002
https://doi.org/10.1109/bigcomp48618.2020.00-22
https://doi.org/10.1109/iceic54506.2022.9748832
https://doi.org/10.1117/12.280797
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyterlab
https://doi.org/10.1109/iaeac47372.2019.8997820
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.eswa.2022.117734

210 Bibliography

[KB17] Adrian Kaehler and Gary Bradski. Learning OpenCV 3: Com-
puter Vision in C++ with the OpenCV Library. O’Reilly Media,
2017. ISBN: 1491937998.

[Ker+23] Bernhard Kerbl et al. “3D Gaussian Splatting for Real-Time
Radiance Field Rendering”. In: ACM Transactions on Graphics
42.4 (July 2023), pp. 1–14. ISSN: 1557-7368. [Link].

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical mod-
els. en. Adaptive Computation and Machine Learning series.
London, England: MIT Press, July 2009.

[Kha+21] Misha Urooj Khan et al. “A Comparative Survey of LiDAR-
SLAM and LiDAR based Sensor Technologies”. In: 2021 Mo-
hammad Ali Jinnah University International Conference on Comput-
ing (MAJICC). IEEE, July 2021. [Link].

[Kha+22] Muhammad Shahzad Alam Khan et al. “Investigation of
Widely Used SLAM Sensors Using Analytical Hierarchy Pro-
cess”. In: Journal of Sensors 2022 (Jan. 2022). Ed. by Qiang Wu,
pp. 1–15. [Link].

[KJD18] Jelena Kocic, Nenad Jovicic, and Vujo Drndarevic. “Sensors
and Sensor Fusion in Autonomous Vehicles”. In: 2018 26th
Telecommunications Forum (TELFOR). IEEE, Nov. 2018. [Link].

[KJS16] Dwi Kumiawan, Agung Nugroho Jati, and Unang Sunarya.
“A study of 2D indoor localization and mapping using Fast-
SLAM 2.0”. In: 2016 International Conference on Control, Elec-
tronics, Renewable Energy and Communications (ICCEREC). IEEE,
Sept. 2016. [Link].

[KK18] Giseop Kim and Ayoung Kim. “Scan Context: Egocentric Spa-
tial Descriptor for Place Recognition Within 3D Point Cloud
Map”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, Oct. 2018. [Link].

[KM07] Georg Klein and David Murray. “Parallel Tracking and Map-
ping for Small AR Workspaces”. In: 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality. IEEE,
Nov. 2007. [Link].

[KP18] Andreas Kamilaris and Francesc X. Prenafeta-Boldú. “Deep
learning in agriculture: A survey”. In: Computers and Electronics
in Agriculture 147 (Apr. 2018), pp. 70–90. [Link].

[Kra+21] D. Krata et al. “Adaptive Smith Predictor Control Scheme for
a Nonlinear Hydraulic System”. In: 2021 26th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automa-
tion (ETFA). IEEE, Sept. 2021. [Link].

https://doi.org/10.1145/3592433
https://doi.org/10.1109/majicc53071.2021.9526266
https://doi.org/10.1155/2022/5428097
https://doi.org/10.1109/telfor.2018.8612054
https://doi.org/10.1109/iccerec.2016.7814991
https://doi.org/10.1109/iros.2018.8593953
https://doi.org/10.1109/ismar.2007.4538852
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1109/etfa45728.2021.9613268

Bibliography 211

[KSC13] Christian Kerl, Jurgen Sturm, and Daniel Cremers. “Dense
visual SLAM for RGB-D cameras”. In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, Nov.
2013. [Link].

[Kum+11] Rainer Kummerle et al. “G2o: A general framework for graph
optimization”. In: 2011 IEEE International Conference on Robotics
and Automation. IEEE, May 2011. [Link].

[Kuz18] Maxim Kuzmin. “Review. Classification and Comparison of
the Existing SLAM Methods for Groups of Robots”. In: 2018
22nd Conference of Open Innovations Association (FRUCT). IEEE,
May 2018. [Link].

[Laj+19] Pierre-Yves Lajoie et al. “Modeling Perceptual Aliasing in
SLAM via Discrete–Continuous Graphical Models”. In: IEEE
Robotics and Automation Letters 4.2 (Apr. 2019), pp. 1232–1239.
ISSN: 2377-3774. [Link].

[Lat90] Jean-Claude Latombe. Robot motion planning. en. 1991st ed. The
Springer International Series in Engineering and Computer
Science. New York, NY: Springer, Dec. 1990.

[LBD15] Tiancheng Li, Miodrag Bolic, and Petar M. Djuric. “Resampling
Methods for Particle Filtering: Classification, implementation,
and strategies”. In: IEEE Signal Processing Magazine 32.3 (May
2015), pp. 70–86. [Link].

[LCL19] Tristan Laidlow, Jan Czarnowski, and Stefan Leutenegger.
“DeepFusion: Real-Time Dense 3D Reconstruction for Monoc-
ular SLAM using Single-View Depth and Gradient Predic-
tions”. In: 2019 International Conference on Robotics and Automa-
tion (ICRA). IEEE, May 2019. [Link].

[LCS11] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart.
“BRISK: Binary Robust invariant scalable keypoints”. In: 2011
International Conference on Computer Vision. IEEE, Nov. 2011.
[Link].

