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Streszczenie

Niniejsza rozprawa przedstawia analizę problemu optymalnego zatrzymania postaci

V ω
A (s) = sup

τ∈T
Es
[
e−

∫ τ
0 ω(Sw)dwg(Sτ )

]
,

gdzie St jest procesem dyfuzyjnym ze skokami, T jest rodziną czasów zatrzymania, natomiast g
i ω są odpowiednio funkcją wypłaty i funkcją dyskontującą. Zakładamy ponadto, że powyższa
wartość oczekiwana jest liczona względem miary martyngałowej. Wówczas, zgodnie z ogólną
teorią wyceny opcji finansowych, wzór ten interpretujemy jako funkcja wartości nieskończonej
opcji amerykańskiej z dyskontowaniem zależnym od aktywa bazowego. Rozpatrywany przez
nas problem stanowi uogólnienie klasycznego przypadku wyceny opcji amerykańskiej ze stałym
dyskontowaniem, tzn. gdy ω(s) = r, gdzie r jest stopą wolną od ryzyka. W kontekście zastosowań
finansowych najczęściej przyjmuje się, że funkcja wypłaty jest postaci g(s) = (K − s)+ lub
g(s) = (s−K)+, co odpowiada kolejno opcji sprzedaży i opcji kupna. W rozprawie analizujemy
dokładnie pierwszy z tych przypadków.

Motywacją do analizy tak zdefiniowanego problemu jest rozwój instrumentów finansowych,
w szczególności instrumentów pochodnych, które pojawiają się coraz częściej w literaturze
naukowej. Jest to pewnego rodzaju odpowiedź na zapotrzebowanie rynków finansowych i ich
dynamiczną ekspansję rozpoczętą w drugiej połowie XX w. Rynek pozagiełdowy, na którym
duże instytucje finansowe, takie jak na przykład banki inwestycyjne czy fundusze hedgin-
gowe, zawierają ze sobą transakcje, jest stałym polem wyzwań dla naukowców prowadzących
badania w obszarze matematyki finansowej. Jednym z dominujących zagadnień współczesnej
matematyki finansowej jest wycena instrumentów pochodnych, a rynek pozagiełdowy umożli-
wia jego uczestnikom stworzenie własnych, unikalnych produktów finansowych, które byłyby
zgodne z prognozami i celami danej firmy. Zaliczyć do nich możemy między innymi zabez-
pieczenie przed ryzykiem w sytuacji dużej zmienności na giełdach czy spekulację mającą na
celu przyniesienie nadmiarowych zysków. Proces wyceny instrumentów pochodnych odbywa
się w ścisły, zmatematyzowany sposób, dlatego też wykorzystywany aparat matematyczny jest
stale rozwijany. W przypadku opcji amerykańskich, które charakteryzują się tym, że nabywca
może zdecydować się na ich wykonanie w dowolnym momencie czasu trwania kontraktu, proces
wyceny sprowadza się do rozwiązania pewnego problemu optymalnego zatrzymania. W ogól-
ności, problemy optymalnego zatrzymania pojawiają się w różnych dziedzinach matematyki jak
teoria ruiny, teoria sterowania czy teoria kolejek, ale również w innych naukach, na przykład
w fizyce. To sprawia, że badany przez nas problem ma charakter interdyscyplinarny i nie jest
ukierunkowany jedynie na zastosowania w obszarze matematyki finansowej.

Do głównych wyników pracy zaliczamy udowodnienie wypukłości analizowanej funkcji
wartości, określenie postaci optymalnego czasu zatrzymania w przypadku opcji sprzedaży i przede
wszystkim uzyskanie jawnego wzoru funkcji wartości, gdy aktywo bazowe modelowane jest spek-
tralnie ujemnym wykładniczym procesem Lévy’ego. Formułujemy również szereg pomocniczych
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2 STRESZCZENIE (SUMMARY IN POLISH)

twierdzeń i lematów, w tym te dotyczące równania Hamiltona-Jacobiego-Bellmana czy pary-
tetu opcji kupna/sprzedaży. Praca zawiera również część numeryczną, w której przedstawiamy
przykłady wzorów analitycznych funkcji wartości wraz z wykresami dla różnych funkcji dyskontu-
jących. Opisujemy również zastosowaną metodologię numeryczną, która pozwala nam wyznaczyć
funkcję wartości, gdy nie jesteśmy w stanie wyrazić jej wzorem analitycznym.

W rozdziale pierwszym przytaczamy podstawowe informacje i pojęcia stosowane w pracy,
takie jak wstęp dotyczący rynków finansowych, podstawy teorii wyceny opcji, procesów
Lévy’ego i funkcji skalujących. Ponadto opisujemy główny problem badań wraz z przeglądem
literatury i motywacją, którą kierowaliśmy się w analizie tego rodzaju zagadnienia. Pod koniec
rozdziału prezentujemy notację stosowaną w pracy.

Rozdział drugi zawiera główne wyniki niniejszej rozprawy. W początkowej części przed-
stawiamy ogólne założenia, na których operujemy. Dotyczą one głównie rozpatrywanego pro-
cesu dyfuzji ze skokami, który modeluje zachowanie aktywa bazowego. Następnie formułujemy
twierdzenie o wypukłości funkcji wartości. Jest ono kluczowe przy określeniu postaci optymalnego
czasu zatrzymania. W dalszej części pracy koncentrujemy się na szczególnym przypadku anali-
zowanej przez nas opcji, tzn. opcji sprzedaży, a następnie prezentujemy twierdzenia dotyczące
tego instrumentu. W pierwszej kolejności wnioskujemy o postaci optymalnego czasu zatrzyma-
nia, tzn. dowodzimy, że jest on pierwszym momentem, w którym cena aktywa bazowego wpada
w dany odcinek. Wynik ten pozwala nam sformułować główne twierdzenie pracy, tj. Twierdze-
nie 3, w którym przedstawiona jest jawna postać funkcji wartości w przypadku, gdy cena aktywa
bazowego modelowana jest przez spektralnie ujemny wykładniczy proces Lévy’ego. Następnie
prezentujemy szczególne przypadki głównego twierdzenia, gdy aktywo bazowe modelowane jest
geometrycznym ruchem Browna oraz wykładniczym procesem Lévy’ego z ujemnymi skokami
wykładniczymi. Dla drugiego z wymienionych przypadków pokazujemy, że funkcja wartości
składa się z tzw. uogólnionych funkcji skalujących, które są rozwiązaniami pewnych równań
różniczkowych zwyczajnych. W dalszej części rozdziału udowadniamy, że rozpatrywany przez nas
problem spełnia równanie Hamiltona-Jacobiego-Bellmana i wskazujemy warunki wystarczające,
aby warunek gładkości był spełniony. Dowodzimy także tzw. parytet opcji kupna/sprzedaży,
czyli zależność, jaka zachodzi między funkcją wartości dla opcji kupna i sprzedaży.

W rozdziale trzecim przedstawiamy numeryczną część pracy, tzn. przykłady, które demon-
strują analityczne wzory funkcji wartości wraz z odpowiednimi wykresami dla różnych funkcji
dyskontujących. Prezentujemy również metodologię numeryczną do wyznaczenia funkcji wartości
bazującą na rozwiązaniu równań różniczkowych zwyczajnych metodą rozwinięcia funkcji w szereg
Taylora. Procedura ta wykonana jest za pomocą języka programowania Python i biblioteki
mpmath używanej do arytmetyki zmiennoprzecinkowej na liczbach rzeczywistych i zespolonych
o dowolnie zdefiniowanej precyzji. Pod koniec rozdziału przedstawiamy wykresy uzyskanych
funkcji wartości.

Czwarty rozdział zawiera dowody głównych twierdzeń, jak również twierdzeń pomocniczych
i lematów.

Treść rozprawy powstała na podstawie dwóch artykułów napisanych wspólnie z promotorem:
Perpetual American options with asset-dependent discounting (złożony do publikacji i dostępny
pod adresem https://arxiv.org/pdf/2007.09419.pdf) oraz Pricing perpetual American put
options with asset-dependent discounting opublikowany w czasopiśmie Journal of Risk and Fi-
nancial Management.

https://arxiv.org/pdf/2007.09419.pdf
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Introduction

This thesis provides an analysis of a perpetual American option with asset-dependent
discounting1. In a bit of a nutshell, we can say that the problem we consider extends the
classical theory of American option pricing, where a deterministic discount rate is considered.

Before we present the main problem of our deliberation, let us present the basic assumptions
and notation on which we rely throughout this dissertation.

We assume that the uncertainty associated with the stock2 price process St is described
by a jump-diffusion process defined on a complete filtered probability space (Ω,F ,F,P) with
natural filtration F = {Ft : t ≥ 0} satisfying the usual conditions and P being a risk-neutral
measure under which the discounted (with respect to a risk-free interest rate) asset price process
St is a local martingale. We point out that, as noted in [42, Table 1.1, p. 29], introducing jumps
into the model implies a loss of completeness of the market, which results in the lack of uniqueness
of an equivalent martingale measure. However, this class of stochastic processes reflects stock
price movements quite accurately. Empirical observations show that the logarithmic prices of
stocks have a heavier left tail than the normal distribution on which the seminal Black-Scholes
model is founded, see e.g. [41]. The introduction of jumps in the financial market dates back to
Merton’s paper [113], who added a compound Poisson process to the standard Brownian motion
to describe the dynamic of the logarithm of stocks more precisely. Since then, there have been
many papers and books working in this set-up, e.g. [42, 133] and references therein. In particular,
[42, Table 1.1, p. 29] gives many other reasons to consider this type of market.

With the general set-up already presented, we can move on to the main topic of the discussion,
which is the analysis of the optimal stopping problem given by

V ω
A (s) := sup

τ∈T
Es
[
e−

∫ τ
0 ω(Sw)dwg(Sτ )

]
, (1)

where T is a family of F-stopping times (τ is a stopping time if τ : Ω → [0,∞] and {τ ≤ t} ∈ Ft
for all t ≥ 0), g is a payoff function and ω is a discount function. Above Es represents the
expectation with respect to Ps, while Ps denotes the measure P when S0 = s. We assume
that the function g is convex and allow ω to take negative values. In financial terms, this
function can be interpreted as the value function of a perpetual American option3 with asset-
dependent discounting and the payoff function g. Typically, the payoff function takes the form
g(s) = (K − s)+ or g(s) = (s−K)+, which corresponds to a put and call option, respectively.

1Throughout the thesis, we use the terms asset-dependent discounting and functional discounting interchange-
ably.

2Stocks are financial assets, however in this thesis we use interchangeably these terms when we refer to the
process St.

3To be more precise, one should include additional factor e−rτ in (1) and treat the term e−
∫ τ
0 ω(Sw)dwg(Sτ ) as

a payoff function in order to describe (1) as the value function of a perpetual American option. Of course, this
corresponds to replacing the discount function ω in (1) with its shifted version ω − r.

5



6 INTRODUCTION

As we already mentioned, the value function given in (1) is a generalised case for the typical
American option with the deterministic discount rate, that is ω(s) = r. In this case, we obtain

VA(s) := sup
τ∈T

Es
[
e−rτg(Sτ )

]
,

which represents the perpetual American option’s value function with constant discount rate r.
To emphasise the motivation for the conducted research, let us note that the discount rate

changing in time or a random discount rate is widely used in pricing derivatives in financial
markets. It has proven to be a valuable and flexible tool for determining the value of various
options. Usually, either a discount rate is independent of the asset price or this dependence is
introduced via a correlation between the Gaussian components of these two processes. Our object
of study is completely different. We want to understand an extreme case where we have a robust
and functional dependence between the discount rate and the asset price. One of the advantages
of this type of functional discounting is that an option buyer can customise an option by selecting
an appropriate functional rate according to his risk aversion and the degree of confidence in how
the asset price will look during the whole option’s life. In particular, we look closely at the
American put option with the discount function ω having the opposite monotonicity to the
payoff function g. At first glance, such a case seems counterintuitive, since in the case of the put
option, if the asset price is in a higher region, one can expect the discount rate to be lower, while
the opposite effect can be expected for a lower range of asset prices. This dependence somehow
balances the discount function with the payoff function. However, we can think of an investor
who has strong confidence in the movement of the asset price and wishes to make an extra profit
when he/she is right and suffers a more significant loss when he/she is wrong. This concept
resembles an idea that stands behind barrier options. If the investor believes that it is unlikely
that the asset price will hit a given level, he/she can add a knock-out provision with the barrier
set at the support level to reduce the price of the option. By including the barrier provision,
he/she can eliminate paying for these scenarios he/she feels are unlikely. In our approach, we
work in two ways by reducing the premium thanks to improbably incidents from the investor’s
perspective and increasing it for scenarios that are more likely for him/her. Such a description
of the analysed option adequately describes a financial instrument suitable for a risky investor
and due to its complexity can be traded on the over-the-counter market.

Our research focuses only on financial applications, but one can look at optimisation prob-
lem (1) from a broader perspective. In the case of the general theory of stochastic processes,
multiplying by the discount factor e−

∫ τ
0 ω(Sw)dw corresponds to killing a generator of St by the

potential ω. The killing by potential ω has been known widely in physics and other applied
sciences. Therefore, formula (1) can be seen as a specific functional that describes the gain or
energy, and the goal is to optimise it by choosing the optimal stopping time.

The first main goal of this dissertation is to find a closed-form expression of (1) for
g(s) = (K − s)+, which corresponds to the put option and St being a spectrally negative ex-
ponential Lévy process, that is St = eXt , where Xt is a Lévy process without positive jumps.
The methodology we use combines the theory of partial differential equations with the fluctuation
theory of Lévy processes. To do this, we start by proving in Theorem 1 an inheritance of con-
vexity property from the payoff function to the value function (we recall that we assume that
g is convex). The proof of this result requires a few key steps. First, we prove in Theorem 10
(available in Chapter 4) the convexity of the value function for a European option, i.e.

V ω
E (s, t) := Es,t

[
e−

∫ T
t ω(Sw)dwg(ST )

]
(2)
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for fixed time horizon T , where Es,t is the expectation with respect to Ps,t, which denotes the
measure P when St = s. In the proof, we follow the idea given by Ekström and Tysk in [68], that is
the value function V ω

E (s, t) given in (2) can be presented as a unique viscosity solution to a certain
Cauchy problem for a second-order operator related to the generator of the process St. In fact,
applying similar arguments like in [122, Proposition 5.3, p. 23] and [68, Lemma 3.1, p. 386] one
can show that, under some additional assumptions, this solution can be treated as the classical
one. Then, we can formulate sufficient locally convexity preserving conditions for the infinitesimal
preservation of convexity at some point. This characterisation is given in terms of a differential
inequality on the coefficients of the considered operator. Eventually, it allows us to prove the
convexity of V ω

E (s, t). In the next step, we apply the dynamic programming principle (see [66]) in
order to generalise the convexity property of V ω

E (s, t) to the Bermudan option’s value function.
This fact is stated in Lemma 6. Ultimately, we conclude about the convexity of V ω

A (s).
In the remaining part of the thesis, we focus on the perpetual American put option with the

value function
V ω

APut(s) := sup
τ∈T

Es
[
e−

∫ τ
0 ω(Sw)dw(K − Sτ )

+
]

for some strike price K > 0 and St being a spectrally negative exponential Lévy process.
Using the classical optimal stopping theory presented in [120], we identify the optimal stop-

ping region for this problem as an interval and we consider the function

vωAPut(s, l, u) := Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u)

+
]
, (3)

where
τl,u := inf{t ≥ 0 : St ∈ [l, u]} (4)

for 0 ≤ l ≤ u ≤ K. To determine the closed-form of V ω
APut(s) we need to take the maximum over

levels l and u in formula (3). This fact is stated in Theorem 2. Finally, these results lead us to
the crucial theorem, that is Theorem 3 with the closed-form of vωAPut(s, l, u).

We recall that the spectrally negative Lévy processes do not have positive jumps. Hence,
our analysis could be applied to the Black-Scholes model, as well as to the spectrally negative
exponential Lévy process with downward exponential jumps. In Theorem 4 and Theorem 5
we present the closed-form of vωAPut(s, l, u) in both these scenarios. In addition, in the latter
case, we assume a non-negative discount function ω, which implies l = 0, and therefore we can
express vωAPut(s, 0, u) in terms of the generalised scale functions introduced in Chapter 1. It
is a consequence of the use of first passage time laws and the fluctuation theory considered in
[105]. In this analysis, the change of measure technique developed in [119] is also a crucial step.
In Theorem 6, we show that the generalised scale functions satisfy certain ordinary differential
equations, which in some cases can be solved analytically.

For optimal stopping problem (1), we give sufficient conditions under which we can formalise
the classical approach. In particular, in Theorem 7 we prove that if the value function V ω

A (s)
is smooth enough, it is a unique solution to a certain Hamilton-Jacobi-Bellman (HJB) system.
Moreover, considering an exponential Lévy process of the asset price St, we prove that the
regularity of 1 for (0, 1) and (1,∞) gives the smooth fit property at the ends of the stopping
region. We want to underline here that proving the regularity of the value function for jump-
diffusion processes (which allows one to formulate the HJB equation) in general is a challenging
problem (see [52] for some deep results related to it). Nevertheless, it is possible in our case due
to Theorem 7 and Remark 9. We rely on the classical approach of [102] and [120]. Further, even
solving the HJB equation does not provide the form of the stopping region (besides the fact that
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it is the set where the value function equals the payoff function). This is why we do not follow
this path, but stick with our methodology.

We also show that in this general setting of functional discounting, one can express the price
of a call option in terms of the price of a put option. It is called put-call symmetry (or parity) and
is provided in Theorem 8. The proof is based on the exponential change of measure introduced
in [119]. This result supplements [64, 74], where the authors extended to the Lévy market the
findings obtained in [32].

The last part of our dissertation contains examples in which we analytically or numerically
determine the value function V ω

APut(s) for different discount functions ω. As the underlying
process St, we consider the Black-Scholes model and the exponential Lévy process with downward
exponential jumps. In the first scenario, we take the negative ω function and show that a double
continuation region appears in this case. In other words, the optimal stopping region is an
interval [l∗, u∗], where l∗ > 0 which is a rare event in the study of option pricing. For the
selected discount function, we obtain the analytical form of the value function, which consists
of Gaussian hypergeometric functions. For the latter scenario, we take a linear and power
discount function ω. For these functions, we again derive analytical forms of the value function.
This time, they include special functions like the Kummer confluent hypergeometric function
and Bessel functions of the first and second kind. Lastly, we present how we can numerically
determine the value function for different discount functions for which we are unable to obtain
the analytical solution.

The dissertation is structured as follows. Chapter 1 presents the preliminaries, which cover
the basics of financial markets, some background on option pricing theory and basic information
about Lévy processes and scale functions. Moreover, we state the main problem of the thesis with
the motivation and purpose justification for the conducted study. A comprehensive literature
review on the subject is also provided. Lastly, we present the notation used throughout this
dissertation.

Chapter 2 contains the main results of this thesis. First, we present the general set-up
with which we work and state assumptions used in theorems and lemmas in this chapter. We
then formulate Theorem 1 on the convexity of the value function. Next, we focus only on
the put option and define the optimal stopping time as the first moment when the asset price
enters a given interval. This observation is stated in Theorem 2. In Section 2.4, we formulate the
main theorem, that is Theorem 3, in which we present the closed-form of the value function for the
case when the asset price process follows the spectrally negative exponential Lévy process. Next,
in Theorem 4 and Theorem 5 we present specific instances where the asset price process follows
the geometric Brownian motion and the exponential Lévy process with downward exponential
jumps, respectively. In the latter case, the value function consists of the so-called ξ-scale functions
that satisfy certain ordinary differential equations, as stated in Theorem 6. Later, we show
that our set-up makes the classical approach via the HJB system possible. In other words, in
Theorem 7 we prove that the value function V ω

A (s) satisfies the HJB system. Our last primary
result is put-call parity, which allows us to calculate the price of the perpetual American call
option having the price of the put option. It is given in Theorem 8.

Chapter 3 presents examples of closed-form value functions for different discount functions
ω with their figures. First, we introduce the pricing methodologies we use, i.e. the analytical
and the numerical approach. Then we present an example of the Black-Scholes model and the
negative discount function ω. This case generates a double continuation region. In addition,
we indicate some examples for the case of a spectrally negative Lévy process with downward
exponential jumps. We can obtain analytical solutions for some cases and compare them with
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numerical ones. Finally, we show how we can proceed only numerically to obtain the value
function when we cannot find an analytical solution. This chapter contains many figures for the
various cases considered.

Proofs of the essential theorems, together with auxiliary lemmas and theorems, are included
in Chapter 4, as they could unnecessarily blur the main picture of the dissertation due to their
length and complexity.



