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STRESZCZENIE 

Niniejsza rozprawa doktorska przedstawia holistyczny opis metod akwizycji oraz 

przetwarzania i analizy danych spektralnych w wybranych aplikacjach przemysłowych  

i naukowych wraz z propozycją autorskiej metodologii obrazowania i przetwarzania danych  

w zależności od aplikacji. Problem badawczy dotyczył weryfikacji postawionej w rozprawie 

hipotezy badawczej: 

„Systemy hiperspektralne o uproszczonej konstrukcji optycznej i znacząco 

zredukowanej liczbie kanałów spektralnych, mogą realizować większość podstawowych zadań 

klasyfikacji i identyfikacji obiektów ze skutecznością porównywalną do klasycznych systemów 

hiperspektralnych o wysokiej liczbie kanałów spektralnych, pod warunkiem optymalnego 

doboru pasm i wykorzystania zaawansowanych metod przetwarzania danych”. 

Weryfikacja hipotezy badawczej wymagała wykonania szeregu badań i analiz, w tym 

szczegółowej analizy mocnych i słabych stron a także zakresu stosowania dotychczas 

opracowanych technik realizacji obrazowania multi- (MSI) i hiperspektralnnego (HSI). 

Pozwoliło to wskazać kluczowe etapy w łańcuchu akwizycji i przetwarzania danych. Do jednych 

z nich należą sposoby filtracji kanałów spektralnych, w których wykorzystywane są takie 

elementy optyczne, jak siatki dyfrakcyjne, pryzmaty oraz filtry Fabry-Perot, czy filtry 

gradientowe (LVF). Wykonane badania oraz opracowane zestawienie charakterystyk 

przestrzenno-spektralnych wybranych elementów filtracyjnych, dostarczyły informacji na 

temat optymalnego doboru kluczowych komponentów systemów obrazujących ze względu na 

docelową aplikację (np. w rolnictwie, czy w sortowni odpadów). Kolejny kluczowy etap 

analizowany w pracy dotyczył wydajności algorytmów przetwarzania i analizy danych (HSI). 

Na podstawie wykonanych badań, opracowana została autorska metoda syntezy układów 

obrazowania spektralnego ze zredukowaną zaledwie do kilku liczbą kluczowych kanałów 

spektralnych. Wykonane prace pozwoliły potwierdzić słuszność postawionej hipotezy, jak 

również nakreślić obszary dalszego rozwoju w kierunku szerszego wykorzystania  

i upowszechnienia metod obrazowania spektralnego w technice. Wyniki zrealizowanej 

rozprawy powstały we współpracy oraz zostały wdrożone w firmie Scanway S.A. w ramach 

projektu Doktorat Wdrożeniowy Edycja V (nr umowy DWD/5/0280/2021). 
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ABSTRACT 

This doctoral dissertation presents holistic description of acquisition methods and 

processing and analysis of spectral data in selected industrial and scientific applications, along 

with a proposal of the author's application-specific imaging and processing methodology. 

Verification of the research hypothesis established in the dissertation: 

"Hyperspectral systems with a simplified optical design and a significantly reduced 

number of spectral channels can perform most of the basic tasks of object classification and 

identification with an efficiency comparable to classical hyperspectral systems with a high 

number of spectral channels, provided that the bands are optimally selected and advanced 

data processing methods are used" 

required to carry out a series of studies and analyses, including a detailed analysis of the 

strengths and weaknesses and also the scope of application of the techniques developed so 

far for the implementation of multi- (MSI) and hyperspectral imaging (HSI). This made it 

possible to draw conclusions and identify key steps in the chain of data acquisition and 

processing. Among them are the ways of filtering spectral channels, in which such optical 

elements as diffraction gratings, prisms and Fabry-Perot filters or gradient (linear variable) 

filters (LVF) are used. The research performed and the compilation of spatial-spectral 

characteristics of the filter elements studied, provided information on the optimal selection 

of key components of imaging systems due to the target application (e.g. in agliculture or in 

waste sorting facility). Another key stage analyzed in the work was the performance testing of 

data processing and analysis (HSI) algorithms. 

As a result of the research performed, an original method was developed for the synthesis 

of spectral imaging systems with reduced to only a few, key spectral channels. The work 

performed made it possible to verify stated hypothesis, as well as to outline areas for further 

development in the direction of wider use and dissemination of spectral imaging methods in 

technology. The results of the completed dissertation were created in cooperation with and 

implemented at Scanway S.A. within the framework of the project Implementation Doctorate 

Edition V (contract number DWD/5/0280/2021). 
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SPIS NAJWAŻNIEJSZYCH SKRÓTÓW I AKRONIMÓW  

AI - (Artificial Intelligence) sztuczna inteligencja 

ASIC - (Application-Specific Integrated Circuit) układ scalony o specjalnym przeznaczeniu 

CCD - (Charge-Coupled Device) urządzenie z ładunkiem sprzężonym (matryca CCD) 

CMOS - (Complementary Metal-Oxide-Semiconductor) technologia wytwarzania układów 

scalonych (matryca CMOS) 

CPU - (Central Processing Unit) jednostka centralna / procesor 

DL - (Deep Learning) uczenie głębokie 

FP - (Focal Plane) płaszczyzna ogniskowa 

FPGA - (Field-Programmable Gate Array) programowalna macierz bramek logicznych 

FPS - (Frames Per Second) liczba klatek na sekundę 

FWHM - (Full Width at Half Maximum) szerokość połówkowa piku (w połowie wysokości) 

GMM - (Gaussian Mixture Model) model mieszanki rozkładów Gaussa 

GPU - (Graphics Processing Unit) procesor graficzny 

HSI - (HyperSpectral Imaging / HyperSpectral Instrument) obrazowanie hiperspektralne / 

instrument hiperspektralny 

IoU - (Intersection over Union) miara nakładania się obszarów (przecięcie przez sumę) 

LDA - (Linear Discriminant Analysis) liniowa analiza dyskryminacyjna 

LPS - (Lines Per Second) liczba linii na sekundę 

LWIR - (Long-Wave InfraRed) daleka podczerwień 

ML - (Machine Learning) uczenie maszynowe 

MSI - (MultiSpectral Imaging / MultiSpectral Instrument) obrazowanie multispektralne / 

instrument multispektralny 

MV - (Machine Vision) wizja maszynowa  

MWIR - (Mid-Wave InfraRed) średnia podczerwień 

NIR - (Near InfraRed) bliska podczerwień 

PCA - (Principal Component Analysis) analiza głównych składowych 

RF - (Random Forest) losowy las (algorytm uczenia maszynowego) 

SMC - (Spectral Mixture Classification) klasyfikacja mieszanin spektralnych 

SWIR - (Short-Wave InfraRed) krótka podczerwień 

VIS - (Visible Spectrum) światło widzialne / widmo widzialne 
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1. WSTĘP 

Wzrok, bardziej niż jakikolwiek inny zmysł dostarcza człowiekowi informacji na temat 

otaczającego świata, jego natury, kształtu i barw. Choć wydawać by się mogło, że oczy  

to instrument doskonały, rejestrujący rzeczywistość z dużą dokładnością, w istocie są one 

obarczone szeregiem niedoskonałości. Jedną z największych niedoskonałości jest skłonność 

zmysłu wzroku do tworzenia wrażenia, że wszystkie barwy można odwzorować mieszaniną 

trzech barw podstawowych. Rzeczywistość jest jednak bardziej skomplikowana. Niniejsza 

praca doktorska zgłębia techniki obserwacji hiperspektralnej, która bardziej niż jakakolwiek 

inna metoda rejestracji, otwiera przed nami możliwość pozyskania nowych, niedostępnych 

wcześniej informacji o materiale, strukturze i właściwościach obserwowanych obiektów, 

umożliwiając tym samym głębsze i bardziej obiektywne poznanie i zrozumienie rzeczywistości. 

 

1.1. MOTYWACJA DO POWSTANIA PRACY I WYZWANIA 

Obecnie systemy obrazowania hiperspektralnego, głównie ze względu na stosunkowo 

wysoką cenę, wykorzystywane są w ograniczonym zakresie. Chociaż przewiduje się,  

że upowszechnienie tego rodzaju technik w coraz szerszych i coraz bardziej codziennych 

zastosowaniach jest już tylko kwestią czasu, wciąż istnieje kilka istotnych barier stojących  

na drodze do takiego stanu rzeczy.  

Obecnie instrumenty hiperspektralne (HSI) są wykorzystywane głównie tam, gdzie ich 

wysoka cena skompensowana może być przez zwrot z inwestycji lub gdzie występuje 

wyzwanie badawcze trudne do zastąpienia innymi technikami. W związku z tym systemy HSI 

znajdują obecnie zastosowanie głównie w przemyśle, górnictwie, medycynie, badaniach Ziemi 

i klimatu oraz w badaniach innych planet. Obniżenie ceny oraz redukcja wyzwań stojących 

przed implementacją tego typu rozwiązań, pomogłyby upowszechnić kamery hiperspektralne 

w dziedzinach i biznesach niskomarżowych, jak np. we wczesnym sortowaniu odpadów (np. 

na poziomie kontenerów na odpady), w branży spożywczej (np. podręczne wykrywacze 

patogenów), w motoryzacji (np. rozpoznawanie obiektów przed pojazdem), w aplikacjach 

konsumenckich (np. kamery HSI w smartfonach) oraz w małych gospodarstwach rolnych (np. 

HSI instalowane na plantacjach i maszynach rolniczych w celu oceny dojrzałości plonów i 

identyfikacji patogenów).  

Kluczowe bariery powstrzymujące upowszechnienie technik obserwacji spektralnej łączą 

w sobie zarówno aspekty ekonomiczne jak i techniczne. Są to przede wszystkim: 



14 

• wysoka cena kamery HSI, wynikająca z faktu dużego skomplikowania każdej  

z technik akwizycji obrazowania hiperspektralnego, 

• obszerny strumień danych pochodzący z obrazowania hiperspektralnego, 

wynikający z mnogości kanałów spektralnych, 

• wymóg dużej mocy obliczeniowej urządzenia obsługującego kamerę HSI z uwagi na 

wielowymiarowy charakter danych, 

• wyzwania radiometryczne powodowane małą szerokością kanałów spektralnych, 

co przekłada się na małą liczbę fotonów padających na piksele oraz konieczność 

obrazowania w pełnym słońcu lub z wykorzystaniem dodatkowych oświetlaczy 

przemysłowych, 

• wymóg ruchu kamery względem obserwowanego obiektu w trakcie akwizycji,  co 

w przypadku większości kamer HSI dostępnych na rynku, wyklucza stosowanie typu 

podręcznego (handhield). 

Znalezienie rozwiązań dla tych wyzwań, może przyczynić się do przyspieszenia rozwoju  

i zastosowania technik obrazowania multispektralnego oraz hiperspektralnego. W tym celu, 

konieczne jest: 

• holistyczne podejście do tematyki wyzwań systemów HSI,  

• analiza wad i zalet wszystkich odmian komponentów składowych,  

• poszukiwanie uproszczeń związanych z zawężaniem zastosowań aplikacyjnych. 

Działania te oraz ich możliwe rezultaty, stanowią właśnie podstawę motywacji do realizacji 

niniejszej rozprawy doktorskiej. 

 

1.2.  HIPOTEZA BADAWCZA I CELE PRACY 

Niniejsza praca ma na celu znalezienie rozwiązań i metodologii akwizycji, przetwarzania i 

analizy w obrazowaniu hiperspektralnym, które pozwolą na wzrost liczby zastosowań  

i implementacji instrumentów HSI. Kluczowa hipoteza badawcza w niniejszej pracy to: 

„Systemy hiperspektralne o uproszczonej konstrukcji optycznej i znacząco zredukowanej liczbie 

kanałów spektralnych, mogą realizować większość podstawowych zadań klasyfikacji  

i identyfikacji obiektów ze skutecznością porównywalną do klasycznych systemów 

hiperspektralnych o wysokiej liczbie kanałów spektralnych, pod warunkiem optymalnego 

doboru pasm i wykorzystania zaawansowanych metod przetwarzania danych”. 
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Zweryfikowanie postawionej hipotezy wymagało realizacji szeregu takich celów, jak: 

1. Opracowanie studium literaturowego pod kątem stosowanych obecnie technik 

akwizycji, przetwarzania i analizy danych hiperspektralnych. 

2. Przegląd literatury pod kątem zastosowań i aplikacji wykorzystujących akwizycję, 

przetwarzanie i analizę danych hiperspektralnych. 

3. Wykonanie badań właściwości i parametrów kluczowych elementów kamer 

hiperspektralnych. 

4. Porównanie różnych metod przetwarzania i analizy danych hiperspektralnych wraz  

z weryfikacją ich skuteczności i wydajności. 

5. Zaprojektowanie uproszczonej architektury układów obrazowania hiperspektralnego. 

6. Weryfikacja skuteczności uproszczonych układów obrazowania hiperspektralnego.  

 

1.3.  STRUKTURA PRACY DOKTORSKIEJ 

Opis realizacji przedstawionych w rozdziale 1.2 celów zawarty został w kolejnych 

rozdziałach pracy. W szczególności rozdział 2 opisuje metody obrazowania w nauce i technice 

wraz z przedstawieniem możliwości zastosowania tego rodzaju systemów w metrologii oraz 

przykładami wybranych rozwiązań. Rozdział 3 to studium systemów multi i hiperspektralnych. 

Zawiera on zarówno definicję podziału systemów MSI i HSI, jak i opis ewolucji i rodzajów 

technik akwizycji multi i hiperspektralnej wraz z przykładami nowatorskich rozwiązań. Z kolei 

rozdział 4 zawiera opis obszarów zastosowań obrazowania MSI i HSI. Rozdział 5 poświęcony 

został na wprowadzenie literaturowych definicji podstawowych i bardziej zaawansowanych 

technik przetwarzania obrazu, stanowiących łańcuch przetwarzania danych. 

Druga część niniejszej pracy doktorskiej, to część wdrożeniowa. W rozdziale 6 

zamieszczono uzyskane wyniki badania kluczowych elementów filtrujących światło, 

stosowanych w układach hiperspektralnych. W rozdziale tym opisano również stanowiska 

badawcze zbudowane na potrzeby rozprawy doktorskiej, które umożliwiły parametryzację 

cech badanych elementów optycznych. Rozdział 7 poświęcony został badaniom metod 

przetwarzania i analizy danych hiperspektralnych. Zamieszczono w nim również opisy 

stanowisk badawczych, które posłużyły zarówno do realizacji akwizycji, jak i do przetwarzania 

i analizy danych. Z kolei wyniki badań i zaproponowany opis metody realizacji uproszczonych 

układów obrazowania spektralnego opisane są w rozdziale 8. 

Całość pracy, wraz z wnioskami i oceną realizacji poszczególnych celów badawczych oraz 

weryfikacją postawionej hipotezy, podsumowane zostały w rozdziale 9.  
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2. OBRAZOWANIE W NAUCE I TECHNICE 

Każdy proces w nauce i technice, którego celem jest zbadanie obiektu lub zjawiska, 

wymaga podjęcia odpowiednich czynności i zastosowania odpowiednich narzędzi 

pomiarowych. Zdecydowana większość tego rodzaju procesów oparta jest na pomiarach,  

w których, w określonych warunkach (np. w określonym miejscu) obserwowana jest 

pojedyncza wielkość fizyczna. Powodem takiego jednowymiarowego (punktowego) pomiaru 

jest upraszczanie architektury urządzeń i technik pomiarowych. Dla przykładu, pomiar 

temperatury wód powierzchniowych w oceanie zrealizowany za pomocą pojedynczego 

sensora dostarcza informacji na temat temperatury tylko w danym punkcie na powierzchni 

zbiornika wodnego. W wielu różnych zastosowaniach takie punktowe pomiary  

są wystarczające. Jednakże, jeśli istotne dla procesu badawczego jest określenie temperatury 

w wielu miejscach, w tym samym czasie, rozwiązaniem może być zastosowanie techniki 

obrazowania (termicznego) [1]. 

Obrazowanie, jako zagadnienie techniczne, można zdefiniować jako akwizycję  

i reprezentację punktowych danych pomiarowych w domenie przestrzennej [2].  

W najprostszym przypadku, poszczególne dane punktowe zapisywane są w komórkach 

dwuwymiarowych macierzy, w miejscach, które odpowiadają ich rzutowi na płaszczyznę 

dwuwymiarową matrycy sensora optycznego - są to tzw. piksele. Zbiory takich pikseli 

określane są mianem obrazów. Taki zapis pozwala na ich rekonstrukcję np. w skali odcieni 

szarości. W wypadku najczęściej stosowanych obrazów trójkolorowych, mamy do czynienia z 

zestawieniem trzech takich macierzy, gdzie każda macierz odpowiada innej barwie składowej 

(R, G i B). W wypadku obrazów hiperspektralnych, do zapisu danych stosowane są tzw. 

hipermacierze (hipercubes), czyli trójwymiarowe zbiory informacji numerycznych, w których 

trzeci wymiar związany jest z długością fali elektromagnetycznej [3].  

W niniejszym rozdziale przedstawiono proces ewolucji i automatyzacji technik 

obrazowania, które umożliwiły powstanie obrazowania hiperspektralnego, jak również 

przykłady zastosowania tej nowoczesnej techniki w zagadnieniach metrologicznych. 

 

2.1.  LUDZKIE ZMYSŁY A OBRAZOWANIE HIPERSPEKTRALNE 

Światło, to doskonały nośnik informacji. Oprócz rozwiązań technicznych opracowanych 

przez człowieka, w których wykorzystywane jest promieniowanie elektromagnetyczne  

z zakresu fal optycznych, również przyroda i ewolucja na Ziemi już setki milionów lat temu 

dostrzegła niezwykłą wartość światła w przekazywaniu informacji. Pierwsze organizmy 
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posiadające zmysł wzroku datuje się na 541 mln lat temu [4]. W tym kontekście dzieje 

ludzkości, a w szczególności zastosowanie kamer, czy zaawansowanych systemów 

obrazujących to jedynie chwila w historii Ziemi, jednak bardzo intensywna w swoim rozwoju.  

W drodze ewolucji, organizmy ziemskie w naturalny sposób wykształciły zmysł wzroku 

(oczy) w taki sposób, aby uzyskać największą czułość w zakresie spektralnym, który nazywamy 

zakresem światła widzialnego. Zakres ten związany jest z przepuszczalnością (transmitancją 

optyczną) atmosfery ziemskiej dla światła docierającego do Ziemi ze Słońca, które  

w najmniejszym stopniu pochłaniane jest w przedziale od około 400 nm do ponad 700 nm (rys. 

2.1). Dzięki temu, organizmy żywe są w stanie określić położenie przeciwnika, ofiary lub cechy 

nawigacyjne otoczenia  [5]. 

Czułość spektralna ludzkiego oka, jak również większości organizmów na Ziemi, 

wyposażonych w zmysł wzroku, osiąga maksymalną wartość w przy długości fali 

elektromagnetycznej wynoszącej około 507 nm dla tzw. widzenia zmierzchowego 

(skotopowego) oraz 555 nm dla tzw. widzenia dziennego (fotopowego) – rys. 2.2.  

 

 

Rys. 2.1.  Transmitancja optyczna ziemskiej atmosfery w funkcji długości fali promieniowania 

elektromagnetycznego [5] 

 

Rys. 2.2. Krzywe czułości spektralnej oka ludzkiego dla tzw. widzenia dziennego V(λ) i zmierzchowego V'(λ) [6] 
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Połączenie widzenia barwnego (a dokładniej widzenia składowych światła o barwach 

czerwonej, zielonej i niebieskiej) oraz możliwości ludzkiego mózgu, umożliwiają dostrzeganie 

niemal każdego zjawiska, jakiego na Ziemi może doświadczyć człowiek. Mimo, że ludzkie oko 

jest jednym z najdoskonalszych tego typu organów w królestwie zwierząt, to w pewnym 

stopniu jest jednak ograniczone. Ludzki umysł bardzo często upraszcza rzeczywistość zgodnie 

ze stwierdzeniem “jeśli czegoś nie widać, to tego nie ma”. Jest to oczywiście potoczne 

uproszczenie, które sprawdza się w zdecydowanej większości zjawisk, jakich mógł doświadczyć 

człowiek przez tysiąclecia, jednak podkreśla ono, jak bardzo jesteśmy zwodzeni przez 

niedoskonałości naszego wzroku. 

Od początku istnienia urządzeń umożliwiających rejestrację obrazu (np. kamer), 

zauważono, że dzięki nim możemy zaobserwować znacznie więcej, niż jest w stanie dostrzec 

ludzkie, „nieuzbrojone” oko. Dla przykładu, w 1878 roku w legendarnym już eksperymencie, 

Eadward Muybridge, dzięki nowatorskiej na ówczesne czasy technice fotografii poklatkowej 

udowodnił, że koń w galopie w istocie odrywa wszystkie nogi od ziemi. Od tego momentu 

ludzie na zawsze już zostali pochłonięci dążeniem do odkrywania coraz to nowych aspektów 

świata, których oko nie pozwalało dostrzec. 

Od tamtych czasów minęło ponad 150 lat, a jedną z najnowszych zdobyczy technik 

obrazowania jest obrazowanie hiperspektralne. Rejestracja i analiza obrazów jednocześnie  

w bardzo wielu stosunkowo wąskich zakresach spektralnych (również w tych niewidzialnych 

dla oka ludzkiego, np. w podczerwieni) otwiera nowe możliwości. Pozwala ona na dostrzeżenie 

świata w znacznie bardziej rzeczywistej formie, bez upraszczania i gubienia informacji. 

Wynalezienie i rozpoczęcie stosowania obrazowania hiperspektralnego jest kolejnym krokiem 

w kierunku zwiększania rozdzielczości obrazowania w domenie spektrum światła. Wynalazek 

ten można porównać do rewolucji cyfrowej w obrazowaniu, jaką zapoczątkowało 

wynalezienie sensorów CCD i zastąpienie nimi tradycyjnych klisz analogowych.  

 

2.2 EWOLUCJA TECHNIK OBRAZOWANIA 

Od czasów powstania pierwszych kamer, zdolnych do trwałej rejestracji obrazu minęło już 

niemal 200 lat. Jednakże, podstawowe zasady wiążące ze sobą kluczowe elementy i aspekty 

każdego aparatu, pozostają wciąż te same. W praktyce każdy układ obrazujący składa się  

z dwóch zasadniczych elementów, które mogą być zrealizowane na wiele różnych sposobów  

i korzystać z rozmaitych rozwiązań technicznych. Są to: 

• zespół optyczny formujący wiązkę obrazującą, 
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• element rejestrujący wiązkę obrazującą. 

Warto tutaj zwrócić uwagę na fakt, że są to dwa elementy, które są uniwersalne dla 

każdego układu obrazującego, nawet jeśli rozważany jest aparat rejestrujący obrazy  

w paśmie innym niż pasmo widzialne. Co więcej, zestawienie tych elementów może również 

służyć obrazowaniu z wykorzystaniem innych cząstek elementarnych niż fotony,  

np. w przypadku mikroskopii elektronowej [7]. 

Analiza działania systemów rejestrujących obraz wymaga oczywiście głębszego 

zrozumienia każdego z jego elementów i zmian jakie w nich wystąpiły na przestrzeni niemal 

200 lat w wyniku ich doskonalenia. Warto zauważyć, że w dziedzinie obrazowania, ludzkość 

najpierw opanowała i udoskonalała rejestrację obrazów w paśmie widzialnym, a inne obszary 

spektrum elektromagnetycznego, jak również techniki rejestracji wykorzystujące inne cząstki 

elementarne, zaczęto rozwijać dopiero po ponad stu latach od chwili zarejestrowania 

pierwszego obrazu optycznego. Z uwagi na tematykę niniejszej rozprawy doktorskiej, jak 

również dominującą rolę obrazowania w świetle widzialnym i podczerwonym, dalsze rozdziały 

skupiają się głównie w tym zakresie. 

W trakcie rozwoju technik obrazowania, układy optyczne podlegały powolnej,  

acz znaczącej ewolucji. Było to spowodowane znacznie dłuższą, niemal tysiącletnią historią 

rozwoju układów optycznych, w szczególności lunet i teleskopów, związanych z astronomią. 

Dopiero pojawienie się technik rejestracji obrazu świetlnego pozwoliło na opracowanie 

pierwszej kamery. Dlatego też najszybsza ewolucja, a w ostatnich dekadach wręcz rewolucja, 

nastąpiła właśnie w tym obszarze. 

Zrozumienie współczesnych wyzwań, związanych z nowoczesnym obrazowaniem wiążą 

się ściśle ze zrozumieniem cech elementów rejestrujących światło, a najlepiej jest zrozumieć 

to zagadnienie, śledząc jego rozwój od początku istnienia fotografii. Jak powszechnie 

wiadomo, przez dziesięciolecia kluczową rolę w obrazowaniu odgrywały fotochemiczne klisze 

i powłoki, zwane filmami fotograficznymi. Ich użycie, definiujące tzw. fotografię analogową 

ma wiele zalet, jednak kluczową wadą jest skomplikowany proces chemiczny związany  

z utrwaleniem i powieleniem obrazu zarejestrowanego na kliszy. Niewątpliwie jednak 

największą zaletą, jaka płynie z zastosowania fotochemicznych środków rejestracji obrazu jest 

bardzo korzystny stosunek rozdzielczości do powierzchni sensora, co w wypadku sensorów 

cyfrowych określane jest mianem efektywnego rozmiaru piksela (pixel pitch). Cecha ta bierze 

się ze struktury filmu światłoczułego – tutaj rolę pikseli pełnią pojedyncze cząsteczki substancji 

fotochemicznych, czyli obiektów o rozmiarze pojedynczych mikrometrów lub nawet 
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mniejszych – rys. 2.3. Obecnie najnowocześniejsze sensory cyfrowe, jakie jest w stanie 

wytworzyć ludzkość osiągają rozmiary piksela na poziomie 1 mikrometra, a w zdecydowanej 

większości dostępnych komercyjnie aparatów, rozmiar ten mieści się w zakresie od dwóch do 

siedmiu mikrometrów. Z tego właśnie względu fotografie, nawet sprzed stu lat, dorównują 

rozdzielczością (po cyfryzacji klisz) współczesnym aparatom wysokorozdzielczym. 

 

Rys. 2.3. Obraz powierzchni kliszy fotograficznej Kodak 160VC, uzyskany za pomocą skaningowego mikroskopu 

elektronowego. Na obrazie widoczne są światłoczułe kryształki halogenku srebra [8] 

Niewątpliwą rewolucję w obrazowaniu spowodowało pojawienie się sensorów CCD 

(Charge-Coupled Device), a następnie CMOS (Complementary Metal Oxide Semisconductor). 

CCD to układ scalony, składający się z wielu elementów światłoczułych, konstruowanych  

w oparciu o technologię MOS (Metal Oxide Semiconductor). Rozwiązanie to opracowane 

zostało pod koniec lat sześćdziesiątych XX w. przez George’a E. Smitha i Willarda Boyle’a [9] w 

laboratoriach Bella. Publikacja tych autorów [9] wskazywała na możliwe zastosowanie efektu 

przekazywania ładunku elektrycznego wzdłuż szeregowo połączonych kondensatorów MOS, 

np. w technologiach obrazowania i stała się początkiem prac implementacyjnych w wielu 

firmach. Należy tutaj zaznaczyć, że w detektorze CCD odczyt energii pochodzącej z fotonów 

realizowały również kondensatory MOS, a energia ta przekształcana była w ładunek 

elektryczny w każdym pikselu. Jedną z pierwszych udanych implementacji była kamera 

skonstruowana w 1975 roku przez inżyniera Steva Sassona, pracującego w firmie Kodak – rys. 

2.4. Miała ona matrycę 100 x 100 pikseli, a obraz zapisywany był na taśmie magnetycznej w 

kasecie [10]. 
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Rys. 2.4. Pierwsza dostępna komercyjnie kamera cyfrowa – Kodak 100x100 pikseli [11] 

Od tego momentu, w latach siedemdziesiątych dwudziestego wieku rozpoczął się bardzo 

intensywny rozwój kamer z sensorami opartymi na matrycach CCD. Po rozwiązaniu 

podstawowych problemów z miniaturyzacją matryc pikseli i akwizycji sygnału z pojedynczych 

kondensatorów MOS, inżynierowie i naukowcy skupili się na rozwoju aspektów fotonicznych. 

Pierwsze detektory CCD miały kilka kluczowych wad, które oprócz zalet związanych z 

cyfryzacją, wciąż nie pozwalały na konkurowanie z aparatami analogowymi. Największe 

wyzwania obejmowały małą wydajność energetyczną, stosunkowo duże rozmiary pikseli oraz 

trudności z przeskalowaniem matryc do zestawów milionów pikseli. Większość  

z tych problemów udało się zredukować opracowując technologię CMOS, zwaną również APS 

(Active Pixel Sensor). W odróżnieniu od sensorów CCD, sensory CMOS dokonują konwersji 

ładunku fotoelektrycznego w sygnał napięciowy w każdym pikselu niezależnie, podczas gdy  

w sensorach CCD odbywa się to w pojedynczym węźle odczytu. Różnice w działaniu sensorów 

CDD i CMOS przedstawiono na rys. 2.5. 
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Rys. 2.5. Porównanie konstrukcji i działania matryc CCD oraz CMOS [12] 

Ze względu na znaczną powierzchnię piksela zajętą przez układ konwersji i wzmocnienia 

ładunku fotoelektrycznego, układy CMOS aż do lat 90’ XX w. nie były opłacalne biznesowo  

w produkcji na masową skalę. Dopiero znaczne postępy technologiczne w miniaturyzacji  

w takich firmach, jak Sony, Mitsubishi i Samsung, pozwoliły na uzyskanie wysokiej sprawności 

sensorów CMOS. W bardzo krótkim czasie, bo do roku 2010, sensory CMOS przejęły większość 

komercyjnego rynku aparatów fotograficznych, zarówno w aplikacjach cywilnych,  

jak i wojskowych [13]. 

Niezależnie od tego jaka technologia stała za sposobem rejestracji obrazu, od samych 

początków fotografii, każda z technik obrazowania stała przed ogromnym wyzwaniem – 

rejestracją świata w taki sposób, jak widzą to nasze oczy, czyli w kolorze. Problem ten  

nie dotyczył samej natury sposobu rejestracji obrazu, ponieważ zarówno w wypadku błon 

fotograficznych, jak i krzemowych sensorów półprzewodnikowych, cechowały się one 

odpowiednią czułością spektralną w całym zakresie widzenia ludzkiego oka. Kluczowy problem 

stanowiła jednak jednoczesna rejestracja tego samego obrazu w trzech niezależnych kanałach 

spektralnych, na wzór ludzkiego oka. Oczywiście jedną z podstawowych metod, stosowaną  

do dziś w takich dziedzinach, jak astronomia lub medycyna jest wykonanie trzech zdjęć, każde 

z zastosowaniem innego filtru umieszczonego w torze optycznym kamery. Metoda ta daje 

satysfakcjonujące rezultaty, ale tylko w wypadku fotografii obiektów statycznych. Natomiast 

jest skrajnie nieefektywna przy rejestracji obiektów i zjawisk dynamicznych, a także  

w rejestracji filmów. Z tego właśnie powodu, konieczny był dalszy rozwój technologii 

obrazowania barwnego, tj. w kilku i więcej kanałach spektralnych, jak również rozwój samych 

sensorów i układów optycznych. 
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Jedną z najbardziej efektywnych, a także efektownych technik rejestracji obrazu 

trójkolorowego była komercyjna metoda TechniColor opracowana w czasach tzw. Złotej Ery 

Hollywood (lata 30-50 XX wieku). Technika ta zakładała jednoczesną rejestrację obrazu  

na trzech kliszach filmowych z wykorzystaniem układu światłodzielącego, który oddzielał 

spektrum światła o barwie zielonej, od barwy czerwonej i niebieskiej (rys. 2.6). Była to jedna z 

pierwszych w historii metod współosiowego podziału spektralnego, który stosowany jest  

w wielu aplikacjach po dzień dzisiejszy [14].  

 

Rys. 2.6. Schemat działania kamery opartej na technice TechniColor [14] 

Technika TechniColor oraz pokrewne do niej metody stosowane były w dalszych etapach 

rozwoju technik obrazowania, a ich odmiany stosuje się również obecnie, nawet w systemach 

cyfrowych. Kluczową wadą takiego systemu, jest rozmiar samego urządzenia rejestrującego, 

co dodatkowo wymusiło rozwój innych metod obrazowania. Oczywiście, oprócz opracowania 

i wprowadzenia na rynek (analogowych) klisz kolorowych, istotna była ewolucja sensorów 

cyfrowych w kierunku rejestracji wielu kanałów spektralnych. Już od lat 70-tych XX w. 

opracowywane były metody podziału macierzy pikseli na strefy kolorów spektralnych, 

umożliwiających rekonstrukcję obrazu kolorowego. Na największą uwagę zasługuje bardzo 

powszechna siatka Bayera (od twórcy – Bryce’a Bayera z firmy Kodak), która wraz  

z subpikselową metodą rekonstrukcji obrazu pozwala po dzień dzisiejszy uzyskiwać bardzo 

dobrą rozdzielczość zdjęć kolorowych, bez znacznej utraty informacji związanej z filtrowaniem 

polowym – rys. 2.7. 
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Rys. 2.7. Schemat siatki Bayera w matrycy cyfrowej [15] 

 

Dalsza ewolucja sensorów cyfrowych, szczególnie w ostatnich dwóch dekadach,  

to wyścig między kilkoma głównymi ośrodkami badawczymi i firmami, głównie w dziedzinie 

rozdzielczości (przez zmniejszanie rozmiaru efektywnego piksela) oraz sprawności kwantowej 

(czułości). Dopiero w ostatniej dekadzie pojawił się nowy kierunek tego wyścigu związany z  

liczbą kanałów spektralnych i ich rozdzielczością spektralną. Z tego względu techniki akwizycji 

więcej niż trzech kanałów spektralnych zostaną szczegółowo omówione w rozdziale czwartym. 

 

2.3. MOŻLIWOŚCI SYSTEMÓW OBRAZUJĄCYCH W METROLOGII I AUTOMATYZACJI 

Od pierwszych lat obecności na rynku cyfrowych systemów obrazowania, wiele ośrodków 

przemysłowych i naukowych eksplorowało możliwości zastosowania kamer w automatyzacji 

 i metrologii. Oczywiście, aspekt metrologiczny realizowany był już nawet w wypadku kamer 

analogowych, chociażby w kartografii i naukach geograficznych. Jednakże prawdziwe 

możliwości aparatów w kontekście automatyzacji możliwe były do osiągnięcia dopiero dzięki 

zastosowaniu szybkich cyfrowych systemów transmisji i przetwarzania sygnałów. 

Do najczęstszych zastosowań metrologicznych z wykorzystaniem układów obrazujących 

należą [16]: 

• układy mikroskopowe do pomiarów ręcznych, 

• kamery specjalistyczne do pomiaru w polu obrabiarek przemysłowych, 

• kamery do celów obserwacji Ziemi z platform satelitarnych i lotniczych, 

• zespoły obrazująco-oświetleniowe do pomiarów 3D. 

Cyfrowa postać obrazów, która dała początek możliwości różnych sposobów ich 

przetwarzania i prezentacji, była jednocześnie najważniejszą barierą w pierwszych dekadach 

rozwoju przemysłowych i naukowych systemów wizyjnych. Związane to było przede 

wszystkim z ogromną ilością koniecznych do przetworzenia danych pozyskanych  

z dwuwymiarowej matrycy przetworników CCD lub CMOS. O ile w wypadku sygnału 

jednowymiarowego (punktowego), jego przetwarzanie z częstotliwością setek próbek  
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na sekundę może w zupełności wystarczyć do automatyzacji takich procesów, jak kontrola 

temperatury, położenia i prędkości obiektu, to w wypadku obrazu jest to wielokrotnie zbyt 

mała prędkość. Obrazy zawierają bowiem względnie dużą ilość informacji i nawet  

w dzisiejszym, wysoce zaawansowanym cyfrowo świecie, systemy do automatycznego 

przetwarzania obrazu wymagają odpowiednio dużej mocy obliczeniowej. Operacje  

na milionach pikseli wymagają sprzętu obliczeniowego na poziomie co najmniej 

mikrokomputerów. Systemy łączące elementy akwizycji i przetwarzania obrazów w celu 

wykorzystania w procesach technologicznych nazywane są systemami wizyjnymi. System taki 

składa się przede wszystkim z elementów obrazujących i oprogramowania, a w większości 

przypadków również z układu oświetleniowego (rys. 2.8). 

 

Rys. 2.8. Przykład systemu przetwarzania danych wizyjnych [17] 

Niezależnie jednak od platformy, czy jest to sprzęt obliczeniowy klasy komputera, 

mikrokomputera, układu elektronicznego bazującego na FPGA, czy też procesora graficznego  

w technologii CUDA, możliwości płynące z automatycznego przetwarzania obrazów  

są ogromne i zwłaszcza w ostatnich dekadach mocno doceniane w przemyśle wytwórczym. 

Dzięki znormalizowanym metodologiom cyfrowego przetwarzania obrazów oraz dostępnym 

na licencji otwartej bibliotekom przetwarzania obrazu, jak powstała w firmie Intel biblioteka 

OpenCV, możliwe jest szybkie i powszechne opracowywanie zaawansowanych algorytmów 

wizyjnych. Istnieje oczywiście kilka głównych nurtów metodologicznych w przetwarzaniu 

sygnału dwuwymiarowego, jednak niemal wszystkie opierają się na tzw. modelu kamery 

otworkowej, która leży u podstaw interpretacji obrazu, szczególnie  

w zastosowaniach metrologicznych - rys. 2.9. 
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Rys. 2.9. Schemat kamery otworkowej (tzw. camera obscura) [18] 

W kluczowym założeniu, model kamery otworkowej zakłada liniową lub bliską liniowości 

(w wypadku specjalistycznych obiektywów) zależność między obiektem rzeczywistym,  

a obrazem przetwarzanym w cyfrowym systemie przetwarzania obrazu. W zdecydowanej 

większości układów optycznych, zależność między obiektem rzeczywistym a jego 

odwzorowaniem w postaci obrazu rzucanego na płaszczyznę obrazowania, jest jednak 

nieliniowa oraz zależna od rodzaju i jakości zastosowanych elementów optycznych 

(wytwarzających obraz). Układy optyczne wprowadzają zazwyczaj szereg rozmaitych aberracji 

optycznych, które w efekcie formują obraz znacząco odległy od idealnego modelu kamery 

otworkowej. W procesie projektowania układów optycznych wyróżnia się siedem różnych 

aberracji, które przedstawia się na diagramie Seidela (przykład takiego diagramu znajduje się 

na rys. 2.10). Są to: 

• aberracja sferyczna, 

• aberracja typu coma, 

• astygmatyzm, 

• zakrzywienie pola, 

• dystorsja, 

• aberracja osiowa koloru, 

• aberracja lateralna koloru. 

Warto zauważyć, że niektóre z aberracji określają niedoskonałość nie tyle obiektu  

w formie obrazu, co różnicę między jego odwzorowaniem pomiędzy różnymi długościami fali 

światła. Tego typu aberracje są szczególnie niepożądane w układach obrazowania 
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hiperspektralnego. Wszystkie te aberracje należy uwzględniać podczas projektowania 

układów obrazowania w zastosowaniach metrologicznych. 

Rysunek 2.10 przedstawia przykład diagramu Seidela, który stanowi zestawienie 

składników aberracji optycznej, które wpływają na uzyskiwany przez dany układ optyczny 

obraz (w tym przypadku jest to teleobiektyw do obserwacji Ziemi z satelity EagleEye, 

opracowany w firmie Scanway S.A. w oprogramowaniu Ansys Zemax OpticStudio). 

 

Rys. 2.10. Diagram Seidela (opracowanie podmiotu współpracującego w doktoracie) dla poszczególnych 
elementów układu optycznego w teleskopie satelitarnym do obserwacji Ziemi dla misji EagleEye, produkcji 

Scanway S.A [19] 

Tego typu diagram służy określeniu, jak bardzo układ optyczny wpływa na idealny teoretyczny 

obraz obiektu. Na diagramie widoczne są kolejno ponumerowane powierzchnie układu 

optycznego oraz określone kolorami (lecz bez oznaczenia skali) poziomy składowych aberracji. 

Diagram ten pokazuje, że różne elementy niedoskonałości obrazu powstają  

w wyniku odbicia lub refrakcji światła na lustrach i soczewkach, wchodzących w skład układu 

optycznego. 

 

2.4. PRZEGLĄD WYBRANYCH ZASTOSOWAŃ  

Systemy obrazowania, zestawione w bardziej zaawansowane układy wizyjne znaleźć 

można obecnie w każdej dziedzinie technologii i wytwarzania. Przyczyniły się do tego, rosnąca 

dostępność wydajnych układów obrazujących, a także bariera złożoności technicznej, 

zminimalizowana poprzez szeroki dostęp do zaawansowanych bibliotek programistycznych. 