[Leu+14] Stefan Leutenegger et al. “Keyframe-based visual–inertial
odometry using nonlinear optimization”. In: The International
Journal of Robotics Research 34.3 (Dec. 2014), pp. 314–334. [Link].

[LHL08] Martin Liggins, David Hall, and James Llinas, eds. Handbook of
multisensor data fusion. 2nd ed. Electrical Engineering & Ap-
plied Signal Processing Series. Boca Raton, FL: CRC Press,
Sept. 2008.

[Li+15] Yali Li et al. “A survey of recent advances in visual feature de-
tection”. In: Neurocomputing 149 (Feb. 2015), pp. 736–751. ISSN:
0925-2312. [Link].

https://doi.org/10.1109/iros.2013.6696650
https://doi.org/10.1109/icra.2011.5979949
https://doi.org/10.23919/fruct.2018.8468281
https://doi.org/10.1109/lra.2019.2894852
https://doi.org/10.1109/msp.2014.2330626
https://doi.org/10.1109/icra.2019.8793527
https://doi.org/10.1109/iccv.2011.6126542
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1016/j.neucom.2014.08.003

212 Bibliography

[Li+19] Jianlong Li et al. “Development of a Human–Robot Hybrid In-
telligent System Based on Brain Teleoperation and Deep Learn-
ing SLAM”. In: IEEE Transactions on Automation Science and En-
gineering 16.4 (Oct. 2019), pp. 1664–1674. [Link].

[Li+22a] Nanxi Li et al. “A Progress Review on Solid-State LiDAR and
Nanophotonics-Based LiDAR Sensors”. In: Laser & Photonics
Reviews 16.11 (Aug. 2022). [Link].

[Li+22b] Shaopeng Li et al. “Overview of deep learning application on
visual SLAM”. In: Displays 74 (Sept. 2022), p. 102298. [Link].

[LM11] M. Labbe and F. Michaud. “Memory management for real-time
appearance-based loop closure detection”. In: 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
Sept. 2011. [Link].

[LM13] Mathieu Labbe and Francois Michaud. “Appearance-Based
Loop Closure Detection for Online Large-Scale and Long-Term
Operation”. In: IEEE Transactions on Robotics 29.3 (June 2013),
pp. 734–745. [Link].

[LM14] Mathieu Labbe and Francois Michaud. “Online global loop
closure detection for large-scale multi-session graph-based
SLAM”. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, Sept. 2014. [Link].

[LM17] Mathieu Labbé and François Michaud. “Long-term online
multi-session graph-based SPLAM with memory manage-
ment”. In: Autonomous Robots 42.6 (Nov. 2017), pp. 1133–1150.
[Link].

[LM18] Mathieu Labbé and François Michaud. “RTAB-Map as an
open-source lidar and visual simultaneous localization and
mapping library for large-scale and long-term online opera-
tion”. In: Journal of Field Robotics 36.2 (Oct. 2018), pp. 416–446.
[Link].

[LM97] F. Lu and E. Milios. “Globally Consistent Range Scan Align-
ment for Environment Mapping”. In: Autonomous Robots 4.4
(1997), pp. 333–349. [Link].

[Loe04] H. Loeliger. “An Introduction to factor graphs”. In: IEEE Signal
Processing Magazine 21.1 (Jan. 2004), pp. 28–41. [Link].

[Lon81] H. C. Longuet-Higgins. “A computer algorithm for recon-
structing a scene from two projections”. In: Nature 293.5828
(Sept. 1981), pp. 133–135. ISSN: 1476-4687. [Link].

https://doi.org/10.1109/tase.2019.2911667
https://doi.org/10.1002/lpor.202100511
https://doi.org/10.1016/j.displa.2022.102298
https://doi.org/10.1109/iros.2011.6094602
https://doi.org/10.1109/tro.2013.2242375
https://doi.org/10.1109/iros.2014.6942926
https://doi.org/10.1007/s10514-017-9682-5
https://doi.org/10.1002/rob.21831
https://doi.org/10.1023/a:1008854305733
https://doi.org/10.1109/msp.2004.1267047
https://doi.org/10.1038/293133a0

Bibliography 213

[Low+16] Stephanie Lowry et al. “Visual Place Recognition: A Survey”.
In: IEEE Transactions on Robotics 32.1 (Feb. 2016), pp. 1–19.
[Link].

[Low04] David G. Lowe. “Distinctive Image Features from Scale-
Invariant Keypoints”. In: International Journal of Computer Vi-
sion 60.2 (Nov. 2004), pp. 91–110. [Link].

[LWG18] Ruihao Li, Sen Wang, and Dongbing Gu. “Ongoing Evolution
of Visual SLAM from Geometry to Deep Learning: Challenges
and Opportunities”. In: Cognitive Computation 10.6 (Sept. 2018),
pp. 875–889. [Link].

[LWG21] Ruihao Li, Sen Wang, and Dongbing Gu. “DeepSLAM: A
Robust Monocular SLAM System With Unsupervised Deep
Learning”. In: IEEE Transactions on Industrial Electronics 68.4
(Apr. 2021), pp. 3577–3587. [Link].

[LZB16] Haomin Liu, Guofeng Zhang, and Hujun Bao. “Robust
Keyframe-based Monocular SLAM for Augmented Reality”.
In: 2016 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, Sept. 2016. [Link].

[Mac+20] Steve Macenski et al. “The Marathon 2: A Navigation System”.
In: 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, Oct. 2020. [Link].

