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STRESZCZENIE

Niniejsza rozprawa doktorska przedstawia holistyczny opis metod akwizycji oraz
przetwarzania i analizy danych spektralnych w wybranych aplikacjach przemystowych
i naukowych wraz z propozycjg autorskiej metodologii obrazowania i przetwarzania danych
w zaleznosci od aplikacji. Problem badawczy dotyczyt weryfikacji postawionej w rozprawie

hipotezy badawczej:

,Systemy hiperspektralne o uproszczonej konstrukcji optycznej i znaczgco
zredukowanej liczbie kanatéw spektralnych, mogq realizowac wiekszos¢ podstawowych zadan
klasyfikacji i identyfikacji obiektow ze skutecznoscig poréownywalng do klasycznych systemow
hiperspektralnych o wysokiej liczbie kanatéw spektralnych, pod warunkiem optymalnego

doboru pasm i wykorzystania zaawansowanych metod przetwarzania danych”.

Weryfikacja hipotezy badawczej wymagata wykonania szeregu badan i analiz, w tym
szczegdtowe] analizy mocnych i stabych stron a takie zakresu stosowania dotychczas
opracowanych technik realizacji obrazowania multi- (MSI) i hiperspektralnnego (HSI).
Pozwolito to wskaza¢ kluczowe etapy w tanicuchu akwizycji i przetwarzania danych. Do jednych
z nich nalezg sposoby filtracji kanatow spektralnych, w ktérych wykorzystywane sg takie
elementy optyczne, jak siatki dyfrakcyjne, pryzmaty oraz filtry Fabry-Perot, czy filtry
gradientowe (LVF). Wykonane badania oraz opracowane zestawienie charakterystyk
przestrzenno-spektralnych wybranych elementdéw filtracyjnych, dostarczyty informacji na
temat optymalnego doboru kluczowych komponentéw systeméw obrazujgcych ze wzgledu na
docelowa aplikacje (np. w rolnictwie, czy w sortowni odpadéw). Kolejny kluczowy etap

analizowany w pracy dotyczyt wydajnosci algorytmow przetwarzania i analizy danych (HSI).

Na podstawie wykonanych badan, opracowana zostata autorska metoda syntezy uktadow
obrazowania spektralnego ze zredukowang zaledwie do kilku liczbg kluczowych kanatéw
spektralnych. Wykonane prace pozwolity potwierdzi¢ stusznos¢ postawione] hipotezy, jak
rowniez nakresli¢ obszary dalszego rozwoju w kierunku szerszego wykorzystania
i upowszechnienia metod obrazowania spektralnego w technice. Wyniki zrealizowanej
rozprawy powstaty we wspodtpracy oraz zostaty wdrozone w firmie Scanway S.A. w ramach

projektu Doktorat Wdrozeniowy Edycja V (nr umowy DWD/5/0280/2021).



ABSTRACT

This doctoral dissertation presents holistic description of acquisition methods and
processing and analysis of spectral data in selected industrial and scientific applications, along
with a proposal of the author's application-specific imaging and processing methodology.

Verification of the research hypothesis established in the dissertation:

"Hyperspectral systems with a simplified optical design and a significantly reduced
number of spectral channels can perform most of the basic tasks of object classification and
identification with an efficiency comparable to classical hyperspectral systems with a high
number of spectral channels, provided that the bands are optimally selected and advanced

data processing methods are used"

required to carry out a series of studies and analyses, including a detailed analysis of the
strengths and weaknesses and also the scope of application of the techniques developed so
far for the implementation of multi- (MSI) and hyperspectral imaging (HSI). This made it
possible to draw conclusions and identify key steps in the chain of data acquisition and
processing. Among them are the ways of filtering spectral channels, in which such optical
elements as diffraction gratings, prisms and Fabry-Perot filters or gradient (linear variable)
filters (LVF) are used. The research performed and the compilation of spatial-spectral
characteristics of the filter elements studied, provided information on the optimal selection
of key components of imaging systems due to the target application (e.g. in agliculture or in
waste sorting facility). Another key stage analyzed in the work was the performance testing of

data processing and analysis (HSI) algorithms.

As a result of the research performed, an original method was developed for the synthesis
of spectral imaging systems with reduced to only a few, key spectral channels. The work
performed made it possible to verify stated hypothesis, as well as to outline areas for further
development in the direction of wider use and dissemination of spectral imaging methods in
technology. The results of the completed dissertation were created in cooperation with and
implemented at Scanway S.A. within the framework of the project Implementation Doctorate

Edition V (contract number DWD/5/0280/2021).
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1. WSTEP

Wzrok, bardziej niz jakikolwiek inny zmyst dostarcza cztowiekowi informacji na temat
otaczajgcego sSwiata, jego natury, ksztattu i barw. Cho¢ wydawacé by sie mogto, ze oczy
to instrument doskonaty, rejestrujacy rzeczywistos¢ z duzg doktadnoscig, w istocie sg one
obarczone szeregiem niedoskonatosci. Jedng z najwiekszych niedoskonatosci jest sktonno$é
zmystu wzroku do tworzenia wrazenia, ze wszystkie barwy mozna odwzorowaé mieszaning
trzech barw podstawowych. Rzeczywisto$¢ jest jednak bardziej skomplikowana. Niniejsza
praca doktorska zgtebia techniki obserwacji hiperspektralnej, ktéra bardziej niz jakakolwiek
inna metoda rejestracji, otwiera przed nami mozliwo$¢ pozyskania nowych, niedostepnych
wczesniej informacji o materiale, strukturze i wtasciwosciach obserwowanych obiektéw,

umozliwiajgc tym samym gtebsze i bardziej obiektywne poznanie i zrozumienie rzeczywistosci.

1.1. MOTYWACJA DO POWSTANIA PRACY | WYZWANIA

Obecnie systemy obrazowania hiperspektralnego, gtéwnie ze wzgledu na stosunkowo
wysokg cene, wykorzystywane sg w ograniczonym zakresie. Chociaz przewiduje sie,
ze upowszechnienie tego rodzaju technik w coraz szerszych i coraz bardziej codziennych
zastosowaniach jest juz tylko kwestig czasu, wcigz istnieje kilka istotnych barier stojacych
na drodze do takiego stanu rzeczy.

Obecnie instrumenty hiperspektralne (HSI) sg wykorzystywane gtéwnie tam, gdzie ich
wysoka cena skompensowana moze by¢ przez zwrot z inwestycji lub gdzie wystepuje
wyzwanie badawcze trudne do zastgpienia innymi technikami. W zwigzku z tym systemy HSI
znajdujg obecnie zastosowanie gtdwnie w przemysle, goérnictwie, medycynie, badaniach Ziemi
i klimatu oraz w badaniach innych planet. Obnizenie ceny oraz redukcja wyzwan stojgcych
przed implementacjg tego typu rozwigzan, pomogtyby upowszechni¢ kamery hiperspektralne
w dziedzinach i biznesach niskomarzowych, jak np. we wczesnym sortowaniu odpadéw (np.
na poziomie konteneréw na odpady), w branzy spozywczej (np. podreczne wykrywacze
patogendw), w motoryzacji (np. rozpoznawanie obiektéw przed pojazdem), w aplikacjach
konsumenckich (np. kamery HSI w smartfonach) oraz w matych gospodarstwach rolnych (np.
HSI instalowane na plantacjach i maszynach rolniczych w celu oceny dojrzatosci plondw i
identyfikacji patogenow).

Kluczowe bariery powstrzymujgce upowszechnienie technik obserwacji spektralnej tgcza

w sobie zardwno aspekty ekonomiczne jak i techniczne. Sg to przede wszystkim:

13



e wysoka cena kamery HSI, wynikajgca z faktu duzego skomplikowania kazdej
z technik akwizycji obrazowania hiperspektralnego,

e obszerny strumiedn danych pochodzacy z obrazowania hiperspektralnego,
wynikajgcy z mnogosci kanatéw spektralnych,

e wymog duzej mocy obliczeniowej urzgdzenia obstugujgcego kamere HSI z uwagi na
wielowymiarowy charakter danych,

e wyzwania radiometryczne powodowane matg szerokoscig kanatéw spektralnych,
co przektada sie na matg liczbe fotonéw padajacych na piksele oraz koniecznos¢
obrazowania w petnym storicu lub z wykorzystaniem dodatkowych oswietlaczy
przemystowych,

e wymog ruchu kamery wzgledem obserwowanego obiektu w trakcie akwizycji, co
w przypadku wiekszosci kamer HSI dostepnych na rynku, wyklucza stosowanie typu

podrecznego (handhield).

Znalezienie rozwigzan dla tych wyzwan, moze przyczyni¢ sie do przyspieszenia rozwoju
i zastosowania technik obrazowania multispektralnego oraz hiperspektralnego. W tym celu,
konieczne jest:

e holistyczne podejscie do tematyki wyzwan systemow HSI,

e analiza wad i zalet wszystkich odmian komponentéw sktadowych,

e poszukiwanie uproszczen zwigzanych z zawezaniem zastosowan aplikacyjnych.

Dziatania te oraz ich mozliwe rezultaty, stanowig witasnie podstawe motywacji do realizacji
niniejszej rozprawy doktorskie;.

1.2. HIPOTEZA BADAWCZA | CELE PRACY
Niniejsza praca ma na celu znalezienie rozwigzan i metodologii akwizycji, przetwarzania i
analizy w obrazowaniu hiperspektralnym, ktére pozwolg na wzrost liczby zastosowan

i implementacji instrumentéw HSI. Kluczowa hipoteza badawcza w niniejszej pracy to:

»Systemy hiperspektralne o uproszczonej konstrukcji optycznej i znaczgco zredukowanej liczbie
kanatow spektralnych, mogq realizowaé¢ wiekszos¢ podstawowych zadan klasyfikacji
i identyfikacji obiektow ze skutecznosciq porownywalnqg do klasycznych systemow
hiperspektralnych o wysokiej liczbie kanatéw spektralnych, pod warunkiem optymalnego

doboru pasm i wykorzystania zaawansowanych metod przetwarzania danych”.
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Zweryfikowanie postawionej hipotezy wymagato realizacji szeregu takich celéw, jak:

1. Opracowanie studium literaturowego pod katem stosowanych obecnie technik
akwizycji, przetwarzania i analizy danych hiperspektralnych.

2. Przeglad literatury pod katem zastosowan i aplikacji wykorzystujgcych akwizycje,
przetwarzanie i analize danych hiperspektralnych.

3. Wykonanie badain wtasciwosci i parametrow kluczowych elementéw kamer
hiperspektralnych.

4. Pordéwnanie réznych metod przetwarzania i analizy danych hiperspektralnych wraz
z weryfikacjg ich skuteczno$ci i wydajnosci.

5. Zaprojektowanie uproszczonej architektury uktadéw obrazowania hiperspektralnego.

6. Weryfikacja skutecznosci uproszczonych uktadéw obrazowania hiperspektralnego.

1.3. STRUKTURA PRACY DOKTORSKIEJ

Opis realizacji przedstawionych w rozdziale 1.2 celéw zawarty zostat w kolejnych
rozdziatach pracy. W szczegdlnosci rozdziat 2 opisuje metody obrazowania w nauce i technice
wraz z przedstawieniem mozliwosci zastosowania tego rodzaju systeméw w metrologii oraz
przyktadami wybranych rozwigzan. Rozdziat 3 to studium systemow multi i hiperspektralnych.
Zawiera on zaréwno definicje podziatu systemdédw MSI i HSI, jak i opis ewolucji i rodzajéw
technik akwizycji multi i hiperspektralnej wraz z przyktadami nowatorskich rozwigzan. Z kolei
rozdziat 4 zawiera opis obszaréw zastosowan obrazowania MSI i HSI. Rozdziat 5 poswiecony
zostat na wprowadzenie literaturowych definicji podstawowych i bardziej zaawansowanych
technik przetwarzania obrazu, stanowigcych faiicuch przetwarzania danych.

Druga cze$¢ niniejszej pracy doktorskiej, to czes¢ wdrozeniowa. W rozdziale 6
zamieszczono uzyskane wyniki badania kluczowych elementéw filtrujgcych $wiatto,
stosowanych w uktadach hiperspektralnych. W rozdziale tym opisano réwniez stanowiska
badawcze zbudowane na potrzeby rozprawy doktorskiej, ktéore umozliwity parametryzacje
cech badanych elementéw optycznych. Rozdziat 7 poswiecony zostat badaniom metod
przetwarzania i analizy danych hiperspektralnych. Zamieszczono w nim rdéwniez opisy
stanowisk badawczych, ktére postuzyty zaréwno do realizacji akwizycji, jak i do przetwarzania
i analizy danych. Z kolei wyniki badan i zaproponowany opis metody realizacji uproszczonych

uktaddw obrazowania spektralnego opisane sg w rozdziale 8.

Catos¢ pracy, wraz z wnioskami i oceng realizacji poszczegdlnych celéw badawczych oraz

weryfikacjg postawionej hipotezy, podsumowane zostaty w rozdziale 9.
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2. OBRAZOWANIE W NAUCE | TECHNICE

Kazdy proces w nauce i technice, ktérego celem jest zbadanie obiektu lub zjawiska,
wymaga podjecia odpowiednich czynnosci i zastosowania odpowiednich narzedzi
pomiarowych. Zdecydowana wiekszos$¢ tego rodzaju proceséw oparta jest na pomiarach,
w ktérych, w okreslonych warunkach (np. w okreslonym miejscu) obserwowana jest
pojedyncza wielkos¢ fizyczna. Powodem takiego jednowymiarowego (punktowego) pomiaru
jest upraszczanie architektury urzadzen i technik pomiarowych. Dla przyktadu, pomiar
temperatury wéd powierzchniowych w oceanie zrealizowany za pomocg pojedynczego
sensora dostarcza informacji na temat temperatury tylko w danym punkcie na powierzchni
zbiornika wodnego. W wielu rdéznych zastosowaniach takie punktowe pomiary
s wystarczajgce. Jednakze, jesli istotne dla procesu badawczego jest okreslenie temperatury
w wielu miejscach, w tym samym czasie, rozwigzaniem moze by¢ zastosowanie techniki
obrazowania (termicznego) [1].

Obrazowanie, jako zagadnienie techniczne, mozna zdefiniowa¢ jako akwizycje
i reprezentacje punktowych danych pomiarowych w domenie przestrzennej [2].
W najprostszym przypadku, poszczegdlne dane punktowe zapisywane sg w komdrkach
dwuwymiarowych macierzy, w miejscach, ktére odpowiadajg ich rzutowi na ptaszczyzne
dwuwymiarowg matrycy sensora optycznego - sg to tzw. piksele. Zbiory takich pikseli
okreslane s3 mianem obrazéw. Taki zapis pozwala na ich rekonstrukcje np. w skali odcieni
szarosci. W wypadku najczesciej stosowanych obrazéw tréjkolorowych, mamy do czynienia z
zestawieniem trzech takich macierzy, gdzie kazda macierz odpowiada innej barwie sktadowej
(R, G i B). W wypadku obrazéw hiperspektralnych, do zapisu danych stosowane sg tzw.
hipermacierze (hipercubes), czyli tréjwymiarowe zbiory informacji numerycznych, w ktérych
trzeci wymiar zwigzany jest z dtugoscig fali elektromagnetycznej [3].

W niniejszym rozdziale przedstawiono proces ewolucji i automatyzacji technik
obrazowania, ktdére umozliwity powstanie obrazowania hiperspektralnego, jak réwniez

przyktady zastosowania tej nowoczesnej techniki w zagadnieniach metrologicznych.

2.1. LUDZKIE ZMYStY A OBRAZOWANIE HIPERSPEKTRALNE

Swiatto, to doskonaty nos$nik informacji. Oprécz rozwigzan technicznych opracowanych
przez cztowieka, w ktdérych wykorzystywane jest promieniowanie elektromagnetyczne
z zakresu fal optycznych, rowniez przyroda i ewolucja na Ziemi juz setki milionéw lat temu

dostrzegta niezwyktg wartos¢ s$wiatta w przekazywaniu informacji. Pierwsze organizmy
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posiadajgce zmyst wzroku datuje sie na 541 min lat temu [4]. W tym kontekscie dzieje
ludzkosci, a w szczegdlnosci zastosowanie kamer, czy zaawansowanych systemoéw
obrazujgcych to jedynie chwila w historii Ziemi, jednak bardzo intensywna w swoim rozwoju.

W drodze ewolucji, organizmy ziemskie w naturalny sposéb wyksztatcity zmyst wzroku
(oczy) w taki sposdb, aby uzyskac¢ najwiekszg czutos¢ w zakresie spektralnym, ktéry nazywamy
zakresem Swiatta widzialnego. Zakres ten zwigzany jest z przepuszczalnoscia (transmitancja
optyczng) atmosfery ziemskiej dla $wiatta docierajgcego do Ziemi ze Stonca, ktodre
w najmniejszym stopniu pochtaniane jest w przedziale od okoto 400 nm do ponad 700 nm (rys.
2.1). Dzieki temu, organizmy zywe sg w stanie okresli¢ potozenie przeciwnika, ofiary lub cechy
nawigacyjne otoczenia [5].

Czuto$¢ spektralna ludzkiego oka, jak réwniez wiekszosci organizmédw na Ziemi,
wyposazonych w zmyst wzroku, osigga maksymalng wartos¢ w przy dtugosci fali
elektromagnetycznej wynoszacej okoto 507 nm dla tzw. widzenia zmierzchowego

(skotopowego) oraz 555 nm dla tzw. widzenia dziennego (fotopowego) — rys. 2.2.

Ultrafiolet ~ Swiatio Odbijana Termiczna Daleka
widzialne podczerwien podczerwien podczerwien
1
1

100%

Transmitancja
optyczna

0%

0,3 0,5 1,0 2,0 3,0 4,0 5,0 10,0 20,0 30,0

Diugosc¢ fali [um]

Rys. 2.1. Transmitancja optyczna ziemskiej atmosfery w funkcji dtugosci fali promieniowania
elektromagnetycznego [5]
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Rys. 2.2. Krzywe czutosci spektralnej oka ludzkiego dla tzw. widzenia dziennego V(A) i zmierzchowego V'(A) [6]
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Potgczenie widzenia barwnego (a doktadniej widzenia sktadowych swiatta o barwach
czerwonej, zielonej i niebieskiej) oraz mozliwosci ludzkiego mdézgu, umozliwiajg dostrzeganie
niemal kazdego zjawiska, jakiego na Ziemi moze doswiadczy¢ cztowiek. Mimo, ze ludzkie oko
jest jednym z najdoskonalszych tego typu organéw w krélestwie zwierzat, to w pewnym
stopniu jest jednak ograniczone. Ludzki umyst bardzo czesto upraszcza rzeczywistos¢ zgodnie
ze stwierdzeniem “jesli czego$ nie wida¢, to tego nie ma”. Jest to oczywiscie potoczne
uproszczenie, ktére sprawdza sie w zdecydowanej wiekszosci zjawisk, jakich mégt doswiadczyé
cztowiek przez tysigclecia, jednak podkresla ono, jak bardzo jestesmy zwodzeni przez
niedoskonatosci naszego wzroku.

Od poczatku istnienia urzadzen umozliwiajacych rejestracje obrazu (np. kamer),
zauwazono, ze dzieki nim mozemy zaobserwowad znacznie wiecej, niz jest w stanie dostrzec
ludzkie, ,nieuzbrojone” oko. Dla przyktadu, w 1878 roku w legendarnym juz eksperymencie,
Eadward Muybridge, dzieki nowatorskiej na éwczesne czasy technice fotografii poklatkowej
udowodnit, ze kon w galopie w istocie odrywa wszystkie nogi od ziemi. Od tego momentu
ludzie na zawsze juz zostali pochtonieci dgzeniem do odkrywania coraz to nowych aspektow
Swiata, ktorych oko nie pozwalato dostrzec.

Od tamtych czasdw mineto ponad 150 lat, a jedng z najnowszych zdobyczy technik
obrazowania jest obrazowanie hiperspektralne. Rejestracja i analiza obrazéow jednoczesnie
w bardzo wielu stosunkowo waskich zakresach spektralnych (rowniez w tych niewidzialnych
dla oka ludzkiego, np. w podczerwieni) otwiera nowe mozliwosci. Pozwala ona na dostrzezenie
Swiata w znacznie bardziej rzeczywistej formie, bez upraszczania i gubienia informacji.
Wynalezienie i rozpoczecie stosowania obrazowania hiperspektralnego jest kolejnym krokiem
w kierunku zwiekszania rozdzielczosci obrazowania w domenie spektrum swiatta. Wynalazek
ten mozna poréwnaé do rewolucji cyfrowej w obrazowaniu, jaka zapoczatkowato

wynalezienie sensoréw CCD i zastgpienie nimi tradycyjnych klisz analogowych.

2.2 EWOLUCIA TECHNIK OBRAZOWANIA

Od czaséw powstania pierwszych kamer, zdolnych do trwatej rejestracji obrazu mineto juz
niemal 200 lat. Jednakze, podstawowe zasady wigzgce ze sobg kluczowe elementy i aspekty
kazdego aparatu, pozostajg wcigz te same. W praktyce kazdy uktad obrazujgcy sktada sie
z dwéch zasadniczych elementéw, ktére mogg byc zrealizowane na wiele réznych sposobow
i korzystac z rozmaitych rozwigzan technicznych. S3 to:

e zespot optyczny formujgcy wigzke obrazujacy,
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e element rejestrujgcy wigzke obrazujgca.

Warto tutaj zwréci¢ uwage na fakt, ze sg to dwa elementy, ktére sg uniwersalne dla
kazdego uktadu obrazujacego, nawet jesli rozwazany jest aparat rejestrujgcy obrazy
w pasmie innym niz pasmo widzialne. Co wiecej, zestawienie tych elementéw moze réowniez
stuzy¢ obrazowaniu z wykorzystaniem innych czgstek elementarnych niz fotony,
np. w przypadku mikroskopii elektronowej [7].

Analiza dziatania systemow rejestrujgcych obraz wymaga oczywiscie gtebszego
zrozumienia kazdego z jego elementdéw i zmian jakie w nich wystgpity na przestrzeni niemal
200 lat w wyniku ich doskonalenia. Warto zauwazy¢, ze w dziedzinie obrazowania, ludzkosé
najpierw opanowata i udoskonalata rejestracje obrazéw w pasmie widzialnym, a inne obszary
spektrum elektromagnetycznego, jak rowniez techniki rejestracji wykorzystujace inne czastki
elementarne, zaczeto rozwija¢ dopiero po ponad stu latach od chwili zarejestrowania
pierwszego obrazu optycznego. Z uwagi na tematyke niniejszej rozprawy doktorskiej, jak
rowniez dominujgca role obrazowania w Swietle widzialnym i podczerwonym, dalsze rozdziaty
skupiajg sie gtdwnie w tym zakresie.

W trakcie rozwoju technik obrazowania, uktady optyczne podlegaty powolnej,
acz znaczacej ewolucji. Byto to spowodowane znacznie dfuzszg, niemal tysigcletnig historig
rozwoju uktadow optycznych, w szczegdlnosci lunet i teleskopdw, zwigzanych z astronomia.
Dopiero pojawienie sie technik rejestracji obrazu swietlnego pozwolito na opracowanie
pierwszej kamery. Dlatego tez najszybsza ewolucja, a w ostatnich dekadach wrecz rewolucja,
nastgpita wtasnie w tym obszarze.

Zrozumienie wspotczesnych wyzwan, zwigzanych z nowoczesnym obrazowaniem wigza
sie scisle ze zrozumieniem cech elementdw rejestrujacych swiatto, a najlepiej jest zrozumieé
to zagadnienie, $ledzac jego rozwdj od poczatku istnienia fotografii. Jak powszechnie
wiadomo, przez dziesieciolecia kluczowg role w obrazowaniu odgrywaty fotochemiczne klisze
i powtoki, zwane filmami fotograficznymi. Ich uzycie, definiujgce tzw. fotografie analogowa
ma wiele zalet, jednak kluczowg wadg jest skomplikowany proces chemiczny zwigzany
z utrwaleniem i powieleniem obrazu zarejestrowanego na kliszy. Niewatpliwie jednak
najwiekszg zaletg, jaka ptynie z zastosowania fotochemicznych srodkdw rejestracji obrazu jest
bardzo korzystny stosunek rozdzielczosci do powierzchni sensora, co w wypadku sensorow
cyfrowych okreslane jest mianem efektywnego rozmiaru piksela (pixel pitch). Cecha ta bierze
sie ze struktury filmu $wiattoczutego —tutaj role pikseli petnig pojedyncze czgsteczki substancji

fotochemicznych, czyli obiektow o rozmiarze pojedynczych mikrometrow lub nawet
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mniejszych — rys. 2.3. Obecnie najnowoczes$niejsze sensory cyfrowe, jakie jest w stanie
wytworzy¢ ludzkos¢ osiggajg rozmiary piksela na poziomie 1 mikrometra, a w zdecydowanej
wiekszosci dostepnych komercyjnie aparatéw, rozmiar ten miesci sie w zakresie od dwéch do
siedmiu mikrometrow. Z tego wtasnie wzgledu fotografie, nawet sprzed stu lat, doréwnuja

rozdzielczoscia (po cyfryzacji klisz) wspétczesnym aparatom wysokorozdzielczym.

.\.'

‘g-’qn.'ﬁ 7.6 nm

3 .00V -
041309.

Rys. 2.3. Obraz powierzchni kliszy fotograficznej Kodak 160VC, uzyskany za pomocg skaningowego mikroskopu
elektronowego. Na obrazie widoczne sg Swiattoczute krysztatki halogenku srebra [8]

Niewatpliwg rewolucje w obrazowaniu spowodowato pojawienie sie sensoréw CCD
(Charge-Coupled Device), a nastepnie CMOS (Complementary Metal Oxide Semisconductor).
CCD to uktad scalony, sktadajgcy sie z wielu elementéw $wiattoczutych, konstruowanych
w oparciu o technologie MOS (Metal Oxide Semiconductor). Rozwigzanie to opracowane
zostato pod koniec lat sze$édziesigtych XX w. przez George’a E. Smitha i Willarda Boyle’a [9] w
laboratoriach Bella. Publikacja tych autoréw [9] wskazywata na mozliwe zastosowanie efektu
przekazywania tadunku elektrycznego wzdtuz szeregowo potgczonych kondensatorow MOS,
np. w technologiach obrazowania i stata sie poczatkiem prac implementacyjnych w wielu
firmach. Nalezy tutaj zaznaczy¢, ze w detektorze CCD odczyt energii pochodzacej z fotondéw
realizowaty réwniez kondensatory MOS, a energia ta przeksztatcana byta w tadunek
elektryczny w kazdym pikselu. Jedng z pierwszych udanych implementacji byta kamera
skonstruowana w 1975 roku przez inzyniera Steva Sassona, pracujgcego w firmie Kodak —rys.
2.4. Miata ona matryce 100 x 100 pikseli, a obraz zapisywany byt na tasmie magnetycznej w

kasecie [10].
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Rys. 2.4. Pierwsza dostepna komercyjnie kamera cyfrowa — Kodak 100x100 pikseli [11]

Od tego momentu, w latach siedemdziesigtych dwudziestego wieku rozpoczat sie bardzo
intensywny rozwdj kamer z sensorami opartymi na matrycach CCD. Po rozwigzaniu
podstawowych problemdéw z miniaturyzacjg matryc pikseli i akwizycji sygnatu z pojedynczych
kondensatoréw MQS, inzynierowie i naukowcy skupili sie na rozwoju aspektéw fotonicznych.
Pierwsze detektory CCD miaty kilka kluczowych wad, ktére oprdécz zalet zwigzanych z
cyfryzacjg, wcigz nie pozwalaty na konkurowanie z aparatami analogowymi. Najwieksze
wyzwania obejmowaty matg wydajnos¢ energetyczng, stosunkowo duze rozmiary pikseli oraz
trudnosci z przeskalowaniem matryc do zestawdw miliondw pikseli. Wiekszosé
z tych problemoéw udato sie zredukowaé opracowujgc technologie CMOS, zwang réwniez APS
(Active Pixel Sensor). W odrdznieniu od sensoréw CCD, sensory CMOS dokonujg konwersji
tadunku fotoelektrycznego w sygnat napieciowy w kazdym pikselu niezaleznie, podczas gdy
w sensorach CCD odbywa sie to w pojedynczym wezle odczytu. Réznice w dziataniu sensorow

CDD i CMOS przedstawiono na rys. 2.5.
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na napiecie w wezle wychodzacym szumu odczytu

Rys. 2.5. Poréwnanie konstrukgji i dziatania matryc CCD oraz CMOS [12]

Ze wzgledu na znaczng powierzchnie piksela zajetg przez uktad konwersji i wzmocnienia
tadunku fotoelektrycznego, uktady CMOS az do lat 90" XX w. nie byty optacalne biznesowo
w produkcji na masowa skale. Dopiero znaczne postepy technologiczne w miniaturyzacji
w takich firmach, jak Sony, Mitsubishi i Samsung, pozwolity na uzyskanie wysokiej sprawnosci
sensorow CMOS. W bardzo krétkim czasie, bo do roku 2010, sensory CMOS przejety wiekszos¢
komercyjnego rynku aparatéw fotograficznych, zaréwno w aplikacjach cywilnych,
jak i wojskowych [13].

Niezaleznie od tego jaka technologia stata za sposobem rejestracji obrazu, od samych
poczatkow fotografii, kazda z technik obrazowania stata przed ogromnym wyzwaniem —
rejestracjg swiata w taki sposob, jak widzg to nasze oczy, czyli w kolorze. Problem ten
nie dotyczyt samej natury sposobu rejestracji obrazu, poniewaz zaréowno w wypadku bton
fotograficznych, jak i krzemowych sensoréw poétprzewodnikowych, cechowaty sie one
odpowiednig czutoscig spektralng w catym zakresie widzenia ludzkiego oka. Kluczowy problem
stanowita jednak jednoczesna rejestracja tego samego obrazu w trzech niezaleznych kanatach
spektralnych, na wzor ludzkiego oka. Oczywiscie jedng z podstawowych metod, stosowang
do dzi$ w takich dziedzinach, jak astronomia lub medycyna jest wykonanie trzech zdje¢, kazde
z zastosowaniem innego filtru umieszczonego w torze optycznym kamery. Metoda ta daje
satysfakcjonujace rezultaty, ale tylko w wypadku fotografii obiektéw statycznych. Natomiast
jest skrajnie nieefektywna przy rejestracji obiektdw i zjawisk dynamicznych, a takze
w rejestracji filméw. Z tego wtasnie powodu, konieczny byt dalszy rozwdj technologii
obrazowania barwnego, tj. w kilku i wiecej kanatach spektralnych, jak rowniez rozwdj samych

sensordéw i uktadéw optycznych.
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Jedng z najbardziej efektywnych, a takzie efektownych technik rejestracji obrazu
tréjkolorowego byta komercyjna metoda TechniColor opracowana w czasach tzw. Ztotej Ery
Hollywood (lata 30-50 XX wieku). Technika ta zaktadata jednoczesng rejestracje obrazu
na trzech kliszach filmowych z wykorzystaniem uktadu $wiattodzielgcego, ktéry oddzielat
spektrum swiatfa o barwie zielonej, od barwy czerwonej i niebieskiej (rys. 2.6). Byta to jedna z
pierwszych w historii metod wspotosiowego podziatu spektralnego, ktéry stosowany jest

w wielu aplikacjach po dzien dzisiejszy [14].

Rys. 2.6. Schemat dziatania kamery opartej na technice TechniColor [14]

Technika TechniColor oraz pokrewne do niej metody stosowane byty w dalszych etapach
rozwoju technik obrazowania, a ich odmiany stosuje sie réwniez obecnie, nawet w systemach
cyfrowych. Kluczowa wadg takiego systemu, jest rozmiar samego urzadzenia rejestrujgcego,
co dodatkowo wymusito rozwdj innych metod obrazowania. Oczywiscie, oprécz opracowania
i wprowadzenia na rynek (analogowych) klisz kolorowych, istotna byta ewolucja sensoréw
cyfrowych w kierunku rejestracji wielu kanatdéw spektralnych. Juz od lat 70-tych XX w.
opracowywane byty metody podziatu macierzy pikseli na strefy koloréw spektralnych,
umozliwiajacych rekonstrukcje obrazu kolorowego. Na najwiekszg uwage zastuguje bardzo
powszechna siatka Bayera (od twodrcy — Bryce’a Bayera z firmy Kodak), ktéra wraz
z subpikselowg metodg rekonstrukcji obrazu pozwala po dzien dzisiejszy uzyskiwaé bardzo
dobrg rozdzielczos$¢ zdje¢ kolorowych, bez znacznej utraty informacji zwigzanej z filtrowaniem

polowym —rys. 2.7.
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Rys. 2.7. Schemat siatki Bayera w matrycy cyfrowej [15]

Dalsza ewolucja sensorow cyfrowych, szczegdlnie w ostatnich dwdch dekadach,
to wyscig miedzy kilkoma gtdwnymi osrodkami badawczymi i firmami, gtéwnie w dziedzinie
rozdzielczosci (przez zmniejszanie rozmiaru efektywnego piksela) oraz sprawnosci kwantowe;j
(czutosci). Dopiero w ostatniej dekadzie pojawit sie nowy kierunek tego wyscigu zwigzany z
liczbg kanatdw spektralnych i ich rozdzielczoscig spektralng. Z tego wzgledu techniki akwizycji

wiecej niz trzech kanatéw spektralnych zostang szczegétowo omdéwione w rozdziale czwartym.

2.3. MOZLIWOSCI SYSTEMOW OBRAZUJACYCH W METROLOGII | AUTOMATYZACII

Od pierwszych lat obecnosci na rynku cyfrowych systemoéw obrazowania, wiele osrodkow
przemystowych i naukowych eksplorowato mozliwosci zastosowania kamer w automatyzacji
i metrologii. Oczywiscie, aspekt metrologiczny realizowany byt juz nawet w wypadku kamer
analogowych, chociazby w kartografii i naukach geograficznych. Jednakze prawdziwe
mozliwosci aparatow w kontekscie automatyzacji mozliwe byty do osiggniecia dopiero dzieki
zastosowaniu szybkich cyfrowych systeméw transmisji i przetwarzania sygnatow.

Do najczestszych zastosowan metrologicznych z wykorzystaniem uktadéw obrazujgcych
nalezg [16]:

e uktady mikroskopowe do pomiaréw recznych,

e kamery specjalistyczne do pomiaru w polu obrabiarek przemystowych,

o kamery do celéw obserwacji Ziemi z platform satelitarnych i lotniczych,

e zespoty obrazujgco-oswietleniowe do pomiardow 3D.

Cyfrowa posta¢ obrazow, ktoéra data poczatek mozliwosci réznych sposobdéw ich
przetwarzania i prezentacji, byta jednoczesnie najwazniejszg barierg w pierwszych dekadach
rozwoju przemystowych i naukowych systemow wizyjnych. Zwigzane to bylo przede
wszystkim z ogromng ilosciag koniecznych do przetworzenia danych pozyskanych
z dwuwymiarowej matrycy przetwornikdw CCD lub CMOS. O ile w wypadku sygnatu

jednowymiarowego (punktowego), jego przetwarzanie z czestotliwoscig setek prdobek
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na sekunde moze w zupetnosci wystarczy¢ do automatyzacji takich proceséw, jak kontrola
temperatury, potozenia i predkosci obiektu, to w wypadku obrazu jest to wielokrotnie zbyt
mata predkos¢. Obrazy zawierajg bowiem wzglednie duzg ilos¢ informacji i nawet
w dzisiejszym, wysoce zaawansowanym cyfrowo sSwiecie, systemy do automatycznego
przetwarzania obrazu wymagajg odpowiednio duzej mocy obliczeniowej. Operacje
na milionach pikseli wymagajg sprzetu obliczeniowego na poziomie co najmniej
mikrokomputerédw. Systemy faczace elementy akwizycji i przetwarzania obrazéow w celu
wykorzystania w procesach technologicznych nazywane sg systemami wizyjnymi. System taki
sktada sie przede wszystkim z elementdéw obrazujgcych i oprogramowania, a w wiekszosci

przypadkéw réwniez z uktadu oswietleniowego (rys. 2.8).

Kamera i obiektyw Biblioteki przetwarzania
L ] obrazu

Oswietlacze

Sortownik

—=g e
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Rys. 2.8. Przyktad systemu przetwarzania danych wizyjnych [17]

Niezaleznie jednak od platformy, czy jest to sprzet obliczeniowy klasy komputera,
mikrokomputera, uktadu elektronicznego bazujgcego na FPGA, czy tez procesora graficznego
w technologii CUDA, mozliwosci ptynace z automatycznego przetwarzania obrazow
sg ogromne i zwtaszcza w ostatnich dekadach mocno doceniane w przemysle wytwdrczym.
Dzieki znormalizowanym metodologiom cyfrowego przetwarzania obrazdw oraz dostepnym
na licencji otwartej bibliotekom przetwarzania obrazu, jak powstata w firmie Intel biblioteka
OpenCV, mozliwe jest szybkie i powszechne opracowywanie zaawansowanych algorytmow
wizyjnych. Istnieje oczywiscie kilka gtownych nurtdw metodologicznych w przetwarzaniu
sygnatu dwuwymiarowego, jednak niemal wszystkie opierajg sie na tzw. modelu kamery
otworkowej, ktora lezy u podstaw interpretacji obrazu, szczegblnie

w zastosowaniach metrologicznych - rys. 2.9.
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obiekt

otwor (pinhole)

obraz odwrdécony

Rys. 2.9. Schemat kamery otworkowej (tzw. camera obscura) [18]

W kluczowym zatozeniu, model kamery otworkowej zaktada liniowg lub bliskg liniowosci
(w wypadku specjalistycznych obiektywdéw) zaleznos¢ miedzy obiektem rzeczywistym,
a obrazem przetwarzanym w cyfrowym systemie przetwarzania obrazu. W zdecydowanej
wiekszosci ukfadéw optycznych, zaleznos¢ miedzy obiektem rzeczywistym a jego
odwzorowaniem w postaci obrazu rzucanego na ptaszczyzne obrazowania, jest jednak
nieliniowa oraz zalezna od rodzaju i jakosci zastosowanych elementéw optycznych
(wytwarzajacych obraz). Uktady optyczne wprowadzajg zazwyczaj szereg rozmaitych aberracji
optycznych, ktére w efekcie formujg obraz znaczaco odlegty od idealnego modelu kamery
otworkowej. W procesie projektowania uktadéw optycznych wyréznia sie siedem rdznych
aberracji, ktére przedstawia sie na diagramie Seidela (przyktad takiego diagramu znajduje sie
na rys. 2.10). Sg to:

e aberracja sferyczna,

e aberracja typu coma,

e astygmatyzm,

e zakrzywienie pola,

e dystorsja,

e aberracja osiowa koloru,

e aberracja lateralna koloru.

Warto zauwazyé, ze niektdre z aberracji okres$lajg niedoskonato$é nie tyle obiektu
w formie obrazu, co réznice miedzy jego odwzorowaniem pomiedzy réznymi dtugosciami fali

Swiatta. Tego typu aberracje sg szczegdlnie niepozgdane w uktadach obrazowania
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hiperspektralnego. Wszystkie te aberracje nalezy uwzglednia¢ podczas projektowania
uktadéw obrazowania w zastosowaniach metrologicznych.

Rysunek 2.10 przedstawia przyktad diagramu Seidela, ktéry stanowi zestawienie
sktadnikdw aberracji optycznej, ktére wptywajg na uzyskiwany przez dany uktad optyczny
obraz (w tym przypadku jest to teleobiektyw do obserwacji Ziemi z satelity EagleEye,

opracowany w firmie Scanway S.A. w oprogramowaniu Ansys Zemax OpticStudio).

1 2 3 STO 5 6 7 8 9 10 11 12 13 14 15 16 sum

Spherical Coma Astigmatism Field Curvature Distortion Axial Color Lateral Color

Seidel Diagram

Zemax
21.11.223

wavelength: ©,6000 pm Ansys Zemax OpticStudio 2023 Rl.ee
1 e, .

Maximum aberration scale is ©,05000 Millimeters.

Grid lines are spaced ©,00500 Millimeters. VIS_12000_200_wersja_1_zamow.ZMX

Configuration 1 of 1

Rys. 2.10. Diagram Seidela (opracowanie podmiotu wspotpracujgcego w doktoracie) dla poszczegdlnych
elementéw uktadu optycznego w teleskopie satelitarnym do obserwacji Ziemi dla misji EagleEye, produkcji
Scanway S.A [19]

Tego typu diagram stuzy okresleniu, jak bardzo uktad optyczny wptywa na idealny teoretyczny
obraz obiektu. Na diagramie widoczne sg kolejno ponumerowane powierzchnie ukfadu
optycznego oraz okreslone kolorami (lecz bez oznaczenia skali) poziomy sktadowych aberracji.
Diagram ten pokazuje, ze rodine elementy niedoskonatosci obrazu powstajg
w wyniku odbicia lub refrakcji Swiatta na lustrach i soczewkach, wchodzacych w sktad uktadu

optycznego.

2.4. PRZEGLAD WYBRANYCH ZASTOSOWAN

Systemy obrazowania, zestawione w bardziej zaawansowane ukfady wizyjne znalezé
mozna obecnie w kazdej dziedzinie technologii i wytwarzania. Przyczynity sie do tego, rosnaca
dostepnos¢ wydajnych ukfadéw obrazujgcych, a takie bariera ztozonosci technicznej,
zminimalizowana poprzez szeroki dostep do zaawansowanych bibliotek programistycznych.
W niektdrych gateziach gospodarki, systemy obrazowania i automatycznego przetwarzania

obrazu zastosowano w wyjgtkowo szerokim zakresie. W niniejszym rozdziale przedstawiono
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kilka dziedzin, w ktérych spotka¢ mozna obecnie najwieksze wykorzystanie systemow

wizyjnych.

2.4.1. Sektor produkcyjny

Wynalezienie uktadéw obrazujgcych i potgczonych z nimi systemdéw przetwarzania
obrazu, spowodowato szybkie witgczenie kamer do kategorii narzedzi metrologicznych.
Najczesciej spotykanym zastosowaniem kamer zaprojektowanych do pomiaréw
sg automatyczne systemy kontroli jakosci lub procesu w systemach wytwadrczych. W wypadku
przemystowych zastosowan automatycznego pomiaru i kontroli, uktady obrazujgce muszg by¢é
zestawione z jednostkg obliczeniowg. Wspodtczesnie bardzo waznym i powszechnym trendem
sg ukfady wbudowane, zwane smartkamerami. Sg to uktady kamery, obiektywu, uktadu
oswietleniowego i uktadu obliczeniowego, bardzo czesto implementowanymi w jednej

obudowie, realizujgce proste, predefiniowane zadania wizyjne —rys. 2.11.

Rys. 2.11. Przyktad tzw. smartkamery marki Cognex [20]

Kamery tego typu zestawiane s3 bardzo czesto w wieksze systemy, pofgczone
ze sterownikami PLC, ramionami robotycznymi oraz innymi ukfadami wykonawczymi
w przemysle.

Najczesciej realizowane automatyczne zadania takich systemoéw to:

e sprawdzanie obecnosci obiektu,

e zliczanie elementéw np. na tasmie produkcyjnej,

e kontrola ksztattu np. poprawnosci odlewu czy ciecia,

e precyzyjne wymiarowanie obiektow,

e kontrola jakosci wykonania obiektu,
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e kontrola procesu montazu,
e odczyt tekstu (Optical Character Recognition - OCR),
e optyczne rozpoznawanie kodéw kreskowy i QR (barcode, QR code),

e Sledzenie elementdéw np. na linii produkcyjnej lub podczas procesu pakowania.

2.4.2. Sektor obronny

Mozliwo$¢ wzbogacenia maszyny o zdolnosci rozpoznawcze poréwnywalne ze zmystem
wzroku od samego poczatku technik obrazowania byty przedmiotem zainteresowania sektora
zbrojeniowego. Pierwsze samoloty, wyposazone w kamery zastosowano juz w trakcie | wojny
Swiatowej (rys. 2.12) w celu rozpoznania (zwiadu) z powietrza. Przez kilka nastepnych dekad
stosowano kamery wytgcznie w celu obrazowania, natomiast wraz z wynalezieniem kamer
cyfrowych oraz mikroprocesoréw, mozliwa byta takze implementacja systemoéw kierowania

ognia automatycznie na podstawie sygnatu optycznego.

Rys. 2.12. Samolot z okresu | WS wyposazony w kamere lotniczg K-3 [21]

Pierwszym pociskiem z automatycznym sterowaniem kierunku lotu na podstawie obrazu
z kamery jest amerykaniska rakieta AGM-65 Maverick [22]. System w tym pocisku sktada sie z
kamery i uktadu automatycznego przetwarzania, ktéry nakierowuje rakiete na obiekt o tym
samym kontrascie co wskazany przez operatora przed wystrzeleniem. Jest to prosta
implementacja systemu wizyjnego w przemysle zbrojeniowym, natomiast we wspdtczesnej
armii trudno jest znalez¢ system nie wspomagany uktadem obrazujgcym, poczgwszy od rakiet,
przez czotgi, pojazdy az po osprzet zotnierzy piechoty. Obecnie systemy obrazowania i systemy
wizyjne w sektorze zbrojeniowym wykorzystywane sg jako:
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e systemy rozpoznawcze,

e systemy kierowania ognia (w tym automatyczne kierowanie pociskéw),

e systemy wykrywania zagrozenia (np. pocisku zmierzajgcego w strone obserwatora),
e systemy kontroli granic (perymetru),

e systemy termograficzne (pasma LWIR i SWIR) do detekcji przeciwnika,

e systemy wspierania pilota/kierowcy,

e systemy wspierania piechoty.