Chapter 1

Preliminaries

In this chapter, we present some preliminary facts that form the basis for this dissertation. We
start with the basics of financial markets. We briefly discuss option pricing theory with its
history and risk-neutral pricing methodology, a crucial concept in financial mathematics1. In
addition, the fluctuation theory of Lévy processes is quoted, together with the scale functions,
which are the tools corresponding to different boundary-crossing problems related to the Lévy
processes. We state the main problem considered in the thesis with the motivation that has
driven us towards this scientific research. An extensive literature overview is also provided with
the notation used throughout the thesis. Although the facts mentioned here could be commonly
known, we decided to recall them briefly to provide completeness to this thesis and unify the
notation.

1.1 Basics of financial markets

Financial markets refer to any marketplace where financial products, such as stocks, bonds,
derivatives and others, are traded between two sides. Simply put, companies and individuals
can go to financial markets to meet various financial objectives, e.g. raising money by issuing
bonds or stocks to grow their businesses. In contrast, in the case of financial surpluses, they can
also lend money to other companies. For individual investors (whether large institutions such as
banks or hedge funds), financial markets offer the opportunity to invest money in exchange for
a return called a dividend and the prospect of added value if their assets appreciate. There are
undoubtedly many more possibilities for allocating and investing capital in financial markets.
As more complex instruments were developed starting in the seventies of the twentieth century,
it turned out that the mathematical apparatus became an integral part of financial markets.
In general, finance is unique among the application areas of mathematics both in the level of
mathematics involved and the short gap between pure mathematical research and its application
in a commercial environment. In fact, the multitude of financial instruments, the complexity of
hedging strategies and risk management techniques have made the application of mathematics
to financial markets seem irreversible.

According to the European Central Bank (ECB), see [73], financial markets can be divided
into a money market, a debt market and an equity market. The money market consists of the
unsecured and secured cash and derivatives segments. The debt market is the market where debt
instruments are traded, whereas the equity market is a market in which stocks of companies are

1In this dissertation, we use the terms financial mathematics and mathematical finance interchangeably.
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issued and traded, either through exchanges or over-the-counter markets. We will pay special
attention to the first category as it contains derivative instruments (derivatives) that constitute
the most mathematical part of all financial instruments.

International Accounting Standard IAS 32 defines a financial instrument as any contract that
gives rise to a financial asset of one entity and a financial liability or equity instrument of another
entity, see [75]. There are several ways to categorise financial instruments. They may be divided
according to an asset class which depends on whether they are equity-based (reflecting ownership
of the issuing entity) or debt-based (reflecting a loan the investor has made to the issuing entity).
However, a group of financial instruments, such as foreign exchange instruments, is neither debt-
based nor equity-based and belongs to its own category. Another way to look at them is through
the lens of cash versus derivative. Cash instruments include products such as deposits, loans and
easily transferable securities. The market determines this type of instrument so that any market
fluctuations will be directly reflected in its value. On the contrary, derivative instruments derive
their value from the value of one or more underlying assets, such as stocks, indices or interest
rates. They do not require any principal investment in those assets. In simple terms, derivatives
are designed to create exposure to market prices to changes in an underlying asset. Some of
the more common derivatives include forwards, futures, options, swaps and variations such as
collateralised debt obligations or credit default swaps, which played a significant role in the
financial crisis of 2007–2008. In recent years, the traditional scope of derivative contracts has
been extended and more often they involve non-traditional underlying assets such as energy, real
estate and even insurance loss indices or weather, see [77] and [95] for surveys of these areas. The
power of derivatives is based on reducing the market risks associated with oscillations of stock
prices, interest rates or exchange rates. In other words, financial derivatives trading is based on
leverage techniques, i.e. it allows one to make enormous profits with a small amount of initial
capital. In general, derivatives are broadly categorised. One of the classifications includes lock or
option products. Lock products obligate the contractual parties to the terms over the duration
of the contract’s life (swaps, futures and forwards belong to this group). In turn, the second
group provides the buyer with the right, but not the obligation, to exercise the contract under
the specified terms. Another division concerns the way they are traded in the market: over-the-
counter derivatives (abbreviated as OTC) and exchange-traded derivatives (abbreviated as ET).
The first group contains contracts that are privately negotiated and traded directly between two
parties, without going through an exchange or other intermediary. The OTC derivative market
is the largest derivative market. It is predominantly unregulated with respect to the disclosure
of information between parties, since the OTC market is made up of banks and other highly
sophisticated parties, such as hedge funds. Reporting OTC transactions is complicated because
trades can occur privately without the activity being visible on any exchange. In contrast, ETD
derivatives are traded via specialised derivative exchanges or other exchanges, where individuals
trade standardised contracts that the exchange has defined. A derivative exchange acts as an
intermediary and takes an initial margin from both sides of the trade as a guarantee, making
this type of transaction safer for both parties.

Large financial corporations mainly use derivatives for various investment purposes, such as
risk management (e.g. to hedge by providing offsetting compensation in case of an undesired
event) or for speculation (making a financial bet, often based on the sentiment of market par-
ticipants). Recently, many funds have begun to use financial derivatives as an alternative to a
long-term buy-and-hold strategy. For example, some portfolio managers may hold a portfolio of
index futures instead of the underlying stocks that make up the indices. In addition, the ability
to create instruments based on any asset is conducive to the constant growth of this market.
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To give an idea of the size of the derivative market, The Economist has reported that in June
2011, the over-the-counter derivative market amounted to approximately $700 trillion and the
size of the market traded on exchanges totalled an additional $83 trillion. Other sources, such
as [134], report that the derivative market is estimated to be worth more than $1.2 quadrillion.
Some analysts estimate that the derivative market is worth more than ten times the world’s gross
domestic product.

The explosive growth in derivative contracts occurred after 1999, when the Glass-Steagall
Act was repealed, which allowed banks to operate as brokerage houses. Glass-Steagall, adopted
in 1933, separated brokerage houses and banks to ensure banks would no longer be involved
in risky transactions, which was the root cause of the crash that led to the Great Depression
in 1929. Today, there is a degree of consensus that derivatives positively impact the financial
system as a whole. For a comprehensive review in this area, we refer to [134].

Many annual surveys of derivative exchange volumes highlight strong growth in futures and
options trading in recent years. According to [2], at the global level, the total number of futures
and options traded on exchanges around the world increased to 24.78 billion contracts in 2016. In
particular, the expansion of options is visible, providing much space for investment manoeuvres
for institutional and individual investors. In the markets, there are exchange-traded options and
OTC options. The former are standardised call and put contracts on, for example, the major
stock indices, typically with a range of strike levels and maturity times less than one year. On
the other hand, OTC options are negotiated on a case-by-case basis between banks and may
involve longer maturities and more exotic features. Their prices are not publicly quoted.

A critical moment in option development in the modern study of options was 1973. As
originally presented in [28], Fischer Black and Myron Scholes came up with the celebrated option
pricing formula. This formula provides a closed-form solution for the price of a European call
option on a non-dividend-paying stock. Robert Merton shortly after published a paper, see
[112], expanding the mathematical understanding of the option pricing model and coined the
term Black-Scholes option pricing model2. This formula immediately became very influential
in finance and led to a boom in option trading on real markets. The same year, on 26 April
1973, the options were first publicly traded on the Chicago Board Options Exchange (CBOE).
The first created standardised, listed options were the call options on 16 stocks, whereas the put
options were not even introduced until 1977.

The Black-Scholes formula and related concepts of hedging and replication of derivative se-
curities had an enormous impact on the paradigms of financial markets. In particular, stochastic
models became ubiquitous in the financial industry. These factors have made the range of op-
tions that can be traded a function of investor demand. This new wave of option trading seems
unlikely to recede. Furthermore, technology has made access to financial markets easier for small
and more prominent investors, so trading options and other derivatives will be a significant part
of financial markets over time.

1.2 Option pricing theory

To better understand the concept of how financial options work, let us consider the following
example. We assume that a trader buys the option to buy wheat at £100 per bushel in six
months from now. After this time, the trader would profit if the market price of wheat per
bushel exceeded £100 per bushel because he/she would be able to pay less for the product than

2In the modern literature it is very common to encounter the term Black-Scholes formula.
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its market price. On the other hand, if the market price drops below £100 per bushel, the trader
would not exercise this option and would limit the loss of this transaction to the cost of buying
the option. In the case of a forward contract, the situation is very similar, but the buyer must
buy wheat at £100 per bushel regardless of its market price. In this situation, determining the
price of this contract is simple because we know precisely the cash flow that will occur on the
expiration date. Therefore, the fair price of a forward contract is a discounted cash flow from
the expiry day. Note that the final cash flow is unknown for options, as it depends on the future
market price, making option pricing a more mathematically demanding task. This example
illustrates a commodity call option; while there are many other examples of options and new
types of options are constantly emerging.

The cost of the option is often called an option premium or an option value. It is often
the leading focus of research in option pricing theory, as the valuation of financial options is
carried out in a formalised mathematical manner. In some simplification, we can say that this
premium is calculated by taking the conditional expectation of a discounted cash flow under the
risk-neutral measure. It is a key element of the whole theory and this topic will be expanded in
one of the subsections below.

As we already know what a financial option is and how it works, we try to give a flavour
of mathematics to indicate how option pricing theory can be complementary to the practical
side of option trading. In short, option pricing theory is a probabilistic approach to assigning
a value to an option contract. It is simultaneously the primary goal of this theory. However,
it also consists of side tasks, like deriving various risk measures (known as the option Greeks).
Since market conditions are constantly changing, the Greeks provide traders with a means to
determine how sensitive the value of a derivative contract is to factors such as price fluctuations,
volatility or time to expiry. The most common of the Greeks are simply the first- and second-
order derivatives of the value function. Option traders and portfolio managers consider these
measures essential as they can benefit from them to hedge risk and understand how the P&L
(Profit and Loss Statement) will behave as other factors fluctuate.

As we mentioned in the previous section, the 1970s turned out to be a breakthrough in the
option pricing theory. Published in 1973, the Black-Scholes option pricing model brings a new
quantitative approach to pricing options, helping fuel the growth of derivative investing. It was
the first widely used mathematical method to calculate the theoretical value of an option contract
using current stock prices, dividends, option strike price, interest rates, time to expiration and
volatility.

1.2.1 Historical background

We now reveal some crucial facts in the development and application of options contracts that
have happened over the centuries. We pay special attention to the events of the twentieth century,
which made it possible to formalise the valuation of options from a mathematical point of view
and thus introduce these instruments into everyday use in financial markets.

The history of option contracts dates back to ancient times, while the development of ex-
change trading for option contracts took place from the 16th to 18th centuries.

In Politics [5, Book I, Chapter 11, Sections 5-10], Aristotle relates a history of how the
Greek philosopher Thales of Miletus profited from an option-type agreement around the 6th
century BC. According to the story, one year ahead, he predicted that the next olive harvest
would be exceptionally good and used what he had to place a deposit on the local olive presses.
Consequently, Thales secured the rights to the presses at a relatively low rate. When the harvest
proved to be bountiful, demand for the presses was high, so Thales charged a high price for their
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use and reaped a considerable profit. Paraphrasing it in modern trading terms, Thales bought
a call option on olive presses and paid a small premium for this option. Another often quoted
ancient reference to an option-feature transaction can be found in Genesis 29 of the Bible, where
Laban offers Jacob an option to marry his youngest daughter, Rachel, in exchange for seven years
of labour. This story illustrates an important issue associated with option trading, that is the
possibility of delivery failure. Luckily, that did not happen in this case. Although Aristotlean
and Biblical anecdotes provide notable evidence of option contracting in ancient times, following
the evolution of options through time is complicated by the similarity of option contracts to
other types of contracts, such as gambles. For more information on option contracts in ancient
times, see [123].

Moving on to more modern times and the expansion of trade, the rise of urban centres caused
that forward and option contracts became essential for urban merchants, as they could contract
with agricultural producers for crops before harvest or fishermen for catches before arrival at port.
The evolution of options contracts revolved around two critical elements: enhanced securitisation
of transactions and the emergence of speculative trading. Both these developments are closely
connected with the concentration of commercial activity, initially at the sizeable medieval market
fairs and, later, on the bourses. Over time, medieval market fairs were surpassed by trade in
urban centres such as Bruges, Antwerp and Lyon. Due to the rapid expansion of seaborne trade
during the period, speculative transactions in grain were still particularly active at sea. The
trade in whale oil, herring and salt was also important, see [11], [72] and [76]. For more details
on the emergence of futures and options contracts trading on the Antwerp Exchange, see [142].
The collapse of Antwerp in 1585 and the resulting diaspora of merchants contributed significantly
to the rise of the financial and commodity exchanges in Amsterdam and London.

During the 17th and 18th centuries, trading forward and option contracts on the Amsterdam
exchange exhibited many essential features of exchange trading in modern derivative markets.
By the middle of the 17th century, trading on the Amsterdam bourse of options on the Dutch
East Indies Company and the Dutch West Indies Company had progressed to where the put and
call options with regular expiration dates were traded, see [76] and [144]. By the 18th century,
the trade involved Dutch joint stock shares and British funds. This trading on the Amsterdam
bourse is the first historical instance of exchange trading in financial derivative contracts.

Over time, more speculators began appearing in the commodity markets. The reasons for this
were the lack of significant price variability, the practise of using forward contracts with terms in
years or a few days, and the inability of speculators not connected to the trade to handle physical
delivery. One of the more famous examples is the tulipmania of 1634–1637 when contract prices
for some bulbs of the recently introduced and fashionable tulip reached extraordinarily high levels.
It triggered actions restricting speculative participation in commodity markets. Since late 1636,
the Dutch parliament had considered a decree that changed how tulip contracts functioned. Legal
changes were eventually introduced in 1637 and forward contracts were transformed into option
contracts to limit the speculative bubble. Following the Glorious Revolution of 1688, many of
the speculative practises used in Amsterdam were adopted in England, where stock trading had
a highly developed spot market by the mid-1690s.

The modern perception of option contracts as a sophisticated risk management tool is in-
consistent with the long history of attempts to impose legal restrictions on option trading. The
basis for such restrictions is the close correspondence between option contracts and gambles.
Since these contracts were often used for gambling purposes, the parties to the contract could
not expect the protection of the courts if the transaction did not go as planned. Brokers and
other agents with public recognition or registration were not allowed to facilitate such contracts.
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As a consequence, option trading was generally restricted to private transactions between indi-
viduals in which professional or social reputation was used to control the risk of contract default.
During the emergence of trade in free-standing option contracts, the conventional legal view was
that such contracts could be entered into by private parties willing to conduct such business
without the guarantee that the courts could be used to enforce such contracts. However, in
periods of speculative excess, the abuse of option contracts produced a subsequent demand for
regulation.

There is limited information about the methods used for pricing options contracts at that
time. De la Vega ([54]) and de Pinto ([56]) indicate that the options were used primarily to
speculate and not to manage the risk by participants in the cash market. Therefore, it is possible
that the forces of supply and demand mainly determined prices. On the other hand, Wilson
([144]) points out that there was also some understanding and application of the concept of
cash-and-carry arbitrage, especially for time bargains. He provides, among other things, quotes
for options on East India Company and South Sea Company shares in 1719 that reflect some
pricing inefficiencies. However, there is evidence that option writers understood a put-call parity
and, consequently, could have created fully hedged written option arbitrage profits. Both de la
Vega and de Pinto contain statements indicating that the put-call parity was understood, as it
was applied in specific circumstances of the late 17th and 18th century on the Amsterdam option
market.

The history of option pricing theory is sparse. Relatively little was written until the ap-
pearance of Bachelier ([9]) and Bronzin ([31]), although Lefèvre ([87]) introduced the valuation
using expiration date profit diagrams. Before this time, there was evidence that market partic-
ipants had a subtle understanding of option pricing. However, market convention rather than
competitive pricing was more important to determine the actual premiums of the options, for
more information see [44]. For various reasons, including a history of speculative abuses, option
trading was held in low esteem by the majority of stock and commodity market participants,
especially in the United States. Consequently, the trade was generally conducted by a specialised
group of traders catering to a relatively small clientele. This changed in the 19th century, when
the popularity of options began to increase rapidly. It was related to the dramatic expansion
of stock issues associated with railway, canal and industrial growth. At some point, this trade
expanded to include retail investors. Although important merchant manuals from the first half
of the century, such as [139], do not contain a discussion of options, similar manuals at the time
[31], such as [61], include a detailed discussion indicating active trading of options on stocks in
Paris and, to a lesser extent, in London and Berlin.

1.2.1.1 Modern history

Modern mathematical finance is a child of the twentieth century. As written in [45]: The date
March 29, 1900, should be considered as the birthdate of mathematical finance. On this day,
Louis Bachelier defended his doctoral dissertation Théorie de la Spéculation [9], at the Sorbonne
University in France. Bachelier’s extraordinary thesis was years, and in some respects decades,
ahead of its time. His pioneering analysis of the stock and option markets contains several ideas
of enormous value in finance and probability. In particular, the theory of Brownian motion, one
of the most important mathematical discoveries of the twentieth century, was initiated and used
to develop a rational theory of option pricing. He also explicitly discovered the fundamental
relation between Brownian motion and the heat equation. This fact was rediscovered five years
later by Einstein [65]. It resulted in a goldmine of mathematical investigation through the work
of Kolmogorov, Kakutani, Feynman, Kac and many others up to recent research. It is worth
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noting that Henri Poincaré, in his report on Bachelier’s thesis, expressed regret that Bachelier did
not study in detail the discovered relationship of stochastic processes with equations in partial
derivatives. He was probably intrigued by deeper perspectives in this area. A more detailed
description of Louis Bachelier’s life and scientific work can be found in [45].

After Bachelier’s pioneering work, it remained silent around the theme of option pricing
for almost 70 years. The time was not ripe for sophisticated financial instruments, technology
could not have handled them, and there was little matter of two world wars and the Great
Depression. The Bretton Woods agreements [89] on fixed exchange rates and barriers to capital
movements from 1944 provided little scope for financial intermediation. Meanwhile, however,
the mathematicians were far from idle. In 1905, Einstein, in his substantial paper [65], derived
the Brownian transition function of the form

q(x, t) =
1√
2πt

e−
x2

2t

by analysing the diffusion of particles in a perfect gas. This result put the Brownian motion
as a mathematical model firmly on the map. As mentioned above, five years earlier, Louis
Bachelier showed that q(x, t) is the solution of the Chapman-Kolmogorov equation and solves
the heat equation. In 1923, Norbert Wiener [143] provided a rigorous treatment, showing that it
is possible to define a probability measure on the space of continuous functions, which corresponds
to the Brownian transition function. In 1933, Kolmogorov published his book [92], which laid
the modern axiomatic foundations of probability theory. In the late 1930s, Joseph Leo Doob
formally introduced the concept of martingale in [62]. Then, in 1944 Kiyoshi Itô, attempting to
elucidate the connection between partial differential operators and Markov processes, introduced
stochastic differential equations and the famous Itô stochastic calculus, see [83]. In later years,
major contributions to the development of stochastic calculus were made by McKean in [111] and
Meyer, who formulated the supermartingale decomposition theorem, see [114, 115]. It opened
the way to defining stochastic calculus for general classes of semimartingales, not just Brownian
motion. Stroock and Varadhan in [135, 136] definitively demonstrated the connection between
martingales and Markov processes. The net effect of these developments was to turn stochastic
calculus from a niche topic of interest to a few initiates into a substantial body of techniques
accessible to a wide range of applied scientists. More details on the history of probability theory
and stochastic calculus can be found in the excellent textbook by Rogers and Williams [126].

An intense period of progress in financial mathematics was 1965–1980. An American
economist Paul Samuelson rediscovered Bachelier’s thesis in the library of Harvard University
in 1965, following a request of the statistician J. Savage. He was immediately fascinated by
Bachelier’s work and started a line of research on option pricing and related topics, which at
this time had much more repercussions than Bachelier’s thesis. In his pioneering paper [130],
Samuelson proposed a multiplicative version of Bachelier’s model by introducing a geometric
Brownian motion to model the stock price behaviour. Compared to Bachelier’s model, the ge-
ometric Brownian motion takes positive values with probability one and the logarithmic stock
price returns are normally distributed. These characteristics reflect real stock price movements
much more accurately. Samuelson’s study provided a viable model for stock prices that led, eight
years later, to the central result of modern finance, the Black-Scholes option pricing formula [28].
Bernstein, in [22], recounts in detail the background to the discovery of the glorious formula by
Fischer Black, Myron Scholes and their collaborator Robert Merton.