W niektórych gałęziach gospodarki, systemy obrazowania i automatycznego przetwarzania 

obrazu zastosowano w wyjątkowo szerokim zakresie. W niniejszym rozdziale przedstawiono 
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kilka dziedzin, w których spotkać można obecnie największe wykorzystanie systemów 

wizyjnych. 

 

2.4.1. Sektor produkcyjny 

Wynalezienie układów obrazujących i połączonych z nimi systemów przetwarzania 

obrazu, spowodowało szybkie włączenie kamer do kategorii narzędzi metrologicznych. 

Najczęściej spotykanym zastosowaniem kamer zaprojektowanych do pomiarów  

są automatyczne systemy kontroli jakości lub procesu w systemach wytwórczych. W wypadku 

przemysłowych zastosowań automatycznego pomiaru i kontroli, układy obrazujące muszą być 

zestawione z jednostką obliczeniową. Współcześnie bardzo ważnym i powszechnym trendem 

są układy wbudowane, zwane smartkamerami. Są to układy kamery, obiektywu, układu 

oświetleniowego i układu obliczeniowego, bardzo często implementowanymi w jednej 

obudowie, realizujące proste, predefiniowane zadania wizyjne – rys. 2.11. 

 

Rys. 2.11. Przykład tzw. smartkamery marki Cognex [20] 

Kamery tego typu zestawiane są bardzo często w większe systemy, połączone  

ze sterownikami PLC, ramionami robotycznymi oraz innymi układami wykonawczymi  

w przemyśle.  

Najczęściej realizowane automatyczne zadania takich systemów to: 

• sprawdzanie obecności obiektu, 

• zliczanie elementów np. na taśmie produkcyjnej, 

• kontrola kształtu np. poprawności odlewu czy cięcia, 

• precyzyjne wymiarowanie obiektów, 

• kontrola jakości wykonania obiektu, 
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• kontrola procesu montażu, 

• odczyt tekstu (Optical Character Recognition - OCR), 

• optyczne rozpoznawanie kodów kreskowy i QR (barcode, QR code), 

• śledzenie elementów np. na linii produkcyjnej lub podczas procesu pakowania. 

 

2.4.2. Sektor obronny 

Możliwość wzbogacenia maszyny o zdolności rozpoznawcze porównywalne ze zmysłem 

wzroku od samego początku technik obrazowania były przedmiotem zainteresowania sektora 

zbrojeniowego. Pierwsze samoloty, wyposażone w kamery zastosowano już w trakcie I wojny 

światowej (rys. 2.12) w celu rozpoznania (zwiadu) z powietrza. Przez kilka następnych dekad 

stosowano kamery wyłącznie w celu obrazowania, natomiast wraz z wynalezieniem kamer 

cyfrowych oraz mikroprocesorów, możliwa była także implementacja systemów kierowania 

ognia automatycznie na podstawie sygnału optycznego.  

 

Rys. 2.12. Samolot z okresu I WŚ wyposażony w kamerę lotniczą K-3 [21] 

Pierwszym pociskiem z automatycznym sterowaniem kierunku lotu na podstawie obrazu 

z kamery jest amerykańska rakieta AGM-65 Maverick [22]. System w tym pocisku składa się z 

kamery i układu automatycznego przetwarzania, który nakierowuje rakietę na obiekt o tym 

samym kontraście co wskazany przez operatora przed wystrzeleniem. Jest to prosta 

implementacja systemu wizyjnego w przemyśle zbrojeniowym, natomiast we współczesnej 

armii trudno jest znaleźć system nie wspomagany układem obrazującym, począwszy od rakiet, 

przez czołgi, pojazdy aż po osprzęt żołnierzy piechoty. Obecnie systemy obrazowania i systemy 

wizyjne w sektorze zbrojeniowym wykorzystywane są jako: 
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• systemy rozpoznawcze, 

• systemy kierowania ognia (w tym automatyczne kierowanie pocisków), 

• systemy wykrywania zagrożenia (np. pocisku zmierzającego w stronę obserwatora), 

• systemy kontroli granic (perymetru), 

• systemy termograficzne (pasma LWIR i SWIR) do detekcji przeciwnika, 

• systemy wspierania pilota/kierowcy, 

• systemy wspierania piechoty. 

 

2.4.3. Sektor kosmiczny 

Rozwój technologii cyfrowego zapisu obrazu był pośrednio wymuszony przez znaczne 

postępy Stanów Zjednoczonych w eksploracji kosmosu i obserwacjach satelitarnych Ziemi. 

Wydawać by się mogło, że bez cyfrowych kamer, niemożliwe byłoby zdalne wykonywanie 

zdjęć w satelitach eksplorujących Ziemię lub Księżyc. Inżynierowie jednak poradzili sobie z tak 

trudnymi wyzwaniami nawet w dobie fotografii analogowej. Najznamienitsze przykłady 

osiągnięć kosmicznej techniki analogowego obrazowania to radziecka sonda Luna-3 oraz 

amerykański szpiegowski system satelitów KH-9 Hexagon. System Hexagon dokonywał 

akwizycji obrazów satelitarnych wysokiej rozdzielczości, a następnie zapisane obrazami klisze 

transportowane były z orbity w specjalnych kapsułach, po czym wywoływano je  

w laboratorium i poddawano analizie wywiadowczej. 

Nieco bardziej wysublimowany sposób akwizycji obrazu i przekazywania go do stacji 

naziemnej został zaimplementowany w sondzie Luna-3. Sonda ta wyposażona była  

w zminiaturyzowane laboratorium do automatycznego wywoływania klisz. Wywołane klisze 

następnie skanowano fotodiodą, a sygnał przesyłano drogą radiową do radzieckich stacji 

odbiorczych. W ten sposób przesłano pierwsze zdjęcia niewidocznej z Ziemi strony Księżyca - 

rys. 2.13.  

Przez wiele dekad rozwoju technologii kosmicznych systemy obrazujące były stosowane 

w rozmaitych misjach naukowych, rządowych i komercyjnych, lecz najczęściej do obrazowania 

powierzchni Ziemi. Należy tu wspomnieć o konstelacjach amerykańskich Landsat oraz 

Europejskich o nazwie Sentinel. Dane z obu tych konstelacji, znaleźć można w połączonym 

projekcie Copernicus, który  ma na celu gromadzenie danych na temat naszej planety. 
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Rys. 2.13. Obraz przesłany przez sondę Luna-3, pokazujący niewidoczną z Ziemi stronę Księżyca [23] 

Obecne zastosowania systemów obrazowania i systemów wizyjnych w sektorze 

kosmicznym to przede wszystkim: 

• obrazowanie Ziemi, 

• obrazowanie innych ciał niebieskich (misje naukowe), 

• wykrywanie asteroid i innych obiektów zagrażających Ziemi, 

• obrazowanie otoczenia łazika lub satelity i podejmowanie decyzji na podstawie 

zagrożeń, 

• wykrywanie obiektów na nieznanych orbitach i aktualizacja orbit obiektów znanych 

(Space Situational Awareness - SSA), 

• automatyczne systemy dokowania, 

• automatyczne systemy lądowania rakiet (przykład - Falcon-9 SpaceX), 

• systemy kontroli stanu satelity. 

Oprócz systemów, składających się wyłącznie ze składnika obrazującego, zauważyć można 

wyraźny trend w wykorzystywaniu systemów autonomicznego podejmowania decyzji na bazie 

systemów wizyjnych stosowanych w satelitach i misjach kosmicznych. Coraz częściej spotkać 

można kamery sprzężone w systemy, które automatycznie sprawdzają stan satelity lub łazika, 

wspomagają astronautów w procesie dokowania lub wykrywają nieznane obiekty poruszające 

się po nieznanych orbitach. W tabeli 2.1 przedstawiono przegląd dotychczasowych, 

planowanych i zrealizowanych misji satelitarnych, na pokładzie których znalazły się 

instrumenty hiperspektralne wraz z podstawowymi parametrami ich obrazowania. 
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Tabela 2.1. Przegląd misji satelitarnych wykorzystujących instrumenty hiperspektralne, na podstawie [24-26] 

Nazwa misji Agencja / kraj  
Zakres 

spektralny [μm] 

Liczba 
kanałów 

spektralnych 
GSD [m] Rok 

EO-1 NASA 0,357 - 2,570 242 30 2000 

PROBA-1 ESA 0,415 - 1,050 63/150 18 2001 

PRISMA ASI/Włochy 0,400 - 2,500 250 30 2019 

EnMap DLR/Niemcy 0,420 - 2,450 228 30 2022 

HISUI Japonia 0,400 - 2,500 185 30 2020 

HyspIRI USA 0,380 - 2,510  60 2024 

Jilin-1 Chiny  28 5 2019 

MODIS NASA 0,460 - 14,390 36 250-1 000 
1999 
2002 

MetOP-SG A1 
MetOP-SG A2 
MetOP-SG A3 

(IASI-NG) 

ESA 3,620 - 15,500 16921 25 000 2024 

MetOP-SG A1 
MetOP-SG A2 
MetOP-SG A3 

(UVNS) 

ESA 0,270 - 2,385 3936 7 000-28 000 2024 

MTG-S1 
MTG-s2 
(UVN) 

ESA 0,305 - 0,775 598 8 000 2024 

TEMPO NASA 0,290 - 0,740 666 4 400 2022 

HysIS Indie 0,400 - 2,400 316 30 2018 

FLEX ESA 0,500 - 0,780 300 300 2024 

GEO-KOMPSAT-2B Korea 0,300 - 0,500 250 7 000 2020 

EOS-3 (GISAT-1) Indie 0,900 - 2,500 150 200 2021 

IMS-1 Indie 0,400 - 0,950 64 505 2008 

ADEOS-II Japonia 0,380 - 12,00 36 1 000 2002 

Intuition-One Polska 0,470 - 0,900 150 25 2023 

Oznaczenia: GSD – Ground Sample Distance rozdzielczość próbkowania przestrzennego wyrażona w metrach 

[24]. 

 

2.4.4. Sektor górniczy 

Obrazowanie to narzędzie, które od samych początków swojego istnienia, 

wykorzystywane jest w różnych dziedzinach nauki i przemysłu, w tym także w górnictwie  

i geologii. Wynika to przede wszystkim z potrzeby ciągłego monitorowania materiału 

geologicznego, zarówno jeszcze w środowisku skalnym, jak i w zakładach przemysłowych pod 

kątem składu i zawartości poszczególnych składników. Automatyzacja klasycznych technologii 

laboratoryjnych służących do klasyfikacji skał, pozwala na sprawdzanie jakości urobku  

na każdym etapie jego wydobycia, a techniki obrazujące są zaliczane do wysoce podatnych  

na automatyzację. Choć obecnie najczęściej stosowane systemy wizyjne w górnictwie to 

systemy multi i hiperspektralne, to klasyczne obrazowanie znajduje w tym przemyśle wiele 

zastosowań. Począwszy od dokumentacji, a skończywszy na termografii, która umożliwia 

lepsze kontrolowanie procesów na etapie hutniczym.  

W ostatnich latach, szczególnie pożądane są również systemy kontroli warunków 

bezpieczeństwa i higieny pracy w zakładach górniczych. Takie systemy, wykorzystują 
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najczęściej kamery monitoringu zastosowane w zakładzie górniczym lub hutniczym oraz 

techniki sztucznej inteligencji do oceny postawy, zachowania, położenia a także ubioru  

i środków bezpieczeństwa stosowanych przez pracowników. 

 

2.3.5. Sektor rolniczy 

Obrazowanie jest również szczególnie chętnie wykorzystywaną techniką pomiarową  

w rolnictwie. Do najbardziej popularnych obecnie technik obserwacyjnych należą obserwacje 

z platform UAV, z satelitów oraz z oprzyrządowania instalowanego na ciągnikach rolniczych. 

Każda z tych platform umożliwia akwizycję obrazów na różnym poziomie rozdzielczości i dla 

różnych zastosowań. Najczęściej spotykane aplikacje to [27]: 

• automatyzacja zbiorów – kamery wraz z algorytmami wizyjnymi pozwalają  

na automatyczne znajdowanie zbieranych owoców i warzyw, znacznie zmniejszając 

koszty siły roboczej oraz zwiększając efektywność zbiorów, 

• wykrywanie chorób – kamery wraz z algorytmami wizyjnymi mogą służyć wykrywaniu 

symptomów początków chorób roślin i eliminować to zagrożenie, zanim powiększy się 

do rozmiarów powodujących znaczne straty, 

• analiza poziomu zbiorów – wykorzystanie kamer może służyć inwentaryzacji i predykcji 

rozmiaru zbiorów, 

• kontrola jakości gleby  – czujniki wizyjne są również wykorzystywane do określania 

stanu i jakości gleby pomiędzy cyklami wegetacyjnymi, podczas rekultywacji, 

• określanie cech fenotypowych – kamery znajdują swoje zastosowanie również  

w automatycznej analizie jakości rozsad, tak aby móc przyspieszyć drugą fazę wzrostu 

i zwiększyć jakość finalnych zbiorów. 
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3. SYSTEMY MULTI I HIPERSPEKTRALNE 

W niniejszym rozdziale przedstawiono na czym polega rejestrowanie promieniowania 

elektromagnetycznego w systemach obrazowania polowego, a także jak można zdefiniować 

systemy multi i hiperspektralne. Wyjaśniono różne podejścia do akwizycji danych 

spektralnych, opisano kluczowe elementy systemów spektrofotometrycznych, jak również ich 

dostępność na szerokim rynku komercyjnym. Istotnym elementem tego rozdziału jest również 

podjęta autorska próba algorytmizacji doboru odpowiedniego systemu polowego 

obrazowania spektralnego ze względu na zastosowanie jak również warunki brzegowe pracy 

instrumentu. 

 

3.1. PODZIAŁ SYSTEMÓW OBRAZOWANIA SPEKTRALNEGO 

Systemy spektralnego obrazowania dzieli się przede wszystkim na systemy 

multispektralne (MSI) oraz hiperspektralne (HSI). Niestety wciąż w wielu miejscach, a nawet 

w ośrodkach badań nad fotoniką, pojęcia te są często mylone i używane zamiennie. Istnieje 

wiele różnic między tymi technikami. Bardzo istotnym elementem odróżniającym te systemy 

jest liczba kanałów oraz pokrycie przez nie interesującego zakresu spektrum światła.  

W systemie multispektralnym wyróżnia się zazwyczaj od kilku do kilkunastu kanałów 

spektralnych, między którymi mogą istnieć tzw. obszary martwego spektrum, czyli takie, w 

których element światłoczuły nie rejestruje promieniowania. Efekt taki można uzyskać np. 

przez zastosowanie filtrów pasmowozaporowych. Z kolei w systemie hiperspekralnym, światło 

rejestrowane jest w każdym fragmencie spektrum z wybranego zakresu. Kolejne, w domenie 

długości fali, kanały spektralne rejestrowane są przez osobne piksele (lub grupy pikseli) 

detektora. Efektem tego, w systemie hiperspektralnym, zazwyczaj jest znacznie większa liczba 

kanałów spektralnych, co przekłada się jednocześnie na większe wymagania  

co do jakości wykonania układu akwizycji oraz wymaganą większą wydajność systemu 

przetwarzania danych  [3]. Ideę akwizycji spektrum światła w wybranym zakresie długości fali 

dla systemów multi i hiperspektralnych przedstawiono na rys. 3.1. 

Liczba kanałów, bardzo często utożsamiana jest jako podstawowe kryterium rozróżniania 

systemów na multi i hiperspektralne [28]. W rzeczywistości jednak, jak już wspomniano, obok 

liczby kanałów istotnym kryterium klasyfikacji jest także fakt pełnego (kwazi-ciągłego) pokrycia 

interesującego spektrum długości fali, bądź rejestracja promieniowania świetlnego tylko  

w wybranych przedziałach długości fali. Dla przykładu, systemy, w których wyróżnić można 
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nawet ponad 35 kanałów spektralnych, z uwagi na nieregularne pokrycie spektrum, należy 

zaliczyć do instrumentów multispektralnych  [29].  

 

Rys. 3.1. Porównanie zakresu spektrum akwizycji w systemach bazujących na kamerach monochromatycznych, 
RGB oraz w systemie multispektralnym (MSI) i hiperspektralnym (HSI). Opracowanie Autora 

Systemy multispektralne cechują się przede wszystkim mniejszym skomplikowaniem 

danych, ich akwizycja jest mniej wymagająca, a przetwarzanie multispektralnych zbiorów 

danych zajmuje mniej czasu, niż ma to miejsce w przypadku systemów hiperspektralnych. 

Dzięki tym cechom, kamery multispektralne już w latach pięćdziesiątych stosowano w nauce 

i badaniach  [30], a pierwszy skaner multispektralny znalazł się na orbicie w roku 1972  [31]. 

W wypadku systemów hiperspektralnych, pierwsze publikacje na temat ich zastosowania 

pojawiły się w latach osiemdziesiątych, a pierwsze satelity wyposażone w tego typu skanery - 

w latach dwutysięcznych  [33]. 

Najważniejszym czynnikiem w rozwoju obrazowania multispektralnego był postęp  

w rozwoju technik filtracji pasm światła oraz równoległe obrazowanie tego samego obrazu 

 w różnych zakresach długości fali. Znaczne przyspieszenie rozwoju nastąpiło w okresie 

wynalezienia kamer cyfrowych, ponieważ dzięki temu proces akwizycji mógł odbywać się  

w sposób szybszy i z większą dokładnością  [3] [34]. Poza astronomią, pierwszymi platformami,  

w których implementowano obrazowanie multispektralne były samoloty oraz satelity  [32]. 

Najważniejszym obszarem zastosowań, w którym najszybciej doceniono uzyskane tego 

rodzaju dane, było rolnictwo. Już w roku 1966 Uniwersytet w Michigan (USA), który rozwijał 

technologię obserwacyjną dla wojska, rozpoczął adaptację liniowych skanerów lotniczych  
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do zastosowań cywilnych. W tym samym roku, uniwersytet ten wykonał pierwsze obloty, 

rejestrując od 12 do 18 kanałów spektralnych, które do dnia dzisiejszego są wykorzystywane 

w zastosowaniach instruktażowych  [32, 34]. 

Wartość danych pozyskanych w latach 1966-1968 została dostrzeżona przez NASA, która 

postanowiła rozpocząć prace nad satelitą o roboczej nazwie ERTS (Earth Resources Technology 

Satellite), nazwanego później Landsat. Satelita ten, który w późniejszym okresie okazał się 

pierwszym z długiej linii Landsat, został wyposażony w sensor MSS (Multi Spectral Scanner), 

obrazujący w sposób cyfrowy w czterech pasmach światła, tj.:  500 nm - 600 nm, 600 nm - 700 

nm, 700 nm - 800 nm, 800 nm - 1100 nm [32, 34]. 

Na początku lat siedemdziesiątych, również w USA, dokonano oblotów multispektralnych 

z wykorzystaniem instrumentu umieszczonego w platformie lotniczej o wysokim pułapie 

obrazowania. Instytucją zlecają tego typu kampanię był Departament Rolnictwa, a celem było 

zlokalizowanie ścieżek rozprzestrzeniania się tzw. zarazy liści kukurydzy w całym zagłębiu 

kukurydzianym USA w środkowej części kraju. Kampania ta dostarczyła ogromnego zestawu 

danych multispektralnych, które oprócz wykorzystania w kontekście wspomnianego wcześniej 

patogenu, pozwoliła również na rozróżnienie różnych rodzajów gleby, upraw, stanu roślin oraz 

zjawisk inwazyjnych w rolnictwie. Eksperyment ten, wraz z wystrzeleniem satelity Landsat-1, 

był kluczowym punktem w historii rozwoju systemów multispektralnych, które szeroko 

pokazały wartość tej techniki obrazowania  [32]. 

Dalszy rozwój i miniaturyzacja zarówno układów obliczeniowych, jak i systemów 

optoelektronicznych pozwoliły na zaproponowanie pierwszego rozwiązania o cechach 

spektrometru obrazującego. Dokonało tego laboratorium Jet Propulsion Lab (JPL) w USA, 

które w 1984 rozpoczęło prace nad instrumentami AVRIS (Airborne Visible/InfraRed Imaging 

Spectrometer), SISEX (Shuttle Imaging Spectrometer EXperiment) oraz HIRIS (High Resolution 

Imaging Spectrometer). Instrumenty SISEX oraz HIRIS nigdy nie zrealizowały swojego zadania 

w misjach lotniczych lub kosmicznych. Planowo HIRIS miał zostać wykorzystany w satelicie 

EOS, niestety z uwagi na cięcia budżetowe, na pokładzie tej platformy nigdy się nie znalazł. 

Instrument SISEX miał jeszcze bardziej dramatyczną historię, ponieważ nie wyszedł z fazy 

projektowej z uwagi na katastrofę promu Challenger. Trzeci z opracowywanych w JPL 

instrumentów - AVRIS doczekał się realizacji już w 1987 roku a pierwsze zobrazowania z jego 

pomocą wykonane zostały na pokładzie samolotu NASA ER-2 na wysokości 20 km. Jakość  

i odwzorowanie radiometryczne danych z niego pochodzących do dziś są niedoścignionym 
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wzorem dla instrumentów hiperspektralnych. Instrument ten jest w użyciu na różnych 

platformach również współcześnie  [33]. 

Nie tylko JPL rozwijało instrumenty hiperspektralne w latach osiemdziesiątych. 

Zagadnieniem tym zajmowały się także ośrodki komercyjne. Wspomnieć należy o takich 

instrumentach jak DAIS (Digital Airborne Imaging Spectrometer) opracowany w GERoM 

(Geophysical Environmental Research of Millbrook) w 1987 roku, CASI (Compact Airborne 

Spectrographic Imager) z ITRES w roku 1989 oraz HYDICE (HYperspectral Digital Imagery 

Collection Experiment) z NRL (Naval Research Lab) z roku 1994. Z kolei bardzo podobny  

w zakresie spektralnym instrument HyMap z firmy HyVista Corporation zaprezentowany został 

w roku 1999  [33]. 

Pierwszy instrument hiperspektralny – Hyperion (satelita EO-1, rok 2000) wysłano  

w przestrzeń kosmiczną dopiero w latach dwutysięcznych. Lata dwutysięczne to również 

rozwój komercyjnych kamer hiperspektralnych, które rozpoczęły rewolucję obrazowania  

w kontroli jakości produkcji. Wyścig związany z rozwojem kamer hiperspektralnych  

i instrumentów tego rodzaju, pracujących w platformach lotniczych i satelitarnych trwa do 

dziś, a ostatnie osiągnięcia, szczególnie w dziedzinie sztucznej inteligencji i nowatorskich 

metod akwizycji obrazów, dodatkowo napędzają rewolucję hiperspektralną  [34]. 

 

3.2. PODZIAŁ TECHNIK AKWIZYCJI OBRAZU W SYSTEMACH OBRAZOWANIA MULTI  

I HIPERSPEKTRALNEGO 

Systemy multi oraz hiperspektralne można podzielić ze względu na technikę obrazowania 

(rys. 3.2). Zdecydowaną większość sposobów na pozyskiwanie spektralnych zobrazowań 

polowych można zaklasyfikować do kilku kategorii technik. Kategoryzacji można dokonać  

ze względu na rozmaite cechy, natomiast ze względu na możliwości implementacji techniki 

akwizycji dzielą się one na  [35]: 

• systemy ze skanowaniem przestrzennym (rys. 3.2a), 

• systemy ze skanowaniem spektralnym (rys. 3.2b), 

• systemy ze skanowaniem przestrzenno-spektralnym (rys. 3.2c), 

• systemy typu snapshot (rys. 3.2d). 
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Rys. 3.2. Podział systemów obrazowania muliti i hiperspektralnego ze względu na zastosowaną technikę 
skanowania. Na rysunku pokazana jest struktura danych pojedynczej klatki pozyskiwanej w czterech rodzajach 
skanerów MSI i HSI: a) skaner przestrzenny, b) skaner spektralny, c) skaner przestrzenno-spektralny, d) skaner 

typu snap-shot  [35] 

Skanery przestrzenne (rys. 3.2a) wykorzystują technikę skanowania liniowego, w której 

jednocześnie rejestrowana jest tylko i wyłącznie jedna linia przestrzenna obiektu. Linia ta jest 

rozpraszana z wykorzystaniem pryzmatu lub siatki spektralnej do postaci widma rzutowanego 

na polowy sensor światłoczuły (prosta matryca krzemowa 2D). Poszczególne rzędy pikseli 

rejestrują sygnał optyczny w kolejnych kanałach spektralnych fragmentu linii. W efekcie jedna 

klatka obrazu pozyskiwanego z polowego sensora światłoczułego rejestruje jedną linię 

przestrzenną skanowanego obiektu w wielu kanałach spektralnych. Przemieszczenie 

instrumentu lub obiektu pod instrumentem w osi prostopadłej do rejestrowanej jednorazowo 

linii daje możliwość akwizycji kostki spektralnej (hypercube) czyli obrazu hiperspektralnego 

obiektu. Niewątpliwą wadą tej techniki jest konieczność utrzymania wysokiej stałości 

orientacji kątowej instrumentu, względem obiektu podczas całego procesu skanowania. 

Skanery spektralne (rys. 3.2b) korzystają z techniki stosowanej w najwcześniejszych 

kamerach RGB, czyli z przesuwnych elementów filtrujących w osi optycznej instrumentu. Może 

się to odbywać np. poprzez rotację koła filtrowego przed dwuwymiarowym sensorem 

polowym (rys. 3.3). W efekcie uzyskujemy wiele obrazów polowych obiektu, każdy 

reprezentujący światło pochodzące z obiektu w innym paśmie. Złożenie tych obrazów daje 



39 

obraz multi lub hiperspektralny. Wadą tej techniki obrazowania, jest konieczność 

czasochłonnej zmiany filtrów spektralnych podczas procesu akwizycji, co ogranicza możliwość 

rejestracji tylko do obiektów o względnie niskiej dynamice zmian w czasie. 

Skanery przestrzenno-spektralne (rys. 3.2c) działają w sposób podobny do skanerów 

przestrzennych, jednak każda klatka pozyskana z instrumentu w jednej chwili czasu, 

reprezentuje obraz polowy obiektu z liniami w różnych pasmach spektrum. W tej technice 

przesuw instrumentu, względem obiektu jest niezbędny, a składanie w kostkę spektralną 

odbywa się poprzez syntezę wszystkich obrazów zarówno w domenie przestrzennej jak  

i spektralnej. Ta technika skanowania, oprócz wad obecnych w skanerach przestrzennych, 

posiada również wadę związaną z paralaksą obrazowania. Jest to zjawisko, w którym 

poszczególne kanały spektralne będą zarejestrowane przez instrument pod różnym kątem.  

W aplikacjach teledetekcyjnych (np. satelitarnych) nie będzie to stanowić dużego problemu, 

natomiast w aplikacjach przemysłowych i laboratoryjnych, gdzie wypukłe przestrzennie 

obiekty rejestruje się ze względnie niskiej odległości, zjawisko to może utrudniać dalsze 

przetwarzanie danych. 

Skanery typu snapshot (rys. 3.2d) cechują się funkcjonalnością rejestracji obrazu 

porównywalną ze współczesnymi kamerami RGB, w których każdy obiekt rejestrowany jest  

w trzech pasmach jednocześnie na wszystkich pikselach. Kamery multi i hiperspektralne tego 

typu są na razie rzadkością i oznaczają konieczność zastosowania specjalistycznych mozaik  

na sensorach CMOS lub wielokamerowe układy sprzężone. W każdej z tych odmian, 

instrument tego typu jest bardzo skomplikowany technologicznie i kosztowny. 

Każda aplikacja spektrofotometryczna wymaga skutecznego i wprowadzającego  

jak najmniej zakłóceń rozwiązania umożliwiającego odpowiednie przetwarzanie (np. 

filtrowanie, rozszczepianie, ogniskowanie, załamywanie, itp.) mierzonej wiązki światła. 

Aplikacje obrazowania hiperspektralnego nie są wyjątkiem. Obecnie wiele firm i instytutów 

badawczych prowadzi intensywne badania nad nowymi i jeszcze doskonalszymi metodami 

filtrowania bądź rozszczepiania światła, do zastosowania w kamerach hiperspektralnych.  

Jak już wspomniano, w wypadku obrazowania multispektralnego, akwizycja obrazu 

 w wybranym zakresie (paśmie) długości fali może być zrealizowana z użyciem odpowiednich 

filtrów pasmowoprzepustowych. Na rys. 3.3 przedstawiono ideę filtrowania pasm z użyciem 

tzw. koła filtrowego.  
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Rys. 3.3. Idea filtrowania pasm dla potrzeb obrazowania multispektralnego z zastosowaniem koła filtrowego. 
Na podstawie  [36]  

W klasycznej odmianie tej metody zestaw okrągłych filtrów umieszczony jest między 

sensorem a obiektywem lub przed obiektywem, a zmotoryzowane koło, będące mechaniczną 

obudową dla tych filtrów, obraca się, umożliwiając akwizycję w wielu pasmach spektralnych. 

Technika ta była najwcześniej stosowaną techniką obrazowania spektralnego w fotografii  

z uwagi na swoje proste w realizacji założenie. W niektórych dziedzinach, np. astronomii 

amatorskiej, stosowane jest do dziś. 

Jedną z metod, najczęściej stosowaną w obrazowaniu hiperspektralnym jest skanowanie 

linijkowe z wykorzystaniem matrycowego sensora CMOS lub CCD - rys. 3.4. W metodzie tej 

zastosowano układ spektrofotmetryczny, który wykorzystuje transmisyjną siatkę dyfrakcyjną 

lub pryzmat, jako element rozpraszający światło. Układ ten wykorzystuje również 

standardowy element obiektywowy dokonujący projekcji obrazu na płaszczyznę, w której 

znajduje się cienka szczelina. Dzięki temu, w danej chwili, układ optyczny obrazuje wyłącznie 

fragment (pasek) obiektu, w który wycelowana jest kamera hiperspektralna. Od szerokości 

szczeliny optycznej zależy bezpośrednio rozdzielczość przestrzenna w osi prostopadłej do 

kierunku skanowania. Światło po przejściu przez szczelinę jest następnie poddawane 

kolimacji, czy też zrównolegleniu promieni, przez układ kolimujący. Taka równoległa wiązka 

zostaje wprowadzona następnie na element rozszczepiający światło, czyli jak wspomniano 

wcześniej, na pryzmat lub transmisyjną siatkę dyfrakcyjną. Jakość i rodzaj tego elementu 

wpływa bezpośrednio na rozdzielczość spektralną kamery hiperspektralnej. 
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Rys. 3.4. Najczęściej wykorzystywany układ spektrofotometryczny stosowany w większości obecnych na rynku 
kamer hiperspektralnych  [37] 

 

Rozszczepiona wiązka jest następnie projektowana z wykorzystaniem elementu 

ogniskującego na matrycy światłoczułej. Ruch skanera w kierunku prostopadłym do szczeliny 

wejściowej umożliwia skanowanie obiektu we wszystkich dostępnych pasmach spektralnych 

(rys. 3.5). 

 

Rys. 3.5. Idea skanowania przestrzennego  [38] 

Na przykładzie przedstawionego schematu najczęściej spotykanego układu 

spektrofotometrycznego nietrudno jest zauważyć, że niezwykle istotnymi elementami 

optycznymi, umożliwiającymi obrazowanie hiperspektralne są pryzmaty oraz siatki 
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dyfrakcyjne. Oba te elementy realizują to samo zadanie, czyli rozszczepiają światło dokonując 

na wiązce kątowego przemieszczenia składowych spektralnych o różnych długościach fali (rys. 

3.6). Elementy te różnią się jednak sposobem, w jakim światło zostaje rozszczepione. 

 

Rys. 3.6. Porównanie sposobu rozszczepienia światła przez: a) transmisyjną siatkę dyfrakcyjną oraz b) pryzmat  
[39, 40] 

Pryzmat wykorzystuje właściwość, związaną z różnicą w kącie załamania światła  

w zależności od długości fali, podczas, gdy działanie siatek dyfrakcyjnych opiera się o falową 

naturę światła. W przypadku siatek transmisyjnych wykorzystywane jest zjawisko dyfrakcji, 

które polega na generacji źródła fal podczas przechodzenia przez szczelinę lub otwór  

o rozmiarze porównywalnym do długości fali. Światło trafiające na szczelinę tworzy quasi-

punktowe źródło nowej fali. W zależności od zagęszczenia przestrzennego szczelin, pod 

pewnym kątem w stosunku do pierwotnej osi światła białego, wytwarza się front falowy, który 

w zależności od przemieszczenia przestrzennego tworzy na płaszczyźnie obraz rozproszonego 

spektrum wiązki padającej na siatkę dyfrakcyjną (rys. 3.7). 

 

 

Rys. 3.7. Zasada tworzenia frontu falowego w siatce dyfrakcyjnej  [41] 
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Opisane klasyczne metody akwizycji obrazów spektralnych stosowane są od wielu dekad 

i przez ten czas uległy ewolucji, dzięki coraz to nowszym technologiom rejestracji obrazu  

i produkcji elementów filtrujących. W niektórych obszarach technologia uległa tak dalekim 

zmianom, że w ostatnich latach opracowano zupełnie inne, bardziej nowatorskie i dające 

większe możliwości techniki akwizycji obrazów hiperspektralnych. Opisane są one w kolejnym 

rozdziale. 

 

3.3. NOWATORSKIE METODY AKWIZYCJI OBRAZU HIPERSPEKTRALNEGO 

Jedną z najbardziej wydajnych i umożliwiających uzyskanie największej rozdzielczości jest 

metoda bazująca na zastosowaniu filtrów Fabry-Perot (FP). Filtry takie zbudowane są  

z dwóch równoległych, półprzepuszczalnych luster, oddalonych od siebie o dystans 

umożliwiający interferencję fali o ściśle określonej długości (rys. 3.8). Zaletą takiego 

rozwiązania (w porównaniu do systemów bazujących na pryzmatach lub siatkach 

dyfrakcyjnych – rozdz. 3.2) jest możliwość integracji takich filtrów bezpośrednio z matrycą 

światłoczułą (rys. 3.8). Rozwiązania takie zaimplementowane zostały już przez, między innymi, 

takie firmy, jak IMEC oraz HAMAMATSU. Dzięki takiemu nowatorskiemu podejściu  

w tworzeniu matryc CMOS z filtrami FP naniesionymi bezpośrednio na piksele matrycy, 

możliwe jest tworzenie kamer hiperspektralnych o znacznie uproszczonej budowie (rys. 3.9). 

 

      

 

Rys, 3.8. Schemat przedstawiający: a) zasadę działania optycznego filtra Fabry-Perot  [42] 
 oraz b) sposób realizacji filtra FP na pikselu matrycy CMOS  [43] 

a) b) 
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Rys. 3.9. Porównanie kamery hiperspektralnej opartej o: a) element dyfrakcyjny oraz b) filtr FP.  
Opracowanie Autora 

Kamery oparte na filtrach FP są niestety wciąż znacznie droższe w produkcji z uwagi na ich 

niewielkie serie produkcyjne. Pomimo, że z jednej płytki krzemowej (tzw. wafel) można 

wykonać kilkaset takich sensorów, dopiero skala produkcji kilkuset tysięcy sztuk na partię (rys. 

3.10) pozwoliłaby na zmniejszenie ceny do progu standardowych sensorów RGB 

podwyższonej jakości. Z tego względu kamery wykorzystujące takie rozwiązanie spotykane  

są aktualnie najczęściej w takich wymagających aplikacjach, jak obrazowanie lotnicze, 

kosmiczne oraz w medycynie. 

 

Rys. 3.10. Płytka krzemowa z sensorami CMOS z naniesionymi filtrami Fabry-Perot.  
Na podstawie  [44] 

Metoda produkcji sensorów CMOS z filtrami FP pozwala również na tworzenie sensorów 

mozaikowych (rys. 3.11). W odróżnieniu od sensorów liniowych, w sensorach mozaikowych 

tworzy się odpowiednie obszary czułe na wybrane zakresy widma światła, co jest szczególnie 

pożądane w aplikacjach, w których niemożliwe jest realizowanie obrazowania z jednostajnym 

ruchem w określonym kierunku. Sensory mozaikowe prawdopodobnie utorują drogę 

kamerom hiperspektralnym w użytku codziennym. 
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Rys. 3.11. Realizacja matrycy z filtrami FP: a) w odmianie mozaikowej i b) w odmianie linijkowej  [45, 46] 

 

3.4. DOBÓR TECHNIKI AKWIZYCJI I PROJEKCJI SPEKTRALNEJ W ZALEŻNOŚCI  

OD ZASTOSOWANIA 

Jak już wspominano wcześniej, obrazowanie hiperspektralne znalazło już obecnie 

zastosowanie w ogromnej liczbie aplikacji w wielu dziedzinach nauki i techniki, od medycyny, 

przez rolnictwo, górnictwo i zarządzanie zasobami naturalnymi. Nie oznacza to jednak, 

 że wszystkie skanery hiperspektralne mają uniwersalne zastosowanie. Dla każdego 

projektanta aplikacji hiperspektralnej kluczowa jest przede wszystkim znajomość ograniczeń 

różnych technik obrazowania. Nie wszystkie techniki odnajdą zastosowanie w tych samych 

aplikacjach. Szczególnie istotne jest rozpatrzenie ośmiu głównych aspektów wśród czterech 

podstawowych metod akwizycji: zdolności do korejestracji danych, sprawności 

radiometrycznej, rozdzielczości przestrzennej i spektralnej, sprawności filtracji pasm, 

szybkości akwizycji, rozmiarze oraz poziomie skomplikowania optomechanicznego systemu.  

Z tego względu Autor opracował zestawienie kluczowych cech tych technik obrazowania na 

potrzeby niniejszej rozprawy doktorskiej (tabela 3.1). Analizując tabelę 3.1 nietrudno 

zauważyć, że w wielu aspektach skanowanie przestrzenne zapewnia bardzo dobre parametry 

uzyskiwanych obrazów. Należy jednak zwrócić uwagę na fakt, że skanowanie liniowe lub 

punktowe niesie ze sobą dużą trudność w korejestracji danych. Składanie obrazów z linijek, 

bądź pojedynczych punktów w zależności od platformy obrazującej może wymagać 

dodatkowych algorytmów korejestracji oraz zastosowania dodatkowych czujników 

rejestrujących położenie kamery w momencie obrazowania. Z tego też względu przestrzenne 

skanery hiperspektralne stosowane są wyłącznie w aplikacjach, w których stabilność położenia 

instrumentu jest albo bardzo dobra (np. w laboratorium lub na taśmie produkcyjnej), albo 

dobrze opomiarowana (np. w samolotach lub satelitach). Skutecznie eliminuje to możliwość 
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zastosowania tego rodzaju instrumentów w zastosowaniach przenośnych i ręcznych. Skanery 

przestrzenne cechują się również umiarkowanym rozmiarem oraz wysokim poziomem 

komplikacji optomechanicznej.   

 

Tabela 3.1. Cechy różnych technik akwizycji obrazu hiperspektralnego. Opracowanie Autora. 

Cecha/technika 
obrazowania 

Skanowanie 
przestrzenne 

Skanowanie 
spektralne 

Snapshot Skanowanie 
przestrzenno-

spektralne 

Korejestracja 
danych 

Trudna Dobra Bardzo dobra Trudna 

Sprawność 
radiometryczna 

Bardzo dobra Bardzo dobra Mała Umiarkowana 

Rozdzielczość 
przestrzenna 

Bardzo dobra Bardzo dobra Mała Dobra 

Rozdzielczość 
spektralna 

Bardzo dobra Mała Mała Dobra 

Sprawność filtracji 
spektralnej 

Bardzo dobra Bardzo dobra Mała Umiarkowana 

Szybkość akwizycji Duża Mała Bardzo duża Duża 

Rozmiar Umiarkowany Duży Bardzo mały Bardzo mały 

Poziom 
skomplikowania 
optomechanicznego 

Duży Bardzo duży Bardzo mały Bardzo mały 

 

Tabela 3.1 wyraźnie pokazuje również wady i zalety skanowania spektralnego. Mimo 

bardzo dobrych parametrów radiometrycznych, rozdzielczości przestrzennej oraz sprawności 

filtracji spektralnej, tego rodzaju skanery niestety odznaczają się niską rozdzielczością 

spektralną i szybkością akwizycji. Te dwie wady wynikają z faktu, że realizacja takiego 

instrumentu wymaga aktywnych rozwiązań optomechanicznych, które w trakcie akwizycji 

jednego obrazu hiperspektralnego muszą zmieniać filtry spektralne w torze optycznym. 