2.4.3. Sektor kosmiczny

Rozwdj technologii cyfrowego zapisu obrazu byt posrednio wymuszony przez znaczne
postepy Standéw Zjednoczonych w eksploracji kosmosu i obserwacjach satelitarnych Ziemi.
Wydawac by sie mogto, ze bez cyfrowych kamer, niemozliwe bytoby zdalne wykonywanie
zdje¢ w satelitach eksplorujgcych Ziemie lub Ksiezyc. Inzynierowie jednak poradzili sobie z tak
trudnymi wyzwaniami nawet w dobie fotografii analogowej. Najznamienitsze przyktady
osiggnie¢ kosmicznej techniki analogowego obrazowania to radziecka sonda Luna-3 oraz
amerykanski szpiegowski system satelitow KH-9 Hexagon. System Hexagon dokonywat
akwizycji obrazéw satelitarnych wysokiej rozdzielczosci, a nastepnie zapisane obrazami klisze
transportowane byty z orbity w specjalnych kapsutach, po czym wywotywano je
w laboratorium i poddawano analizie wywiadowcze;j.

Nieco bardziej wysublimowany sposdb akwizycji obrazu i przekazywania go do stacji
naziemnej zostat zaimplementowany w sondzie Luna-3. Sonda ta wyposazona byta
w zminiaturyzowane laboratorium do automatycznego wywotywania klisz. Wywotane klisze
nastepnie skanowano fotodiodg, a sygnat przesytano drogg radiowg do radzieckich stacji
odbiorczych. W ten sposéb przestano pierwsze zdjecia niewidocznej z Ziemi strony Ksiezyca -
rys. 2.13.

Przez wiele dekad rozwoju technologii kosmicznych systemy obrazujgce byty stosowane
w rozmaitych misjach naukowych, rzagdowych i komercyjnych, lecz najczesciej do obrazowania
powierzchni Ziemi. Nalezy tu wspomnie¢ o konstelacjach amerykaniskich Landsat oraz
Europejskich o nazwie Sentinel. Dane z obu tych konstelacji, znalez¢ mozna w pofgczonym

projekcie Copernicus, ktéry ma na celu gromadzenie danych na temat naszej planety.
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Rys. 2.13. Obraz przestany przez sonde Luna-3, pokazujacy niewidoczng z Ziemi strone Ksiezyca [23]

Obecne zastosowania systeméw obrazowania i systemow wizyjnych w sektorze

kosmicznym to przede wszystkim:

obrazowanie Ziemi,

obrazowanie innych ciat niebieskich (misje naukowe),

wykrywanie asteroid i innych obiektéw zagrazajgcych Ziemi,

obrazowanie otoczenia fazika lub satelity i podejmowanie decyzji na podstawie
zagrozen,

wykrywanie obiektdw na nieznanych orbitach i aktualizacja orbit obiektédw znanych
(Space Situational Awareness - SSA),

automatyczne systemy dokowania,

automatyczne systemy lagdowania rakiet (przyktad - Falcon-9 SpaceX),

systemy kontroli stanu satelity.

Oprdcz systemow, sktadajgcych sie wytgcznie ze sktadnika obrazujgcego, zauwazyé mozna

wyrazny trend w wykorzystywaniu systeméw autonomicznego podejmowania decyzji na bazie

systemow wizyjnych stosowanych w satelitach i misjach kosmicznych. Coraz czesciej spotkac

mozna kamery sprzezone w systemy, ktére automatycznie sprawdzajg stan satelity lub tazika,

wspomagajg astronautow w procesie dokowania lub wykrywajg nieznane obiekty poruszajace

sie po nieznanych orbitach. W tabeli 2.1 przedstawiono przeglad dotychczasowych,

planowanych i zrealizowanych misji satelitarnych, na poktadzie ktérych znalazty sie

instrumenty hiperspektralne wraz z podstawowymi parametrami ich obrazowania.
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Tabela 2.1. Przeglad misji satelitarnych wykorzystujacych instrumenty hiperspektralne, na podstawie [24-26]

Liczba
- . . Zakres ,
Nazwa misji Agencja / kraj kanatow GSD [m] Rok
spektralny [um]
spektralnych
EO-1 NASA 0,357 -2,570 242 30 2000

PROBA-1 ESA 0,415- 1,050 63/150 18 2001

PRISMA ASI/Wtochy 0,400 - 2,500 250 30 2019

EnMap DLR/Niemcy 0,420 - 2,450 228 30 2022
HISUI Japonia 0,400 - 2,500 185 30 2020

HysplRI USA 0,380-2,510 60 2024
Jilin-1 Chiny 28 5 2019

1999

MODIS NASA 0,460 - 14,390 36 250-1 000 2002

MetOP-SG Al

MetOP-SG A2

MetOP-SG A3 ESA 3,620 - 15,500 16921 25000 2024
(IASI-NG)

MetOP-SG Al

MetOP-SG A2

MetOP-SG A3 ESA 0,270 - 2,385 3936 7 000-28 000 2024

(UVNS)

MTG-S1

MTG-s2 ESA 0,305-0,775 598 8 000 2024
(UVN)

TEMPO NASA 0,290 - 0,740 666 4 400 2022
HysIS Indie 0,400 - 2,400 316 30 2018
FLEX ESA 0,500 - 0,780 300 300 2024

GEO-KOMPSAT-2B Korea 0,300 - 0,500 250 7 000 2020
EOS-3 (GISAT-1) Indie 0,900 - 2,500 150 200 2021
IMS-1 Indie 0,400 - 0,950 64 505 2008
ADEOS-II Japonia 0,380-12,00 36 1000 2002
Intuition-One Polska 0,470 - 0,900 150 25 2023

Oznaczenia: GSD — Ground Sample Distance rozdzielczo$¢ prébkowania przestrzennego wyrazona w metrach
[24].

2.4.4. Sektor gorniczy

Obrazowanie to narzedzie, ktére od samych poczatkdbw swojego istnienia,
wykorzystywane jest w réznych dziedzinach nauki i przemystu, w tym takze w gornictwie
i geologii. Wynika to przede wszystkim z potrzeby ciggtego monitorowania materiatu
geologicznego, zaréwno jeszcze w Srodowisku skalnym, jak i w zaktadach przemystowych pod
katem sktadu i zawartosci poszczegdlnych sktadnikdw. Automatyzacja klasycznych technologii
laboratoryjnych stuzgcych do klasyfikacji skat, pozwala na sprawdzanie jakos$ci urobku
na kazdym etapie jego wydobycia, a techniki obrazujgce sg zaliczane do wysoce podatnych
na automatyzacje. Cho¢ obecnie najczesciej stosowane systemy wizyjne w gérnictwie to
systemy multi i hiperspektralne, to klasyczne obrazowanie znajduje w tym przemysle wiele
zastosowan. Poczagwszy od dokumentacji, a skonczywszy na termografii, ktéra umozliwia
lepsze kontrolowanie proceséw na etapie hutniczym.

W ostatnich latach, szczegdlnie pozgdane sg réwniez systemy kontroli warunkéw

bezpieczenstwa i higieny pracy w zaktadach goérniczych. Takie systemy, wykorzystujg
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najczesciej kamery monitoringu zastosowane w zaktadzie goérniczym lub hutniczym oraz

techniki sztucznej inteligencji do oceny postawy, zachowania, potozenia a takze ubioru

i Srodkow bezpieczenstwa stosowanych przez pracownikéw.

2.3.5. Sektor rolniczy

Obrazowanie jest réwniez szczegdlnie chetnie wykorzystywang technikg pomiarowg

w rolnictwie. Do najbardziej popularnych obecnie technik obserwacyjnych nalezg obserwacje

z platform UAV, z satelitdw oraz z oprzyrzagdowania instalowanego na ciggnikach rolniczych.

Kazda z tych platform umozliwia akwizycje obrazéw na réznym poziomie rozdzielczosci i dla

réznych zastosowan. Najczesciej spotykane aplikacje to [27]:

automatyzacja zbioréw — kamery wraz z algorytmami wizyjnymi pozwalajg
na automatyczne znajdowanie zbieranych owocéw i warzyw, znacznie zmniejszajac
koszty sity roboczej oraz zwiekszajac efektywnos¢ zbioréw,

wykrywanie choréb — kamery wraz z algorytmami wizyjnymi mogg stuzy¢ wykrywaniu
symptomow poczatkdw chordb roslin i eliminowac to zagrozenie, zanim powiekszy sie
do rozmiaréw powodujgcych znaczne straty,

analiza poziomu zbioréw — wykorzystanie kamer moze stuzy¢ inwentaryzacji i predykcji
rozmiaru zbioréw,

kontrola jakosci gleby — czujniki wizyjne sg réwniez wykorzystywane do okreslania
stanu i jakosci gleby pomiedzy cyklami wegetacyjnymi, podczas rekultywacji,
okreslanie cech fenotypowych — kamery znajdujg swoje zastosowanie réwniez
w automatycznej analizie jakosci rozsad, tak aby méc przyspieszy¢ drugg faze wzrostu

i zwiekszy¢ jakos¢ finalnych zbioréw.
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3. SYSTEMY MULTI | HIPERSPEKTRALNE

W niniejszym rozdziale przedstawiono na czym polega rejestrowanie promieniowania
elektromagnetycznego w systemach obrazowania polowego, a takze jak mozna zdefiniowaé
systemy multi i hiperspektralne. Wyjasniono rdéine podejscia do akwizycji danych
spektralnych, opisano kluczowe elementy systemdéw spektrofotometrycznych, jak réwniez ich
dostepnosc na szerokim rynku komercyjnym. Istotnym elementem tego rozdziatu jest réwniez
podjeta autorska prdba algorytmizacji doboru odpowiedniego systemu polowego
obrazowania spektralnego ze wzgledu na zastosowanie jak réwniez warunki brzegowe pracy

instrumentu.

3.1. PODZIAL SYSTEMOW OBRAZOWANIA SPEKTRALNEGO

Systemy spektralnego obrazowania dzieli sie przede wszystkim na systemy
multispektralne (MSI) oraz hiperspektralne (HSI). Niestety wcigz w wielu miejscach, a nawet
w osrodkach badan nad fotonika, pojecia te sg czesto mylone i uzywane zamiennie. Istnieje
wiele réznic miedzy tymi technikami. Bardzo istotnym elementem odrdzniajgcym te systemy
jest liczba kanatéw oraz pokrycie przez nie interesujgcego zakresu spektrum swiatta.
W systemie multispektralnym wyrdznia sie zazwyczaj od kilku do kilkunastu kanatow
spektralnych, miedzy ktédrymi mogg istnieé tzw. obszary martwego spektrum, czyli takie, w
ktdrych element swiattoczuty nie rejestruje promieniowania. Efekt taki mozna uzyskaé np.
przez zastosowanie filtrow pasmowozaporowych. Z kolei w systemie hiperspekralnym, $wiatto
rejestrowane jest w kazdym fragmencie spektrum z wybranego zakresu. Kolejne, w domenie
dtugosci fali, kanaty spektralne rejestrowane sg przez osobne piksele (lub grupy pikseli)
detektora. Efektem tego, w systemie hiperspektralnym, zazwyczaj jest znacznie wieksza liczba
kanatéw spektralnych, co przektada sie jednoczesnie na wieksze wymagania
co do jakosci wykonania uktadu akwizycji oraz wymagang wiekszg wydajnos$é systemu
przetwarzania danych [3]. Idee akwizycji spektrum swiatta w wybranym zakresie dtugosci fali
dla systemow multi i hiperspektralnych przedstawiono na rys. 3.1.

Liczba kanatdw, bardzo czesto utozsamiana jest jako podstawowe kryterium rozrdzniania
systemow na multi i hiperspektralne [28]. W rzeczywisto$ci jednak, jak juz wspomniano, obok
liczby kanatdw istotnym kryterium klasyfikacji jest takze fakt petnego (kwazi-ciggtego) pokrycia
interesujgcego spektrum dtugosci fali, badZ rejestracja promieniowania swietlnego tylko

w wybranych przedziatach dtugosci fali. Dla przyktadu, systemy, w ktérych wyrédzni¢ mozna
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nawet ponad 35 kanatéw spektralnych, z uwagi na nieregularne pokrycie spektrum, nalezy

zaliczy¢ do instrumentéw multispektralnych [29].

odwzorowanie pikseli pokrycie spektrum

|
stan

rzeczywisty

kamera
czarno-biata

[
A ==

Rys. 3.1. Poréwnanie zakresu spektrum akwizycji w systemach bazujgcych na kamerach monochromatycznych,
RGB oraz w systemie multispektralnym (MSI) i hiperspektralnym (HSI). Opracowanie Autora

Systemy multispektralne cechujg sie przede wszystkim mniejszym skomplikowaniem
danych, ich akwizycja jest mniej wymagajgca, a przetwarzanie multispektralnych zbiorow
danych zajmuje mniej czasu, niz ma to miejsce w przypadku systemow hiperspektralnych.
Dzieki tym cechom, kamery multispektralne juz w latach piecdziesigtych stosowano w nauce
i badaniach [30], a pierwszy skaner multispektralny znalazt sie na orbicie w roku 1972 [31].
W wypadku systeméw hiperspektralnych, pierwsze publikacje na temat ich zastosowania
pojawity sie w latach osiemdziesigtych, a pierwsze satelity wyposazone w tego typu skanery -
w latach dwutysiecznych [33].

Najwazniejszym czynnikiem w rozwoju obrazowania multispektralnego byt postep
w rozwoju technik filtracji pasm swiatfa oraz réwnolegte obrazowanie tego samego obrazu
w roznych zakresach dtugosci fali. Znaczne przyspieszenie rozwoju nastgpito w okresie
wynalezienia kamer cyfrowych, poniewaz dzieki temu proces akwizycji mégt odbywac sie
w sposéb szybszy i z wiekszg doktadnoscia [3] [34]. Poza astronomig, pierwszymi platformami,
w ktorych implementowano obrazowanie multispektralne byty samoloty oraz satelity [32].
Najwazniejszym obszarem zastosowan, w ktdrym najszybciej doceniono uzyskane tego
rodzaju dane, byto rolnictwo. Juz w roku 1966 Uniwersytet w Michigan (USA), ktdry rozwijat

technologie obserwacyjng dla wojska, rozpoczat adaptacje liniowych skaneréw lotniczych
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do zastosowan cywilnych. W tym samym roku, uniwersytet ten wykonat pierwsze obloty,
rejestrujgc od 12 do 18 kanatéw spektralnych, ktére do dnia dzisiejszego sg wykorzystywane
w zastosowaniach instruktazowych [32, 34].

Wartos¢ danych pozyskanych w latach 1966-1968 zostata dostrzezona przez NASA, ktdra
postanowita rozpoczgc¢ prace nad satelitg o roboczej nazwie ERTS (Earth Resources Technology
Satellite), nazwanego pdzniej Landsat. Satelita ten, ktéry w pdzniejszym okresie okazat sie
pierwszym z dtugiej linii Landsat, zostat wyposazony w sensor MSS (Multi Spectral Scanner),
obrazujgcy w sposdb cyfrowy w czterech pasmach $wiatta, tj.: 500 nm - 600 nm, 600 nm - 700
nm, 700 nm - 800 nm, 800 nm - 1100 nm [32, 34].

Na poczatku lat siedemdziesigtych, rowniez w USA, dokonano oblotéw multispektralnych
z wykorzystaniem instrumentu umieszczonego w platformie lotniczej o wysokim putapie
obrazowania. Instytucjg zlecajg tego typu kampanie byt Departament Rolnictwa, a celem byto
zlokalizowanie $ciezek rozprzestrzeniania sie tzw. zarazy lisci kukurydzy w catym zagtebiu
kukurydzianym USA w srodkowej czesci kraju. Kampania ta dostarczyta ogromnego zestawu
danych multispektralnych, ktére oprécz wykorzystania w kontekscie wspomnianego wczesniej
patogenu, pozwolita réwniez na rozrdznienie réoznych rodzajow gleby, upraw, stanu roslin oraz
zjawisk inwazyjnych w rolnictwie. Eksperyment ten, wraz z wystrzeleniem satelity Landsat-1,
byt kluczowym punktem w historii rozwoju systeméw multispektralnych, ktdére szeroko
pokazaty wartos¢ tej techniki obrazowania [32].

Dalszy rozwdj i miniaturyzacja zaréwno ukfadédw obliczeniowych, jak i systeméw
optoelektronicznych pozwolity na zaproponowanie pierwszego rozwigzania o cechach
spektrometru obrazujgcego. Dokonato tego laboratorium Jet Propulsion Lab (JPL) w USA,
ktére w 1984 rozpoczeto prace nad instrumentami AVRIS (Airborne Visible/InfraRed Imaging
Spectrometer), SISEX (Shuttle Imaging Spectrometer EXperiment) oraz HIRIS (High Resolution
Imaging Spectrometer). Instrumenty SISEX oraz HIRIS nigdy nie zrealizowaty swojego zadania
w misjach lotniczych lub kosmicznych. Planowo HIRIS miat zostaé wykorzystany w satelicie
EOS, niestety z uwagi na ciecia budzetowe, na poktadzie tej platformy nigdy sie nie znalazt.
Instrument SISEX miat jeszcze bardziej dramatyczng historie, poniewaz nie wyszedt z fazy
projektowej z uwagi na katastrofe promu Challenger. Trzeci z opracowywanych w JPL
instrumentow - AVRIS doczekat sie realizacji juz w 1987 roku a pierwsze zobrazowania z jego
pomocg wykonane zostaty na pokfadzie samolotu NASA ER-2 na wysokosci 20 km. Jako$é

i odwzorowanie radiometryczne danych z niego pochodzacych do dzi$ sg niedoscignionym
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wzorem dla instrumentéw hiperspektralnych. Instrument ten jest w uzyciu na rdéznych
platformach réwniez wspoétczesnie [33].

Nie tylko JPL rozwijato instrumenty hiperspektralne w latach osiemdziesigtych.
Zagadnieniem tym zajmowaty sie takze osrodki komercyjne. Wspomnieé nalezy o takich
instrumentach jak DAIS (Digital Airborne Imaging Spectrometer) opracowany w GERoM
(Geophysical Environmental Research of Millbrook) w 1987 roku, CASI (Compact Airborne
Spectrographic Imager) z ITRES w roku 1989 oraz HYDICE (HYperspectral Digital Imagery
Collection Experiment) z NRL (Naval Research Lab) z roku 1994. Z kolei bardzo podobny
w zakresie spektralnym instrument HyMap z firmy HyVista Corporation zaprezentowany zostat
w roku 1999 [33].

Pierwszy instrument hiperspektralny — Hyperion (satelita EO-1, rok 2000) wystano
w przestrzen kosmiczng dopiero w latach dwutysiecznych. Lata dwutysieczne to réwniez
rozwdj komercyjnych kamer hiperspektralnych, ktére rozpoczety rewolucje obrazowania
w kontroli jakosci produkcji. Wyscig zwigzany z rozwojem kamer hiperspektralnych
i instrumentéw tego rodzaju, pracujacych w platformach lotniczych i satelitarnych trwa do
dzi$, a ostatnie osiggniecia, szczegdlnie w dziedzinie sztucznej inteligencji i nowatorskich

metod akwizycji obrazéw, dodatkowo napedzajg rewolucje hiperspektralng [34].

3.2. PODZIAL TECHNIK AKWIZYCJI OBRAZU W SYSTEMACH OBRAZOWANIA MULTI
| HIPERSPEKTRALNEGO

Systemy multi oraz hiperspektralne mozna podzieli¢ ze wzgledu na technike obrazowania
(rys. 3.2). Zdecydowang wiekszos$¢ sposobéw na pozyskiwanie spektralnych zobrazowan
polowych mozna zaklasyfikowa¢ do kilku kategorii technik. Kategoryzacji mozna dokonaé
ze wzgledu na rozmaite cechy, natomiast ze wzgledu na mozliwosci implementacji techniki
akwizycji dzielg sie one na [35]:

e systemy ze skanowaniem przestrzennym (rys. 3.2a),

e systemy ze skanowaniem spektralnym (rys. 3.2b),

e systemy ze skanowaniem przestrzenno-spektralnym (rys. 3.2c),

e systemy typu snapshot (rys. 3.2d).
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c) Skaner d) Skaner snap-shot
przestrzenno-spektralny

Rys. 3.2. Podziat systemdw obrazowania muliti i hiperspektralnego ze wzgledu na zastosowanga technike
skanowania. Na rysunku pokazana jest struktura danych pojedynczej klatki pozyskiwanej w czterech rodzajach
skaneréw MSI i HSI: a) skaner przestrzenny, b) skaner spektralny, c) skaner przestrzenno-spektralny, d) skaner

typu snap-shot [35]

Skanery przestrzenne (rys. 3.2a) wykorzystujg technike skanowania liniowego, w ktorej
jednoczesnie rejestrowana jest tylko i wytgcznie jedna linia przestrzenna obiektu. Linia ta jest
rozpraszana z wykorzystaniem pryzmatu lub siatki spektralnej do postaci widma rzutowanego
na polowy sensor $wiattoczuty (prosta matryca krzemowa 2D). Poszczegdlne rzedy pikseli
rejestrujg sygnat optyczny w kolejnych kanatach spektralnych fragmentu linii. W efekcie jedna
klatka obrazu pozyskiwanego z polowego sensora sSwiattoczutego rejestruje jedna linie
przestrzenng skanowanego obiektu w wielu kanatach spektralnych. Przemieszczenie
instrumentu lub obiektu pod instrumentem w osi prostopadtej do rejestrowane] jednorazowo
linii daje mozliwos$¢ akwizycji kostki spektralnej (hypercube) czyli obrazu hiperspektralnego
obiektu. Niewatpliwg wadg tej techniki jest koniecznos$¢ utrzymania wysokiej statosci
orientacji kagtowej instrumentu, wzgledem obiektu podczas catego procesu skanowania.

Skanery spektralne (rys. 3.2b) korzystajg z techniki stosowanej w najwczesniejszych
kamerach RGB, czyli z przesuwnych elementéw filtrujgcych w osi optycznej instrumentu. Moze
sie to odbywac np. poprzez rotacje kota filtrowego przed dwuwymiarowym sensorem
polowym (rys. 3.3). W efekcie uzyskujemy wiele obrazéw polowych obiektu, kazdy

reprezentujacy Swiatto pochodzace z obiektu w innym pasmie. Ztozenie tych obrazéw daje
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obraz multi lub hiperspektralny. Wadg tej techniki obrazowania, jest koniecznosé
czasochtonnej zmiany filtrow spektralnych podczas procesu akwizycji, co ogranicza mozliwos¢
rejestracji tylko do obiektéw o wzglednie niskiej dynamice zmian w czasie.

Skanery przestrzenno-spektralne (rys. 3.2c) dziataja w sposéb podobny do skaneréw
przestrzennych, jednak kazda klatka pozyskana z instrumentu w jednej chwili czasu,
reprezentuje obraz polowy obiektu z liniami w réznych pasmach spektrum. W tej technice
przesuw instrumentu, wzgledem obiektu jest niezbedny, a sktadanie w kostke spektralng
odbywa sie poprzez synteze wszystkich obrazéw zaréwno w domenie przestrzennej jak
i spektralnej. Ta technika skanowania, oprécz wad obecnych w skanerach przestrzennych,
posiada réwniez wade zwigzang z paralaksg obrazowania. Jest to zjawisko, w ktérym
poszczegdlne kanaty spektralne bedg zarejestrowane przez instrument pod réznym katem.
W aplikacjach teledetekcyjnych (np. satelitarnych) nie bedzie to stanowi¢ duzego problemu,
natomiast w aplikacjach przemystowych i laboratoryjnych, gdzie wypukte przestrzennie
obiekty rejestruje sie ze wzglednie niskiej odlegtosci, zjawisko to moze utrudnia¢ dalsze
przetwarzanie danych.

Skanery typu snapshot (rys. 3.2d) cechujg sie funkcjonalnoscig rejestracji obrazu
porownywalng ze wspotczesnymi kamerami RGB, w ktérych kazdy obiekt rejestrowany jest
w trzech pasmach jednoczesnie na wszystkich pikselach. Kamery multi i hiperspektralne tego
typu sg na razie rzadkoscig i oznaczajg koniecznos¢ zastosowania specjalistycznych mozaik
na sensorach CMOS lub wielokamerowe uktady sprzezone. W kazdej z tych odmian,
instrument tego typu jest bardzo skomplikowany technologicznie i kosztowny.

Kazda aplikacja spektrofotometryczna wymaga skutecznego i wprowadzajgcego
jak najmniej zaktécen rozwigzania umozliwiajgcego odpowiednie przetwarzanie (np.
filtrowanie, rozszczepianie, ogniskowanie, zatamywanie, itp.) mierzonej wigzki $wiatta.
Aplikacje obrazowania hiperspektralnego nie sg wyjgtkiem. Obecnie wiele firm i instytutéw
badawczych prowadzi intensywne badania nad nowymi i jeszcze doskonalszymi metodami
filtrowania badz rozszczepiania swiatta, do zastosowania w kamerach hiperspektralnych.

Jak juz wspomniano, w wypadku obrazowania multispektralnego, akwizycja obrazu
w wybranym zakresie (pasmie) dtugosci fali moze by¢ zrealizowana z uzyciem odpowiednich
filtrow pasmowoprzepustowych. Na rys. 3.3 przedstawiono idee filtrowania pasm z uzyciem

tzw. kofa filtrowego.
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Skanowany obiekt

Rys. 3.3. Idea filtrowania pasm dla potrzeb obrazowania multispektralnego z zastosowaniem kofa filtrowego.
Na podstawie [36]

W klasycznej odmianie tej metody zestaw okraggtych filtrow umieszczony jest miedzy
sensorem a obiektywem lub przed obiektywem, a zmotoryzowane koto, bedgce mechaniczng
obudowa dla tych filtrow, obraca sie, umozliwiajgc akwizycje w wielu pasmach spektralnych.
Technika ta byta najwczesniej stosowang technikg obrazowania spektralnego w fotografii
z uwagi na swoje proste w realizacji zatozenie. W niektdrych dziedzinach, np. astronomii
amatorskiej, stosowane jest do dzis.

Jedng z metod, najczesciej stosowang w obrazowaniu hiperspektralnym jest skanowanie
linijkowe z wykorzystaniem matrycowego sensora CMOS lub CCD - rys. 3.4. W metodzie tej
zastosowano uktad spektrofotmetryczny, ktéry wykorzystuje transmisyjng siatke dyfrakcyjng
lub pryzmat, jako element rozpraszajacy $wiatto. Ukfad ten wykorzystuje réwniez
standardowy element obiektywowy dokonujacy projekcji obrazu na ptfaszczyzne, w ktdrej
znajduje sie cienka szczelina. Dzieki temu, w danej chwili, uktad optyczny obrazuje wytgcznie
fragment (pasek) obiektu, w ktéry wycelowana jest kamera hiperspektralna. Od szerokosci
szczeliny optycznej zalezy bezposrednio rozdzielczo$é przestrzenna w osi prostopadtej do
kierunku skanowania. Swiatfo po przejéciu przez szczeline jest nastepnie poddawane
kolimacji, czy tez zréwnolegleniu promieni, przez ukfad kolimujacy. Taka rownolegta wigzka
zostaje wprowadzona nastepnie na element rozszczepiajacy $wiatto, czyli jak wspomniano
wczesniej, na pryzmat lub transmisyjng siatke dyfrakcyjna. Jakos¢ i rodzaj tego elementu

wptywa bezposrednio na rozdzielczo$¢ spektralng kamery hiperspektralnej.
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Rys. 3.4. Najczesciej wykorzystywany uktad spektrofotometryczny stosowany w wiekszosci obecnych na rynku
kamer hiperspektralnych [37]

Rozszczepiona wigzka jest nastepnie projektowana z wykorzystaniem elementu
ogniskujgcego na matrycy Swiattoczutej. Ruch skanera w kierunku prostopadtym do szczeliny

wejsciowej umozliwia skanowanie obiektu we wszystkich dostepnych pasmach spektralnych

(rys. 3.5).
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Rys. 3.5. Idea skanowania przestrzennego [38]

Na  przyktadzie przedstawionego schematu najczesciej spotykanego  uktadu
spektrofotometrycznego nietrudno jest zauwazyé, ze niezwykle istotnymi elementami
optycznymi, umozliwiajgcymi obrazowanie hiperspektralne sg pryzmaty oraz siatki
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dyfrakcyjne. Oba te elementy realizujg to samo zadanie, czyli rozszczepiajg Swiatto dokonujac
na wigzce kagtowego przemieszczenia sktadowych spektralnych o réznych dtugosciach fali (rys.

3.6). Elementy te rdznig sie jednak sposobem, w jakim Swiatto zostaje rozszczepione.

a) b)
Drugi rzad
= widma Swiatto L
—  Pierwszy biate Swiatto rozproszone
- - rzad widma
Swiatio ) 610-800 nm
biale = [ Zerowy rzad widma pryzmat 595-610 nm
580-595 nm
- B Pierwszy 500-580 nm
— rzad widma 480-500 nm
~. ®==  Drugi rzad 435-480 nm
fevi 400-435 nm
Transmisyjna widma

siatka dyfrakcyjna

Rys. 3.6. Poréwnanie sposobu rozszczepienia $wiatta przez: a) transmisyjng siatke dyfrakcyjng oraz b) pryzmat
[39, 40]

Pryzmat wykorzystuje wtasciwosé, zwigzang z rdznica w kacie zatamania swiatta
w zaleznosci od dtugosci fali, podczas, gdy dziatanie siatek dyfrakcyjnych opiera sie o falowa
nature Swiatta. W przypadku siatek transmisyjnych wykorzystywane jest zjawisko dyfrakcji,
ktore polega na generacji zrédta fal podczas przechodzenia przez szczeline lub otwér
o rozmiarze poréwnywalnym do dtugosci fali. Swiatto trafiajgce na szczeline tworzy quasi-
punktowe zrédto nowej fali. W zaleznosci od zageszczenia przestrzennego szczelin, pod
pewnym katem w stosunku do pierwotnej osi swiatfa biatego, wytwarza sie front falowy, ktéry
w zaleznosci od przemieszczenia przestrzennego tworzy na ptaszczyznie obraz rozproszonego

spektrum wigzki padajgcej na siatke dyfrakcyjng (rys. 3.7).
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Rys. 3.7. Zasada tworzenia frontu falowego w siatce dyfrakcyjnej [41]
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Opisane klasyczne metody akwizycji obrazow spektralnych stosowane sg od wielu dekad
i przez ten czas ulegty ewolucji, dzieki coraz to nowszym technologiom rejestracji obrazu
i produkcji elementow filtrujgcych. W niektdrych obszarach technologia ulegta tak dalekim
zmianom, ze w ostatnich latach opracowano zupetnie inne, bardziej nowatorskie i dajgce
wieksze mozliwosci techniki akwizycji obrazédw hiperspektralnych. Opisane sg one w kolejnym

rozdziale.

3.3. NOWATORSKIE METODY AKWIZYCJI OBRAZU HIPERSPEKTRALNEGO

Jedng z najbardziej wydajnych i umozliwiajgcych uzyskanie najwiekszej rozdzielczosci jest
metoda bazujgca na zastosowaniu filtrow Fabry-Perot (FP). Filtry takie zbudowane sg
z dwodch réwnolegtych, potprzepuszczalnych luster, oddalonych od siebie o dystans
umozliwiajacy interferencje fali o scisle okreslonej dtugosci (rys. 3.8). Zaletg takiego
rozwigzania (w poréwnaniu do systemdw bazujagcych na pryzmatach lub siatkach
dyfrakcyjnych — rozdz. 3.2) jest mozliwos¢ integracji takich filtrow bezposrednio z matryca
Swiattoczutg (rys. 3.8). Rozwigzania takie zaimplementowane zostaty juz przez, miedzy innymi,
takie firmy, jak IMEC oraz HAMAMATSU. Dzieki takiemu nowatorskiemu podejsciu
w tworzeniu matryc CMOS z filtrami FP naniesionymi bezposrednio na piksele matrycy,

mozliwe jest tworzenie kamer hiperspektralnych o znacznie uproszczonej budowie (rys. 3.9).

a) b) Warstwa )
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Rys, 3.8. Schemat przedstawiajgcy: a) zasade dziatania optycznego filtra Fabry-Perot [42]
oraz b) sposdb realizacji filtra FP na pikselu matrycy CMOS [43]
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Rys. 3.9. Poréwnanie kamery hiperspektralnej opartej o: a) element dyfrakcyjny oraz b) filtr FP.
Opracowanie Autora

Kamery oparte na filtrach FP sg niestety wcigz znacznie drozsze w produkcji z uwagi na ich
niewielkie serie produkcyjne. Pomimo, ze z jednej ptytki krzemowej (tzw. wafel) mozna
wykonac kilkaset takich sensoréw, dopiero skala produkcji kilkuset tysiecy sztuk na partie (rys.
3.10) pozwolitaby na zmniejszenie ceny do progu standardowych sensoréw RGB
podwyzszonej jakosci. Z tego wzgledu kamery wykorzystujgce takie rozwigzanie spotykane
sg aktualnie najczesciej w takich wymagajacych aplikacjach, jak obrazowanie lotnicze,

kosmiczne oraz w medycynie.

Pltytka krzemowa
z sensorami CMOS
ze zintegrowanymi
filtrami Fabry-Perot

Rys. 3.10. Ptytka krzemowa z sensorami CMOS z naniesionymi filtrami Fabry-Perot.
Na podstawie [44]

Metoda produkcji sensoréw CMOS z filtrami FP pozwala rowniez na tworzenie sensoréw
mozaikowych (rys. 3.11). W odrdznieniu od sensoréw liniowych, w sensorach mozaikowych
tworzy sie odpowiednie obszary czute na wybrane zakresy widma swiatta, co jest szczegélnie
pozgdane w aplikacjach, w ktérych niemozliwe jest realizowanie obrazowania z jednostajnym
ruchem w okre$lonym kierunku. Sensory mozaikowe prawdopodobnie utorujg droge

kamerom hiperspektralnym w uzytku codziennym.
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a) filtry FP w formie mozaikowej b) filtry FP w formie pasmowej

Rys. 3.11. Realizacja matrycy z filtrami FP: a) w odmianie mozaikowej i b) w odmianie linijkowej [45, 46]

3.4. DOBOR TECHNIKI AKWIZYCJI | PROJEKCJI SPEKTRALNEJ W ZALEZNOSCI

OD ZASTOSOWANIA

Jak juz wspominano weczesdniej, obrazowanie hiperspektralne znalazto juz obecnie
zastosowanie w ogromnej liczbie aplikacji w wielu dziedzinach nauki i techniki, od medycyny,
przez rolnictwo, goérnictwo i zarzadzanie zasobami naturalnymi. Nie oznacza to jednak,
ze wszystkie skanery hiperspektralne majg uniwersalne zastosowanie. Dla kazdego
projektanta aplikacji hiperspektralnej kluczowa jest przede wszystkim znajomos¢ ograniczen
réznych technik obrazowania. Nie wszystkie techniki odnajdg zastosowanie w tych samych
aplikacjach. Szczegdlnie istotne jest rozpatrzenie osmiu gtéwnych aspektéw wsrdd czterech
podstawowych metod akwizycji: zdolnosci do korejestracji danych, sprawnosci
radiometrycznej, rozdzielczosci przestrzennej i spektralnej, sprawnosci filtracji pasm,
szybkosci akwizycji, rozmiarze oraz poziomie skomplikowania optomechanicznego systemu.
Z tego wzgledu Autor opracowat zestawienie kluczowych cech tych technik obrazowania na
potrzeby niniejszej rozprawy doktorskiej (tabela 3.1). Analizujgc tabele 3.1 nietrudno
zauwazyé, ze w wielu aspektach skanowanie przestrzenne zapewnia bardzo dobre parametry
uzyskiwanych obrazow. Nalezy jednak zwrdci¢ uwage na fakt, ze skanowanie liniowe lub
punktowe niesie ze sobg duzg trudnosé¢ w korejestracji danych. Sktadanie obrazéw z linijek,
badz pojedynczych punktéw w zaleznosci od platformy obrazujgcej mozie wymagaé
dodatkowych algorytmdéw korejestracji oraz zastosowania dodatkowych czujnikow
rejestrujgcych potozenie kamery w momencie obrazowania. Z tego tez wzgledu przestrzenne
skanery hiperspektralne stosowane sg wytgcznie w aplikacjach, w ktérych stabilnos¢ potozenia
instrumentu jest albo bardzo dobra (np. w laboratorium lub na tasmie produkcyjnej), albo

dobrze opomiarowana (np. w samolotach lub satelitach). Skutecznie eliminuje to mozliwos¢
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zastosowania tego rodzaju instrumentéw w zastosowaniach przeno$nych i recznych. Skanery
przestrzenne cechujg sie réwniez umiarkowanym rozmiarem oraz wysokim poziomem

komplikacji optomechaniczne;.

Tabela 3.1. Cechy réznych technik akwizycji obrazu hiperspektralnego. Opracowanie Autora.

Skanowanie
przestrzenno-
spektralne

Skanowanie
przestrzenne

Cecha/technika
obrazowania

Skanowanie Snapshot
spektralne

Korejestracja
danych

Dobra Bardzo dobra

Sprawnos$¢

. Umiarkowana
radiometryczna

Bardzo dobra Bardzo dobra

Rozdzielczos¢

Dobra
przestrzenna

Bardzo dobra

Bardzo dobra

Rozdzielczos¢

Dobra
spektralna

Bardzo dobra

Sprawnosc¢ filtracji

. Umiarkowana
spektralnej

Bardzo dobra

Szybkos¢ akwizycji Duza Bardzo duza Duza
Rozmiar Umiarkowany Bardzo maty Bardzo maty
Poziom

skomplikowania Duzy Bardzo maty Bardzo maty
optomechanicznego

Tabela 3.1 wyraznie pokazuje réwniez wady i zalety skanowania spektralnego. Mimo
bardzo dobrych parametréw radiometrycznych, rozdzielczosci przestrzennej oraz sprawnosci
filtracji spektralnej, tego rodzaju skanery niestety odznaczajg sie niskg rozdzielczoscig
spektralng i szybkoscig akwizycji. Te dwie wady wynikajg z faktu, ze realizacja takiego
instrumentu wymaga aktywnych rozwigzan optomechanicznych, ktére w trakcie akwizycji
jednego obrazu hiperspektralnego muszg zmieniaé filtry spektralne w torze optycznym.
Najczesciej sg to rewolwerowe lub przesuwne mechanizmy filtrowe. Mogg to by¢ réwniez
rozwigzania oparte na nastawnych filtrach, np. Fabry-Perot, w ktérych mechanicznej zmianie
ulega szeroko$¢ szczeliny miedzy dwoma poétprzepuszczalnymi lustrami. Wszystkie te
rozwigzania wymagajg stosunkowo duzej ilosci czasu do zmiany aktualnej nastawy filtracyjnej,
co dyskwalifikuje tego typu rozwigzania w aplikacjach wymagajgcych duzej szybkosci
akwizycji. Rozwigzania tego typu s3 rowniez wysoce skomplikowane optomechanicznie
i w ograniczonym stopniu mozliwa jest miniaturyzacja catego systemu. Wazng zaletg tego typu

systemu jest jednak bardzo dobra mozliwos¢ korejestracji obrazéw, poniewaz kazdy obraz
46



spektralny jest dwuwymiarowg macierzg pozbawiong wynikajgcych z metody akwizycji
niedoskonatos$ci geometrycznych.

Metoda akwizycji typu snapshot ma najwiecej wad i jest najbardziej niedoskonata pod
katem sprawnosci radiometrycznej, rozdzielczosci przestrzennej i spektralnej oraz sprawnosci
filtracji spektralnej. Wynika to z technologii stojgcej za rozwigzaniami typu snapshot.
We wszystkich przypadkach jest to rozwigzanie oparte na matrycach dwuwymiarowych
CMOS/CCD, ktére posiadajg mozaikowe filtry naniesione na sensor, lub filtr szklany przed
sensorem. W zaleznosci od ilosci pozyskiwanych kanatéw spektralnych sg to mozaiki
sktadajace sie np. z zestawdw 4x4 piksele (16 kanatéw), ktére razem odwzorowujg jeden
przestrzenny piksel. Podobnie, jak w kamerach RGB z mozaikg Bayera (rys. 2.5), zdolnos$¢ do
rownoczesnej rejestracji obrazéw w réznych kanatach spektralnych uzyskiwana jest przez
obnizenie zdolnosci rozdzielczej i sprawnosci radiometrycznej. Niewatpliwymi jednak zaletami
takiego rozwigzania sg bardzo dobra zdolno$¢ do korejestracji, bardzo wysoka szybkos$é
akwizycji (jest to jedyna technika zdolna do uzyskiwania klatkazu poréwnywalnego
z kamerami RGB) oraz bardzo mate rozmiary i niewielki poziom skomplikowania
optomechanicznego. Dzieki tym zaletom, metoda akwizycji typu snapshot jest jedyng metodg
hiperspektralng, ktéra pozwala na zastosowanie reczne i przenosne.

Skanowanie przestrzenno-spektralne jest najmtodszg z technik akwizycji hiperspektralne;j.
Wykorzystywane w nich filtry spektralne nanoszone na sensor lub na podtoze szklane
umieszczane przed nim, pozwalajg na dobrg rozdzielczo$¢ przestrzenng oraz spektralng,
a takze na dobrg szybko$¢ akwizycji. Gtéwng zaletg tego rodzaju systemow jest jednak przede
wszystkim maty rozmiar i niewielki poziom skomplikowania budowy optomechanicznej
(tabela 3.1). Systemy przestrzenno-spektralne nieco gorzej radzg sobie natomiast z
zapewnieniem dobrej sprawnosci radiometrycznej i filtracji spektralnej. Natomiast ich
najwiekszg wadg jest trudna korejestracja danych, poréwnywalna z systemami skanowania
przestrzennego. Skanery przestrzenno-spektralne sg obecnie najlepszym konkurentem dla
skanerdow przestrzennych. Ich zalety pozwalajg na zastosowanie w podobnych platformach, a
z uwagi na duze mozliwosci miniaturyzacji, s3 uwazane za rozwigzanie, ktore pozwoli na
szerokg popularyzacje kamer hiperspektralnych.

Analiza danych zawartych w tabeli 3.1 pokazuje, ze nie ma idealnego i uniwersalnego
systemu obrazowania hiperspektralnego. Analizujgc zastosowanie w danej aplikacji, nalezy
przede wszystkim dobrze okresli¢ wymagania i ograniczenia zardwno dotyczgce potrzeb, jak i

platformy w jakiej umieszczony bedzie skaner hiperspektralny. Na rysunku 3.12
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zaproponowana zostata przez Autora metodologia

odpowiedniego rodzaju rozwigzania do aplikacji.

Duza
(>3 dem”3)

Przestrzen
dostepna
na instrument

Lotnicza
B H
lub satelitarna

Niewielka
(<=3 decm”3)

Teledetekeja

postepowania

Skanery HS| przestrzenne

Skanery
HSI przestrzenno-
spektralne

Skanery HSI typu
snapshot

- Skanery
HSI przestrzenne

- Skanery
HSI przestrzenno-
spektralne

Skanery HSI typu

snapshot

przy doborze

Aplikacje:
- rolnictwo
- detekcja gazéw
- gornictwo / surowce
- urbanistyka
- katastrofy naturalne
- obserwacje zmian
klimatycznych

Aplikacje:
- wielkoskalowe zjawiska
naturalne
- meteorologia
- obserwacje zmian
klimatycznych

Aplikacje:
- rolnictwo
- gérnictwo / surowce
- lesnictwo
- ekologia

Aplikacje:
- rolnictwo
- urbanistyka
- detekcja gazéw
- poszukiwania ludzi/
obiektéw

Nauki:
- astronomia

(obserwacje
zdalne)
Rodzaj L, Niskoputapowe
zastosowania UAV (drony)
HsI
- Skanery HSI spektralne
- Skanery HSI typu
snapshot
Badawcze/
naukowe
- Skanery
: HSI przestrzenne
Obserwacje
lokalne (krdtki - Skanery HSI
okaine . otkiego przestrzenno-spektralne
zasiegu)

- mikrosopia
- ekologia

Nauki:
- geologia/mineralogia

Skanery HSI przestrzenne

Przemystowe

Skanery
HSI przestrzenno-
spektralne

Aplikacje pomiaru
ilosciowego

Aplikacje pomiaru
jakoséciowego

Rys. 3.12. Metodologia doboru rodzaju systemu hiperspektralnego.

Opracowanie Autora

- nauki o Zywieniu
- chemia

Przemyst:
- SpoOZywWCzy
- gorniczy
- chemiczny
- farmaceutyczny

Zgodnie z opracowanym przez Autora niniejszej pracy diagramem przedstawionym na rys.

3.12, kluczowe dla doboru odpowiedniego systemu HSI jest okreslenie rodzaju obserwacji

(zdalne lub krétkiego zasiegu). W przypadku aplikacji teledetekcyjnych wazne jest réwniez

podjecie decyzji na jakg dla danej aplikacji platforme sie decydujemy. Platformy satelitarne i

lotnicze od lat wiodty gtéwny prym w obszarze

zastosowan hiperspektralnych.

W ostatnich latach, coraz to szersze zastosowanie znajdujg takze systemy UAV (Unmanned

Aerial Vehicle) w dziedzinach, ktére do tej pory dostepne byly jedynie we wczesniej

wymienionych platformach.
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W przypadku platform lotniczych i satelitarnych istotnym ograniczeniem bedzie rozmiar
instrumentu. Granica okoto 3 decymetréw szesciennych pozwala rozgraniczy¢ przy obecnym
stanie techniki przestrzen potrzebng na takie zaawansowane instrumenty, jak dla typu
skanowania przestrzennego. Ponizej tego rozmiaru dostepne s3g gtéwnie skanery
przestrzenno-spektralne oraz skanery typu snapshot. Obie te grupy instrumentéw pozwalaja
na realizacje réznych rozdzielczosci przestrzennych i spektralnych, co przektada sie na rézny
obszar ich zastosowan a takze rdzng jakos¢ otrzymywanych obrazéw.