[Mac+21] Wojciech Macherzyński et al. “The Use of Thermovision for
Leak Detection in the Automotive Sector”. In: Pomiary Au-
tomatyka Robotyka 25.3 (Sept. 2021), pp. 79–85. [Link].

[Mac+22a] Steven Macenski et al. “Robot Operating System 2: Design,
architecture, and uses in the wild”. In: Science Robotics 7.66
(2022), eabm6074. [Link].

[Mac+22b] Wojciech Macherzyśnki et al. Method of leak detection, especially
in closed-volume systems. Pat.242047. Oct. 2022.

[Mar+21] Giulia Marchesi et al. “EnvSLAM: Combining SLAM Systems
and Neural Networks to Improve the Environment Fusion
in AR Applications”. In: ISPRS International Journal of Geo-
Information 10.11 (Nov. 2021), p. 772. [Link].

[Mar+22] José María Martínez-Otzeta et al. “RANSAC for Robotic Ap-
plications: A Survey”. In: Sensors 23.1 (Dec. 2022), p. 327. ISSN:
1424-8220. [Link].

[Mar00] Robert C Martin. “Design principles and design patterns”. In:
Object Mentor 1.34 (2000), p. 597.

https://doi.org/10.1109/tro.2015.2496823
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1007/s12559-018-9591-8
https://doi.org/10.1109/tie.2020.2982096
https://doi.org/10.1109/ismar.2016.24
https://doi.org/10.1109/iros45743.2020.9341207
https://doi.org/10.14313/par_241/79
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.3390/ijgi10110772
https://doi.org/10.3390/s23010327

214 Bibliography

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software
Craftsmanship. English. Paperback. Pearson, Aug. 1, 2008,
p. 464. ISBN: 978-0132350884.

[Mar17] Robert Martin. Clean Architecture: A Craftsman’s Guide to Soft-
ware Structure and Design (Robert C. Martin Series). English. Pa-
perback. Pearson, Sept. 10, 2017, p. 432. ISBN: 978-9352865123.

[Mat+23] Hidenobu Matsuki et al. Gaussian Splatting SLAM. 2023. [Link].

[Mcc+18] John Mccormac et al. “Fusion++: Volumetric Object-Level
SLAM”. In: 2018 International Conference on 3D Vision (3DV).
IEEE, Sept. 2018. [Link].

[Mea82] Donald Meagher. “Geometric modeling using octree encod-
ing”. In: Computer Graphics and Image Processing 19.2 (June
1982), pp. 129–147. ISSN: 0146-664X. [Link].

[Men+20] Tong Meng et al. “A survey on machine learning for data fu-
sion”. In: Information Fusion 57 (May 2020), pp. 115–129. [Link].

[Mer14] Dirk Merkel. “Docker: lightweight linux containers for consis-
tent development and deployment”. In: Linux journal 2014.239
(2014), p. 2.

[Mil+20] Ben Mildenhall et al. “NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis”. In: Computer Vision –
ECCV 2020. Springer International Publishing, 2020, pp. 405–
421. [Link].

[MM20] Rafael Muñoz-Salinas and R. Medina-Carnicer. “UcoSLAM:
Simultaneous localization and mapping by fusion of keypoints
and squared planar markers”. In: Pattern Recognition 101 (May
2020), p. 107193. ISSN: 0031-3203. [Link].

[MM21] Alexey Merzlyakov and Steve Macenski. “A Comparison of
Modern General-Purpose Visual SLAM Approaches”. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, Sept. 2021. [Link].

[MMT15] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. “ORB-
SLAM: A Versatile and Accurate Monocular SLAM System”.
In: IEEE Transactions on Robotics 31.5 (Oct. 2015), pp. 1147–1163.
[Link].

[Moh+19] Sherif A. S. Mohamed et al. “A Survey on Odometry for Au-
tonomous Navigation Systems”. In: IEEE Access 7 (2019),
pp. 97466–97486. ISSN: 2169-3536. [Link].

[Mon+02] Michael Montemerlo et al. “FastSLAM: A factored solution to
the simultaneous localization and mapping problem”. In: 2002,
pp. 593–598.

https://doi.org/10.48550/ARXIV.2312.06741
https://doi.org/10.1109/3dv.2018.00015
https://doi.org/10.1016/0146-664x(82)90104-6
https://doi.org/10.1016/j.inffus.2019.12.001
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1016/j.patcog.2019.107193
https://doi.org/10.1109/iros51168.2021.9636615
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/access.2019.2929133

Bibliography 215

[Mon+03] Michael Montemerlo et al. “FastSLAM 2.0: An improved par-
ticle filtering algorithm for simultaneous localization and
mapping that provably converges”. In: Cited by: 869. 2003,
pp. 1151–1156.

[Mor15] Francisco Angel Moreno. “Stereo Visual SLAM for Mobile
Robots Navigation”. PhD thesis. University of Malaha, 2015.

[Mor80] Hans Peter Moravec. “Obstacle avoidance and navigation in
the real world by a seeing robot rover”. PhD thesis. Stanford
University, 1980.

[Mou21] Radouan Ait Mouha. “Deep Learning for Robotics”. In: Journal
of Data Analysis and Information Processing 09.02 (2021), pp. 63–
76. [Link].

[MT17] Raul Mur-Artal and Juan D Tardós. “Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cameras”.
In: IEEE Transactions on Robotics 33.5 (2017), pp. 1255–1262.