Najczęściej są to rewolwerowe lub przesuwne mechanizmy filtrowe. Mogą to być również 

rozwiązania oparte na nastawnych filtrach, np. Fabry-Perot, w których mechanicznej zmianie 

ulega szerokość szczeliny między dwoma półprzepuszczalnymi lustrami. Wszystkie te 

rozwiązania wymagają stosunkowo dużej ilości czasu do zmiany aktualnej nastawy filtracyjnej, 

co dyskwalifikuje tego typu rozwiązania w aplikacjach wymagających dużej szybkości 

akwizycji. Rozwiązania tego typu są również wysoce skomplikowane optomechanicznie  

i w ograniczonym stopniu możliwa jest miniaturyzacja całego systemu. Ważną zaletą tego typu 

systemu jest jednak bardzo dobra możliwość korejestracji obrazów, ponieważ każdy obraz 
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spektralny jest dwuwymiarową macierzą pozbawioną wynikających z metody akwizycji 

niedoskonałości geometrycznych. 

Metoda akwizycji typu snapshot ma najwięcej wad i jest najbardziej niedoskonała pod 

kątem sprawności radiometrycznej, rozdzielczości przestrzennej i spektralnej oraz sprawności 

filtracji spektralnej. Wynika to z technologii stojącej za rozwiązaniami typu snapshot. 

We wszystkich przypadkach jest to rozwiązanie oparte na matrycach dwuwymiarowych 

CMOS/CCD, które posiadają mozaikowe filtry naniesione na sensor, lub filtr szklany przed 

sensorem. W zależności od ilości pozyskiwanych kanałów spektralnych są to mozaiki 

składające się np. z zestawów 4x4 piksele (16 kanałów), które razem odwzorowują jeden 

przestrzenny piksel. Podobnie, jak w kamerach RGB z mozaiką Bayera (rys. 2.5), zdolność do 

równoczesnej rejestracji obrazów w różnych kanałach spektralnych uzyskiwana jest przez 

obniżenie zdolności rozdzielczej i sprawności radiometrycznej. Niewątpliwymi jednak zaletami 

takiego rozwiązania są bardzo dobra zdolność do korejestracji, bardzo wysoka szybkość 

akwizycji (jest to jedyna technika zdolna do uzyskiwania klatkażu porównywalnego  

z kamerami RGB) oraz bardzo małe rozmiary i niewielki poziom skomplikowania 

optomechanicznego. Dzięki tym zaletom, metoda akwizycji typu snapshot jest jedyną metodą 

hiperspektralną, która pozwala na zastosowanie ręczne i przenośne. 

Skanowanie przestrzenno-spektralne jest najmłodszą z technik akwizycji hiperspektralnej. 

Wykorzystywane w nich filtry spektralne nanoszone na sensor lub na podłoże szklane 

umieszczane przed nim, pozwalają na dobrą rozdzielczość przestrzenną oraz spektralną,  

a także na dobrą szybkość akwizycji. Główną zaletą tego rodzaju systemów jest jednak przede 

wszystkim mały rozmiar i niewielki poziom skomplikowania budowy optomechanicznej 

(tabela 3.1). Systemy przestrzenno-spektralne nieco gorzej radzą sobie natomiast z 

zapewnieniem dobrej sprawności radiometrycznej i filtracji spektralnej. Natomiast ich 

największą wadą jest trudna korejestracja danych, porównywalna z systemami skanowania 

przestrzennego. Skanery przestrzenno-spektralne są obecnie najlepszym konkurentem dla 

skanerów przestrzennych. Ich zalety pozwalają na zastosowanie w podobnych platformach, a 

z uwagi na duże możliwości miniaturyzacji, są uważane za rozwiązanie, które pozwoli na 

szeroką popularyzację kamer hiperspektralnych. 

Analiza danych zawartych w tabeli 3.1 pokazuje, że nie ma idealnego i uniwersalnego 

systemu obrazowania hiperspektralnego. Analizując zastosowanie w danej aplikacji, należy 

przede wszystkim dobrze określić wymagania i ograniczenia zarówno dotyczące potrzeb, jak i 

platformy w jakiej umieszczony będzie skaner hiperspektralny. Na rysunku 3.12 
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zaproponowana została przez Autora metodologia postepowania przy doborze 

odpowiedniego rodzaju rozwiązania do aplikacji. 

 

Rys. 3.12. Metodologia doboru rodzaju systemu hiperspektralnego.  
Opracowanie Autora 

Zgodnie z opracowanym przez Autora niniejszej pracy diagramem przedstawionym na rys. 

3.12, kluczowe dla doboru odpowiedniego systemu HSI jest określenie rodzaju obserwacji 

(zdalne lub krótkiego zasięgu). W przypadku aplikacji teledetekcyjnych ważne jest również 

podjęcie decyzji na jaką dla danej aplikacji platformę się decydujemy. Platformy satelitarne i 

lotnicze od lat wiodły główny prym w obszarze zastosowań hiperspektralnych.  

W ostatnich latach, coraz to szersze zastosowanie znajdują także systemy UAV (Unmanned 

Aerial Vehicle) w dziedzinach, które do tej pory dostępne były jedynie we wcześniej 

wymienionych platformach. 
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W przypadku platform lotniczych i satelitarnych istotnym ograniczeniem będzie rozmiar 

instrumentu. Granica około 3 decymetrów sześciennych pozwala rozgraniczyć przy obecnym 

stanie techniki przestrzeń potrzebną na takie zaawansowane instrumenty, jak dla typu 

skanowania przestrzennego. Poniżej tego rozmiaru dostępne są głównie skanery 

przestrzenno-spektralne oraz skanery typu snapshot. Obie te grupy instrumentów pozwalają 

na realizację różnych rozdzielczości przestrzennych i spektralnych, co przekłada się na różny 

obszar ich zastosowań a także różną jakość otrzymywanych obrazów. 

W przypadku niskopułapowych platform UAV, dostępne są jedynie lekkie i niewielkie 

instrumenty HSI. Rozpatrywać zatem w tym przypadku należy jedynie skanery przestrzenno-

spektralne oraz skanery typu snapshot. Obie te grupy instrumentów zapewniają dostępność 

podobnej grupy aplikacji, jednak różnić się one będą wszechstronnością zastosowań oraz 

rozdzielczością dostarczanych zobrazowań. 

Z kolei w aplikacjach krótkiego zasięgu należy rozważyć przede wszystkim czy instrument 

będzie służył jako naukowe stanowisko badawcze, czy jako przemysłowy element systemu 

kontroli jakości lub procesu. W przypadku stanowisk badawczych, możliwe jest zastosowanie 

wszystkich czterech grup instrumentów HSI. Kluczowy podział na dwie grupy aplikacji 

stanowią skanery spektralne i typu snapshot oraz osobno skanery przestrzenne  

i przestrzenno-spektralne. Ten podział definiuje możliwość optymalnego zastosowania  

w różnych dziedzinach nauki. 

W aplikacjach przemysłowych, istotne jest określenie czy zależy nam na pomiarze 

jakościowym czy ilościowym. W przypadku pomiaru jakościowego, czyli głównie określaniu czy 

obiekt o zdefiniowanych parametrach jest obecny lub nie, doskonale sprawdzają się skanery 

przestrzenno-spektralne. W aplikacjach dotyczących pomiaru ilościowego, czyli w określaniu 

np. stężenia/zawartości wykrywanego obiektu/pierwiastka, konieczne będzie zastosowanie 

skanera przestrzennego. 

 

3.5. RODZAJE SENSORÓW STOSOWANYCH W SYSTEMACH OBRAZUJĄCYCH 

Jak już wcześniej wspomniano, jednym z najważniejszych elementów systemu 

obrazującego jest sensor – fotoczuła matryca, w której następuje konwersja promieniowania 

optycznego w sygnał elektryczny. Ze względu na właściwości spektralne wyróżnia się  [47]  

[48]: 

• Sensory monochromatyczne – posiadają tylko jeden kanał spektralny, taki sam dla 

wszystkich pikseli. 
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• Sensory RGB – o 3 kanałach spektralnych (zielony, czerwony, niebieski), gdzie   

poszczególne kanały najczęściej zachodzą na siebie. 

• Sensory spektralne – z naniesionymi filtrami spektralnymi na poszczególne piksele lub 

ich grupy. Liczba, szerokości oraz kształty kanałów spektralnych projektowane są w 

zależności od specyficznych potrzeb danej aplikacji. W szczególności wyróżnia się 

sensory multispektralne oraz hiperspektralne.  

 

Z kolei, ze względu na konfigurację geometryczną sensory można podzielić na  [49]: 

• Sensory polowe – pojedyncze piksele ułożone w macierzy dwuwymiarowej. Obraz 

dwuwymiarowy powstaje w momencie jednokrotnej ekspozycji danej sceny.   

W przypadku sensorów RGB, wyposażone są one najczęściej w siatkę Bayera (rys. 2.5).  

W przypadku sensorów multispektralnych stosowane są zoptymalizowane siatki 

filtrów wynikające z projektu i specyfiki pracy danego sensora (siatki mozaikowe). 

Sensory polowe są stosowane jako sensory hiperspektralne z racji znacznej redukcji 

rozdzielczości obrazowania związanej z zastosowaniem odpowiednio gęstej siatki 

filtrów w powtarzającym się układzie. 

• Sensory linijkowe – elementy światłoczułe ułożone w pojedynczej linii. Powstawanie 

obrazu wiąże się z koniecznością przesuwania elementu obrazującego wzdłuż 

obserwowanej sceny. Sensory RGB wyposażone w dedykowaną siatkę Bayera lub układ 

trójliniowy (każdy kanał barwny posiada osobną linię pikseli). W przypadku sensorów 

multispektralnych i hiperspektralnych stosowane są odpowiednie filtry  

na poszczególne linie lub grupy linii pikseli.  

 

Do podstawowych parametrów określających funkcjonalność sensorów optycznych  

i ich użyteczność należą: 

• Rozdzielczość przestrzenna (Spatial Resolution) – określa liczbę pikseli w matrycy  

w osiach X oraz Y. 

• Rozdzielczość spektralna (Spectral Resolution) –– określa zakres i wielkość kanałów 

spektralnych zastosowanych w sensorze.  

• Wielkość pikseli (Pixel Pitch) –– określa wielkość pojedynczego elementu 

światłoczułego. Większe piksele pozwalają na uzyskanie większego poziomu sygnału 

poprzez zebranie większej ilości fotonów.  
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• Czułość kwantowa (Quantum Efficiency - QE) –– parametr określający odpowiedź 

sensora na wymuszenie w danej długości fali. Kluczowy parametr przy określeniu 

skutecznego zakresu obserwowanych zjawisk. W przypadku sensorów z więcej niż 

jednym pasmem spektralnym charakterystyka w postaci wykresu czułości w zależności 

od długości fali powinna być opracowana osobno dla każdego kanału. 

• Głębia bitowa (Bit depth) –– określa liczbę bitów wykorzystywanych do konwersji 

analogowo - cyfrowej. W przypadku komercyjnych misji obserwacyjnych wystarczające 

są sensory pracujące z maksymalna głębią 12-bit. W przypadku aplikacji naukowych 

rozdzielczości bitowe przekraczają 20-bitów. 

• Poziom sygnału do szumu (Signal to Noise Ratio – SNR) –– określa wartość użytecznego 

sygnału do szumu tła. Kluczowy parametr określający możliwości detekcji  

i rozróżnienia obserwowanych zjawisk. 

• Prąd ciemny (Dark Current) –– poziom sygnału pasożytniczego pojawiającego się  

w sensorze w zależności od temperatury. W przypadku aplikacji kosmicznych 

minimalizacja negatywnego wpływu tego parametru wymusza utrzymywanie niskiej  

i stabilnej temperatury sensora. 

• Szybkość działania sensora/szybkość akwizycji (Frame/Line per second - FPS/LPS) –  

w przypadku sensorów polowych określana w klatach na sekundę (FPS), w przypadku 

sensorów liniowych w liniach na sekundę (LPS). 

• „Staging” – parametr opisujący sensory TDI (Time Delay Integration), które stosowane 

są szczególnie w aplikacjach, wymagających maksymalizacji stosunku sygnału  

do szumu. Sensory tego typu dokonują wielokrotnej akwizycji tego samego obszaru 

obrazu, poprzez sumowanie ładunku fotoelektrycznego na kolejnych liniach sensora, 

który przemieszcza się względem obrazowanego obiektu. Parametr „Staging” określa 

liczbę niezależnych linii poddawanych sumowaniu w celu uzyskania sygnału 

wynikowego. 

• „Shutter type” – parametry opisujący sensory polowe. Określa typ odczytu pikseli  

z matrycy. Może być typu rolling shutter lub global shutter. Do aplikacji obrazowania 

wykorzystywane są sensory wyposażone w global shutter. Możliwości zastosowania 

matryc z migawką typu rolling shutter są w tym momencie eksplorowane prze ESA  

w kontekście zastosowania w układach nawigacyjnych (star tracker).  
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W procesie doboru sensorów do aplikacji obserwacyjnej kluczowym parametrem jest 

także wybór odpowiedniego sensora do zakresu obserwowanego wycinka widma 

promieniowania elektromagnetycznego, tj. odpowiedniego zakresu spektralnego pracy 

sensora. Zakres ten związany jest bezpośrednio z materiałem półprzewodnikowym, 

wykorzystanym do wytworzenia sensora. Najbardziej rozpowszechnionym materiałem  

do budowy sensorów jest krzem, jednak jego wykorzystanie wiąże się z ograniczeniami 

użyteczności obserwowanej długości fali elektromagnetycznej do ok. 1100 nm.  W przypadku 

obserwacji w zakresie dłuższych długości fali światła (SWIR/MWIR) niezbędne jest 

zastosowanie innych materiałów. Na rys. 3.13 przedstawiono rodzaje materiałów 

stosowanych do wytwarzania sensorów oraz zakresy pasm optycznych, w których one pracują. 

 

 

Rys. 3.13. Materiały wykorzystywane do budowy sensorów w zależności od zakresu czułości spektralnej  [50]. 
Oznaczenia: UV – zakres światła ultrafioletowego, SWIR zakres bliskiej, MWIR – średniej, LWIR, dalekiej i VLWIR 

dalekiej podczerwieni 

Jak można zauważyć, do szeroko rozpowszechnionych materiałów w zakresie 

podczerwieni należą takie podwójne i potrójne związki arsenu, galu, indu, czy antymonu, jak 

InAs, InSb, InGaAs. Zastosowanie znajdują także detektory na bazie związków rtęci, np. 

HgCdTe. 

W tabeli 3.2, dla przykładu, przedstawiono wybrane parametry oraz widok sensora 

polowego AMS serii CMV 12000. Sensory serii CMV zostały wielokrotnie sprawdzone 

w warunkach kosmicznych. Dostępne są w wersji panchromatycznej VIS, RGB lub 
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o rozszerzonej czułości NIR (do 1100 nm). Charakterystyki spektralne tego sensora 

zamieszczono na rys. 3.14. 

Tabela 3.2. Parametry oraz zdjęcie sensora CMV 12000  [51] 

Parametr Wartość 

 

Wielkość matrycy 

(liczba pikseli) 

4096 H x 3072 V 

Czułość spektralna  Mono, RGB, Mono + NIR 

Wielkość piksela  5,5 m x 5,5 m  

Szybkość akwizycji  do 300 FPS 

Rodzaj polowy, panchromatyczny lub RGB VIS 

Materiał bazowy Si  

 

 

Rys. 3.14. Czułość spektralna sensora CMV 12000  [51] 

Kolejnym przykładem sensora, na który warto zwrócić uwagę jest sensor Teledyne Orbis 

(IC-45-12k). Jest to przedstawiciel sensora linijkowego, multispektralnego TDI firmy Teledyne. 

Sensory te dedykowane są do zastosowań obserwacyjnych o bardzo dużej rozdzielczości dla 

branży kosmicznej, szczególnie w tzw. obszarze NewSpace. Opracowane zostały w standardzie 

o podwyższonej odporności na promieniowanie. Sensor pracuje w paśmie VIS 

(panchromatycznie) oraz w wydzielonych pasmach spektralnych w ramach VIS. W tabeli 3.3 

zebrano najważniejsze parametry tego sensora oraz przedstawiono jego widok. 

W tabeli 3.4 przedstawiono z kolei podstawowe parametry oraz widok matrycy sensora 

FLIR ISC1202. Jest to sensor bazujący na InGaS przystosowany do pracy w przemyśle. 
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Tabela 3.3. Podstawowe parametry i zdjęcie sensora IC-45-12k [52] 

Parametr Wartość  
 
 

 
 

Wielkość matrycy  
(liczba pikseli) 

Panchromatyczne: 12288 H 

Multispektralne: 3072 H 

Liczba kanałów Panchromatyczne: 2 

Multispektralne: 4 

Wielkość piksela Panchromatyczne: 7 m x 7 m  

Multispektralne: 28 m x 28 m  

Szybkość akwizycji Panchromatycznie: 40 kHz 
Multispektralne: 10 kHz 

Typ sensora Multispektralny, lnijkowy, TDI VIS  

Materiał bazowy Si  

 

Tabela 3.4. Podstawowe parametry i zdjęcie sensora FLIR ISC1202  [53] 

Parametr Wartość  

 

Wielkość matrycy 

(liczba pikseli) 

640 H x 512 V 

Liczba kanałów 1   

Wielkość piksela 15 m  x 15 m  

Szybkość akwizycji 120 FPS 

Typ sensora Polowy, panchromatyczny  

1000 nm - 1700 nm 

Materiał bazowy InGaS 

 

Pojedyncze sensory, układy filtrujące, ogniskujące wiązkę, itd. stosowane są następnie  

do budowy kamer, wykorzystywanych w różnego typu aplikacjach. W tabeli 3.5 zamieszczono 

przegląd dostępnych na rynku kamer wykorzystywanych do budowy systemów obrazowania 

multi- i hiperspektralnego. 



55 

Tab. 3.5. Przegląd kamer stosowanych w systemach hiperspektralnych i ich parametry. Oznaczenia: FOV (Field of View)  - pole widzenia, FPS (Frame Per Second) – liczba klatek na 
sekundę/szybkość akwizycji [54] 

Producent Model 
Typ 

sensora/ 
akwizycji 

Detektor 
Rozdzielc

zość 
[Mpx] 

FOV 
[stopnie] 

Zakres 
spektralny [nm] 

Liczba 
kanałów 

FPS [Hz] Waga [kg] Dodatkowe uwagi 

CORNING microHSI 410 pushbroom 
CCD/CMOS 

hybrid 
- 29,5 400-1000 - 300 0,45 

microHSI 410 SHARK, detektor w układzie do 
teledetekcji 

CUBERT ultris x20 plus - - 3 35 350-100 164 6 0,63 - 

ELDIM EZLITE HXS - Cooled CCD 3 ±60 400-700 
15(VIS) 
+ 2(NIR) 

- 10,00 
Odległość od przedmiotu – 4,5mm, badany obszar 

<2mm 

EVK HELIOS EQ32 - - 320px - 900-1700 8 446 7,80 C-mount, Ochrona przemysłowa IP54 

Ocean Insight FD-1665 - CCD 1 - 400-1100 3-8 70 - - 

GAMAYA  - Sensor OXI 2  450-950 16,25,40,100 16-30 0,10 - 

HINDSIGHT SpecVu pushbroom CMOS 2,3 6-22 400-1000 600 - 2,00 - 

IMEC 

SNAPSCAN SWIR - - 0,8 - 1100-1650 100 - 0,895 

C-mount 
 

SNAPSCAN VNIR - - 7 - 470-900 150 - 0,58 

SNAPSHOT UAV 
VIS+NIR 

- - 1 - 480-860 25 50 0,50 

INNO-SPEC 

redeye 1.7 - - 0,08 - 950-1700 Up to 66 330 4,30 
Standard przemysłowy IP65, IP67 

RedEye 2.2 - - 0,08 - 1200-2200 Up to 66 330 10,50 

Blueeye pushbroom CMOS 4 - 220-380 - 40 1,30 - 

Greeneye pushbroom CMOS 1 - 400-1000 - 54 2,00 - 

JAI Fusion Series   2 - 405-1000 4 (VIS+NIR) 200 - - 

LLA 
instruments 

uniSPEC0.9 HSI 

pushbroom 

CMOS - - 395-995 - 11-500 

16,80 Standard przemysłowy IP67/IP65, 
KUSTA1.7 MSI 

InGaAs  

- - 950-1700 - 270 

KUSTA1.9 MSI - - 1320-1900 - 795 

Kusta2.2 MSI - - 1620-2190 - 795 

MicaSense Dual Camera System -  3,6 47 475-740 10 - 0,508 - 

SPECIM 

FX50 - InSb - 24,45,60 2700-5300 154 380 7 - 

FX-10 -  1 40 400-1000 220 >330 1,4 - 

FX-17 - InGaAs  40 900-1700 230 >670 1,4 - 

IQ pushbroom - - - 400-1000 - - - Kamera mobilna 

LWIR - - - - 8000-12000 42/84 - 3,50/13,10 - 

HySpex 

VNIR-1800  CMOS  17 400-1000 186 260 5,00 - 

VNIR-3000N - - - 16 400-1000 300 117 5,00 - 

VS-1200 - - - 40 400-1000 400 285 35 - 

SWIR-640 - - - 16 960-2500 360 140 4,10 - 

mjolnir VS-620 - - - 20 400-2500 490 
285(VIS) 
100(NIR) 

6,00 - 

Baldur V-1024 N - - - 16/40 400-1000 72/88 - - - 
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3.6. PRZEGLĄD AKTUALNYCH WYZWAŃ TECHNOLOGICZNYCH 

Biorąc pod uwagę, że historia rozwoju systemów multispektralnych sięga lat 

pięćdziesiątych, a w przypadku rozwiązań analogowych, nawet dziewiętnastego wieku, 

większość współczesnych wyzwań w obrazowaniu spektralnym należy do znacznie młodszej 

odmiany, czyli obrazowania hiperspektralnego. Wyzwania te obejmują zarówno aspekty 

akwizycji, jak i przetwarzania oraz analizy danych. Oczywiście w zależności od tego,  

czy rozpatrywany jest system teledetekcyjny (platformy lotnicze/satelitarne), czy też system 

obrazowania lokalnego (kamery do przemysłu/badań laboratoryjnych), wyzwania mogą się 

różnić i być w inny sposób adresowane. Natomiast wszystkie platformy ograniczone są przez 

podobne ogólne aspekty obrazowania hiperspektralnego. Kluczowe obszary wyzwań  

to  [CA20]: 

• Wysoki poziom skomplikowania układu optycznego, sensorów oraz filtrów 

pozwalających na akwizycję obrazu hiperspektralnego. Realizacja niskokosztowych, 

możliwych do wytwarzania seryjnego lub masowego filtrów, nanoszonych na lub przed 

sensor CMOS/CCD jest wciąż wyzwaniem globalnego rynku fotonicznego. W wielu 

dostępnych rynkowo rozwiązaniach możliwa jest maksymalizacja tylko dwóch z trzech 

parametrów: cena, jakość, czas realizacji.  Dla przykładu, wysokiej jakości filtry F-P 

firmy IMEC są wysoką jakościowo alternatywą dla filtrów nanoszonych na szkło przed 

detektorem, natomiast ich cena jest znacznie wyższa. 

• Wymóg zastosowania sensorów o wysokiej czułości radiometrycznej. W przypadku 

najczęściej uzbrajanych w zdolności hiperspektralne sensorów czyli matryc CMOS, ich 

sprawność radiometryczna wciąż nie zapewnia szerokiej aplikacyjności. Z uwagi na 

swoją budowę, ich sprawność radiometryczna jest na tyle niska, że niemal w każdej 

aplikacji wymaga albo pełnego Słońca albo oświetlaczy halogenowych jako źródło 

światła  [55]. 

• Duża trudność w uzyskaniu obrazów hiperspektralnych o wysokiej rozdzielczości 

przestrzennej. Jedynie skanery przestrzenne i przestrzenno-spektralne mogą zepewnić 

wysoką rozdzielczość przestrzenną przy jednoczesnej wysokiej szybkości akwizycji. 

Skanery spektralne oraz typu snapshot to zawsze kompromis między rozdzielczością  

a szybkością akwizycji. Stanowi to poważne wyzwanie, które przy obecnym stanie 

techniki wyklucza zastosowanie HSI do użytku podobnego, jak kamery RGB 

 (np. w postaci ręcznych kamer). 
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• Wysoki poziom skomplikowania danych hiperspektralnych. Każde rozwiązanie HSI, 

to wysoce skomplikowany instrument, co przekłada się na konieczność zaangażowania 

wyspecjalizowanej kadry do akwizycji, obsługi i przetwarzania danych. 

• Stosunkowo duży rozmiar obrazów hiperspektralnych. Jedynie instrumenty niskich 

rozdzielczości lub sprawności radiometrycznej, czyli skanery przestrzenno-spektralne 

oraz typu snapshot pozwalają na realizację w postaci małych urządzeń, np. do platform 

UAV lub desktop. Pozostałe rozwiązania wymagają dużego rozmiaru i podwyższonego 

skomplikowania optomechatronicznego w realizacji akwizycji. 

• Skomplikowany proces kalibracji radiometrycznej, kluczowej do większości 

zastosowań. Jakość realizacji każdej aplikacji HSI wymaga regularnych i czasochłonnych 

procedur kalibracyjnych. 

• Wymóg zastosowania zaawansowanych algorytmów w celach klasyfikacji danych 

hiperspektralnych. Instrumenty HSI generują strumień danych o wysokiej objętości. 

Wymaga to zastosowania algorytmów ML (Machnie Learning – uczenie maszynowe, 

czyli zaawansowane algorytmy technik informacyjnych, będące pierwszym stopniem 

Sztucznej Inteligencji) do redukcji wymiarowości, a także rozwiązań DL (Deep Learning 

– uczenie głębokie, czyli podkategoria uczenia maszynowego, polegająca na tworzeniu 

sztucznych sieci neuronowych) do klasyfikacji obiektów. 

• Wysoka cena implementacji rozwiązań hiperspektralnych. Wysoki poziom 

skomplikowania rozwiązań HSI przekłada się na wysoką cenę, co jest głównym 

ograniczeniem w zastosowaniu tej metody w szerokim polu aplikacji codziennego 

użytku. 

 

Podsumowując, rozważania przedstawione w niniejszym rozdziale pokazują główne 

bariery obrazowania hiperspektralnego, które spowalniają i wstrzymują ich szerokie 

zastosowanie w dziedzinach życia codziennego, a także w niskomarżowych obszarach 

przemysłu wytwórczego. Zarówno wysoki poziom skomplikowania, odzwierciedlający się  

we względnie dużym rozmiarze i koszcie kamer HSI, jak i również wymóg gromadzenia  

i przetwarzania obszernego strumienia danych, powoduje, że techniki hiperspektralne 

znajdują na razie wąskie grono aplikacji. Daje się zauważyć potrzebę przedefiniowania potrzeb 

lub sposobu syntezy układów HSI, aby dziedzina obrazowania spektralnego i towarzyszące jej 

zalety, mogły poprawić zarówno jakość życia, jak i przesunąć granice możliwości nauki  

i techniki. 
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4. APLIKACJE WYKORZYSTUJĄCE OBRAZOWANIE MULTI I HIPERSPEKTRALNE 

Jak wspomniano w rozdziale 2.3, obrazowanie multi i hiperspektralne znajduje szerokie 

zastosowanie. Niniejszy rozdział opisuje kluczowe aplikacje w przemyśle wytwórczym,  

w sektorze kosmicznym, górniczym oraz aplikacje rolnicze, realizowane między innymi  

w firmie Scanway S.A., w której wdrożone zostały wyniki niniejszej pracy doktorskiej. 

 

4.1. APLIKACJE W PRZEMYŚLE WYTWÓRCZYM 

Jedną z najbardziej rozpowszechnionych aplikacji, wykorzystujących obrazowanie 

hiperspektralne w przemyśle wytwórczym jest sortowanie produktów spożywczych. Aplikacja 

tego typu bardzo często jest rozszerzona o wykrywanie zanieczyszczeń i ciał obcych w partii 

spożywczej. Stosowanie tego typu rozwiązań hiperspektralnych w tej branży podyktowane 

jest kilkoma wymogami, jakie stawia się szeroko pojętej produkcji spożywczej. Są to: 

• wymóg nieinwazyjności – konieczność braku styku instrumentu pomiarowego  

z produktem i brak ingerencji w jego strukturę, 

• wymóg stuprocentowej kontroli jakości – konieczność sprawdzenia każdego 

produktu, 

• zdolność do pracy w trybie ciągłym i szybkim – konieczność minimalizacji 

przestojów w produkcji i obsługa dużych wolumenów produktów. 

Kluczowe również z punktu widzenia charakteru branży spożywczej jest minimalizowanie 

ryzyka związanego z dopuszczeniem ciał obcych do produktu końcowego. W odróżnieniu  

od wielu innych branż, przepuszczenie defektu produktu w postaci zawartości ciał obcych, 

skutkować będzie znacznie dotkliwszymi konsekwencjami dla zakładu produkcyjnego niż 

zwrot produktu. Bardzo często skuteczność systemu kontroli jakości w dłuższej perspektywie 

definiuje reputację firmy, a błędy mogą doprowadzić do istotnych problemów finansowych. 

W związku z opisanymi aspektami, systemy hiperspektralne pomimo swojej wysokiej 

ceny, szybko znalazły zastosowanie w branży produkcji spożywczej. Do kluczowych 

podmiotów oferujących rozwiązania w zakresie systemów hiperspektralnych na świecie 

zaliczyć można takie firmy, jak: TOMRA Food, Specim, Headwall Photonics, czy Scanway S.A.  

 - podmiot współpracujący w ramach niniejszego doktoratu. 

Na rysunku 4.1 przedstawiono przykład aplikacji hiperspektralnej dla branży spożywczej, 

a dokładniej w zakładzie przetwórstwa migdałów. Na rysunku można zauważyć przenośnik 

taśmowy, na którym znajdują się migdały przetwarzane przez zakład przetwórczy.  

Nad przenośnikiem zawieszony jest układ akwizycji danych hiperspektralnych w postaci 
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kamery firmy Specim wraz z blokiem oświetlaczy wysokiej mocy. Obraz ten przedstawia jedno 

z wyzwań towarzyszących obrazowaniu hiperspektralnemu, jakim jest wymóg zapewnienia 

dużej ilości światła z uwagi na wąski zakres czułości spektralnej kanałów hiperspektralnych.  

 
Rys. 4.1  System hiperspektralnej kontroli jakości w branży spożywczej [56] 

Kamera hiperspektralna umożliwia wykrycie wszystkich obiektów, które nie są zgodne  

z sygnaturą spektralną obserwowanego produktu spożywczego. Różnica między sygnaturami 

spektralnymi różnych obiektów (spożywczych i ciał obcych) przedstawiona jest na rysunku 4.2. 

Rysunek 4.2 przedstawia zestawienie obrazu RGB, obrazu przetworzonego z kamery HSI oraz 

sygnatury spektralne obiektów na obrazie. Rysunek uwidacznia jak bardzo różni się zestaw 

danych pochodzących z kamery RGB oraz dane z obrazu hiperspektralnego po przetworzeniu 

w celu uwidocznienia różnic między różnymi sygnaturami spektralnymi. Takie obiekty, jak 

tektura i drewno, choć w ludzkim oku wyglądają na obiekty o podobnym kolorze, można 

rozróżnić za pomocą kamery HSI. 
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Rys. 4.2  Zestawienie: a) obrazu RGB z konwencjonalnej kamery; b) przetworzony obraz 

hiperspektralny ze sztucznymi kolorami uwidaczniającymi różne sygnatury spektralne; c) sygnatury spektralne 

obiektów na obrazie HSI. Dane i opracowanie Autora 

Inne, istotne aplikacje hiperspektralne w przemyśle wytwórczym to: 

• inspekcja materiałów kompozytowych i tworzyw sztucznych – wykrywanie inkluzji, 

różnic w składzie chemicznym, 

• kontrola powłok i lakierów – ocena jednorodności warstw, wykrywanie 

mikrouszkodzeń na powierzchniach lakierowanych, 

• weryfikacja składu chemicznego w czasie rzeczywistym – np. rozpoznawanie 

stopów metali oraz czystości farmaceutyków, 

• sortowanie odpadów – wykrywanie różnych tworzyw. 

 

4.2. APLIKACJE KOSMICZNE 

Jedną z dziedzin nauki i techniki, która najszybciej wykorzystała obrazowanie 

hiperspektralne jest sektor kosmiczny (rozdział 3.2). Jest to spowodowane tym, że obserwacje 

z dużej odległości (remote sensing), jakie umożliwiają satelity, bardzo często wykorzystywane 

są do klasyfikacji obiektów w polu widzenia oraz mają dostęp do bardzo uniwersalnego  

i potężnego źródła światła jakim jest Słońce. Szczególnie, w naukach o naszej planecie, 
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wykrywanie sygnatur spektralnych obiektów oraz substancji jest wyjątkowo pożądaną 

funkcjonalnością. Coraz częściej stosowane są również kamery multi i hiperspektralne 

wykorzystujące pasma poza zakresem światła widzialnego, co dostarcza jeszcze więcej 

informacji np. na temat lokalnego składu gazowego atmosfery Ziemi. 

Jedną z najczęściej obecnie realizowanych aplikacji HSI w platformach satelitarnych jest 

detekcja zmian w pokryciu terenu i monitorowanie urbanizacji. Aplikacja ta dobrze wpisuje się 

w możliwości instrumentów hiperspektralnych, stosowanych w satelitach, z kilku powodów. 

Są to: 

• wymóg obserwacji zdalnej umożliwiający zobrazowanie całego terenu w jednej chwili 

z tej samej perspektywy w celu normalizacji danych, 

• wymóg identyfikacji tysięcy różnych rodzajów materiałów umożliwiający rozróżnianie 

obiektów w bardzo zróżnicowanym środowisku zurbanizowanym, 

• wymóg obserwacji wielu obszarów w krótkim czasie – bardzo często użytkownikiem 

takich danych jest publiczny zarząd regionu lub państwa, który gromadzi dane 

statystyczne z wielu miast i obszarów. 

Instrumenty hiperspektralne są również bardzo pożądane w sektorze satelitarnym  

ze względu na ich uniwersalność. Gromadząc dane w sposób ciągły, satelity umożliwiają 

archiwizację dużych połaci terenu. Archiwizacja danych hiperspektralnych z dużego obszaru 

umożliwia wsteczne opracowywanie aplikacji na podstawie danych historycznych. Jest to 

szczególnie przydatne w analityce i predykcji zjawisk przyrodniczych, geologicznych, 

klimatycznych  oraz hydrologicznych. 

Na rysunku 4.3 przedstawione zostało zestawienie obrazu RGB, wraz z sygnaturami 

spektralnymi obiektów na obszarze zurbanizowanym oraz wyselekcjonowane piksele najlepiej 

dopasowane do sygnatur. Rysunek ten wyraźnie pokazuje zalety aplikacji satelitarnych  

i lotniczych z wykorzystaniem instrumentów hiperspektralnych. Dzięki przeprowadzeniu 

operacji klasyfikacji obiektów poprzez porównywanie sygnatur spektralnych z wzorcem, 

możliwe jest stworzenie map przestrzennych rozłożenia obiektów o różnym składzie 

chemicznym. Umożliwia to wiele aplikacji, związanych z zarządzaniem przestrzennym, analizą 

stanu infrastruktury, ekologią i zarządzaniem skarbowym (określanie wysokości podatków na 

podstawie obiektów na terenie nieruchomości). 
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Rys. 4.3  Zestawienie: a) obrazu RGB z konwencjonalnej kamery; b) sygnatur spektralnych obiektów na obrazie 

HSI; mapy pikseli dopasowanych do sygnatur spektralnych: c) asfaltu; d) trawy; e) dachów z pokryciem 

ceramicznym; f) dachów z pokryciem bitumicznym; g) gleby; h) drzew. Opracowanie Autora [58] na podstawie 

danych z instrumentu HYDICE [57] 

W aspekcie zastosowań systemów hiperspektralnych w aplikacjach kosmicznych pod 

kątem ochrony środowiska, na  szczególną uwagę zasługuje tzw. indeks AKBD (Advanced Key 

Band Difference). Indeks ten związany jest z pasmem SWIR oraz pikiem emisyjnym potasu, 

aktywowanym przez reakcje na poziomie cząsteczkowym w trakcie pożaru drzew. Indeks 

AKBD może służyć do określania rozmiaru pożaru, nawet jeśli obraz powierzchni gruntu 

przykryty jest obfitym dymem, ponieważ promieniowanie w paśmie NIR i SWIR nie przechodzi 

przez pyły zawieszone i dym. Na rys. 3.4 pokazano obrazy oraz sygnatury spektralne płonącej 

biomasy i jej składników.  



63 

 

Rys. 4.4  Zestawienie: a) obrazu RGB z konwencjonalnej kamery z zaznaczeniem dwóch punktów pomiarowych; 

b) obraz w paśmie SWIR; c) sygnatury spektralne obiektów na obrazie HSI; d) obraz wynikowy z mapą indeksu 

AKBD; Dane z instrumentu HYPER–SIM.GA [59] 

Zestawienie przedstawione na rys. 4.4 pozwala stwierdzić jak użyteczny może być indeks 

AKBD, wyznaczany jako różnica w intensywności pikseli między pasmem emisji potasu  

w trakcie pożaru (770 nm) oraz pasmem referencyjnym (780 nm). Stworzona w ten sposób 

mapa pozwala na wykrycie obszarów z biomasą aktywnie płonącą, czyli taką na której należy 

skupić czynności gaśnicze. Oprócz wymienionych aplikacji hiperspektralnych w sektorze 

kosmicznym, częste zastosowania obejmują również ocenę kondycji roślinności, badania 

zmian klimatu,  identyfikację skażeń środowiska naturalnego oraz technologie wojskowe. 

 

4.3. APLIKACJE GÓRNICZE 

Gałąź gospodarki coraz chętniej korzystająca z obrazowania hiperspektralnego to branża 

górnicza. Jest to związane z tym, że różne minerały cechują się zróżnicowanymi sygnaturami 

spektralnymi, co przekłada się na możliwość detekcji złóż dzięki danym HSI. Nie dziwi zatem 

fakt, że istnieje wiele aplikacji górniczych wykorzystujących tę technikę.  
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Najważniejsze aplikacje w tym sektorze to: 

• Zdalne rozpoznawanie składników skał i minerałów – np. identyfikacja pokładów 

miedzi, żelaza, metali ziem rzadkich na podstawie sygnatur spektralnych. 

• Monitorowanie składowisk odpadów górniczych i hałd – np. ocena zagrożeń 

chemicznych i pyłowych. 

• Rekultywacja terenów pogórniczych – śledzenie dynamiki odradzającej się 

roślinności wokół terenów pokopalnianych oraz monitoring hydrologiczny. 

• Ocena wpływu aktywnego obszaru górniczego na środowisko naturalne – 

wykrywanie zmian w szacie roślinnej i wczesne ostrzeganie o transferze mas wody. 

• Eksploracja innych planet i ciał niebieskich – jest to aplikacja z pogranicza górnictwa 

i sektora kosmicznego, jednakże instrumenty hiperspektralne są wykorzystywane 

do wykrywania złóż minerałów i pierwiastków na innych planetach, księżycach  

i asteroidach do potencjalnej eksploatacji w przyszłości. 

Na szczególne wyróżnienie zasługują aplikacje związane z oceną wpływu działalności 

górniczej na środowisko naturalne. Na rynku spotkać można firmy zajmujące się tworzeniem 

narzędzi analitycznych specjalnie na takie potrzeby. Na rysunku 4.5 przedstawiono przykład 

takiej aplikacji. Zadaniem tego systemu był monitoring fragmentu terenu w bliskiej okolicy 

kopalni lub składu odpadów górniczych, który wykazywał cechy przesiąkania 

zanieczyszczonych mas wody do środowiska naturalnego. Na obrazie zauważyć można różnicę 

w kolejnych latach od 2017 roku do 2023 roku. Początkowo, obszar oznaczony literą A i C 

wykazywał obecność dużej ilości zanieczyszczeń. Dzięki działaniom zapobiegawczym, w 

kolejnych latach  poziom zanieczyszczenia i nawodnienia zmniejszył się, co przedstawiają 

kwadraty B i D. Twórcy raportu nie podają informacji jak wyznaczony był wskaźnik 

nawodnienia (które jest tożsame z zanieczyszczeniem), jednakże został on wyznaczony na 

podstawie danych HSI. 
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Rys. 4.5  Wycinek z raportu komercyjnego narzędzia TerraEye wrocławskiej firmy Four Point, przedstawiający 

zestawienie obrazów RGB oraz mapę wskazującą na przecieki podskórne mas wody z wyrobiska lub składu 

odpadów górniczych w kopalni Sierra Gorda [60] 

Instrumenty hiperspektralne w górnictwie mogą być stosowane również w postaci 

przenośnej. Na obrazie 4.6 przedstawiono przykład zastosowania skanera badawczego  

w warunkach podziemnego przodka górniczego. Instrumenty tego typu mogą służyć np. 

ocenie jakości złóż w trakcie lub pomiędzy prowadzeniem prac górniczych. 