W przypadku niskoputapowych platform UAV, dostepne s3 jedynie lekkie i niewielkie
instrumenty HSI. Rozpatrywaé zatem w tym przypadku nalezy jedynie skanery przestrzenno-
spektralne oraz skanery typu snapshot. Obie te grupy instrumentéw zapewniajg dostepnos¢
podobnej grupy aplikacji, jednak rézni¢ sie one bedg wszechstronnoscig zastosowan oraz
rozdzielczoscig dostarczanych zobrazowan.

Z kolei w aplikacjach krotkiego zasiegu nalezy rozwazyé przede wszystkim czy instrument
bedzie stuzyt jako naukowe stanowisko badawcze, czy jako przemystowy element systemu
kontroli jakosci lub procesu. W przypadku stanowisk badawczych, mozliwe jest zastosowanie
wszystkich czterech grup instrumentéw HSI. Kluczowy podziat na dwie grupy aplikacji
stanowig skanery spektralne i typu snapshot oraz osobno skanery przestrzenne
i przestrzenno-spektralne. Ten podziat definiuje mozliwo$¢é optymalnego zastosowania
w réznych dziedzinach nauki.

W aplikacjach przemystowych, istotne jest okreslenie czy zalezy nam na pomiarze
jakosciowym czy ilosciowym. W przypadku pomiaru jakosciowego, czyli gtdwnie okreslaniu czy
obiekt o zdefiniowanych parametrach jest obecny lub nie, doskonale sprawdzajg sie skanery
przestrzenno-spektralne. W aplikacjach dotyczgcych pomiaru ilosciowego, czyli w okreslaniu
np. stezenia/zawartosci wykrywanego obiektu/pierwiastka, konieczne bedzie zastosowanie

skanera przestrzennego.

3.5. RODZAJE SENSOROW STOSOWANYCH W SYSTEMACH OBRAZUJACYCH

Jak juz wczesniej wspomniano, jednym z najwazniejszych elementéw systemu
obrazujgcego jest sensor — fotoczuta matryca, w ktérej nastepuje konwersja promieniowania
optycznego w sygnat elektryczny. Ze wzgledu na wiasciwosci spektralne wyrdznia sie [47]
[48]:

e Sensory monochromatyczne — posiadajg tylko jeden kanat spektralny, taki sam dla

wszystkich pikseli.
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Sensory RGB — o 3 kanatach spektralnych (zielony, czerwony, niebieski), gdzie
poszczegdlne kanaty najczesciej zachodzg na siebie.

Sensory spektralne — z naniesionymi filtrami spektralnymi na poszczegdlne piksele lub
ich grupy. Liczba, szerokosci oraz ksztatty kanatéw spektralnych projektowane sg w
zaleznosci od specyficznych potrzeb danej aplikacji. W szczegdlnosci wyrdznia sie

sensory multispektralne oraz hiperspektralne.

Z kolei, ze wzgledu na konfiguracje geometryczng sensory mozna podzieli¢ na [49]:

Sensory polowe — pojedyncze piksele utozone w macierzy dwuwymiarowej. Obraz
dwuwymiarowy powstaje w momencie jednokrotnej ekspozycji danej sceny.
W przypadku sensoréw RGB, wyposazone sg one najczesciej w siatke Bayera (rys. 2.5).
W przypadku sensoréw multispektralnych stosowane sg zoptymalizowane siatki
filtréw wynikajgce z projektu i specyfiki pracy danego sensora (siatki mozaikowe).
Sensory polowe sg stosowane jako sensory hiperspektralne z racji znacznej redukgciji
rozdzielczosci obrazowania zwigzanej z zastosowaniem odpowiednio gestej siatki
filtrow w powtarzajgcym sie uktadzie.

Sensory linijkowe — elementy $wiattoczute utozone w pojedynczej linii. Powstawanie
obrazu wigze sie z koniecznoscig przesuwania elementu obrazujgcego wzdtuz
obserwowanej sceny. Sensory RGB wyposazone w dedykowang siatke Bayera lub uktad
tréjliniowy (kazdy kanat barwny posiada osobna linie pikseli). W przypadku sensoréw
multispektralnych i hiperspektralnych stosowane s3 odpowiednie filtry

na poszczegdlne linie lub grupy linii pikseli.

Do podstawowych parametréw okreslajgcych funkcjonalnos¢ sensoréw optycznych

i ich uzytecznos¢ naleza:

Rozdzielczo$¢ przestrzenna (Spatial Resolution) — okresla liczbe pikseli w matrycy
w osiach X oraz Y.

Rozdzielczo$¢ spektralna (Spectral Resolution) — okresla zakres i wielko$¢ kanatéw
spektralnych zastosowanych w sensorze.

Wielkos¢ pikseli (Pixel Pitch) — okresla wielko$¢ pojedynczego elementu
Swiattoczutego. Wieksze piksele pozwalajg na uzyskanie wiekszego poziomu sygnatu

poprzez zebranie wiekszej ilosci fotondw.
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Czutos¢ kwantowa (Quantum Efficiency - QE) — parametr okreslajagcy odpowiedz
sensora na wymuszenie w danej dtugosci fali. Kluczowy parametr przy okresleniu
skutecznego zakresu obserwowanych zjawisk. W przypadku sensoréw z wiecej niz
jednym pasmem spektralnym charakterystyka w postaci wykresu czutos$ci w zaleznosci
od dtugosci fali powinna by¢ opracowana osobno dla kazdego kanatu.

Gtebia bitowa (Bit depth) — okredla liczbe bitéw wykorzystywanych do konwersji
analogowo - cyfrowej. W przypadku komercyjnych misji obserwacyjnych wystarczajgce
sg sensory pracujgce z maksymalna gtebig 12-bit. W przypadku aplikacji naukowych
rozdzielczosci bitowe przekraczajg 20-bitéw.

Poziom sygnatu do szumu (Signal to Noise Ratio — SNR) — okresla wartos¢ uzytecznego
sygnatu do szumu tfa. Kluczowy parametr okreslajgcy mozliwosci detekcji
i rozréznienia obserwowanych zjawisk.

Prad ciemny (Dark Current) — poziom sygnatu pasozytniczego pojawiajgcego sie
w sensorze w zaleznosci od temperatury. W przypadku aplikacji kosmicznych
minimalizacja negatywnego wptywu tego parametru wymusza utrzymywanie niskiej
i stabilnej temperatury sensora.

Szybko$¢ dziatania sensora/szybkos$¢ akwizycji (Frame/Line per second - FPS/LPS) —
w przypadku sensoréow polowych okreslana w klatach na sekunde (FPS), w przypadku
sensorow liniowych w liniach na sekunde (LPS).

»,Staging” — parametr opisujacy sensory TDI (Time Delay Integration), ktére stosowane
sg szczegdlnie w aplikacjach, wymagajgcych maksymalizacji stosunku sygnatu
do szumu. Sensory tego typu dokonujg wielokrotnej akwizycji tego samego obszaru
obrazu, poprzez sumowanie tadunku fotoelektrycznego na kolejnych liniach sensora,
ktdry przemieszcza sie wzgledem obrazowanego obiektu. Parametr ,Staging” okresla
liczbe niezaleznych linii poddawanych sumowaniu w celu uzyskania sygnatu
wynikowego.

»,Shutter type” — parametry opisujgcy sensory polowe. Okresla typ odczytu pikseli
z matrycy. Moze by¢ typu rolling shutter lub global shutter. Do aplikacji obrazowania
wykorzystywane sg sensory wyposazone w global shutter. Mozliwosci zastosowania
matryc z migawka typu rolling shutter s3 w tym momencie eksplorowane prze ESA

w kontekscie zastosowania w uktadach nawigacyjnych (star tracker).
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W procesie doboru sensoréw do aplikacji obserwacyjnej kluczowym parametrem jest
takze wybdr odpowiedniego sensora do zakresu obserwowanego wycinka widma
promieniowania elektromagnetycznego, tj. odpowiedniego zakresu spektralnego pracy
sensora. Zakres ten zwigzany jest bezposrednio z materiatem podtprzewodnikowym,
wykorzystanym do wytworzenia sensora. Najbardziej rozpowszechnionym materiatem
do budowy sensoréw jest krzem, jednak jego wykorzystanie wigze sie z ograniczeniami
uzytecznosci obserwowanej dtugosci fali elektromagnetycznej do ok. 1100 nm. W przypadku
obserwacji w zakresie dtuzszych dtugosci fali Swiatta (SWIR/MWIR) niezbedne jest
zastosowanie innych materiatow. Na rys. 3.13 przedstawiono rodzaje materiatéw

stosowanych do wytwarzania sensoréw oraz zakresy pasm optycznych, w ktérych one pracuja.

0.001 nm 0.1 nm 0.01 um 02um 04pm 0.9 um 2.5 um 5um 10 um 100 pm
Twarde Migkkie y Swiatl
== - EEENE
HgCdTe (MCT)

VOx

Rys. 3.13. Materiaty wykorzystywane do budowy sensoréw w zaleznosci od zakresu czutosci spektralnej [50].
Oznaczenia: UV — zakres $wiatfa ultrafioletowego, SWIR zakres bliskiej, MWIR — sredniej, LWIR, dalekiej i VLWIR
dalekiej podczerwieni

Jak mozna zauwaiy¢, do szeroko rozpowszechnionych materiatdbw w zakresie
podczerwieni nalezg takie podwdjne i potréjne zwigzki arsenu, galu, indu, czy antymonu, jak
InAs, InSb, InGaAs. Zastosowanie znajdujg takze detektory na bazie zwigzkéw rteci, np.
HgCdTe.

W tabeli 3.2, dla przykfadu, przedstawiono wybrane parametry oraz widok sensora
polowego AMS serii CMV 12000. Sensory serii CMV zostaty wielokrotnie sprawdzone

w warunkach kosmicznych. Dostepne sg w wersji panchromatycznej VIS, RGB lub
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o rozszerzonej czutosci NIR (do 1100 nm). Charakterystyki spektralne tego sensora

zamieszczono na rys. 3.14,

Tabela 3.2. Parametry oraz zdjecie sensora CMV 12000 [51]

Parametr Wartos¢

Wielko$¢ matrycy 4096 H x 3072V
(liczba pikseli)

Czutosc spektralna | Mono, RGB, Mono + NIR

Wielkos¢ piksela 5,5 umx 5,5 um

Szybkos¢ akwizycji | do 300 FPS

Rodzaj polowy, panchromatyczny lub RGB VIS

Materiat bazowy Si

05

e NIR

0.45 =—=Mono

04 ——Kolor_R

=—Kolor_Gr

035 7 | ==——Kolor_B

03 Kolor_Gb

Sprawnos$¢ kwantowa

300 400 500 600 700 800 900 1000 1100
Diugosé fali [nm]

Rys. 3.14. Czutos¢ spektralna sensora CMV 12000 [51]

Kolejnym przyktadem sensora, na ktéry warto zwrdci¢ uwage jest sensor Teledyne Orbis
(IC-45-12k). Jest to przedstawiciel sensora linijkowego, multispektralnego TDI firmy Teledyne.
Sensory te dedykowane sg do zastosowan obserwacyjnych o bardzo duzej rozdzielczosci dla
branzy kosmicznej, szczegdlnie w tzw. obszarze NewSpace. Opracowane zostaty w standardzie
o podwyziszonej odpornosci na promieniowanie. Sensor pracuje w pasmie VIS
(panchromatycznie) oraz w wydzielonych pasmach spektralnych w ramach VIS. W tabeli 3.3
zebrano najwazniejsze parametry tego sensora oraz przedstawiono jego widok.

W tabeli 3.4 przedstawiono z kolei podstawowe parametry oraz widok matrycy sensora

FLIR ISC1202. Jest to sensor bazujacy na InGaS przystosowany do pracy w przemysle.
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Tabela 3.3. Podstawowe parametry i zdjecie sensora IC-45-12k [52]

Parametr

Wartosc

Wielkos¢é matrycy
(liczba pikseli)

Panchromatyczne: 12288 H
Multispektralne: 3072 H

Liczba kanatow

Panchromatyczne: 2

Multispektralne: 4

Wielkos¢ piksela

Panchromatyczne: 7 um x 7 um

Multispektralne: 28 um x 28 pum

Szybkos¢ akwizycji

Panchromatycznie: 40 kHz
Multispektralne: 10 kHz

Typ sensora

Multispektralny, Inijkowy, TDI VIS

Materiat bazowy

Si

Tabela 3.4. Podstawowe parametry i zdjecie sensora FLIR ISC1202 [53]

Parametr Wartos¢
Wielko$¢ matrycy 640 Hx 512V
(liczba pikseli)

Liczba kanatéw 1

Wielkos¢ piksela 15 um x 15 um
Szybkos¢ akwizycji | 120 FPS

Typ sensora

Polowy, panchromatyczny
1000 nm - 1700 nm

Materiat bazowy

InGaS

Pojedyncze sensory, uktady filtrujgce, ogniskujgce wigzke, itd. stosowane sg nastepnie

do budowy kamer, wykorzystywanych w réznego typu aplikacjach. W tabeli 3.5 zamieszczono

przeglad dostepnych na rynku kamer wykorzystywanych do budowy systemoéw obrazowania

multi- i hiperspektralnego.
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Tab. 3.5. Przeglad kamer stosowanych w systemach hiperspektralnych i ich parametry. Oznaczenia: FOV (Field of View) - pole widzenia, FPS (Frame Per Second) — liczba klatek na

sekunde/szybkos¢ akwizycji [54]

T Rozdzielc .
Producent Model sen::ra/ Detektor 208¢ FOV. Zakres L'CZb,a FPS [Hz] Waga [kg] Dodatkowe uwagi
L [stopnie] | spektralny [nm] kanatow
akwizycji [Mpx]
CORNING microHs! 410 pushbroom | CCP/CMOS ; 29,5 400-1000 ; 300 0,45 microHSI 410 SHARK, detektor w ukfadzie do
hybrid teledetekcji
CUBERT ultris x20 plus - - 3 35 350-100 164 6 0,63 -
ELDIM EZLITE HXS ) Cooled CCD 3 +60 400-700 15(VIS) ) 10,00 Odlegtos¢ od przedmiotu — 4,5mm, badany obszar
+2(NIR) <2mm
EVK HELIOS EQ32 - - 320px - 900-1700 8 446 7,80 C-mount, Ochrona przemystowa IP54
Ocean Insight FD-1665 - CCD 1 - 400-1100 3-8 70 - -
GAMAYA - Sensor OXI 2 450-950 16,25,40,100 16-30 0,10 -
HINDSIGHT SpecVu pushbroom CMOS 2,3 6-22 400-1000 600 - 2,00 -
SNAPSCAN SWIR - - 0,8 - 1100-1650 100 - 0,895
IMEC SSEQI;SSE%IEIF\L/JI:I\F/{ - - 7 - 470-900 150 - 0,58 C-mount
VIS+NIR - - 1 - 480-860 25 50 0,50
redeye 1.7 - - 0,08 - 950-1700 Up to 66 330 4,30
INNO.SPEC RedEye 2.2 - - 0,08 - 1200-2200 Up to 66 330 10,50 standard przemysfowy IP63, IP67
Blueeye pushbroom CMOS 4 - 220-380 - 40 1,30 -
Greeneye pushbroom CMOS 1 - 400-1000 - 54 2,00 -
JAI Fusion Series 2 - 405-1000 4 (VIS+NIR) 200 - -
uniSPECO0.9 HSI CMOS - - 395-995 - 11-500
instrll-JLrﬁents ES:I:% m:: pushbroom InGaAs - - 1935200-1179050 - %g 16,80 Standard przemystowy IP67/1P65,
Kusta2.2 MSI - - 1620-2190 - 795
MicaSense Dual Camera System - 3,6 47 475-740 10 - 0,508 -
FX50 - InSb - 24,45,60 2700-5300 154 380 7 -
FX-10 - 1 40 400-1000 220 >330 1,4 -
SPECIM FX-17 - InGaAs 40 900-1700 230 >670 1,4 -
1Q pushbroom - - - 400-1000 - - - Kamera mobilna
LWIR - - - - 8000-12000 42/84 - 3,50/13,10 -
VNIR-1800 CMOS 17 400-1000 186 260 5,00 -
VNIR-3000N - - - 16 400-1000 300 117 5,00 -
VS-1200 - - - 40 400-1000 400 285 35 -
HySpex SWIR-640 - - - 16 960-2500 360 140 4,10 -
- 285(VIS)
mjolnir VS-620 - - - 20 400-2500 490 100(NIR) 6,00 -
Baldur V-1024 N - - - 16/40 400-1000 72/88 - - -
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3.6. PRZEGLAD AKTUALNYCH WYZWAN TECHNOLOGICZNYCH

Bioragc pod uwage, ze historia rozwoju systeméw multispektralnych siega lat
pieé¢dziesigtych, a w przypadku rozwigzan analogowych, nawet dziewietnastego wieku,
wiekszos¢ wspotczesnych wyzwan w obrazowaniu spektralnym nalezy do znacznie mtodszej
odmiany, czyli obrazowania hiperspektralnego. Wyzwania te obejmujg zaréwno aspekty
akwizycji, jak i przetwarzania oraz analizy danych. Oczywiscie w zaleznosci od tego,
czy rozpatrywany jest system teledetekcyjny (platformy lotnicze/satelitarne), czy tez system
obrazowania lokalnego (kamery do przemystu/badan laboratoryjnych), wyzwania mogg sie
rézni¢ i by¢ w inny sposéb adresowane. Natomiast wszystkie platformy ograniczone sg przez
podobne ogdlne aspekty obrazowania hiperspektralnego. Kluczowe obszary wyzwan
to [CA20]:

e Wysoki poziom skomplikowania ukfadu optycznego, sensoréw oraz filtréw
pozwalajgcych na akwizycje obrazu hiperspektralnego. Realizacja niskokosztowych,
mozliwych do wytwarzania seryjnego lub masowego filtréw, nanoszonych na lub przed
sensor CMOS/CCD jest wcigz wyzwaniem globalnego rynku fotonicznego. W wielu
dostepnych rynkowo rozwigzaniach mozliwa jest maksymalizacja tylko dwéch z trzech
parametrow: cena, jakos¢, czas realizacji. Dla przyktadu, wysokiej jakosci filtry F-P
firmy IMEC sg wysoka jakosciowo alternatywa dla filtrow nanoszonych na szkfo przed
detektorem, natomiast ich cena jest znacznie wyzsza.

e Wymog zastosowania sensoréw o wysokiej czutosci radiometrycznej. W przypadku
najczesciej uzbrajanych w zdolnosci hiperspektralne sensoréw czyli matryc CMOS, ich
sprawnos¢ radiometryczna wcigz nie zapewnia szerokiej aplikacyjnosci. Z uwagi na
swojg budowe, ich sprawnos$¢ radiometryczna jest na tyle niska, ze niemal w kazdej
aplikacji wymaga albo petnego Storica albo oswietlaczy halogenowych jako Zrédto
Swiatta [55].

e Duza trudnos¢ w uzyskaniu obrazéw hiperspektralnych o wysokiej rozdzielczosci
przestrzennej. Jedynie skanery przestrzenne i przestrzenno-spektralne mogg zepewnic
wysoka rozdzielczo$é przestrzenng przy jednoczesnej wysokiej szybkosci akwizycji.
Skanery spektralne oraz typu snapshot to zawsze kompromis miedzy rozdzielczoscia
a szybkoscig akwizycji. Stanowi to powazne wyzwanie, ktére przy obecnym stanie
techniki wyklucza zastosowanie HSI do uzytku podobnego, jak kamery RGB

(np. w postaci recznych kamer).
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Wysoki poziom skomplikowania danych hiperspektralnych. Kazde rozwigzanie HSI,
to wysoce skomplikowany instrument, co przektada sie na koniecznosé zaangazowania
wyspecjalizowanej kadry do akwizycji, obstugi i przetwarzania danych.

Stosunkowo duzy rozmiar obrazéw hiperspektralnych. Jedynie instrumenty niskich
rozdzielczosci lub sprawnosci radiometrycznej, czyli skanery przestrzenno-spektralne
oraz typu snapshot pozwalajg na realizacje w postaci matych urzadzen, np. do platform
UAV lub desktop. Pozostate rozwigzania wymagajg duzego rozmiaru i podwyzszonego
skomplikowania optomechatronicznego w realizacji akwizycji.

Skomplikowany proces kalibracji radiometrycznej, kluczowej do wiekszosci
zastosowan. Jakosc realizacji kazdej aplikacji HSI wymaga regularnych i czasochtonnych
procedur kalibracyjnych.

Wymdg zastosowania zaawansowanych algorytméw w celach klasyfikacji danych
hiperspektralnych. Instrumenty HSI generujg strumien danych o wysokiej objetosci.
Wymaga to zastosowania algorytméw ML (Machnie Learning — uczenie maszynowe,
czyli zaawansowane algorytmy technik informacyjnych, bedace pierwszym stopniem
Sztucznej Inteligencji) do redukcji wymiarowosci, a takze rozwigzan DL (Deep Learning
—uczenie gtebokie, czyli podkategoria uczenia maszynowego, polegajgca na tworzeniu
sztucznych sieci neuronowych) do klasyfikacji obiektow.

Wysoka cena implementacji rozwigzan hiperspektralnych. Wysoki poziom
skomplikowania rozwigzan HSI przektada sie na wysoky cene, co jest gtdwnym
ograniczeniem w zastosowaniu tej metody w szerokim polu aplikacji codziennego

uzytku.

Podsumowujac, rozwazania przedstawione w niniejszym rozdziale pokazujg gtéwne

bariery obrazowania hiperspektralnego, ktére spowalniajg i wstrzymujg ich szerokie

zastosowanie w dziedzinach zycia codziennego, a takie w niskomarzowych obszarach

przemystu wytwdrczego. Zaréwno wysoki poziom skomplikowania, odzwierciedlajacy sie

we wzglednie duzym rozmiarze i koszcie kamer HSI, jak i rowniez wymdg gromadzenia

i przetwarzania obszernego strumienia danych, powoduje, ze techniki hiperspektralne

znajdujg na razie waskie grono aplikacji. Daje sie zauwazy¢ potrzebe przedefiniowania potrzeb

lub sposobu syntezy uktadéw HSI, aby dziedzina obrazowania spektralnego i towarzyszace jej

zalety, mogty poprawi¢ zarowno jakos¢ zycia, jak i przesungc granice mozliwosci nauki

i techniki.
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4. APLIKACJE WYKORZYSTUJACE OBRAZOWANIE MULTI | HIPERSPEKTRALNE

Jak wspomniano w rozdziale 2.3, obrazowanie multi i hiperspektralne znajduje szerokie
zastosowanie. Niniejszy rozdziat opisuje kluczowe aplikacje w przemysle wytwdrczym,
w sektorze kosmicznym, gdérniczym oraz aplikacje rolnicze, realizowane miedzy innymi

w firmie Scanway S.A., w ktérej wdrozone zostaty wyniki niniejszej pracy doktorskie;j.

4.1. APLIKACJE W PRZEMYSLE WYTWORCZYM

Jedng z najbardziej rozpowszechnionych aplikacji, wykorzystujgcych obrazowanie
hiperspektralne w przemysle wytwdrczym jest sortowanie produktéw spozywczych. Aplikacja
tego typu bardzo czesto jest rozszerzona o wykrywanie zanieczyszczen i ciat obcych w partii
spozywczej. Stosowanie tego typu rozwigzan hiperspektralnych w tej branzy podyktowane
jest kilkoma wymogami, jakie stawia sie szeroko pojetej produkcji spozywczej. Sg to:

e wymog nieinwazyjnosci — koniecznos$¢ braku styku instrumentu pomiarowego
z produktem i brak ingerencji w jego strukture,

e wymog stuprocentowej kontroli jakosci — koniecznos¢ sprawdzenia kazdego
produktu,

e zdolno$¢ do pracy w trybie ciggtym i szybkim — konieczno$¢ minimalizacji
przestojow w produkcji i obstuga duzych wolumendw produktéw.

Kluczowe réwniez z punktu widzenia charakteru branzy spozywczej jest minimalizowanie
ryzyka zwigzanego z dopuszczeniem ciat obcych do produktu koncowego. W odrdznieniu
od wielu innych branz, przepuszczenie defektu produktu w postaci zawartosci ciat obcych,
skutkowac¢ bedzie znacznie dotkliwszymi konsekwencjami dla zaktadu produkcyjnego niz
zwrot produktu. Bardzo czesto skutecznos¢ systemu kontroli jako$ci w dtuzszej perspektywie
definiuje reputacje firmy, a btedy mogg doprowadzi¢ do istotnych problemdéw finansowych.

W zwigzku z opisanymi aspektami, systemy hiperspektralne pomimo swojej wysokiej
ceny, szybko znalazty zastosowanie w branzy produkcji spozywczej. Do kluczowych
podmiotéw oferujgcych rozwigzania w zakresie systemoéw hiperspektralnych na swiecie
zaliczy¢ mozna takie firmy, jak: TOMRA Food, Specim, Headwall Photonics, czy Scanway S.A.
- podmiot wspdtpracujgcy w ramach niniejszego doktoratu.

Na rysunku 4.1 przedstawiono przykfad aplikacji hiperspektralnej dla branzy spozywczej,
a doktadniej w zaktadzie przetwdrstwa migdatdw. Na rysunku mozna zauwazyé przenosnik
tasmowy, na ktérym znajdujg sie migdaty przetwarzane przez zaktad przetworczy.

Nad przenosnikiem zawieszony jest uktad akwizycji danych hiperspektralnych w postaci
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kamery firmy Specim wraz z blokiem oswietlaczy wysokiej mocy. Obraz ten przedstawia jedno

z wyzwan towarzyszgcych obrazowaniu hiperspektralnemu, jakim jest wymég zapewnienia

duzej ilosci Swiatta z uwagi na waski zakres czutosci spektralnej kanatéw hiperspektralnych.

Rys. 4.1 System hiperspektralnej kontroli jakosci w branzy spozywczej [56]

Kamera hiperspektralna umozliwia wykrycie wszystkich obiektdw, ktdre nie sg zgodne
z sygnaturg spektralng obserwowanego produktu spozywczego. Réznica miedzy sygnaturami
spektralnymi réznych obiektéw (spozywczych i ciat obcych) przedstawiona jest na rysunku 4.2.
Rysunek 4.2 przedstawia zestawienie obrazu RGB, obrazu przetworzonego z kamery HSI oraz
sygnatury spektralne obiektéw na obrazie. Rysunek uwidacznia jak bardzo rdézni sie zestaw
danych pochodzgcych z kamery RGB oraz dane z obrazu hiperspektralnego po przetworzeniu
w celu uwidocznienia réznic miedzy réznymi sygnaturami spektralnymi. Takie obiekty, jak
tektura i drewno, cho¢ w ludzkim oku wyglagdajg na obiekty o podobnym kolorze, mozna

rozrdéznic¢ za pomocg kamery HSI.
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Rys. 4.2 Zestawienie: a) obrazu RGB z konwencjonalnej kamery; b) przetworzony obraz
hiperspektralny ze sztucznymi kolorami uwidaczniajgcymi rézne sygnatury spektralne; c) sygnatury spektralne
obiektéw na obrazie HSI. Dane i opracowanie Autora

Inne, istotne aplikacje hiperspektralne w przemysle wytwdérczym to:
e inspekcja materiatéw kompozytowych i tworzyw sztucznych — wykrywanie inkluzji,
réznic w sktadzie chemicznym,
e kontrola powtok i lakierébw — ocena jednorodnosci warstw, wykrywanie
mikrouszkodzen na powierzchniach lakierowanych,
o weryfikacja sktadu chemicznego w czasie rzeczywistym — np. rozpoznawanie
stopéw metali oraz czystosci farmaceutykoéw,

e sortowanie odpaddéw — wykrywanie réznych tworzyw.

4.2. APLIKACIJE KOSMICZNE

Jedng z dziedzin nauki i techniki, ktéra najszybciej wykorzystata obrazowanie
hiperspektralne jest sektor kosmiczny (rozdziat 3.2). Jest to spowodowane tym, ze obserwacje
z duzej odlegtosci (remote sensing), jakie umozliwiajg satelity, bardzo czesto wykorzystywane
sg do klasyfikacji obiektow w polu widzenia oraz majg dostep do bardzo uniwersalnego

i poteznego zrddta swiatta jakim jest Stonce. Szczegdlnie, w naukach o naszej planecie,
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wykrywanie sygnatur spektralnych obiektow oraz substancji jest wyjatkowo pozadang
funkcjonalnoscia. Coraz czesciej stosowane sg rowniez kamery multi i hiperspektralne
wykorzystujgce pasma poza zakresem Swiatta widzialnego, co dostarcza jeszcze wiecej
informacji np. na temat lokalnego sktadu gazowego atmosfery Ziemi.

Jedna z najczesciej obecnie realizowanych aplikacji HSI w platformach satelitarnych jest
detekcja zmian w pokryciu terenu i monitorowanie urbanizacji. Aplikacja ta dobrze wpisuje sie
w mozliwosci instrumentow hiperspektralnych, stosowanych w satelitach, z kilku powodéw.
Sa to:

e wymog obserwacji zdalnej umozliwiajgcy zobrazowanie catego terenu w jednej chwili

z tej samej perspektywy w celu normalizacji danych,

e wymog identyfikacji tysiecy réznych rodzajow materiatdw umozliwiajacy rozrdznianie
obiektéw w bardzo zréznicowanym srodowisku zurbanizowanym,

e wymog obserwacji wielu obszaréw w krétkim czasie — bardzo czesto uzytkownikiem
takich danych jest publiczny zarzad regionu lub panistwa, ktéry gromadzi dane
statystyczne z wielu miast i obszarow.

Instrumenty hiperspektralne sg rowniez bardzo pozadane w sektorze satelitarnym
ze wzgledu na ich uniwersalnos¢. Gromadzac dane w sposéb ciggty, satelity umozliwiajg
archiwizacje duzych pofaci terenu. Archiwizacja danych hiperspektralnych z duzego obszaru
umozliwia wsteczne opracowywanie aplikacji na podstawie danych historycznych. Jest to
szczegblnie przydatne w analityce i predykcji zjawisk przyrodniczych, geologicznych,
klimatycznych oraz hydrologicznych.

Na rysunku 4.3 przedstawione zostato zestawienie obrazu RGB, wraz z sygnaturami
spektralnymi obiektéw na obszarze zurbanizowanym oraz wyselekcjonowane piksele najlepiej
dopasowane do sygnatur. Rysunek ten wyraznie pokazuje zalety aplikacji satelitarnych
i lotniczych z wykorzystaniem instrumentéw hiperspektralnych. Dzieki przeprowadzeniu
operacji klasyfikacji obiektow poprzez poréwnywanie sygnatur spektralnych z wzorcem,
mozliwe jest stworzenie map przestrzennych roztozenia obiektéw o réinym sktadzie
chemicznym. Umozliwia to wiele aplikacji, zwigzanych z zarzgdzaniem przestrzennym, analizg
stanu infrastruktury, ekologig i zarzgdzaniem skarbowym (okreslanie wysokosci podatkéw na

podstawie obiektéw na terenie nieruchomosci).
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Rys. 4.3 Zestawienie: a) obrazu RGB z konwencjonalnej kamery; b) sygnatur spektralnych obiektéw na obrazie
HSI; mapy pikseli dopasowanych do sygnatur spektralnych: c) asfaltu; d) trawy; e) dachéw z pokryciem
ceramicznym; f) dachéw z pokryciem bitumicznym; g) gleby; h) drzew. Opracowanie Autora [58] na podstawie
danych z instrumentu HYDICE [57]

W aspekcie zastosowan systemow hiperspektralnych w aplikacjach kosmicznych pod
katem ochrony srodowiska, na szczegdlng uwage zastuguje tzw. indeks AKBD (Advanced Key
Band Difference). Indeks ten zwigzany jest z pasmem SWIR oraz pikiem emisyjnym potasu,
aktywowanym przez reakcje na poziomie czgsteczkowym w trakcie pozaru drzew. Indeks
AKBD moze stuzy¢ do okreslania rozmiaru pozaru, nawet jesli obraz powierzchni gruntu
przykryty jest obfitym dymem, poniewaz promieniowanie w pasmie NIR i SWIR nie przechodzi
przez pyly zawieszone i dym. Na rys. 3.4 pokazano obrazy oraz sygnatury spektralne ptongcej

biomasy i jej sktadnikow.
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Rys. 4.4 Zestawienie: a) obrazu RGB z konwencjonalnej kamery z zaznaczeniem dwdch punktéw pomiarowych;
b) obraz w pasmie SWIR; c) sygnatury spektralne obiektéw na obrazie HSI; d) obraz wynikowy z mapg indeksu
AKBD; Dane z instrumentu HYPER-SIM.GA [59]

Zestawienie przedstawione na rys. 4.4 pozwala stwierdzi¢ jak uzyteczny moze by¢ indeks
AKBD, wyznaczany jako rdéznica w intensywnosci pikseli miedzy pasmem emisji potasu
w trakcie pozaru (770 nm) oraz pasmem referencyjnym (780 nm). Stworzona w ten sposdb
mapa pozwala na wykrycie obszaréw z biomasg aktywnie ptonaca, czyli takg na ktérej nalezy
skupié¢ czynnosci gasnicze. Oprécz wymienionych aplikacji hiperspektralnych w sektorze
kosmicznym, czeste zastosowania obejmujg réwniez ocene kondycji roslinnosci, badania

zmian klimatu, identyfikacje skazen srodowiska naturalnego oraz technologie wojskowe.

4.3. APLIKACJE GORNICZE

Gataz gospodarki coraz chetniej korzystajgca z obrazowania hiperspektralnego to branza
gornicza. Jest to zwigzane z tym, ze rézne mineraty cechujg sie zréznicowanymi sygnaturami
spektralnymi, co przektada sie na mozliwos¢ detekcji z16z dzieki danym HSI. Nie dziwi zatem

fakt, ze istnieje wiele aplikacji gdrniczych wykorzystujgcych te technike.

63



Najwazniejsze aplikacje w tym sektorze to:

e Zdalne rozpoznawanie sktadnikdow skat i mineratéw — np. identyfikacja poktadéw
miedzi, zelaza, metali ziem rzadkich na podstawie sygnatur spektralnych.

e Monitorowanie sktadowisk odpaddw gérniczych i hatd — np. ocena zagrozen
chemicznych i pytowych.

e Rekultywacja terendw pogodrniczych — s$ledzenie dynamiki odradzajacej sie
roslinnosci wokot terenéw pokopalnianych oraz monitoring hydrologiczny.

e Ocena wptywu aktywnego obszaru goérniczego na srodowisko naturalne —
wykrywanie zmian w szacie roslinnej i wczesne ostrzeganie o transferze mas wody.

e Eksploracjainnych planet i ciat niebieskich —jest to aplikacja z pogranicza gérnictwa
i sektora kosmicznego, jednakze instrumenty hiperspektralne sg wykorzystywane
do wykrywania zt6z mineratow i pierwiastkdw na innych planetach, ksiezycach
i asteroidach do potencjalnej eksploatacji w przysztosci.

Na szczegdlne wyrdznienie zastugujg aplikacje zwigzane z oceng wptywu dziatalnosci
gorniczej na Srodowisko naturalne. Na rynku spotka¢ mozna firmy zajmujgce sie tworzeniem
narzedzi analitycznych specjalnie na takie potrzeby. Na rysunku 4.5 przedstawiono przyktad
takiej aplikacji. Zadaniem tego systemu byt monitoring fragmentu terenu w bliskiej okolicy
kopalni lub sktadu odpadéw gbérniczych, ktéry wykazywat cechy przesigkania
zanieczyszczonych mas wody do srodowiska naturalnego. Na obrazie zauwazy¢ mozna rdznice
w kolejnych latach od 2017 roku do 2023 roku. Poczatkowo, obszar oznaczony literg A i C
wykazywat obecnos$é¢ duzej ilosci zanieczyszczen. Dzieki dziataniom zapobiegawczym, w
kolejnych latach poziom zanieczyszczenia i nawodnienia zmniejszyt sie, co przedstawiajg
kwadraty B i D. Twércy raportu nie podajg informacji jak wyznaczony byt wskaznik
nawodnienia (ktore jest tozsame z zanieczyszczeniem), jednakze zostat on wyznaczony na

podstawie danych HSI.
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Rys. 4.5 Wycinek z raportu komercyjnego narzedzia TerraEye wroctawskiej firmy Four Point, przedstawiajacy
zestawienie obrazow RGB oraz mape wskazujgcg na przecieki podskdérne mas wody z wyrobiska lub sktadu
odpaddw goérniczych w kopalni Sierra Gorda [60]

Instrumenty hiperspektralne w goérnictwie mogg byé stosowane réwniez w postaci
przenosnej. Na obrazie 4.6 przedstawiono przyktad zastosowania skanera badawczego
w warunkach podziemnego przodka gérniczego. Instrumenty tego typu mogg stuzy¢ np.

ocenie jakosci zt6z w trakcie lub pomiedzy prowadzeniem prac gérniczych.

Rys. 4.6 Skaner opracowany w trakcie realizacji doktoratu wdrozeniowego w trakcie gromadzenia danych
hiperspektralnych w obrebie wyrobiska miedziono$nego. Materiat Autora
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4.4. APLIKACJE ROLNICZE

Aplikacje rolnicze byty gtdbwng motywacja do rozwoju technik obserwacji
hiperspektralnych w potowie ubiegtego wieku, co zostato obszernie opisane w rozdziale 3.2.
Jest to spowodowane wysokag wydajnoscia w wykrywaniu rozmaitych patogendw roslinnych,
a takze zmian zdrowotnych i dojrzatosci roslin na obrazach hiperspektralnych. Mozemy
wyroznic kilka najczesciej spotykanych rolniczych aplikacji HSI:

e monitorowanie zdrowia roslin i streséw $rodowiskowych — np. identyfikacja
niedoboréw wody, choréb, szkodnikéw,

e mapowanie przestrzennego zréznicowania upraw — np. w celu dostosowania
nawozenia i nawadniania (rolnictwo precyzyjne),

e okreslanie dojrzatosci plonédw i momentu zbioru — np. okreslanie dojrzatosci
winorosli, upraw owocowych oraz zbédz,

e klasyfikacja typdw roslin i ocena bioréznorodnosci — np. dla monitorowania zmian
w strukturze upraw.

Jednym z najczesciej stosowanych w rolnictwie indekséw (wspdétczynnikow spektralnych
korespondujacych z parametrami roslin) jest indeks wegetacji NDVI (Normalized Difference
Vegetation Index). Jest to wspotczynnik, ktéry wprost informuje o tym czy roslina jest zdolna
do odbijania promieniowania podczerwonego, co ma przetozenie na stan zdrowia rosliny. Na
rysunku 4.7 przedstawiono mape indeksu NDVI pola uprawnego. Mozna na nim zauwazy¢
zrdéznicowanie wspotczynnika wegetacji na obszarze zmapowanym przez kamere
hiperspektralna.

Na szczegdlng uwage zastugujg réwniez aplikacje zwigzane z monitoringiem wadd
gruntowych. W przypadku obserwacji hiperspektralnych w pasmie SWIR mozliwe jest rowniez
wyznaczenie poziomu wilgotnosci w glebie. Na rys. 4.8 przedstawiono poréwnanie widm
spektralnych dla réznego poziomu wilgotnosci gleby. Widoczne na nim zrdinicowanie
sygnatur spektralnych gleb o rdinej zawartosci wody, sugeruje mozliwos¢ wykorzystania
w aplikacjach zdalnej oceny zasobow wodnych. Co istotne, wyraznie zauwazalne sg rdznice
przy glebie o niewielkiej zawartosci wody. Jest to wazne dla umiejetnego gospodarowania

ograniczonymi zasobami wody i dystrybucjg wody w okresach suszy.
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Rys. 4.7 Mapa NDVI pola uprawnego, przektadajgca sie posrednio na stan zdrowia roslin [61]

0.5
0.45
0.4
o sSMC
2 = (Soil Moisture
= Content) -
> 0.3 zawartos¢ wody
% w glebie
% 0.25
['4 —— SMC 30%
0.2 ~——— SMC 26%
0.15 - SMC 21%
~—— SMC 16%
0.1 —— SMC 12%
0.05 —— SMC 0%
0

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Dtugoscé fali [um]

Rys. 4.8 Poréwnanie sygnatur spektralnych gleb o réznej zawartosci wody — SMC (Soil Moisture Content)
w zakresie 400 do 2400 nm [62]

Przedstawione w niniejszym rozdziale aplikacje pokazujg uniwersalno$¢ obrazowania
hiperspektralnego w réznych zastosowaniach, a zarazem dowodzi, jak waznych informacji
mogg one dostarczaé. Zobrazowania te powstaty dzieki zastosowaniu ztozonych i drogich
systeméw hiperspektralnych, ktdére dostarczyty ogromnej ilosci danych koniecznych
do przetworzenia. Dla przyktadu przedstawione na rys. 4.3 mapy wymagaty obroébki obrazu
hiperspektralnego zbudowanego z 210 kanatéw spektralnych, ktéry pomimo niewielkiej
rozdzielczosci wynoszacej 307x307 pikseli, zajmowat przestrzen dyskowg o rozmiarze 40
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megabajtow. Obraz pokrywajgcy wiekszy obszar lub o wiekszej rozdzielczosci to pojedynczy
pakiet danych o rozmiarze przekraczajgcym kilka gigabajtéw. Jest to znacznie wiecej niz obrazy
RGB, ktére zazwyczaj sg przetwarzane.

Zgodnie z hipotezg postawiong w niniejszej pracy (Rozdziat 1.2) mozliwe jest
skonstruowanie uproszczonych systeméw (multi) spektralnych, wykorzystujgcych wybrane
zestawy danych niezbednych w konkretnym zastosowaniu. Kolejne rozdziaty niniejszej pracy
przedstawiajg badania zrealizowane przez Autora, ktére miaty na celu:

1. Opracowanie metodologii redukcji wymiarowosci danych.

2. Uproszczenie budowy instrumentu spektralnego.

3. Opracowanie metody syntezy uproszczonych uktadéw obrazowania spektralnego.
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5. TECHNIKI PRZETWARZANIA | ANALIZY DANYCH HSI

W niniejszym rozdziale przedstawione zostaty techniki przetwarzania i analizy danych
hiperspektralnych. Sg to metody stosowane w wielu aplikacjach, jak réwniez w dalszych
rozdziatach niniejszej pracy. Opisy dotyczg zaréwno technik przygotowawczych
do przetwarzania (np. odszumianie), jak rowniez zaawansowane techniki redukcji

wymiarowosci i klasyfikacji.

5.1. PODSTAWOWE WYMAGANIA STAWIANE SYSTEMOM PRZETWARZANIA | ANALIZY
DANYCH HIPERSPEKTRALNYCH

Dane hiperspektralne, w odrdznieniu od danych pochodzacych z kamer RGB
i monochromatycznych, sg wyjatkowo trudne w interpretacji funkcjami kognitywnymi
cztowieka. Zdjecia wykonywane w kolorach czerwonym, zielonym i niebieskim s3 tak
zaprojektowane w swoim tancuchu akwizycji, aby maksymalnie zblizy¢ sie do sposobu
dziatania ludzkiego oka, co pozwala na wykorzystanie tych samych funkcji poznawczych do
oceny i klasyfikacji obiektow znajdujgcych sie na takim obrazie. Istotng zaletg obrazéow
hiperspektralnych jest zdolno$¢ do rejestracji sygnatur spektralnych obiektéow. Jednakze
w przypadku zobrazowan HSI, kanaty spektralne nie dos$¢, ze nie odzwierciedlajg pasm
widzenia ludzkiego oka, to dodatkowo stanowig informacje nadmiarowg w stosunku do
mozliwosci zmystu wzroku. Z tego powodu, w celu wtasciwej interpretacji danych HSI,
przypisanie ich do odpowiednich rodzajéw obiektéw wymaga zastosowania odpowiedniego
systemu przetwarzania i ewentualnie analizy danych. Kluczowe wymagania stawiane przed
systemami przetwarzania i analizy danych, to:

e zdolno$é do ekstrakcji cech kluczowych, czyli wykluczenia nadmiarowych danych, ktére

nie wptywajg na zadanie, zwigzane z aplikacjg,

e zdolnos$¢ do obstugi duzych zbioréw danych,

e jak najwieksza wydajnos¢ dziatania z uwagi na rozmiar i ztozonos$¢ danych,

e jak najwieksza efektywnos¢ wyszukiwania wzorcéw spektralnych i przestrzennych,

e jak najnizsza podatnos¢ na szum.

5.2. tANCUCH PRZETWARZANIA | ANALIZY DANYCH HIPERSPEKTRALNYCH
Wymagania przedstawione w rozdziale 5.1 stanowig fundament syntezy systemu
przetwarzania i analizy danych hiperspektralnych i multispektralnych. Wzajemne zestawienie

tych wymagan w ramach kilku kluczowych domen (tabela 5.1), tworzy taricuch danych, ktérym
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mozna opisa¢ niemal kazde wyzwanie lub aplikacje wykorzystujgcg dane HSI/MSI, a takze

praktycznie kazde dane optyczne.