The Black-Scholes formula was published in 1973. The same year that option trading began
on the Chicago Board Options Exchange (CBOE). Once the formula was digested and researchers
recognised the power of stochastic calculus for analysing business and theoretical problems, the
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range and depth of applications expanded rapidly. Among the most critical early applications,
beyond option pricing, were dynamic models of the term structure of interest rates, beginning
with those of Vasicek [141] and Cox, Ingersoll and Ross [48]. In addition, in 1973, the Bretton
Woods system finally collapsed, leading to an immediate requirement for managing exchange
rate volatility. By 1980, the arbitrage pricing theory had become well understood; the close
link with martingale theory was established by Harrison, Kreps and Pliska, see [78, 79]. It is
coincidental but relevant that 1979 was the date of the first IBM PC, ushering in the era of
massive computational capacity without which the industry could not exist.

Another model that played a decisive role in the development of option pricing was the bino-
mial tree model, introduced by Cox, Ross and Rubinstein [47] in 1979. Its simple structure and
easy implementation have given analysts the ability to price a wide range of financial derivatives
almost systematically. The key results regarding this model are as follows: there is a unique
martingale measure, the price of an option is obtained by computing the discounted expecta-
tion with respect to this measure and it can be characterised as the unique measure such that
the discounted underlying price process is a martingale. The question of to what extent these
properties generalise to other market models turned out to be surprisingly delicate and definitive
answers were not given until the 1990s.

Today, most traded stock and futures options are American style, but most index options are
European. The former can be exercised at any time up to and including the expiration date. In
turn, the European options can only be exercised on the expiration date. In general, the price of
an American option is equal to that of a European option, plus an additional non-negative early
exercise premium.

1.2.2 Risk-neutral pricing

A common issue that arises frequently in different financial problems is the valuation of future
cash flows, which are risky because the payment is not deterministic. A classical way to proceed
is to estimate future cash flows and discount them to the present date. Nevertheless, of course,
there is some uncertainty involved in estimating these future cash flows. The usual way to
compensate for this uncertainty is to apply an interest rate higher than the riskless rate of return
corresponding to the rate of return of government bonds. The spread between the risk-free rate
of return and the interest rate used to discount future cash flows can be quite substantial to
compensate for the riskiness. In mathematical terms, the above procedure may be described as
follows: first, one determines the expected value of the future cash flows and then discounts by
using an elevated discount factor. However, there is no systematic way to assess the degree of
uncertainty in determining the expected value that can be quantified and how this should be
considered to determine the spread between the interest rates.

The foundation of option pricing theory is based on a different approach, which is based on the
concept of a risk-neutral probability measure rather than a real-world probability measure3. The
mathematical model of a financial market under the risk-neutral measure refers to a virtual world,
not a real one. As under the risk-neutral measure, the asset price process discounted by the risk-
free interest rate is a martingale; it is common to call this measure a martingale measure. This
approach was applied in the seminal paper [28] of Fischer Black and Myron Scholes. It simply
consists of calculating the expected value of future cash flows under the risk-neutral probability

3Typically in the literature, the risk-neutral probability measure is denoted by Q, while the real-world probabil-
ity measure is denoted by P. In our work, we focus exclusively on option pricing and denote by P the risk-neutral
probability measure, while we do not use the notation Q at all. We also use the symbols Ps and P(x) to indicate
that S0 = s and X0 = x, respectively.
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measure and discounting them with the risk-free rate. The natural question that arises is about
the existence and uniqueness of the risk-neutral probability measure. Unfortunately, there is no
simple answer and it depends on the model under consideration.

In the case of the Black-Scholes model, there is a unique martingale measure, which can be
derived via the Girsanov theorem. More on this topic will be presented in the section on the
Black-Scholes model. In many applications, it is not necessary to even consider the original
real-world probability measure. It is common in the literature that authors work under the risk-
neutral measure and all assumptions are made under this set-up. We also proceed in this way in
the central part of the thesis.

The technique of a risk-neutral measure was not the novel feature of the Black and Scholes
work. It was used decades earlier by Bachelier in his dissertation thesis [9]. In the first pages
of his thesis, Bachelier lists two kinds of probability, i.e. the probability which might be called
mathematical, which can be determined a priori and which is studied in games of chance and
the probability which depends on future events and consequently is impossible to predict in
a mathematical manner. The latter is the probability that the speculator tries to predict. In
retrospect, one can interpret the first statement as the risk-neutral probability measure and the
second as the real-world probability measure.

1.2.3 Fundamental Theorem of Asset Pricing

The Fundamental Theorem of Asset Pricing is one of the pillars supporting mathematical finance.
In vague terms, it states that the no-arbitrage possibility in the market is equivalent to the
existence of a probability measure being equivalent to the real-world measure and under which
the asset price process is a martingale.

The story of this theorem started with the work of Black, Scholes [28] and Merton [112], where
these authors considered geometric Brownian motion as a model that describes the behaviour
of asset prices. They used a technique to price options, where one changes the underlying
measure to an equivalent measure under which the discounted stock price process is a martingale.
Subsequently, the option value was obtained by taking the expectation with respect to this
measure, which is called the risk-neutral measure. This technique was not the novel feature of
[28] and [112]. It was used by Bachelier [9], who considered the Brownian motion as a model of
a stock price process. The prices obtained by Bachelier were, at least for the empirical data he
considered, very close to those derived from the celebrated Black-Scholes formula, see [132].

The decisive novel feature of the Black-Scholes model was the argument linking the option
pricing technique with the notion of arbitrage. In other words, the payoff function of an option
can be precisely replicated by hedging, that is by dynamically trading in the underlying asset.
This idea is credited in [112, footnote no 3] to Merton who opened up a new perspective on
how to deal with options. The technique of replicating the option is absent in Bachelier’s work,
whereas the idea of spanning a market by forming linear combinations of primitive assets first
appears in the classic paper [6] by Arrow. The mathematically delightful situation that the
market is complete, which means that all derivatives can be replicated, occurs in the Black-
Scholes model and in Bachelier’s original model. Another example of a continuous-time model
that shares this property is the compensated Poisson process, as observed by Cox and Ross [46].
Roughly speaking, these are the only models in continuous time sharing this beautiful martingale
representation property, see [80] and [104] for a precise statement on the uniqueness of martingale
measure for these families of models. As attractive as it might be, the consideration of complete
markets is somewhat dangerous from an economic point of view. The precise replicability of
options, a sound mathematical theorem, may lead to the illusion that this is also true in economic
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reality. However, of course, these models are far from matching reality one-to-one. Instead, they
only highlight essential aspects of reality and should not be considered universally appropriate.

When the merits and limitations of the Black-Scholes model unfolded in the late 1970s, the
investigations on the Fundamental Theorem of Asset Pricing started. As Harrison and Pliska
formulate it in the introduction to their classic paper [79]: it was a desire to better understand
their formula which originally motivated our study, ... The challenge was to obtain a deeper
insight into the relation of the following two aspects: on the one hand, the pricing methodology
by taking expectations with respect to a properly chosen risk-neutral measure and, on the other
hand, the pricing methodology without arbitrage considerations. It was unclear why these two
seemingly unrelated approaches yield identical results in the Black-Scholes model. Perhaps even
more relevant was the question: How far can this phenomenon be extended to more involved
models? The first to discuss these questions in a systematic way was Ross [129], see also [46],
[127] and [128]. He formulated the first precise version of the Fundamental Theorem of Asset
Pricing in [129] with the proof based on the Hahn-Banach theorem. After this early work
by Ross, a major advance was achieved between 1979 and 1981 by three seminal papers [78],
[79], [96] by Harrison, Kreps and Pliska. They also formulated a version of the Fundamental
Theorem of Asset Pricing for finite, filtered probability space, see [79, Theorem 2.7, p. 228].
The proof again relies on the Hahn-Banach theorem (a finite-dimensional version) plus an extra
argument, making sure to find a measure which is equivalent to the real-world measure. The
restriction to a finite probability space is very severe in applications. The concept of continuous
time is the theory’s flavour, building on the Black-Scholes model. Nevertheless, this involves
infinite probability spaces. Many interesting concerns were formulated in the papers [78] and
[79], hinting at the difficulties of proving a version of the Fundamental Theorem of Asset Pricing
beyond the setting of finite probability spaces. Kreps, in his paper [96], achieved a breakthrough
in this direction. He introduced the concept of no free lunch. The economic interpretation of
the no free lunch condition is a sharpening of the no-arbitrage condition. This remarkable work
by Kreps set new standards and, for the first time, a mathematically precise statement of the
Fundamental Theorem of Asset Pricing was achieved for a general class of models in continuous
time. The heroic period of development of the Fundamental Theorem of Asset Pricing marked
by Ross [129], Harrison-Kreps [78], Harrison-Pliska [79] and Kreps [96] put the issue on safe
mathematical grounds and brought some spectacular results. However, there are still some
limitations and many questions remain open. Some of them were answered in subsequent years,
while others opened new perspectives. For a thorough overview of this topic, we refer to the
extensive monograph [55].

1.2.4 Black-Scholes model

In 1973, in the Journal of Political Economy, Black and Scholes published their seminal paper
[28], which influenced the dynamic growth of option pricing theory in the second half of the
twentieth century and played a profound role in the economics of everyday life. These authors
presented their model for pricing options. Shortly after that, Merton in [112] expanded the
mathematical understanding of this model. Departing from the no-arbitrage principle and using
the concept of dynamic trading, these authors derived the so-called Black-Scholes formula for the
price of a European call option. This formula provided, for the first time, a theoretical method
of fairly pricing a risk-hedging security. It can be presented as follows

V0 = sΦ(d1)−Ke−rTΦ(d2)
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with

d1 :=
log( sK ) + (r + σ2

2 )T

σ
√
T

and d2 := d1 − σ
√
T .

The parameters s, K, r, σ and T are constants and describe the specific characteristics of
a stock and an option, while Φ(·) denotes the cumulative distribution function of a standard
normal random variable.

The fundamental insight in their work is the idea of perfect replication. This technique has
no parallel in previous studies in the work of Bachelier. It turns out that in a market model
where prices follow geometric Brownian motion, perfect replication is possible, giving a unique
option price.

The groundwork assumption of the Black-Scholes model is that the market consists of at
least one risky asset, usually called the stock with the price denoted by St and one riskless asset,
usually called the money market, cash or bonds with the price indicated by Ft. The following
equations model these prices {

dSt = µStdt+ σStdBt,

dFt = rFtdt,

where µ, σ and r are constants in the model representing drif, volatility and riskless rate, respec-
tively, while Bt is a Brownian motion under the real-world measure4.

From the Girsanov theorem, we know that there exists a measure, called a risk-neutral
measure, under which the discounted stock price process e−rtSt is a martingale. Moreover, under
this measure, the process St follows a geometric Brownian motion as in the initial settings, but
with another drift parameter, that is

dSt = rStdt+ σStdBt,

where Bt is a Brownian motion under the risk-neutral probability measure. The point is that
the drift term in the above SDE is equal to r, the risk-free interest rate. So in such a case,
we say that the market is risk-neutral. In other words, when we price an option, we use the
measure with respect to which the drift of the underlying asset is equal to the risk-free interest
rate r, so it is independent of the individual preferences of the two parties to the transaction. In
the Black-Scholes model, there is only one risk-neutral measure. As we mentioned earlier, this
feature characterises complete financial markets, meaning that all derivatives can be replicated.
For more details, refer to [42].

In general, the formula that provides a theoretical price for a European option with the payoff
function g can be written as

V0 = e−rTEs [g(ST )] ,

which can be described in words as the discounted expectation from the payoff function taken
under the risk-neutral measure.

In the modern financial industry, the Black-Scholes model is widely used. However, with some
adjustments, the methodology often extends to pricing a whole range of complex option products,
such as barrier options, basket options, look-back options, American options and many others.
Moreover, several of the assumptions of the original model have been removed in subsequent
extensions of the model, e.g. no dividends [112], continuous stock returns [113], continuous

4Later in this dissertation, in Chapter 2, we denote by Bt the risk-neutral measure as we do not focus on the
real-world measure at all.
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evolution of the stock price [47], constant variance of the underlying returns [81] or constant
interest rates [10].

The landmark work on option pricing theory was highlighted in particular by the Royal
Swedish Academy of Sciences in 1997 when the Nobel Prize was awarded to Robert Merton
and Myron Scholes 5. In the commission’s official press release, we can read: Robert C. Merton
and Myron S. Scholes have, in collaboration with the late Fischer Black, developed a pioneering
formula for the valuation of stock options. Their methodology has paved the way for economic
valuations in many areas. It has also generated new types of financial instruments and facilitated
more efficient risk management in society. In the later part of this document, we can also read:
Black, Merton and Scholes made a vital contribution by showing that it is in fact not necessary
to use any risk premium when valuing an option. This does not mean that the risk premium
disappears; instead, it is already included in the stock price.

1.3 Exponential Lévy processes

In this section, we look at exponential Lévy processes6 which form a generalisation of the Black-
Scholes model by allowing stock prices to jump. In general, the exponential Lévy process St is
defined by

St = seLt ,

where Lt is a Lévy process and S0 = s.
However, later in the thesis, we will use the notation

St = eXt , (1.1)

where Xt inherits the same properties as Lt, but is shifted by log s.
It turns out that the use of such models to describe the behaviour of financial assets has

become very common in recent years. Extensive empirical studies have shown that the Gaussian
model is not capable of capturing certain features such as skewness, asymmetry and heavy tails,
which are commonly encountered in financial data, see [41]. To overcome these problems, we
can replace the Brownian motion as a model for logarithmic prices with a general Lévy process
Xt. Then Xt as a Lévy process satisfies the property of independence and stationary increments.
These conditions go hand in hand with real market stock price movements and justify the utility
of exponential Lévy processes in financial modelling.

For a comprehensive survey on exponential Lévy models, we recommend textbooks such as
[42, 133] for a more financial perspective and [4, 99] for a more mathematical perspective. It is
worth mentioning that Lévy processes appear in a wide range of applications, not only in the
financial industry but also in physics, biology and other sciences.

In general, the exponential Lévy models fall into two categories. The first category, called
jump-diffusion models, assumes that the evolution of prices is given by a diffusion process punc-
tuated by jumps at random moments. In this situation, jumps represent rare events such as
crashes, large drawdowns, or rapid growths. A Lévy process can represent such an evolution
with a non-zero Gaussian component and a jump part with finitely many jumps, i.e.

Xt = ξt+ σBt +

Nt∑
i=1

Yi,

5Fischer Black was not awarded the Nobel Prize due to his death in 1995, but he was cited as a key contributor.
6In this thesis, we use the terms exponential Lévy process and exponential Lévy model interchangeably.
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where ξ ∈ R and σ ≥ 0 are constants, Nt is a Poisson process independent of Brownian motion Bt
and {Yi}i∈N is a sequence of i.i.d. random variables independent of Nt and Bt. The first model
considered in the literature of this type is the Merton model [113] from 1976. It establishes
that Yi has a normal distribution. Another model is the Kou model [94], where jump sizes are
distributed according to an asymmetric double exponential distribution.

The second category consists of models with an infinite number of jumps in every interval,
called infinite activity or infinite intensity models. In these models, one does not need to in-
troduce a Brownian component since the dynamic of jumps is already rich enough to generate
nontrivial small-time behaviour, see [34]. An example of the process in this group is the variance
gamma process [110], which is a three-parameter generalisation of the Brownian motion and is
obtained by evaluating a Brownian motion with constant drift and volatility at a random time
given by a gamma process. Contrary to previous models, the variance gamma process does not
have a continuous martingale component. Instead, it is a pure jump process with infinite activity,
see [43]. The density of the Lévy measure of the variance gamma process is given by

v(x) =
µ2p
νpx

e
−µp
νp
x
1{x>0} +

µ2n
νn|x|

e−
µn
νn

|x|
1{x<0},

where µp = 1
2

√
ϑ2 + 2σ2

ν + ϑ
2 , νp = µ2pν, µn = 1

2

√
ϑ2 + 2σ2

ν − ϑ
2 , νn = µ2nν, while ϑ, ν and σ

are the parameters of this model. Another example is the the CGMY model [34] as it has four
parameters: C, G, M , Y . It can be specified directly by the Lévy measure density of the form

v(x) =
C

x1+Y
e−Mx1{x>0} +

C

|x|1+Y
e−G|x|1{x<0},

where C > 0, G ≥ 0, M ≥ 0 and Y < 2. It is easy to see that by choosing Y = 0, C = 1
ν =

µ2p
νp

=
µ2n
νn

, G = µn
νn

and M =
µp
νp

we obtain the Lévy density corresponding to the measure presented
above for the variance gamma process. Hence the variance gamma process can be seen as a
particular case of the CGMY process.

In the next part of the thesis, our considerations centre around the exponential Lévy processes
with negative jumps. This class of stochastic processes appears frequently in scientific research,
including risk theory [146], option pricing [8] or insurance risk models [103].

1.3.1 Spectrally negative Lévy processes

Spectrally negative Lévy processes form a subclass of Lévy processes and are commonly used in
various financial applications. The fundamental feature of this class of stochastic processes is
the fact that they can only move upward in a continuous way. An arbitrary Lévy process can
be written as the difference of two independent spectrally negative Lévy processes, which gives
the possibility of establishing general results by studying this subclass of processes. Moreover,
by adding independent copies of any spectrally negative Lévy processes together, the resulting
process remains within the class of spectrally negative Lévy processes.

Later in this dissertation, we restrict ourselves to the model where Xt, from (1.1), is given by
the spectrally negative Lévy process (possibly starting at some positive value). This restriction
is mainly motivated by analytical tractability and the availability of many results regarding this
class of Lévy processes that we provide later in this thesis. It is also worth mentioning that our
choice goes hand in hand with market practise, that is in [35] the authors have offered empirical
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evidence to support the case of a model in which the spectrally negative Lévy process models
the risky asset.

Let us begin with a brief overview of what is meant by a spectrally negative Lévy process. We
suppose that (Ω,F ,F,P) is a complete filtered probability space with filtration F = {Ft : t ≥ 0}
satisfying the usual conditions. A stochastic process Xt is said to be a Lévy process on this
space if it is a strong Markov, F-adapted process with càdlàg paths, stationary and independent
increments and P(X0 = 0) = 1. From these properties, it can be shown that Xt is continuous in
probability and at any fixed time the probability of having a jump is zero.

The distribution of the Lévy process Xt is characterised by its characteristic function
φ : R → C of the form

φ(θ) := E(0)

[
eiθXt

]
,

where the subscript with brackets in E(0) denotes the initial value of X0. In this case, we have
X0 = 0. It can be shown that there exists a unique continuous function Ψ : R → C such that

φ(θ) = etΨ(θ).

Throughout the thesis, we call Ψ a characteristic exponent of Xt.
The Lévy-Khintchine formula provides us with the general form of Ψ, that is

Ψ(θ) = iζθ − σ2

2
θ2 +

∫
R

(
eiθx − 1− iθx1{|x|<1}

)
Π(dx),

where ζ ∈ R, σ ≥ 0 and Π is a measure on R\{0} such that
∫
R(1 ∧ x2)Π(dx) < ∞. As the

characteristic function uniquely determines the underlying probability distribution, each Lévy
process is uniquely determined by the Lévy-Khintchine triplet (ζ, σ,Π).

We say that Xt is a spectrally negative Lévy process if the measure Π is carried by (−∞, 0),
i.e. Π(0,∞) = 0. Notationally, we say that Xt is a spectrally positive Lévy process when −Xt

is spectrally negative.
We can also represent a spectrally negative Lévy process Xt as

Xt = ζt+ σBt + J
(−)
t ,

where ζ ∈ R is a drift parameter, σ ≥ 0 is a volatility parameter, Bt is a Brownian motion and
J
(−)
t is a spectrally negative Lévy process without a Gaussian component that is independent

of Bt. Here, we exclude the case where Xt has monotonic paths. The jumps of J (−)
t are all

non-positive, so the moment generating function of Xt exists for all θ ≥ 0. It allows us to talk
about the Laplace exponent that is defined by

ψ(θ) :=
1

t
logE(0)

[
eθXt

]
, (1.2)

which is well-defined at least for θ ≥ 0.
Taking into account an analytical extension of the characteristic exponent Ψ, we have

ψ(θ) = Ψ(−iθ), which is equal to

ψ(θ) = ζθ +
σ2

2
θ2 +

∫ 0

−∞

(
eθx − 1− θx1{|x|<1}

)
Π(dx).

Using Hölder’s inequality, or alternatively differentiating, it is easy to check that ψ is strictly
convex and tends to infinity as θ tends to infinity. Therefore, it allows us to define the right-
inverse of ψ given by

Φ(q) := sup{θ ≥ 0 : ψ(θ) = q},
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where q ∈ R. It denotes the largest root of equation ψ(θ) = q when it exists. We can ob-
serve that there exist at most two roots for a given q (there is always a root at zero since
ψ(0) = 0) and precisely one root when q > 0. By differentiating (1.2), we can see that
ψ′(0+) = E(0) [X1] ∈ [−∞,∞) which determines the long-term behaviour of Xt, see [98, Lemma
7, p. 23].