[New+02] P. Newman et al. “Explore and return: experimental validation
of real-time concurrent mapping and localization”. In: Proceed-
ings 2002 IEEE International Conference on Robotics and Automa-
tion (Cat. No.02CH37292). IEEE, 2002. [Link].

[New+11] Richard A. Newcombe et al. “KinectFusion: Real-time dense
surface mapping and tracking”. In: 2011 10th IEEE International
Symposium on Mixed and Augmented Reality. IEEE, Oct. 2011.
[Link].

[New99] Paul Newman. “On the Structure and Solution of the Simulta-
neous Localisation and Map Building Problem”. In: 1999.

[NLD11] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J.
Davison. “DTAM: Dense tracking and mapping in real-time”.
In: 2011 International Conference on Computer Vision. IEEE, Nov.
2011. [Link].

[NNB] D. Nister, O. Naroditsky, and J. Bergen. “Visual odometry”.
In: Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE.
[Link].

[Och+21] Marcin Ochman et al. “RGB-D Odometry for Autonomous
Lawn Mowing”. In: Artificial Intelligence and Soft Computing.
Springer International Publishing, 2021, pp. 81–90. [Link].

[Och19] Marcin Ochman. “Hybrid approach to road detection in front
of the vehicle”. In: IFAC-PapersOnLine 52.8 (2019), pp. 245–250.
[Link].

https://doi.org/10.4236/jdaip.2021.92005
https://doi.org/10.1109/robot.2002.1014803
https://doi.org/10.1109/ismar.2011.6092378
https://doi.org/10.1109/iccv.2011.6126513
https://doi.org/10.1109/cvpr.2004.1315094
https://doi.org/10.1007/978-3-030-87897-9_8
https://doi.org/10.1016/j.ifacol.2019.08.078

216 Bibliography

[OG21] Adrian Ostrowski and Piotr Gaczkowski. Software Architec-
ture with C++: Design modern systems using effective architecture
concepts, design patterns, and techniques with C++20. English.
Paperback. Packt Publishing, Apr. 23, 2021, p. 540. ISBN: 978-
1838554590.

[Ope24] OpenCV. Strona OpenCV. 2024. URL: http://opencv.org (vis-
ited on 02/18/2024).

[Özy+17] Onur Özyeşil et al. “A survey of structure from motion.” In:
Acta Numerica 26 (May 2017), pp. 305–364. ISSN: 1474-0508.
[Link].

[Pal+19] Emanuele Palazzolo et al. “ReFusion: 3D Reconstruction in Dy-
namic Environments for RGB-D Cameras Exploiting Resid-
uals”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, Nov. 2019. [Link].

[Pal+22] Sabita Pal et al. “Evolution of Simultaneous Localization and
Mapping Framework for Autonomous Robotics—A Compre-
hensive Review”. In: Journal of Autonomous Vehicles and Systems
2.2 (Apr. 2022). [Link].

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: Proceedings of the 33rd
International Conference on Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2019.

[Pit+11] Benjamin Pitzer et al. “Towards perceptual shared autonomy
for robotic mobile manipulation”. In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, May 2011. [Link].

[PLC19] Rudra P K Poudel, Stephan Liwicki, and Roberto Cipolla. Fast-
SCNN: Fast Semantic Segmentation Network. 2019. [Link].

[Qua+19] Meixiang Quan et al. “Accurate Monocular Visual-Inertial
SLAM Using a Map-Assisted EKF Approach”. In: IEEE Access
7 (2019), pp. 34289–34300. [Link].

[RI19] European Commission. Directorate General for Research and
Innovation. Recognising the importance of software in research:
Research Software Engineers (RSEs), a UK example. Publications
Office, 2019. [Link].

[RLC22] Antoni Rosinol, John J. Leonard, and Luca Carlone. NeRF-
SLAM: Real-Time Dense Monocular SLAM with Neural Radiance
Fields. 2022. [Link].

http://opencv.org
https://doi.org/10.1017/s096249291700006x
https://doi.org/10.1109/iros40897.2019.8967590
https://doi.org/10.1115/1.4055161
https://doi.org/10.1109/icra.2011.5980259
https://doi.org/10.48550/ARXIV.1902.04502
https://doi.org/10.1109/access.2019.2904512
https://doi.org/10.2777/787013
https://doi.org/10.48550/ARXIV.2210.13641

Bibliography 217

[RLC23] Antoni Rosinol, John J. Leonard, and Luca Carlone. “NeRF-
SLAM: Real-Time Dense Monocular SLAM with Neural Ra-
diance Fields”. In: 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, Oct. 2023. [Link].

[ROS] ROS 2 Community. ROS 2 AMCL Library. Accessed on
10.12.2023. URL: https : / / github . com / ros - planning /
navigation2/tree/main/nav2_amcl.

[Ros+19] Antoni Rosinol et al. “Incremental Visual-Inertial 3D Mesh
Generation with Structural Regularities”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE, May 2019.
[Link].

[Ros+20a] Antoni Rosinol et al. “3D Dynamic Scene Graphs: Actionable
Spatial Perception with Places, Objects, and Humans”. In:
Robotics: Science and Systems XVI. Robotics: Science and Sys-
tems Foundation, July 2020. [Link].