Tabela 5.1. tancuch danych optycznych HSI i MSI. Na podstawie [63, 64]

Domena Akwizycja Przetwarzanie Analiza
Funkcja Pozyskanie danych Przetworzenie danych Przetworzenie wiedzy
wsadowych HSI/MSI w wiedze we whnioski i decyzje
Elementy Kamery Infrastruktura obliczeniowa
Skanery Algorytmy redukgcji Algorytmy wizualizacji
wymiarowej i kompresji i prezentacji
Instrumenty lotnicze Algorytmy analityczne
Instrumenty satelitarne Sztuczna Inteligencja
Wyjscie Skan HSI (Hypercube) Wiedza o potozeniu Zestawienie cech
obiektéw obiektéw i mozliwa
klasyfikacja
Wiedza o charakterze Analityka cech obiektow
obiektéw pod katem celéw aplikacji
Obraz multispektralny Wiedza o obecnosci Statystyki dotyczgce
obiektow obiektéw (roztozenie,
obecnosé, ilosé)
Wiedza o ilosci i rozmiarze Whioski o mozliwosci
obiektéw zaistnienia zdarzen
Przyktady Satelitarne zobrazowanie Przetworzona mapa Raport na temat ilosci i
w pasmie podczerwieni stezenia metanu w roztozenia wyciekow gazu
krotkofalowej atmosferze na liniach gazociggowych
Skan hiperspektralny ryzu | Mapa réznych materiatéw Analityka i decyzjaw
na linii przetworstwa obecnych w partii ryzu kontekscie obecnosci ciat
Zywnosci obcych w partii ryzu (np.
szkta, tw. sztucznych)

Kluczowg cechg platform obliczeniowych stosowanych w aplikacjach hiperspektralnych
jest wysoka wydajnos¢ obliczeniowa. Wydajna platforma do przetwarzania danych
hiperspektralnych jest niezwykle istotna z kilku powoddw. Po pierwsze, dane hiperspektralne
zawierajg setki, a nawet tysigce pasm spektralnych, co powoduje duzg ilos¢ danych
do przetwarzania. Wydajna platforma jest niezbedna, aby poradzi¢ sobie z tg ztozonoscig
i wielkoscig danych. Po drugie, w niektérych takich zastosowaniach, jak rolnictwo precyzyjne,
monitorowanie stanu zdrowia lasdw czy detekcja zanieczyszczen, kluczowy jest czas reakcji.
Wydajna platforma pozwala na szybkie przetwarzanie danych, co umozliwia bezzwtoczne

podejmowanie decyzji. Po trzecie, wydajna platforma moze korzysta¢ z takich

70



zaawansowanych algorytmow i technik przetwarzania, jak uczenie maszynowe czy analiza
statystyczna, co zwieksza doktadnos¢ i wiarygodnos¢ wynikéw.

Obecnie najczesciej stosowane sg trzy rodzaje platform do przetwarzania danych
hiperspektralnych. Sg to [65]:

e pocesory graficzne — GPU (Graphic Processing Unit) — stosowane gtéwnie
w platformach stacjonarnych, ale dzieki miniaturyzacji moze by¢ stosowana takze
w urzadzeniach przenosnych,

e ukftady FPGA (Field-Programmable Gate Array) — wysoce wydajne miniaturowe
uktady, umozliwiajgce przeprogramowanie na poziomie elektronicznych bramek
logicznych, ktdre sg stosowane czesto w aplikacjach mobilnych,

e uktady ASIC (Application-Specific Integrated Circuit) — uktady scalone, zawierajgce
caly system w postaci uktadu zintegrowanego, cechujace sie wysoka wydajnoscia
pod konkretng aplikacje.

Wybér odpowiedniej platformy obliczeniowej do przetwarzania danych
hiperspektralnych zalezy od konkretnych wymagan aplikacji. GPU s3 idealne dla zadan
wymagajgcych duzej mocy obliczeniowej i réwnolegtego przetwarzania, FPGA oferujg
elastycznos¢ i efektywnos¢ energetyczng, a ASIC zapewniajg najwyzszg wydajnosc
dla specyficznych zadan, cho¢ kosztem elastycznosci i wysokich kosztdw poczgtkowych. Kazda
z tych technologii ma swoje unikalne zalety, ktére mogg byé wykorzystane w zaleznosci
od specyficznych potrzeb danego projektu.

Cyfrowa forma obrazéw, ktéra umozliwita rézne sposoby ich przetwarzania i prezentacji,
byta jednoczesnie najwaziniejszg barierg w pierwszych dekadach rozwoju przemystowych
i naukowych systemdéw wizyjnych. Byto to gtéwnie zwigzane z ogromng iloscia danych
potrzebnych do przetwarzania, pozyskiwanych z dwuwymiarowej matrycy sensoréw CCD lub
CMOS. Jak juz wczesniej wspomniano, operacje na milionach pikseli wymagajg sprzetu
komputerowego co najmniej na poziomie mikrokomputera. Analiza obszernych ilosci danych,
zwiaszcza w czasie rzeczywistym, jest wyzwaniem i wymaga stosowania zaawansowanego
przetwarzania. W ostatnim czasie zastosowanie metod gtebokiego uczenia wydaje sie byé
jednym z rozwigzan umozliwiajgcych efektywne i sprawne przetwarzanie danych HSI
(hipercube’éw) [66]. Niemniej jednak, kluczowe zasady i przeptyw proceséw w wiekszosci
schematow przetwarzania danych pozostajg takie same, jak w podejsciu analitycznym. Na rys.
5.1 przedstawiono schemat uniwersalnej architektury tancucha przetwarzania danych

HSI/MSI.
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Dane z instrumentu
HSI/MSI Surowy hypercube Usuwanie martwych . Korekcja spektralna/ - -
a =» (RAW) pikseli/kanatow sEiekelatiol normalizacja Kompiesia/fedubeiy
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Skorygowany > Wielowymiarowa Segmentacja/ Mapy obecnosci Algorytmy wizji T jﬂaﬂll e
hypercube analiza obrazu Klasteryzacja komponentow maszynowej

Rys. 5.1. Uniwersalna architektura taricucha oprogramowania przetwarzania danych hiperspektralnych [58]

Zestawy danych hiperspektralnych w surowej formie, uzyskane z urzgdzen obrazujacych,
sg petne artefaktéw, tzw. martwych pikseli, uszkodzonych pasm oraz nadmiarowych danych.
Usuniecie lub skompresowanie tych danych to kluczowy cel pierwszej warstwy powszechnie
stosowanego schematu przetwarzania danych (rys. 5.1). W wielu przypadkach operacje w tej
warstwie obejmujg: usuwanie martwych pikseli (na podstawie danych kalibracyjnych
sensora), wybdr obszaru do przetworzenia, wybdr pasma spektralnego (oparty na znanej
korespondencji wybranych pasm 1z refleksyjnoscig interesujgcych obiektéw). Korekcja
spektralna jest narzedziem do optymalizacji zakresu refleksyjnosci do bardziej
porownywalnych poziomow. Istnieje kilka metod tego typu operacji, a jednymi z najczesciej
stosowanych sg SNV (Standard Normal Variate) i MSC (Multiplicate Scatter Correction).
W wielu aplikacjach kolejnym waznym krokiem sg operacje PCA (Principle Component
Analysis) lub LDA (Linear Discriminant Analysis). Te operacje sg szczegdlnie potrzebne
w przypadku hiperspektralnych danych o wysokiej ztozonosci, zawierajgcych wiele pasm
spektralnych. Podejscie PCA lub LDA pozwala zredukowac liczbe pasm spektralnych do (tylko)
utamka poczatkowych surowych danych (na przyktad ze 150 pasm do 6 pasm). Pasma
sg wybierane wedtug kryterium najbardziej wartosciowych cech, w kontekscie rozréznialnych
cech sygnatur spektralnych [58].

Po operacjach wstepnych wprowadza sie bardziej zaawansowane narzedzia, jak metody
uczenia maszynowego (Machine Learning — ML) oraz metody gtebokiego nauczania (Deep
Learning — DL). W szczegdlnosci kroki segmentacji i klasteryzacji sg najbardziej dynamicznie
rozwijanymi operacjami, bardzo czesto opartymi na metodach sztucznej inteligencji.
Potfaczenie i iteracyjne podejscie do segmentacji (czesto nazywane reprezentacjg obrazu jako
zestawu N obrazéw jednokanatowych zamiast jednego obrazu N-pasmowego) i klasteryzacji
(ktéra grupuje podobne piksele w regiony klasyfikowane jako jeden typ obiektu) jest obecnie
przedmiotem wielu takich rozwigzan, jak struktury podziatu danych oparte na drzewach [67].

Wynika to z faktu, ze po logicznie okreslonych pierwszych krokach przetwarzania obrazu
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hiperspektralnego, segmentacja i klasteryzacja sg znacznie bardziej wymagajgcymi procesami,
zaleznymi od wiedzy lub konkretnej aplikacji [58].

Na podstawie przedstawionego opisu tafcucha przetwarzania i analizy danych
hiperspektralnych, mozna zauwazy¢ jak silna jest potrzeba zastosowania technik opartych
o metody sztucznej inteligencji. Na rys. 5.2 przedstawiono systematyke utatwiajaca lepsze

zrozumienie granic miedzy klasycznym programowaniem, a metodami Al.

Sztuczne
Sieci
Neurcnowe

Uczenie
Gtebokie (DL)

Nauczanie
nienadzorowane

Nauczanie
nadzorowane

Uczenie Maszynowe (ML)

Redukcja
wymiarowosci

Sztuczna Inteligencja (Al)

Rys. 5.1. Poziomy systemow sztucznej inteligencji. Opracowanie autora

Rys. 5.2 przedstawia wzajemng relacje zbiordw algorytmiki przetwarzania i analizy
danych. Szeroko pojeta sztuczna inteligencja, choé moze kojarzyé sie z takimi wysoce
rozpowszechnionymi duzymi modelami jezykowymi (Large Language Model — LLM), jak np.
ChatGPT lub DeepSeek [68], w istocie stanowi nieco szersze pojecie. W praktyce, algorytmy,
ktdre w minimalnym stopniu nasladujg pewne cechy kognitywne ludzkiego umystu, mogg by¢
nazwane ,sztuczng inteligencjg”. Zgodnie z takg definicjg, nawet tak proste dziatania
algorytmiczne, jak wyszukiwanie okregdw na obrazie, detekcja twarzy przez aplikacje
bezpieczenstwa smartfona oraz funkcje redukcji wymiarowosci to juz Al. Nieco bardziej
skomplikowane, lecz wcigz nalezgce do sztucznej inteligencji s techniki uczenia
maszynowego. W nich znajdziemy uczenie nienadzorowane i nadzorowane oraz ptytkie sieci
neuronowe. Bardziej wysublimowanym poziomem Al jest gtebokie nauczanie, ktére

wykorzystuje bardziej skomplikowane sieci neuronowe. To, co jednak w ostatnich latach
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zyskuje na najwiekszej uwadze to generatywna sztuczna inteligencja (Generative Artificial
Intelligence — Gen Al), ktéra zawiera w sobie duze modele jezykowe, modele tworzgce grafiki
i filmy oraz agenty Al, czyli modele wspierajgce prace cztowieka na wielu ptaszczyznach
(w tym w programowaniu). Oparte sg one na coraz bardziej skomplikowanych modelach,
wykorzystujacych sztuczne sieci neuronowe. Wiele firm pracuje obecnie nad opracowaniem
tzw. AGI — Artificial General Intelligence, czyli systemow, ktére potrafityby pracowaé w sposéb

nieodrdznialny od ludzkiego umystu [69].

5.3. METODY PRZETWARZANIA | ANALIZY DANYCH SPEKTRALNYCH
W niniejszym rozdziale szczegétowo omdwiono kolejno metody przetwarzania i analizy
danych spektralnych. Metody te wykorzystywane sg w taiicuchu przetwarzania danych

hiperspektralnych.

5.3.1 Przetwarzanie wstepne

Do najwazniejszych wstepnych metod przetwarzania danych spektralnych nalezg metody
oparte na redukcji szumu, metody normalizacji i/lub korekcji danych. Redukcja szumu przy
uzyciu filtru Gaussa — popularna metoda poprawy jakosci obrazu i redukcji szumu losowego
o wysokiej czestotliwosci, charakterystycznego dla przetwornikdéw analogowo-cyfrowych. Filtr
wygtadza obraz, zachowujac kluczowe struktury i informacje zawarte w obrazie. Filtr Gaussa
stosuje rozmycie w oparciu o rozktad normalny, gdzie piksele obrazu sg przeksztatcane
na podstawie ich odlegtosci od sgsiadujgcych pikseli. W przypadku obrazu hiperspektralnego,
filtr Gaussa mozna stosowac¢ na poszczegdlnych pasmach spektralnych [70]. Jadro filtru

Gaussa stosowane w wygtadzaniu obrazu, mozna opisa¢ wzorem [70]:

G(xy) = —exp(-Z) (5.1)

270 202

gdzie:
X, Y —wspotrzedne piksela wzgledem srodka filtra,
o?- wariancja rozktadu Gaussa, ktére okreéla stopiers rozmycia.

Normalizacja danych metodg min-max — jedna z najprostszych i najczesciej stosowanych
metod skalowania danych do okreslonego zakresu, zwykle od 0 do 1. Jest ona szczegdlnie
korzystna do wykorzystania na danych hiperspektralnych, poniewaz pozwala na standaryzacje
wartosci pikseli miedzy pasmami spektralnymi. Znacznie upraszcza to dalszg analize oraz
zastosowanie algorytmow, ktére wymagajg koherentnego zakresu wartosci. Przeksztatcenie

metoda min-max opisuje sie wzorem [70]:
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x' = —Smin_ (5.2)

Xmax~ Xmin
gdzie:
x — oryginalna wartosc piksela,
Xmin — Minimalna wartos¢ w danym pasmie spektralnym,
Xmax — Maksymalna wartos¢ w danym pasmie spektralnym.

Korekcja spektralna i kalibracja radiometryczna, to etap procesu przetwarzania danych,
ktory ma na celu dostosowanie zmierzonych wartosci intensywnosci pikseli do wartosci
radiometrycznych. W profesjonalnych zobrazowaniach hiperspektralnych w etapie tym kazdy
kanat spektralny jest osobno kalibrowany na podstawie modelu radiometrycznego albo, jesli
to mozliwe, na podstawie danych pochodzgcych z kampanii kalibracyjnej. W etapie tym,
czesto uwzgledniane sg czynniki wptywajgce na Swiatto w trakci drogi od obiektu
do instrumentu obrazujgcego, jak np. wptyw atmosfery w przypadku zobrazowan lotniczych
i satelitarnych. Bez korekcji spektralnej i kalibracji radiometrycznej badania na podstawie
obrazu hiperspektralnego moga mieé gtéwnie charakter jakosciowy, a w mniejszym stopniu

ilosciowy.

5.3.2. Redukcja wymiarowosci

W celu ograniczenia ilosci danych koniecznych do przetwarzania powszechnie stosuje sie
jedng z dwéch metod: metode PCA oraz metode LDA, ktdre zostaty opisane w dalszej czesci
nieniejszego rozdziatu. Metoda redukcji wymiarowosci PCA (Principle Component Analysis),
czyli Analiza Gtoéwnych Sktadowych — jest jedng z najczesciej stosowanych metod redukcji
liczby wymiaréw w przetwarzaniu i analityce obrazéw hiperspektralnych. Stosujgc PCA
mozliwe jest przeksztatcenie wielowymiarowych danych na zestaw skfadowych, ktére
reprezentujg najwiekszg ilos¢ informacji (charakteryzujgcych sie najwiekszg wariancja).
Oznacza to, ze mozliwe jest wyekstrahowanie i synteza ztozonych danych do znacznie
prostszej postaci. W obrazach hiperspektralnych jest to szczegdlnie pozgdana operacja,
poniewaz zbiory wielospektralne wymagajg znacznie wiekszej mocy obliczeniowej
do przetwarzania niz obrazy zredukowane.

PCA dokonuje dekompozycji danych wielowymiarowych na zestaw kolejnych sktadowych,
zwanych gtéwnymi cechami. Cechy te oznaczajg rézne opisy danych (np. rézne pasma Swiatta
w hypercube), a kazda prébka danych to punkt w wielowymiarowej przestrzeni tych cech. PCA
przeksztatca tg przestrzen, tworzgc nowy uktad wspétrzednych, w ktdrym nowe osie (gtéwne

sktadowe) sg ustawione wzgledem siebie prostopadle.
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Kazda z tych sktadowych jest kombinacjg liniowag oryginalnych pasm spektralnych
i zawiera cze$¢ danych o coraz mniejszym stopniu wariancji (czyli dyspersji statystycznej - rys.
5.3). Oznacza to, ze metoda PCA i jej algorytm dziatania dazy do przeksztatcenia danych tak,
aby pierwsza gtéwna sktadowa miata najwiekszg wariancje, czyli jak najwiekszy poziom
zmiennosci. Pierwsza gtéwna sktadowa powinna reprezentowaé najlepiej strukture danych.
W przypadku zdjecia hiperspektralnego, oznacza to, ze pierwsza sktadowa bedzie stanowié
mieszanine pasm spektralnych, ktére najlepiej rozrdziniajg rdine sygnatury spektralne
obiektéw na obrazie. Kolejne gtéwne sktadowe majg coraz mniejszg wariancje, ale wciaz
algorytm dazy do uchwycenia w nich kluczowych rdznic [71]. Sam proces PCA odbywa sie
w kilku krokach:
1. Centrowanie danych — obliczenie réznicy kazdego pasma spektralnego i sredniej jego
wartosci.
2. Obliczenie macierzy kowariancji danych, wedtug zaleznosci:
Cov(X) = ﬁXTX, (5.3)
gdzie:
X —wycentrowana macierz danych o wymiarach m X n,
m - liczba pikseli,
n — liczba pasm spektralnych.
3. Znalezienie wartosci i wektoréw wtasnych macierzy kowariancji, wedtug wzoru:
Cov(X)v = Av, (5.4)
gdzie:
v — wektory wtasne macierzy kowariancji,
A — wartosci wtasne macierzy kowariancji.
4. Wybor najwazniejszych wektordw wiasnych (o najwiekszych wartosciach wtasnych)

do stworzenia przestrzeni gtdwnych sktadowych.
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Rys. 5.3. Wizualizacja redukcji wymiarowosci metodg PCA. Opracowanie Autora

Metoda redukcji wymiarowosci LDA (Linear Discriminant Analysis), czyli Analiza
Dyskryminacyjna jest réwnie popularna co PCA, ale w odrdznieniu od niej, ma na celu
maksymalizacje separacji miedzyklasowej przy jednoczesnym minimalizowaniu wariancji
wewnatrzklasowej. Jej zastosowanie jest szczegdlnie wartosciowe w przypadku, gdy celem
jest jak najlepsze rozrdznienie klas obiektéw na obrazie hiperspektralnym. Zasadg LDA jest
przeksztatcenie danych w przestrzen o mniejszej liczbie wymiardw, ktdra najlepiej separuje
klasy. W metodzie tej wyznaczane sg wektory dyskryminacyjne, ktére maksymalizujg stosunek
miedzy wariancjg miedzyklasowg a wariancjg wewnatrzklasowg, co powoduje usuniecie
nadmiarowych danych w odrdéznieniu do generacji nowych zestawéw danych, mieszajgcych
podstawowe sktadowe, jak ma to miejsce w PCA (rys. 5.4). Metoda LDA polega na obliczeniu
dwdch macierzy [71]:

1. Macierz wariancji wewnatrzklasowej S,,:

Sw = Bfey Lwec,(x — ) (x — )", (5.5)
gdzie:
k — liczba klas,
C; — zbidr prébek nalezacych do klasy i,
X — probka z klasy C;,
Wi- srednia warto$¢ wewnatrz klasy i,

T—prog.
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2. Macierz wariancji miedzyklasowej Sg:
Sp= Xam(u— ) (— W7, (5.6)
gdzie:
n; — liczba prébek w klasie i,
w1 — srednia ogodlna dla catego zbioru danych,
Wi — Srednia wartos¢ dla klasy i.
LDA optymalizuje stosunek wariancji miedzyklasowej do wewnatrzklasowej,

maksymalizujgc wyrazenie:

wTsgw|
w) = Wsew] 7
Jw) = sl (5.7)
gdzie:
W — wektor kierunkowy (wspdtczynniki projekcji),
WT- wektor kierunkowy (wspétczynniki projekcji) — transponowany,
Sp — macierz rozrzutu miedzyklasowego,
Sw — macierz rozrzutu wewnatrzklasowego.
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Rys. 5.4. Wizualizacja redukcji wymiarowosci metodg LDA. Opracowanie Autora

5.3.3. Metody analizy danych spektralnych

Wsréd stosowanych metod analizy danych spektralnych wyrdznié mozna metody
klasyczne, metody nadzorowane i nienadzorowane oraz zaawansowane metody oparte
na uczeniu maszynowym. Do metod analizy klasycznej (deterministycznej) zaliczamy kilka

metod opisanych w dalszej czesci rozdziatu.
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Analiza spektralna, to czesto stosowana metoda, szczegdlnie w badaniach
niezautomatyzowanych oraz w przypadku danych pochodzacych ze Zrédet unikalnych
(np. misje eksploracyjne Uktadu Stonecznego, pomiary ekspedycyjne). Polega ona
na poréwnywaniu charakterystycznych cech sygnatur spektralnych wybranych pikseli
z danymi wzorcowymi, celem identyfikacji zwigzkdw chemicznych, materiatow i pierwiastkow.
W tej metodzie istnieje kilka technik, ktére mozina zastosowaé w relatywnie
nieskomplikowanym systemie pomiarowym. Wyrézniane techniki, to [72]:

e reczne porownywanie widm z bazg referencyjna,

e analiza kata SAM (Spectral Angle Mapper), okreSlajgcym kat miedzy wektorem

spektralnym badanego piksela a wzorcem,

e spektralne korelacje krzyzowe SID (Spectral Information Divergence), okreslajgce
miare podobieAstwa miedzy widmem zmierzonym, a wzorcowym, na podstawie ich
entropii.

Metody detekcji cech — zbidr metod, pozwalajgcych na wykrywanie obiektow,
materiatdw, cech powierzchni lub anomalii przy  wykorzystaniu relatywnie
nieskomplikowanych rozwigzan programistycznych lub optycznych. Sg to metody szczegdlnie
wykorzystywane w aplikacjach czesto stosowanych i powtarzalnych, jak np. wykrywanie
sygnatury pozaru lub stanu chlorofilu w roslinach. Wsrdod tej grupy, wyrdzniamy miedzy innymi
[73]:

e metody detekcji anomalii — polegajace na wykrywaniu pikseli wykraczajacych poza

ustalone zakresy w okreslonych obszarach widma, co jest mozliwe w instrumentach
w minimalnym stopniu skalibrowanych radiometrycznie,

e metody spektralnych indekséw — polegajgce na mieszaniu kilku zakreséw widmowych
w jednowymiarowe wskazniki np. NDVI (Normalized Difference Vegetation Index),
ktéry mozliwy jest do wyznaczenia poprzez odpowiednig kalkulacje dwéch kanatéw
spektralnych. Mozliwa jest ich implementacja w kamerach z odpowiednimi filtrami
spektralnymi, ktére znacznie obnizajg cene docelowego detektora.

Metody nienadzorowane stanowig cze$¢ metod nauczania maszynowego, ktore
okreslane sg jako sztuczna inteligencja, cho¢ odznaczajg sie deterministycznymi zatozeniami
i zdefiniowanymi krokami obliczeniowymi. Kluczowg cechg nienadzorowanych metod
klasyfikacyjnych jest to, ze pozwalajg one na znalezienie wzorcéw w nieuporzgdkowanych
zbiorach danych, bez wiedzy o istnieniu poszukiwanych klas. S3 one doskonatym narzedziem,

stuzgcym do wstepnej analizy danych pod katem mozliwosci separacji poszczegélnych zbiorow
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danych, wyrdzniajacych sie jaka$ cecha. Dzieki brakowi wymogu znajomosci wzorcow
do nauczania, moga by¢ one zastosowane na dowolnym zbiorze danych. Do metod
nienadzorowanych zaliczamy takie metody, jak metoda k-mean oraz GMM (Gaussian Mixture
Model), ktére zostaty opisane szczegdtowo w dalszej czesci rozdziatu.

Klasyfikacja z wykorzystaniem klasteryzacji metodg centroidow (k-mean) — czesto
spotykana technika klasteryzacji wykorzystujgca nienadzorowane nauczanie maszynowe,
stosowana w analityce zdje¢ hiperspektralnych. Metoda centroidéw grupuje piksele
na podstawie ich podobienstw w przestrzeni wielowymiarowej, gdzie kazda zmienna
odpowiada wartosci intensywnosci danego kanatu spektralnego. Dzieki temu piksele
o podobnych charakterystykach spektralnych mogg by¢ przypisane do tych samych klastréw,
co pozwala na klasyfikacje obiektéw na obrazie, bez potrzeby wczesniejszego podawania tzw.
prawdy podstawowej (ground truth). Metoda k-mean dziata iteracyjnie i polega
na przypisywaniu kazdego piksela do jednego z k-klastréw, gdzie k to liczba klastréw zadana
przez uzytkownika. Algorytm dazy do minimalizacji wewnatrzgrupowej sumy odlegtosci
miedzy pikselami a centroidem, czyli srodkiem kazdego klastra. Metoda ta jest wyjgtkowo
wartosciowa w przypadku nieopisanych danych, zdolna do poszukiwania pozornie ukrytych
wzorcow w danych [74]. Etapy dziatania tej metody, to:

1. Inicjalizacja: Losowo wybrane zostaje k-punktéw danych, jako poczatkowe centroidy

klastrow.

2. Przypisanie punktéw do klastrow: dla kazdego piksela obliczona zostaje odlegtos¢

do kazdego centroidu. Piksele zostajg przypisane do najblizszego centroidu.

3. Aktualizacja centroiddéw: po przypisaniu pikseli, obliczone zostajg nowe centroidy

klastrow jako srednie wartosci pikseli przypisanych do kazdego klastra.

4. Powtarzanie krokéw 2 i 3 az do momentu, gdy centroidy przestang sie znaczgco

przesuwac lub osiggnieta zostanie maksymalna okreslona liczba iteracji.

Celem algorytmu k-mean jest minimalizacja funkcji celu J, ktéra reprezentuje sume
kwadratow odlegtosci miedzy punktami danych, a odpowiadajgcymi im centroidami klastréw,
zgodnie ze wzorem:

J = Y1 Seecillx — will? (5.8)
gdzie:
k — liczba klastrow,

C; — zbidr pikseli przypisanych do klastra i,
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x — piksel (punkt danych),
Wi — centroid klastra i,
||x — u;|| — odlegtosé¢ euklidesowa pomiedzy pikselem x a centroidem y;.

Z kolei klasyfikacja z wykorzystaniem klasteryzacji metodg GMM jest metoda klasteryzacji
i segmentacji, wykorzystujgcg model mieszaniny gaussowskiej, znajdujgca zastosowanie
w analityce zdje¢ hiperspektralnych. W odréznieniu od metody centroidéw, ktéra zaktada
rozdzielenie klastréw, GMM daje wiekszg elastycznos¢ i zaktada, ze dane mogga pochodzi¢ z
mieszaniny rozktadéw Gaussa. Jest to szczegdlnie wartosciowe w przypadku danych
hiperspektralnych, poniewaz obiekty mogg mie¢ naktadajace sie spektralnie sygnatury, co
powoduje podobieristwo do kilku klas. GMM zaktada, ze dane s3 generowane przez zestaw
roznych rozktadéw Gaussa, z ktérych kazdy reprezentuje inny klaster. Model dopasowuje
zestaw rozktadéw do danych, gdzie kazdy klaster opisany jest przez parametry rozktadu
normalnego: $rednig (centroid klastra) i macierz kowariancji (opisujacg rozszerzenie klastra).
GMM to metoda nienadzorowanego nauczania maszynowego, czyli pozwala na wykrycie
pozornie ukrytych wzorcéw w zestawie danych. Kroki obowigzujace w tej metodzie, to [75]:

1. Inicjalizacja: okreslenie liczby klastréw k i poczgtkowych parametrow rozktadu Gaussa
dla kazdego z nich.

2. Estymacja oczekiwana (E-step): obliczenie prawdopodobienristwa przynaleznosci
kazdego punktu do kazdego klastra na podstawie biezgcych parametrow modelu.

3. Maksymalizacja (M-step): Aktualizacja parametréw kazdego rozktadu Gaussa (Srednie,
kowariancje i  prawdopodobienstwo  mieszania), aby zmaksymalizowac
prawdopodobienistwo obserwowanych danych.

4. Powtdrzenie krokdw 2 i 3, az do zbieznosci modelu, czyli do sytuacji, w ktorej
parametry przestang sie znaczgco zmieniac lub osiggniety zostanie maksymalny licznik
iteracyjny.

W GMM funkcja prawdopodobienistwa opisujgca dane jako mieszanine k-rozktadow

normalnych przybiera postac:
p(0) = Biza mN (x| Z0) (5.9)
gdzie:
x - wektor danych (piksel obrazu),
k - liczba klastrow czyli mieszanin Gaussa,
m; — prawdopodobienstwo mieszania dla i-tego klastra, spetniajace E{‘zlni =1,

N (x|u;, Z;) — rozktad normalny opisujacy klaster i,
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Wi — Srednia i-tego klastra,
Y; —macierz kowariancji i-tego klastra.

W przypadku nadzorowanych metod klasyfikacji w analizie danych, w tym danych
hiperspektralnych, metody te polegajg na uczeniu modelu przy uzyciu danych treningowych.
Dane treningowe okreslajg jakich klas poszukujemy i stanowig zbiory danych z etykietami.
Model wypracowywany w metodzie nadzorowanej, uczy sie jak rozpoznawac¢ wzorce
w oparciu o dostarczone klasy, np. do zdjecia hiperspektralnego lasu, dane treningowe
to zdjecia hiperspektralne drzew o okreslonym gatunku. Wsréd metod nadzorowanych
wyrézniamy miedzy innymi metode Random Forest.

Random forest (las losowy) — to metoda, w ktérej kluczowym elementem budowania
modelu jest konstruowanie wielu drzew decyzyjnych. Kazde drzewo okresla sposoby
podejmowania decyzji przy klasyfikacji, a caty zestaw drzew, tzw. las modelu, pozwala
na okreslenie najlepszej metody okreslania klasy. Metode random forest mozna poréwnac
do wystosowania prostego pytania do grupy oséb i wybraniu odpowiedzi, ktéra najczesciej
sie powtarza. Liczba drzew decyzyjnych w lesie modelu cho¢ wraz ze wzrostem, wykazuje
coraz wiekszg doktadnos¢ klasyfikacji, nie powinna by¢ nadmierna. Moze to prowadzié
do jakosci wynikdw niewspoétmiernych do czasu poswieconego na trenowanie modelu.
W przypadku obrazéw hiperspektralnych stosuje sie przewaznie kilkaset drzew. Kazde drzewo
to osobna sekwencja decyzyjna, ktére sktada sie z szeregu prostych pytan i odpowiedzi.
W przypadku obrazu hiperspektralnego, ktéry zawiera np. dwie klasy: piksele reprezentujgce
trawe oraz piksele reprezentujgce wode, drzewo decyzyjne bedzie skonstruowane z szeregu
pytan dotyczacych kazdego z pasm spektralnych. Dla przyktadu moze to by¢ pytanie, czy
dla danego piksela, ktérym jest trawa (wiemy to dla danych treningowych) kanat spektralny
625 nm, wartos¢ w nim zawarta jest wieksza lub mniejsza niz losowo dobrana wartosé
progowa (np. 100 z 256 wartosci w 8-bitowym kanale). Algorytm tworzy zatozong liczbe drzew,
kazde z witasnie takimi uproszczonymi pytaniami, a nastepnie sprawdza, czy pytania te
sg odpowiednie, czyli w naszym przyktadzie czy wartosci progowe sg odpowiednio dobrane.
Cecha kluczowg metody random forest jest to, ze kazde drzewo okresla pytania dotyczgce
tylko losowego fragmentu danych. W kolejnych krokach uczenia modelu, algorytm
dostosowuje pytania do momentu, az rezultaty decyzji bedg najbardziej zgodne z danymi
treningowymi (wg. reguty czystosci decyzji lub poziomu entropii pomiedzy klasami) [76].

O tym czy piksel danych badawczych (nie treningowych) reprezentuje poszukiwang klase

(jak dla naszego przyktadu) trawy lub wody, decyduje demokratyczna wiekszos¢ drzew.

82



Dla przyktadu, jesli model sktada sie ze 100 drzew, a dla danego piksela 70 drzew uznato piksel
za trawe, a 30 za wode, klasyfikator przypisze prébce etykiete trawy. W efekcie powstaje
zestaw drzew decyzyjnych, ktdére pozwalajg na wyjgtkowo szybkag klasyfikacje pikseli,
poniewaz sktada sie ona z szeregu relatywnie prostych obliczen.

Do zaawansowanych metod uczenia maszynowego zaliczane sg sztuczne sieci neuronowe
oraz gtebokie uczenie. Sztuczne sieci neuronowe - sg modelami obliczeniowymi,
inspirowanymi w swym ksztatcie swiatem biologicznym. Pod katem architektury i dziatania,
nasladujg podstawowe siatki biologicznych neuronéw, cho¢ sg zaréwno o wiele bardziej
uproszczone, jak i skonstruowane przez implementacje sztucznych neurondw opisanych
programistycznie i matematycznie. Sztuczne sieci neuronowe stanowig podstawowg strukture
i komponent modeli obliczeniowych w dziedzinie sztucznej inteligencji nazywanej nauczaniem
gtebokim (Deep Learning) [77].

Sieci neuronowe sktadajg sie z trzech gtéwnych typéw warstw:

e warstwa wejsciowa - przyjmuje dane wejsciowe (np. wartosci kanatow spektralnych
w obrazach HSI),

e warstwy ukryte — przetwarzajg dane poprzez zestaw potgczonych sztucznych
neuronéw, wykonujgcych operacje matematyczne zgodne z wzorem 5.10,

e warstwa wyjsciowa — generuje wynik konicowy modelu (np. klasy obiektéw na zdjeciu
HSI).

Kazda warstwa sktada sie ze sztucznych neurondw, ktére sg konstruktami algorytmiki
matematycznej. Ich jedynym zadaniem jest wykonywanie nastepujacej operacji
matematyczne;j:

y=fQowx; +b), (5.10)
gdzie:
X; —dane wejsciowe,
w; —wagi pofaczen,
b — bias (przesuniecie),
f — funkcja aktywacji, moze by¢ to funkcja liniowa, sigmoidalna, tangensoidalna lub Gaussa,
Yy — wyjscie neuronu.

Proces uczenia (trenowania, budowania) sieci polega na dostosowaniu wag w; oraz
przesunie¢ b, w celu minimalizacji funkcji btedu catego modelu. Funkcje btedu moze petnié np.
btad sredniokwadratowy lub entropia krzyzowa, a dobér tej funkcji jest zalezny od stawianego

przed siecig zadania. Bardzo czesto w modelach opartych na sieciach neuronowych stosuje sie
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rowniez algorytm wstecznej propagacji btedu. Jest on wysoce efektywnym algorytmem
dostosowywania wag potgczen sieci, ktéry dziata w sposéb faricuchowy od korica sieci (wyjsé)
do poczatku. Pozwala to na szybkie obliczenie, w jaki sposdb kazda z wag potaczen wptywa
na koncowy btad sieci.

Sztuczne sieci neuronowe, dzieki mozliwosci obstugi ztozonych struktur danych, znalazty
zastosowanie w tak trudnych zagadnieniach, jak rozpoznawanie obrazéw, klasyfikacje duzych
zbiorow danych oraz obrazéw hiperspektralnych. Plytkie sieci neuronowe sktadajg sie
z maksymalnie jednej warstwy ukrytej. Sieci neuronowe o wiekszej liczbie warstw ukrytych
uznaje sie za poziom sztucznej inteligencji nazywanej uczeniem gtebokim.

Uczenie gitebokie to poddziedzina uczenia maszynowego, ktéra wykorzystuje
rozbudowane sztuczne sieci neuronowe o duzej liczhie neuronowych warstw ukrytych.
Uczenie tego rodzaju nazywane jest gtebokim z uwagi na gteboka ztozono$¢ architektury sieci
neuronowych wykorzystywanych w tym uczeniu. Ztozono$¢ ta pozwala na przetwarzanie
i analize bardzo ztozonych struktur danych, takich jak jezyk naturalny (komunikacja ludzka),

sekwencje obrazow oraz fuzja danych z réznych zrédet [77].

5.4. POROWNANIE TECHNIK PRZETWARZANIA | ANALIZY DANYCH SPEKTRALNYCH

Wsréd wielu technik przetwarzania i analizy danych, w tym danych hiperspektralnych,
zadna metoda nie jest doskonata i optymalne zastosowanie jest zalezne od kilku czynnikow.
Przed wyborem wtasciwej metody, nalezy rozpoznaé ztozonos¢ danych i poszukiwanych klas,
czas wymagany na realizacje obliczen, dostepng architekture obliczeniowg oraz znajomosé
prawdy podstawowej. W tabeli 5.2 przedstawiono ogdlne zestawienie wybranych cech
réznych rodzajow technik przetwarzania i analizy danych.

Analiza tabeli 5.2 pozwala na okreslenie technik optymalnych dla typowych rozmiaréw
zbioréow danych hiperspektralnych. W zagadnieniach zwigzanych z obrazowaniem lotniczym,
satelitarnym, laboratoryjnym i przemystowym, technika nauczania nienadzorowanego
ograniczona jest w obszarze klasyfikacji, stopniem radzenia sobie z szumem oraz zdolnoscig
do generalizacji. W tej metodzie nie jest rowniez mozliwe wykrywanie wzorcow
przestrzennych, co w klasyfikacji obiektéw powtarzalnych stanowi istotng wade. Odznacza sie
jednak duzg szybkoscig dziatania i nie wymaga prawdy podstawowej, co jest istotng zaleta
w zadaniach na nowych danych, ktére nie zostaty przeanalizowane przez cztowieka. Oznacza
to, ze nauczanie nienadzorowane moze stanowié¢ wstepne wykrywanie podstawowych

wzorcow i podstawowg ekstrakcje cech kluczowych, okreslang jako redukcja wymiarowosci.
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Techniki nauczania nadzorowanego oferujg bardziej rozwiniete zdolnosci wykrywania
wzorcow przestrzennych, jak rowniez zdolno$¢ do generalizacji. W technikach tych wymagane
jest natomiast wstepne oznaczenie etykiet danych, czyli znajomosé prawdy podstawowej
dla danych uzywanych do nauczania. Techniki te odznaczajg sie réwniez wyzszym poziomem
skomplikowania implementacji, czesto wymagajac rowniez wiekszych mocy obliczeniowych
do wykonywania procesu nauczania we wzglednie krétkim czasie. Do ekstrakcji cech
kluczowych czesto wykorzystuje sie na wstepie nauczanie nienadzorowane, a nastepnie

nadzorowane na ograniczonym juz zbiorze danych.

Tabela 5.2. Poréwnanie gtéwnych rodzajéw technik przetwarzania i analizy danych HSI.
Opracowanie Autora

Kryterium Techniki nauczania Techniki nauczania Sieci neuronowe i Deep
nienadzorowanego nadzorowanego Learning
Charakterystyka Wyszukiwanie Budowanie modeli Budowanie ztozonych
wzorcow w deterministycznych na modeli na podstawie
nieuporzgdkowanych podstawie wstepnie wstepnie
danych uporzadkowanych uporzadkowanych
danych danych
W -
ymaganie prawdy Nie Tak
podstawowej
Wyodrebnianie Reczne lub Automatyczne
Statystyczne .
kluczowych cech ystyez potautomatyczne (wbudowane w model)
Zdolnos¢ do
wykrywania wzorcéw Ograniczone Tak
przestrzennych na
obrazach HSI
Radzenie sobie z Ograniczone Ograniczone Duze
szumem
Czas
obliczer\/nauczania al < .
Krotki Sredni
Ztozonos¢ Mata Srednia
implementacji
Zdolnos$é do ‘ . Zalezna od rozmiaru
N Mata Srednia .
generalizacji danych do nauki

Najwieksze jednak mozliwosci oferujg sztuczne sieci neuronowe i nauczanie gtebokie.
Pozwalajg one na generalizacje, znajdywanie skomplikowanych wzorcow przestrzennych oraz
automatyczng, bedacg czescig kluczowg modelu, ekstrakcje cech kluczowych. Sieci
neuronowe w swej naturze dokonujg selekcji cech kluczowych (w przypadku HSI kluczowych

pasm) podczas procesu nauczania, ostabiajgc znaczenie tych wag, ktére bazujg na zrédtach nie
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wptywajgcych na redukcje btedu catkowitego modelu. Pomimo tych zalet, w obrazowaniu HSI
i w wiekszosci aplikacji zwigzanych z obrazowaniem satelitarnym, lotniczym, laboratoryjnym
i przemystowym, mozliwosci te wykraczajg poza zadania stawiane systemom przetwarzania
danych spektralnych. W potaczeniu z wysokimi wymaganiami infrastruktury obliczeniowej,
systemy oparte na gtebokim nauczaniu, dopiero zaczynajg by¢ stosowane w aplikacjach, ktére
wymagajg duzej szybkosci dziatania. Dla wiekszosci zadan klasyfikacyjnych, realizowanych
na zobrazowaniach HSI, nauczanie nadzorowane bez sieci neuronowych jest optymalne [77].

Zrozumienie réznicy poziomu zadan adekwatnych do poziomu skomplikowania
klasycznego nauczania maszynowego ML (nauczanie nienadzorowane i nadzorowane) oraz
gtebokiego nauczania DL (sieci neuronowe ptytkie i gtebokie), przyblizy¢ mogg przedstawione
w dalszej czesci przyktady, dotyczace klasyfikacji obiektéw widocznych na zobrazowaniu HSI.

W aplikacji opartej na zestawie danych np. lotniczych lub satelitarnych, przy dobrej
znajomosci prawdy podstawowej, modele trenowane na poziomie uczenia maszynowego (nie
gtebokiego uczenia) oferujg odpowiedni poziom doktadnosci dla wiekszosci aplikacji
klasyfikacyjnych [78]. Rozrdznianie np. rodzajow pdl uprawnych, rodzajow powierzchni
gruntu, pokryé dachowych na podstawie setek kanatdéw spektralnych sg trudniejsze niz
zdolnos¢ percepcji umystu cztowieka, jednak metody nadzorowanego nauczania
maszynowego mogg pomoc stworzy¢ optymalny model dla tego rodzaju zadan. Gtebokie
nauczanie nie bedzie optymalne w tym przypadku, jednak gdy zadanie okaze sie bardziej
zalezne od danych
z wysokim szumem oraz wymaga¢ bedzie wykrywania wzorcow przestrzennych,
zaawansowane sieci neuronowe bedg odpowiednim narzedziem. Przyktadem takiego
zagadnienia mogtoby by¢ np. wykrywanie zalgzkéw zmian nowotworowych na powierzchni
skéry cztowieka na podstawie hiperspektralnych skanéw medycznych. W tym przypadku
gtebokie nauczanie jest optymalne i moze zapewnic najwyzszg skutecznos¢, pod warunkiem
trenowania modelu na duzym zestawie danych (min. kilkanascie tysiecy prébek) z prawda
podstawowag. Z reguty brak takich zestawow danych stanowi gtéwng bariere w stosowaniu
metod gltebokiego nauczania w wielu zagadnieniach hiperspektralnych.

Z uwagi na przedstawiong wysoka uzytecznos¢ technik ML (nauczania maszynowego)
w stosunku do rzadziej stosowanych technik DL (gtebokiego nauczania) w przypadku
wiekszosci danych HSI w aplikacjach przemystowych, kosmicznych, gérniczych i rolniczych, w
dalszej czesci tej pracy badane, sprawdzane i oceniane bedg gtéwnie metody nauczania

maszynowego.

86



6. BADANIA ELEMENTOW FILTRUJACYCH SWIATtO STOSOWANYCH W AKWIZYCJI DANYCH
SPEKTRALNYCH

W niniejszym rozdziale opisane zostaly kluczowe elementy instrumentéw
hiperspektralnych, umozliwiajgce rejestracje danych w okreslonych spektrach dtugosci fali.
Przedstawiono wyniki badan witasnych, jak rdéwniez przedyskutowano mozliwosci

zastosowania poszczegdlnych elementéw w wybranych aplikacjach.

6.1. ELEMENTY FILTRUJACE SWIATLO JAKO KLUCZOWY ELEMENT INSTRUMENTOW HSI

Instrumenty hiperspektralne, znane w literaturze rowniez jako spektrometry obrazujace,
projektowane sg w taki sposdb, aby w jak najdokfadniejszy sposéb odwzorowywac informacje
spektralne nieodtgcznie powigzane z promieniowaniem elektromagnetycznym w okreslonym
dla danej prébki (piksela) zakresie dtugosci fali. Z oczywistych wzgledéw nie jest to mozliwe
do zrealizowania w sposdéb doskonaty [3]. Rdzne elementy filtrujgce spektrum swiatta, beda
miaty rézny poziom doktadnosci filtracji, co bedzie znaczagco wptywaé na jako$é i mozliwy
docelowy zakres zastosowan dla instrumentu HSI. Podczas doboru lub projektowania
spektrometru obrazujgcego, kluczowa jest dobra znajomosc¢ charakterystyki wspotczynnika
przepuszczalnosci Swiatta (transmitancji optycznej) elementu filtrujgcego, bedacego
kluczowym, definiujgcym instrument komponentem [79].

Instrumenty HSI wykorzystujgce metode skanowania spektralnego (czyli np. koto filtrowe
przed obiektywem) cechujg sie wzglednie niskim poziomem ztozonosci okreslania
charakterystyki spektralnej lub przestrzenno-spektralnej [80]. W takim podejsciu, element
filtrujacy nie wptywa lub wptywa w pomijalnym stopniu na reprezentacje przestrzenng
elementu obrazujgcego. Ze strony filtracji spektralnej, charakterystyka transmisyjna
lub odbiciowa jest mozliwa do zbadania stanowiskiem sktadajgcym sie z oswietlacza
szerokopasmowego (np. zarowka wolframowa) i ze spektrometru.