 

Rys. 4.6  Skaner opracowany w trakcie realizacji doktoratu wdrożeniowego w trakcie gromadzenia danych 

hiperspektralnych w obrębie wyrobiska miedzionośnego. Materiał Autora 
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4.4. APLIKACJE ROLNICZE 

Aplikacje rolnicze były główną motywacją do rozwoju technik obserwacji 

hiperspektralnych w połowie ubiegłego wieku, co zostało obszernie opisane w rozdziale 3.2. 

Jest to spowodowane wysoką wydajnością w wykrywaniu rozmaitych patogenów roślinnych, 

a także zmian zdrowotnych i dojrzałości roślin na obrazach hiperspektralnych. Możemy 

wyróżnić kilka najczęściej spotykanych rolniczych aplikacji HSI: 

• monitorowanie zdrowia roślin i stresów środowiskowych – np. identyfikacja 

niedoborów wody, chorób, szkodników, 

• mapowanie przestrzennego zróżnicowania upraw – np. w celu dostosowania 

nawożenia i nawadniania (rolnictwo precyzyjne), 

• określanie dojrzałości plonów i momentu zbioru – np. określanie dojrzałości 

winorośli, upraw owocowych oraz zbóż, 

• klasyfikacja typów roślin i ocena bioróżnorodności – np. dla monitorowania zmian 

w strukturze upraw. 

Jednym z najczęściej stosowanych w rolnictwie indeksów (współczynników spektralnych 

korespondujących z parametrami roślin) jest indeks wegetacji NDVI (Normalized Difference 

Vegetation Index). Jest to współczynnik, który wprost informuje o tym czy roślina jest zdolna 

do odbijania promieniowania podczerwonego, co ma przełożenie na stan zdrowia rośliny. Na 

rysunku 4.7 przedstawiono mapę indeksu NDVI pola uprawnego. Można na nim zauważyć 

zróżnicowanie współczynnika wegetacji na obszarze zmapowanym przez kamerę 

hiperspektralną.  

Na szczególną uwagę zasługują również aplikacje związane z monitoringiem wód 

gruntowych. W przypadku obserwacji hiperspektralnych w paśmie SWIR możliwe jest również 

wyznaczenie poziomu wilgotności w glebie. Na rys. 4.8 przedstawiono porównanie widm 

spektralnych dla różnego poziomu wilgotności gleby. Widoczne na nim zróżnicowanie 

sygnatur spektralnych gleb o różnej zawartości wody, sugeruje możliwość wykorzystania  

w aplikacjach zdalnej oceny zasobów wodnych. Co istotne, wyraźnie zauważalne są różnice 

przy glebie o niewielkiej zawartości wody. Jest to ważne dla umiejętnego gospodarowania 

ograniczonymi zasobami wody i dystrybucją wody w okresach suszy. 
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Rys. 4.7  Mapa NDVI pola uprawnego, przekładająca się pośrednio na stan zdrowia roślin [61] 

 

 

Rys. 4.8 Porównanie sygnatur spektralnych gleb o różnej zawartości wody – SMC (Soil Moisture Content)  

w zakresie  400 do 2400 nm [62] 

Przedstawione w niniejszym rozdziale aplikacje pokazują uniwersalność obrazowania 

hiperspektralnego w różnych zastosowaniach, a zarazem dowodzi, jak ważnych informacji 

mogą one dostarczać. Zobrazowania te powstały dzięki zastosowaniu złożonych i drogich 

systemów hiperspektralnych, które dostarczyły ogromnej ilości danych koniecznych  

do przetworzenia. Dla przykładu przedstawione na rys. 4.3 mapy wymagały obróbki obrazu 

hiperspektralnego zbudowanego z 210 kanałów spektralnych, który pomimo niewielkiej 

rozdzielczości wynoszącej 307x307 pikseli, zajmował przestrzeń dyskową o rozmiarze 40 
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megabajtów. Obraz pokrywający większy obszar lub o większej rozdzielczości to pojedynczy 

pakiet danych o rozmiarze przekraczającym kilka gigabajtów. Jest to znacznie więcej niż obrazy 

RGB, które zazwyczaj są przetwarzane. 

Zgodnie z hipotezą postawioną w niniejszej pracy (Rozdział 1.2) możliwe jest 

skonstruowanie uproszczonych systemów (multi) spektralnych, wykorzystujących wybrane 

zestawy danych niezbędnych w konkretnym zastosowaniu. Kolejne rozdziały niniejszej pracy 

przedstawiają badania zrealizowane przez Autora, które miały na celu: 

1. Opracowanie metodologii redukcji wymiarowości danych.  

2. Uproszczenie budowy instrumentu spektralnego. 

3. Opracowanie metody syntezy uproszczonych układów obrazowania spektralnego.  
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5. TECHNIKI PRZETWARZANIA I ANALIZY DANYCH HSI 

W niniejszym rozdziale przedstawione zostały techniki przetwarzania i analizy danych 

hiperspektralnych. Są to metody stosowane w wielu aplikacjach, jak również w dalszych 

rozdziałach niniejszej pracy. Opisy dotyczą zarówno technik przygotowawczych  

do przetwarzania (np. odszumianie), jak również zaawansowane techniki redukcji 

wymiarowości i klasyfikacji. 

 

5.1. PODSTAWOWE WYMAGANIA STAWIANE SYSTEMOM PRZETWARZANIA I ANALIZY 

DANYCH HIPERSPEKTRALNYCH 

Dane hiperspektralne, w odróżnieniu od danych pochodzących z kamer RGB  

i monochromatycznych, są wyjątkowo trudne w interpretacji funkcjami kognitywnymi 

człowieka. Zdjęcia wykonywane w kolorach czerwonym, zielonym i niebieskim są tak 

zaprojektowane w swoim łańcuchu akwizycji, aby maksymalnie zbliżyć się do sposobu 

działania ludzkiego oka, co pozwala na wykorzystanie tych samych funkcji poznawczych do 

oceny i klasyfikacji obiektów znajdujących się na takim obrazie. Istotną zaletą obrazów 

hiperspektralnych jest zdolność do rejestracji sygnatur spektralnych obiektów. Jednakże  

w przypadku zobrazowań HSI, kanały spektralne nie dość, że nie odzwierciedlają pasm 

widzenia ludzkiego oka, to dodatkowo stanowią informację nadmiarową w stosunku do 

możliwości zmysłu wzroku. Z tego powodu, w celu właściwej interpretacji danych HSI, 

przypisanie ich do odpowiednich rodzajów obiektów wymaga zastosowania odpowiedniego 

systemu przetwarzania i ewentualnie analizy danych. Kluczowe wymagania stawiane przed 

systemami przetwarzania i analizy danych, to: 

• zdolność do ekstrakcji cech kluczowych, czyli wykluczenia nadmiarowych danych, które 

nie wpływają na zadanie, związane z aplikacją, 

• zdolność do obsługi dużych zbiorów danych, 

• jak największa wydajność działania z uwagi na rozmiar i złożoność danych, 

• jak największa efektywność wyszukiwania wzorców spektralnych i przestrzennych, 

• jak najniższa podatność na szum. 

 

5.2. ŁAŃCUCH PRZETWARZANIA I ANALIZY DANYCH HIPERSPEKTRALNYCH 

Wymagania przedstawione w rozdziale 5.1 stanowią fundament syntezy systemu 

przetwarzania i analizy danych hiperspektralnych i multispektralnych. Wzajemne zestawienie 

tych wymagań w ramach kilku kluczowych domen (tabela 5.1), tworzy łańcuch danych, którym 
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można opisać niemal każde wyzwanie lub aplikację wykorzystującą dane HSI/MSI, a także 

praktycznie każde dane optyczne.  

Tabela 5.1. Łańcuch danych optycznych HSI i MSI. Na podstawie [63, 64] 

Domena Akwizycja Przetwarzanie Analiza 

Funkcja Pozyskanie danych 
wsadowych HSI/MSI 

Przetworzenie danych  
w wiedzę 

Przetworzenie wiedzy  
we wnioski i decyzje 

Elementy Kamery Infrastruktura obliczeniowa 

Skanery Algorytmy redukcji 
wymiarowej i kompresji 

Algorytmy wizualizacji  
i prezentacji 

Instrumenty lotnicze Algorytmy analityczne 

Instrumenty satelitarne Sztuczna Inteligencja 

Wyjście Skan HSI (Hypercube) Wiedza o położeniu 
obiektów 

Zestawienie cech 
obiektów i możliwa 

klasyfikacja 

Wiedza o charakterze 
obiektów 

Analityka cech obiektów 
pod kątem celów aplikacji 

Obraz multispektralny Wiedza o obecności 
obiektów 

Statystyki dotyczące 
obiektów (rozłożenie, 

obecność, ilość) 

Wiedza o ilości i rozmiarze 
obiektów 

Wnioski o możliwości 
zaistnienia zdarzeń 

Przykłady Satelitarne zobrazowanie 
w paśmie podczerwieni 

krótkofalowej 

Przetworzona mapa 
stężenia metanu w 

atmosferze 

Raport na temat ilości i 
rozłożenia wycieków gazu 
na liniach gazociągowych 

Skan hiperspektralny ryżu 
na linii przetwórstwa 

żywności 

Mapa różnych materiałów 
obecnych w partii ryżu 

Analityka i decyzja w 
kontekście obecności ciał 
obcych w partii ryżu (np. 

szkła, tw. sztucznych) 

 

Kluczową cechą platform obliczeniowych stosowanych w aplikacjach hiperspektralnych 

jest wysoka wydajność obliczeniowa. Wydajna platforma do przetwarzania danych 

hiperspektralnych jest niezwykle istotna z kilku powodów. Po pierwsze, dane hiperspektralne 

zawierają setki, a nawet tysiące pasm spektralnych, co powoduje dużą ilość danych  

do przetwarzania. Wydajna platforma jest niezbędna, aby poradzić sobie z tą złożonością  

i wielkością danych. Po drugie, w niektórych takich zastosowaniach, jak rolnictwo precyzyjne, 

monitorowanie stanu zdrowia lasów czy detekcja zanieczyszczeń, kluczowy jest czas reakcji. 

Wydajna platforma pozwala na szybkie przetwarzanie danych, co umożliwia bezzwłoczne 

podejmowanie decyzji. Po trzecie, wydajna platforma może korzystać z takich 



71 

zaawansowanych algorytmów i technik przetwarzania, jak uczenie maszynowe czy analiza 

statystyczna, co zwiększa dokładność i wiarygodność wyników. 

Obecnie najczęściej stosowane są trzy rodzaje platform do przetwarzania danych 

hiperspektralnych. Są to  [65]: 

• pocesory graficzne – GPU (Graphic Processing Unit) – stosowane głównie  

w platformach stacjonarnych, ale dzięki miniaturyzacji może być stosowana także 

w urządzeniach przenośnych, 

• układy FPGA (Field-Programmable Gate Array) – wysoce wydajne miniaturowe 

układy, umożliwiające przeprogramowanie na poziomie elektronicznych bramek 

logicznych, które są stosowane często w aplikacjach mobilnych, 

• układy ASIC (Application-Specific Integrated Circuit) – układy scalone, zawierające 

cały system w postaci układu zintegrowanego, cechujące się wysoką wydajnością 

pod konkretną aplikację. 

Wybór odpowiedniej platformy obliczeniowej do przetwarzania danych 

hiperspektralnych zależy od konkretnych wymagań aplikacji. GPU są idealne dla zadań 

wymagających dużej mocy obliczeniowej i równoległego przetwarzania, FPGA oferują 

elastyczność i efektywność energetyczną, a ASIC zapewniają najwyższą wydajność  

dla specyficznych zadań, choć kosztem elastyczności i wysokich kosztów początkowych. Każda  

z tych technologii ma swoje unikalne zalety, które mogą być wykorzystane w zależności  

od specyficznych potrzeb danego projektu. 

Cyfrowa forma obrazów, która umożliwiła różne sposoby ich przetwarzania i prezentacji, 

była jednocześnie najważniejszą barierą w pierwszych dekadach rozwoju przemysłowych  

i naukowych systemów wizyjnych. Było to głównie związane z ogromną ilością danych 

potrzebnych do przetwarzania, pozyskiwanych z dwuwymiarowej matrycy sensorów CCD lub 

CMOS. Jak już wcześniej wspomniano, operacje na milionach pikseli wymagają sprzętu 

komputerowego co najmniej na poziomie mikrokomputera. Analiza obszernych ilości danych, 

zwłaszcza w czasie rzeczywistym, jest wyzwaniem i wymaga stosowania zaawansowanego 

przetwarzania. W ostatnim czasie zastosowanie metod głębokiego uczenia wydaje się być 

jednym z rozwiązań umożliwiających efektywne i sprawne przetwarzanie danych HSI 

(hipercube’ów)  [66]. Niemniej jednak, kluczowe zasady i przepływ procesów w większości 

schematów przetwarzania danych pozostają takie same, jak w podejściu analitycznym. Na rys. 

5.1 przedstawiono schemat uniwersalnej architektury łańcucha przetwarzania danych 

HSI/MSI.  
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Rys. 5.1. Uniwersalna architektura łańcucha oprogramowania przetwarzania danych hiperspektralnych [58] 

Zestawy danych hiperspektralnych w surowej formie, uzyskane z urządzeń obrazujących, 

są pełne artefaktów, tzw. martwych pikseli, uszkodzonych pasm oraz nadmiarowych danych. 

Usunięcie lub skompresowanie tych danych to kluczowy cel pierwszej warstwy powszechnie 

stosowanego schematu przetwarzania danych (rys. 5.1). W wielu przypadkach operacje w tej 

warstwie obejmują: usuwanie martwych pikseli (na podstawie danych kalibracyjnych 

sensora), wybór obszaru do przetworzenia, wybór pasma spektralnego (oparty na znanej 

korespondencji wybranych pasm z refleksyjnością interesujących obiektów). Korekcja 

spektralna jest narzędziem do optymalizacji zakresu refleksyjności do bardziej 

porównywalnych poziomów. Istnieje kilka metod tego typu operacji, a jednymi z najczęściej 

stosowanych są SNV (Standard Normal Variate) i MSC (Multiplicate Scatter Correction).  

W wielu aplikacjach kolejnym ważnym krokiem są operacje PCA (Principle Component 

Analysis) lub LDA (Linear Discriminant Analysis). Te operacje są szczególnie potrzebne  

w przypadku hiperspektralnych danych o wysokiej złożoności, zawierających wiele pasm 

spektralnych. Podejście PCA lub LDA pozwala zredukować liczbę pasm spektralnych do (tylko) 

ułamka początkowych surowych danych (na przykład ze 150 pasm do 6 pasm). Pasma  

są wybierane według kryterium najbardziej wartościowych cech, w kontekście rozróżnialnych 

cech sygnatur spektralnych  [58]. 

Po operacjach wstępnych wprowadza się bardziej zaawansowane narzędzia, jak metody 

uczenia maszynowego (Machine Learning – ML) oraz metody głębokiego nauczania (Deep 

Learning – DL). W szczególności kroki segmentacji i klasteryzacji są najbardziej dynamicznie 

rozwijanymi operacjami, bardzo często opartymi na metodach sztucznej inteligencji. 

Połączenie i iteracyjne podejście do segmentacji (często nazywane reprezentacją obrazu jako 

zestawu N obrazów jednokanałowych zamiast jednego obrazu N-pasmowego) i klasteryzacji 

(która grupuje podobne piksele w regiony klasyfikowane jako jeden typ obiektu) jest obecnie 

przedmiotem wielu takich rozwiązań, jak struktury podziału danych oparte na drzewach  [67]. 

Wynika to z faktu, że po logicznie określonych pierwszych krokach przetwarzania obrazu 
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hiperspektralnego, segmentacja i klasteryzacja są znacznie bardziej wymagającymi procesami, 

zależnymi od wiedzy lub konkretnej aplikacji  [58]. 

Na podstawie przedstawionego opisu łańcucha przetwarzania i analizy danych 

hiperspektralnych, można zauważyć jak silna jest potrzeba zastosowania technik opartych 

o metody sztucznej inteligencji. Na rys. 5.2 przedstawiono systematykę ułatwiającą lepsze 

zrozumienie granic między klasycznym programowaniem, a metodami AI. 

 

Rys. 5.1. Poziomy systemów sztucznej inteligencji. Opracowanie autora 

Rys. 5.2 przedstawia wzajemną relację zbiorów algorytmiki przetwarzania i analizy 

danych. Szeroko pojęta sztuczna inteligencja, choć może kojarzyć się z takimi wysoce 

rozpowszechnionymi dużymi modelami językowymi (Large Language Model – LLM), jak np. 

ChatGPT lub DeepSeek [68], w istocie stanowi nieco szersze pojęcie. W praktyce, algorytmy, 

które w minimalnym stopniu naśladują pewne cechy kognitywne ludzkiego umysłu, mogą być 

nazwane „sztuczną inteligencją”. Zgodnie z taką definicją, nawet tak proste działania 

algorytmiczne, jak wyszukiwanie okręgów na obrazie, detekcja twarzy przez aplikację 

bezpieczeństwa smartfona oraz funkcje redukcji wymiarowości to już AI. Nieco bardziej 

skomplikowane, lecz wciąż należące do sztucznej inteligencji są techniki uczenia 

maszynowego. W nich znajdziemy uczenie nienadzorowane i nadzorowane oraz płytkie sieci 

neuronowe. Bardziej wysublimowanym poziomem AI jest głębokie nauczanie, które 

wykorzystuje bardziej skomplikowane sieci neuronowe. To, co jednak w ostatnich latach 
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zyskuje na największej uwadze to generatywna sztuczna inteligencja (Generative Artificial 

Intelligence – Gen AI), która zawiera w sobie duże modele językowe, modele tworzące grafiki 

i filmy oraz agenty AI, czyli modele wspierające pracę człowieka na wielu płaszczyznach  

(w tym w programowaniu). Oparte są one na coraz bardziej skomplikowanych modelach, 

wykorzystujących sztuczne sieci neuronowe. Wiele firm pracuje obecnie nad opracowaniem 

tzw. AGI – Artificial General Intelligence, czyli systemów, które potrafiłyby pracować w sposób 

nieodróżnialny od ludzkiego umysłu [69]. 

 

5.3. METODY PRZETWARZANIA I ANALIZY DANYCH SPEKTRALNYCH 

W niniejszym rozdziale szczegółowo omówiono kolejno metody przetwarzania i analizy 

danych spektralnych. Metody te wykorzystywane są w łańcuchu przetwarzania danych 

hiperspektralnych. 

 

5.3.1 Przetwarzanie wstępne 

Do najważniejszych wstępnych metod przetwarzania danych spektralnych należą metody 

oparte na redukcji szumu, metody normalizacji i/lub korekcji danych. Redukcja szumu przy 

użyciu filtru Gaussa – popularna metoda poprawy jakości obrazu i redukcji szumu losowego  

o wysokiej częstotliwości, charakterystycznego dla przetworników analogowo-cyfrowych. Filtr 

wygładza obraz, zachowując kluczowe struktury i informacje zawarte w obrazie. Filtr Gaussa 

stosuje rozmycie w oparciu o rozkład normalny, gdzie piksele obrazu są przekształcane  

na podstawie ich odległości od sąsiadujących pikseli. W przypadku obrazu hiperspektralnego, 

filtr Gaussa można stosować na poszczególnych pasmach spektralnych [70]. Jądro filtru 

Gaussa stosowane w wygładzaniu obrazu, można opisać wzorem [70]: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2 )     (5.1) 

gdzie: 

x, y – współrzędne piksela względem środka filtra, 

𝜎2- wariancja rozkładu Gaussa, które określa stopień rozmycia. 

Normalizacja danych metodą min-max – jedna z najprostszych i najczęściej stosowanych 

metod skalowania danych do określonego zakresu, zwykle od 0 do 1. Jest ona szczególnie 

korzystna do wykorzystania na danych hiperspektralnych, ponieważ pozwala na standaryzację 

wartości pikseli między pasmami spektralnymi. Znacznie upraszcza to dalszą analizę oraz 

zastosowanie algorytmów, które wymagają koherentnego zakresu wartości. Przekształcenie 

metodą min-max opisuje się wzorem [70]: 
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𝑥′ =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
     (5.2) 

gdzie: 

𝑥 – oryginalna wartość piksela, 

𝑥𝑚𝑖𝑛 – minimalna wartość w danym paśmie spektralnym, 

𝑥𝑚𝑎𝑥  – maksymalna wartość w danym paśmie spektralnym. 

Korekcja spektralna i kalibracja radiometryczna, to etap procesu przetwarzania danych, 

który ma na celu dostosowanie zmierzonych wartości intensywności pikseli do wartości 

radiometrycznych. W profesjonalnych zobrazowaniach hiperspektralnych w etapie tym każdy 

kanał spektralny jest osobno kalibrowany na podstawie modelu radiometrycznego albo, jeśli 

to możliwe, na podstawie danych pochodzących z kampanii kalibracyjnej. W etapie tym, 

często uwzględniane są czynniki wpływające na światło w trakci drogi od obiektu  

do instrumentu obrazującego, jak np. wpływ atmosfery w przypadku zobrazowań lotniczych  

i satelitarnych. Bez korekcji spektralnej i kalibracji radiometrycznej badania na podstawie 

obrazu hiperspektralnego mogą mieć głównie charakter jakościowy, a w mniejszym stopniu 

ilościowy. 

 

5.3.2.  Redukcja wymiarowości 

W celu ograniczenia ilości danych koniecznych do przetwarzania powszechnie stosuje się 

jedną z dwóch metod: metodę PCA oraz metodę LDA, które zostały opisane w dalszej części 

nieniejszego rozdziału. Metoda redukcji wymiarowości PCA (Principle Component Analysis), 

czyli Analiza Głównych Składowych – jest jedną z najczęściej stosowanych metod redukcji 

liczby wymiarów w przetwarzaniu i analityce obrazów hiperspektralnych. Stosując PCA 

możliwe jest przekształcenie wielowymiarowych danych na zestaw składowych, które 

reprezentują największą ilość informacji (charakteryzujących się największą wariancją). 

Oznacza to, że możliwe jest wyekstrahowanie i synteza złożonych danych do znacznie 

prostszej postaci. W obrazach hiperspektralnych jest to szczególnie pożądana operacja, 

ponieważ zbiory wielospektralne wymagają znacznie większej mocy obliczeniowej  

do przetwarzania niż obrazy zredukowane. 

PCA dokonuje dekompozycji danych wielowymiarowych na zestaw kolejnych składowych, 

zwanych głównymi cechami. Cechy te oznaczają różne opisy danych (np. różne pasma światła 

w hypercube), a każda próbka danych to punkt w wielowymiarowej przestrzeni tych cech. PCA 

przekształca tą przestrzeń, tworząc nowy układ współrzędnych, w którym nowe osie (główne 

składowe) są ustawione względem siebie prostopadle.  
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Każda z tych składowych jest kombinacją liniową oryginalnych pasm spektralnych  

i zawiera część danych o coraz mniejszym stopniu wariancji (czyli dyspersji statystycznej - rys. 

5.3). Oznacza to, że metoda PCA i jej algorytm działania dąży do przekształcenia danych tak, 

aby pierwsza główna składowa miała największą wariancję, czyli jak największy poziom 

zmienności. Pierwsza główna składowa powinna reprezentować najlepiej strukturę danych.  

W przypadku zdjęcia hiperspektralnego, oznacza to,  że pierwsza składowa będzie stanowić 

mieszaninę pasm spektralnych, które najlepiej rozróżniają różne sygnatury spektralne 

obiektów na obrazie. Kolejne główne składowe mają coraz mniejszą wariancję, ale wciąż 

algorytm dąży do uchwycenia w nich kluczowych różnic [71]. Sam proces PCA odbywa się  

w kilku krokach: 

1. Centrowanie danych – obliczenie różnicy każdego pasma spektralnego i średniej jego 

wartości. 

2. Obliczenie macierzy kowariancji danych, według zależności: 

𝐶𝑜𝑣(𝑋) =  
1

𝑚−1
𝑋𝑇𝑋,     (5.3) 

gdzie: 

X – wycentrowana macierz danych o wymiarach 𝑚 × 𝑛, 

m  - liczba pikseli, 

n – liczba pasm spektralnych. 

3. Znalezienie wartości i wektorów własnych macierzy kowariancji, według wzoru: 

𝐶𝑜𝑣(𝑋)𝑣 =  𝜆𝑣,     (5.4) 

gdzie: 

𝑣 – wektory własne macierzy kowariancji, 

𝜆 – wartości własne macierzy kowariancji. 

4. Wybór najważniejszych wektorów własnych (o największych wartościach własnych) 

do stworzenia przestrzeni głównych składowych. 
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Rys. 5.3.  Wizualizacja redukcji wymiarowości metodą PCA. Opracowanie Autora 

Metoda redukcji wymiarowości LDA (Linear Discriminant Analysis), czyli Analiza 

Dyskryminacyjna jest równie popularna co PCA, ale w odróżnieniu od niej, ma na celu 

maksymalizację separacji międzyklasowej przy jednoczesnym minimalizowaniu wariancji 

wewnątrzklasowej. Jej zastosowanie jest szczególnie wartościowe w przypadku, gdy celem 

jest jak najlepsze rozróżnienie klas obiektów na obrazie hiperspektralnym. Zasadą LDA jest 

przekształcenie danych w przestrzeń o mniejszej liczbie wymiarów, która najlepiej separuje 

klasy. W metodzie tej wyznaczane są wektory dyskryminacyjne, które maksymalizują stosunek 

między wariancją międzyklasową a wariancją wewnątrzklasową, co powoduje usunięcie 

nadmiarowych danych w odróżnieniu do generacji nowych zestawów danych, mieszających 

podstawowe składowe, jak ma to miejsce w PCA (rys. 5.4). Metoda LDA polega na obliczeniu 

dwóch macierzy [71]: 

1. Macierz wariancji wewnątrzklasowej 𝑆𝑤: 

 

𝑆𝑤 = ∑ ∑ (𝑥 − 𝜇𝑖)(𝑥 − 𝜇𝑖)
𝑇

𝑥𝜖𝐶𝑖

𝑘
𝑖=1 ,    (5.5) 

gdzie: 

k – liczba klas, 

𝐶𝑖 – zbiór próbek należących do klasy 𝑖, 

𝑥 – próbka z klasy 𝐶𝑖, 

𝜇𝑖- średnia wartość wewnątrz klasy 𝑖, 

T – próg. 
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2. Macierz wariancji międzyklasowej 𝑆𝐵: 

𝑆𝐵 =  ∑ 𝑛𝑖(𝜇𝑖 − 𝜇)𝑘
𝑖=1 (𝜇𝑖 − 𝜇)𝑇 ,    (5.6) 

gdzie: 

𝑛𝑖  – liczba próbek w klasie 𝑖, 

𝜇 – średnia ogólna dla całego zbioru danych, 

𝜇𝑖 – średnia wartość dla klasy 𝑖. 

LDA optymalizuje stosunek wariancji międzyklasowej do wewnątrzklasowej, 

maksymalizując wyrażenie: 

𝐽(𝑊) =  
|𝑊𝑇𝑆𝐵𝑊|

|𝑊𝑇𝑆𝑊𝑊|
 ,     (5.7) 

gdzie: 

𝑊 – wektor kierunkowy  (współczynniki projekcji), 

𝑊𝑇- wektor kierunkowy (współczynniki projekcji) – transponowany, 

𝑆𝐵 – macierz rozrzutu międzyklasowego, 

𝑆𝑊 – macierz rozrzutu wewnątrzklasowego. 

 

 

Rys. 5.4.  Wizualizacja redukcji wymiarowości metodą LDA. Opracowanie Autora 

 

5.3.3. Metody analizy danych spektralnych 

Wśród stosowanych metod analizy danych spektralnych wyróżnić można metody 

klasyczne, metody nadzorowane i nienadzorowane oraz zaawansowane metody oparte  

na uczeniu maszynowym. Do metod analizy klasycznej (deterministycznej) zaliczamy kilka 

metod opisanych w dalszej części rozdziału. 
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Analiza spektralna, to często stosowana metoda, szczególnie w badaniach 

niezautomatyzowanych oraz w przypadku danych pochodzących ze źródeł unikalnych  

(np. misje eksploracyjne Układu Słonecznego, pomiary ekspedycyjne). Polega ona  

na porównywaniu charakterystycznych cech sygnatur spektralnych wybranych pikseli  

z danymi wzorcowymi, celem identyfikacji związków chemicznych, materiałów i pierwiastków. 

W tej metodzie istnieje kilka technik, które można zastosować w relatywnie 

nieskomplikowanym systemie pomiarowym. Wyróżniane techniki, to [72]: 

• ręczne porównywanie widm z bazą referencyjną,  

• analiza kąta SAM (Spectral Angle Mapper), określającym kąt między wektorem 

spektralnym badanego piksela a wzorcem, 

• spektralne korelacje krzyżowe SID (Spectral Information Divergence), określające 

miarę podobieństwa między widmem zmierzonym, a wzorcowym, na podstawie ich 

entropii. 

Metody detekcji cech – zbiór metod, pozwalających na wykrywanie obiektów, 

materiałów, cech powierzchni lub anomalii przy wykorzystaniu relatywnie 

nieskomplikowanych rozwiązań programistycznych lub optycznych. Są to metody szczególnie 

wykorzystywane w aplikacjach często stosowanych i powtarzalnych, jak np. wykrywanie 

sygnatury pożaru lub stanu chlorofilu w roślinach. Wśród tej grupy, wyróżniamy między innymi 

[73]: 

• metody detekcji anomalii – polegające na wykrywaniu pikseli wykraczających poza 

ustalone zakresy w określonych obszarach widma, co jest możliwe w instrumentach  

w minimalnym stopniu skalibrowanych radiometrycznie, 

• metody spektralnych indeksów – polegające na mieszaniu kilku zakresów widmowych 

w jednowymiarowe wskaźniki np. NDVI (Normalized Difference Vegetation Index), 

który możliwy jest do wyznaczenia poprzez odpowiednią kalkulację dwóch kanałów 

spektralnych. Możliwa jest ich implementacja w kamerach z odpowiednimi filtrami 

spektralnymi, które znacznie obniżają cenę docelowego detektora. 

Metody nienadzorowane stanowią część metod nauczania maszynowego, które 

określane są jako sztuczna inteligencja, choć odznaczają się deterministycznymi założeniami  

i zdefiniowanymi krokami obliczeniowymi. Kluczową cechą nienadzorowanych metod 

klasyfikacyjnych jest to, że pozwalają one na znalezienie wzorców w nieuporządkowanych 

zbiorach danych, bez wiedzy o istnieniu poszukiwanych klas. Są one doskonałym narzędziem, 

służącym do wstępnej analizy danych pod kątem możliwości separacji poszczególnych zbiorów 
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danych, wyróżniających się jakąś cechą. Dzięki brakowi wymogu znajomości wzorców  

do nauczania, mogą być one zastosowane na dowolnym zbiorze danych. Do metod 

nienadzorowanych zaliczamy takie metody, jak metoda k-mean oraz GMM (Gaussian Mixture 

Model), które zostały opisane szczegółowo w dalszej części rozdziału. 

Klasyfikacja z wykorzystaniem klasteryzacji metodą centroidów (k-mean) – często 

spotykana technika klasteryzacji wykorzystująca nienadzorowane nauczanie maszynowe, 

stosowana w analityce zdjęć hiperspektralnych. Metoda centroidów grupuje piksele  

na podstawie ich podobieństw w przestrzeni wielowymiarowej, gdzie każda zmienna 

odpowiada wartości intensywności danego kanału spektralnego. Dzięki temu piksele  

o podobnych charakterystykach spektralnych mogą być przypisane do tych samych klastrów, 

co pozwala na klasyfikację obiektów na obrazie, bez potrzeby wcześniejszego podawania tzw. 

prawdy podstawowej (ground truth). Metoda k-mean działa iteracyjnie i polega  

na przypisywaniu każdego piksela do jednego z k-klastrów, gdzie k to liczba klastrów zadana 

przez użytkownika. Algorytm dąży do minimalizacji wewnątrzgrupowej sumy odległości 

między pikselami a centroidem, czyli środkiem każdego klastra. Metoda ta jest wyjątkowo 

wartościowa w przypadku nieopisanych danych, zdolna do poszukiwania pozornie ukrytych 

wzorców w danych [74]. Etapy działania tej metody, to: 

1. Inicjalizacja: Losowo wybrane zostaje k-punktów danych, jako początkowe centroidy 

klastrów. 

2. Przypisanie punktów do klastrów: dla każdego piksela obliczona zostaje odległość  

do każdego centroidu. Piksele zostają przypisane do najbliższego centroidu. 

3. Aktualizacja centroidów:  po przypisaniu pikseli, obliczone zostają nowe centroidy 

klastrów jako średnie wartości pikseli przypisanych do każdego klastra. 

4. Powtarzanie kroków 2 i 3 aż do momentu, gdy centroidy przestaną się znacząco 

przesuwać lub osiągnięta zostanie maksymalna określona liczba iteracji. 

Celem algorytmu k-mean jest minimalizacja funkcji celu J, która reprezentuje sumę 

kwadratów odległości między punktami danych, a odpowiadającymi im centroidami klastrów, 

zgodnie ze wzorem: 

𝐽 =  ∑ ∑ ‖𝑥 − 𝜇𝑖‖2
𝑥𝜖𝐶𝑖

𝑘
𝑖=1      (5.8) 

gdzie: 

k – liczba klastrów, 

𝐶𝑖 – zbiór pikseli przypisanych do klastra 𝑖, 
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𝑥 – piksel (punkt danych), 

𝜇𝑖 – centroid klastra 𝑖, 

‖𝑥 − 𝜇𝑖‖ – odległość euklidesowa pomiędzy pikselem 𝑥 a centroidem 𝜇𝑖. 

Z kolei klasyfikacja z wykorzystaniem klasteryzacji metodą GMM  jest metodą klasteryzacji 

i segmentacji, wykorzystującą model mieszaniny gaussowskiej, znajdująca zastosowanie  

w analityce zdjęć hiperspektralnych. W odróżnieniu od metody centroidów, która zakłada 

rozdzielenie klastrów, GMM daje większą elastyczność i zakłada, że dane mogą pochodzić z 

mieszaniny rozkładów Gaussa. Jest to szczególnie wartościowe w przypadku danych 

hiperspektralnych, ponieważ obiekty mogą mieć nakładające się spektralnie sygnatury, co 

powoduje podobieństwo do kilku klas. GMM zakłada, że dane są generowane przez zestaw 

różnych rozkładów Gaussa, z których każdy reprezentuje inny klaster. Model dopasowuje 

zestaw rozkładów do danych, gdzie każdy klaster opisany jest przez parametry rozkładu 

normalnego: średnią (centroid klastra) i macierz kowariancji (opisującą rozszerzenie klastra). 

GMM to metoda nienadzorowanego nauczania maszynowego, czyli pozwala na wykrycie 

pozornie ukrytych wzorców w zestawie danych. Kroki obowiązujące w tej metodzie, to [75]: 

1. Inicjalizacja:  określenie liczby klastrów k i początkowych parametrów rozkładu Gaussa 

dla każdego z nich. 

2. Estymacja oczekiwana (E-step):  obliczenie prawdopodobieństwa przynależności 

każdego punktu do każdego klastra na podstawie bieżących parametrów modelu. 

3. Maksymalizacja (M-step): Aktualizacja parametrów każdego rozkładu Gaussa (średnie, 

kowariancje i prawdopodobieństwo mieszania), aby zmaksymalizować 

prawdopodobieństwo obserwowanych danych. 

4. Powtórzenie kroków 2 i 3, aż do zbieżności modelu, czyli do sytuacji, w której 

parametry przestaną się znacząco zmieniać lub osiągnięty zostanie maksymalny licznik 

iteracyjny. 

W GMM funkcja prawdopodobieństwa opisująca dane jako mieszaninę k-rozkładów 

normalnych przybiera postać: 

𝑝(𝑥) =  ∑ 𝜋𝑖𝑁(𝑥|𝜇𝑖, Σ𝑖)
𝑘
𝑖=1  ,     (5.9) 

gdzie: 

𝑥 -  wektor danych (piksel obrazu), 

𝑘  - liczba klastrów czyli mieszanin Gaussa, 

𝜋𝑖  – prawdopodobieństwo mieszania dla i-tego klastra, spełniające  Σ𝑖=1
𝑘 𝜋𝑖 = 1, 

𝑁(𝑥|𝜇𝑖, Σ𝑖) – rozkład normalny opisujący klaster 𝑖, 
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𝜇𝑖 – średnia i-tego klastra, 

Σ𝑖 – macierz kowariancji i-tego klastra. 

W przypadku nadzorowanych metod klasyfikacji w analizie danych, w tym danych 

hiperspektralnych, metody te polegają na uczeniu modelu przy użyciu danych treningowych. 

Dane treningowe określają jakich klas poszukujemy i stanowią zbiory danych z etykietami. 

Model wypracowywany w metodzie nadzorowanej, uczy się jak rozpoznawać wzorce  

w oparciu o dostarczone klasy, np.  do zdjęcia hiperspektralnego lasu, dane treningowe  

to zdjęcia hiperspektralne drzew o określonym gatunku. Wśród metod nadzorowanych 

wyróżniamy między innymi metodę Random Forest. 

Random forest (las losowy) – to metoda, w której kluczowym elementem budowania 

modelu jest konstruowanie wielu drzew decyzyjnych. Każde drzewo określa sposoby 

podejmowania decyzji przy klasyfikacji, a cały zestaw drzew, tzw. las modelu, pozwala  

na określenie najlepszej metody określania klasy. Metodę random forest można porównać  

do wystosowania prostego pytania do grupy osób i wybraniu odpowiedzi, która najczęściej  

się powtarza. Liczba drzew decyzyjnych w lesie modelu choć wraz ze wzrostem, wykazuje 

coraz większą dokładność klasyfikacji, nie powinna być nadmierna. Może to prowadzić  

do jakości wyników niewspółmiernych do czasu poświęconego na trenowanie modelu.  

W przypadku obrazów hiperspektralnych stosuje się przeważnie kilkaset drzew. Każde drzewo 

to osobna sekwencja decyzyjna, które składa się z szeregu prostych pytań i odpowiedzi.  

W przypadku obrazu hiperspektralnego, który zawiera np. dwie klasy: piksele reprezentujące 

trawę oraz piksele reprezentujące wodę, drzewo decyzyjne będzie skonstruowane z szeregu 

pytań dotyczących każdego z pasm spektralnych. Dla przykładu może to być pytanie, czy  

dla danego piksela, którym jest trawa (wiemy to dla danych treningowych) kanał spektralny 

625 nm, wartość w nim zawarta jest większa lub mniejsza niż losowo dobrana wartość 

progowa (np. 100 z 256 wartości w 8-bitowym kanale). Algorytm tworzy założoną liczbę drzew, 

każde z właśnie takimi uproszczonymi pytaniami, a następnie sprawdza, czy pytania te  

są odpowiednie, czyli w naszym przykładzie czy wartości progowe są odpowiednio dobrane. 

Cechą kluczową metody random forest jest to, że każde drzewo określa pytania dotyczące 

tylko losowego fragmentu danych. W kolejnych krokach uczenia modelu, algorytm 

dostosowuje pytania do momentu,  aż rezultaty decyzji będą najbardziej zgodne z danymi 

treningowymi (wg. reguły czystości decyzji lub poziomu entropii pomiędzy klasami) [76]. 

O tym czy piksel danych badawczych (nie treningowych) reprezentuje poszukiwaną klasę 

(jak dla naszego przykładu) trawy lub wody, decyduje demokratyczna większość drzew.  
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Dla przykładu,  jeśli model składa się ze 100 drzew, a dla danego piksela 70 drzew uznało piksel  

za trawę, a 30 za wodę, klasyfikator przypisze próbce etykietę trawy. W efekcie powstaje 

zestaw drzew decyzyjnych, które pozwalają na wyjątkowo szybką klasyfikację pikseli, 

ponieważ składa się ona  z szeregu relatywnie prostych obliczeń.  

Do zaawansowanych metod uczenia maszynowego zaliczane są sztuczne sieci neuronowe 

oraz głębokie uczenie. Sztuczne sieci neuronowe - są modelami obliczeniowymi, 

inspirowanymi w swym kształcie światem biologicznym. Pod kątem architektury i działania, 

naśladują podstawowe siatki biologicznych neuronów, choć są zarówno o wiele bardziej 

uproszczone, jak i skonstruowane przez implementację sztucznych neuronów opisanych 

programistycznie i matematycznie. Sztuczne sieci neuronowe stanowią podstawową strukturę 

i komponent modeli obliczeniowych w dziedzinie sztucznej inteligencji nazywanej nauczaniem 

głębokim (Deep Learning) [77]. 