[Ros+20b] Antoni Rosinol et al. “Kimera: an Open-Source Library for
Real-Time Metric-Semantic Localization and Mapping”. In:
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2020. [Link].

[Ros+21a] David M. Rosen et al. “Advances in Inference and Representa-
tion for Simultaneous Localization and Mapping”. In: Annual
Review of Control, Robotics, and Autonomous Systems 4.1 (May
2021), pp. 215–242. [Link].

[Ros+21b] Antoni Rosinol et al. “Kimera: From SLAM to spatial percep-
tion with 3D dynamic scene graphs”. In: The International Jour-
nal of Robotics Research 40.12-14 (Dec. 2021), pp. 1510–1546.
[Link].

[Rot17] Stephan Roth. Clean C++: Sustainable Software Development Pat-
terns and Best Practices with C++ 17. English. Paperback. Apress,
Sept. 29, 2017, p. 308. ISBN: 978-1484227923.

[RP10] David L. Ripley and Thomas Politzer. “Vision Disturbance af-
ter TBI”. In: Neurorehabilitation 27.3 (2010), pp. 215–216. ISSN:
1053-8135. [Link].

[Rub+11] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or
SURF”. In: 2011 International Conference on Computer Vision.
IEEE, Nov. 2011. [Link].

[Sae+15] Sajad Saeedi et al. “Multiple-Robot Simultaneous Localization
and Mapping: A Review”. In: Journal of Field Robotics 33.1 (July
2015), pp. 3–46. [Link].

https://doi.org/10.1109/iros55552.2023.10341922
https://github.com/ros-planning/navigation2/tree/main/nav2_amcl
https://github.com/ros-planning/navigation2/tree/main/nav2_amcl
https://doi.org/10.1109/icra.2019.8794456
https://doi.org/10.15607/rss.2020.xvi.079
https://doi.org/10.1109/icra40945.2020.9196885
https://doi.org/10.1146/annurev-control-072720-082553
https://doi.org/10.1177/02783649211056674
https://doi.org/10.3233/NRE-2010-0599
https://doi.org/10.1109/iccv.2011.6126544
https://doi.org/10.1002/rob.21620

218 Bibliography

[Sak+18] Atsushi Sakai et al. PythonRobotics: a Python code collection of
robotics algorithms. 2018. [Link].

[Sar+20] Paul-Edouard Sarlin et al. “SuperGlue: Learning Feature
Matching With Graph Neural Networks”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2020. [Link].

[SC22] Lukas von Stumberg and Daniel Cremers. “DM-VIO: Delayed
Marginalization Visual-Inertial Odometry”. In: IEEE Robotics
and Automation Letters 7.2 (Apr. 2022), pp. 1408–1415. [Link].

[SC86] Randall C. Smith and Peter C. Cheeseman. “On the Represen-
tation and Estimation of Spatial Uncertainty”. In: The Interna-
tional Journal of Robotics Research 5 (1986), pp. 56–68.

[SCG18] Dominik Schlegel, Mirco Colosi, and Giorgio Grisetti.
“ProSLAM: Graph SLAM from a Programmer’s Perspective”.
In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2018. [Link].

[Sch+23] Stefan Schubert et al. Visual Place Recognition: A Tutorial. 2023.
[Link].

[SE18] Tixiao Shan and Brendan Englot. “LeGO-LOAM: Lightweight
and Ground-Optimized Lidar Odometry and Mapping on
Variable Terrain”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, Oct. 2018. [Link].

[Sem+22] Sofiya Semenova et al. “A modular, extensible framework for
modern visual SLAM systems”. In: Proceedings of the 20th An-
nual International Conference on Mobile Systems, Applications and
Services. MobiSys ’22. ACM, June 2022. [Link].

[SF11] Davide Scaramuzza and Friedrich Fraundorfer. “Visual Odom-
etry [Tutorial]”. In: IEEE Robotics & Automation Magazine 18.4
(Dec. 2011), pp. 80–92. [Link].

[SH10] Bruno Steux and Oussama El Hamzaoui. “tinySLAM: A SLAM
algorithm in less than 200 lines C-language program”. In: 2010
11th International Conference on Control Automation Robotics &
Vision. IEEE, Dec. 2010. [Link].

[Sha+17] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles”. In: Springer Proceedings
in Advanced Robotics. Springer International Publishing, Nov.
2017, pp. 621–635. ISBN: 9783319673615. [Link].

https://doi.org/10.48550/ARXIV.1808.10703
https://doi.org/10.1109/cvpr42600.2020.00499
https://doi.org/10.1109/lra.2021.3140129
https://doi.org/10.1109/icra.2018.8461180
https://doi.org/10.48550/ARXIV.2303.03281
https://doi.org/10.1109/iros.2018.8594299
https://doi.org/10.1145/3498361.3538793
https://doi.org/10.1109/mra.2011.943233
https://doi.org/10.1109/icarcv.2010.5707402
https://doi.org/10.1007/978-3-319-67361-5_40

Bibliography 219

[Sha+20] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Lidar Inertial
Odometry via Smoothing and Mapping”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, Oct. 2020. [Link].

[SK16] Bruno Siciliano and Oussama Khatib, eds. Springer Handbook of
Robotics. Springer International Publishing, 2016. [Link].

[SK18] Muhammad Sualeh and Gon-Woo Kim. “Simultaneous Local-
ization and Mapping in the Epoch of Semantics: A Survey”.
In: International Journal of Control, Automation and Systems 17.3
(Dec. 2018), pp. 729–742. [Link].