Zdecydowana wiekszo$¢ obecnie stosowanych instrumentéw hiperspektralnych, jako
komponent filtrujgcy wykorzystuje element refrakcyjny (dyspersyjny) czyli pryzmat lub
element dyfrakcyjny czyli siatke dyfrakcyjng [81, 82]. Na rynku znalezé mozna takze coraz
czesciej instrumenty HSI oparte na komponentach interferencyjnych (filtry Fabry-Perot).
Uzyskanie charakterystyki spektralnej lub spektralno-przestrzennej wymienionych
komponentéw stanowi wyzwanie w stosunku do podobnego badania dla elementu
filtrujgcego pojedyncze pasmo Swiatta. Stosujgc elementy od sprawdzonych dostawcoéw,

ktérzy udostepniajg przed zakupem noty katalogowe, mozna jednakie z duzym
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prawdopodobienstwem stwierdzi¢ jak ksztattuje sie charakterystyka filtra. W wielu jednak
przypadkach, zalecane jest sprawdzenie prébki komponentu, zwazywszy na mozliwe pomytki
w procesie kontroli jakosci lub, jesli jestesmy rowniez odpowiedzialni za wykonanie elementu

(np. pryzmatu lub siatki dyfrakcyjnej), aby sprawdzi¢ doktadnos¢ procesu technologicznego.

6.2. PRZYJETA METODOLOGIA BADAWCZA

Istnieje wiele metod weryfikacji zatozen dotyczagcych podstawowych elementéw
filtrujgcych sSwiatto w instrumentach HSI (rys. 6.1). Zgodnie z literaturg, kluczowym
parametrem jakosciowym jest charakterystyka odpowiedzi instrumentu
spektrofotometrycznego — SRF (Spectral Response Function) [3]. Funkcja ta okresla jak
ksztattuje sie odpowiedZz instrumentu dla poszczegdlnych diugosci fali sSwiatta.
Charakterystyka SRF powinna by¢ okreslana dla catego instrumentu spektrofotmetrycznego,
to jest z uwzglednieniem zaréwno charakterystyki przestrzenno-spektralnej elementu

filtrujgcego, jak i funkcji odpowiedzi spektralnej oraz rozmiaru pikseli detektora obrazujgcego.

\

Pryzmat NS-F11

1

Siatka dyfrakcyjna 300r/mm

Rys. 6.1. Przyktady elementdw rozpraszajgcych swiatto

W niniejszej pracy na potrzeby badan elementéw filtrujgcych, zbadane zostaty
charakterystyki przestrzenno-spektralne takich elementdw, jak pryzmat, siatka dyfrakcyjna
(300 600 linii/mm), filtry LVF (Linear Variable Filter) oraz filtry FP (Fabry-Perot).

Charakterystyka przestrzenno-spektralna to funkcja opisujgca zdolnos$¢ do przepuszczania
(lub odbicia) $wiatta w domenach kata lub potozenia oraz dtugosci fali. Mozna jg interpretowac
jako funkcje opisujgcg skutecznosc i rozdzielczos$¢ filtrowania Swiatta w zaleznosci od dtugosci

fali i potozenia elementu filtrujgcego wzgledem elementu s$wiattoczutego (np. detektora
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CMOS). W takiej interpretacji, stanowi ona bardzo istotng charakterystyke w urzadzeniach
HSI, ktéra pozwala na okreslenie brzegowych parametréw instrumentu.

Na potrzeby badan wybranych elementéw filtrujgcych, przestrzenno-spektralna
charakterystyka transmitancji (zgodnie z rys. 6.2), opisana zostata funkcja:

T =f(L,2), (6.1)

gdzie:
T — transmitancja badanego elementu filtrujgcego, czyli zdolno$é do przenoszenia $wiatta
wzgledem pomiaru referencyjnego (bez elementu filtrujgcego). W zaleznosci
od rodzaju elementu, transmitancja moze oznaczac zdolnos¢ transmisyjng (np. w pryzmacie)
lub zdolnos$¢ odbiciowa (np. w odbiciowej siatce dyfrakcyjnej), L — potozenie elementu
filtrujgcego  wzgledem elementu rejestrujgcego  wigzke filtrowanego  sSwiatta.

A - dtugosc fali.

charakterystyka
przestrzenno-spektralna

T -transmitancja $wiatta

A - dtugoscé fali

Rys. 6.2. llustracja charakterystyki przestrzenno-spektralnej elementu flitrujgcego $wiatto.
Opracowanie wiasne

Kluczowym parametrem charakterystyki przestrzenno-spektralnej jest parametr FWHM
(Full Width at Half Maximum) - szerokos¢ potéwkowa [41]. Okresla on szerokos¢ okna
transmisyjnego dla kanatu spektralnego, mierzong w potowie piku transmitancji.
Maksymalizacja rozdzielczosci spektralnej instrumentu oznacza minimalizacje wartosci
parametru FWHM. Wieksza rozdzielczos¢ spektralna elementu filtrujgcego oznacza bardziej

doktadng rejestracje sygnatur spektralnych na uzyskiwanym finalnie obrazie HSI.

6.3. OPRACOWANE STANOWISKA BADAWCZE
Na potrzeby niniejszej rozprawy doktorskiej, zdecydowano sie na zbudowanie stanowiska

pomiarowego o wysokiej odtwarzalnosci w warunkach podstawowego laboratorium
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optomechatronicznego. Dzieki temu mozliwe jest jego tatwe odtworzenie np. w zaktadach, czy
instytutach stosujgcych lub rozwijajgcych instrumenty HSI. Stanowisko to, w zaleznosci
od doktadnosci i powtarzalnosci ruchu elementéw mechatronicznych, pozwala zaréwno
na weryfikacje jakosci wykonania elementu filtrujgcego, jak réwniez na uzyskanie
charakterystyki spektralno-przestrzennej. Oprécz tego umozliwia badanie filtréw
refrakcyjnych (pryzmatéw), dyfrakcyjnych (transmisyjnych siatek dyfrakcyjnych) oraz filtréow
interferencyjnych implementowanych bezposrednio na sensorach CMOS. Stanowi ono cenne
wyposazenie laboratorium optomechatronicznego i oprdocz wykorzystania w parametryzacji
filtrow optycznych, mozliwa jest réwniez z jego pomoca realizacja wielu pomiaréw
transmitancji optycznej obiektow o zmiennej topologii. Moze réwniez stuzy¢ do oceny
rownomiernosci transmitancji klasycznych filtrow optycznych, a takze do wykrywania
mikrometrycznych wad na ich powierzchniach.

Stanowisko opracowane zostato w trzech subtelnie réznigcych sie od siebie wariantach,
pokazanych na rysunkach 6.3, 6.4 i 6.5. Kazda z modyfikacji stuzy maksymalizacji uzytecznosci

dla poszczegdlnych elementéw filtrujgcych, podlegajgcych badaniu.

Zrédio $wiatta Wyjscie Koto Badany element Spektrometr
biatego Swiattowodu z otworami filtrujgcy cyfrowy

b

Kolimator

Soczewka Wejscie swiattowodu
skupiajgca na montazu translacyjnym

Rys. 6.3. Schemat poglgdowy stanowiska do badania siatek dyfrakcyjnych i pryzmatéw

Zrodto swiatta Wyjscie Koto Badany element filtrujgcy na Spektrometr
biatego Swiattowodu z otworami montazu translacyjnym cyfrowy

/ /

Soczewka Wejscie swiattowodu

Kolimator .
skupiajgca

Rys. 6.4. Schemat poglagdowy stanowiska do badania filtrow LVF

90



Zrédio swiatla Wyjscie Koto Element filtrujgcy o znanej
biatego $wiattowodu z otworami charakterystyce przestrzenno-spektralne;j

Sensor CMOS z

N\ filtrami FP
Soczewka

skupiajaca

Kolimator

Rys. 6.5. Schemat poglgdowy stanowiska do badania filtrow implementowanych bezposrednio na sensorach
CMOS

W wariancie przedstawionym na rys. 6.3 stanowisko umozliwia badanie pryzmatéw
i transmisyjnych siatek dyfrakcyjnych. Badany element spoczywa nieruchomo w uchwycie.
Przestrzenno-spektralng charakterystyke transmitancji uzyskuje sie przez przemieszczanie
koncowki swiattowodu wzdtuz rozszczepionego przez badany element widma $wiatta. Wariant
przedstawiony na rys. 6.4 stosowany byt z kolei do badania charakterystyk transmitancji
filtréw gradientowych (LVF). W tym wariancie Swiattowdd jest nieruchomy, zas badany
element przesuwany jest przed czotem s$wiattowodu. W trzecim wariancie, $wiatto po
przejsciu przez element o znanej charakterystyce spektralnej kierowane jest na powierzchnie
sensora CMOS z bezposrednio naniesionymi na jego powierzchnie filtrami typu FP.

W stanowisku zastosowano szerokopasmowe 7rédto Swiatta oparte na zardwce
wolframowej (Thorlabs OSL-2). Oswietlacz przedstawiony jest na rysunku 6.63,
a spektrum uzytej zaréwki wolframowej przedstawione jest na rysunku 6.6b (wersja o

podwyzszonej sprawnosci w pasmie podczerwonym (Thorlabs OSL2IR) [84].

" R Widmo emisji o$wietlaczy OSL2
Lot ]
g ——osL2
S 4 ——O0sL2IR
E
3
oy
4]
£ 2-
‘Q
8
14
w
[ 4
O, | , . .
300 600 900 1200 1500 1800

Dlugos¢ fali (nm)

Rys. 6.6. Widok oswietlacza OSL2 (a) oraz poréwnanie spektrum zarowki wolframowej w wersji OSL2IR oraz
w wersji standardowej OSL2 [84]
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Swiatto doprowadzane $wiattowodem do elementu kolimacyjnego nastepnie trafia
na przystone otworkowg (pinhole) o réznej Srednicy (badano $rednice od 25 um do 200 pum).
Nastepnym elementem uktadu jest soczewka skupiajgca, pozwalajgca na uzyskanie obrazu
przystony w ptaszczyznie, w ktérej znajduje sie docelowy swiattowdd spektrometru (Srednica
rdzenia — 10 um). Badany element dyfrakcyjny znajduje sie pomiedzy soczewkg skupiajaca, a
Swiattowodem spektrometru. W zaleznosci od badanego elementu oraz jego kata projekcji
rozszczepionego Swiatta, swiattowdd umieszczany byt w kilku pozycjach. W pomiarach
wykorzystano spektrometr OceanFX-VIS-NIR marki OceanOptics (rys. 6.7). Podstawowe

parametry tego spektrometru zamieszczono w tabeli 6.1 [85].

Rys. 6.7. Spektrometr OceanFX marki OceanOptics [85]

Tabela 6.1. Parametry Spektrometru OceanFX-VIS-NIR marki OceanOptics [85]

Parametr Wartos¢
Zakres pomiarowy 350-1000 nm
Szczelina pomiarowa 25 um
Rozdzielczos¢ spektralna 0,3 nm
Stosunek sygnatu do szumu (SNR) 290:1

W tabeli 6.2 zamieszczono opis wptywu parametréow poszczegdlnych elementéw
zbudowanego stanowiska badawczego na parametry mierzonej charakterystyki spektralno-
przestrzennej. Pomiary na stanowisku realizowane byty w laboratorium optycznym bez
dostepu Swiatta zewnetrznego. W trakcie realizacji doktoratu, pomiary dla kazdego
z elementéw wykonano dla kilkudziesieciu pozycji $wiattowodu spektrometru, w zakresie do

18 mm z rozdzielczoscig 250 um.
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Tabela 6.2. Wptyw parametréw elementéw zbudowanego uktadu pomiarowego na parametry uzyskiwanych
charakterystyk przestrzenno-spektralnych

Element stanowiska Parametr Parametr mierzonej charakterystyki

Zrédto $wiatta Zakres Swiatta emitowanego | Zakres pomiaru domeny spektralnej

Zakres Swiatta mierzonego Zakres pomiaru domeny spektralnej

Spektrometr Rozdzielczo$¢ pomiaru domeny

Rozdzielczos¢ spektralna .
spektralnej

. ) Srednica rdzenia Rozdzielczo$¢ pomiaru domeny
Swiattowdd spektrometru L. .
Swiattowodu spektrometru przestrzennej
. . Rozdzielczos¢ pomiaru domeny
Koto otworkowe Srednica otworu

przestrzennej

Zakres pomiaru domeny

- Zakres ruchu ;
Translator swiattowodu przestrzennej

spektrometru/badanego

Rozdzielczos¢ pomiaru domeny

elementu Minimalny przesuw :
przestrzennej

Na rysunku 6.8 i 6.9 przedstawiono widok stanowiska do badania charakterystyk

przestrzenno-spektralnych pryzmatéw i siatek dyfrakcyjnych.

Element
badany

Swiattowdd
spektrometru

Rys. 6.8. Stanowisko w wariancie badania transmisyjnych siatek dyfrakcyjnych oraz pryzmatéw
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Rys. 6.9. llustracja swiatta ulegajacego dyfrakcji w siatce dyfrakcyjnej. Na ekranie widoczne sg prazki zerowego,
pierwszego i drugiego rzedu

W ramach badan przeprowadzono réwniez pomiary filtrow LVF w postaci ptytek szklanych
oraz filtrow Fabry-Perot (FP) nanoszonych na sensor CMOS. W tym celu zmodyfikowanu
stanowisko pomiarowe. W przypadku filtra LVF na podtozu szklanym, zastosowano przesuwny
uchwyt badanego filtra (w odrdznieniu od przesuwnego $wiattowodu, jak miato to miejsce w

przypadku elementdéw dyspersyjnych i dyfrakcyjnych) - rys. 6.10.

"-'.! -l:l‘

s !
Kolimator zrédta SRR Swiattowéd
$wiatta e’ pomiarowy
T gee ! =
L 'xﬁ
- N iy

) P
| Badany
f

Rys. 6.10. Zmodyfikowane stanowisko z filtrem LVF w uchwycie przesuwnym

W przypadku filtra FP nanoszonego na sensor CMOS w miejscu swiattowodu
spektrometru umieszczono kamere Ximea XiSpec z badanym sensorem hiperspektralnym.
W torze pomiarowym umieszczono takze poszczegdlne elementy rozpraszajgce spektralnie

Swiatto, aby sprawdzi¢ ich efekt polowy na sensorze kamery (rys. 6.11).
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Rys. 6.11. Zmodyfikowane stanowisko z kamerg Ximea XiSpec i uwidocznionym na biatej kartce obrazem
spektralnym

6.4. WYNIKI BADANIA ELEMENTOW DYSPERSYJNYCH

Elementy dyspersyjne, stosowane byty jako pierwsze elementy filtrujgce pasmo
w uktadach obrazujgcych. Zjawisko dyspersji przez elementy szklane znane jest
od starozytnosci, jednak w sposéb naukowy badane byto dopiero w $redniowieczu przez
takich uczonych jak Robert Grosseteste, Witelon czy tez Teodoryk z Freiborgu. Wyjasnienie
zjawiska powstawania teczy w elementach optycznych opisat rowniez Kartezjusz, a dopiero
Isaac Newton udowodnit, ze promienie, ktére ulegly dyspersji nie ulegajg jej w dalszym
stopniu. Dowiddt takze, ze réznig sie one wspdtczynnikiem zatamania, co jest bezposrednia
przyczyng zachodzenia zjawiska dyspersji [86]. W nauce i technice, szklany element
dyspersyjny nazywany jest pryzmatem i w celu maksymalizacji efektu rozszczepienia $wiatta,
ma on w swej najprostszej postaci forme geometryczng o ptaskich scianach i przekroju
tréjkatnym. Pryzmaty dyspersyjne wykonuje sie najczesciej z amorficznego szkta lub szkfa
kwarcowego o strukturze krystalicznej. W grupie elementow dyspersyjnych, oprocz
pryzmatdw tréjkatnych, sktadajacych sie z pojedynczego elementu, wyrdzniamy réwniez
pryzmaty Abbego (dwa elementy z rédznych rodzajow materiatdw optycznych) oraz pryzmaty
Amiciego (kilka elementéw z réznych materiatéw optycznych) [87, 88].

Zasada dziatania pryzmatu polega na zatamaniu promieni swiatta podczas przechodzenia
z jednego osrodka w drugi (np. z powietrza do szkta). Wynika to z réznicy predkosci fotondéw
w réznych osrodkach (rys. 6.12). Zatamanie sie promieni Swietlnych opisane jest prawem

Snelliusa [89]:
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n,sinf; = n,sinb, , (6.2)
gdzie:
n, i n, —wspodfczynniki zatamania swiatta osrodka 1i 2,
0; — kat padania (miedzy promieniem swietlnym a normalng do powierzchni w punkcie
wejscia),
0, — kat zatamania (miedzy promieniem swietlnym a normalng do powierzchni w punkcie
wyjscia).

Kluczowa dla dziatania pryzmatu jest wiasciwos¢ swiatta, ktére w zaleznosci od dtugosci
fali, wykazuje rézng zmiane predkosci w zaleznosci od osrodka w ktdérym sie przemieszcza,
a co zatymidzie, takze zmiane kata zatamania swiatta na granicy pryzmat-otoczenie. W efekcie
Swiatto biate, ktére tak naprawde jest mieszaning fotondw o réznej dtugosci fali ulega
rozszczepieniu wskutek przejscia miedzy osrodkiem otoczenia pryzmatu i materiatu pryzmatu.
Zakres rozszczepienia $wiatta mozna zmieniaé, dobierajac kat Scian pryzmatu lub dobierajgc
materiat optyczny i osrodek w jakim sie on znajduje. Pryzmat jako element stosowany w
kamerach hiperspektralnych to komponent o wzglednie duzych rozmiarach, wymagajacy
rozbudowanej konstrukcji optomechanicznej zdolnej do utrzymania go w odpowiednim
miejscu. Pryzmat dyspersyjny jest wcigz stosowany w wielu instrumentach obrazujgcych,

szczegblnie w instrumentach naukowych [90].

Swiatto o réznych
barwach

Biate swiatto
Pryzmat

Rys. 6.12. Schemat dziatania pryzmatu

Na potrzeby niniejszej rozprawy badania elementéw refrakcyjnych wykonano
z wykorzystaniem pryzmatu NS-F11 (EdmundOptics). Wyznaczone charakterystyki
przestrzenno-spektralne tego pryzmatu przedstawiono na rysunkach 6.13. W celu lepszej
wizualizacji, na rys. 6.14 i 6.15 przedstawiono rzut aksonometryczny i mape 2D otrzymanych

wynikéw pomiardow.
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Rys. 6.13. Charakterystyka przestrzenno-spektralna pryzmatu. Widma wyznaczono dla réznego potozenia czota
Swiattowodu wzdtuz rozszczepionego przez pryzmat spektrum swiatta biatego

T [%]
100
80
60

40

Transmitancja [%)

20

700

Dtugosc fali [nm]

Rys. 6.14. Charakterystyka przestrzenno-spektralna pryzmatu — rzut aksonometryczny
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Rys. 6.15. Charakterystyka przestrzenno-spektralna pryzmatu — mapa 2D

Wykonane badania pokazujg, ze pryzmat, jako element dyspersyjny, charakteryzuje sie

stosunkowo duzg szerokoscig kanatdw spektralnych (FWHM) z mediang na poziomie 55,7 nm
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(rys. 6.16), a przepuszczalnosé swiatta wynosi nawet 83% wejsciowej mocy optycznej (rys.

6.13).
150 \ T T — [
—&— FWHM O A
: Mediana FWHM (1-6 mm): 55.69 nm I
o )] '\,\
— |- [ )\\\ / ‘\\ —
g 100 Vi \WJ/ ® /
c C \
= / \\ / m
g > |/ —
QD so- o—6— . ux;f 7777777777777777 .
P ?
~ of
o— =~
0 | | | | | | | | |
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Potozenie swiattowodu rejestrujgcego wzgledem pryzmatu [mm]

Rys. 6.16. Szerokos¢ potéwkowa (FWHM) piku maksymalnej transmitancji w zaleznosci od potozenia

Swiattowodu wzgledem badanego pryzmatu

Na rys. 6.16. zauwazy¢é mozna poszerzanie sie wyznaczonych widm, wraz
z przemieszczaniem swiattowodu w kierunku obszaru z zakresu podczerwieni. Widoczna jest
rowniez nieliniowa zalezno$¢ miedzy potozeniem maksimum pikdw transmitancji

a potozeniem $wiattowodu wzgl. pryzmatu, co pokazano na rys. 6.17.
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Rys. 6.17. Potozenie maksimum pikéw transmitancji w zaleznosci od potozenia pryzmatu

6.4. WYNIKI BADANIA ELEMENTOW DYFRAKCYJNYCH

Elementy dyfrakcyjne w postaci siatki dyfrakcyjnej sg powszechnie stosowanym
elementem w instrumentach spektrofotometrycznych. Wykorzystujg one zjawisko dyfrakcji i
interferencji $wiatta, co umozliwia rozdzielenie wigzki swiatta na promienie o réznej dtugosci

fali. W nauce i technice stosowane sg gtdwnie dwa rodzaje siatek dyfrakcyjnych, tj. siatki
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transmisyjne oraz siatki odbiciowe. Te pierwsze majg posta¢ przezroczystego elementu,
najczesciej kwarcowego, na ktéry naniesiony jest wzér szczelin o jednakowe] szerokosci.
W przypadku siatek odbiciowych, element ma postaé lustrzang, réwniez ze wzorem
jednakowych roztozonych rowkéw. Swiatto padajace na siatke dyfrakcyjng natrafia
na macierz rowkéw lub szczelin, ktére stanowig zrédto fal wtérnych, zgodnie z zasadag
Huygensa, mdéwiacg, ze wszelkie punkty czota fali mozna uwazaé za zrédta nowych fal kulistych
[91]. W efekcie, fale te rozchodzga sie i nakfadajg na siebie. Rézne dtugosci fali sg uginane
na siatce dyfrakcyjnej pod innymi katami, co prowadzi do ich separacji w przestrzeni (rys. 3.7).
Nastepnie fale sSwiatta interferujg ze sobg, co prowadzi do powstawania maksiméw
(wzmocnien) i miniméw (ostabien) intensywnosci swiatta w zaleznosci od kata padania
i dtugosci fali. Kat dyfrakcji opisuje sie wzorem [92]:

d-sind=m-A41, (6.3)
gdzie:
d - okres siatki, czyli odlegtos¢ miedzy rowkami lub szczelinami,
6 — kat, pod ktédrym obserwuje sie maksimum danej dtugosci fali,
m —rzad dyfrakeji (1, 2, 3itd.),
A — dtugosé fali Swiatta.

Siatki dyfrakcyjne odznaczajg sie tym, ze projektant instrumentu ma niewielki stopien
mozliwosci zmiany kata projekcji frontu falowego, co ma wptyw na ksztatt i budowe
urzadzenia spektrofotometrycznego. Zaletg jednak jest niewielki rozmiar i umiarkowane
wymagania optomechaniczne.

W ramach realizacji rozprawy doktorskiej wykonano pomiary dla dwdch siatek:

e siatka nr 1: transmisyjna, 300 rowkdw na milimetr, szkto B270 (EdmundOptics);

e siatka nr 2: transmisyjna, 600 rowkéw na milimetr, szkto B270 (EdmundOptics).
Wyniki pomiardéw charakterystyki przestrzenno-spektralnej tych siatek przedstawiono na rys.

6.18 —6.27.
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Rys. 6.18. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm). Widma wyznaczono dla
réznego potozenia czota swiattowodu wzdtuz rozszczepionego przez siatke spektrum swiatta biatego

T [%]
100

100

Transmitancja [%)
n
o

700 Qo

. . 6
2t 900 ! ‘?°\°1e\ o 0
Dhugos¢ fali [nm] W’

Rys. 6.19. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm)
— widok przestrzenny
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Rys. 6.20. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 1 (300 r/mm) — mapa 2D
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Na podstawie wykonanych badan mozna stwierdzi¢ umiarkowang szerokos¢ kanatéw

spektralnych (FWHM) z mediang na poziomie 13,5 nm (rys. 6.21). Widoczny jest regularny

ksztatt odpowiedzi spektralnej (rys. 6.18, 6.19 i 6.20) z liniowa zaleznoscia pomiedzy

potozeniem maksimum pikéw transmitancji a potozeniem siatki dyfrakcyjnej (rys. 6.22). Siatka

odznacza sie umiarkowang szerokoscia zakresu spektralnego, ktory szybko zweza sie w pasmie

bliskiej podczerwieni. Zauwazalna jest takze odpowiedZ harmoniczna, pochodzaca z innego

rzedu odpowiedzi, w pasmie ultrafioletowym. Siatka odznacza sie maksymalng transmitancja

na poziomie do 80% na krawedzi pasma widzialnego w zakresie dtugosci fali od okoto 700 nm

do okoto 760 nm.
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Rys. 6.21. Szerokos$¢ potéwkowa (FWHM) pikdw transmitancji w zaleznosci od potozenia Swiattowodu
wzgledem siatki dyfrakcyjnej nr 1 (300 r/mm)
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Rys. 6.22. Potozenie maksimum pikéw transmitancji w zaleznosci od potozenia Swiattowodu wzgledem siatki

dyfrakcyjnej nr 1 (300 r/mm)
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W pordéwnaniu do siatki o gestosci 300 rowkow/mm, kolejna zbadana siatka nr 2
o gestosci 600 rowkdw/mm, charakteryzowata sie mniejszg szerokoscig kanatow spektralnych.
Widoczny jest regularny ksztatt odpowiedzi spektralnej (rys. 6.23, 6.24 i 6.25) z liniowa
zaleznoscig miedzy potozeniem maksimum pikédw transmitancji a potozeniem swiattowodu

zbierajgcego wzgledem badane;j siatki (rys. 6.26).

100

80

60

40

Transmitancja [%]

20

400 450 500 550 600 650 700 750 800 850 900
Dtugosé fali [nm]

Potozenie swiattowodu wzgl. siatki dyfr.

0.00 mm 0.25 mm 0.50 mm 0.75 mm 1.00 mm 1.25 mm 1.50 mm
1.75 mm 2.00 mm 2.25 mm 2.50 mm 2.75 mm 3.00 mm 3.25 mm
3.50 mm 3.75 mm 4.00 mm 4.25 mm 4.50 mm 4.75 mm 5.00 mm
5.25 mm 5.50 mm 5.75 mm 6.00 mm 6.25 mm 6.50 mm 6.75 mm
7.00 mm 7.25 mm 7.50 mm 7.75 mm 8.00 mm 8.25 mm 8.50 mm

Rys. 6.23. Charakterystyka przestrzenno-spektralna siatki dyfrakcyjnej nr 2 (600 r/mm).
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Rys. 6.24. Charakterystyka przestrzenno-spektralna siatki dyfr. 600 rowkéw/mm — widok przestrzenny
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Rys. 6.25. Odpowiedz przestrzenno-spektralna siatki dyfr. 600 rowkow/mm
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Rys. 6.26. . Potozenie maksimum pikéw transmitancji w zaleznosci od potozenia $wiattowodu wzgledem siatki

dyfrakcyjnej nr 2 (600 r/mm)

Na rysunku 6.27 przedstawiono takze charakterystyke szerokosci potéwkowej (FWHM)

pikdw transmitancji w funkcji pofozenia swiattowodu zbierajgcego. FWHM zmieniata sie od

okofo 6 nm do 10 nm z mediang poziomie 8,6 nm.
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Rys. 6.27. Szerokos$¢ potéwkowa (FWHM) pikdw transmitancji w zaleznosci od potozenia swiattowodu

wzgledem siatki dyfrakcyjnej nr 2 (600 r/mm)
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Siatka nr 2 odznaczata sie takze wezszym zakresem spektralnym pracy w poréwnaniu do siatki
0 mniejszej gestosci rowkdéw. Zauwazalna jest takze mniejsza transmitancja na poziomie do
50% w zakresie od okoto 700 nm do 760 nm (rys. 6.23). Widoczna jest takze odpowiedz
harmoniczna, pochodzaca z kolejnego rzedu dyfrakcji (prawdopodobnie dwie harmoniczne -

w pasmie ultrafioletowym oraz niebieskim).

6.6. WYNIKI BADANIA ELEMENTOW INTERFERENCYJNYCH

Optyczne filtry interferencyjne dziatajg na zasadzie interferencji $wiatta, a doktadniej na
wykorzystaniu zjawiska interferencji konstruktywnej (wzmacniajgcej) lub destruktywnej
(wygaszajgcej) w zaleznosci od dtugosci fali Swiatta przechodzacego przez filtr. Filtry
interferencyjne dajg wiele korzysci w zastosowaniu. Jedng z najwazniejszych cech jest to, ze
potaczenie procesu projektowania i technologii w obszarze nanoszenia cienkich warstw,
pozwala na swobodny dobdr filtrowanej diugosci fali. W zwigzku z tym, mozliwe jest
naniesienie takich filtréow réwniez bezposrednio na sensor CMOS, a takze wykonanie na
podtozu szklanym filtra gradientowego - LVF (Linear Variable Filter) oraz filtra Fabry-Perot.

W przypadku filtréw LVF na szkle, buduje sie je jako wielowarstwowe struktury, w ktérych
warstwy materiatéw, najczesciej o matym (np. 1,4) i duzym (np. 2,3) wspotczynniku zatamania
Swiatta, uktadane sg naprzemiennie. Warunkiem zaistnienia interferencji konstruktywnej jest
aby droga optyczna (iloczyn grubosci warstwy i wspétczynnika zatamania swiatfa) byta
wielokrotnoscia poftowy ditugosci fali $Swiatta, ktéra ma by¢ przepuszczana przez filtr.
Zmieniajgc gradientowo grubosci poszczegdlnych warstw wzdtuz podtoza szklanego, mozna
uzyska¢ zmiane dtugosci przepuszczanej fali.

Jesli chodzi o filtry Fabry-Perot, to filtry te rowniez budowane s3 jako struktury
wielowarstwowe. W konstrukgji tych filtréw dodatkowo wystepuje wneka optyczna o ksztatcie

klina, ktérej grubos¢ zmniejsza sie liniowo od jednej krawedzi filtra do drugiej (rys. 6.28).
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Rys. 6.28. Schemat ilustrujgcy budowe filtra Fabry-Perot oraz przyktad charakterystyki transmitancji takiego
filtra [93]

W ramach realizacji rozprawy doktorskiej wykonano badania filtra LVF dostarczonego
przez Institute of Thin Film Sensors and Imaging, University of the West Scotland. Wyniki

pomiaréw przedstawiono na rysunkach 6.29 — 6.33.
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Rys. 6.29. Charakterystyka przestrzenno-spektralna filtra LVF. Widma wyznaczono przemieszczajac liniowo filtr
wzgledem Swiattowodu zbierajgcego z krokiem 250 pum
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Rys. 6.31. Charakterystyka przestrzenno-spektralna filtra LVF — mapa 2D

Dla zbadanego filtra LVF ksztatt pikdw transmisyjnych odznacza sie wysoka regularnoscia
i wzglednie rownomiernym poziomem transmitancji, ktéra w szczycie osigga 80-90% (rys.
6.29). Zauwazy¢ mozna takze sttumione, lecz wyrazne odpowiedzi harmoniczne w pasmie
ultrafioletowym i niebieskim, a takze bardziej intensywne w zakresie bliskiej podczerwieni.
Filtr ten, podobnie jak opisane wczesniej siatki dyfrakcyjne, réwniez charakteryzowat sie
liniowga zaleznoscig pomiedzy przesunieciem filtra wzgledem swiattowodu rejestrujgcego a
potozeniem maksimum pikdéw transmitancji (rys. 6.32). Kanaty spektralne sg bardzo waskie z
mediang szerokosci FWHM na poziomie 4,2 nm (rys. 6.33) z tendencjg liniowego wzrostu wraz

ze wzrostem dtugosci fali.
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Rys. 6.32. Potozenie maksimum pikéw transmitancji w zaleznosci od potozenia filtra LVF wzgledem
Swiattowodu zbierajgcego
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Rys. 6.33. Szerokos$¢ potéwkowa (FWHM) pikéw transmitancji w zaleznosci od potozenia filtra LVF wzgledem

Swiattowodu zbierajgcego

W przypadku kamery Ximea XiSpec, elementem swiatfoczutym jest sensor CMOS marki

IMEC, na ktérego powierzchni naniesiona zostata matryca miniaturowych filtrow Fabry-Perot.

Matryca ta ma postac paskdw dzieki czemu kamera pozwala na obrazowanie kilkuset pasm

Swiatta na réznych rzedach pikseli matrycy (rys. 6.34).

107



6 rzedow -> 960 nm
|| 6 rzedow -> 955 nm
6 rzedow -> 950 nm

@ 181 kanatéw spektralnych
: : kazdy po 2046 x 6 pikseli

Wymiar spektralny

&« 1088 rzedowW ———>

6 rzedow -> 460 nm
6 rzedow -> 455 nm
| 6 rzedow -> 450 nm

2048 kolumn
Wymiar spektralny

Wiele stopni filtrow
Fabry-Perot - po jednym
na kanat spektralny

Rys. 6.34. Filtr Fabry-Perot w realizacji liniowej na sensorze kamery Ximea [94]

Wykonane w ramach rozprawy doktorskiej pomiary z wykorzystaniem kamery Ximea
XiSpec (rys. 6.35, 6.36 i 6.37) pozwolity zauwazy¢ dwie istotne cechy filtrow FP nanoszonych
na sensor. Przede wszystkim, kamera w bardzo precyzyjny sposdb filtruje pasma, poniewaz
stosunek sygnatu na pikselach oswietlonych dtugoscig fali rezonansu danego filtru FP do
sygnatu na pikselach sgsiednich jest wysoki. Na obrazach nie jest tatwo dostrzec poswiate
wokét obszardw przepuszczajgcych pasmo witasciwe dla danego filtra FP co oznacza bardzo
dobre witasciwosci filtracyjne maski FP na sensorze. Ponadto sprawnos¢ kwantowa filtréw FP
jest wysoka, pozwalajaca na akwizycje nasyconych obrazéw przy czasach ekspozycji
kilkukrotnie nizszych od wartosci koniecznych w przypadku rejestracji za pomocga

spektrometru (w tych samych warunkach).

Rys. 6.35. Obraz z kamery z sensorem z filtrami FP — projekcja pryzmatu
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Rys. 6.36. Obraz z kamery z sensorem z filtrami FP — projekcja siatki dyfrakcyjnej nr 1 (300 r/mm)

Rys. 6.37. Obraz z kamery z sensorem z filtrami FP — projekcja siatki dyfrakcyjnej nr 2 (600 r/mm)

Kolejny wniosek, jaki mozna wyciggna¢ z przedstawionych obrazéw to potwierdzenie
charakterystyk rozdzielczosci spektralnej filtrow dyfrakcyjnych i pryzmatu. Szeroko$é
rzutowanej plamki na sensorze, ktéra byta przy akwizycji kazdego zdjecia tego samego
rozmiaru wykazuje znacznie gorsza rozdzielczos$¢ spektralng pryzmatu i siatki nr 1 (300 r/mm)
niz siatki nr 2 (600 r/mm). Ponadto zauwazy¢ mozna odwrotne przestrzennie dziatanie
pryzmatu (Swiatto czerwone jest mniej odchylone od osi padania swiatta biatego, niz ma to
miejsce w przypadku siatek dyfrakcyjnych). Dlatego tez na obrazie z kamery Ximea XiSpec,

pryzmat rzutuje plamke pochylong w kierunku odwrotnym.

6.7. POROWNANIE WYNIKOW BADAN, WNIOSKI ORAZ OPTYMALNE ZASTOSOWANIE
POSZCZEGOLNYCH ELEMENTOW FILTRUJACYCH

Przedstawione w rozdziale 6 pomiary pozwalajg na wyciggniecie podstawowego wniosku,
ktory okresla bezposredni zwigzek pomiedzy zageszczeniem rowkdw w siatce dyfrakcyjnej
a rozdzielczoscig spektralng projektowanego obrazu. Siatka dyfrakcyjna o zageszczeniu 600

rowkow na milimetr pozwalata na uzyskanie znacznie wezszych okien spektralnych niz siatka
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o zageszczeniu 300 rowkéw na milimetr. Ponadto ksztatt krzywych uzyskiwanej na gesciej
rowkowanej siatce jest znacznie bardziej zblizony do krzywej Gaussa. Warto jednak zwrdcié
uwage na wiekszg sprawnosé kwantowg siatki o rowkowaniu 300 rowkéw/mm w poréwnaniu
do siatki 600 rowkéw/mm. Whnioski te zbiezne sg z kartami katalogowymi tych produktow
[95,96].

Pomiary pryzmatu pokazaty réwniez jego obnizong implementowalno$¢ w kamerach
hiperspektralnych. Krzywe spektralne byty znacznie bardziej poszerzone, oraz ich ksztatt nie
przypominat krzywych Gaussa. Okna spektralne pryzmatu sg znacznie szersze niz ma to
miejsce w przypadku siatek dyfrakcyjnych. Dla czytelniejszego pordwnania szerokosci i
ksztattu krzywych, wybrane wyniki pomiardw siatek, filtra LVF oraz pryzmatu zestawiono na

rys. 6.38.
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Rys. 6.38. Porownanie wybranych serii pomiarowych transmitancji réznych elementow filtrujgcych swiatto

Z kolei w tabeli 6.3 przedstawiono zestawienie wyznaczonej mediany FWHM dla
badanych elementéw oraz takie parametry statystyczne, jak odchylenie standardowe

i dywergencja.

Tabela 6.3. Zestawienie parametrow zwigzanych z szerokoscig okna transmisyjnego zmierzonego dla badanych
elementéw filtrujacych

Element filtrujacy Mediana FWHM [nm] | Odchylenie stand. [nm] Dywergencja [nm]
Pryzmat 55,69 43,62 130,55
Siatka dyfr. 300 r/mm 13,54 10,78 8,18
Siatka dyfr. 600 r/mm 8,59 8,43 5,86

LVF 4,24 2,36 10,85

Jednak zdecydowanie najlepszg sprawnoscig radiometryczng oraz najmniejszg

szerokoscig kanatu spektralnego wykazat sie filtr LVF na podtozu szklanym. Czyni to filtry LVF
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zdecydowanie najbardziej doktadnymi elementami do budowy instrumentow
spektrofotometrycznych ze wszystkich zbadanych komponentéw. Ich wadg jest stosunkowo
waski zakres spektralny, jednakze w wielu aplikacjach moze by¢ to zalety. Zrozumiate staje sie
zatem coraz czestsze stosowanie filtréw interferencyjnych (stanowigcych fundament filtréow
LVF) w kamerach hiperspektralnych.

Optymalne zastosowanie poszczegdlnych elementdéw filtrujgcych zalezy w kluczowej
mierze od aplikacji w jakiej pracowa¢ ma instrument HSI. W przypadku aplikacji mobilnych
realizowanych na takich platformach, jak UAV (Unmanned Aerial Vehicle) lub instrumentach
satelitarnych, zdecydowanie warte rozwazenia sg interferencyjne elementy filtrujgce z uwagi
na swojg kompaktowg forme. Platformy mobilne, jesli posiadajg odpowiednig przestrzen
tadunkowa dla instrumentu HSI, mogg réwniez pomiesci¢ spektrofotometry oparte na
elementach dyfrakcyjnych. Do zastosowan przemystowych
i laboratoryjnych, optymalne zastosowanie znajdg elementy dyfrakcyjne oraz dyspersyjne
z uwagi na swoj wysoki poziom transmitancji. W zaleznosci od wymaganej rozdzielczosci
spektralnej, zastosowa¢ mozna takze w niektdrych przypadkach elementy interferencyjne
o konstrukgji filtréw LVF.

Niewatpliwie, jedynym elementem filtrujgcym, jaki mozna zastosowa¢ w recznie
operowanych kamerach hiperspektralnych, sg filtry interferencyjne o konstrukcji mozaikowej,
nanoszone na sensor CMOS. Elementy optyczne, ktérych wyniki badan opisano w niniejszym
rozdziale wykorzystano do budowy stanowisk przemystowych do pozyskiwania danych

hiperspektralnych, analizowanych w dalszej czesci niniejszej rozprawy (rozdziaty 7-9).
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7. BADANIA METOD PRZETWARZANIA i ANALIZY DANYCH HSI

Niniejszy rozdziat opisuje podejscie, metodologie, przebieg oraz wyniki badan metod
przetwarzania i analizy danych hiperspektralnych. Zestawiono w nim réwniez informacje
na temat opracowanych algorytméw testowych, wykorzystanych zestawéw danych
do eksperymentdw oraz opis stanowisk badawczych opracowanych w ramach niniejszej pracy

doktorskiej.

7.1. DEFINICJA PROBLEMU BADAWCZEGO
Kluczowym elementem wartosci wchodzgacym w sktad wspétczesnych systemdw opartych
na danych optycznych jest czes¢ dotyczgca przetwarzania i analizy danych. Jest to szczegdlnie
istotny element systemow opartych na danych hiperspektralnych i multispektralnych,
poniewaz surowych danych tego typu nie da sie w catosci obja¢ ludzkimi zmystami. Bez
elementédw przetwarzania i akwizycji nie jest mozliwe petne zrozumienie wartosci
pozyskanych w procesie akwizycji danych hiper i multispektralnych. Dlatego tez, podczas
syntezy ukfadéw przetwarzania i analizy, kluczowe jest doktadne zrozumienie dwdch
fundamentalnych cech tego rodzaju systeméw, tj. wydajnosci oraz skutecznosci
poszczegdlnych ogniw taficucha przetwarzania danych. Poniewaz oczekiwana jest zawsze
maksymalizacja tych dwdch parametréw, wraz ze wzrostem ztozonosci danych wsadowych,
problem jest coraz bardziej skomplikowany. Z tego powodu, zdecydowano sie opracowaé
odpowiednig systematyke taiAcucha przetwarzania danych oraz zbadaé wydajnosci
i skutecznosci ogniw faricucha odpowiedzialnych za przetwarzanie i analize [97].
Zaréwno wydajnos, jak i skutecznos$é ogniw tancucha danych zalezg od kilku czynnikéw,
ktdre mozna sklasyfikowa¢ w czterech obszarach:
a) Dane wsadowe:
e ztozono$é (rozdzielczos¢ przestrzenna, rozdzielczo$é spektralna),
e jakos¢ (poziom szumu, martwych pikseli i kanatéw).
b) Infrastruktura obliczeniowa:
e rodzaj (np. serwer, komputer PC, mikrokomputer),
e klasa (poziom zaawansowania i wydajnosci obliczeniowej).
c) Oprogramowanie:
e architektura,
e rodzaj zastosowanych algorytmow,

e rodzaj i ztozonos¢ zastosowanych modeli Al.
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d) Cel przetwarzania lub analizy:
e jak ztozony problem nalezy rozwigzaé,
e jaki rodzaj danych nalezy wytworzy¢ (raport analityczny, wspotrzedne anomalii
lub przetworzony plik rastrowy - wsadowy).

Aktualny rozwdéj instrumentow HSI jak i coraz wyzsze wymagania stawiane produktom
przetwarzania i analizy takich danych powoduja, ze wydajnos¢ przetwarzania jest ciggtym
wyzwaniem. Wyscig w kierunku coraz bardziej wydajnej infrastruktury obliczeniowej
przyspiesza, jednak w potgczeniu z coraz wyzszym poziomem algorytmiki i rozwigzan sztucznej
inteligencji, mozna ulec wrazeniu, ze wydajnosc i skuteczno$¢ metod przetwarzania i analizy
danych HSI jest stafa. Jest to oczywiscie btedne wrazenie, dlatego tez narzedzia i badania
pozwalajgce na weryfikacje tych parametréw odznaczajg sie wysoka wartoscig poznawcza.
Na potrzeby niniejszej rozprawy zbadano metody, algorytmy i modele najczesciej stosowane
i istotne ze wzgledu na opisang w rozdziale 8 niniejszej rozprawy doktorskiej, nowg metodyke

syntezy uktaddéw hiper i multispektralnych.