Sieci neuronowe składają się z trzech głównych typów warstw: 

• warstwa wejściowa  - przyjmuje dane wejściowe (np. wartości kanałów spektralnych 

w obrazach HSI), 

• warstwy ukryte – przetwarzają dane poprzez zestaw połączonych sztucznych 

neuronów, wykonujących operacje matematyczne zgodne z wzorem 5.10, 

• warstwa wyjściowa – generuje wynik końcowy modelu (np. klasy obiektów na zdjęciu 

HSI). 

Każda warstwa składa się ze sztucznych neuronów, które są konstruktami algorytmiki 

matematycznej. Ich jedynym zadaniem jest wykonywanie następującej operacji 

matematycznej: 

𝑦 = 𝑓(∑ w𝑖x𝑖 + 𝑏𝑛
𝑖=0 ) ,     (5.10) 

gdzie: 

x𝑖  – dane wejściowe, 

w𝑖  – wagi połączeń, 

𝑏 – bias (przesunięcie), 

𝑓 – funkcja aktywacji, może być to funkcja liniowa, sigmoidalna, tangensoidalna lub Gaussa, 

𝑦 – wyjście neuronu. 

Proces uczenia (trenowania, budowania) sieci polega na dostosowaniu wag w𝑖  oraz 

przesunięć 𝑏, w celu minimalizacji funkcji błędu całego modelu. Funkcję błędu może pełnić np. 

błąd średniokwadratowy lub entropia krzyżowa, a dobór tej funkcji jest zależny od stawianego 

przed siecią zadania. Bardzo często w modelach opartych na sieciach neuronowych stosuje się 
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również algorytm wstecznej propagacji błędu. Jest on wysoce efektywnym algorytmem 

dostosowywania wag połączeń sieci, który działa w sposób łańcuchowy od końca sieci (wyjść) 

do początku. Pozwala to na szybkie obliczenie, w jaki sposób każda z wag połączeń wpływa  

na końcowy błąd sieci. 

Sztuczne sieci neuronowe, dzięki możliwości obsługi złożonych struktur danych, znalazły 

zastosowanie w tak trudnych zagadnieniach, jak rozpoznawanie obrazów, klasyfikację dużych 

zbiorów danych oraz obrazów hiperspektralnych. Płytkie sieci neuronowe składają się  

z maksymalnie jednej warstwy ukrytej. Sieci neuronowe o większej liczbie warstw ukrytych 

uznaje się za poziom sztucznej inteligencji nazywanej uczeniem głębokim. 

Uczenie głębokie to poddziedzina uczenia maszynowego, która wykorzystuje 

rozbudowane sztuczne sieci neuronowe o dużej liczbie neuronowych warstw ukrytych. 

Uczenie tego rodzaju nazywane jest głębokim z uwagi na głęboką złożoność architektury sieci 

neuronowych wykorzystywanych w tym uczeniu. Złożoność ta pozwala na przetwarzanie  

i analizę bardzo złożonych struktur danych, takich jak język naturalny (komunikacja ludzka), 

sekwencje obrazów oraz fuzja danych z różnych źródeł [77]. 

 

5.4. PORÓWNANIE TECHNIK PRZETWARZANIA I ANALIZY DANYCH SPEKTRALNYCH 

Wśród wielu technik przetwarzania i analizy danych, w tym danych hiperspektralnych, 

żadna metoda nie jest doskonała i optymalne zastosowanie jest zależne od kilku czynników. 

Przed wyborem właściwej metody, należy rozpoznać złożoność danych i poszukiwanych klas, 

czas wymagany na realizację obliczeń, dostępną architekturę obliczeniową oraz znajomość 

prawdy podstawowej. W tabeli 5.2 przedstawiono ogólne zestawienie wybranych cech 

różnych rodzajów technik przetwarzania i analizy danych. 

Analiza tabeli 5.2 pozwala na określenie technik optymalnych dla typowych rozmiarów 

zbiorów danych hiperspektralnych. W zagadnieniach związanych z obrazowaniem lotniczym, 

satelitarnym, laboratoryjnym i przemysłowym, technika nauczania nienadzorowanego 

ograniczona jest w obszarze klasyfikacji, stopniem radzenia sobie z szumem oraz zdolnością 

do generalizacji. W tej metodzie nie jest również możliwe wykrywanie wzorców 

przestrzennych, co w klasyfikacji obiektów powtarzalnych stanowi istotną wadę. Odznacza się 

jednak dużą szybkością działania i nie wymaga prawdy podstawowej, co jest istotną zaletą  

w zadaniach na nowych danych, które nie zostały przeanalizowane przez człowieka. Oznacza 

to, że nauczanie nienadzorowane może stanowić wstępne wykrywanie podstawowych 

wzorców i podstawową ekstrakcję cech kluczowych, określaną jako redukcja wymiarowości. 
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Techniki nauczania nadzorowanego oferują bardziej rozwinięte zdolności wykrywania 

wzorców przestrzennych, jak również zdolność do generalizacji. W technikach tych wymagane 

jest natomiast wstępne oznaczenie etykiet danych, czyli znajomość prawdy podstawowej  

dla danych używanych do nauczania. Techniki te odznaczają się również wyższym poziomem 

skomplikowania implementacji, często wymagając również większych mocy obliczeniowych 

do wykonywania procesu nauczania we względnie krótkim czasie. Do ekstrakcji cech 

kluczowych często wykorzystuje się na wstępie nauczanie nienadzorowane, a następnie 

nadzorowane na ograniczonym już zbiorze danych. 

Tabela 5.2.  Porównanie głównych rodzajów technik przetwarzania i analizy danych HSI.  
Opracowanie Autora 

Kryterium Techniki nauczania 
nienadzorowanego 

Techniki nauczania 
nadzorowanego 

Sieci neuronowe i Deep 
Learning 

Charakterystyka Wyszukiwanie 
wzorców w 

nieuporządkowanych 
danych 

Budowanie modeli 
deterministycznych na 

podstawie wstępnie 
uporządkowanych 

danych 

Budowanie złożonych 
modeli na podstawie 

wstępnie 
uporządkowanych 

danych 

Wymaganie prawdy 
podstawowej 

Nie Tak 
Tak (duża ilość 

przykładów) 

Wyodrębnianie 
kluczowych cech 

Statystyczne 
Ręczne lub 

półautomatyczne 
Automatyczne 

(wbudowane w model) 

Zdolność do 
wykrywania wzorców 
przestrzennych na 
obrazach HSI 

Nie Ograniczone Tak 

Radzenie sobie z 
szumem 

Ograniczone Ograniczone Duże 

Czas 
obliczeń/nauczania 

Krótki Średni 

Długi (wymagana 
zaawansowana 
infrastruktura 
obliczeniowa) 

Złożoność 
implementacji 

Mała Średnia Duża 

Zdolność do 
generalizacji 

Mała Średnia 
Zależna od rozmiaru 

danych do nauki 

 

Największe jednak możliwości oferują sztuczne sieci neuronowe i nauczanie głębokie. 

Pozwalają one na generalizację, znajdywanie skomplikowanych wzorców przestrzennych oraz 

automatyczną, będącą częścią kluczową modelu, ekstrakcję cech kluczowych. Sieci 

neuronowe w swej naturze dokonują selekcji cech kluczowych (w przypadku HSI kluczowych 

pasm) podczas procesu nauczania, osłabiając znaczenie tych wag, które bazują na źródłach nie 
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wpływających na redukcję błędu całkowitego modelu. Pomimo tych zalet, w obrazowaniu HSI 

i w większości aplikacji związanych z obrazowaniem satelitarnym, lotniczym, laboratoryjnym  

i przemysłowym, możliwości te wykraczają poza zadania stawiane systemom przetwarzania 

danych spektralnych. W połączeniu z wysokimi wymaganiami infrastruktury obliczeniowej, 

systemy oparte na głębokim nauczaniu, dopiero zaczynają być stosowane w aplikacjach, które 

wymagają dużej szybkości działania. Dla większości zadań klasyfikacyjnych, realizowanych  

na zobrazowaniach HSI, nauczanie nadzorowane  bez sieci neuronowych jest optymalne [77]. 

Zrozumienie różnicy poziomu zadań adekwatnych do poziomu skomplikowania 

klasycznego nauczania maszynowego ML (nauczanie nienadzorowane i nadzorowane) oraz 

głębokiego nauczania DL (sieci neuronowe płytkie i głębokie), przybliżyć mogą przedstawione 

w dalszej części przykłady, dotyczące klasyfikacji obiektów widocznych na zobrazowaniu HSI.  

W aplikacji opartej na zestawie danych np. lotniczych lub satelitarnych, przy dobrej 

znajomości prawdy podstawowej, modele trenowane na poziomie uczenia maszynowego (nie 

głębokiego uczenia) oferują odpowiedni poziom dokładności dla większości aplikacji 

klasyfikacyjnych [78]. Rozróżnianie np. rodzajów pól uprawnych, rodzajów powierzchni 

gruntu, pokryć dachowych na podstawie setek kanałów spektralnych są trudniejsze niż 

zdolność percepcji umysłu człowieka, jednak metody nadzorowanego nauczania 

maszynowego mogą pomóc stworzyć optymalny model dla tego rodzaju zadań. Głębokie 

nauczanie nie będzie optymalne w tym przypadku, jednak gdy zadanie okaże się bardziej 

zależne od danych  

z wysokim szumem oraz wymagać będzie wykrywania wzorców przestrzennych, 

zaawansowane sieci neuronowe będą odpowiednim narzędziem. Przykładem takiego 

zagadnienia mogłoby być np. wykrywanie zalążków zmian nowotworowych na powierzchni 

skóry człowieka na podstawie hiperspektralnych skanów medycznych. W tym przypadku 

głębokie nauczanie jest optymalne i może zapewnić najwyższą skuteczność, pod warunkiem 

trenowania modelu na dużym zestawie danych (min. kilkanaście tysięcy próbek) z prawdą 

podstawową. Z reguły brak takich zestawów danych stanowi główną barierę w stosowaniu 

metod głębokiego nauczania w wielu zagadnieniach hiperspektralnych. 

Z uwagi na przedstawioną wysoką użyteczność technik ML (nauczania maszynowego)  

w stosunku do rzadziej stosowanych technik DL (głębokiego nauczania) w przypadku 

większości danych HSI w aplikacjach przemysłowych, kosmicznych, górniczych i rolniczych, w 

dalszej części tej pracy badane, sprawdzane i oceniane będą głównie metody nauczania 

maszynowego.  
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6. BADANIA ELEMENTÓW FILTRUJĄCYCH ŚWIATŁO STOSOWANYCH W AKWIZYCJI DANYCH 

SPEKTRALNYCH 

W niniejszym rozdziale opisane zostały kluczowe elementy instrumentów 

hiperspektralnych, umożliwiające rejestrację danych w określonych spektrach długości fali. 

Przedstawiono wyniki badań własnych, jak również przedyskutowano możliwości 

zastosowania poszczególnych elementów w wybranych aplikacjach. 

 

6.1. ELEMENTY FILTRUJĄCE ŚWIATŁO JAKO KLUCZOWY ELEMENT INSTRUMENTÓW  HSI 

Instrumenty hiperspektralne, znane w literaturze również jako spektrometry obrazujące, 

projektowane są w taki sposób, aby w jak najdokładniejszy sposób odwzorowywać informacje 

spektralne nieodłącznie powiązane z promieniowaniem elektromagnetycznym w określonym 

dla danej próbki (piksela) zakresie długości fali. Z oczywistych względów nie jest to możliwe 

do zrealizowania w sposób doskonały [3]. Różne elementy filtrujące spektrum światła, będą 

miały różny poziom dokładności filtracji, co będzie znacząco wpływać na jakość i możliwy 

docelowy zakres zastosowań dla instrumentu HSI. Podczas doboru lub projektowania 

spektrometru obrazującego, kluczowa jest dobra znajomość charakterystyki współczynnika 

przepuszczalności światła (transmitancji optycznej) elementu filtrującego, będącego 

kluczowym, definiującym instrument komponentem [79]. 

Instrumenty HSI wykorzystujące metodę skanowania spektralnego (czyli np. koło filtrowe 

przed obiektywem) cechują się względnie niskim poziomem złożoności określania 

charakterystyki spektralnej lub przestrzenno-spektralnej [80]. W takim podejściu, element 

filtrujący nie wpływa lub wpływa w pomijalnym stopniu na reprezentację przestrzenną 

elementu obrazującego. Ze strony filtracji spektralnej, charakterystyka transmisyjna  

lub odbiciowa jest możliwa do zbadania stanowiskiem składającym się z oświetlacza 

szerokopasmowego (np. żarówka wolframowa) i ze spektrometru.  

Zdecydowana większość obecnie stosowanych instrumentów hiperspektralnych, jako 

komponent filtrujący wykorzystuje element refrakcyjny (dyspersyjny) czyli pryzmat lub 

element dyfrakcyjny czyli siatkę dyfrakcyjną [81, 82]. Na rynku znaleźć można także coraz 

częściej instrumenty HSI oparte na komponentach interferencyjnych (filtry Fabry-Perot). 

Uzyskanie charakterystyki spektralnej lub spektralno-przestrzennej wymienionych 

komponentów stanowi wyzwanie w stosunku do podobnego badania dla elementu 

filtrującego pojedyncze pasmo światła. Stosując elementy od sprawdzonych dostawców, 

którzy udostępniają przed zakupem noty katalogowe, można jednakże z dużym 
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prawdopodobieństwem stwierdzić jak kształtuje się charakterystyka filtra. W wielu jednak 

przypadkach, zalecane jest sprawdzenie próbki komponentu, zważywszy na możliwe pomyłki 

w procesie kontroli jakości lub, jeśli jesteśmy również odpowiedzialni za wykonanie elementu 

(np. pryzmatu  lub siatki dyfrakcyjnej), aby sprawdzić dokładność procesu technologicznego. 

 

6.2. PRZYJĘTA METODOLOGIA BADAWCZA  

Istnieje wiele metod weryfikacji założeń dotyczących podstawowych elementów 

filtrujących światło w instrumentach HSI (rys. 6.1). Zgodnie z literaturą, kluczowym 

parametrem jakościowym jest charakterystyka odpowiedzi instrumentu 

spektrofotometrycznego – SRF (Spectral Response Function) [3]. Funkcja ta określa jak 

kształtuje się odpowiedź instrumentu dla poszczególnych długości fali światła. 

Charakterystyka SRF powinna być określana dla całego instrumentu spektrofotmetrycznego, 

to jest z uwzględnieniem zarówno charakterystyki przestrzenno-spektralnej elementu 

filtrującego, jak i funkcji odpowiedzi spektralnej oraz rozmiaru pikseli detektora obrazującego.  

 

Rys. 6.1. Przykłady elementów rozpraszających światło 

W niniejszej pracy na potrzeby badań elementów filtrujących, zbadane zostały 

charakterystyki przestrzenno-spektralne takich elementów, jak pryzmat, siatka dyfrakcyjna 

(300 i 600 linii/mm), filtry LVF (Linear Variable Filter) oraz filtry FP (Fabry-Perot).  

Charakterystyka przestrzenno-spektralna to funkcja opisująca zdolność do przepuszczania 

(lub odbicia) światła w domenach kąta lub położenia oraz długości fali. Można ją interpretować 

jako funkcję opisującą skuteczność i rozdzielczość filtrowania światła w zależności od długości 

fali i położenia elementu filtrującego względem elementu światłoczułego (np. detektora 

Siatka dyfrakcyjna 300r/mm 

Siatka dyfrakcyjna 600r/mm 

Pryzmat NS-F11 
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CMOS). W takiej interpretacji, stanowi ona bardzo istotną charakterystykę w urządzeniach 

HSI, która pozwala na określenie brzegowych parametrów instrumentu. 

Na potrzeby badań wybranych elementów filtrujących, przestrzenno-spektralna 

charakterystyka transmitancji (zgodnie z rys. 6.2), opisana została funkcją: 

𝑇 = 𝑓(𝐿, 𝜆) ,      (6.1) 

gdzie: 

T – transmitancja badanego elementu filtrującego, czyli zdolność do przenoszenia światła 

względem pomiaru referencyjnego (bez elementu filtrującego). W zależności  

od rodzaju elementu, transmitancja może oznaczać zdolność transmisyjną (np. w pryzmacie) 

lub zdolność odbiciową (np. w odbiciowej siatce dyfrakcyjnej), L – położenie elementu 

filtrującego względem elementu rejestrującego wiązkę filtrowanego światła.  

𝜆  - długość fali. 

 

Rys. 6.2. Ilustracja charakterystyki przestrzenno-spektralnej elementu flitrującego światło.  
Opracowanie własne 

Kluczowym parametrem charakterystyki przestrzenno-spektralnej jest parametr FWHM 

(Full Width at Half Maximum) - szerokość połówkowa [41]. Określa on szerokość okna 

transmisyjnego dla kanału spektralnego, mierzoną w połowie piku transmitancji. 

Maksymalizacja rozdzielczości spektralnej instrumentu oznacza minimalizację wartości 

parametru FWHM. Większa rozdzielczość spektralna elementu filtrującego oznacza bardziej 

dokładną rejestrację sygnatur spektralnych na uzyskiwanym finalnie obrazie HSI.  

 

6.3. OPRACOWANE STANOWISKA BADAWCZE 

Na potrzeby niniejszej rozprawy doktorskiej, zdecydowano się na zbudowanie stanowiska 

pomiarowego o wysokiej odtwarzalności w warunkach podstawowego laboratorium 
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optomechatronicznego. Dzięki temu możliwe jest jego łatwe odtworzenie np. w zakładach, czy 

instytutach stosujących lub rozwijających instrumenty HSI. Stanowisko to, w zależności  

od dokładności i powtarzalności ruchu elementów mechatronicznych, pozwala zarówno  

na weryfikację jakości wykonania elementu filtrującego, jak również na uzyskanie 

charakterystyki spektralno-przestrzennej. Oprócz tego umożliwia badanie filtrów 

refrakcyjnych (pryzmatów), dyfrakcyjnych (transmisyjnych siatek dyfrakcyjnych) oraz filtrów 

interferencyjnych implementowanych bezpośrednio na sensorach CMOS. Stanowi ono cenne 

wyposażenie laboratorium optomechatronicznego i oprócz wykorzystania w parametryzacji 

filtrów optycznych, możliwa jest również z jego pomocą realizacja wielu pomiarów 

transmitancji optycznej obiektów o zmiennej topologii. Może również służyć do oceny 

równomierności transmitancji klasycznych filtrów optycznych, a także do wykrywania 

mikrometrycznych wad na ich powierzchniach. 

Stanowisko opracowane zostało w trzech subtelnie różniących się od siebie wariantach, 

pokazanych na rysunkach 6.3, 6.4 i 6.5. Każda z modyfikacji służy maksymalizacji użyteczności 

dla poszczególnych elementów filtrujących, podlegających badaniu. 

 

 

Rys. 6.3. Schemat poglądowy stanowiska do badania siatek dyfrakcyjnych i pryzmatów 

 

Rys. 6.4. Schemat poglądowy stanowiska do badania filtrów LVF 
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Rys. 6.5. Schemat poglądowy stanowiska do badania filtrów implementowanych bezpośrednio na sensorach 
CMOS 

W wariancie przedstawionym na rys. 6.3 stanowisko umożliwia badanie pryzmatów  

i transmisyjnych siatek dyfrakcyjnych. Badany element spoczywa nieruchomo w uchwycie. 

Przestrzenno-spektralną charakterystykę transmitancji uzyskuje się przez przemieszczanie 

końcówki światłowodu wzdłuż rozszczepionego przez badany element widma światła. Wariant 

przedstawiony na rys. 6.4 stosowany był z kolei do badania charakterystyk transmitancji 

filtrów gradientowych (LVF). W tym wariancie światłowód jest nieruchomy, zaś badany 

element przesuwany jest przed czołem światłowodu. W trzecim wariancie, światło po 

przejściu przez element o znanej charakterystyce spektralnej kierowane jest na powierzchnię 

sensora CMOS z bezpośrednio naniesionymi na jego powierzchnię filtrami typu FP. 

W stanowisku zastosowano szerokopasmowe źródło światła oparte na żarówce 

wolframowej (Thorlabs OSL-2). Oświetlacz przedstawiony jest na rysunku 6.6a,  

a spektrum użytej żarówki wolframowej przedstawione jest na rysunku 6.6b (wersja o 

podwyższonej sprawności w paśmie podczerwonym (Thorlabs OSL2IR) [84]. 

 

 

Rys. 6.6. Widok oświetlacza OSL2 (a) oraz porównanie spektrum żarówki wolframowej w wersji OSL2IR oraz  
w wersji standardowej OSL2 [84] 
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Światło doprowadzane światłowodem do elementu kolimacyjnego następnie trafia 

na przysłonę otworkową (pinhole) o różnej średnicy (badano średnice od 25 m do 200 m). 

Następnym elementem układu jest soczewka skupiająca, pozwalająca na uzyskanie obrazu 

przysłony w płaszczyźnie, w której znajduje się docelowy światłowód spektrometru (średnica 

rdzenia – 10 μm). Badany element dyfrakcyjny znajduje się pomiędzy soczewką skupiającą, a 

światłowodem spektrometru. W zależności od badanego elementu oraz jego kąta projekcji 

rozszczepionego światła, światłowód umieszczany był w kilku pozycjach. W pomiarach 

wykorzystano spektrometr OceanFX-VIS-NIR marki OceanOptics (rys.  6.7). Podstawowe 

parametry tego spektrometru zamieszczono w tabeli 6.1 [85]. 

 

 

Rys. 6.7. Spektrometr OceanFX marki OceanOptics [85] 

Tabela 6.1. Parametry Spektrometru OceanFX-VIS-NIR marki OceanOptics [85] 

Parametr Wartość 

Zakres pomiarowy 350-1000 nm 

Szczelina pomiarowa 25 μm 

Rozdzielczość spektralna 0,3 nm 

Stosunek sygnału do szumu (SNR) 290:1 

 

W tabeli 6.2 zamieszczono opis wpływu parametrów poszczególnych elementów 

zbudowanego stanowiska badawczego na parametry mierzonej charakterystyki spektralno-

przestrzennej. Pomiary na stanowisku realizowane były w laboratorium optycznym bez 

dostępu światła zewnętrznego. W trakcie realizacji doktoratu, pomiary dla każdego  

z elementów wykonano dla kilkudziesięciu pozycji światłowodu spektrometru, w zakresie do 

18 mm z rozdzielczością 250 μm.  
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Tabela 6.2. Wpływ parametrów elementów zbudowanego układu pomiarowego na parametry uzyskiwanych 

charakterystyk przestrzenno-spektralnych 

Element stanowiska Parametr Parametr mierzonej charakterystyki  

Źródło światła Zakres światła emitowanego Zakres pomiaru domeny spektralnej 

Spektrometr 

Zakres światła mierzonego Zakres pomiaru domeny spektralnej 

Rozdzielczość spektralna 
Rozdzielczość pomiaru domeny 

spektralnej 

Światłowód spektrometru 
Średnica rdzenia 

światłowodu spektrometru 
Rozdzielczość pomiaru domeny 

przestrzennej 

Koło otworkowe  Średnica otworu 
Rozdzielczość pomiaru domeny 

przestrzennej 

Translator światłowodu 
spektrometru/badanego 

elementu 

Zakres ruchu 
Zakres pomiaru domeny 

przestrzennej 

Minimalny przesuw 
Rozdzielczość pomiaru domeny 

przestrzennej 

 

Na rysunku 6.8 i 6.9 przedstawiono widok stanowiska do badania charakterystyk 

przestrzenno-spektralnych pryzmatów i siatek dyfrakcyjnych. 

 

 

Rys. 6.8. Stanowisko w wariancie badania transmisyjnych siatek dyfrakcyjnych oraz pryzmatów 

Światłowód źródła światła 

Koło otworkowe Soczewka 
skupiająca 

Element 
badany 

Światłowód 
spektrometru 

Stolik 
translacyjny 
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Rys. 6.9. Ilustracja światła ulegającego dyfrakcji w siatce dyfrakcyjnej. Na ekranie widoczne są prążki zerowego, 
pierwszego i drugiego rzędu  

W ramach badań przeprowadzono również pomiary filtrów LVF w postaci płytek szklanych 

oraz filtrów Fabry-Perot (FP) nanoszonych na sensor CMOS. W tym celu zmodyfikowanu 

stanowisko pomiarowe. W przypadku filtra LVF na podłożu szklanym, zastosowano przesuwny 

uchwyt badanego filtra (w odróżnieniu od przesuwnego światłowodu, jak miało to miejsce w 

przypadku elementów dyspersyjnych i dyfrakcyjnych)  - rys. 6.10.  

 

Rys. 6.10. Zmodyfikowane stanowisko z filtrem LVF w uchwycie przesuwnym 

W przypadku filtra FP nanoszonego na sensor CMOS w miejscu światłowodu 

spektrometru umieszczono kamerę Ximea XiSpec z badanym sensorem hiperspektralnym.  

W torze pomiarowym umieszczono także poszczególne elementy rozpraszające spektralnie 

światło, aby sprawdzić ich efekt polowy na sensorze kamery (rys. 6.11).  

 

Badany 
filtr LVF 

Światłowód 
pomiarowy 

Kolimator źródła 
światła 
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Rys. 6.11. Zmodyfikowane stanowisko z kamerą Ximea XiSpec i uwidocznionym na białej kartce obrazem 
spektralnym 

 

6.4. WYNIKI BADANIA ELEMENTÓW DYSPERSYJNYCH 

Elementy dyspersyjne, stosowane były jako pierwsze elementy filtrujące pasmo  

w układach obrazujących. Zjawisko dyspersji przez elementy szklane znane jest  

od starożytności, jednak w sposób naukowy badane było dopiero w średniowieczu przez 

takich uczonych jak Robert Grosseteste, Witelon czy też Teodoryk  z Freiborgu.  Wyjaśnienie 

zjawiska powstawania tęczy w elementach optycznych opisał również Kartezjusz, a dopiero 

Isaac Newton udowodnił, że promienie, które uległy dyspersji nie ulegają jej w dalszym 

stopniu. Dowiódł także, że różnią się one współczynnikiem załamania, co jest bezpośrednią 

przyczyną zachodzenia zjawiska dyspersji [86]. W nauce i technice, szklany element 

dyspersyjny nazywany jest pryzmatem i w celu maksymalizacji efektu rozszczepienia światła, 

ma on w swej najprostszej postaci formę geometryczną o płaskich ścianach i przekroju 

trójkątnym. Pryzmaty dyspersyjne wykonuje się najczęściej z amorficznego szkła  lub szkła 

kwarcowego o strukturze krystalicznej. W grupie elementów dyspersyjnych, oprócz 

pryzmatów trójkątnych, składających się z pojedynczego elementu, wyróżniamy również 

pryzmaty Abbego (dwa elementy z różnych rodzajów materiałów optycznych) oraz pryzmaty 

Amiciego  (kilka elementów z różnych materiałów optycznych) [87, 88]. 

Zasada działania pryzmatu polega na załamaniu promieni światła podczas przechodzenia 

z jednego ośrodka w drugi (np. z powietrza do szkła). Wynika to z różnicy prędkości fotonów 

w różnych ośrodkach (rys. 6.12). Załamanie się promieni świetlnych opisane jest prawem 

Snelliusa [89]: 

Kolimator źródła 
światła 

Pryzmat 
Kamera z 
filtrem FP 
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𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2 ,     (6.2) 

gdzie: 

𝑛1 i 𝑛2 – współczynniki załamania światła ośrodka 1 i 2, 

𝜃1 – kąt padania (między promieniem świetlnym a normalną do powierzchni w punkcie 

wejścia), 

𝜃2 – kąt załamania (między promieniem świetlnym a normalną do powierzchni w punkcie 

wyjścia). 

Kluczowa dla działania pryzmatu jest właściwość światła, które w zależności od długości 

fali, wykazuje różną zmianę prędkości w zależności od ośrodka w którym się przemieszcza, 

a co za tym idzie, także zmianę kąta załamania światła na granicy pryzmat-otoczenie. W efekcie 

światło białe, które tak naprawdę jest mieszaniną fotonów o różnej długości fali ulega 

rozszczepieniu wskutek przejścia między ośrodkiem otoczenia pryzmatu i materiału pryzmatu. 

Zakres rozszczepienia światła można zmieniać, dobierając kąt ścian pryzmatu lub dobierając 

materiał optyczny i ośrodek w jakim się on znajduje. Pryzmat jako element stosowany w 

kamerach hiperspektralnych to komponent o względnie dużych rozmiarach, wymagający 

rozbudowanej konstrukcji optomechanicznej zdolnej do utrzymania go w odpowiednim 

miejscu. Pryzmat dyspersyjny jest wciąż stosowany w wielu instrumentach obrazujących, 

szczególnie w instrumentach naukowych [90]. 

  

Rys. 6.12. Schemat działania pryzmatu 

Na potrzeby niniejszej rozprawy badania elementów refrakcyjnych wykonano  

z wykorzystaniem pryzmatu NS-F11 (EdmundOptics). Wyznaczone charakterystyki 

przestrzenno-spektralne tego pryzmatu przedstawiono na rysunkach 6.13. W celu lepszej 

wizualizacji, na rys. 6.14 i 6.15 przedstawiono rzut aksonometryczny i mapę 2D otrzymanych 

wyników pomiarów. 



97 

 
Rys. 6.13. Charakterystyka przestrzenno-spektralna pryzmatu. Widma wyznaczono dla różnego położenia czoła 

światłowodu wzdłuż rozszczepionego przez pryzmat spektrum światła białego 

 

 

Rys. 6.14. Charakterystyka przestrzenno-spektralna pryzmatu – rzut aksonometryczny 

 

Rys. 6.15. Charakterystyka przestrzenno-spektralna pryzmatu – mapa 2D 

Wykonane badania pokazują, że pryzmat, jako element dyspersyjny, charakteryzuje się 

stosunkowo dużą szerokością kanałów spektralnych (FWHM) z medianą na poziomie 55,7 nm 
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(rys. 6.16), a przepuszczalność światła wynosi nawet 83% wejściowej mocy optycznej (rys. 

6.13).  

 

Rys. 6.16. Szerokość połówkowa (FWHM) piku maksymalnej transmitancji w zależności od położenia 

światłowodu względem badanego pryzmatu 

 

Na rys. 6.16. zauważyć można poszerzanie się wyznaczonych widm, wraz  

z przemieszczaniem światłowodu w kierunku obszaru z zakresu podczerwieni. Widoczna jest 

również nieliniowa zależność między położeniem maksimum pików transmitancji  

a położeniem światłowodu wzgl. pryzmatu, co pokazano na rys. 6.17.  

 

Rys. 6.17. Położenie maksimum pików transmitancji w zależności od położenia pryzmatu 

 

6.4. WYNIKI BADANIA ELEMENTÓW DYFRAKCYJNYCH 

Elementy dyfrakcyjne w postaci siatki dyfrakcyjnej są powszechnie stosowanym 

elementem w instrumentach spektrofotometrycznych. Wykorzystują one zjawisko dyfrakcji i 

interferencji światła, co umożliwia rozdzielenie wiązki światła na promienie o różnej długości 

fali. W nauce i technice stosowane są głównie dwa rodzaje siatek dyfrakcyjnych, tj. siatki 
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transmisyjne oraz siatki odbiciowe. Te pierwsze mają postać przeźroczystego elementu, 

najczęściej kwarcowego, na który naniesiony jest wzór szczelin o jednakowej szerokości.  

W przypadku siatek odbiciowych, element ma postać lustrzaną, również ze wzorem 

jednakowych rozłożonych rowków. Światło padające na siatkę dyfrakcyjną natrafia  

na macierz rowków lub szczelin, które stanowią źródło fal wtórnych, zgodnie z zasadą 

Huygensa, mówiącą, że wszelkie punkty czoła fali można uważać za źródła nowych fal kulistych 

[91]. W efekcie, fale te rozchodzą się i nakładają na siebie. Różne długości fali są uginane  

na siatce dyfrakcyjnej pod innymi kątami, co prowadzi do ich separacji w przestrzeni (rys. 3.7). 

Następnie fale światła interferują ze sobą, co prowadzi do powstawania maksimów 

(wzmocnień) i minimów (osłabień) intensywności światła w zależności od kąta padania  

i długości fali. Kąt dyfrakcji opisuje się wzorem [92]: 

𝑑 ∙ 𝑠𝑖𝑛𝜃 = 𝑚 ∙ 𝜆 ,     (6.3) 

gdzie: 

d - okres siatki, czyli odległość między rowkami lub szczelinami, 

𝜃  –  kąt, pod którym obserwuje się maksimum danej długości fali, 

m – rząd dyfrakcji (1, 2,  3 itd.), 

𝜆 – długość fali światła. 

Siatki dyfrakcyjne odznaczają się tym, że projektant instrumentu ma niewielki stopień 

możliwości zmiany kąta projekcji frontu falowego, co ma wpływ na kształt i budowę 

urządzenia spektrofotometrycznego. Zaletą jednak jest niewielki rozmiar i umiarkowane 

wymagania optomechaniczne. 

W ramach realizacji rozprawy doktorskiej wykonano pomiary dla dwóch siatek: 

• siatka nr 1: transmisyjna, 300 rowków na milimetr, szkło B270 (EdmundOptics); 

• siatka nr 2: transmisyjna, 600 rowków na milimetr, szkło B270 (EdmundOptics). 

Wyniki pomiarów charakterystyki przestrzenno-spektralnej tych siatek  przedstawiono na rys. 

6.18 – 6.27. 
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Rys. 6.18. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm).  Widma wyznaczono dla 
różnego położenia czoła światłowodu wzdłuż rozszczepionego przez siatkę spektrum światła białego 

 

Rys. 6.19. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm) 
 – widok przestrzenny 

 

Rys. 6.20. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm) – mapa 2D 
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Na podstawie wykonanych badań  można stwierdzić umiarkowaną szerokość kanałów 

spektralnych (FWHM) z medianą na poziomie 13,5 nm (rys.  6.21). Widoczny jest regularny 

kształt odpowiedzi spektralnej (rys. 6.18, 6.19 i 6.20) z liniową zależnością pomiędzy 

położeniem maksimum pików transmitancji a położeniem siatki dyfrakcyjnej (rys. 6.22). Siatka 

odznacza się umiarkowaną szerokością zakresu spektralnego, który szybko zwęża się w paśmie 

bliskiej podczerwieni. Zauważalna jest także odpowiedź harmoniczna, pochodząca z innego 

rzędu odpowiedzi, w paśmie ultrafioletowym. Siatka odznacza się maksymalną transmitancją  

na poziomie do 80% na krawędzi pasma widzialnego w zakresie długości fali od około 700 nm 

do około 760 nm.  

Rys. 6.21. Szerokość połówkowa (FWHM) pików transmitancji w zależności od położenia światłowodu 

względem siatki dyfrakcyjnej nr 1 (300 r/mm) 

 

 

Rys. 6.22. Położenie maksimum pików transmitancji w zależności od położenia światłowodu względem siatki 
dyfrakcyjnej nr 1 (300 r/mm) 
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W porównaniu do siatki o gęstości 300 rowków/mm, kolejna zbadana siatka nr 2  

o gęstości 600 rowków/mm, charakteryzowała się mniejszą szerokością kanałów spektralnych. 

Widoczny jest regularny kształt odpowiedzi spektralnej (rys. 6.23, 6.24 i 6.25) z liniową 

zależnością między położeniem maksimum pików transmitancji a położeniem światłowodu 

zbierającego względem badanej siatki (rys. 6.26).  

 

Rys. 6.23. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 2 (600 r/mm).  

 

Rys. 6.24. Charakterystyka przestrzenno-spektralna siatki dyfr. 600 rowków/mm – widok przestrzenny 

 

Położenie światłowodu wzgl. siatki dyfr. 
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Rys. 6.25. Odpowiedź przestrzenno-spektralna siatki dyfr. 600 rowków/mm 

 

Rys. 6.26. . Położenie maksimum pików transmitancji w zależności od położenia światłowodu względem siatki 

dyfrakcyjnej nr 2 (600 r/mm) 

Na rysunku 6.27 przedstawiono także charakterystykę szerokości połówkowej (FWHM) 

pików transmitancji w funkcji położenia światłowodu zbierającego. FWHM zmieniała się od 

około 6 nm do 10 nm z medianą poziomie 8,6 nm.  

 

Rys. 6.27. Szerokość połówkowa (FWHM) pików transmitancji w zależności od położenia światłowodu 

względem siatki dyfrakcyjnej nr 2 (600 r/mm) 

T [%] 
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Siatka nr 2 odznaczała się także węższym zakresem spektralnym pracy w porównaniu do siatki 

o mniejszej gęstości rowków. Zauważalna jest także mniejsza transmitancja na poziomie do 

50% w zakresie od około 700 nm do 760 nm (rys. 6.23). Widoczna jest także odpowiedź 

harmoniczna, pochodząca z kolejnego rzędu dyfrakcji (prawdopodobnie dwie harmoniczne -  

w paśmie ultrafioletowym oraz niebieskim).  

6.6. WYNIKI BADANIA ELEMENTÓW INTERFERENCYJNYCH 

Optyczne filtry interferencyjne działają na zasadzie interferencji światła, a dokładniej na 

wykorzystaniu zjawiska interferencji konstruktywnej (wzmacniającej) lub destruktywnej 

(wygaszającej) w zależności od długości fali światła przechodzącego przez filtr. Filtry 

interferencyjne dają wiele korzyści w zastosowaniu. Jedną z najważniejszych cech jest to, że 

połączenie procesu projektowania i technologii w obszarze nanoszenia cienkich warstw, 

pozwala na swobodny dobór filtrowanej długości fali. W związku z tym, możliwe jest 

naniesienie takich filtrów również bezpośrednio na sensor CMOS, a także wykonanie na 

podłożu szklanym filtra gradientowego - LVF (Linear Variable Filter) oraz filtra Fabry-Perot.  

W przypadku filtrów LVF na szkle, buduje się je jako wielowarstwowe struktury, w których 

warstwy materiałów, najczęściej o małym (np. 1,4) i dużym (np. 2,3) współczynniku załamania 

światła, układane są naprzemiennie. Warunkiem zaistnienia interferencji konstruktywnej jest 

aby droga optyczna (iloczyn grubości warstwy i współczynnika załamania światła) była 

wielokrotnością połowy długości fali światła, która ma być przepuszczana przez filtr. 

Zmieniając gradientowo grubości poszczególnych warstw wzdłuż podłoża szklanego, można 

uzyskać zmianę długości przepuszczanej fali. 

Jeśli chodzi o filtry Fabry-Perot, to filtry te również budowane są jako struktury 

wielowarstwowe. W konstrukcji tych filtrów dodatkowo występuje wnęka optyczna o kształcie 

klina, której grubość  zmniejsza się liniowo od jednej krawędzi filtra do drugiej (rys. 6.28). 
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Rys. 6.28. Schemat ilustrujący budowę filtra Fabry-Perot oraz przykład charakterystyki transmitancji takiego 
filtra [93] 

W ramach realizacji rozprawy doktorskiej wykonano badania filtra LVF dostarczonego 

przez Institute of Thin Film Sensors and Imaging, University of the West Scotland. Wyniki 

pomiarów przedstawiono na rysunkach 6.29 − 6.33.  

 
Rys. 6.29. Charakterystyka przestrzenno-spektralna filtra LVF. Widma wyznaczono przemieszczając liniowo filtr 

względem światłowodu zbierającego z krokiem 250 m 

 

Położenie światłowodu wzgl. siatki dyfr. 
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Rys. 6.30. Charakterystyka przestrzenno-spektralna filtra LVF - widok przestrzenny 

 

 
Rys. 6.31. Charakterystyka przestrzenno-spektralna filtra LVF – mapa 2D 

Dla zbadanego filtra LVF kształt pików transmisyjnych odznacza się wysoką regularnością 

i względnie równomiernym poziomem transmitancji, która w szczycie osiąga 80-90% (rys. 

6.29). Zauważyć można także stłumione, lecz wyraźne odpowiedzi harmoniczne w paśmie 

ultrafioletowym i niebieskim, a także bardziej intensywne w zakresie bliskiej podczerwieni. 

Filtr ten, podobnie jak opisane wcześniej siatki dyfrakcyjne, również charakteryzował się 

liniową zależnością pomiędzy przesunięciem filtra względem światłowodu rejestrującego a 

położeniem maksimum pików transmitancji (rys. 6.32). Kanały spektralne są bardzo wąskie z 

medianą szerokości FWHM na poziomie 4,2 nm (rys. 6.33) z tendencją liniowego wzrostu wraz 

ze wzrostem długości fali.  

T [%] 

T [%] 
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Rys. 6.32. Położenie maksimum pików transmitancji w zależności od położenia filtra LVF względem 
światłowodu zbierającego 

 

Rys. 6.33. Szerokość połówkowa (FWHM) pików transmitancji w zależności od położenia filtra LVF względem 
światłowodu zbierającego 

W przypadku kamery Ximea XiSpec, elementem światłoczułym jest sensor CMOS marki 

IMEC, na którego powierzchni naniesiona została matryca miniaturowych filtrów Fabry-Perot.  