Let us now define the family of martingales given by

Et(α) := eαXt−ψ(α)t

for any α ≥ 0 and the corresponding family of probability measures {P(x) : x ∈ R} referring to
the conditional version of P where X0 = x is given. Applying the Girsanov theorem, we can
define a new probability measure P(α)

(x) via

dP(α)
(x)

dP(x)

∣∣∣∣∣∣
Ft

=
Et(α)
E0(α)

. (1.3)

Under this change of measure, Xt remains within the class of spectrally negative Lévy processes
(see [99, Corollary 3.10, p. 80]) with the Laplace exponent, under P(α)

(0) , given by

ψ(α)(θ) = ψ(θ + α)− ψ(α) (1.4)

for θ ≥ −α.
In the next part of the thesis, we focus our attention on the specific case of Xt, that is

Xt = ζt+ σBt −
Nt∑
i=1

Yi (1.5)

where {Yi}i∈N is a sequence of i.i.d. random variables which are exponentially distributed with
mean 1

ρ > 0 and Nt is a Poisson process independent of the Brownian motion Bt. Its Laplace
exponent takes the form

ψ(θ) = ζθ +
σ2

2
θ2 − λθ

ρ+ θ
. (1.6)

Taking into account the behaviour of ψ(θ) as θ → ±∞ and θ → ρ± we can easily verify that
for every q > 0 equation ψ(θ) = q has exactly three real solutions {γ1, γ2,Φ(q)}, which satisfy
γ2 < −ρ < γ1 < 0 < Φ(q).

Using (1.4), we can derive the Laplace exponent ψ(α)(θ) of Xt under P(α)
(0) , that is

ψ(α)(θ) = ζ(α)θ +
σ(α)

2

2
θ2 − λ(α)θ

ρ(α) + θ
,

where
ζ(α) = ζ + σ2α, σ(α) = σ, λ(α) =

λρ

ρ+ α
and ρ(α) = ρ+ α.

Further details about the class of spectrally negative Lévy processes and how they embed
within the general class of Lévy processes can be found in the monographs of Applebaum [4],
Bertoin [24], Kyprianou [99] and Sato [131].
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1.4 Scale functions

The main aim of this section is to provide some general definitions and facts involving q-scale
functions as well as specific generalisations of these functions that play a critical role in our
thesis.

Common factors that bind together the scale functions and spectrally negative Lévy processes
are the so-called one- and two-sided exit problems for spectrally negative Lévy processes. The
exit problems essentially consist of characterising the Laplace transforms of σ+a , σ−0 and σ+a ∧σ−0 ,
where

σ−a := inf{t ≥ 0 : Xt ≤ a} and σ+a := inf{t ≥ 0 : Xt ≥ a}

for a ∈ R. Note that Xt as a spectrally negative Lévy process starting at some point between 0
and a can hit the point a when crossing upward, as it can only continuously move upward. On
the other hand, it can hit 0 continuously or jump below zero. It has turned out that one- and two-
sided exit problems of spectrally negative Lévy processes can be characterised by the exponential
function together with two families, {W (q)(x) : q ≥ 0, x ∈ R} and {Z(q)(x) : q ≥ 0, x ∈ R} known
as the q-scale functions, see [24], [25], [26], [27], [71], [125], [138], [147].

Definition 1. For a given spectrally negative Lévy process Xt with Laplace exponent ψ(θ), we
define a family of functions indexed by q ≥ 0, W (q) : R → [0,∞), as follows. For each given
q ≥ 0, we have W (q)(x) = 0 when x < 0 and otherwise on [0,∞), W (q)(x) is the unique right
continuous function whose Laplace transform is∫ ∞

0
e−θxW (q)(x)dx :=

1

ψ(θ)− q
(1.7)

for θ > Φ(q).

Adding the subscript α to the q-scale function W (q)(x) means that we work under the P(α)
(0)

measure defined in (1.3). We can establish the following relationship for W (q)
α (x) with different

values of q and α.

Lemma 1 ([99, Lemma 8.4, p. 222]). For any q ∈ C and α ∈ R such that ψ(α) <∞ we have

W (q)(x) = eαxW (q−ψ(α))
α (x) (1.8)

for all x ∈ R and q ≥ ψ(α).

Another q-scale function considered in this thesis is the function Z(q)(x), which is defined as
follows.

Definition 2. For q ≥ 0, we define Z(q) : R → [1,∞) by

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy (1.9)

for x > 0 and Z(q)(x) = 1 for x ≤ 0.

Like the function W (q)(x), the function Z(q)(x) may be characterised by its Laplace transform
and continuity on (0,∞). Indeed, we can check that∫ ∞

0
e−θxZ(q)(x)dx =

ψ(θ)

θ
(ψ(θ)− q)
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for θ > Φ(q).
For convenience, we denote W (x) := W (0)(x) and Z(x) := Z(0)(x). For clarity of notation,

we refer to W (x) and Z(x) as the scale functions, while to W (q)(x) and Z(q)(x) as the q-
scale functions. Furthermore, we use the notations W (q)

α (x) and Z
(q)
α (x) to indicate the q-scale

functions for Xt under the P(α)
(0) probability measure.

For the review of one- and two-sided exit problems that contain the q-scale functions W (q)(x)
and Z(q)(x), we refer to [98, Section 3, p. 18]. To give only one immediate example of the
so-called two-sided exit problem, we provide an identity with a long history, see [25], [26], [125],
[138] and [147].

Remark 1 ([98, Formula (3), p. 19]). For any x ≤ a and q ≥ 0,

E(x)

[
e−qσ

+
a 1{σ+

a <σ
−
0 }

]
=
W (q)(x)

W (q)(a)
.

In fact, it is through this identity that the scale function gets its name. As noted in [40],
possibly the first reference to this terminology can be found in [23].

Now we state the result for the limit of Z(q)(x)

W (q)(x)
as x tends to infinity. For the formulation of

this result and the later part of the thesis, we shall understand 0
Φ(0) as limθ→0

θ
ψ(θ) ∨ ψ

′(0).

Lemma 2 ([99, Exercise 8.5, p. 234]). For q ≥ 0,

lim
x→∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
.

Considering Xt given in (1.5), we can obtain a convenient expression for the q-scale functions.
If we take the partial fraction decomposition of the rational function 1

ψ(θ)−q with ψ(θ) given in
(1.6) and invert the Laplace transform in (1.7), we conclude that

W (q)(x) =
eγ1x

ψ′(γ1)
+

eγ2x

ψ′(γ2)
+

eΦ(q)x

ψ′(Φ(q))
,

where {γ1, γ2,Φ(q)} is the set of real solutions to ψ(θ) = q. From (1.9) we calculate

Z(q)(x) = 1 + q

(
eγ1x − 1

γ1ψ′(γ1)
+
eγ2x − 1

γ2ψ′(γ2)
+

eΦ(q)x − 1

Φ(q)ψ′(Φ(q))

)
.

If we take σ = 0 or λ = 0 in (1.6), then W (q)(x) and Z(q)(x) take simplified forms, that is

W (q)(x) =
eγ1x

ψ′(γ1)
+

eγ2x

ψ′(γ2)

and

Z(q)(x) = 1 + q

(
eγ1x − 1

γ1ψ′(γ1)
+
eγ2x − 1

γ2ψ′(γ2)

)
for γ1 and γ2 again being the real solutions to ψ(θ) = q.

We also state here one more remark about the joint Laplace transform of the time to overshoot
and overshoot itself, which will be used later in our thesis.
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Lemma 3 ([99, Exercise 8.7, p. 235]). For x > 0, α ≥ 0 and u ≥ 0,

E(x)

[
e
−uσ−

0 +αX
σ−0 1{σ−

0 <∞}

]
= eαx

(
Z(q)
α (x)− q

Φ(q)
W (q)
α (x)

)
,

where q = u− ψ(α).

Now, we turn our attention to the specific generalisations of the q-scale functions.

Definition 3. For any measurable function ξ, we define the ξ-scale functions {W(ξ)(x), x ∈ R},
{Z(ξ)(x), x ∈ R} and {H(ξ)(x), x ∈ R} as unique solutions to the following renewal-type equations

W(ξ)(x) :=W (x) +

∫ x

0
W (x− y)ξ(y)W(ξ)(y)dy, (1.10)

Z(ξ)(x) := 1 +

∫ x

0
W (x− y)ξ(y)Z(ξ)(y)dy, (1.11)

H(ξ)(x) := eΦ(c)x +

∫ x

0
W (c)(x− z)(ξ(z)− c)H(ξ)(z)dz, (1.12)

where W (x) =W (0)(x) is a classical zero scale function and in equation (1.12) it is additionally
assumed that ξ(x) = c for all x ≤ 0 and some constant c ∈ R.

We also define a two-variable equivalent to W(ξ)(x).

Definition 4. For any measurable function ξ, we define the ξ-scale function {W(ξ)(x, z), (x, z) ∈
R2} by

W(ξ)(x, z) :=W (x− z) +

∫ x

z
W (x− y)ξ(y)W(ξ)(y, z)dy. (1.13)

We introduce the following St counterparts of the scale functions (1.10), (1.11), (1.12) and
(1.13)

W (ξ)(s) := W(ξ◦exp)(log s), (1.14)

Z (ξ)(s) := Z(ξ◦exp)(log s), (1.15)

H (ξ)(s) := H(ξ◦exp)(log s), (1.16)

W (ξ)(s, z) := W(ξ◦exp)(log s, z), (1.17)

where ξ ◦ exp(x) := ξ(ex).
Similarly as before, we can add the subscript α to the functions (1.14)–(1.17), which means

that we work under the P(α)
(0) measure. Therefore, we have W

(ξ)
α (s), Z

(ξ)
α (s), H

(ξ)
α (s) and

W
(ξ)
α (s, z).

We also define the following functions

η(x) := ω(ex) = ω(s), ηu(x) := η(x+ log u) (1.18)

and

ωu(s) := ω(su), ωαu (s) := ωu(s)− ψ(α). (1.19)

Lastly, we present the resolvent density at the point z of Xt starting at log s− log u killed by
the potential ωu and when exiting the positive half-line. It is given by

r(s, u, z) := W (ωu)(log s− log u)cW (ω)/W (ω)(z)− W (ωu)(log s− log u, z), (1.20)

where

cW (ω)/W (ω)(z) := lim
y→∞

W (ω)(log y, z)

W (ω)(log y)
.
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1.5 Main problem

As we mentioned in Introduction, the main objective of this dissertation is to price a perpetual
American put option with asset-dependent discounting. In other words, we want to obtain
a closed-form solution to the following problem

V ω
APut(s) = sup

τ∈T
Es
[
e−

∫ τ
0 ω(Sw)dw(K − Sτ )

+
]
. (1.21)

In financial terms, we call this function the value function of the particular option. Apart from
the financial nomenclature that we use in the dissertation, we can consider problem (1.21) as
a certain optimal stopping problem.

Asset-dependent discounting is reflected in the ω function, which is a crucial concept consid-
ered in this thesis. We underline that the discount function ω for various economic reasons can
be different from the risk-free interest rate r > 0; more on this topic will be discussed later.

The way we choose to discount is distinctive, i.e. we assume a strong dependence between
the discount factor and the asset price. Such a procedure aims to understand various economic
phenomena that might appear in this extreme case. Our approach differs from typical studies
considered in the literature, where the interest rate is independent of the asset price, or there
is a weak dependence between these two factors. Therefore, we believe that the research we
have conducted is noteworthy in the context of American option pricing and other areas where
optimisation problems are studied.

In the following, we present one of the main theorems of our thesis, which also appears in
Section 2.4 as Theorem 3. It shows us a closed-form of the function vωAPut(s, l, u) under certain
general assumptions. This function is related to the value function V ω

APut(s) by the equality

V ω
APut(s) = vωAPut(s, l

∗, u∗),

where

vωAPut(s, l
∗, u∗) = sup

0≤l≤u≤K
vωAPut(s, l, u).

Furthermore, the optimal stopping time in our problem takes the following form
τl,u = inf{t ≥ 0 : St ∈ [l, u]}. More detailed explanations on this topic are provided in Chap-
ter 2. What is essential here is that having the information that the optimal stopping region is
the interval [l, u] is enough to maximise function (1.23) with respect to both l and u to obtain
the final form of the value function V ω

APut(s). Moreover, by choosing a specific process St, we
are able to obtain a more simplified form of vωAPut(s, l, u) which is presented in Subsection 2.4.1
and Subsection 2.4.2. Furthermore, we derive analytical expressions of (1.21) for the specific
discount functions ω, these results are presented in Chapter 3.

Theorem. Assume that the stock price process St is described by (2.2) with Xt being the spectrally
negative Lévy process and ω is a measurable, bounded from below, concave and non-decreasing
function such that

ω(s) = c for all s ∈ (0, 1] and some constant c ∈ R. (1.22)
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Then

vωAPut(s, l, u) =
H (ω)(s)

H (ω)(l)
(K − l)1{s<l} + (K − s)1{s∈[l,u]}

+

{∫ ∞

0

∫ ∞

0

H (ωu)(( uey ) ∧ l)
H (ωu)(l)

(K − elog l∨(log u−y))r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u},

(1.23)

where

c
Z

(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)
α (z)

W
(ωα)
α (z)

and r(s, u, z) is given in (1.20).
If l = 0 then condition (1.22) is superfluous and

vωAPut(s, 0, u) = (K − s)1{s∈[0,u]}

+

{∫ ∞

0

∫ ∞

0
(K − elog u−y)r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u}.

(1.24)

From a practical perspective, formula (1.24) is much easier to handle than (1.23). In other
words, under certain assumptions, the lower bound of the optimal stopping region l = 0 and
then (1.24) reduces to (1.23), which is a much simpler form and more convenient to generate
numerical examples.

1.6 Literature Overview

Let us recall that the main goal of this thesis is to find a closed-form expression of (1.21) for
different stock price processes St and discount functions ω.

As we mentioned in Introduction, our primary approach to this problem is the assumption of
a robust and functional dependence between the discount function and the asset price process.
In particular, we take a closer look at the discount function, which has the opposite monotonicity
to the payoff function. At first sight, such a case seems counter-intuitive because, for the put
option, if the asset price is in a higher region, one can expect that the interest rate will be lower
and the opposite effect one expects for a smaller range of asset prices. This dependence somehow
balances the discount function with the payoff function. On the other hand, we can think of an
investor who has strong confidence in the movement of the asset price and wishes to make an
extra profit when he/she is right and suffers a more significant loss when he/she is wrong. This
concept resembles an idea that stands behind barrier options. If the investor believes that it is
unlikely that the asset price will hit a given level, he/she can add a knock-out provision with the
barrier set at the support level to reduce the price of an option. Including the barrier provision
can eliminate paying for these scenarios that he/she feels are improbable. In our approach, we
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work in two ways by reducing the premium thanks to improbably incidents from the investor’s
perspective and increasing it for scenarios that are more likely to happen for him/her. Such
a description of the analysed option adequately describes a financial instrument tailored to the
risky investor.

Let us list here, for example, an up-and-out step put option analysed by [106, Formula (2.6b),
p. 60]. It is a particular case of our option, except that it is of a European type, not an American
one, but its mechanism of action is very similar to the one we consider. Another example in which
asset-dependent discounting is considered is a so-called gold loan (see [39] for the survey related
to this financial instrument). This contract is characterised as follows: a borrower receives at
time 0 (the date of the contract inception) a loan amount K > 0 using one mass unit (one troy
ounce) of gold as a collateral, which must be physically delivered to a lender. This amount grows
at the functional borrowing rate given in the contract that can depend on the gold spot price
S̄t. When repaying the loan, the borrower can redeem the gold at any time and the contract
is terminated. Of course, the dynamic of S̄t under the risk-neutral measure is such that the
discounted price e−rtS̄t is a martingale, that is Es

[
S̄t
]
= ertEs

[
S̄0
]
. Assuming that the storage

costs are equal to the borrowing rate plus some fixed cost c > 0 per unit of time and that the
borrowing rate is a function ω̄ of the gold spot price increased by this fixed cost S̄tect, the value
of this contract, with an infinite maturity date, at time 0 equals

sup
τ∈T

Es
[
e−rτ

(
S̄τe

∫ τ
0 ω̄(S̄wecw)dw+cτ −Ke

∫ τ
0 ω̄(S̄wecw)dw

)+]
= sup

τ∈T
Es
[
e−

∫ τ
0 ω(Sw)dw (Sτ −K)+

]
,

(1.25)

where St = S̄te
ct and ω(St) = r− ω̄(St). As we can see from formula (1.25), such an instrument

is equivalent to a call option for the problem we analyse in this thesis.
Our dissertation seems to be the first to analyse the optimal problem of the form (1) in

this generality for jump-diffusion processes. For classical diffusion processes, Lamberton in [101]
proved that the value function given in (1) is continuous and can be characterised as the unique
solution to a variational inequality in the sense of distributions. Another crucial paper for our
considerations is [18] which introduced discounting via a positive continuous additive functional
of the process St and used the approach of Itô and McKean [84, Section 4.6, p. 128] to characterise
the value function. We can see that t→

∫ t
0 ω(Sw)dw is indeed an additive functional. A similar

problem was also considered in [108], where the authors developed an average problem approach
to prove the optimality of threshold type strategies for optimal stopping of Lévy models with
continuous additive functional discounting. If we take ω(s) = (log s − logK)+ for a strike K,
then

∫ t
0 ω(Sw)dw =

∫ t
0 (Xw − logK)+dw, which is equal to the area under the trajectory of

(Xt − logK)+. Therefore, in this special case, we can talk about the so-called area options, see
[51] for details.

Another interesting paper by Rodosthenous and Zhang [124] concerns the optimal stopping of
an American call option in a random time horizon under an exponential spectrally negative Lévy
model. An omega default clock models the random time horizon. In their case, the first time
the occupation time of the asset price below a fixed level y exceeds an independent exponential
random variable with mean 1

ϱ . This corresponds to the special case of our discounting with
ω(s) = r + ϱ1{s≤y}, where r is a risk-free interest rate. Similar discounting was analysed in
[60] where American step options were considered. In this case ω(s) = ϱ1{s∈A±(H)}, where
A±(H) = {s > 0 : ±(s − H) ≥ 0} with H being a constant barrier. Furthermore, the payoff
function of a step option is the same as the payoff of a vanilla option, except that a factor
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e−
∫ t
0 ω(Sw)dw deflates it when the knock-out rate ϱ is positive or inflates it by the same factor

when the knock-in rate ϱ is negative. In both cases, this factor depends exponentially on the
cumulative excursion time above or below a given barrier for the entire lifetime of the option.
This exponential functional can be interpreted as a knock-out (knock-in) discount factor. Step
options, as they are modifications of barrier options and belong to the group of non-standardised
financial products, are mainly traded over-the-counter.

The option we consider in this thesis also has this feature and can be used in direct trans-
actions between two parties without the supervision of an exchange. The idea of step options
can be further generalised in that the discount function ω can be treated in real options as
a more general knock-out (knock-in) factor. One of the advantages of this functional discounting
is that an option buyer can customise the option by selecting an appropriate functional rate
according to his risk aversion and the degree of confidence in what the asset price will look like
during the whole option life. From a risk management perspective, we can still hedge this option
by trading the underlying asset. We can also identify the value of the contract. Additionally,
since different market participants can select different discount rates, short-term manipulation
by traders is substantially more difficult. Therefore, considering such options may help reduce
market volatility, as noted in [106].

The pricing technique developed in this thesis can be applied to a wide range of financial con-
tracts where the discounting in the above vein is affected by the underlying asset price process.
Apart from the options mentioned earlier, one can consider Executive Stock Options (ESOs), in
which the executive may exercise the ESO prematurely and leave the firm if an interesting oppor-
tunity arises or for diversification or liquidity reasons. Therefore, this policy can be determined
by publicly available information, such as stock prices. As Carr and Linetsky [33] noted, this op-
tion corresponds to ω(s) = λf +λe1{s>K} or ω(s) = λf +λe1{log s>logK}, where λf is a constant
intensity of early exercise or forfeiture due to exogenous voluntary or involuntary employment
termination and λe is the constant intensity of early exercise due to the executive’s exogenous
desire for liquidity or diversification. Another relevant application concerns R&D projects. Here,
the probability of success before a competitor can depend on the ability of the firm to invest
resources in the discovery process. If performance is poor, for example, due to mismanagement,
the company does not invest resources in the discovery process. In the opposite scenario, more
resources are devoted to research activities. Therefore, the price of this type of project depends
on the path-dependent discounting as well, see [140] for a survey.