7.2. DANE WYKORZYSTANE W BADANIACH
W eksperymentach wykorzystano dane zaréwno pochodzace z zewnetrznych baz
skanéw hiperspektralnych (zestawy 1-4 wg. tabeli 7.1), jak réwniez pozyskane
na stanowiskach akwizycji hiperspektralnej opracowanych w ramach prac nad doktoratem
(zestawy 5-7 wg Tabeli 7.1). Dane dobrano pod katem jak najwiekszego zrdéznicowania
i pokrycia wszystkich kluczowych dziedzin rozpatrywanych w rozprawie doktorskiej. Sg to
zaréwno zestawy danych pochodzgce z instrumentdw teledetekcyjnych (obrazowania lotnicze
i satelitarne), wykorzystywanych w rolnictwie, gérnictwie i lesnictwie, jak réwniez dane
pozyskane w laboratorium, ktére reprezentujg aplikacje przemystowe i gérnicze.
Przedstawione zestawy danych wybrano w taki sposdb, aby miaty zaréwno rdine
rozmiary przestrzenne jak i spektralne, aby stanowity uniwersalny pakiet do eksperymentéw.
Cho¢ w wiekszosci przypadkdw nie sg one wizualnie spektakularne z powodu matej liczby
pikseli to pod katem spektralnym odznaczajg sie wysoka rozdzielczoscig, ktéra pozwala
na identyfikacje sygnatur spektralnych. W szczegdblnosci, zestawy danych pozyskane
na przygotowanych w ramach doktoratu stanowiskach, w niektérych przypadkach majg nawet
dziesieciokrotnie wiekszg liczbe kanatéw spektralnych niz rynkowe instrumenty HSI. Z kolei
wykorzystanie w eksperymentach zestawdw pochodzgcych z publicznych baz danych, pozwala

na porownanie wynikdéw eksperymentéw z rezultatami badan wtasnych.
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Tabela 7.1. Zestawy danych hiperspektralnych

Nr Nazwa Instrum | Liczba Liczba | Obraz (1 kanat) Prawda podstawowa Liczba
zest | zbioru ent kanatow pikseli klas
awu (gtebia prawdy
bitowa) podst.
1 | Indian AVIRIS | 200 145 x e . n 16
Pines (16 145 e, T
[101] bitow) - - N
r
2 Salinas AVIRIS | 204 512 x 16
[101] (16 217
bitow)
3 Salinas-A | AVIRIS | 204 86 x 6
[101] (16 83
bitow)
4 Pavia ROSIS 102 1096 9
Centre (16 x 715
[101] bitow)
5 Scanway: | HSS- 448 320 x 8
Platki-01 | 400 (16 1024
[102] bitow)
6 Scanway: | HSS- 448 995 x 8
Skaly-04 400 (16 1024
[102] bitow)
7 Scanway: | HSS- 2036 140 x 11
Platki-70 | 1020 (16 112
[102] bitow)
Instrumenty lotnicze i satelitarne AVIRIS (Airborne Visible/InfraRed Imaging

Spectrometer) i ROSIS (Reflective Optics System Imaging Spectrometer) nalezg
do najbardziej doktadnych i odznaczajgcych sie najwyzszg rozdzielczo$cig instrumentow
hiperspektralnych na swiecie. Oba instrumenty znajdujg szerokie zastosowanie w teledetekgji,
analizie $rodowiskowej, mapowaniu powierzchni Ziemi, a takze w mapowaniu zmian w

ekosystemach. W tabeli 7.2 zestawiono kluczowe parametry obu instrumentow [103] [104].
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Tabela 7.2 Parametry instrumentéw AVIRIS i ROSIS [103, 104]

Instrument | Operator Zakres spektralny | Liczba pasm Rozdzielczo$¢ Platforma

[nm] spektralna [nm]
AVIRIS [5] NASA/JPL 400-2500 224 10 Samoloty (ER-2, Twin Otter)
ROSIS [6] ESA 430-850 115 4 Samoloty (DO-228)

Dane opisane w tabeli 7.1, pochodzace z instrumentéw AVIRIS i ROSIS:

Zestaw Indian Pines (w tabeli 7.1 oznaczony numerem 1), to jeden z najbardziej
znanych i szeroko wykorzystywanych zbiorow danych teledetekcyjnych
i hiperspektralnych. Zebrany przez instrument AVIRIS w czasie kampanii lotniczej
w 1992 roku wcigz stanowi dane referencyjne dla wielu algorytmdéw do danych HSI.
Scena obejmuje obszar okoto 20 hektaréw terendéw rolnych i lesnych stanu Indiana
(USA) w zakresie dtugosci fali od 0,4 do 2,5 mikrometra. Ze wzgledu na okna
absorpcyjne pary wodnej w atmosferze, niektére pasma zostaty usuniete z zestawu.
Na obrazie widocznych jest szesnascie klas obiektéw, zestawionych w dostepng mape
prawdy podstawowej (ground truth). Klasy te obejmujg poszczegdlne rodzaje upraw
rolnych, trawy, lasy oraz obiekty pochodzenia ludzkiego [101].

Zestawy Salinas i Salinas-A (w tabeli 7.1 oznaczone numerem 2 i 3) to réwniez zestawy
z instrumentu AVIRIS i réwniez czesto wykorzystywane w wizji maszynowej dane
hiperspektralne. Obrazy te zostaty pozyskane w 1998 z platformy lotniczej i obejmuja
rejony rolnicze doliny Salinas Valley w Kaliforni (USA). Zestaw Salinas-A jest
podzbiorem zestawu Salinas. Pod katem spektralnym zestaw ten jest podobny
do zbioru Indian Pines. Mapa z klasami prawdy podstawowej obejmuje 16 klas dla
zbioru wiekszego i 6 klas dla mniejszego. Klasy okreslajg roztozenie takich roslin
uprawnych jak satata, lucerna, warzywa lisciaste a takze roslin wieloletnich [101].
Zestaw Pavia Centre (w tabeli 7.1 oznaczony numerem 4) to zestaw danych pozyskany
przez instrument ROSIS w trakcie kampanii lotnej w 2001 roku nad miastem Pavia
w potnocnych Wtoszech. Charakteryzuje sie wysoka rozdzielczo$cig przestrzenng, lecz
nizszg rozdzielczoscia spektralng, w poréwnaniu do wczesniej wymienionych
zestawOw. Zestaw ten wyposazony jest w prawde podstawowg z dziewiecioma
klasami, okreslajgcymi takie rodzaje obiektéw jak woda, drzewa, dachéwki, tgki, gleba,

asfalt i inne spotykane w miescie materiaty [101].
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Pozostate dane pozyskane zostaty z wykorzystaniem stanowisk do skanowania
hiperspektralnego, opracowanych w laboratorium firmy Scanway w ramach prac nad niniejsza
rozprawg doktorskg o roboczych nazwach HSS-1020 i HSS400. Oba stanowiska oparte sg na
metodzie skanowania whisk-broom, czyli punktowym przemiataniu powierzchni
z wykorzystaniem spektrometru. W stanowisku zastosowano komercyjny spektrometr,
stanowigcy serce obu uktadéw pomiarowych. Spektrometr mierzy jednoczesnie 2136 kanatow
spektralnych w zakresie od 350 nm do 1000 nm z rozdzielczoscig subnanometryczng. Model
zastosowanego spektrometru to OceanFX-VIS-NIR marki OceanOptics (opisany w rozdziale
6.3). Skaner HSS-1020 (rys. 7.1) sktada sie ze spektrometru z przytgczem swiattowodowym,
przed ktérym umieszczony jest uktad obiektywowy, zbierajgcy swiatto z niewielkiego (ok. 0,1
mm $rednicy) obszaru na powierzchni stotu roboczego. Spektrometr, dzieki wewnetrznemu
uktadowi sktadajgcemu sie z siatki dyfrakcyjnej i linijkowego sensora CMOS dokonuje akwizycji
polowej obiektu z czestotliwoscig do 4 tysiecy probek na sekunde. Dane w postaci cyfrowej,

poprzez interfejs USB pobierane sg na komputer klasy PC.

oswietlacz

gtowica Swiattowodowy

skanuiaca

badana prébka

stolik
zmotoryzowany

Rys. 7.1. Widok opracowanego skanera typu HSS-1020

Skaner HSS-1020 wykorzystuje translacyjny uktad kinematyczny XY do przesuwania optyki
zbierajacej $wiatto z poszczegdlnych punktédw pola roboczego. Swiatto biate, dostarczane jest
w obszar roboczy poprzez gietki Swiattowdd. Prébka skanowana jest punkt po punkcie,
a zarzadzanie systemem odbywa sie z wykorzystaniem komputera PC. Efektem pracy uktadu
jest plik w formacie .dat i .hdr, ktéry przechowuje odpowiednio dane pomiarowe oraz
informacje o dtugosciach fali dla kazdego kanatu spektralnego. Parametry skanera HSS-1020
przedstawione zostaty w tabeli 7.3, z kolei widok skanera podczas akwizycji zestawu danych
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Ptatki-70 (dane firmy Scanway) wykorzystywanych na potrzeby niniejszej pracy przedstawiono

narys. 7.2.

Tabela 7.3. Parametry opracowanego skanera HSS-1020

Parametr Wartos¢
Zakres pomiarowy 350 + 1000 nm
Rozdzielczos¢ spektralna 0,3nm
Rozmiar pola roboczego 200x100 mm?
Rozdzielczo$é przestrzenna 0,1x0,1 mm?
Czas skanowania petnego pola ok. 27 min

e

Rys. 7.2. Skaner HSS-1020 w trakcie akwizycji zestawu danych o nazwie Platki-70

Oprdécz skanera HSS-1020 w trakcie realizacji prac zwigzanych z rozprawga doktorska,
opracowano rowniez stanowisko o roboczej nazwie HSS-400. W odrdznieniu od swojego
poprzednika, stanowisko to wyrdzniato sie wiekszg rozdzielczoscig przestrzenng oraz
szybkoscig dziatania. Zastosowanie gtowicy galwanometrycznej z dwuosiowym ukfadem luster
o szerokim spektrum odbijania swiatta, umozliwito btyskawiczne skanowanie powierzchni
roboczej. Uktad kolimacyjno-skupiajagcy oparty na kolimatorze reflektorowym oraz
soczewkach skupiajgcych, umozliwiat zbieranie z niewielkiego (ok. 0,05 mm srednicy) obszaru

na powierzchni docelowego pola roboczego.
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Rys. 7.3. Skaner HSS-400. Elementy: 1 - spektrometr, 2 - sterownik napeddw, 3 - oswietlacz halogenowy
(od spodu gtowicy), 4 - dwuosiowa gtowica galwanometyczna, 5 - kolimator i soczewka skupiajaca,
6 -wizualizacja pola roboczego

Mozliwa jest modyfikacja ukfadu skupiajgcego na taki, ktory pracuje w trybie
nieskoriczonej odlegtosci, co pozwala na wykorzystanie skanera do akwizycji obrazéw nie tylko
w laboratorium, ale takze z duzej odlegtosci, np. panoram miasta dla zadan teledetekcyjnych.
Efektem pracy uktadu jest plik w formacie .dat i .hdr, ktéry przechowuje odpowiednio dane
pomiarowe oraz informacje o dtugosciach fali dla kazdego kanatu spektralnego. Wynikowe

parametry skanera HSS-400 przedstawione zostaty w tabeli 7.4.

Tabela 7.4. Parametry Skanera HSS-400.

Parametr Wartos¢
Zakres pomiarowy 350+ 1000 nm
Rozdzielczo$é spektralna 0,3 nm (0,2 nm w wersji ulepszonej)
Rozmiar pola roboczego 150 x 150 mm?
Rozdzielczo$¢ przestrzenna 0,05 x 0,05 mm?
Czas skanowania petnego pola ok. 24 min

Dane opisane w tabeli 7.1, pochodzace z instrumentéw autorskich to:

e Platki-01 (w tabeli 7.1 oznaczony numerem 5), to zestaw danych o wzglednie wysokiej
rozdzielczos$ci przestrzennej i umiarkowanej rozdzielczosci spektralnej. Zestaw to
grupa materiatéw spozywczych (ptatki owsiane) w otoczeniu ciat obcych z linii
produkcyjnej (drewno, guma, tworzywo sztuczne, tektura itp.). Zestaw pozyskany w
ramach kampanii testowej dla branzy przemystowej — spoiywczej. Prawda

podstawowa zawiera 8 klas.
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e Skaly-04 (w tabeli 7.1 oznaczony numerem 6), to zestaw o parametrach podobnych do
zestawu Platki-01. Jest to zestaw o najwiekszej, sposrdod wszystkich badanych zbiorow
liczbie pikseli, przedstawiajacy zestaw 8 réznych rodzajéw skat, opisanych w ramach
prawdy podstawowej. Zestaw pozyskany dla przedstawiciela branzy gérniczej.
Przetwarzany i analizowany zestaw pozbawiony jest tta i elementéw opisowych (kartki
Z numerami).

e Platki-70 (w tabeli 7.1 oznaczony numerem 7), to z kolei zestaw o najwiekszej liczbie
kanatéw spektralnych. Zestaw posiada prawde podstawowg opisujgcg 11 rdéznych
rodzajow obiektéw, miedzy innymi: cukier, ptatki owsiane, ptatki kukurydziane,
tworzywa sztuczne, worek foliowy, tektura, drewno, maseczka higieniczna itp.
Pozyskany zostat w celu trenowania modeli obliczeniowych dla detekcji ciat obcych na
przemystowej linii do produkcji spozywczej, podobnie jak zestaw Platki-01.

We wszystkich opisanych zestawach danych, wiedza na temat obiektéw, znajdujgcych sie

w prawdzie podstawowej (np. rodzaj drewna, rodzaj mineratu), zostata pominieta, poniewaz
nie stanowi ona kluczowego elementu opisanego problemu badawczego. Kluczowa wiedza,
wykorzystana w badaniach to obszary graniczne réznych klas i ich liczba. W zwigzku z tym,
w dalszej czesci pracy nie jest rozpatrywany i opisywany rodzaj obiektow wykrytych na

poszczegdlnych obrazach.

7.3. WYNIKI BADANIA WYDAJNOSCI | SKUTECZNOSCI PRZETWARZANIA | ANALIZY DANYCH
HIPERSPEKTRALNYCH
W niniejszym rozdziale zamieszczono wyniki badania wydajnosci i skutecznosci

algorytmow przetwarzania danych z wykorzystaniem zbioréw danych opisanych w tabeli 7.1.

7.3.1. Przyjeta metodologia badawcza

Z uwagi na ztozono$¢ problemu badawczego, a dokfadniej mozliwos¢ realizacji badan
z wykorzystaniem wielu réznych podejs¢, algorytmow i metod, zdecydowano sie na podejscie
eksperymentalne, wykorzystujgce kilka najczesciej stosowanych rozwigzan obliczeniowych.
Wyrézniono dwa kluczowe podejscia do klasyfikacji obiektow na obrazach hiperspektralnych,
ktdre sg szczegdlnie istotne do zbadania w kontekscie dalszych rozdziatdéw niniejszej rozprawy
doktorskiej:

e operacje klasyfikacji na oryginalnych, niezredukowanych wymiarowo danych

wejsciowych,
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e operacje klasyfikacji na danych zredukowanych wymiarowo.
Przetestowano dwie najczesciej spotykane metody klasyfikacji obiektéw, czyli:

e klasyfikacje nienadzorowang z wykorzystaniem klasteryzacji metoda centroidéw
(k-mean) [98],

e klasyfikacje nienadzorowang z wykorzystaniem klasteryzacji metodg GMM (Gaussian
Mixture Model) [98],

e klasyfikacje nadzorowang z wykorzystaniem klasteryzacji random forest (metoda
drzew decyzyjnych) [99].

Jak juz opisano w rozdziale 5, dwie pierwsze metody s3 metodami nauczania
maszynowego nienadzorowanego, czyli takiego, ktére nie jest realizowane ze znang prawdg
podstawowag (ground truth). Prawde podstawowg wykorzystamy w ich przypadku, wytacznie
do porédwnania znalezionych klas z docelowymi. Powodem wyboru tych metod jest chec
przetestowania metod, ktére szukajg wzorcdw w nieznanych danych oraz mozliwos$é
uproszczenia weryfikacji skutecznosci [98].

Trzecia metoda jest metodg nadzorowang, czyli takg, w ktdrej trenowany jest model,
nauczany na spodziewanej prawdzie podstawowej, ktéra stanowi nieodtgczny element tego
typu technik. Wytrenowany model, mozna nastepnie wykorzystywa¢ do szukania
spodziewanych wzorcéw w nowych zestawach danych. Metode te zastosowano
dla poréwnania skutecznosci z metodami nienadzorowanymi [99].

Eksperymenty, wykorzystujgce redukcje wymiarowosci, przeprowadzono
z wykorzystaniem dwéch takich metod jak [100]:

e metoda gtdwnych sktadowych - PCA (Principle Component Analysis)

e metoda liniowej analizy dyskryminacyjnej - LDA (Linear Discriminant Analysis)

7.3.2. Macierz eksperymentéw

Badania polegaty na wykonaniu dziewieciu eksperymentéw (kazdy z pomiarem dwéch
parametrow kluczowych: wydajnosci i skutecznosci). Macierz eksperymentéw przedstawiono
w tabeli 7.5. W przypadku eksperymentéw, w ktérych analizowano wydajnos¢ oraz
skutecznos¢ przetwarzania danych bez redukcji wymiarowej (eksperymenty 1, 4 oraz 7)

przyjeto schemat postepowania przedstawiony na rys. 7.4.
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Tabela 7.5. Macierz eksperymentéw do badania wydajnosci i skutecznosci przetwarzania

i analizy na podstawie wybranych w pracy zestawdw danych HSI

Klasyfikacja z wykorzystaniem klastrowania k-means

Klasyfikacja na danych Klasyfikacja na danych z redukcjg wymiarowa
bez redukcji wymiarowe;j

Eksperyment 1 Eksperyment 2 Eksperyment 3

Klasyfikacja z wykorzystaniem klastrowania Gaussian Mixture Model

Klasyfikacja na danych Klasyfikacja na danych z redukcjg wymiarowa
bez redukcji wymiarowe;j

Eksperyment 4 Eksperyment 5 Eksperyment 6

Klasyfikacja z wykorzystaniem klastrowania Random Forest

Klasyfikacja na danych Klasyfikacja na danych z redukcjg wymiarowg
bez redukcji wymiarowe;j

Eksperyment 7 Eksperyment 8 Eksperyment 9

Pomiar czasu t0 t1 t2 Informacje o wydajnosci
Klasyfikacja z wykorzystaniem
klasteryzacji - metoda
centroidow (ang. k-means)

lub

Algo Informacje o
Klasyfikacja z wykorzystaniem goryt skutecznosci
e Odszumianie Normalizacja klasteryzacji - metoda GMM I‘(Nla;y v;:::{:: Izg ruwnujqcz
(Gaussian Mixture Model) 'YP! sy
z prawdg

lub
Klasyfikacja z wykorzystaniem
klasteryzacji - metoda
Random Forest Zestaw klastrow/klas
prawdy podstawowej

Surowy hypercube
(RAW)

Rys. 7.4. Schemat eksperymentu opartego na przebiegu klasyfikacji na danych bez redukcji wymiarowej

W przypadku eksperymentéow, w ktorych zastosowano redukcje wymiarowa
(eksperymenty 2, 3, 5, 6, 8 oraz 9), przyjeto natomiast schemat postepowania przedstawiony

narys. 7.5.

Pomiar czasu t0 t1 2 Informacje o wydajnosci
Klasyfikacja z wykorzystaniem
klasteryzacji - metoda
centroidéw (ang. k-means)

lub

Algorytm Informacje o
Klasy wykryte poréwnujacy skutecznosci
w hypercube klasy wykryte

z prawdg

Klasyfikacja z wykorzystaniem
Surowy hypercube klasteryzacji - metoda GMM

(RAW) (Gaussian Mixture Model)
Redukcja 1ub ~
u

wymiaréw
LDA Klasyfikacja z wykorzystaniem

e klasteryzacji - meteda ~ —|

Random Forest Zestaw klastrow/klas

prawdy podstawowej

-

Rys. 7.5. Schemat eksperymentu opartego na przebiegu klasyfikacji na danych z redukcja wymiarowa
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7.3.3. Stanowisko badawcze

W celu optymalizacji czasu potrzebnego na procesy treningowe, w stanowisku
do przeprowadzania badan eksperymentalnych zastosowano komponenty wysokiej
wydajnosci. CPU to wielordzeniowy procesor o wysokiej czestotliwosci zegara Intel rtxCore i7-
13700K (3.4 GHz), ktory oferuje wysokg wydajnosc jednowgtkowa oraz wielowatkowsa, istotng
podczas kompilacji kodu oraz wykonywania zadan, ktdre nie moga by¢ tatwo zréwnoleglone.

Karta graficzna (GPU) jest najwazniejszym elementem maszyny do trenowania modeli Al,
zwlaszcza w zadaniach wymagajgcych intensywnego przetwarzania réwnolegtego.
Na potrzeby rozprawy doktorskiej zastosowano karte z duzg iloscig rdzeni CUDA i duzg
pamiecia VRAM, model NVIDIA RTX 4090. Duza ilo$¢ pamieci VRAM (16 GB) pozwala
na trenowanie wiekszych modeli bez ograniczern pamieciowych. Pamie¢ RAM jest istotna
dla jednoczesnego przetwarzania duzych zestawdw danych oraz modeli. W szczegdélnosci
zastosowano 64 GB RAM, z opcjg rozbudowy do 128 GB, w wersji o wysokiej przepustowosci
i taktowaniu na poziomie 6400 MHz. Z uwagi na wymog duzej szybkosci dostepu do danych
oraz pojemnos¢, aby pomiescic¢ duze zestawy danych treningowych oraz modele, zastosowano
dysk SSD NVMe o pojemnosci 2 TB dla systemu operacyjnego i oprogramowania. Dyski SSD
NVMe zapewniajg szybki dostep do danych, co skraca czas tadowania danych do pamieci.

Wybrany zasilacz (PSU) zapewnia wystarczajgcg moc dla wszystkich komponentéw,
zwtaszcza dla energochtonnych kart graficznych, wedtug oblicze powinien zapewnia¢ moc
na poziomie co najmniej 1000 W. Kluczowe dla utrzymania optymalnej wydajnosci i stabilnosci
systemu, szczegdlnie podczas intensywnych obliczen jest chiodzenie catej jednostki
obliczeniowej. Dlatego uzyto wysokiej jakosci system chtodzenia cieczg dla CPU, a takze
dodatkowe wentylatory w obudowie, aby zapewnié¢ odpowiedni przeptyw powietrza.
Oprogramowanie stanowi system operacyjny Windows 10/11 oraz popularne biblioteki Al i
ML, takie jak PyTorch, SciKit, NumPy i narzedzia do przetwarzania danych hiperspektralnych -
HyPy.

7.3.4. Wyniki eksperymentow

Eksperymenty przeprowadzono zgodnie z macierzg eksperymentdw opisang w tabeli 7.5.
taczna liczba doswiadczen sktadata sie z dziewieciu eksperymentéw w dwdch odmianach na
siedmiu zestawach danych, czyli 126 osobnych przebiegédw eksperymentalnych. Wszystkie
zestawy danych, opisane w tabeli 7.1 zostaty przetworzone i przeanalizowane algorytmami

LDA, PCA, K-means, GMM oraz random forest w réznych zestawieniach. Zgodnie z tabelg 7.5,
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wykonano takze eksperymenty bez redukcji wymiarowej. W niektérych przypadkach, czas
przetwarzania byt znacznie wydtuzony, szczegélnie w przypadkach bez redukcji wymiarowe;j.
Z tego powodu w eksperymencie 4 nie udato sie uzyskac rezultatéw pomiarowych.

Przyktady przetworzonych i przeanalizowanych zestawdw danych, dla réznych kombinacji
algorytmicznych zaprezentowano na rysunkach 7.6 — 7.12. Na rysunkach (a) zamieszczono
widok oryginalnego obrazu (1 kanat), (b) przedstawia rezultat klasyfikacji uzyskany w wyniku
zastosowania wybranego algorytmu, (c) — to widok prawdy podstawowe;j. Z kolei na rysunkach
(d) zamieszczono obraz metryki skutecznosci (loU — Intersection Over Union zwany réwniez
indeksem Jaccarda), ktdra okresla jak wiele korespondujgcych ze sobg zbioréow danych
przecina sie ze sobg. Metryke te otrzymuje sie poprzez poréwnanie podobierstwa miedzy
dwoma zbiorami danych, wyznaczajgc iloraz mocy czesci wspdlnej zbioréw oraz mocy sumy

tych zbioréw [105]:

|ANB]

AB) = 7.1
J(A,B) AGE]’ (7.1)
gdzie:
J —wspodtczynnik Jaccarda (loU),
A, B —zbiory.
a) Obraz oryginalny (1 kanat) b) Rezultat klasyfikacji (NO_DR + KMEANS)
| o Klasy
> 4 mm Kiasa 0
. Klasa 1
mm Klasa 2
Klasa 3
Klasa 4
. Klasa 5
Klasa 6
mm Klasa 7
mm Klasa g
m Klasa 9
mm Klasa 10
Klasa 11
Klasa 12
=" Kiasa 13
Klasa 14
rr ¢ mmm Klasa 15
c) Prawda podstawowa d) Mapa dopasowania; loU(srednie): 23.96 %
Klasy Roznice
. Kiasa 0 . Dopasowane
Klasa 1 mm Niedopasowane
mm Klasa 2 . Tio
Klasa 3
Klasa 4
mm Klasa s
Klasa 6
. Kiasa 7
Il Klasa g
m Klasa 9
mm Klasa 10
Klasa 11
Klasa 12
e Klasa 13
Klasa 14
mm Klasa 15

Klasa 16

Rys. 7.6. Wyniki badania skutecznosci dla eksperymentu 1, przeprowadzonego na zestawie Indian Pines:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze soba
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a) Obraz oryginalny (1 kanat) b) Rezultat klasyfikacji (LDA + KMEANS)

Klasy
. Klasa 0
W Klasa 1

Klasa 2
Klasa 3
. Klasa 4
| Klasa 5
Klasa 6
Klasa 7
Klasa 8
c) Prawda podstawowa d) Mapa dopasowania; loU($rednie): 87.83 %
Klasy Roznice
= Klasa 0 Em Dopasowane
mm Klasa 1 mm Niedopasowane
Klasa 2 . Tio
Klasa 3

mm Klasa 4

W Klasa s

Klasa 6
Klasa 7
Klasa 8

Rys. 7.7. Wyniki badania skutecznosci dla eksperymentu 3 przeprowadzonego na zestawie Platki-01:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze sobg

a) Obraz oryginalny (1 kanal) b) Rezultat klasyfikacji (NO_DR + GMM)

c) Prawda podstawowa d) Mapa dopasowania; loU(srednie): 60.18 %

a

Rys. 7.8. Wyniki badania skutecznosci dla eksperymentu 4, przeprowadzonego na zestawie Salinas A:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze soba

Klasy

Klasa 0
Klasa 1
Klasa 2
Klasa 3
Klasa 4
Klasa 5
Klasa &

Klasy Roznice
m Klasa 0 Bl Dopasowane
Klasa 1 B Niedopasowane
mm Klasa 2 mm Tho
mm Klasa 3
Klasa 4
o Klasa s

Klasa 6
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a) Obraz oryginalny (1 kanaf)

b) Rezultat klasyfikacji (PCA + GMM)
ke G

R « ’ Kasy
. Klasa 0
mm Klasal
S = Klasa 2
% = Klasa 3
- Klasa 4
wm Klasa s
Klasa 6
Klasa 7
Klasa 8
Klasa 9

Lot S

c) Prawda podstawowa d) Mapa dopasowania; loU(srednie): 69.36 %

Réznice
. Dopasowane
= Niedopasowane
- Tio

Klasy
. Klasa 0
. Klasa 1
- Klasa 2
- Klasa 3
. Klasa 4
W Klasa 5

Klasa 6
Klasa 7
Klasa 8
Klasa 9

Rys. 7.9. Wyniki badania skutecznosci dla eksperymentu 5, przeprowadzonego na zestawie Pavia Centre:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze sobg

a) Obraz oryginalny (1 kanat) b) Rezultat klasyfikacji (LDA + GMM)

Klasa 1
Klasa 2
Klasa 3
Klasa 4
Klasa 5
Klasa 6
Klasa 7
Klasa 8
Klasa 9
Klasa 10
Klasa 11

c) Prawda podstawowa

Klasy
B Klasa 0
Klasa 1
Klasa 2
Klasa 3

d) Mapa dopasowania; loU(srednie): 100.00 %

Roznice
BB Dopasowane
E Niedopasowane
mm Tio

Klasa 4
Klasa 5
Klasa 6
Klasa 7
Klasa 8
Klasa 9
Klasa 10
Klasa 11

Rys. 7.10. Wyniki badania skutecznosci dla eksperymentu 6, przeprowadzonego na zestawie Pavia Centre:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze soba
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a) Obraz oryginalny (1 kanat) b) Rezultat klasyfikacji (PCA + RANDOM_FOREST)

Klasy
. Klasa 0
Klasa 1
mm Klasa 2
Klasa 3
Klasa 4
. Klasa 5
Klasa 6
= Klasa 7
. Klasa 8
mm Klasa 9
= Klasa 10
Klasa 11
Klasa 12
m Klasa 13
Klasa 14
= Klasa 15
Klasa 16
c) Prawda podstawowa d) Mapa dopasowania; loU(srednie): 99.68 %
Klasy Roznice
mmm Klasa 0 mm Dopasowane
Klasa 1 mm Niedopasowane
mm Klasa 2 = Tl
Klasa 3
Klasa 4
. Klasas
Klasa 6
. Klasa7
. Klasa 8
e Klasa 9
mm Klasa 10
Klasa 11
Klasa 12
wm Klasa 13
Klasa 14
mm Klasa 15
Klasa 16

Rys. 7.8. Wyniki badania skutecznosci dla eksperymentu 8, przeprowadzonego na zestawie Salinas:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze sobg

a) Obraz oryginalny (1 kanat) b) Rezultat klasyfikacji (LDA + RANDOM_FOREST)

Klasy
B Klasa 0
mm Klasa 1

Klasa 2
Klasa 3
. Klasa 4
mm Klasa 5
Klasa 6
Klasa 7
Klasa 8
¢) Prawda podstawowa d) Mapa dopasowania; loU(Srednie): 99.77 %
Klasy Réznice
= Klasa 0 Emm Dopasowane
m Klasa 1 mm Niedopasowane
Klasa 2 - Tio
Klasa 3

. Klasa 4

m Klasa s

Klasa 6
Klasa 7
Klasa 8

Rys. 7.11. Wyniki badania skutecznosci dla eksperymentu 9, przeprowadzonego na zestawie Skaly_04:
a) obraz oryginalny (1 kanat), b) rezultat klasyfikacji, c) wykorzystana do poréwnania prawda podstawowa,
d) metryka skutecznosci loU (Intersection over Union) okreslajgca jak wiele korespondujgcych ze sobg zbiorow
danych przecina sie ze soba
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Zestawienie wynikdw badania

skutecznosci  we  wszystkich

eksperymentach

przedstawiono w tabelach 7.6, 7.7, 7.8 oraz na wykresach przedstawionych na rysunkach 7.13,

7.14 i 7.15. Dla lepszej wizualizacji réznic w uzyskanych wartosciach loU w tabelach

wprowadzono kolory: pomaranczowy dla loU 0 + 33,3 %, z6tty dla loU 33,4 +~ 66,6 % oraz

zielony dla loU 66,7 +~ 100 %.

Tabela 7.6. Zestawienie wynikow eksperymentéw badania skutecznosci w klasyfikacji z wykorzystaniem

klastrowania k-means

Klasyfikacja na danych bez
redukcji wymiarowej

Klasyfikacja na danych z redukcja wymiarowg

PCA

LDA

Eksperyment — parametr /
Zestaw

01 - Indian Pines

02 - Pavia Centre

03 - Salinas

Eksperyment 1
Skutecznos¢ loU [%]

Eksperyment 2
Skutecznos¢ loU [%]

04 - Salinas-A

05 - Platki-01

06 - Skaly-04

07 - Platki-70

Mediana

Odchylenie standardowe

Eksperyment 3
Skutecznosc¢ loU [%]

w
o

Skutecznos¢ loU [%]
wv
o

=N
o o

oL- \n

B Klasyfikacja na danych bez redukcji wymiarowej - Eksperyment 1

diah pine 02-93 avid Cent®

B Redukcja wymiarowa PCA - Eksperyment 2

M Redukcja wymiarowa LDA - Eksperyment 3

05- 9\3‘\0

60
: II II II I
0 II II I

03- Sa\\“a ob Sa\\\'\a

o - p\a\.\(\

Rys. 7.13. Wykres stupkowy z zestawieniem wynikéw eksperymentéw skutecznosci w klasyfikacji
z wykorzystaniem klastrowania k-means
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Tabela 7.7. Zestawienie wynikdw eksperymentéw badania skutecznos$ci w klasyfikacji z wykorzystaniem

klastrowania Gaussian Mixture Model

Klasyfikacja na danych bez

Klasyfikacja na danych bez redukcji wymiarowej

redukcji wymiarowej

PCA

LDA

Eksperyment — parametr
/ Zestaw

01 - Indian Pines

02 - Pavia Centre

Eksperyment 4
Skutecznos¢ loU [%]

Eksperyment 5
Skutecznos¢ loU [%]

Eksperyment 6
— Skutecznos¢ loU [%]

03 - Salinas 41,06 45,08
04 - Salinas-A 53,75
05 - Platki-01 42,32 38,96
06 - Skaly-04 - 60,53
07 - Platki-70 37,86
Mediana 41,69 53,75
Odchylenie standardowe 10,33 13,27 11,85
100
& 80
pol
2 60
3
§ 40
g
0
oL \ndid® pines e i centr® 3 - calinas oh 5a\\“a 05- p\a’t\ﬂ 06- ska\‘l ol - p\at\d

M Klasyfikacja na danych bez redukcji wymiarowej - Eksperyment 4
M Redukcja wymiarowa PCA - Eksperyment 5
M Redukcja wymiarowa LDA - Eksperyment 6

Rys. 7.14. Wykres stupkowy z zestawieniem wynikdéw eksperymentdéw skutecznosci w klasyfikacji z
wykorzystaniem klastrowania Gaussian Mixture Model

Tabela 7.8. Zestawienie wynikéw eksperymentdw badania skutecznosci w klasyfikacji z wykorzystaniem
klastrowania Random Forest

Klasyfikacja na danych bez Klasyfikacja na danych bez redukcji wymiarowej

- Indian Pines

02 - Pavia Centre

03 - Salinas

04 - Salinas-A

05 - Platki-01

06 - Skaly-04

07 - Platki-70

Mediana

Odchylenie standardowe

redukcji wymiarowej PCA LDA
Eksperyment — parametr Eksperyment 7 Eksperyment 8 Eksperyment 9
/ Zestaw Skutecznos¢ loU [%] Skutecznosé loU [%] Skutecznosé loU [%]

0,94
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100,0
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Skutecznosé loU [%]
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96
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s
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M Klasyfikacja na danych bez redukcji wymiarowej - Eksperyment 7
B Redukcja wymiarowa PCA - Eksperyment 8
Redukcja wymiarowa LDA - Eksperyment 9

Rys. 7.15. Wykres stupkowy z zestawieniem wynikéw eksperymentdéw skutecznosci w klasyfikacji z
wykorzystaniem klastrowania Random Forest. Zakres powyzej 95% skutecznosci

Okreslenie wydajnosci bezwzglednej réznych algorytmdéw mozliwe jest tylko wytgcznie
wtedy, gdy uwzgledniona zostanie ztozono$¢ danych. W przypadku analizowanych zestawodw
oznacza to uwzglednienie liczby pikseli na kanat oraz liczby kanatéw spektralnych. Wszystkie
zestawy posiadajg takg samg gtebie bitowa, czyli 16 bitéw na kanat. lloczyn liczby pikseli na
kanat oraz liczby kanatéw pozwolit na okreslenie catkowitej liczby pikseli, a tym samym
poziomu ztozonos$ci zestawu danych. Wartosci te obliczone dla kazdego zestawu
przedstawiono w tabeli 7.9.

W zwigzku z réznicami ztozonosci danych pomiedzy zestawami, kazdy wynik pomiaru
czasu zostat przetworzony zgodnie z zaleznoscia:

ta=2, (7.2)
gdzie:
tq — czas dostosowany, czyli czas przetwarzania na pojedynczy piksel z sumy catkowitej,
t, —zmierzony czas przetwarzania,

Z — poziom ztozonosci danych czyli catkowita suma pikseli wedtug tabeli 7.9.

Tabela 7.9. Zestawienie parametréw ztozonosci danych dla poszczegdlnych zestawdw

Zestaw danych Gtebia Liczba Liczba Suma pikseli Catkowita
bitowa kanatow pikseli na kanat suma pikseli (2)
na kanat

01 - Indian Pines 16 bitow 200 145 x 145 21 025 4 205 000
02 - Pavia Centre 16 bitow 102 1096 x 715 783 640 79931 280
03 - Salinas 16 bitow 204 512 x 217 111 104 22 665 216
04 - Salinas-A 16 bitow 204 86 x 83 7 138 1456 152
05 - Platki-01 16 bitow 448 320x 1024 327 680 146 800 640
06 - Skaly-04 16 bitow 448 995 x 1024 1018 880 456 458 240
07 - Platki-70 16 bitow 2036 140 x 112 15 680 31924 480
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Wyznaczenie czasu wydajnosci t, polegato na jego okresleniu bezposrednio w skrypcie
wykonujgcym eksperymenty na podstawie odniesienia do Zrédta czasu, jakim jest zegar
systemowy. W zastosowanym systemie obliczeniowym zegar dziata z rozdzielczoscig jednego
taktu procesora, tj. w przypadku komponentu CPU, wykorzystywanego do badan, dziatajgcego
z taktowaniem bazowym 3,4 GHz, rozdzielczo$¢ pomiaru wynosi nie wiecej niz 0,29 ns. Biorgc
pod uwage te rozdzielczos¢ pomiaru oraz uwzgledniajgc ograniczenia systemu operacyjnego,
przyjeto doktadnos$¢ pomiaru na poziomie 1 ns. W odniesieniu do skali wynikéw zmierzonych
w eksperymentach wydajnosci, doktadnos$é ta jest pomijalna.

Zestawienie wynikéw wszystkich eksperymentéw badania wydajnosci przedstawiono
w tabelach 7.10, 7.11, 7.12. W tabelach podano wartosci czasdw po dostosowaniu (tzw. czas
dostosowany - t; — zaleznos$¢ (7.2)) do ztozonosci danych, gdzie: t,.,; — czas trwania operacji
redukgji, t;4 —czas trwania operacji klastrowania, ty; — czas sumaryczny. W przypadku metody

random forest dodany zostat takze parametr t;; — czas trenowania modelu.

Tabela 7.10. Zestawienie wynikéw eksperymentédw badania wydajnosci algorytmdéw przetwarzania danych
dostosowanych do ztozonosci danych w klasyfikacji z wykorzystaniem klastrowania k-means

Klasyfikacja na danych bez Klasyfikacja na danych z redukcjg wymiarowa
redukcji wymiarowej PCA LDA

Eksperyment — Eksperyment 1 Eksperyment 2 Eksperyment 3
wielkos$¢ mierzona czas dostosowany [ms] czas dostosowany [ms] czas dostosowany [ms]
Parametr / Zestaw tra tka tsa tra tka | tsa | tra tka | tsa
01 - Indian Pines nd 82,76 82,76 5,47 37,10 | 42,57 68,25 | 43,76 | 112,01
02 - Pavia Centre nd 29,68 29,68 3,64 584 | 9,48 79,16 591 | 85,06
03 - Salinas nd 41,69 41,69 4,19 547 | 9,66 61,99 4,46 | 66,45
04 - Salinas-A nd 28,84 28,84 8,24 6,18 | 14,42 121,55 549 | 127,05
05 - Platki-01 nd 25,96 25,96 2,32 1,31 | 3,62 70,35 1,19 | 71,55
06 - Skaly-04 nd 25,32 25,32 2,42 1,08 | 3,50 81,63 1,09 | 82,72
07 - Platki-70 nd 31,14 31,14 6,70 0,85 | 7,55 117,56 0,44 | 118,00
Mediana nd 29,68 29,68 4,19 547 | 9,48 79,16 4,46 | 85,06
Odchylenie stand. nd 18,98 18,98 2,05 11,98 | 12,58 22,24 | 14,38 | 22,23
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Tabela 7.11. Zestawienie eksperymentéw badania wydajnosci algorytmoéw przetwarzania danych
dostosowanych do ztozonosci danych w klasyfikacji z wykorzystaniem klastrowania Gaussian Mixture Model

Klasyfikacja na danych bez Klasyfikacja na danych z redukcja wymiarowa
redukcji wymiarowej BCA DA

Eksperyment — Eksperyment 4 Eksperyment 5 Eksperyment 6
wielkos$¢ mierzona czas dostosowany [ms] czas dostosowany [ms] czas dostosowany [ms]
Parametr / Zestaw tra tka tsa tra tka tsa tra | tka | tsa
01 - Indian Pines nd 7 165,99 7 165,99 6,66 | 1312,49 | 1319,14 81,33 | 373,60 | 454,93
02 - Pavia Centre nd 7 081,53 7081,53 3,55 670,85 674,40 80,04 | 364,00 | 444,04
03 - Salinas nd 15 299,21 15 299,21 5,16 953,00 958,16 65,78 | 461,19 | 526,97
04 - Salinas-A nd 1750,50 1750,50 8,93 74,17 83,10 96,83 31,59 | 128,42
05 - Platki-01 nd 9891,74 9891,74 2,45 128,64 131,09 70,54 24,11 94,65
06 - Skaly-04 nd - - 2,23 68,71 70,94 89,89 40,62 | 130,51
07 - Platki-70 nd 2 886,44 2 886,44 6,64 95,57 102,21 | 118,00 11,06 | 129,05
Mediana nd 7123,76 7123,76 5,16 128,64 131,09 | 81,33 | 40,62 | 130,51
Odchylenie stand. nd 4 888,58 4 888,58 2,30 471,75 472,06 16,31 | 186,85 | 177,52

Tabela 7.12. Zestawienie wynikéw eksperymentédw badania wydajnosci algorytméw przetwarzania danych
dostosowanych do ztozonosci danych w klasyfikacji z wykorzystaniem klastrowania Random Forest

Klasyfikacja na danych bez Klasyfikacja na danych z redukcjg wymiarowa
redukcji wymiarowej PCA LDA

i/kise[l:)lfor;/ément - Eksperyment 7 Eksperyment 8 Eksperyment 9
mierzona czas dostosowany [ms] czas dostosowany [ms] czas dostosowany [ms]
Parametr / tra tka tsa tta tra tka tsa tea tra tka tsa tea
Zestaw
01 - Indian Pines nd 6,18 6,18 | 387,63 | 4,99 | 4,28 | 9,27 | 23639 | 73,96 | 4,52 | 78,48 | 285,85
02 - Pavia Centre nd 13,62 | 13,62 | 80548 | 3,64 | 11,55 | 15,19 | 540,18 | 80,73 | 14,27 | 95,01 | 643,59
03 - Salinas nd 6,13 6,13 | 312,95 | 4,28 | 3,88 | 8,16 | 26530 | 63,40 | 4,37 | 67,77 | 318,20
04 - Salinas-A nd 2,75 2,75 | 223,19 | 893 | 2,06 | 10,99 | 72,11 | 116,75 | 2,06 | 118,81 | 65,24
05 - Platki-01 nd 3,80 3,80 | 460,99 | 2,57 | 1,21 | 3,79 | 8608 | 70,63 | 1,56 | 72,19 | 78,29
06 - Skaly-04 nd 3,80 3,80 | 302,48 | 2,21 | 1,22 | 3,42 | 4155| 8850 | 1,35 | 89,85 | 31,37
07 - Platki-70 nd 1,94 1,94 | 168,59 | 7,99 | 0,28 | 8,27 | 14,50 | 117,84 | 0,22 | 118,06 | 11,62
Mediana nd 3,80 3,80 | 312,95 | 4,28 | 2,06 | 827 | 808 | 80,73 | 2,06 | 89,85 | 78,29
Odchylenie stand. nd 3,64 3,64 195,46 | 2,40 3,55 3,77 | 172,05 20,25 4,42 19,17 | 212,08

Na podstawie analizy danych zamieszczonych w tabelach 7.10, 7.11 oraz 7.12 mozna
zauwazyé, ze brak zastosowania redukcji wymiarowosci znacznie wydtuza czas dalszego
przetwarzania obrazéw hiperspektralnych, co oczywiscie zwigzane jest z wiekszg iloscig
danych do przetworzenia. W najwiekszym stopniu wydtuzeniu ulegajg algorytmy
wykorzystujgce klastrowanie GMM, a w najmniejszym stopniu ma to wptyw na metode

random forest. Warto réwniez zauwazy¢, ze metoda PCA pozwala w kazdym przypadku na
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skrécenie sumarycznego czasu przetwarzania obrazu, czyli czas poswiecony na redukcje
wymiarowa, a nastepnie klasyfikacje (ktora jest uproszczona dzieki tej redukcji) sumarycznie
jest krotszy niz czas klasyfikacji bez wczesniejszej redukcji. Metoda LDA nie gwarantuje takiego
wyniku, zatem mozna stwierdzié, ze metoda PCA jest bardziej wydajna i jesli w danej aplikacji,
gtobwnym kryterium jest czas operacji, moze okaza¢ sie ona bardziej preferowana. Warto
rowniez zauwazyé, ze metoda GMM wykazuje w kazdym przypadku najdtuisze czasy

klastrowania, ktore mogg osiggaé dtugos¢ nawet kilkunastu sekund.

7.3.5. Poréwnanie skutecznosci réznych metod redukcji wymiarowej

W celu zrozumienia réznic pomiedzy skutecznoscig réznych zestawéw algorytmoéw
w poszczegblnych eksperymentach, na rys. 7.16 — 7.22 zestawiono mapy obrazujace
skutecznos¢ réinych algorytméw dla wszystkich badanych zestawdw danych.

Zestawienie przedstawione na rysunku 7.16 dotyczy zestawu zbioru danych Indian Pines.

a) Indian_pines_corrected (no_DR kmeans) b) Indian_pines_corrected (no_DR gmm)  c) Indian_pines_corrected (no_DR random_forest)

Mapa dopasowania; loU(srednie): 23.96 % Mapa dopasowania; loU(srednie): 23.32 % Mapa dopasowania; loU(srednie): 99.16 %

d) Indian_pines_corrected (PCA kmeans) e) Indian_pines_corrected (PCA gmm) f) Indian_pines_corrected (PCA random_forest)

Mapa dopasowania; loU($rednie): 25.39 % Mapa dopasowania; loU($rednie): 31.00 % Mapa dopasowania; loU(srednie): 99.24 %

g) Indian_pines_corrected (LDA kmeans)  h) Indian_pines_corrected (LDA gmm) i) Indian_pines_corrected (LDA random_forest)

Mapa dopasowania; loU(srednie): 71.96 % Mapa dopasowania; loU(srednie): 69.15 % Mapa dopasowania; loU(srednie): 99.04 %

Rbznice
== Dopasowane
R Nedopasowane
- Tho

Rys. 7.16. Mapy obrazujgce wyniki eksperymentow badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Indian Pines: a) Eksperyment 1, b) Eksperyment 4,
c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,
i) Eksperyment 9
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Na podstawie rysunku 7.16 mozna wywnioskowaé, ze najwiekszg skutecznos¢ osiggaty
metody nauczania nadzorowanego, czyli random forest, osiggajac ponad 90%. Przy
wykorzystaniu klastrowania nienadzorowanego (z grupy k-means, GMM) najskuteczniejsze
wyniki uzyskiwane sg przy uzyciu metody redukcji wymiarowosci LDA, osiggajac ok. 70%
skutecznosci. Z kolei najmniej skuteczna metoda, wykorzystywata metode GMM na
niezredukowanym wymiarowo zbiorze danych i pozwalata na uzyskanie skutecznosci na
poziomie 23%.