Matryca ta ma postać pasków dzięki czemu kamera pozwala na obrazowanie kilkuset pasm 

światła na różnych rzędach pikseli matrycy (rys. 6.34).  
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Rys. 6.34. Filtr Fabry-Perot w realizacji liniowej na sensorze kamery Ximea  [94] 

Wykonane w ramach rozprawy doktorskiej pomiary z wykorzystaniem kamery Ximea 

XiSpec (rys. 6.35, 6.36 i 6.37) pozwoliły zauważyć dwie istotne cechy filtrów FP nanoszonych 

na sensor. Przede wszystkim, kamera w bardzo precyzyjny sposób filtruje pasma, ponieważ 

stosunek sygnału na pikselach oświetlonych długością fali rezonansu danego filtru FP do 

sygnału na pikselach sąsiednich jest wysoki. Na obrazach nie jest łatwo dostrzec poświatę 

wokół obszarów przepuszczających pasmo właściwe dla danego filtra FP co oznacza bardzo 

dobre właściwości filtracyjne maski FP na sensorze. Ponadto sprawność kwantowa filtrów FP 

jest wysoka, pozwalająca na akwizycję nasyconych obrazów przy czasach ekspozycji 

kilkukrotnie niższych od wartości koniecznych w przypadku rejestracji za pomocą 

spektrometru (w tych samych warunkach).  

 

Rys. 6.35. Obraz z kamery z sensorem z filtrami FP – projekcja pryzmatu 
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Rys. 6.36. Obraz z kamery z sensorem z filtrami FP – projekcja siatki dyfrakcyjnej nr 1 (300 r/mm) 

 

 

Rys. 6.37. Obraz z kamery z sensorem z filtrami FP – projekcja siatki dyfrakcyjnej nr 2 (600 r/mm) 

 

Kolejny wniosek, jaki można wyciągnąć z przedstawionych obrazów to potwierdzenie 

charakterystyk rozdzielczości spektralnej filtrów dyfrakcyjnych i pryzmatu. Szerokość 

rzutowanej plamki na sensorze, która była przy akwizycji każdego zdjęcia tego samego 

rozmiaru wykazuje znacznie gorszą rozdzielczość spektralną pryzmatu i siatki nr 1 (300 r/mm)  

niż siatki nr 2 (600 r/mm). Ponadto zauważyć można odwrotne przestrzennie działanie 

pryzmatu (światło czerwone jest mniej odchylone od osi padania światła białego, niż ma to 

miejsce w przypadku siatek dyfrakcyjnych). Dlatego też na obrazie z kamery Ximea XiSpec, 

pryzmat rzutuje plamkę pochyloną w kierunku odwrotnym. 

 

6.7. PORÓWNANIE WYNIKÓW BADAŃ, WNIOSKI ORAZ OPTYMALNE ZASTOSOWANIE 

POSZCZEGÓLNYCH ELEMENTÓW FILTRUJĄCYCH 

Przedstawione w rozdziale 6 pomiary pozwalają na wyciągnięcie podstawowego wniosku, 

który określa bezpośredni związek pomiędzy zagęszczeniem rowków w siatce dyfrakcyjnej  

a rozdzielczością spektralną projektowanego obrazu. Siatka dyfrakcyjna o zagęszczeniu 600 

rowków na milimetr pozwalała na uzyskanie znacznie węższych okien spektralnych niż siatka 
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o zagęszczeniu 300 rowków na milimetr. Ponadto kształt krzywych uzyskiwanej na gęściej 

rowkowanej siatce jest znacznie bardziej zbliżony do krzywej Gaussa. Warto jednak zwrócić 

uwagę na większą sprawność kwantową siatki o rowkowaniu 300 rowków/mm w porównaniu 

do siatki 600 rowków/mm. Wnioski te zbieżne są z kartami katalogowymi tych produktów 

[95,96]. 

Pomiary pryzmatu pokazały również jego obniżoną implementowalność w kamerach 

hiperspektralnych. Krzywe spektralne były znacznie bardziej poszerzone, oraz ich kształt nie 

przypominał krzywych Gaussa. Okna spektralne pryzmatu są znacznie szersze niż ma to 

miejsce w przypadku siatek dyfrakcyjnych. Dla czytelniejszego porównania szerokości i 

kształtu krzywych, wybrane wyniki pomiarów siatek, filtra LVF oraz pryzmatu zestawiono na 

rys. 6.38.  

 

Rys. 6.38.  Porównanie wybranych serii pomiarowych transmitancji różnych elementów filtrujących światło 

Z kolei w tabeli 6.3 przedstawiono zestawienie wyznaczonej mediany FWHM dla 

badanych elementów oraz takie parametry statystyczne, jak odchylenie standardowe  

i dywergencja. 

Tabela 6.3. Zestawienie parametrów związanych z szerokością okna transmisyjnego zmierzonego dla badanych 
elementów filtrujących 

Element filtrujący Mediana FWHM [nm] Odchylenie stand. [nm]  Dywergencja [nm] 

Pryzmat 55,69 43,62 130,55 

Siatka dyfr. 300 r/mm 13,54 10,78 8,18 

Siatka dyfr. 600 r/mm 8,59 8,43 5,86 

LVF 4,24 2,36 10,85 

 

Jednak zdecydowanie najlepszą sprawnością radiometryczną oraz najmniejszą 

szerokością kanału spektralnego wykazał się filtr LVF na podłożu szklanym. Czyni to filtry LVF 
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zdecydowanie najbardziej dokładnymi elementami do budowy instrumentów 

spektrofotometrycznych ze wszystkich zbadanych komponentów. Ich wadą jest stosunkowo 

wąski zakres spektralny, jednakże w wielu aplikacjach może być to zaletą. Zrozumiałe staje się 

zatem coraz częstsze stosowanie filtrów interferencyjnych (stanowiących fundament filtrów 

LVF) w kamerach hiperspektralnych. 

Optymalne zastosowanie poszczególnych elementów filtrujących zależy w kluczowej 

mierze od aplikacji w jakiej pracować ma instrument HSI. W przypadku aplikacji mobilnych 

realizowanych na takich platformach, jak UAV (Unmanned Aerial Vehicle) lub instrumentach 

satelitarnych,  zdecydowanie warte rozważenia są interferencyjne elementy filtrujące z uwagi 

na swoją kompaktową formę. Platformy mobilne, jeśli posiadają odpowiednią przestrzeń 

ładunkową dla instrumentu HSI, mogą również pomieścić spektrofotometry oparte na 

elementach dyfrakcyjnych. Do zastosowań przemysłowych  

i laboratoryjnych, optymalne zastosowanie znajdą elementy dyfrakcyjne oraz dyspersyjne  

z uwagi na swój wysoki poziom transmitancji. W zależności od wymaganej rozdzielczości 

spektralnej, zastosować można także w niektórych przypadkach elementy interferencyjne  

o konstrukcji filtrów LVF. 

Niewątpliwie, jedynym elementem filtrującym, jaki można zastosować w ręcznie 

operowanych kamerach hiperspektralnych, są filtry interferencyjne o konstrukcji mozaikowej, 

nanoszone na sensor CMOS. Elementy optyczne, których wyniki badań opisano w niniejszym 

rozdziale wykorzystano do budowy stanowisk przemysłowych do pozyskiwania danych 

hiperspektralnych, analizowanych w dalszej części niniejszej rozprawy (rozdziały 7-9).  
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7. BADANIA METOD PRZETWARZANIA i ANALIZY DANYCH HSI 

Niniejszy rozdział opisuje podejście, metodologię, przebieg oraz wyniki badań metod 

przetwarzania i analizy danych hiperspektralnych. Zestawiono w nim również informacje  

na temat opracowanych algorytmów testowych, wykorzystanych zestawów danych  

do eksperymentów oraz opis stanowisk badawczych opracowanych w ramach niniejszej pracy 

doktorskiej. 

 

7.1. DEFINICJA PROBLEMU BADAWCZEGO 

Kluczowym elementem wartości wchodzącym w skład współczesnych systemów opartych 

na danych optycznych jest część dotycząca przetwarzania i analizy danych. Jest to szczególnie 

istotny element systemów opartych na danych hiperspektralnych i multispektralnych, 

ponieważ surowych danych tego typu nie da się w całości objąć ludzkimi zmysłami. Bez 

elementów przetwarzania i akwizycji nie jest możliwe pełne zrozumienie wartości 

pozyskanych w procesie akwizycji danych hiper i multispektralnych. Dlatego też, podczas 

syntezy układów przetwarzania i analizy, kluczowe jest dokładne zrozumienie dwóch 

fundamentalnych cech tego rodzaju systemów, tj. wydajności oraz skuteczności 

poszczególnych ogniw łańcucha przetwarzania danych. Ponieważ oczekiwana jest zawsze 

maksymalizacja tych dwóch parametrów, wraz ze wzrostem złożoności danych wsadowych, 

problem jest coraz bardziej skomplikowany. Z tego powodu, zdecydowano się opracować 

odpowiednią systematykę łańcucha przetwarzania danych oraz zbadać wydajności  

i skuteczności ogniw łańcucha odpowiedzialnych za przetwarzanie i analizę [97]. 

Zarówno wydajność, jak i skuteczność ogniw łańcucha danych zależą od kilku czynników, 

które można sklasyfikować w czterech obszarach: 

a) Dane wsadowe: 

• złożoność (rozdzielczość przestrzenna, rozdzielczość spektralna), 

• jakość (poziom szumu, martwych pikseli i kanałów). 

b) Infrastruktura obliczeniowa: 

• rodzaj (np. serwer, komputer PC, mikrokomputer), 

• klasa (poziom zaawansowania i wydajności obliczeniowej). 

c) Oprogramowanie: 

• architektura, 

• rodzaj zastosowanych algorytmów, 

• rodzaj i złożoność zastosowanych modeli AI. 
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d) Cel przetwarzania lub analizy: 

• jak złożony problem należy rozwiązać, 

• jaki rodzaj danych należy wytworzyć (raport analityczny, współrzędne anomalii 

lub przetworzony plik rastrowy - wsadowy). 

Aktualny rozwój instrumentów HSI jak i coraz wyższe wymagania stawiane produktom 

przetwarzania i analizy takich danych powodują, że wydajność przetwarzania jest ciągłym 

wyzwaniem. Wyścig w kierunku coraz bardziej wydajnej infrastruktury obliczeniowej 

przyspiesza, jednak w połączeniu z coraz wyższym poziomem algorytmiki i rozwiązań sztucznej 

inteligencji, można ulec wrażeniu, że wydajność i skuteczność metod przetwarzania i analizy 

danych HSI jest stała. Jest to oczywiście błędne wrażenie, dlatego też narzędzia i badania 

pozwalające na weryfikację tych parametrów odznaczają się wysoką wartością poznawczą.  

Na potrzeby niniejszej rozprawy zbadano metody, algorytmy i modele najczęściej stosowane 

i istotne ze względu na opisaną w rozdziale 8 niniejszej rozprawy doktorskiej, nową metodykę 

syntezy układów hiper i multispektralnych. 

 

7.2. DANE WYKORZYSTANE W BADANIACH 

W eksperymentach wykorzystano dane zarówno pochodzące z zewnętrznych baz 

skanów hiperspektralnych (zestawy 1-4 wg. tabeli 7.1), jak również pozyskane  

na stanowiskach akwizycji hiperspektralnej opracowanych w ramach prac nad doktoratem 

(zestawy 5-7 wg Tabeli 7.1). Dane dobrano pod kątem jak największego zróżnicowania  

i pokrycia wszystkich kluczowych dziedzin rozpatrywanych w rozprawie doktorskiej. Są to 

zarówno zestawy danych pochodzące z instrumentów teledetekcyjnych (obrazowania lotnicze 

i satelitarne), wykorzystywanych w rolnictwie, górnictwie i leśnictwie, jak również dane 

pozyskane w laboratorium, które reprezentują aplikacje przemysłowe i górnicze. 

Przedstawione zestawy danych wybrano w taki sposób, aby miały zarówno różne 

rozmiary przestrzenne jak i spektralne, aby stanowiły uniwersalny pakiet do eksperymentów. 

Choć w większości przypadków nie są one wizualnie spektakularne z powodu małej liczby  

pikseli to pod kątem spektralnym odznaczają się wysoką rozdzielczością, która pozwala  

na identyfikację sygnatur spektralnych. W szczególności, zestawy danych pozyskane  

na przygotowanych w ramach doktoratu stanowiskach, w niektórych przypadkach mają nawet 

dziesięciokrotnie większą liczbę kanałów spektralnych niż rynkowe instrumenty HSI. Z kolei 

wykorzystanie w eksperymentach zestawów pochodzących z publicznych baz danych, pozwala 

na porównanie wyników eksperymentów z rezultatami badań własnych.  
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Tabela 7.1. Zestawy danych hiperspektralnych 

Nr 
zest
awu 

Nazwa 
zbioru 

Instrum
ent 

Liczba 
kanałów 
(głębia 
bitowa) 

Liczba 
pikseli  

Obraz (1 kanał) Prawda podstawowa Liczba 
klas 
prawdy 
podst. 

1 Indian 
Pines 
[101] 

AVIRIS 200  
(16 
bitów) 

145 x 
145 

  

16 

2 Salinas 
[101] 

AVIRIS 204 
(16 
bitów) 

512 x 
217 

  

16 

3 Salinas-A 
[101] 

AVIRIS 204 
(16 
bitów) 

86 x 
83 

  

6 

4 Pavia 
Centre 
[101]  

ROSIS 102 
(16 
bitów) 

1096 
x 715 

  

9 

5 Scanway: 
Platki-01 
[102] 

HSS-
400 

448 
(16 
bitów) 

320 x 
1024 

  

8 

6 Scanway: 
Skaly-04 
[102] 

HSS-
400 

448 
(16 
bitów) 

995 x 
1024 

  

8 

7 Scanway: 
Platki-70 
[102] 

HSS-
1020 

2036 
(16 
bitów) 

140 x 
112 

  

11 

 

Instrumenty lotnicze i satelitarne AVIRIS (Airborne Visible/InfraRed Imaging 

Spectrometer) i ROSIS (Reflective Optics System Imaging Spectrometer) należą  

do najbardziej dokładnych i odznaczających się najwyższą rozdzielczością instrumentów 

hiperspektralnych na świecie. Oba instrumenty znajdują szerokie zastosowanie w teledetekcji, 

analizie środowiskowej, mapowaniu powierzchni Ziemi, a także w mapowaniu zmian w 

ekosystemach. W tabeli 7.2 zestawiono kluczowe parametry obu instrumentów [103] [104]. 
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Tabela 7.2 Parametry instrumentów AVIRIS i ROSIS [103, 104] 

Instrument Operator Zakres spektralny 
[nm] 

Liczba pasm Rozdzielczość 
spektralna [nm] 

Platforma 

AVIRIS [5] NASA/JPL 400-2500 224 10 Samoloty (ER-2, Twin Otter) 

ROSIS [6] ESA 430-850 115 4 Samoloty (DO-228) 

 

Dane opisane w tabeli 7.1, pochodzące z instrumentów AVIRIS i ROSIS:  

• Zestaw Indian Pines (w tabeli 7.1 oznaczony numerem 1), to jeden z najbardziej 

znanych i szeroko wykorzystywanych zbiorów danych teledetekcyjnych  

i hiperspektralnych. Zebrany przez instrument AVIRIS w czasie kampanii lotniczej  

w 1992 roku wciąż stanowi dane referencyjne dla wielu algorytmów do danych HSI. 

Scena obejmuje obszar około 20 hektarów terenów rolnych i leśnych stanu Indiana 

(USA) w zakresie długości fali od 0,4 do 2,5 mikrometra. Ze względu na okna 

absorpcyjne pary wodnej w atmosferze, niektóre pasma zostały usunięte z zestawu. 

Na obrazie widocznych jest szesnaście klas obiektów, zestawionych w dostępną mapę 

prawdy podstawowej (ground truth). Klasy te obejmują poszczególne rodzaje upraw 

rolnych, trawy, lasy oraz obiekty pochodzenia ludzkiego [101]. 

• Zestawy Salinas i Salinas-A (w tabeli 7.1 oznaczone numerem 2 i 3) to również zestawy 

z instrumentu AVIRIS i również często wykorzystywane w wizji maszynowej dane 

hiperspektralne. Obrazy te zostały pozyskane w 1998 z platformy lotniczej i obejmują 

rejony rolnicze doliny Salinas Valley w Kaliforni (USA). Zestaw Salinas-A jest 

podzbiorem zestawu Salinas. Pod kątem spektralnym zestaw ten jest podobny  

do zbioru Indian Pines. Mapa z klasami prawdy podstawowej obejmuje 16 klas dla 

zbioru większego i 6 klas dla mniejszego. Klasy określają rozłożenie takich roślin 

uprawnych jak sałata, lucerna, warzywa liściaste a także roślin wieloletnich [101]. 

• Zestaw Pavia Centre (w tabeli 7.1 oznaczony numerem 4) to zestaw danych pozyskany 

przez instrument ROSIS w trakcie kampanii lotnej w 2001 roku nad miastem Pavia  

w północnych Włoszech. Charakteryzuje się wysoką rozdzielczością przestrzenną, lecz 

niższą rozdzielczością spektralną, w porównaniu do wcześniej wymienionych 

zestawów. Zestaw ten wyposażony jest w prawdę podstawową z dziewięcioma 

klasami, określającymi takie rodzaje obiektów jak woda, drzewa, dachówki, łąki, gleba, 

asfalt i inne spotykane w mieście materiały [101]. 
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Pozostałe dane pozyskane zostały z wykorzystaniem stanowisk do skanowania 

hiperspektralnego, opracowanych w laboratorium firmy Scanway w ramach prac nad niniejszą 

rozprawą doktorską o roboczych nazwach HSS-1020 i HSS400. Oba stanowiska oparte są na 

metodzie skanowania whisk-broom, czyli punktowym przemiataniu powierzchni  

z wykorzystaniem spektrometru. W stanowisku zastosowano komercyjny spektrometr, 

stanowiący serce obu układów pomiarowych. Spektrometr mierzy jednocześnie 2136 kanałów 

spektralnych w zakresie od 350 nm do 1000 nm z rozdzielczością subnanometryczną. Model 

zastosowanego spektrometru to OceanFX-VIS-NIR marki OceanOptics (opisany w rozdziale 

6.3). Skaner HSS-1020 (rys. 7.1)  składa się ze spektrometru z przyłączem światłowodowym, 

przed którym umieszczony jest układ obiektywowy, zbierający światło z niewielkiego (ok. 0,1 

mm średnicy) obszaru na powierzchni stołu roboczego. Spektrometr, dzięki wewnętrznemu 

układowi składającemu się z siatki dyfrakcyjnej i linijkowego sensora CMOS dokonuje akwizycji 

polowej obiektu z częstotliwością do 4 tysięcy próbek na sekundę. Dane w postaci cyfrowej, 

poprzez interfejs USB pobierane są na komputer klasy PC. 

 

Rys. 7.1. Widok opracowanego skanera typu  HSS-1020 

Skaner HSS-1020 wykorzystuje translacyjny układ kinematyczny XY do przesuwania optyki 

zbierającej światło z poszczególnych punktów pola roboczego. Światło białe, dostarczane jest 

w obszar roboczy poprzez giętki światłowód. Próbka skanowana jest punkt po punkcie,  

a zarządzanie systemem odbywa się z wykorzystaniem komputera PC. Efektem pracy układu 

jest plik w formacie .dat i .hdr, który przechowuje odpowiednio dane pomiarowe oraz 

informację o długościach fali dla każdego kanału spektralnego. Parametry skanera HSS-1020 

przedstawione zostały w tabeli 7.3, z kolei widok skanera podczas akwizycji zestawu danych 

oświetlacz 

światłowodowy głowica 

skanująca 

stolik 

zmotoryzowany 

spektrometr 
badana próbka 
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Płatki-70 (dane firmy Scanway) wykorzystywanych na potrzeby niniejszej pracy przedstawiono 

na rys. 7.2. 

 

Tabela 7.3. Parametry opracowanego skanera HSS-1020 

Parametr Wartość 

Zakres pomiarowy 350  1000 nm 

Rozdzielczość spektralna 0,3 nm 

Rozmiar pola roboczego 200x100 mm2 

Rozdzielczość przestrzenna  0,1x0,1 mm2 

Czas skanowania pełnego pola ok. 27 min 

 

 

Rys. 7.2. Skaner HSS-1020 w trakcie akwizycji zestawu danych o nazwie Platki-70 

 

Oprócz skanera HSS-1020 w trakcie realizacji prac związanych z rozprawą doktorską, 

opracowano również stanowisko o roboczej nazwie HSS-400. W odróżnieniu od swojego 

poprzednika, stanowisko to wyróżniało się większą rozdzielczością przestrzenną oraz 

szybkością działania. Zastosowanie głowicy galwanometrycznej z dwuosiowym układem luster 

o szerokim spektrum odbijania światła, umożliwiło błyskawiczne skanowanie powierzchni 

roboczej. Układ kolimacyjno-skupiający oparty na kolimatorze reflektorowym oraz 

soczewkach skupiających, umożliwiał zbieranie z niewielkiego (ok. 0,05 mm średnicy) obszaru 

na powierzchni docelowego pola roboczego.  
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Rys. 7.3. Skaner HSS-400. Elementy: 1 - spektrometr, 2 - sterownik napędów, 3 - oświetlacz halogenowy  
(od spodu głowicy), 4 - dwuosiowa głowica galwanometyczna, 5 - kolimator i soczewka skupiająca,  

6 -wizualizacja pola roboczego 

Możliwa jest modyfikacja układu skupiającego na taki, który pracuje w trybie 

nieskończonej odległości, co pozwala na wykorzystanie skanera do akwizycji obrazów nie tylko 

w laboratorium, ale także z dużej odległości, np. panoram miasta dla zadań teledetekcyjnych. 

Efektem pracy układu jest plik w formacie .dat i .hdr, który przechowuje odpowiednio dane 

pomiarowe oraz informację o długościach fali dla każdego kanału spektralnego. Wynikowe 

parametry skanera HSS-400 przedstawione zostały w tabeli 7.4. 

Tabela 7.4. Parametry Skanera HSS-400. 

Parametr Wartość 

Zakres pomiarowy 350  1000 nm 

Rozdzielczość spektralna 0,3 nm (0,2 nm w wersji ulepszonej) 

Rozmiar pola roboczego 150 x 150 mm2 

Rozdzielczość przestrzenna  0,05 x 0,05 mm2 

Czas skanowania pełnego pola ok. 24 min 
 

Dane opisane w tabeli 7.1, pochodzące z instrumentów autorskich to:  

• Platki-01 (w tabeli 7.1 oznaczony numerem 5), to zestaw danych o względnie wysokiej 

rozdzielczości przestrzennej i umiarkowanej rozdzielczości spektralnej. Zestaw to 

grupa materiałów spożywczych (płatki owsiane) w otoczeniu ciał obcych z linii 

produkcyjnej (drewno, guma, tworzywo sztuczne, tektura itp.). Zestaw pozyskany w 

ramach kampanii testowej dla branży przemysłowej – spożywczej. Prawda 

podstawowa zawiera 8 klas. 
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• Skaly-04 (w tabeli 7.1 oznaczony numerem 6), to zestaw o parametrach podobnych do 

zestawu Platki-01. Jest to zestaw o największej, spośród wszystkich badanych zbiorów 

liczbie pikseli, przedstawiający zestaw 8 różnych rodzajów skał, opisanych w ramach 

prawdy podstawowej. Zestaw pozyskany dla przedstawiciela branży górniczej. 

Przetwarzany i analizowany zestaw pozbawiony jest tła i elementów opisowych (kartki 

z numerami). 

• Platki-70 (w tabeli 7.1 oznaczony numerem 7), to z kolei zestaw o największej liczbie 

kanałów spektralnych. Zestaw posiada prawdę podstawową opisującą 11 różnych 

rodzajów obiektów, między innymi: cukier, płatki owsiane, płatki kukurydziane, 

tworzywa sztuczne, worek foliowy, tektura, drewno, maseczka higieniczna itp. 

Pozyskany został w celu trenowania modeli obliczeniowych dla detekcji ciał obcych na 

przemysłowej linii do produkcji spożywczej, podobnie jak zestaw Platki-01. 

We wszystkich opisanych zestawach danych, wiedza na temat obiektów, znajdujących się 

w prawdzie podstawowej (np. rodzaj drewna, rodzaj minerału), została pominięta, ponieważ 

nie stanowi ona kluczowego elementu opisanego problemu badawczego.  Kluczowa wiedza, 

wykorzystana w badaniach to obszary graniczne różnych klas i ich liczba. W związku z tym,  

w dalszej części pracy nie jest rozpatrywany i opisywany rodzaj obiektów wykrytych na 

poszczególnych obrazach. 

 

7.3. WYNIKI BADANIA WYDAJNOŚCI I SKUTECZNOŚCI PRZETWARZANIA I ANALIZY DANYCH 

HIPERSPEKTRALNYCH  

W niniejszym rozdziale zamieszczono wyniki badania wydajności i skuteczności 

algorytmów przetwarzania danych z wykorzystaniem zbiorów danych opisanych w tabeli 7.1. 

 

7.3.1. Przyjęta metodologia badawcza 

Z uwagi na złożoność problemu badawczego, a dokładniej możliwość realizacji badań  

z wykorzystaniem wielu różnych podejść, algorytmów i metod, zdecydowano się na podejście 

eksperymentalne, wykorzystujące kilka najczęściej stosowanych rozwiązań obliczeniowych. 

Wyróżniono dwa kluczowe podejścia do klasyfikacji obiektów na obrazach hiperspektralnych, 

które są szczególnie istotne do zbadania w kontekście dalszych rozdziałów niniejszej rozprawy 

doktorskiej:  

• operacje klasyfikacji na oryginalnych, niezredukowanych wymiarowo danych 

wejściowych,  
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• operacje klasyfikacji na danych zredukowanych wymiarowo. 

Przetestowano dwie najczęściej spotykane metody klasyfikacji obiektów, czyli: 

• klasyfikację nienadzorowaną z wykorzystaniem klasteryzacji metodą centroidów  

(k-mean) [98], 

• klasyfikację nienadzorowaną z wykorzystaniem klasteryzacji metodą GMM (Gaussian 

Mixture Model) [98], 

• klasyfikację nadzorowaną z wykorzystaniem klasteryzacji random forest (metoda 

drzew decyzyjnych) [99]. 

Jak już opisano w rozdziale 5, dwie pierwsze metody są metodami nauczania 

maszynowego nienadzorowanego, czyli takiego, które nie jest realizowane ze znaną prawdą 

podstawową (ground truth). Prawdę podstawową wykorzystamy w ich przypadku, wyłącznie 

do porównania znalezionych klas z docelowymi. Powodem wyboru tych metod jest chęć 

przetestowania metod, które szukają wzorców w nieznanych danych oraz możliwość 

uproszczenia weryfikacji skuteczności [98]. 

Trzecia metoda jest metodą nadzorowaną, czyli taką, w której trenowany jest model, 

nauczany na spodziewanej prawdzie podstawowej, która stanowi nieodłączny element tego 

typu technik. Wytrenowany model, można następnie wykorzystywać do szukania 

spodziewanych wzorców w nowych zestawach danych. Metodę tę zastosowano  

dla porównania skuteczności z metodami nienadzorowanymi [99]. 

Eksperymenty, wykorzystujące redukcję wymiarowości, przeprowadzono  

z wykorzystaniem dwóch takich metod jak [100]: 

• metoda głównych składowych - PCA (Principle Component Analysis) 

• metoda liniowej analizy dyskryminacyjnej - LDA (Linear Discriminant Analysis) 

 

7.3.2. Macierz eksperymentów 

Badania polegały na wykonaniu dziewięciu eksperymentów (każdy z pomiarem dwóch 

parametrów kluczowych: wydajności i skuteczności). Macierz eksperymentów przedstawiono 

w tabeli 7.5. W przypadku eksperymentów, w których analizowano wydajność oraz 

skuteczność przetwarzania danych bez redukcji wymiarowej (eksperymenty 1, 4 oraz 7) 

przyjęto schemat postępowania przedstawiony na rys. 7.4.  
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Tabela 7.5. Macierz eksperymentów do badania wydajności i skuteczności przetwarzania  

i analizy na podstawie wybranych w pracy zestawów danych HSI 

Klasyfikacja z wykorzystaniem klastrowania k-means 

Klasyfikacja na danych  
bez redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment 1 Eksperyment 2 Eksperyment 3 

Klasyfikacja z wykorzystaniem klastrowania Gaussian Mixture Model 

Klasyfikacja na danych  
bez redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment 4 Eksperyment 5 Eksperyment 6 

Klasyfikacja z wykorzystaniem klastrowania Random Forest 

Klasyfikacja na danych  
bez redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment 7 Eksperyment 8 Eksperyment 9 

 

 

Rys. 7.4. Schemat eksperymentu opartego na przebiegu klasyfikacji na danych bez redukcji wymiarowej 

 

W przypadku eksperymentów, w których zastosowano redukcję wymiarową 

(eksperymenty 2, 3, 5, 6, 8 oraz 9), przyjęto natomiast schemat postępowania przedstawiony 

na rys. 7.5. 

 

Rys. 7.5. Schemat eksperymentu opartego na przebiegu klasyfikacji na danych z redukcją wymiarową 
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7.3.3. Stanowisko badawcze 

W celu optymalizacji czasu potrzebnego na procesy treningowe, w stanowisku  

do przeprowadzania badań eksperymentalnych zastosowano komponenty wysokiej 

wydajności. CPU to wielordzeniowy procesor o wysokiej częstotliwości zegara Intel rtxCore i7-

13700K (3.4 GHz), który oferuje wysoką wydajność jednowątkową oraz wielowątkową, istotną 

podczas kompilacji kodu oraz wykonywania zadań, które nie mogą być łatwo zrównoleglone. 

Karta graficzna (GPU) jest najważniejszym elementem maszyny do trenowania modeli AI, 

zwłaszcza w zadaniach wymagających intensywnego przetwarzania równoległego.  

Na potrzeby rozprawy doktorskiej zastosowano kartę z dużą ilością rdzeni CUDA i dużą 

pamięcią VRAM, model NVIDIA RTX 4090. Duża ilość pamięci VRAM (16 GB) pozwala  

na trenowanie większych modeli bez ograniczeń pamięciowych. Pamięć RAM jest istotna  

dla jednoczesnego przetwarzania dużych zestawów danych oraz modeli. W szczególności 

zastosowano 64 GB RAM, z opcją rozbudowy do 128 GB, w wersji o wysokiej przepustowości 

i taktowaniu na poziomie 6400 MHz. Z uwagi na wymóg dużej szybkości dostępu do danych 

oraz pojemność, aby pomieścić duże zestawy danych treningowych oraz modele, zastosowano 

dysk SSD NVMe o pojemności 2 TB dla systemu operacyjnego i oprogramowania. Dyski SSD 

NVMe zapewniają szybki dostęp do danych, co skraca czas ładowania danych do pamięci.  

Wybrany zasilacz (PSU) zapewnia wystarczającą moc dla wszystkich komponentów, 

zwłaszcza dla energochłonnych kart graficznych, według obliczeń powinien zapewniać moc  

na poziomie co najmniej 1000 W. Kluczowe dla utrzymania optymalnej wydajności i stabilności 

systemu, szczególnie podczas intensywnych obliczeń jest chłodzenie całej jednostki 

obliczeniowej. Dlatego użyto wysokiej jakości system chłodzenia cieczą dla CPU, a także 

dodatkowe wentylatory w obudowie, aby zapewnić odpowiedni przepływ powietrza. 

Oprogramowanie stanowi system operacyjny Windows 10/11 oraz popularne biblioteki AI i 

ML, takie jak PyTorch, SciKit, NumPy i narzędzia do przetwarzania danych hiperspektralnych - 

HyPy.  

 

7.3.4. Wyniki eksperymentów 

Eksperymenty przeprowadzono zgodnie z macierzą eksperymentów opisaną w tabeli 7.5. 

Łączna liczba doświadczeń składała się z dziewięciu eksperymentów w dwóch odmianach na 

siedmiu zestawach danych, czyli 126 osobnych przebiegów eksperymentalnych. Wszystkie 

zestawy danych, opisane w tabeli 7.1 zostały przetworzone i przeanalizowane algorytmami 

LDA, PCA, K-means, GMM oraz random forest w różnych zestawieniach. Zgodnie z tabelą 7.5, 
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wykonano także eksperymenty bez redukcji wymiarowej. W niektórych przypadkach, czas 

przetwarzania był znacznie wydłużony, szczególnie w przypadkach bez redukcji wymiarowej. 

Z tego powodu w eksperymencie 4 nie udało się uzyskać rezultatów pomiarowych. 

Przykłady przetworzonych i przeanalizowanych zestawów danych, dla różnych kombinacji 

algorytmicznych zaprezentowano na rysunkach 7.6 – 7.12. Na rysunkach (a) zamieszczono 

widok oryginalnego obrazu (1 kanał), (b) przedstawia rezultat klasyfikacji uzyskany w wyniku 

zastosowania wybranego algorytmu, (c) – to widok prawdy podstawowej. Z kolei na rysunkach 

(d) zamieszczono obraz metryki skuteczności (IoU – Intersection Over Union zwany również 

indeksem Jaccarda), która określa jak wiele korespondujących ze sobą zbiorów danych 

przecina się ze sobą. Metrykę tę otrzymuje się poprzez porównanie podobieństwa między 

dwoma zbiorami danych, wyznaczając iloraz mocy części wspólnej zbiorów oraz mocy sumy 

tych zbiorów [105]: 

𝐽(𝐴, 𝐵) =
|A∩B|

|A∪B|
 ,      (7.1) 

gdzie: 

J – współczynnik Jaccarda (IoU), 

A, B – zbiory. 

 

Rys. 7.6. Wyniki badania skuteczności dla eksperymentu 1, przeprowadzonego na zestawie Indian Pines:  
a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa,  

d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 
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Rys. 7.7. Wyniki badania skuteczności dla eksperymentu 3 przeprowadzonego na zestawie Platki-01: 
 a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa,  

d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 

 

 

Rys. 7.8. Wyniki badania skuteczności dla eksperymentu 4, przeprowadzonego na zestawie Salinas A: 
 a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa, 

 d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 
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Rys. 7.9. Wyniki badania skuteczności dla eksperymentu 5, przeprowadzonego na zestawie Pavia Centre:  
a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa, 

 d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 

 

Rys. 7.10. Wyniki badania skuteczności dla eksperymentu 6, przeprowadzonego na zestawie Pavia Centre:  
a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa,  

d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 
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Rys. 7.8. Wyniki badania skuteczności dla eksperymentu 8, przeprowadzonego na zestawie Salinas:  
a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa,  

d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 

 

Rys. 7.11. Wyniki badania skuteczności dla eksperymentu 9, przeprowadzonego na zestawie Skaly_04:  
a) obraz oryginalny (1 kanał), b) rezultat klasyfikacji, c) wykorzystana do porównania prawda podstawowa,  

d) metryka skuteczności IoU (Intersection over Union) określająca jak wiele korespondujących ze sobą zbiorów 
danych przecina się ze sobą 
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Zestawienie wyników badania skuteczności we wszystkich eksperymentach 

przedstawiono w tabelach 7.6, 7.7, 7.8 oraz na wykresach przedstawionych na rysunkach 7.13, 

7.14 i 7.15. Dla lepszej wizualizacji różnic w uzyskanych wartościach IoU w tabelach 

wprowadzono kolory: pomarańczowy dla IoU 0  33,3 %, żółty dla IoU 33,4  66,6 % oraz 

zielony dla IoU 66,7  100 %. 

Tabela 7.6. Zestawienie wyników eksperymentów badania skuteczności w klasyfikacji z wykorzystaniem 
klastrowania k-means 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment – parametr / 
Zestaw 

Eksperyment 1 
Skuteczność IoU [%] 

Eksperyment 2 
 Skuteczność IoU [%] 

Eksperyment 3 
Skuteczność IoU [%] 

01 - Indian Pines 23,96 25,39 71,96 

02 - Pavia Centre 67,92 67,89 89,86 

03 - Salinas 51,03 38,32 74,31 

04 - Salinas-A 61,18 52,64 98,95 

05 - Platki-01 42,67 45,92 87,83 

06 - Skaly-04 32,11 35,68 95,93 

07 - Platki-70 37,37 43,06 99,69 

Mediana 42,67 43,06 89,86 

Odchylenie standardowe 14,67 12,52 10,47 

 

 

Rys. 7.13. Wykres słupkowy z zestawieniem wyników eksperymentów skuteczności w klasyfikacji  
z wykorzystaniem klastrowania k-means 
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Tabela 7.7. Zestawienie wyników eksperymentów badania skuteczności w klasyfikacji z wykorzystaniem 
klastrowania Gaussian Mixture Model 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych bez redukcji wymiarowej 

PCA LDA 

Eksperyment – parametr 
/ Zestaw 

Eksperyment 4  
Skuteczność IoU [%] 

Eksperyment 5 
 Skuteczność IoU [%] 

Eksperyment 6 
– Skuteczność IoU [%] 

01 - Indian Pines 23,32 31,00 69,15 

02 - Pavia Centre 62,30 69,36 85,76 

03 - Salinas 41,06 45,08 74,09 

04 - Salinas-A 60,18 53,75 99,2 

05 - Platki-01 42,32 38,96 74,07 

06 - Skaly-04 - 60,53 93,15 

07 - Platki-70 37,86 66,05 100,00 

Mediana 41,69 53,75 85,76 

Odchylenie standardowe 10,33 13,27 11,85 
 

 

Rys. 7.14. Wykres słupkowy z zestawieniem wyników eksperymentów skuteczności w klasyfikacji z 
wykorzystaniem klastrowania Gaussian Mixture Model 

Tabela 7.8. Zestawienie wyników eksperymentów badania skuteczności w klasyfikacji z wykorzystaniem 
klastrowania Random Forest 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych bez redukcji wymiarowej 

PCA LDA 

Eksperyment – parametr 
/ Zestaw 

Eksperyment 7 
 Skuteczność IoU [%] 

Eksperyment 8 
 Skuteczność IoU [%] 

Eksperyment 9 
Skuteczność IoU [%] 

01 - Indian Pines 99,16 99,24 99,04 

02 - Pavia Centre 97,16 97,06 95,53 

03 - Salinas 99,54 99,68 99,22 

04 - Salinas-A 99,76 99,81 99,76 

05 - Platki-01 99,89 99,76 99,75 

06 - Skaly-04 99,92 99,86 99,77 

07 - Platki-70 99,48 99,77 99,86 

Mediana 99,54 99,76 99,75 

Odchylenie standardowe 0,90 0,94 1,44 
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Rys. 7.15. Wykres słupkowy z zestawieniem wyników eksperymentów skuteczności w klasyfikacji z 
wykorzystaniem klastrowania Random Forest. Zakres powyżej 95% skuteczności 

Określenie wydajności bezwzględnej różnych algorytmów możliwe jest tylko wyłącznie 

wtedy, gdy uwzględniona zostanie złożoność danych. W przypadku analizowanych zestawów 

oznacza to uwzględnienie liczby pikseli na kanał oraz liczby kanałów spektralnych. Wszystkie 

zestawy posiadają taką samą głębię bitową, czyli 16 bitów na kanał. Iloczyn liczby pikseli na 

kanał oraz liczby kanałów pozwolił na określenie całkowitej liczby pikseli, a tym samym 

poziomu złożoności zestawu danych. Wartości te obliczone dla każdego zestawu 

przedstawiono w tabeli 7.9. 

W związku z różnicami złożoności danych pomiędzy zestawami, każdy wynik pomiaru 

czasu został przetworzony zgodnie z zależnością: 

𝑡𝑑 =
𝑡𝑧

𝑍
  ,        (7.2) 

gdzie: 

𝑡𝑑 – czas dostosowany, czyli czas przetwarzania na pojedynczy piksel z sumy całkowitej, 

𝑡𝑧 – zmierzony czas przetwarzania, 

Z – poziom złożoności danych czyli całkowita suma pikseli według tabeli 7.9. 