[Sko+21] Magda Skoczeń et al. “Obstacle Detection System for Agricul-
tural Mobile Robot Application Using RGB-D Cameras”. In:
Sensors 21.16 (Aug. 2021), p. 5292. [Link].

[SMD12] Hauke Strasdat, J.M.M. Montiel, and Andrew J. Davison. “Vi-
sual SLAM: Why filter?” In: Image and Vision Computing 30.2
(Feb. 2012), pp. 65–77. [Link].

[SMT18] Muhamad Risqi U. Saputra, Andrew Markham, and Niki
Trigoni. “Visual SLAM and Structure from Motion in Dynamic
Environments”. In: ACM Computing Surveys 51.2 (Feb. 2018),
pp. 1–36. [Link].

[SS23] Taha Samavati and Mohsen Soryani. “Deep learning-based 3D
reconstruction: a survey”. In: Artificial Intelligence Review 56.9
(Jan. 2023), pp. 9175–9219. [Link].

[SSC90] Randall Smith, Matthew Self, and Peter Cheeseman. “Esti-
mating Uncertain Spatial Relationships in Robotics”. In: Au-
tonomous Robot Vehicles. Springer New York, 1990, pp. 167–193.
[Link].

[SSM23] Ricardo B. Sousa, Héber M. Sobreira, and António Paulo Mor-
eira. “A systematic literature review on long-term localization
and mapping for mobile robots”. In: Journal of Field Robotics
40.5 (Apr. 2023), pp. 1245–1322. [Link].

[SSP19] Thomas Schops, Torsten Sattler, and Marc Pollefeys. “BAD
SLAM: Bundle Adjusted Direct RGB-D SLAM”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2019. [Link].

[SSS19] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. “Open-
VSLAM”. In: Proceedings of the 27th ACM International Confer-
ence on Multimedia. ACM, Oct. 2019. [Link].

https://doi.org/10.1109/iros45743.2020.9341176
https://doi.org/10.1007/978-3-319-32552-1
https://doi.org/10.1007/s12555-018-0130-x
https://doi.org/10.3390/s21165292
https://doi.org/10.1016/j.imavis.2012.02.009
https://doi.org/10.1145/3177853
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/978-1-4613-8997-2_14
https://doi.org/10.1002/rob.22170
https://doi.org/10.1109/cvpr.2019.00022
https://doi.org/10.1145/3343031.3350539

220 Bibliography

[Stu+12] Jrgen Sturm et al. “A benchmark for the evaluation of RGB-D
SLAM systems”. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, Oct. 2012. [Link].

[Tak+18] Talha Takleh Omar Takleh et al. “A Brief Survey on SLAM
Methods in Autonomous Vehicle”. In: International Journal of
Engineering & Technology 7.4.27 (Nov. 2018), p. 38. ISSN: 2227-
524X. [Link].

[Tan+16] Shengjun Tang et al. “Enhanced RGB-D Mapping Method for
Detailed 3D Indoor and Outdoor Modeling”. In: Sensors 16.10
(Sept. 2016), p. 1589. [Link].

[Tan+23] Matthew Tancik et al. “Nerfstudio: A Modular Framework for
Neural Radiance Field Development”. In: ACM SIGGRAPH
2023 Conference Proceedings. SIGGRAPH ’23. 2023.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilis-
tic Robotics. en. Intelligent Robotics and Autonomous Agents
series. London, England: MIT Press, Aug. 2005.

[TBG22] Konstantinos A. Tsintotas, Loukas Bampis, and Antonios
Gasteratos. “The Revisiting Problem in Simultaneous Local-
ization and Mapping: A Survey on Visual Loop Closure Detec-
tion”. In: IEEE Transactions on Intelligent Transportation Systems
23.11 (Nov. 2022), pp. 19929–19953. [Link].

[TC20] Baihui Tang and Sanxing Cao. “A Review of VSLAM Technol-
ogy Applied in Augmented Reality”. In: IOP Conference Series:
Materials Science and Engineering 782.4 (Mar. 2020), p. 042014.
[Link].

[TD21] Zachary Teed and Jia Deng. “DROID-SLAM: Deep Visual
SLAM for Monocular, Stereo, and RGB-D Cameras”. In: vol. 20.
2021, pp. 16558–16569.

[Tes23] Tesla, Inc. Tesla Vision Update: Replacing Ultrasonic Sensors with
Tesla Vision. 2023. URL: http : / / web . archive . org / web /
20080207010024/http://www.808multimedia.com/winnt/

kernel.htm (visited on 06/25/2023).

[The+22] Charalambos Theodorou et al. “Visual SLAM algorithms and
their application for AR, mapping, localization and wayfind-
ing”. In: Array 15 (Sept. 2022), p. 100222. [Link].

[TLF10] E. Tola, V. Lepetit, and P. Fua. “DAISY: An Efficient Dense De-
scriptor Applied to Wide-Baseline Stereo”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 32.5 (May 2010),
pp. 815–830. [Link].

https://doi.org/10.1109/iros.2012.6385773
https://doi.org/10.14419/ijet.v7i4.27.22477
https://doi.org/10.3390/s16101589
https://doi.org/10.1109/tits.2022.3175656
https://doi.org/10.1088/1757-899x/782/4/042014
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
https://doi.org/10.1016/j.array.2022.100222
https://doi.org/10.1109/tpami.2009.77

Bibliography 221

[TLZ23] Qin Tang, Jing Liang, and Fangqi Zhu. “A comparative review
on multi-modal sensors fusion based on deep learning”. In:
Signal Processing 213 (Dec. 2023), p. 109165. [Link].