The convexity of the value function and the convexity preserving property, which is a crucial
component of our analysis, have been studied quite extensively, see e.g. [20, 21, 36, 67, 70, 82,
85, 90] for diffusion models and [69, 86] for one-dimensional jump-diffusion models.

We model asset price dynamics in a financial market by the jump-diffusion process. Based
on the empirical observations, we conclude that this class of stochastic processes modelling
asset prices is more reasonable than the one used in the seminal Black-Scholes model. The
logarithmic prices of stocks are more skew, asymmetric and have a heavier left tail than the
normal distribution, on which the seminal Black-Scholes model is founded. The introduction of
jumps in the financial market dates back to [113], who added a compound Poisson process to the
standard Brownian motion to accurately describe the dynamic of the logarithm of stocks. Since
then, there have been many papers and books working in this set-up, see [42, 133] and references
therein. In particular, [42, Table 1.1, p. 29] gives many other ample reasons to consider this type
of market. In addition to the classical Black-Scholes market, one can consider the normal inverse
Gaussian model of [12], the hyperbolic model of [63], the variance gamma model of [109], the
CGMY model of [34] and the tempered stable process analysed in [29, 93]. Many papers have
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also studied American options in the jump-diffusion markets, see [1, 3, 7, 16, 29, 37, 91, 116].
Identifying the solution of the optimal stopping problem by solving the corresponding HJB

equation (as is done in this thesis as well) has been widely used in the literature, see [97, 120] for
details. In the context of American options with the constant discount function, both methods
of variational inequalities and viscosity solutions to boundary value problems in the spirit of
Bensoussan and Lions [19] are also well known, see [102, 121, 122].

The smooth fit condition is usually applied to determine the unknown boundaries of the
stopping region, see e.g. [100, 102] for the exponential Lévy process of asset prices. As Lamberton
and Mikou [102] and Kyprianou and Surya [100] showed, the continuous fit condition is always
satisfied, but not necessarily the smooth fit property. Therefore, we prove that the appropriate
regularities of the process St at the critical points mentioned above give smooth paste conditions.
It represents a generalisation of the classical results derived by [100, 102]. We want to emphasise
here that using our approach (proving the convexity of the value function and maximising it over
the ends l and u of the stopping interval [l, u]) allows us to avoid identifying critical points via
smooth paste conditions.

Apart from this, the interval form of the stopping region (hence producing a double-sided
continuation region) is much rarer. It might come, for example, from the fact that when at time
t = 0 the discount rate is negative, it is worth waiting, since discounting might increase the profit
of such an option. This phenomenon has already been observed for fixed negative discounting,
see [13, 14, 15, 53, 145], or in the case of American capped options with a positive interest rate,
see [30, 59]. Therefore, in this case, one can obtain a double continuation region.

In this thesis, we also prove that in this general setting of asset-dependent discounting, the
price of the call option can be expressed in terms of the price of the put option. It is called a put-
call symmetry. Our finding supplements [64, 74] which extends to the Lévy market the findings
of [32]. Moreover, an analogous negative discount rate case result was obtained in [13, 14, 15, 53].
A comprehensive review of the put-call duality for American options is given in [57]. We also
refer to [58, Section 7, p. 480] and other references therein for a general survey on the American
options in the jump-diffusion models.

1.7 Notation

Let us introduce a set E ⊂ R× [0, T ]. We use the following notation

• Cα(E) is the set of locally Hölder(α) functions with α ∈ (0, 1),
• Cpol(E) is the set of functions of at most polynomial growth,
• Cp,q(E) is the set of functions for which all derivatives ∂k

∂sk

(
∂lf(s,t)
∂tl

)
with |k|+ 2l ≤ p and

0 ≤ l ≤ q exist in the interior of E and have continuous extensions to E,
• Cp,qα (E) and Cp,qpol(E) are the sets of functions f ∈ Cp,q(E) for which all derivatives

∂k

∂sk

(
∂lf(s,t)
∂tl

)
with |k|+ 2l ≤ p and 0 ≤ l ≤ q belong to Cpol(E) and Cα(E), respectively.

Furthermore, in many places in the thesis, we use the processes St and Xt interchangeably,
making use of the fact that St = eXt . Then, if the process St occurs at the expected value, we
mark it with the subscript, that is Es[. . .] to indicate that S0 = s, while for the process Xt, we
write E(x)[. . .] to specify that X0 = x. Both of these formulas are equivalent. The first of the
listed expectations corresponds to the measure Ps, while the second corresponds to P(x). When
we use the symbol P we understand it as P1 (or equivalently P(0)), the anagolic designation we
use for the symbol E.



Chapter 2

American options with asset-dependent
discounting

This chapter contains a precise formulation of our problem and presents in detail our pricing
approach of American put options with asset-dependent discounting. First, we introduce a class
of jump-diffusion stochastic processes together with all assumptions used throughout the thesis.
For this general set-up, we prove several facts leading to the main theorem, that is Theorem 3.
Firstly, we prove a significant Theorem 1, concerning the convexity of the value function analysed.
As we mentioned in Introduction, the convexity property of the value function underlies our
approach to option pricing, as it allows us to define the form of the optimal stopping region. In
the next step, we prove Theorem 2 about the optimal stopping rule and then deduce the form
of the stopping region. Then, we formulate a principal Theorem 3 that presents a closed-form
expression of vωAPut(s, l, u). Maximising it over l and u leads to the final form of the value function
V ω

APut(s). In Theorem 4 and Theorem 5 we give particular expressions of vωAPut(s, l, u) for the
Black-Scholes model and the exponential Lévy process with downward exponential jumps. In
particular, we note that in the latter case, the value function consists of the ξ-scale functions
introduced in the previous chapter. In Theorem 6, we show that these functions are solutions of
specific second- or third-order differential equations. The classic approach via the HJB system
works as well in our set-up. Moreover, the appropriate regularities of the asset price process imply
smooth paste conditions for the value function. These facts are stated in Theorem 7. Finally, we
present the put-call parity, which shows the relation between the price of a call option and a put
option, as indicated in Theorem 8. Proofs of all theorems stated in this chapter are available in
Chapter 4.

2.1 Jump-diffusion process

In this thesis, we operate on a class of jump-diffusion processes. Therefore, we introduce here
some definitions and assumptions that are used throughout the dissertation. We assume a jump-
diffusion financial market, which is defined as follows. On a complete filtered risk-neutral prob-
ability space (Ω,F ,F,P) with natural filtration F = {Ft : t ≥ 0} satisfying the usual conditions,
we define F-adapted couple (Bt, v), where Bt is a standard Brownian motion and v = v(dt, dz)
is a homogeneous Poisson random measure on R+

0 ×R for R+
0 = [0,∞), which is independent of

Bt. Then the stock price process St solves the following stochastic differential equation

dSt = µ(St−, t)dt+ σ(St−, t)dBt +

∫
R
γ(St−, t, z)ṽ(dt, dz), (2.1)

33
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where

• ṽ(dt, dz) = (v − q)(dt, dz) is a compensated jump martingale random measure of v,
• v is a homogenous Poisson random measure defined on R+

0 × R with intensity measure

q(dt, dz) = dt Π(dz).

We additionally assume that the jump-diffusion process has a finite activity of jumps, that is

λ :=

∫
R
Π(dz) <∞,

where Π is a Lévy measure. Then Nt = v([0, t]×R) is a Poisson process and Π can be represented
as

Π(dz) = λP
(
eYi − 1 ∈ dz

)
,

where {Yi}i∈N is a sequence of i.i.d. random variables, independent of Nt, with distribution µY .
Note that Bt and Nt are also independent of each other.

We note that if µ(s, t) = µs, σ(s, t) = σs and γ(s, t, z) = sz, then the asset price process St
is an exponential Lévy process, that is

St = eXt , (2.2)

where Xt is a Lévy process that starts at x = log s with a triple (ζ, σ,Π) for

ζ = µ− σ2

2
and Π(dz) = λµY (dz). (2.3)

This observation follows directly from the Itô’s lemma.

2.1.1 Assumptions

Assumptions about the model parameters used throughout this dissertation are as follows.

Assumption (A).
(A1) The drift parameter µ: R+ × R+

0 → R and the diffusion parameter σ: R+ × R+
0 → R are

continuous functions, while the jump size γ: R+×R+
0 ×R → R is measurable and for each

fixed z ∈ R, the function (s, t) → γ(s, t, z) is continuous.
(A2) There exists a constant C > 0 such that

µ2(s, t) + σ2(s, t) + γ2(s, t, z) ≤ Cs2

for all (s, t, z) ∈ R+ × R+
0 × R.

(A3) There exists a constant C > 0 such that

|µ(s2, t)− µ(s1, t)|+ |σ(s2, t)− σ(s1, t)|+ |γ(s2, t, z)− γ(s1, t, z)| ≤ C|s2 − s1|

for all (s, t, z) ∈ R+ × R+
0 × R.

(A4) There exists a constant C > −1 such that

γ(s, t, z) > Cs

for all (s, t, z) ∈ R+ × R+
0 × R.
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(A5) g(s) ∈ Cpol(R+), where Cpol(R+) denotes the set of functions of at most polynomial growth.

(A6) V ω
A (s) <∞ for all s ∈ R+.

The Assumptions (A1), (A2), (A3) guarantee that there exists a unique solution to (2.1).
Moreover, (A2) and (A4) imply that

P
(
St ≤ 0 for some t ∈ R+

0

)
= 0

which is a natural assumption, since the process St describes the stock price dynamic, so its
value must be positive. Additionally, to make the pricing problem well-defined, we assume (A6).
To recall, the form of V ω

A (s) is defined in (1). We do not provide here the necessary conditions
for ω and g that guarantee (A6), we focus only on the finiteness of V ω

A (s). However, it can be
easily shown that ω ≥ 0 and the boundedness of g are sufficient conditions for (A6) to hold.

Remark 2. Note that Assumptions (A1)–(A4) are all satisfied for the exponential Lévy process
given in (2.2).

If we talk about convexity and concavity in this thesis, we mean it in a weak sense, allowing
these functions to be constants within some regions.

2.2 Convexity

Our first crucial result concerns the convexity of the value function V ω
A (s).

Theorem 1. Let Assumptions (A) hold. Assume that the payoff function g is convex, ω is
concave, the stock price process St follows (2.1), and the following inequalities are satisfied

∂2γ(s, t, z)

∂s2
γ(s, t, z) ≥ 0, (2.4)

(
∂2µ(s, t)

∂s2
− 2

dω(s)

ds

)
∂V ω

E (s, t)

∂s
− d2ω(s)

ds2
V ω

E (s, t) ≥ 0, (2.5)

where V ω
E (s, t) is defined in (2). Then the value function V ω

A (s) is convex as a function of s.

Remark 3. We now give sufficient conditions in terms of the model parameters for (2.5) to be sat-
isfied. If St is the exponential Lévy process (hence µ(s, t) = µs, σ(s, t) = σs and γ(s, t, z) = sz)
then (2.4) is satisfied. Also, let g(s) = (K − s)+ and, therefore, consider the value function
V ω

APut(s) defined in (1.21). If ω is a non-decreasing function, then the function s → V ω
E (s, t)

is non-increasing. Moreover, the concavity of ω implies that the second term in (2.5) is non-
negative. Combining all these conditions, we can conclude that (2.5) is satisfied.

Remark 4. We stated the above assumptions to look at the put option. We can simply note
that an analogous approach can be applied to the call option.

2.2.1 Perpetual American put option

Assume now the particular case of (1) with the payoff function of the form

g(s) = (K − s)+.
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Then, instead of V ω
A (s) we use the expression V ω

APut(s) and interpret it as the value function of
a perpetual American put option with asset-dependent discounting. It is given by

V ω
APut(s) = sup

τ∈T
Es
[
e−

∫ τ
0 ω(Sw)dw(K − Sτ )

]
. (2.6)

Note that above we used the fact that the option will not be realised when it equals zero.
Therefore, the plus sign in the payoff function could be skipped.

From now on, we will focus only on the asset price modelled by a spectrally negative expo-
nential Lévy process, that is

St = eXt , (2.7)

where Xt is a spectrally negative Lévy process starting at x = log s. This means that Xt does
not have positive jumps, which corresponds to the inclusion of the support of the Lévy measure
Π on the negative half-line. It is a prevalent assumption used in financial mathematics that
faithfully reflects the behaviour of stock prices, see [3, 8]. One can easily observe that the dual
case of the spectrally positive Lévy process Xt can be treated similarly. We decided to skip this
analysis and focus only on a more predominant, from a practical perspective, spectrally negative
scenario.

2.3 Optimal stopping time

To solve the optimal stopping problem given in (2.6), we need to determine the optimal stopping
rule. From the general theory of optimal stopping, see [120, Chapter III, p. 122], we can conclude
that the optimal stopping rule is the first time when the value function is equal to the payoff
function1, that is

τ∗ = inf{t ≥ 0 : V ω
APut(St) = K − St}.

From Theorem 1 we know that V ω
APut(s) is convex. Moreover, from the definition of the value

function it follows that V ω
APut(s) ≥ K − s. Taking these facts into account, together with the

linearity of the payoff function, it follows that V ω
APut(s) and g can cross each other in at most two

points. This observation leads straight to the conclusion about the form of the stopping region,
which is stated in Theorem 2. We recall that in (4) and (3) we introduced the entry time into
the interval [l, u], that is

τl,u = inf{t ≥ 0 : St ∈ [l, u]}

and the corresponding value function

vωAPut(s, l, u) = Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u)

]
,

where 0 ≤ l ≤ u ≤ K.

Theorem 2. Let the assumptions of Theorem 1 hold. Then the value function given in (2.6) is
equal to

V ω
APut(s) = vωAPut(s, l

∗, u∗),

where
vωAPut(s, l

∗, u∗) = sup
0≤l≤u≤K

vωAPut(s, l, u).

The optimal stopping rule is τl∗,u∗, where l∗, u∗ realise the supremum above.
1More precisely, one can observe that [120, Formula (6.3.1), p. 127] is equivalent to [120, Formula (6.0.1), p.

124] that can be understood as [120, Formula (2.2.3), p. 36] as noted in [120, p. 125].
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Remark 5. Another characterisation of critical points l∗ and u∗ via a smooth fit property is
given in Theorem 7.

Theorem 2 indicates that the optimal stopping rule in our problem is the first time the
process St enters the interval [l∗, u∗] for some l∗ ≤ u∗. When l∗ = u∗, the interval becomes
a point. In some cases, the observation above allows us to identify the value function in a much
more transparent way. Finally, note that if the discount function ω is non-negative, then it is
never optimal to wait to exercise the option for sufficiently small asset prices. In other words, it
means that l∗ = 0 and that the stopping region is one-sided.

2.4 Main result

The main result of this thesis is the closed-form expression of the function vωAPut(s, l, u), as
presented in Theorem 3.

Theorem 3. Assume that the stock price process St is described by (2.7) and ω is a measurable,
bounded from below, concave and non-decreasing function such that

ω(s) = c for all s ∈ (0, 1] and some constant c ∈ R. (2.8)

Then

vωAPut(s, l, u) =
H (ω)(s)

H (ω)(l)
(K − l)1{s<l} + (K − s)1{s∈[l,u]}

+

{∫ ∞

0

∫ ∞

0

H (ωu)(( uey ) ∧ l)
H (ωu)(l)

(K − elog l∨(log u−y))r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u},

where

c
Z

(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)
α (z)

W
(ωα)
α (z)

and r(s, u, z) is given in (1.20).
If l = 0 then condition (2.8) is superfluous and

vωAPut(s, 0, u) = (K − s)1{s∈[0,u]}

+

{∫ ∞

0

∫ ∞

0
(K − elog u−y)r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u}.

Remark 6. For the general case where l > 0, condition (2.8) is a technical one and is a con-
sequence of the assumption made in [105, Theorem 2.5, p. 3279], which is used in the proof.
However, this assumption is probably superfluous.
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2.4.1 Black-Scholes model

We can give a more detailed analysis in the case of the Black-Scholes model. The stock price
process is of the form St = eXt , where

Xt = log s+ ζt+ σBt (2.9)

with ζ = µ − σ2

2 , while µ ∈ R and σ ≥ 0 are the model parameters. Under the martingale
measure, the drift parameter µ = r, where r is a risk-free interest rate.

Theorem 4. Assume that ω is a bounded from below, concave and non-decreasing function. For
the Black-Scholes model with Xt given in (2.9), the function vωAPut(s, l, u) defined in (3) is given
by

vωAPut(s, l, u) =
h(s)

h(l)
(K − l)1{s<l} + (K − s)1{s∈[l,u]}

+
h(s)

h(u)
(K − u)1{s>u},

where h(s) is a solution to

σ2s2

2
h′′(s) + rsh′(s)− ω(s)h(s) = 0, (2.10)

which satisfies {
h(s) = K − s, s ∈ [l∗, u∗],

lim
s→∞

h(s) = const.
(2.11)

Remark 7. The optimal limits l∗ and u∗ can be found from the smooth fit property given in
Theorem 7.

2.4.2 Lévy exponential jumps

We can construct a more explicit form of the function vωAPut(s, l, u) for the exponential Lévy
process with downward exponential jumps. In this case, the stock price process is given by
St = eXt for

Xt = log s+ ζt+ σBt −
Nt∑
i=1

Yi, (2.12)

where ζ = µ− σ2

2 , while µ ∈ R and σ ≥ 0. Furthermore, Nt is the Poisson process with intensity
λ > 0, independent of Brownian motion Bt, and {Yi}i∈N is a sequence of i.i.d. exponentially
distributed random variables with mean 1

ρ > 0, independent of Bt and Nt. Furthermore, under
the martingale measure, the drift parameter µ = r + λ

ρ+1 with r being a risk-free interest rate.
We recall that the Laplace exponent of Xt starting at 0 is as follows

ψ(θ) = ζθ +
σ2

2
θ2 − λθ

ρ+ θ
. (2.13)
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Theorem 5. Assume that ω is a non-negative, concave and non-decreasing function. For the
exponential Lévy model with Xt given in (2.12), we have l = 0. Furthermore,
(i) if σ = 0 and λ > 0 then

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
, (2.14)

(ii) if σ > 0 and λ = 0 then

vωAPut(s, 0, u) = (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))
, (2.15)

(iii) if σ > 0 and λ > 0 then

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
+ (K − u)

(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))
,

(2.16)

where

cZ (ω)/W (ω) = lim
z→∞

Z (ω)(z)

W (ω)(z)
and c

Z
(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)
α (z)

W
(ωα)
α (z)

. (2.17)

The optimal boundary u∗ in (2.15) and (2.16) can be determined by the smooth fit condition

(vωAPut)
′(u∗, 0, u∗) = −1,

while the optimal boundary u∗ in (2.14) can be determined by the continuous fit condition

vωAPut(u
∗, 0, u∗) = K − u∗.

From (1.4) (see also [119, Proposition 5.6, p. 782]) we simply note that the Laplace exponent
of Xt taken under P(α)

(0) is of the same form as (2.13), that is

ψ(α)(θ) = ζ(α)θ +
σ(α)

2

2
θ2 − λ(α)θ

ρ(α) + θ
, (2.18)

where ζ(α) = ζ + σ2α, σ(α) = σ, λ(α) = λρ
ρ+α and ρ(α) = ρ + α. Therefore, finding the scale

functions under P(0) and P(α)
(0) works in the same way. To do so, we recall that in (1.14) and

(1.15) we introduced them via regular ξ-scale functions, that is W (ξ)(s) = W(ξ◦exp)(x) and
Z (ξ)(s) = Z(ξ◦exp)(x) for x = log s. Therefore, to identify closed-forms of (2.14), (2.15) and
(2.16) it suffices to find ξ-scale functions W(ξ)(x) and Z(ξ)(x) for a given generic function ξ. We
recall that both ξ-scale functions are given as solutions of the renewal equations (1.10) and (1.11)
formulated in terms of the classical scale function W (x).

From the definition of the first scale function given in (1.7) with q = 0 and from (2.13) with
σ > 0, we derive the following

W (x) =

3∑
i=1

Υie
γix,
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where γi solves
ψ(γi) = 0 (2.19)

and
Υi =

1

ψ′(γi)
.

Note that one of the solutions to (2.19) equals 0, so we can set γ1 = 0. In turn, if σ = 0 in
(2.13), then

W (x) =
2∑
i=1

Υie
γix

with γ1 = 0, γ2 = λ−ρζ
ζ , Υ1 = − ρ

λ−ρζ and Υ2 = λ
ζ(λ−ρζ) . Theorem 6 shows that the ξ-scale

functions W(ξ)(x) and Z(ξ)(x) satisfy specific ordinary differential equations.