Tabela 7.9. Zestawienie parametrów złożoności danych dla poszczególnych zestawów 

Zestaw danych Głębia 
bitowa 

Liczba 
kanałów 

Liczba 
pikseli  

na kanał 

Suma pikseli  
na kanał 

Całkowita 
suma pikseli (Z) 

01 - Indian Pines 16 bitów 200 145 x 145 21 025 4 205 000 

02 - Pavia Centre 16 bitów 102 1096 x 715 783 640 79 931 280 

03 - Salinas 16 bitów 204 512 x 217 111 104 22 665 216 

04 - Salinas-A 16 bitów 204 86 x 83 7 138 1 456 152 

05 - Platki-01 16 bitów 448 320 x 1024 327 680 146 800 640 

06 - Skaly-04 16 bitów 448 995 x 1024 1 018 880 456 458 240 

07 - Platki-70 16 bitów 2036 140 x 112 15 680 31 924 480 
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Wyznaczenie czasu wydajności 𝑡𝑧  polegało na jego określeniu bezpośrednio w skrypcie 

wykonującym eksperymenty na podstawie odniesienia do źródła czasu, jakim jest zegar 

systemowy. W zastosowanym systemie obliczeniowym zegar działa z rozdzielczością jednego 

taktu procesora, tj. w przypadku komponentu CPU, wykorzystywanego do badań, działającego 

z taktowaniem bazowym 3,4 GHz, rozdzielczość pomiaru wynosi nie więcej niż 0,29 ns. Biorąc 

pod uwagę tę rozdzielczość pomiaru oraz uwzględniając ograniczenia systemu operacyjnego, 

przyjęto dokładność pomiaru na poziomie 1 ns. W odniesieniu do skali wyników zmierzonych 

w eksperymentach wydajności, dokładność ta jest pomijalna. 

Zestawienie wyników wszystkich eksperymentów badania wydajności przedstawiono  

w tabelach 7.10, 7.11, 7.12. W tabelach podano wartości czasów po dostosowaniu (tzw. czas 

dostosowany - 𝑡𝑑 – zależność (7.2)) do złożoności danych, gdzie: 𝑡𝑟𝑑 – czas trwania operacji 

redukcji, 𝑡𝑘𝑑 – czas trwania operacji klastrowania, 𝑡𝑠𝑑 – czas sumaryczny. W przypadku metody 

random forest dodany został także parametr 𝑡𝑡𝑑 – czas trenowania modelu. 

 

Tabela 7.10. Zestawienie wyników eksperymentów badania wydajności algorytmów przetwarzania danych 
dostosowanych do złożoności danych w klasyfikacji z wykorzystaniem klastrowania k-means 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment – 
wielkość mierzona 

Eksperyment 1 
 czas dostosowany [ms] 

Eksperyment 2 
 czas dostosowany [ms] 

Eksperyment 3 
 czas dostosowany [ms] 

Parametr / Zestaw 𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  

01 - Indian Pines nd 82,76 82,76 5,47 37,10 42,57 68,25 43,76 112,01 

02 - Pavia Centre nd 29,68 29,68 3,64 5,84 9,48 79,16 5,91 85,06 

03 - Salinas nd 41,69 41,69 4,19 5,47 9,66 61,99 4,46 66,45 

04 - Salinas-A nd 28,84 28,84 8,24 6,18 14,42 121,55 5,49 127,05 

05 - Platki-01 nd 25,96 25,96 2,32 1,31 3,62 70,35 1,19 71,55 

06 - Skaly-04 nd 25,32 25,32 2,42 1,08 3,50 81,63 1,09 82,72 

07 - Platki-70 nd 31,14 31,14 6,70 0,85 7,55 117,56 0,44 118,00 

Mediana nd 29,68 29,68 4,19 5,47 9,48 79,16 4,46 85,06 

Odchylenie stand. nd 18,98 18,98 2,05 11,98 12,58 22,24 14,38 22,23 
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Tabela 7.11. Zestawienie eksperymentów badania wydajności algorytmów przetwarzania danych 
dostosowanych do złożoności danych w klasyfikacji z wykorzystaniem klastrowania Gaussian Mixture Model 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment – 
wielkość mierzona 

Eksperyment 4 
 czas dostosowany [ms] 

Eksperyment 5 
 czas dostosowany [ms] 

Eksperyment 6 
czas dostosowany [ms] 

Parametr / Zestaw 𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑 𝑡𝑠𝑑  

01 - Indian Pines nd 7 165,99 7 165,99 6,66 1 312,49 1 319,14 81,33 373,60 454,93 

02 - Pavia Centre nd 7 081,53 7 081,53 3,55 670,85 674,40 80,04 364,00 444,04 

03 - Salinas nd 15 299,21 15 299,21 5,16 953,00 958,16 65,78 461,19 526,97 

04 - Salinas-A nd 1 750,50 1 750,50 8,93 74,17 83,10 96,83 31,59 128,42 

05 - Platki-01 nd 9 891,74 9 891,74 2,45 128,64 131,09 70,54 24,11 94,65 

06 - Skaly-04 nd - - 2,23 68,71 70,94 89,89 40,62 130,51 

07 - Platki-70 nd 2 886,44 2 886,44 6,64 95,57 102,21 118,00 11,06 129,05 

Mediana nd 7 123,76 7 123,76 5,16 128,64 131,09 81,33 40,62 130,51 

Odchylenie stand. nd 4 888,58 4 888,58 2,30 471,75 472,06 16,31 186,85 177,52 

Tabela 7.12. Zestawienie wyników eksperymentów badania wydajności algorytmów przetwarzania danych 
dostosowanych do złożoności danych w klasyfikacji z wykorzystaniem klastrowania Random Forest 

 Klasyfikacja na danych bez 
redukcji wymiarowej 

Klasyfikacja na danych z redukcją wymiarową 

PCA LDA 

Eksperyment – 
wielkość 
mierzona 

Eksperyment 7  
czas dostosowany [ms] 

Eksperyment 8  
czas dostosowany [ms] 

Eksperyment 9 
czas dostosowany [ms] 

Parametr / 
Zestaw 

𝑡𝑟𝑑  𝑡𝑘𝑑  𝑡𝑠𝑑  𝑡𝑡𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑  𝑡𝑠𝑑  𝑡𝑡𝑑  𝑡𝑟𝑑  𝑡𝑘𝑑  𝑡𝑠𝑑  𝑡𝑡𝑑  

01 - Indian Pines nd 6,18 6,18 387,63 4,99 4,28 9,27 236,39 73,96 4,52 78,48 285,85 

02 - Pavia Centre nd 13,62 13,62 805,48 3,64 11,55 15,19 540,18 80,73 14,27 95,01 643,59 

03 - Salinas nd 6,13 6,13 312,95 4,28 3,88 8,16 265,30 63,40 4,37 67,77 318,20 

04 - Salinas-A nd 2,75 2,75 223,19 8,93 2,06 10,99 72,11 116,75 2,06 118,81 65,24 

05 - Platki-01 nd 3,80 3,80 460,99 2,57 1,21 3,79 86,08 70,63 1,56 72,19 78,29 

06 - Skaly-04 nd 3,80 3,80 302,48 2,21 1,22 3,42 41,55 88,50 1,35 89,85 31,37 

07 - Platki-70 nd 1,94 1,94 168,59 7,99 0,28 8,27 14,50 117,84 0,22 118,06 11,62 

Mediana nd 3,80 3,80 312,95 4,28 2,06 8,27 86,08 80,73 2,06 89,85 78,29 

Odchylenie stand. nd 3,64 3,64 195,46 2,40 3,55 3,77 172,05 20,25 4,42 19,17 212,08 

 

Na podstawie analizy danych zamieszczonych w tabelach 7.10, 7.11 oraz 7.12 można 

zauważyć, że brak zastosowania redukcji wymiarowości znacznie wydłuża czas dalszego 

przetwarzania obrazów hiperspektralnych, co oczywiście związane jest z większą ilością 

danych do przetworzenia. W największym stopniu wydłużeniu ulegają algorytmy 

wykorzystujące klastrowanie GMM, a w najmniejszym stopniu ma to wpływ na metodę 

random forest. Warto również zauważyć, że metoda PCA pozwala w każdym przypadku na 
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skrócenie sumarycznego czasu przetwarzania obrazu, czyli czas poświęcony na redukcję 

wymiarową, a następnie klasyfikację (która jest uproszczona dzięki tej redukcji) sumarycznie 

jest krótszy niż czas klasyfikacji bez wcześniejszej redukcji. Metoda LDA nie gwarantuje takiego 

wyniku, zatem można stwierdzić, że metoda PCA jest bardziej wydajna i jeśli w danej aplikacji, 

głównym kryterium jest czas operacji, może okazać się ona bardziej preferowana. Warto 

również zauważyć, że metoda GMM wykazuje w każdym przypadku najdłuższe czasy 

klastrowania, które mogą osiągać długość nawet kilkunastu sekund.  

 

7.3.5. Porównanie skuteczności różnych metod redukcji wymiarowej 

W celu zrozumienia różnic pomiędzy skutecznością różnych zestawów algorytmów  

w poszczególnych eksperymentach, na rys. 7.16 – 7.22 zestawiono mapy obrazujące 

skuteczność różnych algorytmów dla wszystkich badanych zestawów danych.  

Zestawienie przedstawione na rysunku 7.16 dotyczy zestawu zbioru danych Indian Pines. 

 

Rys. 7.16. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Indian Pines: a) Eksperyment 1, b) Eksperyment 4, 

 c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, 
i) Eksperyment 9 
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Na podstawie rysunku 7.16 można wywnioskować, że największą skuteczność osiągały 

metody nauczania nadzorowanego, czyli random forest, osiągając ponad 90%. Przy 

wykorzystaniu klastrowania nienadzorowanego (z grupy k-means, GMM) najskuteczniejsze 

wyniki uzyskiwane są przy użyciu metody redukcji wymiarowości LDA, osiągając ok. 70% 

skuteczności. Z kolei najmniej skuteczna metoda, wykorzystywała metodę GMM na 

niezredukowanym wymiarowo zbiorze danych i pozwalała na uzyskanie skuteczności na 

poziomie 23%. 

Na rysunku 7.17 pokazano porównanie wyników eksperymentów skuteczności  

dla różnych zestawów algorytmów w przypadku obrazu hiperspektralnego Pavia Centre. 
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Rys. 7.17. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Pavia Centre. a) Eksperyment 1, b) Eksperyment 4,  

c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, 
i) Eksperyment 9 

Zgodnie z rysunkiem 7.17, wyniki odznaczające się największą skutecznością, uzyskano 

przy zastosowaniu metody nadzorowanego nauczania – random forest, osiągając ponad 95% 

skuteczności. Najlepsze wyniki dla metod wykorzystujących klastrowanie nienadzorowane (z 

grupy k-means, GMM) uzyskiwane są przy użyciu metody redukcji wymiarowości LDA, 

osiągając ok. 87% skuteczności. Najmniej skuteczna metoda, wykorzystywała algorytm GMM 

na niezredukowanym wymiarowo zbiorze danych i pozwalała na uzyskanie  skuteczności na 

poziomie 62%. 

Rysunek 7.18 przedstawia zestawienie map skuteczności klasyfikacji różnych algorytmów 

wykonanych na zestawie danych Salinas. 
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Rys. 7.18. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Salinas: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 7, 
d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, i) Eksperyment 9 

Na podstawie rysunku 7.18 można stwierdzić, że największą skuteczność, ponownie 

uzyskano przy zastosowaniu metody nadzorowanego nauczania – random forest, osiągając 

ponad 99% skuteczności. Przy wykorzystaniu klastrowania nienadzorowanego (z grupy k-

means, GMM), najlepsze wyniki uzyskiwane są przy użyciu metody redukcji wymiarowości 

LDA, osiągając ok. 74% skuteczności. Wyniki odznaczające się najmniejszą skutecznnością 

uzyskano dla algorytmów PCA i k-means, co pozwoliło na uzyskanie  skuteczności na poziomie 

38%. 

Na rysunku 7.19 przedstawiono porównanie wyników skuteczności w postaci map, 

różnych zestawów algorytmów zastosowanych na obrazach hiperspektralnych SalinasA. 

 

 

Rys. 7.19. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Salinas_A: a) Eksperyment 1, b) Eksperyment 4,  
c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3,  

h) Eksperyment 6, i) Eksperyment 9 
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Zgodnie z rysunkiem 7.19, wyniki świadczące o największej skuteczności, uzyskano przy 

wykorzystaniu metody nadzorowanego nauczania – random forest, osiągając ponad 99,7% 

skuteczności. Wśród metod wykorzystujących klastrowanie nienadzorowane (z grupy k-

means, GMM) najlepsze wyniki uzyskiwane są przy użyciu metody redukcji wymiarowości LDA, 

osiągając ok. 99% skuteczności. Najmniej skuteczna metoda, wykorzystywała algorytmy PCA i 

k-means i pozwalała na uzyskanie  skuteczności na poziomie 52%. 

Rysunek 7.20 przedstawia zestawienie map skuteczności klasyfikacji dla zestawu danych 

Platki-01. 

 

  

Rys. 7.20. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie  Platki-01. a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 

7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,  
i) Eksperyment 9 

Wyniki odznaczające się największą skutecznością, uzyskano stosując metodę 

nadzorowanego nauczania – random forest, osiągając ponad 99,7% skuteczności. Z kolei, 

klastrowanie nienadzorowane (z grupy k-means, GMM) pozwoliło na uzyskanie najlepszych 

wyników przy użyciu metody redukcji wymiarowości LDA, osiągając ok. 80% skuteczności. 

Najmniej skuteczna metoda, wykorzystywała algorytm GMM na niezredukowanym 

wymiarowo zbiorze danych i pozwalała na uzyskanie  skuteczności na poziomie 42%. 

Na rysunku 7.21 zamieszczono porównanie wyników uzyskiwanych skuteczności dla 

obrazu hiperspektralnego Skaly-04 z zastosowaniem różnych zestawów algorytmów. 
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Rys. 7.21. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Skaly-04: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 7, 
d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, i) Eksperyment 9 

Na podstawie rys. 7.21 można stwierdzić, że również w tym przypadku, metody 

odznaczające się największą skutecznością wykorzystywały nadzorowane nauczanie typu 

random forest, osiągając ponad 99,7% skuteczności. Wśród metod klastrowania 

nienadzorowanego (z grupy k-means, GMM), najskuteczniejsze okazały się metody 

wykorzystujące metody redukcji wymiarowości LDA, osiągając ok. 94% skuteczności. Najmniej 

skuteczna metoda, wykorzystywała algorytm k-means na niezredukowanym wymiarowo 
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zbiorze danych i pozwalała na uzyskanie  skuteczności  na poziomie 32%. W jednym przypadku 

obliczenia nie dały rezultatu, prawdopodobnie z powodu zbyt dużej ilości kombinacji 

obliczanych przez algorytm GMM na niezredukowanym zbiorze danych. 

W postaci rysunku 7.22 przedstawiono wyniki skuteczności klasyfikacji różnych zestawów 

algorytmów zastosowanych na zestawie danych Platki-70. 

 

 

Rys. 7.22. Mapy obrazujące wyniki eksperymentów badania skuteczności dopasowania do prawdy 
podstawowej, przeprowadzonych na zestawie Platki_70: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 

7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,  
i) Eksperyment 9 

Zgodnie z rysunkiem 7.22 najlepsze, wykorzystujące klastrowanie nienadzorowane (z 

grupy k-means, GMM) wyniki uzyskiwane są przy użyciu metody redukcji wymiarowości LDA, 

osiągając ok. 99,8% skuteczności. W przypadku algorytmów LDA z GMM, uzyskano wynik 

100% skuteczności (jedyny raz w całym zestawie eksperymentów). Wyniki odznaczające się 

największą spójną skutecznością, wykorzystywały metodę nadzorowanego nauczania – 

random forest, osiągając ponad 99,7% skuteczności. Najmniej skuteczna metoda, 
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wykorzystywała algorytm k-means na niezredukowanym wymiarowo zbiorze danych  

i pozwalała na uzyskanie  skuteczności na poziomie 37%.  

Na rysunku 7.23 przedstawiono zestawienie median skuteczności wyznaczonych na bazie 

rezultatów przetwarzania wszystkich zestawów danych w podziale na poszczególne metody 

przetwarzania.  

 

Rys. 7.23. Wykres słupkowy zestawienia median skuteczności różnych metod klastrowania 

Zgodnie z wykresem na rys. 7.23, można zauważyć wyraźnie, że metoda redukcji 

wymiarowej LDA pozwala na uzyskanie najwyższej skuteczności przetwarzania, niezależnie  

od zastosowanej metody klastrowania. Zdecydowanie najmniejszą skutecznością odznacza się 

klasyfikacja bez redukcji wymiarowej, w której wyłącznie nadzorowana metoda Random 

Forest pozwala na uzyskanie skuteczności powyżej 90%. Jednocześnie zauważyć można,  

że metoda klastrowania Random Forest wykazuje wysoką skuteczność niezależnie od metody 

redukcji wymiarowej lub jej braku. 

 

7.3.6. Porównanie wydajności różnych metod redukcji wymiarowej 

W celu określenia wydajności względnej, tj. zysku czasowego zastosowania redukcji 

wymiarowości przed realizacją klasteryzacji, zastosowany został wskaźnik opisany zależnością: 

𝑊𝐺𝑡
=

𝑡𝑠𝑟𝑤

𝑡𝑠𝑏𝑟𝑤
− 1 [%] ,     (7.3) 

gdzie: 

𝑊𝐺𝑡
 – wskaźnik zysku czasowego, 

𝑡𝑠𝑟𝑤  - sumaryczny czas klasyfikacji danego zestawu danych z zastosowaniem redukcji 

wymiarowości, 

𝑡𝑠𝑏𝑟𝑤 -  sumaryczny czas klasyfikacji danego zestawu danych bez redukcji wymiarowości. 
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Jeśli wskaźnik 𝑊𝐺𝑡
 jest dodatni, oznacza to, że zastosowanie metody redukcji 

wymiarowości wydłużyło proces przetwarzania danych. Jeśli natomiast jest ujemny, to proces 

ten skróciło. Obliczone wskaźniki zysku czasowego dla poszczególnych metod przetwarzania 

przedstawiono w tabeli 7.13. 

Tabela 7.13. Zestawienie wyników eksperymentów badania wydajności 

Zastosowana metoda 
klastrowania 

k-means GMM Random-Forest 

Zastosowana metoda 
redukcji wymiarowości 

PCA LDA PCA LDA PCA LDA 

Parametr / Zestaw 𝑊𝐺𝑡
 [%] 𝑊𝐺𝑡

 [%] 𝑊𝐺𝑡
 [%] 𝑊𝐺𝑡

[%] 𝑊𝐺𝑡
 [%] 𝑊𝐺𝑡

[%] 

01 - Indian Pines -48,56 35,34 -81,59 -93,65 50,00 1 169,23 

02 - Pavia Centre -68,04 186,64 -90,48 -93,73 11,48 597,34 

03 - Salinas -76,83 59,37 -93,74 -96,56 33,09 1 005,04 

04 - Salinas-A -50,00 340,48 -95,25 -92,66 300,00 4 225,00 

05 - Platki-01 -86,04 175,60 -98,67 -99,04 -0,36 1 799,10 

06 - Skaly-04 -86,18 226,72 - - -9,92 2 265,34 

07 - Platki-70 -75,75 278,97 -96,46 -95,53 325,81 5 979,03 

Mediana -75,75 186,64 -94,50 -94,63 33,09 1 799,10 

Odchylenie standardowe 14,45 102,13 5,56 2,15 135,19 1 821,36 

 

Zestawienie median dostosowanych czasów przetwarzania, czyli uwzględniających 

złożoność danych, przedstawiono na rysunku 7.24. W przypadku eksperymentu 4 wynikowy 

czas dostosowany przetwarzania był znacznie dłuższy niż w pozostałych eksperymentach,  

w których wartości median zawsze wynosiły poniżej 140 ms. 

 

Rys. 7.24. Wykres słupkowy zestawienia median dostosowanych czasów przetwarzania różnych metod 

klastrowania 
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Podsumowując wnioski uzyskane na podstawie wykonanych wszystkich eksperymentów 

(1-9), można stwierdzić, że: 

a) Metody nadzorowane klasyfikacji stanowią znacznie skuteczniejszą grupę metod 

klasteryzacji czy też klasyfikacji danych hiperspektralnych. Każdy zestaw danych, 

przeanalizowany metodą random forest odznaczał się wysokim poziomem 

skuteczności, zawsze powyżej 95%, mediana 99,75 (tabela 7.8).  

b) Dla znacznej części zestawów, metoda redukcji wymiarowości LDA okazała się 

skuteczniejsza niż metoda PCA. Wśród metod nienadzorowanych, najlepsze wyniki 

uzyskiwano w połączeniu z metodą klasteryzacji k-means. 

c) W przypadku każdej metody nienadzorowanej (k-means i GMM) redukcja 

wymiarowości znacząco poprawia skuteczność zestawu algorytmiki. Jest to widoczne 

szczególnie w przypadku zastosowania metody LDA, która odznacza się wysoką 

zdolnością do rozdzielania rodzajów klas. 

d) Pod kątem wydajnościowym, w przypadku części badanych zestawów metod 

otrzymano skrócenie sumarycznego czasu przetwarzania i klasyfikacji poprzez 

zastosowanie redukcji wymiarowości, a w części wydłużenie tego czasu (tabela 7.13). 

Redukując wymiarowość, dowolną metodą, szczególnie możliwe jest skrócenie czasu 

klasteryzacji metodą GMM. Czas przetwarzania i analizy ulega szczególnemu 

względnemu wydłużeniu w przypadku metod klasyfikacji nadzorowanej (random 

forest). 

e) Wydajność metod nienadzorowanych (k-means i GMM) istotnie zmniejsza się                    

w przypadku zastosowania redukcji wymiarowości LDA w stosunku do metody PCA, 

natomiast skuteczność metody LDA jest znacznie wyższa. 

f) Zastosowanie metody klasteryzacji GMM w przypadku braku redukcji wymiarowości 

znacznie wydłuża czas realizacji przetwarzania i analizy. Osiągane czasy tych operacji, 

niejednokrotnie przekraczały jedną minutę, a w jednym przypadku nie pozwoliły  

na uzyskanie rezultatu. Takie zestawienie jest całkowicie nieefektywne  

w zastosowaniach zarówno badawczych, jak i komercyjnych. 

g) Metody nadzorowane tj. random forest istotnie zmniejszają czas trenowania modelu 

w przypadku zredukowanego wymiarowo zestawu danych. 
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7.4. WNIOSKI 

Opisane w niniejszym rozdziale wyniki badania metod przetwarzania i analizy danych 

hiperspektralnych umożliwiły szersze spojrzenie na elementy łańcucha danych znajdujące się 

po procesie akwizycji obrazu. Niewątpliwie to właśnie te elementy stanowią obecnie istotne 

wyzwanie dla szerszego zastosowania instrumentów HSI. Szeroki zakres przeprowadzonych 

badań pozwolił na określenie zestawów metod odznaczających się najlepszą skutecznością, 

wydajnością lub połączeniem tych dwóch kluczowych parametrów. Wyznacza to istotne ramy 

dla kierunku dalszych badań i rozwoju zarówno metod przetwarzania, analizy, jak i akwizycji i 

konstrukcji instrumentów HSI.  

Eksperymenty przeprowadzone w ramach badań pozwoliły na wyciągnięcie kluczowego 

wniosku, który wpływa istotnie na kolejne rozdziały niniejszej rozprawy doktorskiej. Metody 

redukcji wymiarowości istotnie i pozytywnie wpływają w przypadku wielu zestawów metod 

przetwarzania i analityki na wydajność i skuteczność. Na szczególną uwagę zasługuje metoda 

LDA, która oparta jest na wykluczaniu pasm instrumentu hiperspektralnego, które nie wnoszą 

istotnych (pod kątem klasyfikacji) informacji, a w niektórych przypadkach wręcz utrudniają  

i obniżają skuteczność wyznaczania klas. Poza tym, jak wykazały rezultaty wykonanych prac 

badawczych, na niemal każdym zestawie testowanych danych, metoda LDA poprawia 

skuteczność detekcji klas, jednak często odbywa się to kosztem wydłużenia czasu 

przetwarzania. Warte rozważenia i idealne z punktu widzenia optymalizacji instrumentów i 

łańcucha danych HSI jest opracowanie i zaimplementowanie fizycznej reprezentacji operacji 

LDA, czyli precyzyjnie dobranych pod aplikację filtrów spektralnych, aby poziom 

skomplikowania danych ograniczyć wyłącznie do tych najbardziej pożądanych. 
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8. SYNTEZA UPROSZCZONYCH UKŁADÓW OBRAZOWANIA SPEKTRALNEGO 

W niniejszym rozdziale znajduje się opis wykonanych przez autora prac badawczych  

dotyczących syntezy uproszczonych układów obrazowania spektralnego. W rozdziale 

zamieszczono również dowód i wnioski na temat prawdziwości postawionej hipotezy 

badawczej niniejszej rozprawy doktorskiej. 

 

8.1. MOTYWACJA DO REALIZACJI UPROSZCZONYCH UKŁADÓW OBRAZOWANIA 

SPEKTRALNEGO 

Zgodnie z hipotezą niniejszej rozprawy doktorskiej (rozdz. 1.2) oraz wnioskami płynącymi 

z rozdziału 7 założono, że istnieje możliwość takiego uproszczenia układów obrazowania 

spektralnego, która pozwoli na poprawną analizę uzyskanych obrazów w danym 

zastosowaniu. Uproszczony układ obrazowania oznacza instrument umożliwiający 

wykorzystanie kilku wybranych okien spektralnych w odróżnieniu do kilkuset w przypadku 

zobrazowań HSI. Udowodnienie możliwości implementacji takiego uproszczenia oznacza 

znaczną optymalizację kosztów i poziomu skomplikowania dedykowanych układów 

obrazowania spektralnego. Taki układ cechowałby się kilkoma kluczowymi zaletami  

w stosunku do układów HSI, to jest: 

• mniejsza liczba kanałów spektralnych, co oznacza mniejszą liczbę danych do akwizycji 

i przetwarzania, 

• mniejszy stopień skomplikowania układu akwizycji sygnału optycznego, w którym 

potencjalnie można uniknąć stosowania siatek dyfrakcyjnych, pryzmatów, filtrów LVF  

i matrycowych filtrów Fabry-Perot,  

• potencjalnie większa odporność na drgania, zmiany temperatury, szoki mechaniczne i 

przeciążenia ze względu na uproszczony układ akwizycji, 

• znacznie korzystniejsze (mniejsze) wymagania radiometryczne i potencjalnie wyższy 

stosunek sygnału do szumu ze względu na możliwe szersze okno spektralne 

poszczególnych kanałów,  

• znacznie niższa cena.  

Z kolei kluczowe problemy badawcze pozwalające na określenie możliwości opracowania 

takich uproszczonych układów obrazowania spektralnego to: 

• określenie w jaki sposób różne algorytmy redukcji wymiarowości i klasyfikacji definiują 

kluczowe pasma spektralne w obrazach HSI i jak kształtuje się dystrybucja wag 

poszczególnych kanałów, 
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• określenie, jak liczba kanałów spektralnych o najwyższych wagach wpływa  

na możliwości klasyfikacji oraz jaka jest najmniejsza liczba kanałów spektralnych, której 

przekroczenie w niewielkim stopniu wpływa na skuteczność klasyfikacji, 

• określenie, jak szerokość okna kanału spektralnego wpływa na skuteczność klasyfikacji, 

co pozwoli na zmniejszenie wymagań dotyczących filtrów spektralnych, stosowanych 

w docelowych uproszczonych układach obrazujących, 

• sformułowanie docelowej metody syntezy uproszczonych układów obrazowania 

spektralnego. 

W kolejnych rozdziałach przedstawiono propozycję sposobu rozwiązania postawionych 

problemów badawczych. 

 

8.2. OPIS PROPONOWANEJ ALGORYTMIKI I ARCHITEKTURY ROZWIĄZANIA 

Wymiernym efektem realizacji uproszczonych układów obrazowania spektralnego jest 

możliwość zmniejszenia poziomu skomplikowania instrumentu dedykowanego dla danej 

aplikacji na podstawie analizy obrazów z instrumentu hiperspektralnego. Proponowana 

architektura rozwiązania, porównana do podejścia konwencjonalnego, przedstawiona jest na 

rysunku 8.1. W podejściu konwencjonalnym (8.1a), układ HSI służy jako elastyczne narzędzie, 

które pozwala na realizację wielu różnych aplikacji bez konieczności modyfikacji układu. 

Podejście to najczęściej wymaga stosowania algorytmów redukcji wymiarowości 

realizowanych dla każdego pozyskanego zestawu danych (hypercube’a), które pozwalają na 

przeprowadzenie dalszej analizy klasyfikacyjnej. W odróżnieniu od tego podejścia, 

proponowane w ramach rozprawy rozwiązanie (8.1b)  zakłada wykorzystanie metod redukcji 

wymiarowej, a także niektórych metod klasyfikacyjnych, w celu określenia kluczowych pasm. 

Mogą one następnie zostać wykorzystane do zbudowania uproszczonego układu obrazowania 

spektralnego (rys. 8.1c), który z założenia jest układem multispektralnym (MSI). Instrument 

taki jest dedykowany dla konkretnej aplikacji lub grupy aplikacji, z reguły zajmujących się 

określoną grupą obiektów do klasyfikacji. Nie jest to instrument tak wszechstronny  

w zastosowaniach jak instrument HSI, jednak charakter wielu współczesnych przedsięwzięć, 

wykorzystujących obrazowanie spektralne wymaga przede wszystkim skuteczności  

i efektywności kosztowej w danym polu aplikacyjnym bardziej niż elastyczności zastosowań. 

W wyniku takiej syntezy,  działanie uproszczonego układu obrazowania spektralnego (8.1c) 

odznacza się znacznie mniej rozbudowaną architekturą. W zamierzeniu przełoży się to na 

uproszczony charakter metody akwizycji i elementów służących przetwarzaniu danych.  
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Rys. 8.1. Schematy przedstawiające: a) konwencjonalne podejście realizacji aplikacji z instrumentem HSI,  
b) proponowane w rozprawie autorskie podejście do syntezy układów MSI, a także c) sposób działania 

powstałego uproszczonego układu obrazowania spektralnego 

W realizacji eksperymentów dla określonych w rozdziale 8.1 problemów badawczych, 

przyjęto metody przetwarzania składające się z algorytmów opisanych w rozdziale 5, a które 

zostały przebadane w rozdziale 7. Ze względu na stosunkowo niską skuteczność algorytmów 

klasyfikacyjnych nienadzorowanych, czyli k-means oraz GMM, zdecydowano się nie sprawdzać 

ich skuteczności, uwzględniając wyłącznie metodę Random Forest w zadaniach 

klasyfikacyjnych, stosowanych w badaniach opisanych w niniejszym rozdziale.  

Pomimo zróżnicowanego wpływu na skuteczność klasyfikacji, zdecydowano się 

uwzględnić w badaniach metody redukcji wymiarowości zarówno w postaci PCA, jak i LDA. 

Taka decyzja została podjęta ze względu na różne podejście w algorytmach obu metod, co 

może przełożyć się na różny sposób produkcji docelowych fizycznych filtrów spektralnych. 

Należy w tym miejscu natomiast wskazać, iż metoda LDA wykazuje cechy możliwe 

upraszczające procesy technologiczne w wykonywaniu takich filtrów. Wynika to z faktu, że 

docelowo określa ona jakie pasma należy wykluczyć z procesów przetwarzania, ale nie zakłada 

ich mieszania ze sobą. Oznacza to, że pasma wybrane w metodzie LDA, odpowiadają 
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bezpośrednio kanałom spektralnym, jakie składały się na pierwotny obraz hiperspektralny. 

W odróżnieniu od tej metody, metoda PCA może wskazywać na pewne zestawy kanałów 

spektralnych, które mogą, lecz nie muszą reprezentować pojedynczych fizycznych kanałów 

spektralnych kamery. Oznacza to, że realizacja fizycznego filtra spektralnego, bazującego  

na kanałach wskazanych przez metodę PCA, może być trudniejsza w realizacji. 

Oprócz tego, w ramach realizowanej rozprawy zastosowano dodatkową metodę, która 

pozwala na określenie kluczowych okien spektralnych, czyli metodę klasyfikacyjną Random 

Forest. Pomimo, że w metodzie tej trenowany jest model składający się z drzew decyzyjnych, 

zauważono, że możliwe jest zbadanie przebiegu jego działania w celu określenia wag 

przypisywanych każdemu z kanałów. W tym celu zastosowano trenowanie na całych, 

niezredukowanych obrazach HSI, a następnie wykorzystano algorytm ekstrakcji wag kanałów 

poprzez wsteczne zliczanie wag przypisywanych w poszczególnych drzewach decyzyjnych. W 

ten sposób określono wagi każdego z kanałów spektralnych. Uznano, iż szczególnie istotne dla 

badań będzie porównanie zestawów kanałów spektralnych z największymi wagami, 

przypisywanymi przez każdą z metod oraz jak ich wybór wpływa na ostateczną skuteczność 

działań klasyfikacyjnych. We wszystkich eksperymentach, zastosowano zestawy danych 

opisane w rozdziale 7.2. 

 

8.3. ANALIZA DYSTRYBUCJI WAG NADAWANYCH KANAŁOM SPEKTRALNYM  

W PROCESACH REDUKCJI WYMIAROWOŚCI I KLASYFIKACJI 

Fundamentem architektury proponowanej syntezy układów MSI jest ekstrakcja pasm 

kluczowych. Konieczne zatem jest rozpoznanie, jak różne algorytmy redukcji wymiarowości i 

klasyfikacji nadają wagi poszczególnym pasmom spektralnym obrazów HSI, a także w jaki 

sposób się one między tymi algorytmami różnią. W tym celu zastosowano algorytm 

przedstawiony na rysunku 8.2.  
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Rys. 8.2. Schemat algorytmu zastosowanego w badaniach dystrybucji wag nadawanych kanałom 
spektralnym 

Algorytm ten zakłada takie podstawowe działania przygotowujące obraz HSI, jak odszumianie 

i normalizacja. Po tych etapach następuje przeprowadzenie redukcji wymiarowości metodami 

PCA oraz LDA, a także zbudowanie modelu klasyfikującego metodą Random Forest (RF), która 

wykorzystuje znaną prawdę podstawową dla obrazu. Następnie dla wyniku każdej z metod 

zastosowano algorytm ekstrakcji wag nadanych poszczególnym kanałom spektralnym  

z pierwotnego, surowego obrazu HSI. W efekcie uzyskano trzy tabele wartości wag dla pasm 

spektralnych, które następnie ze sobą porównano.  

Otrzymane wartości wag przedstawiono w postaci wykresów słupkowych, w których na 

osi X znajdują się kolejne indeksy pasm spektralnych, a na osi Y znormalizowane wagi nadane 

każdemu z pasm. Wagi w postaci znormalizowanej określane są wartościami procentowymi, 

w taki sposób, aby wartość 100% oznaczała pasma o najwyższym znaczeniu w rozróżnianiu 

klas, a wartości 0% - pasma, które nie mają wpływu na rozróżnianie klas. Przykład zestawienia 

takich trzech wykresów dla wag wyznaczonych przez algorytmy PCA, LDA i RF  

dla jednego z analizowanych obrazów HSI, przedstawiono na rysunku 8.3. 
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Rys. 8.3. Wykresy wag nadanych poszczególnym kanałom spektralnym dla obrazu hiperspektralnego  
o nazwie Indian Pines (opisany w rozdziale 7.2) przez algorytm: a) PCA, b) LDA, c) RF 

 

Na wykresach przedstawionych na rys. 8.3 zauważyć można, że obraz HSI (w tym 

przypadku o nazwie Indian Pines) składał się z 200 pasm, a wagi nadane przez różne algorytmy 

znacząco się od siebie różnią. Najwyższe wagi przypisane zostały innym kanałom w każdej  

z metod. Lepiej obrazują to wykresy zredukowane do wyłącznie 20 najistotniejszych pod 

kątem wagi pasm, przedstawione na rys. 8.4. 

 

 

Rys. 8.4. Wykresy 20 kluczowych wag nadanych kanałom spektralnym dla obrazu hiperspektralnego  
o nazwie Indian Pines (opisany w rozdziale 7.2) przez algorytm: a) PCA, b) LDA, c) RF 

a) 

b) 

c) 

a) 

b) 

c) 



149 

Na rys. 8.4 zauważyć można, że kluczowe 20 kanałów analizowane przez każdy  

z omawianych algorytmów, niemal całkowicie nie pokrywa się. W przypadku algorytmu PCA 

(rys. 8.4a), najwyższe wagi znajdują się w okolicach skrajnych indeksów kanałów, tj. w centrum 

w zakresie od 75 do 95 oraz dla pasm ok. 35 i 60 indeksu. Algorytm LDA (rys. 8.4b) wskazał 

kluczowe pasma dla dwóch grup indeksów w zakresie od 20 do 40 oraz od 115 do 120.  

W przypadku wag nadanych przez model zbudowany w metodzie Random Forest, kluczowe 

wagi są rozproszone, lecz trzy największe zgrupowania mieszczą się w zakresach indeksów od 

0 do 20, od 105 do 118 oraz od 149 do 170.  

Jednym z najprostszych i powszechnie stosowanych narzędzi statystycznych 

pozwalających na porównanie zbiorów jest współczynnik podobieństwa Jaccarda (nazywany 

również IoU) [105]. W celu sprawdzenia korelacji pomiędzy zbiorami 20 kluczowych pasm, 

wybieranych przez PCA, LDA i RF obliczono współczynnik IoU dla każdej pary zbiorów dla 

wszystkich zestawów danych. Tabela 8.1 przedstawia zestawienie tych wyników. 

Tabela 8.1.  Zestawienie IoU dla par zbiorów 20 kluczowych pasm, wyznaczonych różnymi algorytmami dla 
różnych obrazów HSI analizowanych w rozdziale 7. 

 

Współczynnik Jaccarda (IoU) [%] 

Indian 
Pines 

Salinas Salinas-A 
Pavia 

Centre 
Platki-01 Skaly-04 Platki-70 

PCA i LDA 0,0 5,3 2,6 14,3 0,0 0,0 0,0 

PCA i RF 2,6 11,1 21,2 8,1 0,0 14,3 0,0 

LDA i RF 5,3 8,1 11,1 29,0 11,1 0,0 0,0 
 

Zestawienie przedstawione w tabeli 8.1 pokazuje, że między dowolnymi zestawami 

kluczowych pasm widoczny jest niski współczynnik korelacji zbiorów. W żadnym z zestawów 

zbiorów współczynnik Jaccarda nie przekracza 30%, a dla większości przypadków jest on niższy 

niż 10%. Tak niskie poziomy korelacji oznaczają, że każda z metod, tj. PCA, LDA i RF, definiuje 

w zdecydowanie większej mierze inne i unikalne zestawy pasm. Oznacza to również,  

że prawdopodobnie spodziewać się można zróżnicowania w wynikach finalnej skuteczności 

klasyfikacji pomiędzy tymi metodami, co częściowo zostało udowodnione w rozdziale 7.  

 

8.4. ANALIZA WPŁYWU LICZBY WYBRANYCH KLUCZOWYCH PASM SPEKTRALNYCH  

NA SKUTECZNOŚĆ KLASYFIKACJI 

Ze względu na skuteczność proponowanej metody syntezy układów uproszczonych,  

po określeniu różnic w definiowaniu kluczowych pasm przez różne algorytmy, istotne jest 

zrozumienie także, jak wybrana liczba pasm spektralnych wpływa na skuteczność klasyfikacji. 
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W tym celu przeprowadzono serie przetwarzania i pomiarów, zgodnie z algorytmem 

przedstawionym na rys. 8.5. 

 

 

Rys. 8.5. Schemat algorytmu zastosowanego w badaniach wpływu liczby kluczowych pasm spektralnych  
na możliwą do uzyskania skuteczność klasyfikacji. 

Zgodnie ze schematem z rys. 8.5, wyróżnić można kilka kluczowych elementów 

postępowania. Pierwszą istotną operacją jest symulacja obrazu multispektralnego na bazie 

tabeli kluczowych pasm. Symulacja ta polega na redukcji obrazu hiperspektralnego do postaci 

zawierającej wyłącznie n kluczowych pasm, określonych uprzednio za pomocą algorytmów 

PCA, LDA lub RF. Ponieważ, jak wspomniano wcześniej, zauważono, że dla pewnej liczby pasm 

(między 15 a 20), wraz z dalszym wzrostem ich liczby, skuteczność klasyfikacji nie rośnie 

znacząco, zdecydowano się przeprowadzić badania dla liczby n pasm redukowanej od n=30  

do n=1.  

Uzyskany w ten sposób obraz, będący cyfrową symulacją obrazu multispektralnego  

o zredukowanej liczbie pasm, lecz o identycznej rozdzielczości spektralnej w stosunku  

do oryginalnego hypercube’a (kanały wciąż posiadają tak samo szerokie okna spektralne), 

następnie jest poddawany klasyfikacji. Zdecydowano się przebadać działanie algorytmu 

wyłącznie z wykorzystaniem metody klasyfikacji Random Forest, z uwagi na jej potwierdzone 

najlepsze działanie. Posłużono się założeniem logicznym: jeśli po redukcji obrazu HSI  

do postaci MSI, najlepsza w danym zestawie algorytmów metoda nie będzie w stanie dokonać 

klasyfikacji o wysokiej jakości oznacza to, że obraz został nadmiernie zredukowany względem 
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oryginału. Na tym etapie trenowanie modelu oczywiście wykorzystuje zestaw klas prawdy 

podstawowej. Ten zestaw klas jest również wykorzystany w kolejnym kroku, w którym 

obliczany jest współczynnik Jaccarda. Pozwala to na określenie, jak skuteczna jest klasyfikacja  

na symulowanym obrazie MSI. Wyniki zapisywane są w tabeli. 