[Tou+22] Ali Tourani et al. “Visual SLAM: What Are the Current Trends
and What to Expect?” In: Sensors 22.23 (Nov. 2022), p. 9297.
[Link].

[Tri+00] Bill Triggs et al. “Bundle Adjustment — A Modern Synthesis”.
In: Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2000, pp. 298–372. ISBN: 9783540444800. [Link].

[TS18] Shaharyar Ahmed Khan Tareen and Zahra Saleem. “A com-
parative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and
BRISK”. In: 2018 International Conference on Computing, Math-
ematics and Engineering Technologies (iCoMET). IEEE, Mar. 2018.
[Link].

[Tsi24] Mariot Tsitoara. Beginning Git and GitHub: Version Control,
Project Management and Teamwork for the New Developer. English.
Paperback. Apress, Mar. 15, 2024, p. 330. ISBN: 979-8868802140.

[TUI17] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. “Vi-
sual SLAM algorithms: a survey from 2010 to 2016”. In: IPSJ
Transactions on Computer Vision and Applications 9.1 (June 2017).
[Link].

[Ull+20] Inam Ullah et al. “Simultaneous Localization and Mapping
Based on Kalman Filter and Extended Kalman Filter”. In: Wire-
less Communications and Mobile Computing 2020 (June 2020),
pp. 1–12. [Link].

[Ume91] S. Umeyama. “Least-squares estimation of transformation pa-
rameters between two point patterns”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 13.4 (Apr. 1991),
pp. 376–380. ISSN: 0162-8828. [Link].

[Wan+20] Wenshan Wang et al. “TartanAir: A Dataset to Push the Limits
of Visual SLAM”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, Oct. 2020. [Link].

[Wan+23] Xiaotian Wang et al. “An Overview of Key SLAM Technologies
for Underwater Scenes”. In: Remote Sensing 15.10 (May 2023),
p. 2496. [Link].

[WB94] Greg Welch and Gary Bishop. “An Introduction to the Kalman
Filter”. In: 1994.

[Whe+16] Thomas Whelan et al. “ElasticFusion: Real-time dense SLAM
and light source estimation”. In: The International Journal of
Robotics Research 35.14 (Sept. 2016), pp. 1697–1716. [Link].

https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.3390/s22239297
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1109/icomet.2018.8346440
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1155/2020/2138643
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/iros45743.2020.9341801
https://doi.org/10.3390/rs15102496
https://doi.org/10.1177/0278364916669237

222 Bibliography

[WTT03] Chieh-Chih Wang, C. Thorpe, and S. Thrun. “Online simulta-
neous localization and mapping with detection and tracking
of moving objects: theory and results from a ground vehicle in
crowded urban areas”. In: 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422). Vol. 1. 2003, 842–
849 vol.1. [Link].

[WWN20] Zhangjing Wang, Yu Wu, and Qingqing Niu. “Multi-Sensor
Fusion in Automated Driving: A Survey”. In: IEEE Access 8
(2020), pp. 2847–2868. [Link].

[Xia+20] Linlin Xia et al. “A survey of image semantics-based visual si-
multaneous localization and mapping: Application-oriented
solutions to autonomous navigation of mobile robots”. In:
International Journal of Advanced Robotic Systems 17.3 (2020),
p. 1729881420919185. [Link]. eprint: https://doi.org/10.
1177/1729881420919185.

[Xu+24] Yifeng Xu et al. “The Research and Development of an Edu-
cational SLAM AVG Based on Modular Design Concept”. In:
Lecture Notes in Networks and Systems. Springer Nature Singa-
pore, 2024, pp. 529–553. ISBN: 9789819984985. [Link].

[Yan+20] Nan Yang et al. “D3VO: Deep Depth, Deep Pose and Deep Un-
certainty for Monocular Visual Odometry”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2020. [Link].

[YBH15] Khalid Yousif, Alireza Bab-Hadiashar, and Reza Hosein-
nezhad. “An Overview to Visual Odometry and Visual SLAM:
Applications to Mobile Robotics”. In: Intelligent Industrial Sys-
tems 1.4 (Nov. 2015), pp. 289–311. [Link].

[YI21] Omer Faruk Yanik and Hakki Alparslan Ilgin. “Comparison
of Power Consumption of Modern SLAM Methods on Vari-
ous Datasets”. In: 2021 International Conference on Technological
Advancements and Innovations (ICTAI). IEEE, Nov. 2021. [Link].

[You+17] Georges Younes et al. “Keyframe-based monocular SLAM:
design, survey, and future directions”. In: Robotics and Au-
tonomous Systems 98 (Dec. 2017), pp. 67–88. [Link].

[Yu+18] Chao Yu et al. “DS-SLAM: A Semantic Visual SLAM towards
Dynamic Environments”. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2018.
[Link].