Na rysunku 7.17 pokazano poréwnanie wynikdw eksperymentéw skutecznosci
dla réznych zestawdw algorytmoéw w przypadku obrazu hiperspektralnego Pavia Centre.

a) Pavia (no_DR kmeans) b) Pavia (no_DR gmm) c) Pavia (no_DR random_forest)

Mapa dopasowania; loU(Srednie): 67.92 % Mapa dopasowania; loU($rednie): 62.30 % Mapa dopasowania; loU(srednie): 97.16 %

d) Pavia (PCA kmeans) e) Pavia (PCA gmm) f) Pavia (PCA random_forest)
Mapa dopasowania; loU(Srednie): 67.89 % Mapa dopasowania; loU($rednie): 69.36 % Mapa dopasowania; loU(srednie): 97.06 %

g) Pavia (LDA kmeans) h) Pavia (LDA gmm) i) Pavia (LDA random_forest)
Mapa dopasowania; loU(srednie): 89.86 % Mapa dopasowania; loU(srednie): 85.76 % Mapa dopasowania; loU(srednie): 95.53 %

Roznice
. Dopasowane
mmm Niedopasowane
- Tlo
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Rys. 7.17. Mapy obrazujgce wyniki eksperymentéw badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Pavia Centre. a) Eksperyment 1, b) Eksperyment 4,
c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,
i) Eksperyment 9

Zgodnie z rysunkiem 7.17, wyniki odznaczajgce sie najwiekszg skutecznoscia, uzyskano
przy zastosowaniu metody nadzorowanego nauczania — random forest, osiggajgc ponad 95%
skutecznosci. Najlepsze wyniki dla metod wykorzystujgcych klastrowanie nienadzorowane (z
grupy k-means, GMM) uzyskiwane sg przy uzyciu metody redukcji wymiarowosci LDA,
osiggajac ok. 87% skutecznosci. Najmniej skuteczna metoda, wykorzystywata algorytm GMM
na niezredukowanym wymiarowo zbiorze danych i pozwalata na uzyskanie skutecznosci na
poziomie 62%.

Rysunek 7.18 przedstawia zestawienie map skutecznosci klasyfikacji réznych algorytmodw

wykonanych na zestawie danych Salinas.

a) Salinas_corrected (no_DR kmeans) b) Salinas_corrected (no_DR gmm) c) Salinas_corrected (no_DR random_forest)
Mapa dopasowania; loU(Srednie): 51.03 % Mapa dopasowania; loU(Srednie): 41.06 % Mapa dopasowania; loU(srednie): 99.54 %

d) Salinas_corrected (PCA kmeans) e) Salinas_corrected (PCA gmm) f) Salinas_corrected (PCA random_forest)
Mapa dopasowania; loU(Srednie): 38.32 % Mapa dopasowania; loU(Srednie): 45.08 % Mapa dopasowania; loU(Srednie): 99.68 %

g) Salinas_corrected (LDA kmeans) h) Salinas_corrected (LDA gmm) i) Salinas_corrected (LDA random_forest)
Mapa dopasowania; loU(srednie): 74.31 % Mapa dopasowania; loU($rednie): 74.09 % Mapa dopasowania; loU(Srednie): 99.22 %

Roznice
mm Dopasowane
mmm Niedopasowane
. Tl
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Rys. 7.18. Mapy obrazujace wyniki eksperymentéw badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Salinas: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 7,
d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, i) Eksperyment 9

Na podstawie rysunku 7.18 mozna stwierdzi¢, ze najwiekszg skuteczno$é, ponownie
uzyskano przy zastosowaniu metody nadzorowanego nauczania — random forest, osiggajgc
ponad 99% skutecznosci. Przy wykorzystaniu klastrowania nienadzorowanego (z grupy k-
means, GMM), najlepsze wyniki uzyskiwane sg przy uzyciu metody redukcji wymiarowosci
LDA, osiagajac ok. 74% skutecznosci. Wyniki odznaczajace sie najmniejszg skutecznnosciag
uzyskano dla algorytméw PCA i k-means, co pozwolito na uzyskanie skutecznosci na poziomie
38%.

Na rysunku 7.19 przedstawiono pordwnanie wynikow skutecznosci w postaci map,

réoznych zestawodw algorytmoéw zastosowanych na obrazach hiperspektralnych SalinasA.

a) SalinasA_corrected (no_DR kmeans) b) SalinasA_corrected (no_DR gmm) c) SalinasA_corrected (no_DR random_forest)
Mapa dopasowania; loU(Srednie): 61.18 % Mapa dopasowania; loU(srednie): 60.18 % Mapa dopasowania; loU(Srednie): 99.76 %

d) SalinasA_corrected (PCA kmeans) e) SalinasA_corrected (PCA gmm) ) SalinasA_corrected (PCA random_forest)
Mapa dopasowania; loU(srednie): 52.64 % Mapa dopasowania; loU(srednie): 53.75 % Mapa dopasowania; loU(srednie): 99.81 %

g) SalinasA_corrected (LDA kmeans) h) SalinasA_corrected (LDA gmm) i) SalinasA_corrected (LDA random_forest)
Mapa dopasowania; loU(srednie): 98.95 % Mapa dopasowania; loU(srednie): 99.20 % Mapa dopasowania; loU(srednie): 99.76 %

R6znice
W Dopasowane
= Niedopasowane
= To

Rys. 7.19. Mapy obrazujgce wyniki eksperymentow badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Salinas_A: a) Eksperyment 1, b) Eksperyment 4,
c) Eksperyment 7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3,

h) Eksperyment 6, i) Eksperyment 9
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Zgodnie z rysunkiem 7.19, wyniki swiadczgce o najwiekszej skutecznosci, uzyskano przy
wykorzystaniu metody nadzorowanego nauczania — random forest, osiggajac ponad 99,7%
skutecznosci. Wsrod metod wykorzystujgcych klastrowanie nienadzorowane (z grupy k-
means, GMM) najlepsze wyniki uzyskiwane sg przy uzyciu metody redukcji wymiarowosci LDA,
osiggajac ok. 99% skutecznosci. Najmniej skuteczna metoda, wykorzystywata algorytmy PCA i
k-means i pozwalata na uzyskanie skutecznosci na poziomie 52%.

Rysunek 7.20 przedstawia zestawienie map skutecznosci klasyfikacji dla zestawu danych

Platki-01.

a) platkiol (no_DR kmeans) b) platki0l (no_DR gmm) c) platkiOl (no_DR random_forest)

Mapa dopasowania; loU(Srednie): 42.67 % Mapa dopasowania; loU(srednie): 42.32 % Mapa dopasowania; loU(srednie): 99.89 %

d) platkiOl (PCA kmeans) e) platkiOl (PCA gmm) f) platkiOl (PCA random_forest)

Mapa dopasowania; loU(Srednie): 45.92 % Mapa dopasowania; loU($rednie): 38.96 % Mapa dopasowania; loU(Srednie): 99.76 %

g) platkiOl (LDA kmeans) h) platkiol (LDA gmm) i) platkiol (LDA random_forest)
Mapa dopasowania; loU(srednie): 87.83 % Mapa dopasowania; loU(srednie): 74.07 % Mapa dopasowania; loU(srednie): 99.75 %

Roznice
I Dopasowane
mmm Niedopasowane
- Tio

Rys. 7.20. Mapy obrazujgce wyniki eksperymentow badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Platki-01. a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment
7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,

i) Eksperyment 9

Wyniki odznaczajagce sie najwiekszg skutecznoscig, uzyskano stosujgc metode
nadzorowanego nauczania — random forest, osiggajac ponad 99,7% skutecznosci. Z kolei,
klastrowanie nienadzorowane (z grupy k-means, GMM) pozwolito na uzyskanie najlepszych
wynikéw przy uzyciu metody redukcji wymiarowosci LDA, osiggajac ok. 80% skutecznosci.
Najmniej skuteczna metoda, wykorzystywata algorytm GMM na niezredukowanym
wymiarowo zbiorze danych i pozwalata na uzyskanie skutecznosci na poziomie 42%.

Na rysunku 7.21 zamieszczono poréwnanie wynikdw uzyskiwanych skutecznosci dla

obrazu hiperspektralnego Skaly-04 z zastosowaniem réznych zestawéw algorytmow.
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a) skaly4 (no_DR kmeans) b) skaly4 (no_DR gmm) c) skaly4 (no_DR random_forest)

Mapa dopasowania; loU(srednie): 32.11 % Mapa dopasowania; loU(srednie):  nd % Mapa dopasowania; loU(srednie): 99.92 %

d) skaly4 (PCA kmeans) e) skaly4 (PCA gmm) f) skaly4 (PCA random_forest)

Mapa dopasowania; loU(Srednie): 35.68 % Mapa dopasowania; loU(srednie): 60.53 % Mapa dopasowania; loU(Srednie): 99.86 %

g) skaly4 (LDA kmeans) h) skaly4 (LDA gmm) i) skaly4 (LDA random_forest)

Mapa dopasowania; loU(srednie): 95.93 % Mapa dopasowania; loU($rednie): 93.15 % Mapa dopasowania; loU(Srednie): 99.77 %

Roéznice
Wl Dopasowane
mm Niedopasowane
. Tio

Rys. 7.21. Mapy obrazujgce wyniki eksperymentow badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Skaly-04: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment 7,
d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6, i) Eksperyment 9

Na podstawie rys. 7.21 mozna stwierdzié, ze réwniez w tym przypadku, metody
odznaczajgce sie najwiekszg skutecznoscig wykorzystywaty nadzorowane nauczanie typu
random forest, osiggajagc ponad 99,7% skutecznosci. Ws$réd metod klastrowania
nienadzorowanego (z grupy k-means, GMM), najskuteczniejsze okazaty sie metody
wykorzystujgce metody redukcji wymiarowosci LDA, osiggajac ok. 94% skutecznosci. Najmniej

skuteczna metoda, wykorzystywata algorytm k-means na niezredukowanym wymiarowo
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zbiorze danych i pozwalata na uzyskanie skutecznosci na poziomie 32%. W jednym przypadku
obliczenia nie daty rezultatu, prawdopodobnie z powodu zbyt duzej ilosci kombinacji
obliczanych przez algorytm GMM na niezredukowanym zbiorze danych.

W postaci rysunku 7.22 przedstawiono wyniki skutecznosci klasyfikacji roznych zestawéw

algorytmow zastosowanych na zestawie danych Platki-70.

a) platki70_crop (no_DR kmeans) b) platki70_crop (no_DR gmm) ¢) platki70_crop (no_DR random_forest)
Mapa dopasowania; loU(Srednie): 37.37 %  Mapa dopasowania; loU(srednie): 37.86 % Mapa dopasowania; loU(srednie): 99.48 %

d) platki70_crop (PCA kmeans) e) platki70_crop (PCA gmm) f) platki70_crop (PCA random_forest)
Mapa dopasowania; loU(Srednie): 43.06 %  Mapa dopasowania; loU(srednie): 66.05 % Mapa dopasowania; loU(srednie): 99.77 %

g) platki70_crop (LDA kmeans) h) platki70_crop (LDA gmm) i) platki70_crop (LDA random_forest)
Mapa dopasowania; loU(Srednie): 99.69 %  Mapa dopasowania; loU(srednie): 100.00 %  Mapa dopasowania; loU(Srednie): 99.86 %

Réznice
W Dopasowane
mmm Niedopasowane
. Tho

Rys. 7.22. Mapy obrazujgce wyniki eksperymentow badania skutecznosci dopasowania do prawdy
podstawowej, przeprowadzonych na zestawie Platki_70: a) Eksperyment 1, b) Eksperyment 4, c) Eksperyment
7, d) Eksperyment 2, e) Eksperyment 5, f) Eksperyment 8, g) Eksperyment 3, h) Eksperyment 6,

i) Eksperyment 9

Zgodnie z rysunkiem 7.22 najlepsze, wykorzystujgce klastrowanie nienadzorowane (z
grupy k-means, GMM) wyniki uzyskiwane sg przy uzyciu metody redukcji wymiarowosci LDA,
osiggajac ok. 99,8% skutecznosci. W przypadku algorytméw LDA z GMM, uzyskano wynik
100% skutecznosci (jedyny raz w catym zestawie eksperymentéw). Wyniki odznaczajace sie
najwiekszg spdjng skutecznoscig, wykorzystywaty metode nadzorowanego nauczania —

random forest, osiggajagc ponad 99,7% skutecznosci. Najmniej skuteczna metoda,
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wykorzystywata algorytm k-means na niezredukowanym wymiarowo zbiorze danych
i pozwalata na uzyskanie skutecznosci na poziomie 37%.

Na rysunku 7.23 przedstawiono zestawienie median skutecznosci wyznaczonych na bazie
rezultatow przetwarzania wszystkich zestawéw danych w podziale na poszczegdlne metody

przetwarzania.

50
40
30
20
10

0

Klasyfikacja na danych bez redukcji wymiarowej Redukcja wymiarowa PCA Redukcja wymiarowa LDA

B Mediana wynikéw k-means B Mediana wynikéw GMM Mediana wynikéw RF

Rys. 7.23. Wykres stupkowy zestawienia median skutecznosci réznych metod klastrowania

Zgodnie z wykresem na rys. 7.23, mozna zauwazy¢é wyraznie, ze metoda redukcji
wymiarowej LDA pozwala na uzyskanie najwyzszej skutecznosci przetwarzania, niezaleznie
od zastosowanej metody klastrowania. Zdecydowanie najmniejszg skutecznoscig odznacza sie
klasyfikacja bez redukcji wymiarowej, w ktorej wytgcznie nadzorowana metoda Random
Forest pozwala na uzyskanie skutecznos$ci powyzej 90%. Jednoczesnie zauwazyé mozna,
ze metoda klastrowania Random Forest wykazuje wysokg skuteczno$é niezaleznie od metody

redukcji wymiarowej lub jej braku.

7.3.6. Poréwnanie wydajnosci roznych metod redukcji wymiarowej
W celu okreslenia wydajnosci wzglednej, tj. zysku czasowego zastosowania redukcji

wymiarowosci przed realizacjg klasteryzacji, zastosowany zostat wskaznik opisany zaleznoscia:

We, = =2 — 1[%], (7.3)

t tsbrw

gdzie:

W, — wskaznik zysku czasowego,

tsrw - Sumaryczny czas klasyfikacji danego zestawu danych z zastosowaniem redukcji
wymiarowosci,

tsprw - SUMaryczny czas klasyfikacji danego zestawu danych bez redukcji wymiarowosci.
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Jesli wskaznik Wy, jest dodatni, oznacza to, ze zastosowanie metody redukcji

wymiarowosci wydtuzyto proces przetwarzania danych. Jesli natomiast jest ujemny, to proces

ten

skrdcito. Obliczone wskazniki zysku czasowego dla poszczegdlnych metod przetwarzania

przedstawiono w tabeli 7.13.

Tabela 7.13. Zestawienie wynikéw eksperymentéw badania wydajnosci

Zastosowana metoda k-means GMM Random-Forest
klastrowania

Zastosowana metoda PCA LDA PCA LDA PCA LDA
redukcji wymiarowosci

Parametr / Zestaw WG: [%] WGt [%] WG: [%] WG: [%] WGr [%] WGt[%]
01 - Indian Pines -48,56 35,34 -81,59 -93,65 50,00 1169,23
02 - Pavia Centre -68,04 186,64 90,48 93,73 11,48 597,34
03 - Salinas -76,83 59,37 93,74 -96,56 33,09 1005,04
04 - Salinas-A -50,00 340,48 -95,25 92,66 300,00 4225,00
05 - Platki-01 -86,04 175,60 -98,67 -99,04 -0,36 1799,10
06 - Skaly-04 -86,18 226,72 . . -9,92 2265,34
07 - Platki-70 -75,75 278,97 -96,46 -95,53 325,81 5979,03
Mediana -75,75 186,64 -94,50 -94,63 33,09 1799,10
Odchylenie standardowe 14,45 102,13 5,56 2,15 135,19 1821,36

Zestawienie median dostosowanych czasdw przetwarzania, czyli uwzgledniajacych

ztozonos¢ danych, przedstawiono na rysunku 7.24. W przypadku eksperymentu 4 wynikowy

czas dostosowany przetwarzania byt znacznie diuzszy niz w pozostatych eksperymentach,

w ktérych wartosci median zawsze wynosity ponizej 140 ms.

czas dostosowany [ms]

160
M Czas redukcji wymiarowej (dostosowany) - trd
140 M Czas klasyfikacji (dostosowany) - tkd
\

[
N
o

[y
o
o

80
60
40

0 - — I

Eksperyment 1 Eksperyment 2 Eksperyment 3 Eksperyment 4 Eksperyment 5 Eksperyment 6 Eksperyment 7 Eksperyment 8 Eksperyment 9

powyzej 7000 ms

- bez redukcji -PCA - LDA - bez redukcji -PCA - LDA - bez redukcji - PCA - LDA
wym. wym. wym.
L JL J L J
v v v
k-means GMM RF

Rys. 7.24. Wykres stupkowy zestawienia median dostosowanych czaséw przetwarzania réznych metod

klastrowania
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Podsumowujgc wnioski uzyskane na podstawie wykonanych wszystkich eksperymentéow

(1-9), mozna stwierdzic, ze:

a)

d)

f)

g)

Metody nadzorowane klasyfikacji stanowig znacznie skuteczniejszg grupe metod
klasteryzacji czy tez klasyfikacji danych hiperspektralnych. Kazdy zestaw danych,
przeanalizowany metoda random forest odznaczat sie wysokim poziomem
skutecznosci, zawsze powyzej 95%, mediana 99,75 (tabela 7.8).

Dla znacznej czesci zestawow, metoda redukcji wymiarowosci LDA okazata sie
skuteczniejsza niz metoda PCA. Wsrdod metod nienadzorowanych, najlepsze wyniki
uzyskiwano w potaczeniu z metoda klasteryzacji k-means.

W przypadku kazdej metody nienadzorowanej (k-means i GMM) redukcja
wymiarowosci znaczaco poprawia skutecznos¢ zestawu algorytmiki. Jest to widoczne
szczegblnie w przypadku zastosowania metody LDA, ktdéra odznacza sie wysoka
zdolnoscia do rozdzielania rodzajéw klas.

Pod katem wydajnosciowym, w przypadku czesci badanych zestawéw metod
otrzymano skrdécenie sumarycznego czasu przetwarzania i klasyfikacji poprzez
zastosowanie redukcji wymiarowosci, a w czesci wydtuzenie tego czasu (tabela 7.13).
Redukujgc wymiarowos¢, dowolng metodg, szczegdlnie mozliwe jest skrocenie czasu
klasteryzacji metoda GMM. Czas przetwarzania i analizy ulega szczegdélnemu
wzglednemu wydtuzeniu w przypadku metod klasyfikacji nadzorowanej (random
forest).

Wydajnos¢ metod nienadzorowanych (k-means i GMM) istotnie zmniejsza sie
w przypadku zastosowania redukcji wymiarowosci LDA w stosunku do metody PCA,
natomiast skutecznos¢ metody LDA jest znacznie wyzsza.

Zastosowanie metody klasteryzacji GMM w przypadku braku redukcji wymiarowosci
znacznie wydtuza czas realizacji przetwarzania i analizy. Osiggane czasy tych operacji,
niejednokrotnie przekraczaty jedng minute, a w jednym przypadku nie pozwolity
na uzyskanie rezultatu. Takie zestawienie jest catkowicie nieefektywne
w zastosowaniach zaréwno badawczych, jak i komercyjnych.

Metody nadzorowane tj. random forest istotnie zmniejszajg czas trenowania modelu

w przypadku zredukowanego wymiarowo zestawu danych.

141



7.4. WNIOSKI

Opisane w niniejszym rozdziale wyniki badania metod przetwarzania i analizy danych
hiperspektralnych umozliwity szersze spojrzenie na elementy tanncucha danych znajdujace sie
po procesie akwizycji obrazu. Niewatpliwie to wiasnie te elementy stanowig obecnie istotne
wyzwanie dla szerszego zastosowania instrumentow HSI. Szeroki zakres przeprowadzonych
badan pozwolit na okreslenie zestawéw metod odznaczajgcych sie najlepsza skutecznoscia,
wydajnoscig lub pofaczeniem tych dwdch kluczowych parametrow. Wyznacza to istotne ramy
dla kierunku dalszych badan i rozwoju zaréwno metod przetwarzania, analizy, jak i akwizycji i
konstrukcji instrumentdéw HSI.

Eksperymenty przeprowadzone w ramach badan pozwolity na wyciggniecie kluczowego
whniosku, ktéry wptywa istotnie na kolejne rozdziaty niniejszej rozprawy doktorskiej. Metody
redukcji wymiarowosci istotnie i pozytywnie wptywajg w przypadku wielu zestawdédw metod
przetwarzania i analityki na wydajnos¢ i skutecznos¢. Na szczegdlng uwage zastuguje metoda
LDA, ktéra oparta jest na wykluczaniu pasm instrumentu hiperspektralnego, ktére nie wnosza
istotnych (pod katem klasyfikacji) informacji, a w niektérych przypadkach wrecz utrudniaja
i obnizajg skutecznos¢ wyznaczania klas. Poza tym, jak wykazaty rezultaty wykonanych prac
badawczych, na niemal kazdym zestawie testowanych danych, metoda LDA poprawia
skutecznos¢ detekcji klas, jednak czesto odbywa sie to kosztem wydtuzenia czasu
przetwarzania. Warte rozwazenia i idealne z punktu widzenia optymalizacji instrumentdw i
faiicucha danych HSI jest opracowanie i zaimplementowanie fizycznej reprezentacji operacji
LDA, czyli precyzyjnie dobranych pod aplikacje filtréw spektralnych, aby poziom

skomplikowania danych ograniczy¢ wytgcznie do tych najbardziej pozgdanych.
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8. SYNTEZA UPROSZCZONYCH UKLADOW OBRAZOWANIA SPEKTRALNEGO

W niniejszym rozdziale znajduje sie opis wykonanych przez autora prac badawczych
dotyczacych syntezy uproszczonych ukfadéw obrazowania spektralnego. W rozdziale
zamieszczono réwniez dowdd i wnioski na temat prawdziwosci postawionej hipotezy

badawczej niniejszej rozprawy doktorskie;j.

8.1. MOTYWACIJA DO REALIZACJI UPROSZCZONYCH UKLADOW OBRAZOWANIA
SPEKTRALNEGO

Zgodnie z hipotezg niniejszej rozprawy doktorskiej (rozdz. 1.2) oraz wnioskami ptyngcymi
z rozdziatu 7 zatozono, ze istnieje mozliwo$¢ takiego uproszczenia uktadow obrazowania
spektralnego, ktéra pozwoli na poprawng analize uzyskanych obrazéw w danym
zastosowaniu. Uproszczony uktad obrazowania oznacza instrument umozliwiajacy
wykorzystanie kilku wybranych okien spektralnych w odrdéznieniu do kilkuset w przypadku
zobrazowan HSI. Udowodnienie mozliwosci implementacji takiego uproszczenia oznacza
znaczng optymalizacje kosztéw i poziomu skomplikowania dedykowanych uktadéw
obrazowania spektralnego. Taki ukfad cechowatby sie kilkoma kluczowymi zaletami
w stosunku do uktadéw HSI, to jest:

e mniejsza liczba kanatéw spektralnych, co oznacza mniejszg liczbe danych do akwizycji
i przetwarzania,

e mniejszy stopien skomplikowania uktadu akwizycji sygnatu optycznego, w ktdrym
potencjalnie mozna unikng¢ stosowania siatek dyfrakcyjnych, pryzmatow, filtrow LVF
i matrycowych filtréw Fabry-Perot,

e potencjalnie wieksza odpornosé na drgania, zmiany temperatury, szoki mechaniczne i
przecigzenia ze wzgledu na uproszczony uktad akwizycji,

e znacznie korzystniejsze (mniejsze) wymagania radiometryczne i potencjalnie wyzszy
stosunek sygnatu do szumu ze wzgledu na mozliwe szersze okno spektralne
poszczegdlnych kanatéw,

® znacznie nizsza cena.

Z kolei kluczowe problemy badawcze pozwalajgce na okreslenie mozliwosci opracowania

takich uproszczonych uktadéw obrazowania spektralnego to:

e okreslenie w jaki sposéb rézne algorytmy redukcji wymiarowosci i klasyfikacji definiujg
kluczowe pasma spektralne w obrazach HSI i jak ksztattuje sie dystrybucja wag

poszczegdlnych kanatéw,
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e okreslenie, jak liczba kanatéw spektralnych o najwyzszych wagach wptywa
na mozliwosci klasyfikacji oraz jaka jest najmniejsza liczba kanatdw spektralnych, ktérej
przekroczenie w niewielkim stopniu wptywa na skutecznos¢ klasyfikacji,

e okreslenie, jak szerokos¢ okna kanatu spektralnego wptywa na skutecznos¢ klasyfikacji,
co pozwoli na zmniejszenie wymagan dotyczacych filtrow spektralnych, stosowanych
w docelowych uproszczonych uktadach obrazujacych,

o sformutowanie docelowej metody syntezy uproszczonych uktadéw obrazowania

spektralnego.

W kolejnych rozdziatach przedstawiono propozycje sposobu rozwigzania postawionych

probleméw badawczych.

8.2. OPIS PROPONOWANEJ ALGORYTMIKI | ARCHITEKTURY ROZWIAZANIA

Wymiernym efektem realizacji uproszczonych uktadéw obrazowania spektralnego jest
mozliwos$¢ zmniejszenia poziomu skomplikowania instrumentu dedykowanego dla danej
aplikacji na podstawie analizy obrazéw z instrumentu hiperspektralnego. Proponowana
architektura rozwigzania, porownana do podejscia konwencjonalnego, przedstawiona jest na
rysunku 8.1. W podejsciu konwencjonalnym (8.1a), uktad HSI stuzy jako elastyczne narzedzie,
ktore pozwala na realizacje wielu réznych aplikacji bez koniecznosci modyfikacji uktadu.
Podejscie to najczesciej wymaga stosowania algorytmoéw redukcji wymiarowosci
realizowanych dla kazdego pozyskanego zestawu danych (hypercube’a), ktére pozwalajg na
przeprowadzenie dalszej analizy klasyfikacyjnej. W odrdznieniu od tego podejscia,
proponowane w ramach rozprawy rozwigzanie (8.1b) zaktada wykorzystanie metod redukcji
wymiarowej, a takze niektérych metod klasyfikacyjnych, w celu okreslenia kluczowych pasm.
Moga one nastepnie zosta¢ wykorzystane do zbudowania uproszczonego uktadu obrazowania
spektralnego (rys. 8.1c), ktéry z zatozenia jest uktadem multispektralnym (MSI). Instrument
taki jest dedykowany dla konkretnej aplikacji lub grupy aplikacji, z reguty zajmujacych sie
okreslong grupa obiektow do klasyfikacji. Nie jest to instrument tak wszechstronny
w zastosowaniach jak instrument HSI, jednak charakter wielu wspdtczesnych przedsiewzieé,
wykorzystujgcych obrazowanie spektralne wymaga przede wszystkim skutecznosci
i efektywnosci kosztowej w danym polu aplikacyjnym bardziej niz elastycznosci zastosowan.
W wyniku takiej syntezy, dziatanie uproszczonego uktadu obrazowania spektralnego (8.1c)
odznacza sie znacznie mniej rozbudowang architekturg. W zamierzeniu przetozy sie to na

uproszczony charakter metody akwizycji i elementdéw stuzgcych przetwarzaniu danych.
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a)

Instrument Wejscie Redukcja wvmiaruwa Pétprodukt Klasyﬁkacia Produkt klasyfikacji
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Rys. 8.1. Schematy przedstawiajgce: a) konwencjonalne podejscie realizacji aplikacji z instrumentem HSI,
b) proponowane w rozprawie autorskie podejscie do syntezy uktadéw MSI, a takze c) sposdb dziatania
powstatego uproszczonego uktadu obrazowania spektralnego

W realizacji eksperymentow dla okreslonych w rozdziale 8.1 probleméw badawczych,
przyjeto metody przetwarzania sktadajgce sie z algorytméw opisanych w rozdziale 5, a ktére
zostaty przebadane w rozdziale 7. Ze wzgledu na stosunkowo niskg skutecznos¢ algorytmoéw
klasyfikacyjnych nienadzorowanych, czyli k-means oraz GMM, zdecydowano sie nie sprawdzac
ich skutecznos$ci, uwzgledniajgc wytgcznie metode Random Forest w zadaniach
klasyfikacyjnych, stosowanych w badaniach opisanych w niniejszym rozdziale.

Pomimo zréznicowanego wptywu na skutecznos$¢ klasyfikacji, zdecydowano sie
uwzgledni¢ w badaniach metody redukcji wymiarowosci zaréwno w postaci PCA, jak i LDA.
Taka decyzja zostata podjeta ze wzgledu na rézne podejscie w algorytmach obu metod, co
moze przetozy¢ sie na rézny sposob produkcji docelowych fizycznych filtrow spektralnych.
Nalezy w tym miejscu natomiast wskaza¢, iz metoda LDA wykazuje cechy mozliwe
upraszczajgce procesy technologiczne w wykonywaniu takich filtréw. Wynika to z faktu, ze
docelowo okresla ona jakie pasma nalezy wykluczyé z proceséw przetwarzania, ale nie zaktada

ich mieszania ze sobg. Oznacza to, ze pasma wybrane w metodzie LDA, odpowiadajg
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bezposrednio kanatom spektralnym, jakie sktadaty sie na pierwotny obraz hiperspektralny.
W odrdznieniu od tej metody, metoda PCA moze wskazywac na pewne zestawy kanatow
spektralnych, ktére mogg, lecz nie musza reprezentowac pojedynczych fizycznych kanatéw
spektralnych kamery. Oznacza to, ze realizacja fizycznego filtra spektralnego, bazujgcego
na kanatach wskazanych przez metode PCA, moze by¢ trudniejsza w realizacji.

Oprodcz tego, w ramach realizowanej rozprawy zastosowano dodatkowg metode, ktéra
pozwala na okreslenie kluczowych okien spektralnych, czyli metode klasyfikacyjng Random
Forest. Pomimo, ze w metodzie tej trenowany jest model sktadajacy sie z drzew decyzyjnych,
zauwazono, ze mozliwe jest zbadanie przebiegu jego dziatania w celu okreslenia wag
przypisywanych kazdemu z kanatéw. W tym celu zastosowano trenowanie na catych,
niezredukowanych obrazach HSI, a nastepnie wykorzystano algorytm ekstrakcji wag kanatéw
poprzez wsteczne zliczanie wag przypisywanych w poszczegdlnych drzewach decyzyjnych. W
ten sposdb okreslono wagi kazdego z kanatéw spektralnych. Uznano, iz szczegdlnie istotne dla
badan bedzie poréwnanie zestawdow kanatéw spektralnych z najwiekszymi wagami,
przypisywanymi przez kazdg z metod oraz jak ich wyboér wptywa na ostateczng skutecznosé
dziatan klasyfikacyjnych. We wszystkich eksperymentach, zastosowano zestawy danych

opisane w rozdziale 7.2.

8.3. ANALIZA DYSTRYBUCJI WAG NADAWANYCH KANALOM SPEKTRALNYM

W PROCESACH REDUKCJI WYMIAROWOSCI | KLASYFIKACII

Fundamentem architektury proponowanej syntezy uktadéw MSI jest ekstrakcja pasm
kluczowych. Konieczne zatem jest rozpoznanie, jak rézne algorytmy redukcji wymiarowosci i
klasyfikacji nadajg wagi poszczegdlnym pasmom spektralnym obrazéw HSI, a takze w jaki
sposdb sie one miedzy tymi algorytmami rdéznig. W tym celu zastosowano algorytm

przedstawiony na rysunku 8.2.
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Rys. 8.2. Schemat algorytmu zastosowanego w badaniach dystrybucji wag nadawanych kanatom
spektralnym

Algorytm ten zaktada takie podstawowe dziatania przygotowujgce obraz HSI, jak odszumianie
i normalizacja. Po tych etapach nastepuje przeprowadzenie redukcji wymiarowosci metodami
PCA oraz LDA, a takze zbudowanie modelu klasyfikujgcego metodg Random Forest (RF), ktora
wykorzystuje znang prawde podstawowg dla obrazu. Nastepnie dla wyniku kazdej z metod
zastosowano algorytm ekstrakcji wag nadanych poszczegélnym kanatom spektralnym
z pierwotnego, surowego obrazu HSI. W efekcie uzyskano trzy tabele wartosci wag dla pasm
spektralnych, ktére nastepnie ze sobg poréwnano.

Otrzymane wartosci wag przedstawiono w postaci wykreséw stupkowych, w ktérych na
osi X znajdujg sie kolejne indeksy pasm spektralnych, a na osi Y znormalizowane wagi nadane
kazdemu z pasm. Wagi w postaci znormalizowanej okreslane sg wartosSciami procentowymi,
w taki sposéb, aby wartos¢ 100% oznaczata pasma o najwyzszym znaczeniu w rozrdéznianiu
klas, a wartosci 0% - pasma, ktére nie majg wptywu na rozréznianie klas. Przyktad zestawienia
takich trzech wykresow dla wag wyznaczonych przez algorytmy PCA, LDA i RF

dla jednego z analizowanych obrazéw HSI, przedstawiono na rysunku 8.3.
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Rys. 8.3. Wykresy wag nadanych poszczegdlnym kanatom spektralnym dla obrazu hiperspektralnego
o nazwie Indian Pines (opisany w rozdziale 7.2) przez algorytm: a) PCA, b) LDA, c) RF

Na wykresach przedstawionych na rys. 8.3 zauwazy¢ mozna, ze obraz HSI (w tym
przypadku o nazwie Indian Pines) sktadat sie z 200 pasm, a wagi nadane przez rézne algorytmy
znaczaco sie od siebie réznig. Najwyzsze wagi przypisane zostaty innym kanatom w kazdej
z metod. Lepiej obrazujg to wykresy zredukowane do wytgcznie 20 najistotniejszych pod

katem wagi pasm, przedstawione na rys. 8.4.
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Rys. 8.4. Wykresy 20 kluczowych wag nadanych kanatom spektralnym dla obrazu hiperspektralnego
o nazwie Indian Pines (opisany w rozdziale 7.2) przez algorytm: a) PCA, b) LDA, c) RF
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Na rys. 8.4 zauwazy¢ mozna, ze kluczowe 20 kanatdow analizowane przez kazdy
z omawianych algorytmdéw, niemal catkowicie nie pokrywa sie. W przypadku algorytmu PCA
(rys. 8.4a), najwyzsze wagi znajduja sie w okolicach skrajnych indekséw kanatéw, tj. w centrum
w zakresie od 75 do 95 oraz dla pasm ok. 35 i 60 indeksu. Algorytm LDA (rys. 8.4b) wskazat
kluczowe pasma dla dwdch grup indekséw w zakresie od 20 do 40 oraz od 115 do 120.
W przypadku wag nadanych przez model zbudowany w metodzie Random Forest, kluczowe
wagi sg rozproszone, lecz trzy najwieksze zgrupowania mieszczg sie w zakresach indekséw od
0 do 20, od 105 do 118 oraz od 149 do 170.

Jednym z najprostszych i powszechnie stosowanych narzedzi statystycznych
pozwalajgcych na poréwnanie zbiorow jest wspétczynnik podobienstwa Jaccarda (nazywany
rowniez loU) [105]. W celu sprawdzenia korelacji pomiedzy zbiorami 20 kluczowych pasm,
wybieranych przez PCA, LDA i RF obliczono wspdtczynnik loU dla kazdej pary zbioréw dla
wszystkich zestawdw danych. Tabela 8.1 przedstawia zestawienie tych wynikéw.

Tabela 8.1. Zestawienie loU dla par zbioréw 20 kluczowych pasm, wyznaczonych réznymi algorytmami dla
réznych obrazéw HSI analizowanych w rozdziale 7.

Wspdtczynnik Jaccarda (loU) [%]
Indian ¢ linas | salinas-a | 213 | platki-01 | Skaly-04 | Platki-70
Pines Centre
PCA i LDA 0,0 5,3 2,6 14,3 0,0 0,0 0,0
PCA i RF 2,6 11,1 21,2 8,1 0,0 14,3 0,0
LDA i RF 5,3 8,1 11,1 29,0 11,1 0,0 0,0

Zestawienie przedstawione w tabeli 8.1 pokazuje, ze miedzy dowolnymi zestawami
kluczowych pasm widoczny jest niski wspotczynnik korelacji zbioréw. W zadnym z zestawoéw
zbioréw wspofczynnik Jaccarda nie przekracza 30%, a dla wiekszosci przypadkdéw jest on nizszy
niz 10%. Tak niskie poziomy korelacji oznaczajg, ze kazda z metod, tj. PCA, LDA i RF, definiuje
w zdecydowanie wiekszej mierze inne i unikalne zestawy pasm. Oznacza to réwniez,
ze prawdopodobnie spodziewac sie mozna zrdznicowania w wynikach finalnej skutecznosci

klasyfikacji pomiedzy tymi metodami, co czesciowo zostato udowodnione w rozdziale 7.

8.4. ANALIZA WPLYWU LICZBY WYBRANYCH KLUCZOWYCH PASM SPEKTRALNYCH
NA SKUTECZNOSC KLASYFIKACII

Ze wzgledu na skutecznos$¢ proponowanej metody syntezy uktadéw uproszczonych,
po okresleniu réznic w definiowaniu kluczowych pasm przez réine algorytmy, istotne jest

zrozumienie takze, jak wybrana liczba pasm spektralnych wptywa na skutecznos¢ klasyfikacji.
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W tym celu przeprowadzono serie przetwarzania i pomiaréw, zgodnie z algorytmem

przedstawionym na rys. 8.5.
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(RAW)

Symulator hypercube'a o Zredukowany

T HEmclizaea zdredukowanej liczbie pasm hypercube

Tabele wag Selekcja n-
pasm spektralnych najwazniejszych
PCA, LDA, RF pasm

Wynik eksperymentu -
informacje o skutecznosci
klasyfikacji dla obrazu
zredukowanego do n-pasm.
Okreslenie optymalnego n.

Algorytm
Klasy wykryte poréwnujacy
w hypercube klasy wykryte
z prawda

Klasyfikacja z wykorzystaniem
klasteryzacji - metoda
Random Forest

Zestaw klastrow/klas
prawdy podstawowej

Rys. 8.5. Schemat algorytmu zastosowanego w badaniach wptywu liczby kluczowych pasm spektralnych
na mozliwg do uzyskania skutecznos¢ klasyfikacji.

Zgodnie ze schematem z rys. 8.5, wyrdzni¢ mozna kilka kluczowych elementéw
postepowania. Pierwszg istotng operacjg jest symulacja obrazu multispektralnego na bazie
tabeli kluczowych pasm. Symulacja ta polega na redukcji obrazu hiperspektralnego do postaci
zawierajgcej wytgcznie n kluczowych pasm, okreslonych uprzednio za pomoca algorytmow
PCA, LDA lub RF. Poniewaz, jak wspomniano wczesniej, zauwazono, ze dla pewnej liczby pasm
(miedzy 15 a 20), wraz z dalszym wzrostem ich liczby, skutecznos¢ klasyfikacji nie rosnie
znaczaco, zdecydowano sie przeprowadzi¢ badania dla liczby n pasm redukowanej od n=30
do n=1.

Uzyskany w ten sposéb obraz, bedacy cyfrowg symulacjg obrazu multispektralnego
o zredukowanej liczbie pasm, lecz o identycznej rozdzielczosci spektralnej w stosunku
do oryginalnego hypercube’a (kanaty wcigz posiadajg tak samo szerokie okna spektralne),
nastepnie jest poddawany klasyfikacji. Zdecydowano sie przebadaé dziatanie algorytmu
wyfacznie z wykorzystaniem metody klasyfikacji Random Forest, z uwagi na jej potwierdzone
najlepsze dziatanie. Postuzono sie zatozeniem logicznym: jesli po redukcji obrazu HSI
do postaci MSI, najlepsza w danym zestawie algorytméw metoda nie bedzie w stanie dokonaé
klasyfikacji o wysokiej jakosci oznacza to, ze obraz zostat nadmiernie zredukowany wzgledem
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oryginatu. Na tym etapie trenowanie modelu oczywiscie wykorzystuje zestaw klas prawdy
podstawowej. Ten zestaw klas jest réwniez wykorzystany w kolejnym kroku, w ktérym
obliczany jest wspoéfczynnik Jaccarda. Pozwala to na okreslenie, jak skuteczna jest klasyfikacja
na symulowanym obrazie MSI. Wyniki zapisywane sg w tabeli.

Rysunek 8.6 przedstawia przyktadowe wyniki badania wspotczynnika loU dla obrazéw MSI

zredukowanych do postaci od 30 do 1 kluczowych kanatéw spektralnych.
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Rys. 8.6. Wykres przedstawiajgcy skuteczno$¢ dopasowania klas po klasyfikacji w stosunku do prawdy
podstawowej — loU dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz
symulowany na bazie obrazu hiperspektralnego o nazwie ,Pavia Centre”

Widoczna jest tutaj zaleznos¢, ktérg mozna opisaé¢ w nastepujacy sposéb: wraz ze wzrostem
liczby kluczowych pasm spektralnych, rosnie skuteczno$é klasyfikacji. Analizujgc dane mozna
zauwazy¢, ze wyniki dla obrazéw powstatych przy redukcji od 30 do ok. 12 pasm spektralnych
wykazujg wysoka skutecznosé, utrzymujaca sie na poziomie powyzej 95% dla wszystkich trzech
metod selekcji kanatdw spektralnych. Zblizajgc sie do granicy rownej liczbie klas prawdy
podstawowej, nastepuje obnizenie skutecznosci dla pasm wybranych przez PCA do ok. 90%.
Zmniejszenie skutecznosci algorytmu PCA w okolicy tej liczby pasm jest zgodne ze zrédtami
literaturowymi [np. 106, 107]. Dla optymalnej skutecznosci klasyfikacji, minimalna liczba cech,
czyli w tym przypadku kanatdw spektralnych, powinna byé co najmniej rowna liczbie
poszukiwanych klas [106] lub liczbie klas pomniejszonej o jeden [107]. Warto w tym miejscu
zaznaczy¢, ze informacje okreslajgce minimalng dla optymalnej skutecznosci liczbe pasm
sg zaleceniami, a nie zaleznosciami matematycznymi, co udowadnia dalsza analiza przebiegu

wykresu z rys. 8.6.
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Obrazy z liczbg kluczowych pasm redukowanych w zakresie od 9 (liczba klas prawdy
podstawowej) do 4, pozwolity na uzyskanie wzglednie stabilnej skutecznosci klasyfikacji
na poziomach ok. 95%, 92% i 90% dla odpowiednio metod ekstrakcji cech: LDA, RF i PCA.
Dalsze zmniejszanie liczby pasm spektralnych powoduje znaczne obnizenie skutecznosci, ktora
0sigga najnizsze wartosci w zakresie 32-42% dla jednego kanatu spektralnego. W przypadku
sprawdzanego obrazu hiperspektralnego, to jest , Pavia Centre”, metoda selekcji pasm, ktéra
pozwolita uzyskiwaé wysokie poziomy skutecznosci klasyfikacji (na poziomie powyzej 90%),
to metoda LDA. Poziom 93,7% skutecznosci zostat uzyskany dla juz tak niewielkiej liczby pasm
jak 3, co oznacza trzykrotnie mniej niz liczba klas prawdy podstawowe;.