Rysunek 8.6 przedstawia przykładowe wyniki badania współczynnika IoU dla obrazów MSI 

zredukowanych do postaci od 30 do 1 kluczowych kanałów spektralnych.  

Rys. 8.6. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy 

podstawowej – IoU dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz 

symulowany na bazie obrazu hiperspektralnego o nazwie „Pavia Centre” 

Widoczna jest tutaj zależność, którą można opisać w następujący sposób: wraz ze wzrostem 

liczby kluczowych pasm spektralnych, rośnie skuteczność klasyfikacji. Analizując dane można 

zauważyć, że wyniki dla obrazów powstałych przy redukcji od 30 do ok. 12 pasm spektralnych 

wykazują wysoką skuteczność, utrzymującą się na poziomie powyżej 95% dla wszystkich trzech 

metod selekcji kanałów spektralnych. Zbliżając się do granicy równej liczbie klas prawdy 

podstawowej, następuje obniżenie skuteczności dla pasm wybranych przez PCA do ok. 90%. 

Zmniejszenie skuteczności algorytmu PCA w okolicy tej liczby pasm jest zgodne ze źródłami 

literaturowymi [np. 106, 107]. Dla optymalnej skuteczności klasyfikacji, minimalna liczba cech, 

czyli w tym przypadku kanałów spektralnych, powinna być co najmniej równa liczbie 

poszukiwanych klas [106] lub liczbie klas pomniejszonej o jeden [107]. Warto w tym miejscu 

zaznaczyć, że informacje określające minimalną dla optymalnej skuteczności liczbę pasm  

są zaleceniami, a nie zależnościami matematycznymi, co udowadnia dalsza analiza przebiegu 

wykresu z rys. 8.6. 
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Obrazy z liczbą kluczowych pasm redukowanych w zakresie od 9 (liczba klas prawdy 

podstawowej) do 4, pozwoliły na uzyskanie względnie stabilnej skuteczności klasyfikacji  

na poziomach ok. 95%, 92% i 90% dla odpowiednio metod ekstrakcji cech: LDA, RF i PCA. 

Dalsze zmniejszanie liczby pasm spektralnych powoduje znaczne obniżenie skuteczności, która 

osiąga najniższe wartości w zakresie 32-42% dla jednego kanału spektralnego. W przypadku 

sprawdzanego obrazu hiperspektralnego, to jest „Pavia Centre”, metoda selekcji pasm, która 

pozwoliła uzyskiwać wysokie poziomy skuteczności klasyfikacji (na poziomie powyżej 90%),  

to metoda LDA. Poziom 93,7% skuteczności został uzyskany dla już tak niewielkiej liczby pasm 

jak 3, co oznacza trzykrotnie mniej niż liczba klas prawdy podstawowej.  

Weryfikacja powtarzalności takiego wyniku wymagała przeprowadzenia testów  

na pełnym zestawie obrazów testowych, czyli na wszystkich hypercube’ach, które zbadane 

zostały również w rozdziale 7. W ramach rozprawy doktorskiej przeprowadzono takie 

symulacje i eksperymenty również, jak w przedstawionym przykładzie, symulując zakres liczby 

kanałów od 1 do 30 i wyznaczając poziom skuteczności klasyfikacji. Wyniki tych prac 

przedstawiono na rysunkach 8.7 – 8.12 (oś Y  dostosowano do wyświetlania górnych 20% dla 

uwidocznienia punktu przecięcia z progiem 90%).  
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Rys. 8.7. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 

IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany  
na bazie obrazu hiperspektralnego o nazwie „Indian Pines” 
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Liczba klas prawdy podstawowej 
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Rys. 8.8. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 
IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany  

na bazie obrazu hiperspektralnego o nazwie „Salinas” 

 

Rys. 8.9. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 

IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany  
na bazie obrazu hiperspektralnego o nazwie „Salinas-A” 

 

Rys. 8.10. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 

IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany  
na bazie obrazu hiperspektralnego o nazwie „Platki-01” 
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Jak widać na przedstawionych rysunkach (8.7 - 8.12), w przypadku większości obrazów 

hiperspektralnych zdolność do klasyfikacji na poziomie powyżej 90% jest możliwa dla wartości 

kilkukrotnie niższych niż zastosowana liczba klas prawdy podstawowej. Widoczna jest również 

duża stabilność oraz wysoki poziom skuteczności klasyfikacji dla większych (pow. 15) 

rozmiarów zestawów kluczowych pasm. Ocena porównawcza metod doboru pasm na tle 

skuteczności przy minimalnej liczbie pasm przedstawiona jest w tabelach 8.2 i 8.3. Wyniki te 

pozwalają stwierdzić, że minimalizacja zbioru kanałów do pojedynczych pasm spektralnych 

wciąż umożliwia realizację klasyfikacji o wysokiej skuteczności. Nawet w przypadku założenia 

wymaganej skuteczności klasyfikacji na poziomie 95%, dla sześciu ze zbioru siedmiu obrazów 

hiperspektralnych, liczba wymaganych klas wyniosła 4 i mniej. W czterech przypadkach były 

to nawet tylko dwie klasy, co stanowi medianę dla całego zbioru obrazów.  
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Rys. 8.11. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 
IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany  

na bazie obrazu hiperspektralnego o nazwie „Skaly-04” 

 

Rys. 8.12. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej – 

IoU, dla obrazów symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany 
 na bazie obrazu hiperspektralnego o nazwie „Platki-70” 
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Tabela 8.2. Zestawienie wyników możliwości redukcji liczby pasm dla skuteczności na poziomie co najmniej 90% 

 Minimalna liczba kluczowych pasm spektralnych,  
dla której skuteczność klasyfikacji wynosi co najmniej 90% 

Indian 
Pines 

Salinas Salinas-A 
Pavia 

Centre 
Platki-01 Skaly-04 

Platki-
70 

Mediana 

Liczba klas 16 16 6 9 8 8 11 - 

PCA 3 3 3 5 2 2 2 3 

LDA 3 4 2 3 2 2 2 2 

RF 4 3 3 4 2 2 2 3 

Minimum 3 3 2 3 2 2 2 2 

Min/Klas 0,2 0,2 0,3 0,3 0,3 0,3 0,2 0,25 

 

Tabela 8.3. Zestawienie wyników możliwości redukcji liczby pasm dla skuteczności na poziomie co najmniej 95% 

 Minimalna liczba kluczowych pasm spektralnych,  
dla której skuteczność klasyfikacji wynosi co najmniej 95% 

Indian 
Pines 

Salinas Salinas-A Pavia 
Centre 

Platki-01 Skaly-04 Platki-
70 

Mediana 

Liczba klas 16 16 6 9 8 8 11 - 

PCA 4 4 3 12 8 2 5 4 

LDA 5 4 2 5 3 3 24 4 

RF 5 4 3 9 2 2 2 3 

Minimum 4 4 2 5 2 2 2 2 

Min/Klas 0,3 0,3 0,3 0,6 0,3 0,3 0,2 0,25 

 

Dla większości obrazów (sześć z siedmiu) stosunek minimalnej liczby kanałów 

spektralnych do liczby klas prawdy podstawowej wyniósł 0,3 lub mniej. Możliwe jest zatem 

wyciągnięcie wniosku, iż wymagana liczba kanałów spektralnych powinna wynosić nie mniej 

niż jedna trzecia liczby poszukiwanych klas. W przeprowadzonych testach zdarzył się jednak 

przypadek, w którym liczba ta wyniosła więcej niż 0,3, a był to obraz „Pavia Centre”,  

dla którego stosunek ten wyniósł 0,6. 

Analizując skuteczność algorytmów pod kątem właściwej selekcji pasm, uzyskujących 

najlepsze wyniki w teście, zauważyć można brak jednej wyróżniającej się korzystnie  

lub niekorzystnie metody. W przypadku skuteczności o progu 90% najlepsze rezultaty 

uzyskiwano metodą LDA, dla której mediana najmniejszej liczby pasm wynosiła 2.  

W przypadku progu skuteczności 95%, najlepsze rezultaty otrzymane zostały z 

wykorzystaniem metody RF. Oznacza to zatem, że w zależności od rodzaju obrazu i jego cech 

topograficznych, najlepsze rezultaty mogą być otrzymane za pomocą innych metod ekstrakcji 

pasm.  

Przedstawione wyniki badań,  a w szczególności potwierdzenie możliwości uzyskiwania 

wysokich skuteczności klasyfikacji dla niewielkiej liczby kanałów spektralnych potwierdza 

założenia postawione w tezie niniejszej rozprawy doktorskiej. W szczególnośći, możliwa jest 

aplikacyjna, czyli nakierowana na konkretne zadanie detekcyjne, redukcja obrazu 
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hiperspektralnego do znacznie uproszczonej postaci multispektralnej, która pozwoli na 

poprawną klasyfikację obrazu.  

 

8.5. ANALIZA WPŁYWU SZEROKOŚCI OKNA KANAŁU SPEKTRALNEGO NA SKUTECZNOŚĆ 

KLASYFIKACJI 

Uzyskane w rozdz. 8.4 wyniki potwierdziły możliwość realizacji uproszczonych układów 

obrazowania spektralnego, które potencjalnie mogą opierać się wyłącznie na kilku kanałach 

(nawet czterech – dwóch). Pozwoliło to ukierunkować prace badawcze na kolejny krok, który 

pozwoli na syntezę układów o wysokiej sprawności radiometrycznej. Jest to określenie 

wpływu szerokości okna kanału spektralnego na skuteczność klasyfikacji. W tym celu 

przeprowadzono eksperyment według schematu przedstawionego na rysunku 8.13.  

 

 

Rys. 8.13. Schemat algorytmu zastosowanego w badaniach wpływu szerokości okna spektralnego spektralnych 

na skuteczność klasyfikacji 

W stosunku do algorytmu przedstawionego na rysunku 8.5, jedyną różnicą jest krok 

symulacji szerokości kanałów spektralnych, który jest uwzględniany w symulatorze obrazu 

multispektralnego. Zdecydowano się na symulację poszerzonych okien pasm spektralnych  

o odpowiedzi spektralnej, a właściwie o wadze nadawanej każdemu kanałowi w kształcie 

krzywej rozkładu normalnego. Krzywa ta najlepiej odwzorowuje transmitancję filtrów 

optycznych w domenie długości fali. Symulowano odpowiednio szerokości nieparzyste równe: 

• 1 (uwzględniany jeden centralny kanał spektralny), 
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• 3 (uwzględniony kanał centralny i dwa symetrycznie sąsiednie), 

• 5 (uwzględniony kanał centralny i cztery symetrycznie sąsiednie), 

• 11, 

• 21, 

• 41, 

• 81, 

• 161  (przypadek niepraktyczny, lecz traktowany jako graniczny). 

Kanały te matematycznie były dla każdego piksela sumą kanału centralnego o wadze 

równej 1,0 oraz kanałów sąsiadujących o wagach zgodnych z rozkładem normalnym (kształtem 

krzywej Gaussa). W każdym przypadku odchylenie standardowe rozkładu wyznaczane było 

jako wartość szerokości okna spektralnego (r) podzielonej przez 4. Przykład symulacji z obrazu 

„Indian Pines) dla 10 kluczowych kanałów i kilku wariantów szerokości okna spektralnego 

przedstawiono na rysunku 8.14. 

 

Rys. 8.14. Reprezentacja kanałów i ich wag składających się na symulowane okna kanałów spektralnych dla 

obrazu „Indian Pines” dla różnych wartości parametru szerokości okna (r): a) r=1, b) r=5, c) r=11, d) r=41 
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Jak można zauważyć, szczególnie dla wybranych większych wartości r, symulowane kanały 

nachodzą na siebie, co powoduje dublowanie informacji zawartych w tych kanałach. Na tym 

etapie badań zdecydowano się uwzględnić takie przypadki, ponieważ dzięki zastosowaniu 

metody Random Forest przy klasyfikacji, zdublowane dane nie powinny wpływać na 

skuteczność i tym samym zaburzać eksperymentu. 

Przed przeprowadzeniem symulacji dla różnych liczb i szerokości kanałów w celu 

znajomości możliwości referencyjnych, symulowana została również panchromatyczna postać 

obrazu, czyli taka, w której dla każdego piksela wyznaczana jest mediana ze wszystkich 

kanałów spektralnych. Na takim obrazie jest realizowana taka sama klasyfikacja  

z wykorzystaniem metody RF, jak dla innych, sprawdzanych obrazów symulowanych. Dzięki 

temu wyznaczany jest minimalny poziom zdolności klasyfikacji, która może być 

przeprowadzona na obrazie całkowicie pozbawionym rozdzielczości spektralnej, a właściwie  

o rozdzielczości spektralnej wynoszącej tyle, co cały zakres spektralny instrumentu. Taki 

wzorzec jest używany jako baza referencyjna, ponieważ powszechnie wiadomo, że nawet 

obraz panchromatyczny niesie ze sobą informacje pozwalające na rozróżnienie klas obiektów 

na obrazie. Szeroko znanym dowodem dla takiej tezy jest fakt, że pierwsze fotografie oraz kino 

czarnobiałe, wciąż pozwalają na rozróżnianie obiektów, nie tylko po ich kształcie, ale również 

po poziomach intensywności. Na rys. 8.15 przedstawiono przykład skuteczności dopasowania 

klas po klasyfikacji w stosunku do prawdy podstawowej dla liczby kluczowych pasm 

spektralnych w zakresie od 4 do 1 i szerokości okien spektralnych w zakresie od 1 do 161. 
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Rys. 8.15. Wykres przedstawiający skuteczność dopasowania klas po klasyfikacji w stosunku do prawdy 

podstawowej – IoU, dla obrazów symulowanych do postaci od 4 do 1 kluczowych pasm spektralnych  

i o różnej, od 1 do 161, szerokości okien spektralnych. Obraz symulowany na bazie obrazu hiperspektralnego  

o nazwie „Pavia Centre”, kanały spektralne dobrane zostały metodą LDA 
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Jak można zauważyć, odpowiednio dostosowany rozmiar okna spektralnego może dać 

zauważalną poprawę skuteczności klasyfikacji, szczególnie dla obrazów o mniejszych liczbach 

kanałów spektralnych. Efekt takiej poprawy skuteczności jest szczególnie widoczny na obrazie 

z pojedynczym kanałem spektralnym, choć należy również zauważyć, że nie jest w takim 

przypadku możliwe zwiększenie skuteczności znacząco powyżej skuteczności referencyjnej dla 

obrazu panchromatycznego.  

Co najważniejsze dla stawianej tezy o możliwości syntezy uproszczonych układów 

obrazowania spektralnego, szczególnie na obrazach o liczbach pasm większych od 2, 

skuteczność wraz ze wzrostem szerokości kanału spektralnego maleje nieznacznie.  

Na przestrzeni rozmiaru okna spektralnego od 5 do 81, w przypadku obrazu o trzech i czterech 

kanałach, spadek ten wyniósł ok. 1,2%. Podobną tendencję, choć niewidoczną  

na przedstawionym wykresie (rys. 8.15), zauważono dla liczb kanałów spektralnych większych 

niż 4, tj. aż do 30 kanałów włącznie. 

To samo zjawisko, czyli maksymalizację skuteczności dla obrazów o liczbie kanałów  

większej niż 2 i o rozmiarach okien spektralnych od ok. 3 do ok. 21, zaobserwowano  

w przypadku pozostałych zestawów danych. W związku z tym przeprowadzono symulacje dla 

wszystkich siedmiu obrazów z testowanego zestawu obrazów HSI dla wszystkich trzech metod 

(PCA, LDA i RF), liczb kanałów spektralnych od 1 do 30 oraz o rozmiarach okien spektralnych 

od 1 do 161, podobnie jak w przedstawionym przykładzie. Sumarycznie dało to 5040 symulacji, 

które nie sposób przedstawić w niniejszej pracy doktorskiej. W przypadku każdego obrazu, 

przynajmniej jedna z metod wykazywała zjawisko poprawy lub braku istotnego wpływu na 

skuteczność dla coraz wyższych rozmiarów okien spektralnych. Oznacza to, że rezultaty 

podjętychi badań są bardzo silnym dowodem na możliwość upraszczania formy i wymagań 

stawianych filtrom optycznym w syntezie uproszczonych układów obrazowania spektralnego. 

 

8.6. METODA SYNTEZY UPROSZCZONYCH UKŁADÓW OBRAZOWANIA SPEKTRALNEGO 

Rozwiązanie zdefiniowanych w rozprawie problemów badawczych utorowało drogę  

do sformułowania metody syntezy uproszczonych układów obrazowania spektralnego.  

Jak pokazały wyniki przedstawione w rozdz. 8.3 – 8.5, metoda ta wymaga pewnych procesów 

decyzyjnych po stronie osoby dokonującej syntezy, jednak istnieje możliwość dalszej 

automatyzacji z użyciem narzędzi nauczania maszynowego. Finalny, proponowany algorytm 

takiej syntezy przedstawiony jest na rys 8.16. 
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Rys. 8.16. Algorytm syntezy uproszczonych układów obrazowania spektralnego 

Syntezę należy rozpocząć od definicji problemu klasyfikacyjnego, czyli odpowiedzi  

na pytanie „co jest poszukiwane?” rozpatrywanym systemem obrazującym. W kolejnym kroku 

wykonywana jest kampania akwizycyjna instrumentem HSI, który pozwoli na pozyskanie 

obrazów hiperspektralnych w możliwie najszerszym spektrum i z jak największą 

rozdzielczością spektralną. Takie hypercube’y mogą zostać pozyskane zarówno w testach 

laboratoryjnych, jeśli aplikacja jest związana z obiektami o małym rozmiarze np. detalami 

przemysłowymi. Tak pozyskane obrazy należy opatrzyć prawdą podstawową, która zazwyczaj 

jest wykonywana przez człowieka.  

W kolejnym kroku następuje selekcja pasm kluczowych metodami PCA, LDA i RF  

co pozwala na uzyskanie zestawu pasm kluczowych. Następne działanie to symulacja serii 

obrazów multispektralnych, w sposób podobny, jak miało to miejsce w rozdziałach 8.4  

i 8.5. Wyniki takich symulacji następnie powinny być ocenione przez człowieka, który podejmie 

decyzję o doborze optymalnego zestawu fizycznych filtrów spektralnych, jak również 

zdecyduje o rodzaju instrumentu uproszczonego.  

Rozpatrywać można kilka podejść. Jeśli analiza uzyskanych wyników wskaże,  

że wystarczająca jest liczba trzech kanałów spektralnych i jeśli będą one rozlokowane  

w zakresach odpowiadających kanałom R,G,B, możliwe będzie wykonanie pojedynczego filtra 

spektralnego, który będzie posiadać trzy okna przepustowe. Taki filtr ustawiony przed kamerą 

RGB, pozwoli na wykorzystanie siatki Bayera i umożliwi akwizycję obrazów nawet w trybie 

akwizycji ciągłej (wideo). Inne rozwiązanie, które pozwalana realizację systemu o bardzo 

niskiej cenie dla małych liczb kanałów spektralnych to instrument multikamerowy. 

Zastosowanie kilku kamer panchromatycznych, każda ze spektralnym filtrem przepustowym, 

pozwoli na uzyskanie wyników zgodnych z założonym problemem klasyfikacyjnym. Gdyby 

jednak liczba wymaganych pasm była wyższa, możliwe jest zastosowanie filtrów paskowych, 

które dzielą obraz na kilka obszarów, każdy o innym oknie spektralnym. Przemieszczanie 



161 

translacyjne takiego instrumentu lub obiektu, powoduje realizację obrazowania 

multispektralnego (rozdz. 3.2). 

Doświadczenia i wiedza na temat tego rodzaju różnych podejść pozwala na definicję 

finalnego uproszczonego instrumentu, który po wykonaniu filtrów, możliwy jest  

do implementacji. Ostatnie dwa kroki takiej syntezy to przeprowadzenie testów oraz 

weryfikacja względem założeń problemu klasyfikacyjnego. Tak dokonana synteza pozwala na 

uzyskanie uproszczonych układów obrazowania spektralnego, a kluczowe problemy 

badawcze, zaadresowane w poprzednich podrozdziałach pozwalają na stwierdzenie,  

że metoda ta może być skutecznie wdrożona w aplikacjach przemysłowych, kosmicznych, 

górniczych i rolniczych. 

 

 

8.7. WERYFIKACJA WDROŻENIOWA METODY SYNTEZY UPROSZCZONYCH UKŁADÓW 

OBRAZOWANIA SPEKTRALNEGO 

W niniejszym rozdziale przedstawiono przykłady zastosowania opracowanej metody 

syntezy uproszczonych układów obrazowania spektralnego w wybranej aplikacji zrealizowanej 

przez firmę Scanway S.A. dla klienta z branży spożywczej. Zagadnienie dotyczyło rozwiązania  

problemu wykrywania obecności specyficznych ciał obcych na linii przetwarzania ryżu.  

Ze względu na specyfikę zakładu produkcyjnego i rodzaj zastosowanych w nim przenośników 

przemysłowych, epizodycznym zjawiskiem było pojawianie się ciał obcych stanowiących 

tworzywa sztuczne (nylon) w przetwarzanym ryżu. W zakładzie stosowana była ręczna 

kontrola jakości, polegająca na obserwacji rozłożonych równomiernie ziaren ryżu w trakcie 

transportu na przenośniku, jednak metoda ta nie sprawdzała się w przypadku wtrąceń  

z nylonu. Nylon w postaci stosowanej w zakładzie miał kolor niemal identyczny z kolorem ryżu. 

Jego identyfikacja była niezwykle trudna poprzez obserwację ludzkim wzrokiem oraz 

kamerami RGB (rys. 8.17). W identyfikacji ciał obcych, w branży spożywczej stosowane są 

często skanery rentgenowskie i klient rozważał również instalację takiego rozwiązania. 

Niestety jest to rozwiązanie umożliwiające identyfikację wtrąceń o znacząco różnej gęstości 

niż ryż. W przypadku tworzyw sztucznych gęstość ta jest również niemal identyczna 

 co wyklucza możliwość identyfikacji takich ciał obcych skanerem rentgenowskim. 
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Rys. 8.17. Obraz z kamery RGB przedstawiający ryż z wtrąceniami w postaci nieregularnych fragmentów 

tworzyw sztucznych (zaznaczone w elipsach) 

 

Zagadnienie zostało zatem sprawdzone z wykorzystaniem kamery hiperspektralnej, której 

obrazy stanowiły dane wsadowe do weryfikowanej metody syntezy uproszczonych układów 

obrazowania spektralnego. Ponieważ rozważana była również implementacja samej kamery 

hiperspektralnej w zakładzie klienta, zdecydowano się skorzystać z kamery z wysoką 

częstotliwością rejestracji obrazów – Ximea XiSpec z liniowymi filtrami Fabry-Perot 

naniesionymi bezpośrednio na sensor CMOS.  

Pierwszym krokiem wdrożeniowym metody syntezy, już po zdefiniowaniu problemu, było 

dokonanie akwizycji obrazów HSI, na których znajdować się będą zarówno ryż, 

 jak i wtrącenia z tworzyw sztucznych w postaciach, jakie spotykane są w zakładzie klienta. 

Rysunek 8.18 przedstawia obraz hiperspektralny (kanały RGB) rejestrowanej sceny z różnymi 

materiałami. 
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Rys. 8.18. Obraz z kamery hiperspektralnej (kanały RGB) przedstawiający różne analizowane materiały: 

a), b) nylon pojawiający się jako wtrącenie, c) ryż 

 

Po oznaczeniu obszarów prawdy podstawowej na obrazie (czyli oznaczeniu pikseli 

odpowiadających ryżowi oraz nylonowi), przystąpiono do ekstrakcji pasm kluczowych.  

W celach badawczych zastosowano wszystkie trzy metody selekcji pasm, omówione we 

wcześniejszych częściach tego rozdziału, czyli metod: PCA, LDA oraz RF. Rysunek 8.19 

przedstawia wagi pasm kluczowych w zestawie wszystkich 67 pasm (oznaczonych od 0 do 66), 

które rejestruje kamera. 

 

Rys. 8.19. Wykresy wag nadanych poszczególnym kanałom spektralnym przez algorytm: a) PCA, b) LDA, c) RF 

 

a) 

b) 

c) 
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Zgodnie z rysunkiem 8.19, decydując się na syntezę w postaci kamery MSI o liczbie pasm 

równiej 3, najistotniejsze pod kątem rozróżniania klas prawdy podstawowej pasma to: 

• dla PCA: kanały 66, 47 i 55, co odpowiada długościom fali: 916 nm, 834 nm i 865 nm, 

• dla LDA: kanały 11, 13 i 15, co odpowiada długościom fali: 686 nm, 696 nm i 704 nm, 

• dla RF: kanały 66, 65 i 10, co odpowiada długościom fali: 916 nm, 913 nm i 681 nm, 

Rysunek 8.20 przedstawia zestawienie obrazów symulowanych, które przekładają 

wyselekcjonowane składowe na kanały czerwony, zielony i niebieski (kolory odwrócone). 

Na obrazie możliwa jest identyfikacja wtrąceń, dzięki podkreśleniu ich położenia  

z zastosowaniem elips. Obraz wyraźnie wykazuje, że najlepszy, czyli dający największe 

możliwości w identyfikacji wtrąceń obraz, to symulacja kluczowych kanałów określonych przez 

metodę LDA. Metody PCA i RF umożliwiają częściowe wykrycie, które być może  

z zastosowaniem zaawansowanej obróbki obrazu, umożliwiłoby detekcję wtrąceń. 

Zdecydowanie jednak, metoda LDA może wymagać wyłącznie poprawy kontrastu, przed 

zastosowaniem metod widzenia maszynowego, umożliwiających detekcję wtrąceń.  

 

 

Rys. 8.19. Zestawienie symulacji obrazu multispektralnego, na którym trzy wyselekcjonowane pasma  

o najwyższych wagach reprezentują kolory RGB (zakresy odwrócone). Wtrącenia zaznaczone są niebieskimi 

elipsami. Obrazy wygenerowane na podstawie metod selekcji pasm: a) PCA, b) LDA, c) RF 
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Co najważniejsze, opisany w tym rozdziale przykład zdecydowanie wykazał, że możliwości 

kamery hiperspektralnej (przy odpowiedniej selekcji pasm) można przełożyć na zredukowany 

w stopniu skomplikowania instrument multispektralny, który może mieć wyłącznie trzy, lecz 

wyselekcjonowane pasma. W niektórych aplikacjach, w których wyselekcjonowane pasma, 

będą odseparowane spektralnie i znajdować się będą osobno w kanałach z zakresu R,G,B, 

możliwa będzie synteza układu multispektralnego z wykorzystaniem niezmodyfikowanej 

kamery RGB. Realizacja takiego układu jest możliwa, jeśli zostanie zastosowany specjalny 

oświetlacz wąskopasmowy, składający się z diod LED o wybranych, wyselekcjonowanych 

długościach emitowanej fali światła, korespondujących z tymi, będącymi efektem syntezy.  

Możliwości realizacji układu MSI, będącego efektem syntezy uproszczonych układów 

obrazowania spektralnego, jest wiele. W większości przypadków takich realizacji, możliwe jest 

wdrożenie systemu spektralnej detekcji w koszcie i o poziomie skomplikowania znacznie 

niższym niż jakakolwiek dostępna rynkowo kamera hiperspektralna. 

 

Badania przedstawione w niniejszym rozdziale jednoznacznie pozwoliły potwierdzić, 

postawioną w niniejszej rozprawie doktorskiej hipotezę. W szczególności badania wpływu 

liczby kluczowych kanałów spektralnych pokazały wyraźnie, że stosowane mogą być nawet 

obrazy posiadające znacznie mniej kanałów spektralnych niż wynosi liczba klas prawdy 

podstawowej. Dowód w postaci symulacji przeprowadzonych na zróżnicowanym zestawie 

obrazów HSI nie pozostawia wątpliwości, co do możliwości redukcji pierwotnego obrazu 

hiperspektralnego do postaci pojedynczych kanałów spektralnych.  

Co warto również zauważyć, poszerzanie kanałów spektralnych, do pewnego, 

określonego badawczo stopnia, sprzyja zwiększaniu skuteczności klasyfikacji obiektów  

na obrazach. Idzie to w parze ze zwiększeniem wykonalności technologicznej fizycznych 

kanałów spektralnych dla docelowych układów uproszczonych. Oczywiście, istnieje pewne 

optimum, które wraz z dalszym rozszerzaniem okna spektralnego, upośledza skuteczność 

klasyfikacji. Osoba dokonująca syntezy układu uproszczonego, musi pamiętać o takich 

zjawiskach, podczas projektowania docelowego instrumentu. 

Wszystkie wykonane symulacje odpowiadające postawionym problemom badawczym 

potwierdzają, że zaproponowana synteza układów uproszczonego obrazowania spektralnego, 

pozwala na istotne uproszczenie realizacji zagadnień związanych z optyczną klasyfikacją 

obiektów. Systemy multispektralne, szczególnie w postaci kilkukanałowej, mogą być 

implementowane w aplikacjach klienckich za ułamek kwoty i ze znacznie mniejszym 
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poziomem skomplikowania w stosunku do instrumentów hiperspektralnych. Taka możliwość 

zdecydowanie podnosi wagę wyników uzyskanych w przedstawionych w pracy badaniach  

w kontekście spodziewanego upowszechnienia w kierunku szerokiego zastosowania metod 

obrazowania spektralnego w technice. 

 

Przedstawiony w rozdziale przykład aplikacji, nie tylko dowodzi słuszności postawionej 

w niniejszej rozprawie doktorskiej hipotezy, ale również wykazuje wysoką wartość 

wynikającą z wykorzystania metody syntezy uproszczonych układów obrazowania 

spektralnego. 
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9. PODSUMOWANIE 

Główne osiągnięcia niniejszej rozprawy obejmują: 

1) zidentyfikowanie i zbadanie kluczowych etapów przetwarzania danych w systemach 

hiperspektralnych, oraz 

2) zaproponowanie nowatorskiego podejścia, umożliwiającego budowę uproszczonych 

systemów obrazowania spektralnego dedykowanych do określonych aplikacji, przy 

jednoczesnym zachowaniu ich kluczowych funkcji analitycznych. 

 

Praca ta stanowi odpowiedź na istotne wyzwania stojące przed technologią HSI, która  

jak wykazano w kolejnych rozdziałach, mimo ogromnego potencjału nadal, ze względu  

na złożoność, ograniczenia sprzętowe i wysokie koszty, pozostaje niedostępna w wielu 

zastosowaniach. Zaproponowany w rozprawie uproszczony łańcuch przetwarzania danych 

udowadnia postawioną w rozprawie hipotezę, że możliwe jest stworzenie uproszczonych, 

dedykowanych systemów MSI, które dzięki starannej selekcji pasm i zastosowaniu 

nowoczesnych algorytmów analitycznych, mogą osiągać skuteczność porównywalną  

z klasycznymi systemami pełnospektralnymi. 

Szczegółową analizę teoretyczną dotyczącą technik akwizycji, przetwarzania i analizy 

danych spektralnych, z uwzględnieniem ograniczeń technicznych, ekonomicznych  

i użytkowych współczesnych rozwiązań przedstawiono w rozdz. 2–5. Studium literaturowe 

obejmuje przegląd stosowanych obecnie jak i w przeszłości technik akwizycji, przetwarzania  

i analizy danych hiperspektralnych. Dzięki analizie przedstawionej w rozdz. 2 możliwe było 

wskazanie ograniczeń różnych technik, jak i prześledzenie historii rozwoju obrazowania 

spektralnego. Studium literaturowe pozwoliło również na rozpoznanie aplikacji 

wykorzystujących obrazowanie HSI oraz MSI, co określiło granice badawcze dla dalszych 

etapów pracy. W szczególności, dzięki rozpoznaniu aplikacji wykorzystujących takie rozmaite 

platformy obrazujące, jak satelity, drony, samoloty oraz skanery laboratoryjne i przemysłowe, 

możliwa była synteza metodologii doboru odpowiedniego instrumentu obrazowania 

spektralnego.  

Metodologia ta omówiona została w rozdz. 3. Określa ona jakie cechy posiadają 

poszczególne rodzaje akwizycji spektralnej oraz w jaki sposób dobrać odpowiedni rodzaj 

kamery HSI, w zależności od stawianych w aplikacji celów i możliwych do zastosowania 

platform obrazujących (rys. 3.12). 
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W rozdz. 4 prześledzono aplikacje przemysłowe, kosmiczne, górnicze i rolnicze. 

Zidentyfikowano obecnie występujące bariery technologiczne i ekonomiczne ograniczające 

szerokie zastosowanie systemów HSI oraz przedstawiono potencjalne ścieżki ich 

przezwyciężania, w szczególności przez redukcję ich złożoności i kosztu. W rozdziale tym 

przedstawiono również wyniki własnych doświadczeń Autora, związanych z realizacją 

systemów obrazowania hiperspektralnego, zrealizowanych w firmie Scanway S.A.,  dla potrzeb 

wybranych aplikacji. 

Rozdział 5 opisuje kluczowe techniki przetwarzania i analizy danych hiperspektralnych. 

Dogłębne studium (tab. 5.2) pozwoliło na określenie składników obliczeniowych w aplikacjach 

HSI, dzięki czemu stworzono ramy do oceny i projektowania systemów analizy obrazów 

spektralnych, które w kolejnych rozdziałach stanowią kluczowe elementy prac badawczych  

i syntezy metodologii potwierdzającej postawioną hipotezę. W szczególności, stwierdzono,  

że poprawne przetwarzanie danych w systemie spektralnym zależy nie tylko od jakości obrazu, 

ale także od skuteczności przetwarzania i analizy danych. Podkreślono znaczenie technik 

redukcji wymiarowości, takich jak PCA czy LDA, które pozwalają uprościć dane bez utraty 

istotnych informacji diagnostycznych. 

W rozdz. 6 przedstawiono opis eksperymentów i wyniki badań elementów filtrujących, 

stosowanych w akwizycji HSI. Zbudowano stanowiska badawcze i wykonano pomiary 

laboratoryjne takich różnych elementów optycznych stosowanych w kamerach 

hiperspektralnych, jak pryzmaty, siatki dyfrakcyjne, filtry Fabry-Perot oraz liniowe filtry 

gradientowe. Badania te pozwoliły na wyznaczenie charakterystyk przestrzenno-spektralnych 

tych kluczowych dla obrazowania spektralnego elementów. Opisane prace umożliwiły 

porównanie  możliwości badanych elementów w odniesieniu do optymalnego zastosowania 

różnych technik filtracji pasm optycznych w aplikacjach HSI, a szczególności umożliwiły 

wskazanie najlepszych konfiguracji ze względu na ich użycie w uproszczonych systemach 

spektralnych. 

Istotnym elementem całej pracy doktorskiej jest rozdział 7, w którym opisano badania 

metod przetwarzania i analizy danych HSI. Wyniki opisanych w nim prac badawczych, wskazują 

jednoznacznie na przewagę skuteczności zaawansowanych nadzorowanych metod 

klasyfikacyjnych, opartych na drzewach decyzyjnych, nad metodami nienadzorowanymi. 

Określone zostały także najbardziej wydajne czasowo algorytmy spośród wszystkich 

sprawdzanych. Dzięki wykorzystaniu zbioru danych testowych, składającego się  

ze zobrazowań hiperspektralnych zarówno z różnych instrumentów, jak i różnych aplikacji 
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(tabela 7.1), możliwe było przeprowadzenie kilkuset eksperymentów obliczeniowych (tabela 

7.5) i wyznaczenie parametrów statystycznych wyników (tabele 7.5 – 7.13, rys. 7.6 – 7.24). 

Otrzymane wyniki udowodniły, że nawet silnie zredukowane dane mogą być równie 

wartościowe jak dane pełne. 

Kluczowe dla weryfikacji hipotezy są prace badawcze, których realizacja opisana jest  

w rozdziale 8. Przeprowadzone badania pozwoliły na określenie metodologii syntezy układów 

multispektralnych, które odznaczają się znacznym uproszczeniem względem systemów 

hiperspektralnych. Sprawdzono w jaki sposób liczba pasm spektralnych oraz zwiększanie 

szerokości okna spektralnego wpływa na skuteczność operacji klasyfikacyjnych. Wykazano,  

że w przypadku testowej grupy zobrazowań hiperspektralnych, liczba kanałów spektralnych 

wymaganych do skutecznego rozpoznawania klas obiektów, jest znacznie mniejsza niż rozmiar 

grupy wszystkich kanałów spektralnych instrumentu HSI. Pozwoliło to wyciągnąć wnioski  

co do słuszności tezy postawionej we wstępie do niniejszej pracy doktorskiej.  

Rezultaty osiągnięte w tym rozdziale są bardzo istotne i mogą przyczynić się  

do zwiększenia powszechności zastosowania systemów obrazowania spektralnego w wielu 

dziedzinach życia i gospodarki. W szczególności wykazanie, że niewielka liczba kanałów 

spektralnych, których rozmiar (szerokość okna) może być większy niż w kamerze HSI, sugeruje 

możliwość syntezy uproszczonych, dedykowanych dla poszczególnych aplikacji układów MSI. 

Ponieważ, jak wskazano w pracy, układy HSI cechują się wysokim kosztem, poziomem 

skomplikowania i ograniczeniami radiometrycznymi, proste układy multispektralne  

o szerokich oknach spektralnych mogą stanowić optymalne rozwiązanie dla wielu aplikacji.  

Przykładem wysokiej wartości takiej syntezy mogą być skanery multispektralne, 

dedykowane do klasyfikacji grup materiałowych, które mogłyby być zastosowane w 

kontenerach na odpady. Rozwiązanie w postaci zoptymalizowanej kamery MSI stanowi 

możliwe do zrealizowania pod kątem ekonomicznym rozwiązanie, w odróżnieniu  

od kamer HSI, które mogłyby nigdy nie przynieść zwrotu z takiej inwestycji. 

Potwierdzenie hipotezy jest istotnym krokiem dla upowszechnienia zastosowania 

systemów obrazowania spektralnego, jednak nie jedynym, aby taki rozwój mógł nastąpić. 

Istotne z punktu widzenia implementacji są również sugerowane dalsze badania i prace 

rozwojowe nad systemami produkcji filtrów pasmowo-przepustowych, o możliwie prostej  

i skalowalnej produkcji. Istotne jest to z tego względu, że po przeprowadzeniu syntezy 

uproszczonego układu obrazowania spektralnego, czyli wskazaniu zestawu kluczowych pasm 

dla realizacji aplikacji klasyfikacyjnej, musi nastąpić realizacja optyczna, czyli wyprodukowanie 
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rzeczywistych filtrów optycznych. Oczywiście ich kształt oraz forma zależą w dużej mierze  

od finalnej aplikacji i platformy obserwacyjnej, jednak w każdym przypadku istotne jest, aby 

ich produkcja odznaczała się wysoką wydajnością wytwarzania oraz względnie niską ceną 

pojedynczego egzemplarza. Dlatego też istotne jest, z punktu widzenia motywacji 

przedstawionej na początku niniejszej pracy doktorskiej, kontynuowanie rozwoju systemów 

produkcji filtrów spektralnych. Prace takie rozwijane są między innymi w Zespole Technologii 

Cienkowarstwowych na Wydziale Elektroniki, Fotoniki i Mikrosystemów Politechniki 

Wrocławskiej, w którym powstała niniejsza rozprawa. 

Wskazane jest również kontunuowanie prac nad implementacją rozmaitych, 

nowoczesnych technik przetwarzania i analizy obrazów hiperspektralnych. W ubiegłych kilku 

latach, szczególnie w dobie rozwoju przetwarzania brzegowego, czyli wykonywanego  

w urządzeniach blisko kamer hiperspektralnych (i innych), ważne jest coraz dokładniejsze 

zrozumienie działania wydajnych algorytmów przetwarzania i analizy danych. Również rozwój 

technik sztucznej inteligencji sprzyja rozwojowi systemów hiperspektralnych, ponieważ 

bardziej niż kiedykolwiek, systemy obliczeniowe są obecnie przygotowane do szybkiego 

przetwarzania dużych ilości danych. 

Jak można zauważyć, sukces potwierdzenia przedstawionej w niniejszej pracy doktorskiej 

hipotezy badawczej, niesie ze sobą zarówno szanse dla rozwoju technik i aplikacji obrazowania 

spektralnego, jak również przedstawia kolejne wyzwania leżące u progu dalszego rozwoju  

w tej dziedzinie. Niewątpliwie jednak, zarówno aplikacje przemysłowe, górnicze, rolnicze,  

a także kosmiczne, zyskały nową, wartościową technikę, która może znacznie uprościć 

zastosowanie kamer multi- i hiperspektralnych.  
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