Theorem 6. We assume that the function ξ is continuously differentiable. For the exponential
Lévy model with Xt given in (2.12) we have
(i) If σ = 0 and λ > 0 or λ = 0 and σ > 0, then W(ξ)(x) solves

W(ξ)′′(x) = ((Υ1 +Υ2)ξ(x) + γ2)W(ξ)′(x) +
(
(Υ1 +Υ2)ξ

′(x)− γ2Υ1ξ(x)
)
W(ξ)(x) (2.20)

with {
W(ξ)(0) = Υ1 +Υ2,

W(ξ)′(0) = (Υ1 +Υ2)
2ξ(0) + Υ2γ2.

(2.21)

Moreover, the function Z(ξ)(x) solves the same equation (2.20) with{
Z(ξ)(0) = 1,

Z(ξ)′(0) = (Υ1 +Υ2)ξ(0).
(2.22)

(ii) If σ > 0 and λ > 0, then the function W(ξ)(x) solves

W(ξ)′′′(x) = (γ2 + γ3)W(ξ)′′(x)

+ (Υ2(γ2 − γ3)ξ(x)− γ2γ3 − γ3Υ1ξ(x))W(ξ)′(x)

+
(
Υ2(γ2 − γ3)ξ

′(x) + γ2γ3Υ1ξ(x)− γ3Υ1ξ
′(x)

)
W(ξ)(x)

(2.23)

with 
W(ξ)(0) = 0,

W(ξ)′(0) = Υ2γ2 +Υ3γ3,

W(ξ)′′(0) = Υ2γ2
2 +Υ3γ3

2.

(2.24)

Moreover, the function Z(ξ)(x) solves the same equation (2.23) with
Z(ξ)(0) = 1,

Z(ξ)′(0) = 0,

Z(ξ)′′(0) = Υ2(γ2 − γ3)ξ(0)− γ3Υ1ξ(0).

(2.25)

Remark 8. Note that in our case l∗ = 0, so from Theorem 6 it follows that assumption (2.8) is
not required.



2.5. HAMILTON-JACOBI-BELLMAN EQUATION 41

2.5 Hamilton-Jacobi-Bellman equation

A classical approach via the Hamilton-Jacobi-Bellman equation is also possible in our set-up.
More precisely, as before in (2.2), we consider St = eXt for the Lévy process Xt that starts at
x = log s with the triple (ζ, σ,Π).

We note that using [131, Theorem 31.5, p. 208] and Itô’s lemma, one can conclude that the
process St is a Markov process with an infinitesimal generator

Af(s) = ACf(s) +AJf(s),

where AC is a second-order linear differential operator of the form

ACf(s) =
σ2s2

2
f ′′(s) +

(
ζ +

σ2

2

)
sf ′(s)

and AJ is an integral operator given by

AJf(s) =

∫ 0

−∞

(
f(sez)− f(s)− s|z|f ′(s)1{|z|≤1}

)
Π(dz).

The domain D(A) of this generator consists of the functions belonging to C2(R+) if σ > 0 and
C1(R+) if σ = 0. In this dissertation, we prove that V ω

A (s) satisfies the HJB equation given in
Theorem 7 with appropriate smooth fit conditions. We recall that 1 is regular for (0, 1) and for
the process St if P1

(
τ(0,1) = 0

)
= 1 for τ(0,1) = inf{t ≥ 0 : St ∈ (0, 1)}. Similarly, we can define

the regularity for (1,∞). Lastly, we observe that the regularity of St at 1 corresponds to that of
Xt at 0 for the negative or positive half-line.

Theorem 7. Assume that the asset price is a spectrally negative exponential Lévy process (2.7).
Let ω be a concave function bounded from below with the opposite monotonicity to the payoff
function g. Assume that V ω

A (s) ∈ D(A) and g(s) ∈ C1(R+). Then V ω
A (s) uniquely solves the

following HJB system {
AV ω

A (s)− ω(s)V ω
A (s) = 0, s /∈ [l∗, u∗],

V ω
A (s) = g(s), s ∈ [l∗, u∗].

(2.26)

Moreover, if 1 is regular for (0, 1) and for the process St, then there is a smooth fit at the right
end of the stopping region

(V ω
A )′(u∗) = g′(u∗).

Similarly, if 1 is regular for (1,∞) and for the process St then there is a smooth fit at the left
end of the stopping region

(V ω
A )′(l∗) = g′(l∗).

Remark 9. Let us consider the put option. Then from Theorem 2 and Theorem 3, we can
conclude that the smoothness of the value function V ω

APut(s) corresponds to the smoothness
of the ξ-scale functions for ω, ωu and ωαu (defined in (1.19)). From the definitions of these
functions given in (1.14), (1.15) and (1.16), it follows that the smoothness of the latter function
is equivalent to the smoothness of the first scale function observed under measures P(0) and P(α)

(0) .
By [99, Lemma 8.4, p. 222] the smoothness of the first scale function does not change under the
exponential change of measure (1.3). Thus, from [40, Lemma 2.4 (p. 117), Theorem 3.10 (p.
136) and Theorem 3.11 (p. 140)], it follows that
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• if σ > 0 then V ω
APut(s) ∈ C2(R+),

• if σ = 0 and the jump measure Π is absolutely continuous or
∫ 0
−1 |z|Π(dz) = ∞, then

V ω
APut(s) ∈ C1(R+).

Furthermore, by [3, Proposition 7, p. 11], 1 is regular for both (0, 1) and (1,∞) if σ > 0. Hence,
HJB system (2.26) with the smooth fit property could be used without additional assumptions as
long as σ > 0. If one has a single continuation region [u∗,∞) and σ = 0, then by [3, Proposition
7, p. 11] to get the smooth fit condition at u∗, it suffices to assume that the drift ζ of the process
Xt is strictly negative.

2.6 Put-call parity

The put-call parity allows one to calculate the price of the American call option having the put
option price. We formulate this relation again for St being a general exponential Lévy process
defined in (2.2) with the Lévy triple (ζ, σ,Π) and S0 = s. Apart from the following function

vωAPut(s,K, ζ, σ,Π, l, u) := Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u)

+
]

defined in (3), we denote

vωACall(s,K, ζ, σ,Π, l, u) := Es
[
e−

∫ τl,u
0 ω(Sw)dw(Sτl,u −K)+

]
.

Theorem 8. Assume that ψ(1) <∞. Let 0 ≤ l ≤ u ≤ K. Then we have the following

vωACall(s,K, ζ, σ,Π, l, u) = vϑ
(1)

APut

(
K, s,−ζ, σ, Π̂, lK

s
,
uK

s

)
, (2.27)

where

Π̂(dx) = e−xΠ(−dx), (2.28)

ϑ(1)(·) = ω

(
1

·
s

K

)
− ψ(1).

Moreover, if the assumptions of Theorem 1 hold for the function ϑ(1) then the American call
option admits a double continuation region with optimal stopping boundaries l∗c and u∗c such that

l∗

l∗c
=
u∗

u∗c
=
K

s
, (2.29)

where l∗ and u∗ are the stopping limits for the put option.

Remark 10. Note that the value function of the American call option is expressed in terms
of the American put option calculated for the Lévy process X̂t being dual to the process Xt

observed under the measure P(1)
(logK). In particular, the jumps of X̂t have a direction opposite to

those of Xt, for which the put option is priced. In general, determining the conditions for ω such
that ϑ(1) satisfies all the assumptions of Theorem 1 seems severe, and then we can only work on
a case-by-case basis.



Chapter 3

Examples

This chapter shows examples of a closed-form of V ω
APut(s) along with figures for different discount

functions ω and asset price processes St. In some cases, these functions were obtained analytically,
while for others the analytical formula could not be determined explicitly, so we proceeded
numerically to generate the figures of the value function V ω

APut(s).

3.1 Pricing methodology

In Theorem 3 we state the exact form of vωAPut(s, l, u) for St given in (2.7), while in Theorem 4
and Theorem 5 we provide this formula for more specific cases of St. In this chapter, we use
these theorems to represent the value function V ω

APut(s) in the closed-form. For this purpose,
we choose a specific form of the process St and the discount function ω for both the classical
Black-Scholes model and the exponential Lévy process with downward exponential jumps. Then,
in the case of Theorem 5, we still need to identify the generalised scale functions to determine
the form of vωAPut(s, l, u). As we know from Theorem 6, they are the solutions of some ordinary
differential equations. We present examples in which we can explicitly solve these equations and
obtain analytical solutions of the generalised scale functions, as well as the function vωAPut(s, l, u).
Then, maximising it with respect to the parameters l and u, we can derive the closed-form of
V ω

APut(s). We call this procedure an analytical approach.
On the other hand, in other situations, we solve the differential equations mentioned above

numerically and generate figures of the generalised scale functions. It allows us to create the
final figure of the value function V ω

APut(s) for the optimal values of l and u. This procedure is
called a numerical approach.

It is also worth highlighting that we used a numerical method for all analytical cases and
compared the results obtained between these two approaches. The numerical part of our work is
done in the Python programming language. We use the package mpmath for numerical calcula-
tions, which is a designated library for real and complex floating-point arithmetic with arbitrary
precision. It allows us to derive very accurate numerical results. In addition, these results
are indeed close to their analytical counterparts. A more detailed description of the numerical
computation is provided in Subsection 3.1.2.

3.1.1 Analytical approach

As indicated above, in the analytical approach, we explicitly solve ordinary differential equations
from Theorem 4 and Thereom 6. We can do this by selecting the appropriate function ω in

43
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(2.10) and ξ in (2.20) and (2.23). In the first of these cases, the solution of (2.10) with boundary
conditions (2.11) allows us to immediately obtain the form of vωAPut(s, l, u). In some scenarios, it
is possible that a double continuation region appears, e.g. when ω is negative.

In turn, in the second case, solving equations (2.20) and (2.23) with boundary conditions
(2.21), (2.22), (2.24) and (2.25) allows us to obtain only forms of the generalised scale func-
tions. Later, we still need to calculate constants (2.17) to derive vωAPut(s, 0, u). We note that in
Theorem 5 it is assumed that ω is non-negative and therefore l = 0.

3.1.2 Numerical approach

Analogously to the previous section, the numerical approach involves solving the same differential
equations as above, but this time we use a numerical algorithm.

In general, solving a high-order ordinary differential equation consists of transforming it into
a first-order vector form and then applying an appropriate algorithm that returns the numerical
solution of the n+ 1−dimensional system of first-order ordinary differential equations.

For practical purposes, such as financial engineering problems, numerical approximations to
the solutions of ordinary differential equations are often sufficient. In our case, we focus on the
Higher-Order Taylor Method. This method uses the Taylor polynomial for the solution of the
equation. Using the differential equation, it approximates the 0−th-order term using the value of
the previous step (the initial condition for the first step) and the subsequent terms of the Taylor
expansion.

We perform all numerical calculations in the Python programming language using the mpmath
library for arbitrary-precision floating-point arithmetic, which enables us to obtain results with
arbitrarily high accuracy. The consequence of this is that the differences between the analytical
and numerical results are negligible. We can manipulate them, which results in more or less
computation time of our algorithm.

3.2 Black-Scholes model

Let us take the discount function ω of the form

ω(s) = − C

s+ 1
−D,

where C and D are positive constants. According to Theorem 4, we have

vωAPut(s, l, u) =
h(s)

h(l)
(K − l)1{s∈(0,l)} + (K − s)1{s∈[l,u]} +

h(s)

h(u)
(K − u)1{s∈(u,∞)},

where h is a solution to

σ2s2

2
h′′(s) + rsh′(s) +

(
C

s+ 1
+D

)
h(s) = 0 (3.1)

which satisfies {
h(s) = K − s, s ∈ [l∗, u∗],

lim
s→∞

h(s) = const.
(3.2)

First, we solve the above equation and identify the form of h(s). Then, we look for boundaries
l∗ and u∗ such that

vωAPut(s, l
∗, u∗) = sup

0≤l≤u≤K
vωAPut(s, l, u).
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We can find them by applying the smooth and continuous fit conditions. The general solution
to (3.1) is given by

h(s) = K1s
d1

2F1(a1, b1, c1;−s) +K2s
d2

2F1(a2, b2, c2;−s), (3.3)

where 2F1(·, ·, ·; ·) is the Gaussian hypergeometric function. Moreover, ai = (−1)i+1(M − G),
bi = (−1)i(M + G), ci = 1 + 2(−1)iG, di = (−1)iG + L for i = 1, 2 and K1, K2 are some

constants, where L = 1
2 − r

σ2 , M =
√
L2 − 2D

σ2 , G =
√
L2 − 2(C+D)

σ2 .
Using formula (3.3) and the boundary conditions given in (3.2) we can identify the form of

value function (2.6). Since we consider the negative function ω, we obtain a double continuation
region. We take one of the summands from (3.3) for s ∈ (0, l∗) and the second for s ∈ (u∗,∞).
This choice is made in such a way that, on the given interval, we impose a greater function of
these two. Hence, we derive

V ω
APut(s) =


K2s

d2
2F1(a2, b2, c2;−s), s ∈ (0, l∗),

K − s, s ∈ [l∗, u∗],

K1s
d1

2F1(a1, b1, c1;−s), s ∈ (u∗,∞).

(3.4)

Using the smooth and continuous fit properties, we can find K1 and K2 and show that l∗ and
u∗ solve the following equation

1 + 2F1(ai, bi, ci;−s)KiDi + sdiPi = 0, (3.5)

where

Ki = (K − s)
s−di

2F1(ai, bi, ci;−s)
,

Di = dis
di−1,

Pi = −aibi2F1(ai + 1, bi + 1, ci + 1;−s)
ci

for i = 1, 2. We numerically calculate the roots of (3.5) for i = 1, 2 and assign the smaller result
to l∗ and the larger one to u∗.

Let us assume the given set of parameters C = 0.001, D = 0.01, K = 20, r = 5% and
σ = 20%. The numerical procedure above produces l∗ ≈ 7.23 and u∗ ≈ 8.34. Figure 3.1 presents
the value function that arises in this case.

Remark 11. Let us note that lims→0+ V
ω
APut(s) = ∞ which means that the price of the option

is unlimited even for an arbitrarily low stock price. This is a consequence of the fact that the
discount function is strictly negative for s→ 0+.

3.3 Lévy exponential jumps

3.3.1 Constant discount function

The case when ω is constant, that is ω(s) = q, is the standard example that appears extensively
in the literature. However, this case is quite special, as it turns out that the second term in the
sum in (2.16) simplifies and we do not need to deal with the measure P(α)

(0) (and thus calculate the
limit for α→ ∞) to find the form of vωAPut(s, 0, u). This fact is stated in the following theorem.
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Figure 3.1: The payoff function and the value function V ω
APut(s) given in (3.4) for the following

set of parameters: C = 0.001, D = 0.01, K = 20, r = 5% and σ = 20%.

Theorem 9. Assume that ω(s) = q. Then

lim
α→∞

( s
u

)α (
Z (q−ψ(α))
α

( s
u

)
− c

Z
(q−ψ(α))
α /W

(q−ψ(α))
α

W (q−ψ(α))
α

( s
u

))
=
σ2

2

(
W (q)′

( s
u

)
− Φ(q)W (q)

( s
u

))
.

(3.6)

Proof. Note that

lim
α→∞

( s
u

)α (
Z (q−ψ(α))
α

( s
u

)
− c

Z
(q−ψ(α))
α /W

(q−ψ(α))
α

W (q−ψ(α))
α

( s
u

))
(3.7)

corresponds to the continuous transition of the process St to the interval (0, u], or, in other words,
to the continuous exit of the half-line (u,∞). We define

σ−0 = inf{t ≥ 0 : Xt ≤ 0} and σ+a = inf{t ≥ 0 : Xt ≥ a}.

It turns out that formula (3.7) is equivalent to

E s
u

[
e−qσ

−
0 ;σ−0 < σ+a ;Xσ−

0
= 0
]
.

More details can be found in the proof of Theorem 3. Then using [107, Formula (13), p. 1417]
for x = log

(
s
u

)
, a = 0 and v(q)(x) =W (q)′(x) together with the fact that W (q)′(0) = 2

σ2 (see [99,
Exercise 8.5, p. 235]), we obtain

E s
u

[
e−qσ

−
0 ;σ−0 < σ+a ;Xσ−

0
= 0
]
=
σ2

2

(
W (q)′(x− log u)− W (q)′(a)

W (q)(a)
W (q)(x− log u)

)
.

Lastly, we complete the proof by taking the limit a→ ∞ and applying L’Hospital rule.
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Ultimately, (2.16) for the constant discount function ω(s) = q can be written as

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (q)

( s
u

)
− cZ (q)/W (q)W (q)

( s
u

))
+ (K − u)

σ2

2

(
W (q)′

( s
u

)
− Φ(q)W (q)

( s
u

))
.

(3.8)

Remark 12. For the case of λ = 0, it can be shown that (2.15) simplifies to the well-known
formula in the Black-Scholes model, that is

vωAPut(s, 0, u) = (K − u)
( s
u

)− 2r
σ2 ,

where we used substitutions q = r and ζ = r − σ2

2 . Therefore, we are not forced to apply the
smooth fit condition to find the optimal value of u. Instead, we can do this analytically by
finding the maximum of vωAPut(s, 0, u) with respect to u and derive the form of the value function
V ω

APut(s).

Figure 3.2 presents the value function V ω
APut(s) for three different values of q, that is

q ∈ {0.3, 0.6, 0.9}.

Figure 3.2: The payoff function and the value function V ω
APut(s) corresponding to (3.8) for the

following set of parameters: K = 20, r = 0.05, σ = 0.2, λ = 6, ρ = 2 and q ∈ {0.3, 0.6, 0.9}.

Based on Figure 3.2 we can simply note that a higher value of ω results in a smaller value of
V ω

APut(s) which is in line with (2.6) and financial intuition.
In turn, Figure 3.3 shows a comparison of the value function V ω

APut(s) corresponding to three
cases (2.14), (2.15), (2.16) and for the same value of q = 0.5.

The resulting relation between these functions is again consistent with economic expectations.
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Figure 3.3: The payoff function and the value function V ω
APut(s) corresponding to (3.8) for three

cases σ = 0, λ = 0, σ > 0 and for the following set of parameters: K = 20, r = 0.05, σ = 0.4,
λ = 6, ρ = 2 and q = 0.5.

3.3.2 Linear discount function

In this subsection, we consider a linear discount function of the form ω(s) = Cs for some positive
constant C.

3.3.2.1 σ = 0

Let us consider the case of σ = 0. Then the asset price process St can only jump from (u,∞) to
the stopping region (0, u]. From Theorem 5 we know that

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
, (3.9)

where ωu
(
s
u

)
= ω(s) = Cs. Equivalently, (3.9) can be rewritten as

vη
APut(x, 0, u) =

(
K − uρ

ρ+ 1

)(
Z(ηu) (x− log u)− cZ(η)/W(η)W(ηu) (x− log u)

)
, (3.10)

where x = log s and ηu(x− log u) = η(x) = Cex.
To find the closed-form of (3.10) we need to identify W(ηu)(x − log u) and Z(ηu)(x − log u).

From Theorem 6 it follows that both W(η)(x) and Z(η)(x) solve the following ordinary differential
equation

f ′′(x) = (Aex +B)f ′(x) +Dexf(x) (3.11)

with A = C
ζ , B = λ−ρζ

ζ and D = C 1+ρ
ζ , while the initial conditions are as follows{

W(η)(0) = 1
ζ ,

W(η)′(0) = C+λ
ζ2

(3.12)
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and {
Z(η)(0) = 1,

Z(η)′(0) = C
ζ .

(3.13)

Substituting t = Aex and F (t) = f(x) into (3.11) we obtain the Kummer’s equation of the form

tF ′′(t) + (b− t)F ′(t)− aF (t) = 0, (3.14)

where b = 1 − B and a = D
A . If b is not an integer, then the general solution to (3.14) has the

form
F (t) = K11F1(a1, b1; t) +K2t

1−b
1F1(a2, b2; t), (3.15)

where K1 and K2 are the constants that can be found based on the initial conditions, a1 = a,
b1 = b, a2 = a − b + 1, b2 = 2 − b, while 1F1(·, ·; ·) is the Kummer confluent hypergeometric
function.

We denote by KW
1 , KW

2 and KZ
1 , KZ

2 the constants corresponding to W(η)(x) and Z(η)(x),
respectively. Using initial conditions (3.12) and (3.13), we can simply calculate these constants
for both W(η)(x) and Z(η)(x). By shifting these functions by log u, we produce W(ηu)(x− log u)
and Z(ηu)(x− log u).