Weryfikacja powtarzalnosci takiego wyniku wymagata przeprowadzenia testéw
na petnym zestawie obrazéw testowych, czyli na wszystkich hypercube’ach, ktére zbadane
zostaty rowniez w rozdziale 7. W ramach rozprawy doktorskiej przeprowadzono takie
symulacje i eksperymenty réwniez, jak w przedstawionym przyktadzie, symulujgc zakres liczby
kanatéw od 1 do 30 i wyznaczajgc poziom skutecznosci klasyfikacji. Wyniki tych prac
przedstawiono na rysunkach 8.7 —8.12 (0$ Y dostosowano do wyswietlania gérnych 20% dla
uwidocznienia punktu przeciecia z progiem 90%).
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Rys. 8.7. Wykres przedstawiajacy skutecznos¢ dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej —
loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,Indian Pines”
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8.8. Wykres przedstawiajacy skutecznosé dopasowania klas po klasyfikacji w stosunku do prawdy podstawowe]j —
loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,Salinas”
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8.9. Wykres przedstawiajacy skutecznos¢ dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej —
loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,Salinas-A”
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. 8.10. Wykres przedstawiajacy skutecznos$¢ dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej —
loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,,Platki-01”
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Rys. 8.11. Wykres przedstawiajacy skutecznos¢ dopasowania klas po klasyfikacji w stosunku do prawdy podstawowe]j —
loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,,Skaly-04”
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Rys. 8.12. Wykres przedstawiajacy skutecznos¢ dopasowania klas po klasyfikacji w stosunku do prawdy podstawowej —

loU, dla obrazéw symulowanych do postaci od 1 do 30 kluczowych pasm spektralnych. Obraz symulowany
na bazie obrazu hiperspektralnego o nazwie ,,Platki-70”

Jak wida¢ na przedstawionych rysunkach (8.7 - 8.12), w przypadku wiekszos$ci obrazow
hiperspektralnych zdolnos¢ do klasyfikacji na poziomie powyzej 90% jest mozliwa dla wartosci
kilkukrotnie nizszych niz zastosowana liczba klas prawdy podstawowej. Widoczna jest réwniez
duza stabilnos¢ oraz wysoki poziom skutecznosci klasyfikacji dla wiekszych (pow. 15)
rozmiaréw zestawodw kluczowych pasm. Ocena poréwnawcza metod doboru pasm na tle
skutecznosci przy minimalnej liczbie pasm przedstawiona jest w tabelach 8.2 i 8.3. Wyniki te
pozwalajg stwierdzi¢, ze minimalizacja zbioru kanatéw do pojedynczych pasm spektralnych
wcigz umozliwia realizacje klasyfikacji o wysokiej skutecznosci. Nawet w przypadku zatozenia
wymaganej skutecznosci klasyfikacji na poziomie 95%, dla szesciu ze zbioru siedmiu obrazow
hiperspektralnych, liczba wymaganych klas wyniosta 4 i mniej. W czterech przypadkach byty

to nawet tylko dwie klasy, co stanowi mediane dla catego zbioru obrazdw.
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Tabela 8.2. Zestawienie wynikdw mozliwosci redukc;ji liczby pasm dla skutecznosci na poziomie co najmniej 90%

Minimalna liczba kluczowych pasm spektralnych,
dla ktérej skutecznos¢ klasyfikacji wynosi co najmniej 90%

In.dlan Salinas Salinas-A Pavia Platki-01 | Skaly-04 Platld- Mediana

Pines Centre 70
Liczba klas 16 16 6 9 8 8 11 -
PCA 3 3 3 5 2 2 2 3
LDA 3 4 2 3 2 2 2 2
RF 4 3 3 4 2 2 2 3
Minimum 3 3 2 3 2 2 2 2
Min/Klas 0,2 0,2 0,3 0,3 0,3 0,3 0,2 0,25

Tabela 8.3. Zestawienie wynikdw mozliwosci redukc;ji liczby pasm dla skutecznosci na poziomie co najmniej 95%

Minimalna liczba kluczowych pasm spektralnych,
dla ktérej skutecznos¢ klasyfikacji wynosi co najmniej 95%

Indian Salinas Salinas-A Pavia Platki-01 | Skaly-04 | Platki- Mediana

Pines Centre 70
Liczba klas 16 16 6 9 8 8 11 -
PCA 4 4 3 12 8 2 5 4
LDA 5 4 2 5 3 3 24 4
RF 5 4 3 9 2 2 3
Minimum 4 4 2 5 2 2 2 2
Min/Klas 0,3 0,3 0,3 0,6 0,3 0,3 0,2 0,25

Dla wiekszosci obrazéw (sze$¢ z siedmiu) stosunek minimalnej liczby kanatéw
spektralnych do liczby klas prawdy podstawowej wynidst 0,3 lub mniej. Mozliwe jest zatem
wyciggniecie wniosku, iz wymagana liczba kanatéw spektralnych powinna wynosi¢ nie mniej
niz jedna trzecia liczby poszukiwanych klas. W przeprowadzonych testach zdarzyt sie jednak
przypadek, w ktérym liczba ta wyniosta wiecej niz 0,3, a byt to obraz ,Pavia Centre”,
dla ktérego stosunek ten wyniost 0,6.

Analizujgc skutecznos¢ algorytmow pod katem wiasciwej selekcji pasm, uzyskujgcych
najlepsze wyniki w tescie, zauwazyé mozna brak jednej wyrdzniajgcej sie korzystnie
lub niekorzystnie metody. W przypadku skutecznosci o progu 90% najlepsze rezultaty
uzyskiwano metodg LDA, dla ktérej mediana najmniejszej liczby pasm wynosita 2.
W przypadku progu skutecznosci 95%, najlepsze rezultaty otrzymane zostaty z
wykorzystaniem metody RF. Oznacza to zatem, ze w zaleznosci od rodzaju obrazu i jego cech
topograficznych, najlepsze rezultaty mogg by¢ otrzymane za pomocg innych metod ekstrakcji
pasm.

Przedstawione wyniki badan, a w szczegdlnosci potwierdzenie mozliwosci uzyskiwania
wysokich skutecznosci klasyfikacji dla niewielkiej liczby kanatéw spektralnych potwierdza
zatozenia postawione w tezie niniejszej rozprawy doktorskiej. W szczegdlnoséi, mozliwa jest

aplikacyjna, czyli nakierowana na konkretne zadanie detekcyjne, redukcja obrazu
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hiperspektralnego do znacznie uproszczonej postaci multispektralnej, ktéra pozwoli na

poprawng klasyfikacje obrazu.

8.5. ANALIZA WPLYWU SZEROKOSCI OKNA KANAtU SPEKTRALNEGO NA SKUTECZNOSC
KLASYFIKACII

Uzyskane w rozdz. 8.4 wyniki potwierdzity mozliwosc realizacji uproszczonych uktadéw
obrazowania spektralnego, ktdore potencjalnie mogg opierac sie wyfgcznie na kilku kanatach
(nawet czterech — dwdch). Pozwolito to ukierunkowad prace badawcze na kolejny krok, ktéry
pozwoli na synteze uktadéw o wysokiej sprawnosci radiometrycznej. Jest to okreslenie
wptywu szerokosci okna kanatu spektralnego na skuteczno$¢ klasyfikacji. W tym celu

przeprowadzono eksperyment wedtug schematu przedstawionego na rysunku 8.13.

Symulator hypercube'a o Zredukowany
zdredukowanej liczbie pasm hypercube

Surowy hypercube
(RAW)

Odszumianie Normalizacja

Selekcja n- Rozszerzenie okien
najwazniejszych spektralnych pasm
pasm o r-krotnosé

Tabela wag
pasm spektralnych

n=30,29,...1 r=1,3,5,11, 21,41, 81,161

Wynik eksperymentu -
informacje o skutecznosci
klasyfikacji dla obrazu
zredukowanego do n-pasm o r-
krotnie powigkszonych oknach

Algorytm
Klasy wykryte poréwnujacy
w hypercube klasy wykryte
z prawdg

Klasyfikacja z wykorzystaniem
klasteryzacji - metoda
Random Forest

n=n=30, 29, ...1
r=1, 3,5, 11, 21, 41, 81, 161

Zestaw klastrow/klas

prawdy podstawowej

Rys. 8.13. Schemat algorytmu zastosowanego w badaniach wptywu szerokosci okna spektralnego spektralnych
na skutecznos¢ klasyfikacji

W stosunku do algorytmu przedstawionego na rysunku 8.5, jedyng rdznicg jest krok
symulacji szerokosci kanatéw spektralnych, ktéry jest uwzgledniany w symulatorze obrazu
multispektralnego. Zdecydowano sie na symulacje poszerzonych okien pasm spektralnych
o odpowiedzi spektralnej, a wtasciwie o wadze nadawanej kazdemu kanatowi w ksztatcie
krzywej rozktadu normalnego. Krzywa ta najlepiej odwzorowuje transmitancje filtrow
optycznych w domenie dfugosci fali. Symulowano odpowiednio szerokosci nieparzyste rowne:

e 1 (uwzgledniany jeden centralny kanat spektralny),
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e 3 (uwzgledniony kanat centralny i dwa symetrycznie sgsiednie),

e 5 (uwzgledniony kanat centralny i cztery symetrycznie sgsiednie),

o 11,
o 21,
o 41,
e 81,

e 161 (przypadek niepraktyczny, lecz traktowany jako graniczny).

Kanaty te matematycznie byly dla kazdego piksela suma kanatu centralnego o wadze
rownej 1,0 oraz kanatéw sgsiadujgcych o wagach zgodnych z rozktadem normalnym (ksztattem
krzywej Gaussa). W kazdym przypadku odchylenie standardowe rozktadu wyznaczane byto
jako wartosc¢ szerokosci okna spektralnego (r) podzielonej przez 4. Przyktad symulacji z obrazu
»Indian Pines) dla 10 kluczowych kanatéw i kilku wariantéw szerokosci okna spektralnego

przedstawiono na rysunku 8.14.
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Rys. 8.14. Reprezentacja kanatow i ich wag sktadajgcych sie na symulowane okna kanatéw spektralnych dla
obrazu ,Indian Pines” dla réznych wartosci parametru szerokosci okna (r): a) r=1, b) r=5, c) r=11, d) r=41
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Jak mozna zauwazy¢, szczegdlnie dla wybranych wiekszych wartosci r, symulowane kanaty
nachodzg na siebie, co powoduje dublowanie informacji zawartych w tych kanatach. Na tym
etapie badan zdecydowano sie uwzgledni¢ takie przypadki, poniewaz dzieki zastosowaniu
metody Random Forest przy klasyfikacji, zdublowane dane nie powinny wptywaé na
skutecznosé i tym samym zaburzaé eksperymentu.

Przed przeprowadzeniem symulacji dla réznych liczb i szerokosci kanatéw w celu
znajomosci mozliwosci referencyjnych, symulowana zostata réwniez panchromatyczna postaé
obrazu, czyli taka, w ktérej dla kazdego piksela wyznaczana jest mediana ze wszystkich
kanatéw spektralnych. Na takim obrazie jest realizowana taka sama klasyfikacja
z wykorzystaniem metody RF, jak dla innych, sprawdzanych obrazéw symulowanych. Dzieki
temu wyznaczany jest minimalny poziom zdolnosci klasyfikacji, ktéra moze by¢
przeprowadzona na obrazie catkowicie pozbawionym rozdzielczosci spektralnej, a wtasciwie
o rozdzielczosci spektralnej wynoszacej tyle, co caty zakres spektralny instrumentu. Taki
wzorzec jest uzywany jako baza referencyjna, poniewaz powszechnie wiadomo, ze nawet
obraz panchromatyczny niesie ze sobg informacje pozwalajgce na rozrdznienie klas obiektow
na obrazie. Szeroko znanym dowodem dla takiej tezy jest fakt, ze pierwsze fotografie oraz kino
czarnobiate, wcigz pozwalajg na rozrdznianie obiektéw, nie tylko po ich ksztatcie, ale rowniez
po poziomach intensywnosci. Na rys. 8.15 przedstawiono przyktad skutecznosci dopasowania
klas po klasyfikacji w stosunku do prawdy podstawowej dla liczby kluczowych pasm

spektralnych w zakresie od 4 do 1 i szeroko$ci okien spektralnych w zakresie od 1 do 161.

100,00%
95,00% g— 8
90,00%
85,00% —— = : : * *
80,00% Skutecznos$¢ symulowanego obrazu panchromatycznego (84,7%)
75,00%
70,00%
65,00%
60,00%
55,00% —=—n=3
50,00% n=2
45,00% —e—n=1
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Dopasowanie klas po klasyfikacji do prawdy
podstawowej - loU [%]

Szerokosc¢ okna spektralnego r

Rys. 8.15. Wykres przedstawiajgcy skutecznos¢ dopasowania klas po klasyfikacji w stosunku do prawdy
podstawowej — loU, dla obrazéw symulowanych do postaci od 4 do 1 kluczowych pasm spektralnych
i o réznej, od 1 do 161, szerokosci okien spektralnych. Obraz symulowany na bazie obrazu hiperspektralnego
o nazwie ,Pavia Centre”, kanaty spektralne dobrane zostaty metodg LDA
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Jak mozna zauwazy¢, odpowiednio dostosowany rozmiar okna spektralnego moze dac
zauwazalng poprawe skutecznosci klasyfikacji, szczegdlnie dla obrazéw o mniejszych liczbach
kanatéw spektralnych. Efekt takiej poprawy skutecznosci jest szczegdlnie widoczny na obrazie
z pojedynczym kanatem spektralnym, cho¢ nalezy réwniez zauwazyé, ze nie jest w takim
przypadku mozliwe zwiekszenie skutecznosci znaczgco powyzej skutecznosci referencyjnej dla
obrazu panchromatycznego.

Co najwazniejsze dla stawianej tezy o mozliwosci syntezy uproszczonych uktadow
obrazowania spektralnego, szczegdlnie na obrazach o liczbach pasm wiekszych od 2,
skuteczno$¢ wraz ze wzrostem szerokosci kanatu spektralnego maleje nieznacznie.
Na przestrzeni rozmiaru okna spektralnego od 5 do 81, w przypadku obrazu o trzech i czterech
kanatach, spadek ten wynidst ok. 1,2%. Podobng tendencje, cho¢ niewidoczng
na przedstawionym wykresie (rys. 8.15), zauwazono dla liczb kanatéw spektralnych wiekszych
niz 4, tj. az do 30 kanatéw wtgcznie.

To samo zjawisko, czyli maksymalizacje skutecznosci dla obrazéw o liczbie kanatéw
wiekszej niz 2 i o rozmiarach okien spektralnych od ok. 3 do ok. 21, zaobserwowano
w przypadku pozostatych zestawdw danych. W zwigzku z tym przeprowadzono symulacje dla
wszystkich siedmiu obrazéw z testowanego zestawu obrazéw HSI dla wszystkich trzech metod
(PCA, LDA i RF), liczb kanatow spektralnych od 1 do 30 oraz o rozmiarach okien spektralnych
od 1do 161, podobnie jak w przedstawionym przykfadzie. Sumarycznie dato to 5040 symulacji,
ktdre nie sposéb przedstawi¢ w niniejszej pracy doktorskiej. W przypadku kazdego obrazu,
przynajmniej jedna z metod wykazywata zjawisko poprawy lub braku istotnego wptywu na
skuteczno$é dla coraz wyziszych rozmiaréow okien spektralnych. Oznacza to, ze rezultaty
podjetychi badan sg bardzo silnym dowodem na mozliwo$é upraszczania formy i wymagan

stawianych filtrom optycznym w syntezie uproszczonych uktadéw obrazowania spektralnego.

8.6. METODA SYNTEZY UPROSZCZONYCH UKLADOW OBRAZOWANIA SPEKTRALNEGO
Rozwigzanie zdefiniowanych w rozprawie problemdéw badawczych utorowato droge
do sformutowania metody syntezy uproszczonych uktadéw obrazowania spektralnego.
Jak pokazaty wyniki przedstawione w rozdz. 8.3 — 8.5, metoda ta wymaga pewnych proceséw
decyzyjnych po stronie osoby dokonujgcej syntezy, jednak istnieje mozliwos¢ dalszej
automatyzacji z uzyciem narzedzi nauczania maszynowego. Finalny, proponowany algorytm

takiej syntezy przedstawiony jest na rys 8.16.
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Przeprowadzenie serii

Realizacja kampani
akwizycyjnej z Surowy hypercube
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Zestaw pasm
kluczowych
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Weryfikacja skutecznosci
Wykonanie filtrow Realizacja instrumentu Testy akwizycji na docelowo z prawda podstawows i
spektralnych uproszczonego badanych obiektach zdefiniowanym problemem
klasyfikacyjnym

Ocena wynikéw i dobér
optymalnego zestawu filtrow
spektralnych

Rys. 8.16. Algorytm syntezy uproszczonych uktadow obrazowania spektralnego

Synteze nalezy rozpoczg¢ od definicji problemu klasyfikacyjnego, czyli odpowiedzi
na pytanie ,,co jest poszukiwane?” rozpatrywanym systemem obrazujgcym. W kolejnym kroku
wykonywana jest kampania akwizycyjna instrumentem HSI, ktéry pozwoli na pozyskanie
obrazow hiperspektralnych w mozliwie najszerszym spektrum i z jak najwiekszg
rozdzielczoscig spektralng. Takie hypercube’y mogg zosta¢ pozyskane zaréwno w testach
laboratoryjnych, jesli aplikacja jest zwigzana z obiektami o matym rozmiarze np. detalami
przemystowymi. Tak pozyskane obrazy nalezy opatrzy¢ prawdg podstawowg, ktéra zazwyczaj
jest wykonywana przez cztowieka.

W kolejnym kroku nastepuje selekcja pasm kluczowych metodami PCA, LDA i RF
co pozwala na uzyskanie zestawu pasm kluczowych. Nastepne dziatanie to symulacja serii
obrazow multispektralnych, w sposéb podobny, jak miato to miejsce w rozdziatach 8.4
i 8.5. Wyniki takich symulacji nastepnie powinny by¢ ocenione przez cztowieka, ktéry podejmie
decyzje o doborze optymalnego zestawu fizycznych filtréw spektralnych, jak réwniez
zdecyduje o rodzaju instrumentu uproszczonego.

Rozpatrywa¢ mozna kilka podejsé. Jesli analiza uzyskanych wynikow wskaze,
ze wystarczajaca jest liczba trzech kanatéw spektralnych i jesli bedg one rozlokowane
w zakresach odpowiadajgcych kanatom R,G,B, mozliwe bedzie wykonanie pojedynczego filtra
spektralnego, ktdry bedzie posiadac trzy okna przepustowe. Taki filtr ustawiony przed kamerg
RGB, pozwoli na wykorzystanie siatki Bayera i umozliwi akwizycje obrazow nawet w trybie
akwizycji ciggtej (wideo). Inne rozwigzanie, ktére pozwalana realizacje systemu o bardzo
niskiej cenie dla matych liczb kanatéw spektralnych to instrument multikamerowy.
Zastosowanie kilku kamer panchromatycznych, kazda ze spektralnym filtrem przepustowym,
pozwoli na uzyskanie wynikéw zgodnych z zatozonym problemem klasyfikacyjnym. Gdyby
jednak liczba wymaganych pasm byta wyzsza, mozliwe jest zastosowanie filtrow paskowych,

ktore dzielg obraz na kilka obszaréw, kazdy o innym oknie spektralnym. Przemieszczanie
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translacyjne takiego instrumentu lub obiektu, powoduje realizacje obrazowania
multispektralnego (rozdz. 3.2).

Doswiadczenia i wiedza na temat tego rodzaju réinych podejs¢ pozwala na definicje
finalnego uproszczonego instrumentu, ktéry po wykonaniu filtréw, mozliwy jest
do implementacji. Ostatnie dwa kroki takiej syntezy to przeprowadzenie testéw oraz
weryfikacja wzgledem zatozen problemu klasyfikacyjnego. Tak dokonana synteza pozwala na
uzyskanie uproszczonych uktadéw obrazowania spektralnego, a kluczowe problemy
badawcze, zaadresowane w poprzednich podrozdziatach pozwalajg na stwierdzenie,
ze metoda ta moze by¢ skutecznie wdrozona w aplikacjach przemystowych, kosmicznych,

gorniczych i rolniczych.

8.7. WERYFIKACJA WDROZENIOWA METODY SYNTEZY UPROSZCZONYCH UKLADOW
OBRAZOWANIA SPEKTRALNEGO

W niniejszym rozdziale przedstawiono przyktady zastosowania opracowanej metody
syntezy uproszczonych uktadéw obrazowania spektralnego w wybranej aplikacji zrealizowanej
przez firme Scanway S.A. dla klienta z branzy spozywczej. Zagadnienie dotyczyto rozwigzania
problemu wykrywania obecnosci specyficznych ciat obcych na linii przetwarzania ryzu.
Ze wzgledu na specyfike zaktadu produkcyjnego i rodzaj zastosowanych w nim przenosnikow
przemystowych, epizodycznym zjawiskiem byto pojawianie sie ciat obcych stanowigcych
tworzywa sztuczne (nylon) w przetwarzanym ryzu. W zaktadzie stosowana byta reczna
kontrola jakosci, polegajagca na obserwacji roztozonych réwnomiernie ziaren ryzu w trakcie
transportu na przenos$niku, jednak metoda ta nie sprawdzata sie w przypadku wtrgcen
z nylonu. Nylon w postaci stosowanej w zakfadzie miat kolor niemal identyczny z kolorem ryzu.
Jego identyfikacja byta niezwykle trudna poprzez obserwacje ludzkim wzrokiem oraz
kamerami RGB (rys. 8.17). W identyfikacji ciat obcych, w branzy spozywczej stosowane sg
czesto skanery rentgenowskie i klient rozwazat rowniez instalacje takiego rozwigzania.
Niestety jest to rozwigzanie umozliwiajgce identyfikacje wtrgcen o znaczgco réznej gestosci
niz ryz. W przypadku tworzyw sztucznych gestos¢ ta jest réwniez niemal identyczna

co wyklucza mozliwos¢ identyfikacji takich ciat obcych skanerem rentgenowskim.
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Rys. 8.17. Obraz z kamery RGB przedstawiajgcy ryz z wtrgceniami w postaci nieregularnych fragmentow

tworzyw sztucznych (zaznaczone w elipsach)

Zagadnienie zostato zatem sprawdzone z wykorzystaniem kamery hiperspektralnej, ktérej
obrazy stanowity dane wsadowe do weryfikowanej metody syntezy uproszczonych uktadow
obrazowania spektralnego. Poniewaz rozwazana byta rowniez implementacja samej kamery
hiperspektralnej w zakfadzie klienta, zdecydowano sie skorzysta¢ z kamery z wysokg
czestotliwoscig rejestracji obrazow — Ximea XiSpec z liniowymi filtrami Fabry-Perot
naniesionymi bezposrednio na sensor CMOS.

Pierwszym krokiem wdrozeniowym metody syntezy, juz po zdefiniowaniu problemu, byto
dokonanie akwizycji obrazéw HSI, na ktérych znajdowaé sie bedg zaréwno ryz,
jak i wtracenia z tworzyw sztucznych w postaciach, jakie spotykane sg w zaktadzie klienta.
Rysunek 8.18 przedstawia obraz hiperspektralny (kanaty RGB) rejestrowanej sceny z réznymi

materiatami.
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Rys. 8.18. Obraz z kamery hiperspektralnej (kanaty RGB) przedstawiajacy rézne analizowane materiaty:

a), b) nylon pojawiajgcy sie jako wtracenie, c) ryz

Po oznaczeniu obszaréw prawdy podstawowej na obrazie (czyli oznaczeniu pikseli
odpowiadajgcych ryzowi oraz nylonowi), przystgpiono do ekstrakcji pasm kluczowych.
W celach badawczych zastosowano wszystkie trzy metody selekcji pasm, omoéwione we
wczesniejszych czesciach tego rozdziatu, czyli metod: PCA, LDA oraz RF. Rysunek 8.19
przedstawia wagi pasm kluczowych w zestawie wszystkich 67 pasm (oznaczonych od 0 do 66),

ktore rejestruje kamera.

PCA - waga pasm (znormalizowana)

a) o

80

60
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40 4
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Rys. 8.19. Wykresy wag nadanych poszczegdlnym kanatom spektralnym przez algorytm: a) PCA, b) LDA, c) RF
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Zgodnie z rysunkiem 8.19, decydujac sie na synteze w postaci kamery MSI o liczbie pasm
rowniej 3, najistotniejsze pod katem rozrdzniania klas prawdy podstawowej pasma to:

e dla PCA: kanaty 66, 47 i 55, co odpowiada dfugosciom fali: 916 nm, 834 nm i 865 nm,

e dla LDA: kanaty 11, 13 15, co odpowiada dtugosciom fali: 686 nm, 696 nm i 704 nm,

e dla RF: kanaty 66, 65 i 10, co odpowiada dtugosciom fali: 916 nm, 913 nm i 681 nm,

Rysunek 8.20 przedstawia zestawienie obrazéw symulowanych, ktére przektadajg
wyselekcjonowane sktadowe na kanaty czerwony, zielony i niebieski (kolory odwrdcone).
Na obrazie mozliwa jest identyfikacja wtrgcen, dzieki podkre$leniu ich potozenia
z zastosowaniem elips. Obraz wyraznie wykazuje, ze najlepszy, czyli dajacy najwieksze
mozliwosci w identyfikacji wtrgcen obraz, to symulacja kluczowych kanatéw okreslonych przez
metode LDA. Metody PCA i RF umozliwiajg czesciowe wykrycie, ktére byé moze
z zastosowaniem zaawansowanej obrébki obrazu, umozliwitoby detekcje wtracen.
Zdecydowanie jednak, metoda LDA moze wymagaé wytgcznie poprawy kontrastu, przed

zastosowaniem metod widzenia maszynowego, umozliwiajacych detekcje wtracen.

Rys. 8.19. Zestawienie symulacji obrazu multispektralnego, na ktérym trzy wyselekcjonowane pasma
o najwyzszych wagach reprezentujg kolory RGB (zakresy odwrdcone). Wtrgcenia zaznaczone sg niebieskimi

elipsami. Obrazy wygenerowane na podstawie metod selekcji pasm: a) PCA, b) LDA, c) RF
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Co najwazniejsze, opisany w tym rozdziale przyktad zdecydowanie wykazat, ze mozliwosci
kamery hiperspektralnej (przy odpowiedniej selekcji pasm) mozna przetozy¢ na zredukowany
w stopniu skomplikowania instrument multispektralny, ktéry moze mie¢ wytgcznie trzy, lecz
wyselekcjonowane pasma. W niektorych aplikacjach, w ktérych wyselekcjonowane pasma,
beda odseparowane spektralnie i znajdowaé sie bedg osobno w kanatach z zakresu R,G,B,
mozliwa bedzie synteza uktadu multispektralnego z wykorzystaniem niezmodyfikowanej
kamery RGB. Realizacja takiego uktadu jest mozliwa, jesli zostanie zastosowany specjalny
oswietlacz waskopasmowy, sktadajacy sie z diod LED o wybranych, wyselekcjonowanych
dtugosciach emitowanej fali Swiatta, korespondujgcych z tymi, bedgcymi efektem syntezy.

Mozliwosci realizacji uktadu MSI, bedacego efektem syntezy uproszczonych uktadéw
obrazowania spektralnego, jest wiele. W wiekszosci przypadkdw takich realizacji, mozliwe jest
wdrozenie systemu spektralnej detekcji w koszcie i o poziomie skomplikowania znacznie

nizszym niz jakakolwiek dostepna rynkowo kamera hiperspektralna.

Badania przedstawione w niniejszym rozdziale jednoznacznie pozwolity potwierdzic,
postawiong w niniejszej rozprawie doktorskiej hipoteze. W szczegdlnosci badania wptywu
liczby kluczowych kanatéw spektralnych pokazaty wyraznie, ze stosowane mogg byé nawet
obrazy posiadajgce znacznie mniej kanatéw spektralnych niz wynosi liczba klas prawdy
podstawowej. Dowdd w postaci symulacji przeprowadzonych na zréznicowanym zestawie
obrazow HSI nie pozostawia watpliwosci, co do mozliwosci redukcji pierwotnego obrazu
hiperspektralnego do postaci pojedynczych kanatéw spektralnych.

Co warto réwniez zauwazyé, poszerzanie kanatdw spektralnych, do pewnego,
okreslonego badawczo stopnia, sprzyja zwiekszaniu skutecznosci klasyfikacji obiektow
na obrazach. Idzie to w parze ze zwiekszeniem wykonalnosci technologicznej fizycznych
kanatéw spektralnych dla docelowych uktadéw uproszczonych. Oczywiscie, istnieje pewne
optimum, ktére wraz z dalszym rozszerzaniem okna spektralnego, uposledza skutecznosé
klasyfikacji. Osoba dokonujgca syntezy ukfadu uproszczonego, musi pamieta¢ o takich
zjawiskach, podczas projektowania docelowego instrumentu.

Wszystkie wykonane symulacje odpowiadajgce postawionym problemom badawczym
potwierdzajg, ze zaproponowana synteza uktadéw uproszczonego obrazowania spektralnego,
pozwala na istotne uproszczenie realizacji zagadnien zwigzanych z optyczng klasyfikacja
obiektéw. Systemy multispektralne, szczegélnie w postaci kilkukanatowej, moga by¢

implementowane w aplikacjach klienckich za utamek kwoty i ze znacznie mniejszym
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poziomem skomplikowania w stosunku do instrumentéw hiperspektralnych. Taka mozliwosé
zdecydowanie podnosi wage wynikéw uzyskanych w przedstawionych w pracy badaniach
w kontekscie spodziewanego upowszechnienia w kierunku szerokiego zastosowania metod

obrazowania spektralnego w technice.

Przedstawiony w rozdziale przyktad aplikacji, nie tylko dowodzi stusznosci postawionej
w niniejszej rozprawie doktorskiej hipotezy, ale rowniez wykazuje wysoka wartos¢
wynikajagca z wykorzystania metody syntezy uproszczonych ukiadéow obrazowania

spektralnego.
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9. PODSUMOWANIE
Gtéwne osiggniecia niniejszej rozprawy obejmuja:
1) zidentyfikowanie i zbadanie kluczowych etapow przetwarzania danych w systemach
hiperspektralnych, oraz
2) zaproponowanie nowatorskiego podejscia, umozliwiajgcego budowe uproszczonych
systemOw obrazowania spektralnego dedykowanych do okreslonych aplikacji, przy

jednoczesnym zachowaniu ich kluczowych funkgcji analitycznych.

Praca ta stanowi odpowiedzZ na istotne wyzwania stojgce przed technologig HSI, ktéra
jak wykazano w kolejnych rozdziatach, mimo ogromnego potencjatu nadal, ze wzgledu
na ztozonos¢, ograniczenia sprzetowe i wysokie koszty, pozostaje niedostepna w wielu
zastosowaniach. Zaproponowany w rozprawie uproszczony fafcuch przetwarzania danych
udowadnia postawiong w rozprawie hipoteze, ze mozliwe jest stworzenie uproszczonych,
dedykowanych systemdéw MSI, ktére dzieki starannej selekcji pasm i zastosowaniu
nowoczesnych algorytméw analitycznych, mogg osigga¢ skuteczno$¢ porédwnywalng
z klasycznymi systemami petnospektralnymi.

Szczegdtowa analize teoretyczng dotyczacg technik akwizycji, przetwarzania i analizy
danych spektralnych, z uwzglednieniem ograniczern technicznych, ekonomicznych
i uzytkowych wspodtczesnych rozwigzan przedstawiono w rozdz. 2-5. Studium literaturowe
obejmuje przeglad stosowanych obecnie jak i w przesztosci technik akwizycji, przetwarzania
i analizy danych hiperspektralnych. Dzieki analizie przedstawionej w rozdz. 2 mozliwe byto
wskazanie ograniczen réznych technik, jak i przesledzenie historii rozwoju obrazowania
spektralnego. Studium literaturowe pozwolito réwniez na rozpoznanie aplikacji
wykorzystujgcych obrazowanie HSI oraz MSI, co okreslito granice badawcze dla dalszych
etapow pracy. W szczegdlnosci, dzieki rozpoznaniu aplikacji wykorzystujgcych takie rozmaite
platformy obrazujgce, jak satelity, drony, samoloty oraz skanery laboratoryjne i przemystowe,
mozliwa byta synteza metodologii doboru odpowiedniego instrumentu obrazowania
spektralnego.

Metodologia ta omoéwiona zostata w rozdz. 3. Okresla ona jakie cechy posiadajg
poszczegdlne rodzaje akwizycji spektralnej oraz w jaki sposdb dobra¢ odpowiedni rodzaj
kamery HSI, w zaleznosci od stawianych w aplikacji celéw i mozliwych do zastosowania

platform obrazujgcych (rys. 3.12).
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W rozdz. 4 przeSledzono aplikacje przemystowe, kosmiczne, goérnicze i rolnicze.
Zidentyfikowano obecnie wystepujgce bariery technologiczne i ekonomiczne ograniczajgce
szerokie zastosowanie systeméw HSI oraz przedstawiono potencjalne S$ciezki ich
przezwyciezania, w szczegdlnosci przez redukcje ich ztozonosci i kosztu. W rozdziale tym
przedstawiono réwniez wyniki wtasnych doswiadczen Autora, zwigzanych z realizacja
systemow obrazowania hiperspektralnego, zrealizowanych w firmie Scanway S.A., dla potrzeb
wybranych aplikacji.

Rozdziat 5 opisuje kluczowe techniki przetwarzania i analizy danych hiperspektralnych.
Dogtebne studium (tab. 5.2) pozwolito na okreslenie sktadnikdéw obliczeniowych w aplikacjach
HSI, dzieki czemu stworzono ramy do oceny i projektowania systemoéw analizy obrazéw
spektralnych, ktére w kolejnych rozdziatach stanowia kluczowe elementy prac badawczych
i syntezy metodologii potwierdzajgcej postawiong hipoteze. W szczegdlnosci, stwierdzono,
Ze poprawne przetwarzanie danych w systemie spektralnym zalezy nie tylko od jakosci obrazu,
ale takze od skutecznosci przetwarzania i analizy danych. Podkreslono znaczenie technik
redukcji wymiarowosci, takich jak PCA czy LDA, ktére pozwalajg uprosci¢ dane bez utraty
istotnych informacji diagnostycznych.

W rozdz. 6 przedstawiono opis eksperymentow i wyniki badan elementéw filtrujgcych,
stosowanych w akwizycji HSI. Zbudowano stanowiska badawcze i wykonano pomiary
laboratoryjne takich rdéinych elementéw optycznych stosowanych w kamerach
hiperspektralnych, jak pryzmaty, siatki dyfrakcyjne, filtry Fabry-Perot oraz liniowe filtry
gradientowe. Badania te pozwolity na wyznaczenie charakterystyk przestrzenno-spektralnych
tych kluczowych dla obrazowania spektralnego elementéw. Opisane prace umozliwity
poréwnanie mozliwosci badanych elementéw w odniesieniu do optymalnego zastosowania
roznych technik filtracji pasm optycznych w aplikacjach HSI, a szczegdlnosci umozliwity
wskazanie najlepszych konfiguracji ze wzgledu na ich uzycie w uproszczonych systemach
spektralnych.

Istotnym elementem catej pracy doktorskiej jest rozdziat 7, w ktérym opisano badania
metod przetwarzania i analizy danych HSI. Wyniki opisanych w nim prac badawczych, wskazujg
jednoznacznie na przewage skutecznosci zaawansowanych nadzorowanych metod
klasyfikacyjnych, opartych na drzewach decyzyjnych, nad metodami nienadzorowanymi.
Okreslone zostaty takze najbardziej wydajne czasowo algorytmy sposrdd wszystkich
sprawdzanych. Dzieki wykorzystaniu zbioru danych testowych, sktadajgcego sie

ze zobrazowan hiperspektralnych zaréwno z réznych instrumentdw, jak i réznych aplikacji
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(tabela 7.1), mozliwe byto przeprowadzenie kilkuset eksperymentéw obliczeniowych (tabela
7.5) i wyznaczenie parametrow statystycznych wynikéw (tabele 7.5 — 7.13, rys. 7.6 — 7.24).
Otrzymane wyniki udowodnity, ze nawet silnie zredukowane dane moga by¢ réwnie
wartosciowe jak dane petne.

Kluczowe dla weryfikacji hipotezy sg prace badawcze, ktérych realizacja opisana jest
w rozdziale 8. Przeprowadzone badania pozwolity na okreslenie metodologii syntezy uktadéw
multispektralnych, ktdre odznaczajg sie znacznym uproszczeniem wzgledem systemow
hiperspektralnych. Sprawdzono w jaki sposdb liczba pasm spektralnych oraz zwiekszanie
szerokosci okna spektralnego wptywa na skutecznosé operacji klasyfikacyjnych. Wykazano,
ze w przypadku testowej grupy zobrazowan hiperspektralnych, liczba kanatéw spektralnych
wymaganych do skutecznego rozpoznawania klas obiektdw, jest znacznie mniejsza niz rozmiar
grupy wszystkich kanatéw spektralnych instrumentu HSI. Pozwolito to wyciggngé wnioski
co do stusznosci tezy postawionej we wstepie do niniejszej pracy doktorskiej.

Rezultaty osiggniete w tym rozdziale s bardzo istotne i mogg przyczyni¢ sie
do zwiekszenia powszechnosci zastosowania systeméw obrazowania spektralnego w wielu
dziedzinach zycia i gospodarki. W szczegdlnosci wykazanie, ze niewielka liczba kanatow
spektralnych, ktérych rozmiar (szerokosé okna) moze by¢ wiekszy niz w kamerze HSI, sugeruje
mozliwos¢ syntezy uproszczonych, dedykowanych dla poszczegdlnych aplikacji uktadéw MSI.
Poniewaz, jak wskazano w pracy, uktady HSI cechujg sie wysokim kosztem, poziomem
skomplikowania i ograniczeniami radiometrycznymi, proste uktady multispektralne
o szerokich oknach spektralnych moga stanowic¢ optymalne rozwigzanie dla wielu aplikacji.

Przyktadem wysokiej wartosci takiej syntezy moga by¢ skanery multispektralne,
dedykowane do klasyfikacji grup materiatowych, ktére mogtyby byé zastosowane w
kontenerach na odpady. Rozwigzanie w postaci zoptymalizowanej kamery MSI stanowi
mozliwe do zrealizowania pod katem ekonomicznym rozwigzanie, w odrdznieniu
od kamer HSI, ktére mogtyby nigdy nie przyniesé¢ zwrotu z takiej inwestycji.

Potwierdzenie hipotezy jest istotnym krokiem dla upowszechnienia zastosowania
systemow obrazowania spektralnego, jednak nie jedynym, aby taki rozwdj médgt nastgpidé.
Istotne z punktu widzenia implementacji s3 rowniez sugerowane dalsze badania i prace
rozwojowe nad systemami produkcji filtréw pasmowo-przepustowych, o mozliwie prostej
i skalowalnej produkgcji. Istotne jest to z tego wzgledu, ze po przeprowadzeniu syntezy
uproszczonego uktadu obrazowania spektralnego, czyli wskazaniu zestawu kluczowych pasm

dla realizacji aplikacji klasyfikacyjnej, musi nastgpié realizacja optyczna, czyli wyprodukowanie
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rzeczywistych filtrow optycznych. Oczywiscie ich ksztatt oraz forma zalezg w duzej mierze
od finalnej aplikacji i platformy obserwacyjnej, jednak w kazdym przypadku istotne jest, aby
ich produkcja odznaczata sie wysokg wydajnoscig wytwarzania oraz wzglednie niskg ceng
pojedynczego egzemplarza. Dlatego tez istotne jest, z punktu widzenia motywacji
przedstawionej na poczatku niniejszej pracy doktorskiej, kontynuowanie rozwoju systemoéw
produkgji filtrow spektralnych. Prace takie rozwijane sg miedzy innymi w Zespole Technologii
Cienkowarstwowych na Woydziale Elektroniki, Fotoniki i Mikrosystemdéw Politechniki
Wroctawskiej, w ktérym powstata niniejsza rozprawa.

Wskazane jest rdéwniez kontunuowanie prac nad implementacja rozmaitych,
nowoczesnych technik przetwarzania i analizy obrazéw hiperspektralnych. W ubiegtych kilku
latach, szczegdlnie w dobie rozwoju przetwarzania brzegowego, czyli wykonywanego
w urzadzeniach blisko kamer hiperspektralnych (i innych), wazne jest coraz doktadniejsze
zrozumienie dziatania wydajnych algorytmow przetwarzania i analizy danych. Rdwniez rozwoj
technik sztucznej inteligencji sprzyja rozwojowi systemow hiperspektralnych, poniewaz
bardziej niz kiedykolwiek, systemy obliczeniowe sg obecnie przygotowane do szybkiego
przetwarzania duzych ilosci danych.

Jak mozna zauwazyg, sukces potwierdzenia przedstawionej w niniejszej pracy doktorskiej
hipotezy badawczej, niesie ze sobg zaréwno szanse dla rozwoju technik i aplikacji obrazowania
spektralnego, jak rowniez przedstawia kolejne wyzwania lezgce u progu dalszego rozwoju
w tej dziedzinie. Niewatpliwie jednak, zaréwno aplikacje przemystowe, gdrnicze, rolnicze,
a takze kosmiczne, zyskaty nowg, wartosciowg technike, ktéra moze znacznie uproscié

zastosowanie kamer multi- i hiperspektralnych.
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3. J. Kowalewski, J. Domaradzki, M. Zieba, M. Podgérski, Hyperspectral imaging — a short
review of methods and applications; Metrology And Measurement Systems; 2023, vol.
30, No 4. DOI: 10.24425/mms.2023.147951 ; elSSN 2300-1941

Artykuty konferencyjne:

1. 72. Miedzynarodowy Kongres Astronautyczny, 27.10.2021, Dubai: M. F. Podgérski, A.
Gorgolewski L. Kogut, A. Przybylska, M. Zieba, J. K. Kowalewski, K. Pleban, H.
Hodowaniec, D. Hura, ,EagleEye telescope for VLEO”, Numer: IAC-21,B1,3,5,x65880

2. 73. Miedzynarodowy Kongres Astronautyczny, 27.10.2021, Paryz:, M. F. Podgdrski, A.
Gorgolewski, A. Przybylska, L. Kogut, P. Zukowski, H. Hodowaniec, D. Hura, A.
Jatowiecki, J. Kowalewski, M. Zieba, K. Pleban, ,EagleEye VLEO mission — Imaging
Payload with 1 m GSD.”, Numer: IAC-22,B1,3,4,x71069

3. 74. Miedzynarodowy Kongres Astronautyczny, 2.10.2023, Baku: J. Kowalewski, M.
Podgdrski, M. Zieba, A. Wojciechowicz,. ,,Evaluation of LIBS technology for quality
assessment of lunar in-situ sourced water for drinking and electrolysis
requirements”; Numer: IAC-23,A3,IP, 14,x80425

4. J. Gorski, A. Szczurek, A. Lubniewski, J. Kowalewski, P. Sacha, M. Zieba.
Stratospheric decomposition of selected CFC coumpounds as an example of student
ballon experiment in the Earth's atmosphere - project FREDE. W: 64th International
Astronautical Congress : Beijing, China, 23-27 September 2013 / International
Astronautical Federation. [B.m : b.w., 2013]. s. 1-5.
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Prezentacje konferencyjne:

1.

International Astronautical Congress, 27.10.2021, Dubai: Prezentacja pt. "Eagleeye
Telescope for Vleo Applications"

Ogélnopolska Konferencja Naukowa Innowacyjnosci w Przemysle Miedziowym",
18.11.2021, Polkowice: Prezentacja pt. "Spektralna inspekcja kopalni odkrywkowych z
wykorzystaniem technik dronowych i satelitarnych”

Ogodlnopolska Konferencja Naukowa "Innowacyjnosci w Przemysle Miedziowym",
18.11.2021, Polkowice: Prezentacja pt. "Metoda laserowe] spektroskopii w celu
klasyfikacji materiatow gorniczych"

36. Konferencja Elektroniki, Telekomunikacji i Energetyki Studentéw i Mtodych
Naukowcow —SECON 26-27.04.2022: Prezentacja pt. "Nowoczesne metody obserwacji
hiperspektralnej dla celéw podwdjnego zastosowania"

Workshop on Thin Film Technology 2023, 10.02.2023, Wroctaw, Politechnika
Wroctawska W-12: Prezentacja pt. ,Rodzaje i zastosowanie filtréw optycznych w
akwizycji obrazéw hiperspektralnych”

37. Konferencja Elektroniki, Telekomunikacji i Energetyki Studentéw i Mtodych
Naukowcéow — SECON 13-14.06.2023: Prezentacja pt. "Przeglad metod doboru
rozwigzan obrazowania spektralnego dla aplikacji badawczych, lotniczych i
satelitarnych"

Konferencja ,17th International Conference on Optical Sensors and Electronic
Sensors COE' 2024” na Politechnice Wroctawskiej w dniach 24-26 czerwca 2024 roku.
Prezentacja referatu pt. ,,A new approach to hyperspectral system design - selected
case studies” oraz udziat w sesji posterowej z plakatem pt. “Hyperspectral imaging —
selected examples of case study analysis”

2nd Workshop on Thin Film Technology w dniu 6.02.2024 r. pt. "Analiza wtasciwosci
filtrujacych wybranych elementdw optycznych w obrazowaniu hiperspektralnym”

Raporty:

1.

2.

3.

J. Kowalewski, J. Domaradzki, "Akwizycja, przetwarzanie i analiza danych
hiperspektralnych", Raporty Wydziatu Elektroniki Fotoniki i Mikrosystemdw
Politechniki Wroctawskiej, 2023, Raport SPR nr 017

J. Kowalewski, Akwizycja, przetwarzanie i analiza danych hiperspektralnych. Raporty
Wydziatu Elektroniki Fotoniki i Mikrosystemow Politechniki Wroctawskiej. 2023, Ser.
SPRnr6,17s.

J. Kowalewski, J. Domaradzki, "Metody akwizycji w hiperspektralnych instrumentach
lotniczych i satelitarnych"”, Raporty Wydziatu Elektroniki Fotoniki i Mikrosystemadw
Politechniki Wroctawskiej, 2023, Raport SPR nr 020,
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4.

J. Kowalewski, Detekcja optyczna dla potrzeb obrazowania hiperspektralnego.
Raporty Wydziatu Elektroniki Fotoniki i Mikrosysteméw Politechniki Wroctawskie;.
2022, Ser. SPR nr 28, 21 s.

J.K. Kowalewski, J. Domaradzki: , Przetwarzanie i analiza danych hiperspektralnych”,
Raporty Wydziatu Elektroniki Fotoniki i Mikrosystemoéw Politechniki Wroctawskiej,
2024, Raport SPR nr 11

E. Chlebus, ). Reiner, W. Cieszyniski, J. Kedzia, M. Sidorowicz, M. Mrzygtdd, T. P.
Baraniecki, D. Tryba, M. Wiercioch, M. J. Stankiewicz, J. Kowalewski, T. Wojno, S.
Guler, Systemy monitorowania proceséw obrébki laserowej. Raporty Inst. Technol.
Masz. Autom. PWroc. 2012, Ser. SPRnr 17, 60 s.
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