[Zaf+18] Mubariz Zaffar et al. “Sensors, SLAM and Long-term Auton-
omy: A Review”. In: 2018 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). IEEE, Aug. 2018. [Link].

https://doi.org/10.1109/ROBOT.2003.1241698
https://doi.org/10.1109/access.2019.2962554
https://doi.org/10.1177/1729881420919185
https://doi.org/10.1177/1729881420919185
https://doi.org/10.1177/1729881420919185
https://doi.org/10.1007/978-981-99-8498-5_44
https://doi.org/10.1109/cvpr42600.2020.00136
https://doi.org/10.1007/s40903-015-0032-7
https://doi.org/10.1109/ictai53825.2021.9673342
https://doi.org/10.1016/j.robot.2017.09.010
https://doi.org/10.1109/iros.2018.8593691
https://doi.org/10.1109/ahs.2018.8541483

Bibliography 223

[Zha+19a] WenLong Zhao et al. “Review of SLAM Techniques For Au-
tonomous Underwater Vehicles”. In: Proceedings of the 2019 In-
ternational Conference on Robotics, Intelligent Control and Artificial
Intelligence. ACM, Sept. 2019. [Link].

[Zha+19b] Yong Zhao et al. “GSLAM: A General SLAM Framework and
Benchmark”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, Oct. 2019. [Link].

[Zha+22] Song Zhang et al. “Visual SLAM for underwater vehicles: A
survey”. In: Computer Science Review 46 (Nov. 2022), p. 100510.
[Link].

[Zha+23] Lintong Zhang et al. “Hilti-Oxford Dataset: A Millimeter-
Accurate Benchmark for Simultaneous Localization and Map-
ping”. In: IEEE Robotics and Automation Letters 8.1 (2023),
pp. 408–415. [Link].

[Zha00] Z. Zhang. “A flexible new technique for camera calibration”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
22.11 (2000), pp. 1330–1334. ISSN: 0162-8828. [Link].

[ZN20] Tianwei Zhang and Yoshihiko Nakamura. “Humanoid Robot
RGB-D SLAM in the Dynamic Human Environment”. In:
International Journal of Humanoid Robotics 17.02 (Feb. 2020),
p. 2050009. [Link].

[ZS14] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Map-
ping in Real-time”. In: Robotics: Science and Systems X. RSS2014.
Robotics: Science and Systems Foundation, July 2014. [Link].

[ZS16] Ji Zhang and Sanjiv Singh. “Low-drift and real-time lidar
odometry and mapping”. In: Autonomous Robots 41.2 (Feb.
2016), pp. 401–416. ISSN: 1573-7527. [Link].

[ZWS21] Xiwu Zhang, Lei Wang, and Yan Su. “Visual place recognition:
A survey from deep learning perspective”. In: Pattern Recogni-
tion 113 (May 2021), p. 107760. [Link].

[ZZZ19] Jiyuan Zhang, Gang Zeng, and Hongbin Zha. “Structure-aware
SLAM with planes and lines in man-made environment”. In:
Pattern Recognition Letters 127 (Nov. 2019), pp. 181–190. [Link].

https://doi.org/10.1145/3366194.3366262
https://doi.org/10.1109/iccv.2019.00120
https://doi.org/10.1016/j.cosrev.2022.100510
https://doi.org/10.1109/LRA.2022.3226077
https://doi.org/10.1109/34.888718
https://doi.org/10.1142/s0219843620500097
https://doi.org/10.15607/rss.2014.x.007
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1016/j.patcog.2020.107760
https://doi.org/10.1016/j.patrec.2018.10.037

	Abstract
	PL Abstract
	Acknowledgements
	PhD thesis introduction in Polish
	Introduction
	Thesis Scope and Motivation
	Thesis Contribution
	Thesis structure
	Author contribution

	Visual Simultaneous Localization and Mapping Overview
	Fundamentals of SLAM problem. Probabilistic approach
	SLAM categorization
	Sensors type
	Ultrasonic sensor
	Sonar
	LIDAR
	Camera
	RGB-D camera
	Inertial measurement unit
	Sensor fusion
	Sensors comparison and choice

	Operating environment
	Backend type
	Filter-based backend
	Optimization-based backend

	Map representation

	SLAM Related work
	Visual Odometry, Visual SLAM and Structure from Motion
	Visual SLAM
	Visual SLAM problem formulation
	State and observation representation

	Visual SLAM components
	Sensors data collection
	Frontend
	Feature detection
	Feature matching and data association
	Keyframe creation

	Backend
	Map optimization
	Map maintenance

	Loop Closure
	Semantic VSLAM

	VSLAM related work

	VSLAM challenges and robustness
	Keypoints distribution on image
	Mapping in dynamic environments
	Long-Term operation
	Loop Closure
	Real-time performance
	Outliers handling
	Map maintenance
	Keyframe creation
	Introduction to Robustness
	Software robustness
	Simplicity
	Modularity
	Reliability
	Portability
	Maintainability

	Algorithms robustness
	Execution efficiency robustness
	VSLAM datasets

	VSLAM evaluation

	Concept of Modular SLAM
	Motivation
	Modular SLAM Overview
	System design
	Design principles
	Simplicity
	Modularity
	Reliability
	Portability
	Scalability

	Design patterns
	Visualization
	Evaluation

	Practical Application of Modular SLAM

	New VSLAM robust methods
	Keypoints detections
	SuperPoint for VSLAM
	Dataset generation
	Model overview
	Training stage
	Evaluation

	VSLAM RANSAC
	Evaluation

	Conclusions
	Future Work

	SLAM projects
	Additional resources
	Bibliography