The asymptotic behaviour of 1F1 (a, b; t) for t→ ∞ is as follows

1F1(a, b; t) =
Γ(b)

Γ(a)
etta−b

[
1 +O

(
1

t

)]
. (3.16)

Based on (3.16) we calculate the constant cZ(η)/W(η) (or equivalently cZ (ω)/W (ω)) that occurs in
(3.10). It has the following form

cZ(η)/W(η) =
KZ

1
Γ(b1)
Γ(a1)

Aa1−b1 +KZ
2

Γ(b2)
Γ(a2)

Aa2−1

KW
1

Γ(b1)
Γ(a1)

Aa1−b1 +KW
2

Γ(b2)
Γ(a2)

Aa2−1
. (3.17)

Combining all the results obtained and substituting them into (3.10), we can present the analyti-
cal form of vωAPut(s, 0, u). Then we maximise it with respect to u and derive the graphical form of
the value function V ω

APut(s). Figure 3.4 presents a comparison of the value function V ω
APut(s) when

the generalised scale functions were calculated analytically and numerically by solving equation
(3.11).

Furthermore, Figure 3.5 illustrates the constant cZ(η)/W(η) obtained in (3.17) together with
the quotient of the functions Z(η)(x) and W(η)(x).

3.3.2.2 λ = 0

Consider the case of λ = 0. In this case, the asset price process St leaves (u,∞) and enters the
stopping region (0, u] only continuously. Therefore, from Theorem 5 we have

vωAPut(s, 0, u) = (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))
(3.18)

which is equivalent to

vη
APut(x, 0, u) = (K − u)

(
lim
α→∞

eα(x−log u)
(
Z(ηαu )
α (x− log u)− cZ(ηα)

α /W(ηα)
α

W(ηαu )
α (x− log u)

))
.

(3.19)
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Figure 3.4: The payoff function and the value function V ω
APut(s) corresponding to (3.9) for both

methods of determining the generalised scale functions: analytical and numerical one, and for
the following set of parameters: K = 20, C = 0.1, r = 0.05, λ = 6, ρ = 2.

It suffices to find W(ηαu )
α (x − log u) and Z(ηαu )

α (x − log u). From Theorem 6 it follows that both
W(ηα)
α (x) and Z(ηα)

α (x) solve

f ′′(x) = Bαf
′(x) + (Dαe

x + Eα)f(x) (3.20)

with Bα = − 2
σ2 (ζ + σ2α), Dα = 2C

σ2 and Eα = − 2
σ2

(
ζα+ σ2

2 α
2
)
. The initial conditions have

the following form {
W(ηα)
α (0) = 0,

W(ηα)
α

′
(0) = 2

σ2

(3.21)

and {
Z(ηα)
α (0) = 1,

Z(ηα)
α

′
(0) = 0.

(3.22)

Substituting t = 2
√
−Dαex and F (t) = e−

Bαx
2 f(x) into (3.20) we obtain the Bessel differential

equation of the form
t2F ′′(t) + tF ′(t) + (t2 − v2)F (t) = 0, (3.23)

where v =
√
Bα

2 + 4Eα = 2ζ
σ2 . The general solution to (3.23) is equal to

F (t) = K1Jv(t) +K2Yv(t),

where Jv(·) and Yv(·) are the Bessel functions of the first and second kinds, while K1 and K2

are constants. In the following, we use the symbols KW
1 , KW

2 and KZ
1 , KZ

2 which correspond to
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Figure 3.5: Comparison of the constant cZ(η)/W(η) given in (3.17) and the ratio of Z(η)(x) and
W(η)(x) for a linear discount function ω(s) = Cs (η(x) = Cex) and for the following set of
parameters: K = 20, C = 0.1, r = 0.05, λ = 6, ρ = 2.

W(ηα)
α (x) and Z(ηα)

α (x), respectively. Therefore, we derive

f(x) = e
Bαx
2

(
K1Jv(2

√
−Dαex) +K2Yv(2

√
−Dαex)

)
. (3.24)

Based on the form of (3.24) and the fact that Dα does not depend on α, we can simply note
that (3.19) is also independent of α. Therefore, we can take an arbitrary value of α in (3.20).
This key observation allows us to rewrite (3.24) in a simplified form. Indeed, for α = 0 equation
(3.20) is equal to

f ′′(x) = B0f
′(x) +D0e

xf(x), (3.25)

where B0 =
−2ζ
σ2 and D0 =

2C
σ2 . Hence, the general solution to (3.25) takes the following form

f(x) = e
B0x
2

(
K1Jv(2

√
−D0ex) +K2Yv(2

√
−D0ex)

)
. (3.26)

For B0 =
1
2 − n, where n ∈ N0 and D0t > 0, equation (3.26) reduces to

f(x) = K1

(
cosh(4

√
D0ex)

)n
+K2

(
sinh(4

√
D0ex)

)n
.

If we take the following sample parameters r = 0.05 and σ = 0.2, we obtain n = 2 and therefore

f(x) = K1

(
3 sinh(2

√
ex)

4e
5
2
x

+
sinh(2

√
ex)

e
3
2
x

− 3 cosh(2
√
ex)

2e2x

)
+K2

(
3 cosh(2

√
ex)

4e
5
2
x

+
cosh(2

√
ex)

e
3
2
x

− 3 sinh(2
√
ex)

2e2x

)
.

(3.27)
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Applying initial conditions (3.21) and (3.22) we can simply obtain KW
1 , KW

2 and KZ
1 , KZ

2 . Using
equality (3.27) that holds for both W(ηα)

α (x) and Z(ηα)
α (x), we can calculate the following

cZ(ηα)
α /W(ηα)

α
= cZ(η)/W(η) =

KZ
1 +KZ

2

KW
1 +KW

2

. (3.28)

Taking into account all the results, we can obtain the analytical form of (3.19) and then maximise
it with respect to u to obtain the value function V ω

APut(s) for the sample data.
Figure 3.6 presents a comparison of the value function V ω

APut(s) corresponding to (3.18) for
the generalised scale functions obtained analytically and numerically.

Figure 3.6: The payoff function and the value function V ω
APut(s) corresponding to (3.18) for both

methods of determining the generalised scale functions: analytical and numerical one, and for
the following set of parameters: K = 20, C = 0.1, r = 0.05, σ = 0.2.

In turn, Figure 3.7 shows the constant cZ(η)/W(η) given in (3.28) with the ratio of Z(η)(x)

and W(η)(x).

3.3.3 Power discount function

This time, we take into account a power function of the form ω(s) = Csn for n ∈ (0, 1] and C
being some positive constant. This case is a generalisation of a linear discount function scenario.

3.3.3.1 σ = 0

Similarly to the case of a linear discount function, the functions W(η)(x) and Z(η)(x) solve

f ′′(x) = (Aenx +B)f ′(x) +Denxf(x) (3.29)

with A = C
ζ , B = λ−ρζ

ζ and D = C n+ρ
ζ , while the initial conditions are the same as those

provided in (3.12) and (3.13). Applying a substitution t = A
n e

nx and F (t) = f(x), we transform
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Figure 3.7: Comparison of the constant cZ(η)/W(η) and the ratio of Z(η)(x) and W(η)(x) for a
linear discount function ω(s) = Cs (η(x) = Cex) and for the following set of parameters: K = 20,
C = 0.1, r = 0.05, σ = 0.2.

(3.29) into
tF ′′(t) + (b− t)F ′(t)− aF (t) = 0, (3.30)

where b = 1 − B
n and a = D

An . The general solution to (3.30) has the same form as provided in
(3.15). Therefore, for both the linear and the power discount function ω, the form of the value
function V ω

APut(s) is identical.

3.3.3.2 λ = 0

As in the above case, the idea of finding the closed-form of the value function can be borrowed
from the linear case. This time, the functions W(ηα)

α (x) and Z(ηα)
α (x) satisfy the equation

f ′′(x) = Bαf
′(x) + (Dαe

nx + Eα)f(x)

with Bα = − 2
σ2 (ζ + σ2α), Dα = 2C

σ2 and Eα = − 2
σ2

(
ζα+ σ2

2 α
2
)
, while the initial conditions

are of the form (3.21) and (3.22). If we substitute t = 2
n

√
−Dαenx and F (t) = e−

Bαx
2 f(x), we

receive the Bessel differential equation for F (t) with the solution

F (t) = K1Jv(t) +K2Yv(t).

Therefore, we have

f(x) = e
Bαx
2

(
K1Jv

(
2

n

√
−Dαenx

)
+K2Yv

(
2

n

√
−Dαenx

))
, (3.31)
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where v =

√
Bα2+4Eα

n = 2ζ
nσ2 . As in the previous section, we can show that the value function

that arises in this scenario does not depend on α. Thus, for α = 0, (3.31) takes the form

f(x) = e
B0x
2

(
K1Jv

(
2

n

√
−D0enx

)
+K2Yv

(
2

n

√
−D0enx

))
.

Again, having exact formulas for generalised scale functions, we can easily represent the form of
vωAPut(s, 0, u) and maximise it with respect to u to derive the value function V ω

APut(s).

3.3.4 Other discount functions

For some discount functions ω we cannot find the analytical forms of W(η)(x), Z(η)(x), W(ηα)
α (x)

and Z(ηα)
α (x). These functions are solutions to the ordinary differential equations that occur in

Theorem 6. Thus, we cannot also explicitly identify the value function V ω
APut(s). In this situation,

we can proceed with a numerical analysis of these equations. We apply the approach explained
in Subsection 3.1.2.

3.3.4.1 σ = 0

As we mentioned at the beginning of this section, we cannot always get the analytical solutions
to the generalised scale functions W(η)(x), Z(η)(x), W(ηα)

α (x) and Z(ηα)
α (x). This is the case,

for example, when σ = 0 and the discount function is of the form ω(s) = C arctan(s) for some
positive C. Then, we can only generate these functions numerically. Figure 3.8 presents the value
function V ω

APut(s) for both ω(s) = Cs and ω(s) = C arctan(s), respectively. Since for all positive
s we have s > arctan(s), we expect that the value function corresponding to ω(s) = C arctan(s)
takes higher values than those for ω(s) = Cs. We can also note that the difference between these
functions increases with higher values of s, which is in line with economic intuition, since the
difference between ω(s) = s and ω(s) = arctan(s) also increases as s increases.

3.3.4.2 λ = 0

The case of λ = 0 corresponds to the situation when the process Xt from (2.12) does not have
any jumps. Then, the function vωAPut(s, 0, u) takes the form (2.15). From a numerical point of
view, the problem is to choose a large enough value of α in (2.15) to obtain the final form of the
value function V ω

APut(s). In this section, we avoid this problem by selecting discount functions
for which the value function is independent of the parameter α. In Figure 3.9 we can observe
the value functions for both ω(s) = C

√
s and ω(s) = C

√
s + Z for some positive Z, that is

we compare two discount functions that differ in a shift. This time, we can see that the value
functions obtained in this way also differ only in a shift, which is in line with financial intuition.

3.3.4.3 σ > 0 and λ > 0

The most general case is when σ > 0 and λ > 0. Then, the value function V ω
APut(s) corresponds

to formula (2.16). For the linear discount function ω(s) = Cs, the functions W(η)(x) and Z(η)(x)
are the solutions to the following ordinary differential equation

f ′′′(x) = Af ′′(x) + (Bex +D)f ′(x) + Eexf(x) (3.32)
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Figure 3.8: The payoff function and the value function V ω
APut(s) corresponding to (3.9) for both

ω(s) = Cs and ω = C arctan(s) and for the following set of parameters: K = 20, C = 0.5,
r = 0.05, λ = 6, ρ = 2.

with parameters of the form
A = γ2 + γ3,

B = C [Υ2(γ2 − γ3)−Υ1γ3] ,

D = −γ2γ3,
E = C [Υ2(γ2 − γ3) + Υ1γ2γ3 −Υ1γ3] .

The initial conditions are as follows
W(η)(0) = 0,

W(η)′(0) = Υ2γ2 +Υ3γ3,

W(η)′′(0) = Υ2γ2
2 +Υ3γ3

2

and 
Z(η)(0) = 1,

Z(η)′(0) = 0,

Z(η)′′(0) = C [Υ2(γ2 − γ3)−Υ1γ3] .

In turn, W(ηα)
α (x) and Z(ηα)

α (x) solve

f ′′′(x) = Aαf
′′(x) + (Bαe

x +Dα)f
′(x) + (Eαe

x + Fα)f(x) (3.33)
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Figure 3.9: The payoff function and the value function V ω
APut(s) corresponding to (3.18) for both

ω(s) = C
√
s and ω = C

√
s + Z and for the following set of parameters: K = 20, C = 0.005,

Z = 0.1, r = 0.05, σ = 0.2.

with parameters of the form

Aα = γα2 + γα3 ,

Bα = C [Υα2(γα2 − γα3)−Υα1γα3 ] ,

Dα = −Υα2(γα2 − γα3)ψ(α)− γ2γ3 +Υα1γα3ψ(α),

Eα = C [Υα2(γα2 − γα3) + Υα1γα2γα3 −Υα1γα3 ] ,

Fα = −Υα1γα2γα3ψ(α).

The initial conditions are as follows
W(ηα)
α (0) = 0,

W(ηα)
α

′
(0) = Υα2γα2 +Υα3γα3 ,

W(ηα)
α

′′
(0) = Υα2γα2

2 +Υα3γα3
2

and 
Z(ηα)
α (0) = 1,

Z(ηα)
α

′
(0) = 0,

Z(ηα)
α

′′
(0) = C [Υα2(γα2 − γα3)−Υα1γα3 ] .

In this case, we cannot identify explicit solutions to third-order ordinary differential equations
(3.32) and (3.33), so we are forced to use a numerical algorithm to generate the generalised scale
functions and hence the value function V ω

APut(s).
Figure 3.10 shows several graphs of the value function V ω

APut(s) for different values of the
parameter α together with the first and second components that occur in (2.16). We can observe
that a higher value of the α parameter allows us to obtain the value function we are looking for.
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(a) α = 5 (b) α = 10

(c) α = 20 (d) α = 50

(e) α = 100 (f) α = 150

Figure 3.10: The payoff function and the value function V ω
APut(s) corresponding to (2.16) for the

particular choice of α and ω(s) = Cs, and for the following set of parameters: K = 20, C = 0.1,
r = 0.05, σ = 0.2, λ = 6, ρ = 2.



Chapter 4

Proofs

This chapter presents the proofs of the theorems and lemmas contained in Chapter 2 along with
their content, as well as auxiliary theorems and lemmas. We decided to leave the content of the
theorems from Chapter 2 unchanged, so the formulas from these theorems are characterised by
the numbering (2.x), and the rest of the formulas in this chapter by (4.x).

Before we prove the first important theorem in our thesis, that is Theorem 1 on the convexity
of V ω

A (t) , we show the convexity of a European option price V ω
E (s, t) defined in (2) with additional

Assumptions (B) and (C) presented below. This fact is stated in Theorem 10. Furthermore,
in this theorem, we formulate Lemma 4 and Lemma 5 on specific properties of the function
V ω

E (s, t). Then, we relax unnecessary conditions and formulate Theorem 11. Ultimately, we
prove Theorem 1, which is based on showing an inheritance of the convexity of the value function
from the European option to the Bermudan option (Lemma 6), and then the American option.
Then, we present the proof of the most relevant result in our work, i.e. Theorem 3, followed by
specific versions of it, namely Theorem 4 and Theorem 5. In the next proof of Theorem 6 we
show the derivations of ordinary differential equations that are satisfied by the generalised scale
functions defined in (1.10) and (1.11). Lastly, we prove Theorem 7 about the HJB equation and
Theorem 8 related to the put-call parity.

We state the following assumptions.

Assumptions (B)
There exist constants C > 0 and α ∈ (0, 1) such that

(B1) µ(s, t) ∈ C2,1
α (R+ × [0, T ]);

(B2) σ2(s, t) ≥ Cs2 for all (s, t) ∈ R+ × [0, T ];
(B3) σ(s, t) ∈ C2,1

α (R+ × [0, T ]);
(B4) γ(s, t, z) ∈ C2,1

α (R+ × [0, T ]) with the Hölder continuity being uniform in z;
(B5) |ω(s)| ≤ C for all s ∈ R+;
(B6) ω(s) ∈ C2

α(R+);
(B7) g(s) is Lipschitz continuous;
(B8) g(s) ∈ C4

α(R+).

Assumptions (C)
There exists a constant C > 0 such that

(C1) |∂µ(s,t)∂t | ≤ Cs, |∂
2µ(s,t)
∂s2

| ≤ C
s for all (s, t) ∈ R+ × [0, T ];

(C2) |∂σ(s,t)∂t | ≤ Cs, |∂
2σ(s,t)
∂s2

| ≤ C
s for all (s, t) ∈ R+ × [0, T ];

58
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(C3) |∂γ(s,t,z)∂t | ≤ Cs, |∂
2γ(s,t,z)
∂s2

| ≤ C
s for all (s, t, z) ∈ R+ × [0, T ]× R;

(C4) |dω(s)ds | ≤ C
s , |d

2ω(s)
ds2

| ≤ C
s2

for all s ∈ R+;
(C5) g(s) ∈ C3

pol(R+).

Theorem 10. Let all the assumptions of Theorem 1 be satisfied. We also assume that Assump-
tions (B) and (C) hold. Then V ω

E (s, t) is convex with respect to s at all times t ∈ [0, T ].

Proof. The first part of the proof proceeds similarly to the proof of [68, Proposition 4.1, p. 389].
Let

LV ω
E (s, t) = −

∂V ω
E (s, t)

∂t
−ACt V

ω
E (s, t)−AJt V

ω
E (s, t) + ω(s)V ω

E (s, t),

where ACt is a second-order linear differential operator of the form

ACt V
ω
E (s, t) = β(s, t)

∂2V ω
E (s, t)

∂s2
+ µ(s, t)

∂V ω
E (s, t)

∂s

with β(s, t) = σ2(s,t)
2 and AJt is an integro-differential operator given by

AJt V
ω
E (s, t) =

∫
R

(
V ω

E (s+ γ(s, t, z), t)− V ω
E (s, t)− γ(s, t, z)

∂V ω
E (s, t)

∂s

)
Π(dz).

Before proceeding further, we formulate two auxiliary lemmas.

Lemma 4. Let Assumptions (A) and (B) hold and assume that the stock price process St follows
(2.1). Then V ω

E (s, t) ∈ C4,1
α (R+ × [0, T ]) ∩ Cpol(R+ × [0, T ]) and it is the solution to the Cauchy

problem given by {
LV ω

E (s, t) = 0, (s, t) ∈ R+ × [0, T ),

V ω
E (s, T ) = g(s), s ∈ R+.

(4.1)

Proof of Lemma 4. First, we define the function f : R+ → R of the form

f(s) =

{
−1
s , s ∈ (0, 1],

s, s ∈ [2,∞)

such that f(s) ∈ C2(R+) and f ′(s) > 0 for all s ∈ R+.
Taking Yt = f(St) and applying Itô’s lemma on (2.1), we obtain

dYt = µ̃(Yt−, t)dt+ σ̃(Yt−, t)dBt +

∫
R
γ̃(Yt−, t, z)ṽ(dt, dz),

where

µ̃(y, t) = µ(f−1(y), t)f ′(f−1(y)) +
σ2(f−1(y), t)

2
f ′′(f−1(y))

+

∫
R

(
γ̃(y, t, z)− f ′(f−1(y))γ(f−1(y), t, z)

)
Π(dz),

σ̃(y, t) = f ′(f−1(y))σ(f−1(y), t),

γ̃(y, t, z) = f(f−1(y) + γ(f−1(y), t, z))− y.

We also define the function
ω̃(y) := ω(f−1(y))
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and
g̃(y) := g(f−1(y)).

We can now verify that the functions µ̃(y, t), σ̃(y, t), γ̃(y, t, z) and g̃(y) satisfy conditions (2.2)−
(2.5) from [122, Section 2, p. 4]. Let

v(y, t) := V ω
E (f−1(y), t).

From [122, Theorem 3.1, p. 11] it follows that v(y, t) is a viscosity solution to{
L̃v(y, t) = f̃(y, t), (y, t) ∈ R× [0, T ),

v(y, T ) = g̃(y), y ∈ R,
(4.2)

where

L̃v(y, t) = −∂v(y, t)
∂t

− σ̃2(y, t)

2

∂2v(y, t)

∂y2
− µ̂(y, t)

∂v(y, t)

∂y
+ ω̃(y)v(y, t)

with
µ̂(y, t) = µ̃(y, t)−

∫
R
γ̃(y, t, z)Π(dz)

and
f̃(y, t) = −

∫
R
(v(y + γ̃(y, t, z), t)− v(y, t))Π(dz).

Furthermore, using [122, Proposition 3.3, p. 10] yields that v(y, t) ∈ C(R× [0, T ]) and satisfies

|v(y2, t2)− v(y1, t1)| ≤ C((1 + |y2|)|t2 − t1|
1
2 + |y2 − y1|) (4.3)

for some C > 0 and for all t1, t2 ∈ [0, T ] and y1, y2 ∈ R. Based on (4.3) and the assumptions
made on γ, we can conclude that f̃(y, t) ∈ Cα(R× [0, T ]) ∩Cpol(R× [0, T ]). Then applying [86,
Theorem A.14, p. 222] give us the existence of a unique classical solution w(y, t) to (4.2) such
that w(y, t) ∈ C2,1(R× [0, T )) ∩ Cpol(R× [0, T ]). In view of the fact that w(y, t) is continuous,
we can observe that f̃(y, t) is Lipschitz continuous in y, uniformly in t. Therefore, from [122,
Lemma 3.1, p. 9] we know that w(y, t) is also Lipschitz continuous in y, uniformly in t. From
the uniqueness result given in [122, Theorem 4.1, p. 14] we can deduce that v(y, t) = w(y, t).
Applying [86, Theorem A.18, p. 224] we find v(y, t) ∈ C4,1

α (R× [0, T ]). Returning to the original
coordinates, it follows that V ω

E (s, t) ∈ C4,1
α (R+× [0, T ])∩Cpol(R+× [0, T ]) and satisfies (4.1).

Lemma 5. Let Assumptions (A), (B) and (C) hold and assume that the stock price process St
follows (2.1). Then there exist constants n > 0 and K > 0 such that the value function V ω

E (s, t)
satisfies ∣∣∣∣∂2V ω

E (s, t)

∂s2

∣∣∣∣ ≤ K(s−n + sn)

for all (s, t) ∈ R+ × [0, T ].

Proof of Lemma 5. The proof follows in the same way as the proof of Lemma 4. However,
this time we apply [86, Theorem A.20, p. 225] which guarantees the existence of a unique
classical solution w(y, t) to (4.2) that satisfies w(y, t) ∈ C2,1

pol(R × [0, T ]). Therefore, going back
to the original coordinates, we conclude that V ω

E (s, t) ∈ C2,1
pol(R

+ × [0, T ]). Therefore, there exist
constants n > 0 and K > 0 such that∣∣∣∂2V ω

E (s, t)

∂s2

∣∣∣ ≤ K(s−n + sn)

for all (s, t) ∈ R+ × [0, T ]. This completes the proof.
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We introduce the function uω : R+ × [0, T ] → R+ of the form

uω(s, t) := V ω
E (s, T − t)

and we prove the convexity of uω(s, t) with respect to s. Note that it is equivalent to the convexity
of the value function V ω

E (s, t) in s. Furthermore, based on Lemma 4, the function uω(s, t) solves
the Cauchy problem of the form{

∂uω(s,t)
∂t = L̂uω(s, t), (s, t) ∈ R+ × (0, T ],

uω(s, 0) = g(s), s ∈ R+,

where

L̂uω(s, t) = β(s, t)
∂2uω(s, t)

∂s2
+ µ(s, t)

∂uω(s, t)

∂s
− ω(s)uω(s, t)

+

∫
R

(
uω(s+ γ(s, t, z), t)− uω(s, t)− γ(s, t, z)

∂uω(s, t)

∂s

)
Π(dz)

with β(s, t) = σ2(s,t)
2 . Observe that by Lemma 5 there exist constants n > 0 and K > 0 such

that ∣∣∣∣∂2uω(s, t)∂s2

∣∣∣∣ ≤ K(s−n + sn) (4.4)

for all (s, t) ∈ R+ × [0, T ].
Let us now define a convex function κ : R+ → R+ of the form

κ(s) := sn+3 + s−n+1

with
d2κ(s)

ds2
= (n+ 3)(n+ 2)sn+1 + n(n− 1)s−n−1

and

d2(L̂κ(s))
ds2

=
∂2β(s, t)

∂s2
d2κ(s)

ds2
+ 2

∂β(s, t)

∂s

d3κ(s)

ds3
+ β(s, t)

d4κ(s)

ds4

+
∂2µ(s, t)

∂s2
dκ(s)

ds
+ 2

∂µ(s, t)

∂s

d2κ(s)

ds2
+ µ(s, t)

d3κ(s)

ds3

− d2ω(s)

ds2
κ(s)− 2

dω(s)

ds

dκ(s)

ds
− ω(s)

d2κ(s)

ds2

+

∫
R

(
d2κ(s+ γ(s, t, z))

ds2

(
1 +

∂γ(s, t, z)

∂s

)2

+
dκ(s+ γ(s, t, z))

ds

∂2γ(s, t, z)

∂s2
− γ(s, t, z)

d3κ(s)

ds3

−
(
1 + 2

∂γ(s, t, z)

∂s

)
d2κ(s)

ds2
− ∂2γ(s, t, z)

∂s2
dκ(s)

ds

)
Π(dz).

The assumptions we make on the coefficients µ, σ, γ and the function ω and their derivatives
imply that each component of the above expression grows at most as sn+1 for large s and as
s−n−1 for small s. The same behaviour characterises d2κ(s)

ds2
.
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In addition, we define the function ϑ : R+ × [0, T ] → R given by

ϑ(s, t) :=

(
∂2µ(s, t)

∂s2
− 2

dω(s)

ds

)
dκ(s)

ds
− d2ω(s)

ds2
κ(s)

which also behaves as d2(L̂κ(s))
ds2

at 0 and ∞.
Hence, we claim that there exists a positive constant C such that

C
d2κ(s)

ds2
− d2(L̂κ(s))

ds2
> −ϑ(s, t). (4.5)

In the second part of the proof, we define the auxiliary function

uωε (s, t) := uω(s, t) + εeCtκ(s) (4.6)

for some ε > 0.
We carry out a proof by contradiction. Then assume that uωε (s, t) is not convex. For this

purpose, we denote by Λ the set of points for which uωε (s, t) is not convex, that is

Λ := {(s, t) ∈ R+ × [0, T ] :
∂2uωε (s, t)

∂s2
< 0}

and we assume that the set Λ is not empty.
From Lemma 5 we know that uω(s, t) satisfies (4.4). Due to this fact and using (4.6), we

claim that there exists a positive constant R such that Λ ⊆ [R−1, R] × [0, T ]. This is a direct
consequence of the choice of uωε (s, t) in (4.6) that d2κ(s)

ds2
grows faster than ∂2uω(s,t)

∂s2
for large and

small values of s.
Consequently, the set Λ is a bounded set. Since the closure of a bounded set is also bounded,

we conclude that the closure of Λ, i.e. cl(Λ), is compact.
Since a compact set always contains its infimum, we can define

t0 := inf{t ≥ 0 : (s, t) ∈ cl(Λ) for some s ∈ R+}.

From the initial condition, that is uω(s, 0) = g(s) and the convexity of g, we have the following

d2uωε (s, 0)

ds2
=
d2(g(s) + εκ(s))

ds2
≥ ε

d2κ(s)

ds2
> 0

for all s ∈ R+. Therefore, we can conclude that t0 > 0.
Furthermore, at the point where the infimum is reached, that is (s0, t0) for some s0 ∈ R+

∂2uωε (s0, t0)

∂s2
= 0.

This is a consequence of the continuity of the function ∂2uωε (s,t)
∂s2

in s. In addition, for t ∈ [0, t0)

we have ∂2uωε (s0,t)
∂s2

> 0 and applying the symmetry of the second derivatives at t = t0, we derive

∂2

∂s2

(
∂uωε (s0, t0)

∂t

)
=

∂

∂t

(
∂2uωε (s0, t0)

∂s2

)
≤ 0. (4.7)
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Furthermore, at (s0, t0) we also have

∂2(L̂uωε (s0, t0))
∂s2

=
∂2β(s0, t0)

∂s2
∂2uωε (s0, t0)

∂s2
+ 2

∂β(s0, t0)

∂s

∂3uωε (s0, t0)

∂s3

+ β(s0, t0)
∂4uωε (s0, t0)

∂s4
+
∂2µ(s0, t0)

∂s2
∂uωε (s0, t0)

∂s

+ 2
∂µ(s0, t0)

∂s

∂2uωε (s0, t0)

∂s2
+ µ(s0, t0)

∂3uωε (s0, t0)

∂s3

− d2ω(s0)

ds2
uωε (s0, t0)− 2

dω(s0)

ds

∂uωε (s0, t0)

∂s
− ω(s0)

∂2uωε (s0, t0)

∂s2

+

∫
R

(
∂2uωε (s0 + γ(s0, t0, z), t0)

∂s2

(
1 +

∂γ(s0, t0, z)

∂s

)2

+
∂uωε (s0 + γ(s0, t0, z), t0)

∂s

∂2γ(s0, t0, z)

∂s2
− γ(s0, t0, z)

∂3uωε (s0, t0)

∂s3

−
(
1 + 2

∂γ(s0, t0, z)

∂s

)
∂2uωε (s0, t0)

∂s2
− ∂2γ(s0, t0, z)

∂s2
∂uωε (s0, t0)

∂s

)
Π(dz).

Since ∂2uωε (s0,t0)
∂s2

= 0 and ∂2uωε (s,t0)
∂s2

has a local minimum at s = s0, we have ∂3uωε (s0,t0)
∂s3

= 0 and
∂4uωε (s0,t0)

∂s4
≥ 0. Thus,

∂2(L̂uωε (s0, t0))
∂s2

≥ ∂2µ(s0, t0)

∂s2
∂uωε (s0, t0)

∂s
− d2ω(s0)

ds2
uωε (s0, t0)

− 2
dω(s0)

ds

∂uωε (s0, t0)

∂s

+

∫
R

(
∂uωε (s0 + γ(s0, t0, z), t0)

∂s

∂2γ(s0, t0, z)

∂s2

− ∂uωε (s0, t0)

∂s

∂2γ(s0, t0, z)

∂s2

)
Π(dz).

Since uωε (s, t0) is convex in s and ∂2uωε (s0,t0)
∂s2

= 0, applying (2.4), we can conclude that the integral
part of the above expression is non-negative. Moreover, (2.5) implies that

∂2(L̂uωε (s0, t0))
∂s2

≥ εeCt0
((

∂2µ(s0, t0)

∂s2
− 2

dω(s0)

ds

)
dκ(s0)

ds
− d2ω(s0)

ds2
κ(s0)

)
= εeCt0ϑ(s0, t0).

(4.8)
Combining (4.5) with (4.7) and (4.8) at (s0, t0), we derive the following result

∂2

∂s2

(
∂uωε (s0, t0)

∂t
− L̂uωε (s0, t0)

)
= εeCt0

d2

ds2
(Cκ(s0)− L̂κ(s0))

> −εeCt0ϑ(s0, t0) ≥
∂2

∂s2

(
∂uωε (s0, t0)

∂t
− L̂uωε (s0, t0)

)
which is a contradiction. It confirms that the set Λ is empty and thus uωε (s, t) is a convex
function. Finally, letting ε→ 0 we conclude that uω(s, t) is convex in s for all t ∈ [0, T ].

Using the same arguments as in the proof of [68, Theorem 4.1, p. 389], we can resign from
Assumptions (B) and (C) in Theorem 10, that is the following theorem holds.
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Theorem 11. Let the assumptions of Theorem 1 hold. Then V ω
E (s, t) is convex with respect to

s at all times t ∈ [0, T ].

We are ready to give the proof of our first main result, that is Theorem 1. We also recall the
content of this theorem.

Theorem 1. Let Assumptions (A) hold. Assume that the payoff function g is convex, ω is
concave, the stock price process St follows (2.1), and the following inequalities are satisfied

∂2γ(s, t, z)

∂s2
γ(s, t, z) ≥ 0, (2.4)

(
∂2µ(s, t)

∂s2
− 2

dω(s)

ds

)
∂V ω

E (s, t)

∂s
− d2ω(s)

ds2
V ω

E (s, t) ≥ 0, (2.5)

where V ω
E (s, t) is defined in (2). Then the value function V ω

A (s) is convex as a function of s.

Proof of Theorem 1. As noted in [68, Section 7, p. 395], under Assumptions (A1)–(A4), for
each p ≥ 1 there exists a constant C such that the stock price process given in (2.1) satisfies

Es

[
sup

0≤t≤T
|St|p

]
≤ C(1 + sp).

Together with (A5) and (A6) it implies that the value function given by

V ω
AT (s, t) := sup

τ∈T Tt
Es,t

[
e−

∫ τ
t ω(Sw)dwg(Sτ )

]
is well-defined, where T T

t is the family of F-stopping times with values in [t, T ] for fixed maturity
T > 0. Moreover, we denote

V ω
AT (s) := V ω

AT (s, 0).

Let us now define a Bermudan option with the value function of the form

V ω
BΞ

(s, t) := sup
τ∈TΞ

Es,t
[
e−

∫ τ
t ω(Sw)dwg(Sτ )

]
,

where TΞ is the set of stopping times with values in

BΞ =
{ n
2Ξ

(T − t) + t : n = 0, 1, ..., 2Ξ
}
,

where Ξ is some positive integer number. To simplify the notation, we denote

V ω
BΞ

(s) := V ω
BΞ

(s, 0).

In contrast to the American options, the Bermudan options are the options that can be exercised
in one of finitely many times.

Now, we show that V ω
BΞ

(s, t) inherits the property of convexity from its European equivalent
V ω

E (s, t). Next, we generalise this result to the American case V ω
A (s).

Lemma 6. Let the assumptions of Theorem 1 hold. Then V ω
BΞ

(s, t) is convex with respect to s
at all times t ∈ [0, T ].
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As the possible exercise times of the Bermudan option become more dense, the value function
V ω

BΞ
(s, t) converges to V ω

AT (s, t). To formalise this result, we proceed as follows. For a given
stopping time τT0 that takes values in [0, T ], we define

τΞ := inf{t ∈ BΞ : t ≥ τT0 }.

Then τΞ ∈ BΞ is a stopping time and τΞ → τT0 almost surely as Ξ → ∞. Moreover, by the
dominated convergence theorem, we obtain the following∣∣∣∣Es [e− ∫ τΞ

0 ω(Sw)dwg(SτΞ)
]
− Es

[
e−

∫ τT0
0 ω(Sw)dwg(SτT0

)

]∣∣∣∣
≤ Es

∣∣∣∣e− ∫ τΞ
0 ω(Sw)dwg(SτΞ)− e−

∫ τT0
0 ω(Sw)dwg(SτT0

)

∣∣∣∣→ 0

as Ξ → ∞. Therefore, it follows that

lim inf
Ξ→∞

V ω
BΞ

(s) ≥ V ω
AT (s)

It is obvious that
V ω

BΞ
(s) ≤ V ω

AT (s),

so we finally derive
V ω

BΞ
(s) → V ω

AT (s)

as Ξ → ∞. We take maturity T tending to infinity to receive our claim.

Now we present the proof of the most significant result in our work, that is Theorem 3 with
its content.

Theorem 3. Assume that the stock price process St is described by (2.7) and ω is a measurable,
bounded from below, concave and non-decreasing function such that

ω(s) = c for all s ∈ (0, 1] and some constant c ∈ R. (2.8)

Then

vωAPut(s, l, u) =
H (ω)(s)

H (ω)(l)
(K − l)1{s<l} + (K − s)1{s∈[l,u]}

+

{∫ ∞

0

∫ ∞

0

H (ωu)(( uey ) ∧ l)
H (ωu)(l)

(K − elog l∨(log u−y))r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u},

where

c
Z

(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)
α (z)

W
(ωα)
α (z)
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and r(s, u, z) is given in (1.20).
If l = 0 then condition (2.8) is superfluous and

vωAPut(s, 0, u) = (K − s)1{s∈[0,u]}

+

{∫ ∞

0

∫ ∞

0
(K − elog u−y)r(s, u, z)Π(−z − dy)dz

+ (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))}
1{s>u}.

Proof of Theorem 3. We recall the following exit identities

σ−a = inf{t ≥ 0 : Xt ≤ a} and σ+a = inf{t ≥ 0 : Xt ≥ a}

for a ∈ R. We also define the following

σa,b := inf{t ≥ 0 : Xt ∈ [a, b]}

for a ≤ b and a, b ∈ R.
From [105, Theorem 2.5, p. 3279] and [105, Corollary 2.1, p. 3276] we have

E(x)

[
e−

∫ σ+a
0 η(Xw) dw;σ+a <∞

]
=

H(η)(x)

H(η)(a)
, (4.9)

E(x)

[
e−

∫ σ−0
0 η(Xw) dw;σ−0 <∞

]
= Z(η)(x)− cZ(η)/W(η)W(η)(x), (4.10)

where cZ(η)/W(η) = limz→∞
Z(η)(z)

W(η)(z)
and η is defined in (1.18). In (4.9) we additionally assume

that η(x) = c for all x ≤ 0 and some constant c ∈ R.
Denoting

τ−a := inf{t ≥ 0 : St ≤ a} and τ+a := inf{t ≥ 0 : St ≥ a},

where St = eXt , we can conclude, from (4.9) and (4.10), that

Es
[
e−

∫ τ+a
0 ω(Sw) dw; τ+a <∞

]
=

H (ω)(s)

H (ω)(a)
, (4.11)

Es
[
e−

∫ τ−1
0 ω(Sw) dw; τ−1 <∞

]
= Z (ω)(s)− cZ (ω)/W (ω)W (ω)(s),

where ω(s) = ω(ex) = η(x) and the functions Z (ω)(s), W (ω)(s), H (ω)(s) are defined in (1.14),
(1.15) and (1.16).

We consider three possible cases of the initial state S0 = s:

1. s < l: As the process St is spectrally negative and starts below the interval [l, u], it can
enter this interval only in a continuous way, and hence τl,u = τ+l and Sτl,u = l. Thus, from
(4.11)

vωAPut(s, l, u) = Es
[
e−

∫ τ+
l

0 ω(Sw)dw;Sτ+l
= l

]
(K − l)

=
H (ω)(s)

H (ω)(l)
(K − l).
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2. s ∈ [l, u]: If the process St starts within the interval [l, u], which is an optimal stopping
region, we decide to exercise our option immediately, that is τl,u = 0. Therefore, we have

vωAPut(s, l, u) = K − s.

3. s > u: There are three possible cases of entering the interval [l, u] by the process St when it
starts above u: St enters [l, u] continuously going down, or jumps from (u,∞) to (l, u), or
St jumps from the interval (u,∞) to the interval (0, l) and then enters [l, u] continuously.

We can distinguish these cases in the following way

vωAPut(s, l, u) = Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u); τ

−
u < τ−l

]
+ Es

[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u); τ

−
u = τ−l

]
.

(4.12)

To analyse the first component in (4.12), note that

Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u); τ

−
u < τ−l

]
= Es

[
e−

∫ τ−u
0 ω(Sw)dw(K − Sτ−u );Sτ−u ∈ [l, u]

]
=

∫ u

l
(K − z)Es

[
e−

∫ τ−u
0 ω(Sw)dw;Sτ−u ∈ dz

]
+ (K − u)Es

[
e−

∫ τ−u
0 ω(Sw)dw;Sτ−u = u

]
.

Now we express the above formulas in the Xt = logSt process. We recall that in (1.18) we also
introduced the function ηu(x) = η(x+ log u). Then

Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u); τ

−
u < τ−l

]
=

∫ log u

log l
(K − ez)E(x)

[
e−

∫ σ−log u
0 η(Xw)dw;Xσ−

log u
∈ dz

]

+ (K − u)E(x)

[
e−

∫ σ−log u
0 η(Xw)dw;Xσ−

log u
= log u

]

=

∫ log u−log l

0
(K − elog u−y)E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;−Xσ−

0
∈ dy

]
+ (K − u)E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;Xσ−

0
= 0

]
.

(4.13)

From the compensation formula for Lévy processes given in [99, Theorem 4.4, p. 95] we have

E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;−Xσ−

0
∈ dy

]
=

∫ ∞

0
r(ηu)(x− log u, z)Π(−z − dy)dz, (4.14)

where r(ηu)(x− log u, z) is the resolvent density of Xt killed by the potential ηu and when exiting
the positive half-line, which is, by [105, Theorem 2.2, p. 3278], given by

r(ηu)(x− log u, z) = W(ηu)(x− log u) lim
y→∞

W(ηu)(y, z)

W(ηu)(y)
−W(ηu)(x− log u, z).

Note that r(ηu)(log s− log u, z) = r(s, u, z) for r(s, u, z) given in (1.20).
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To find E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;Xσ−

0
= 0

]
, we consider

E(x−log u)

[
e
−

∫ σ−0
0 ηu(Xw)dw+αXσ−0 ;σ−0 <∞

]
(4.15)

for some α > 0. Note that using the change of measure given in (1.3), it is equal to

eα(x−log u)E(α)
(x−log u)

[
e−

∫ σ−0
0 ηαu (Xw)dw;σ−0 <∞

]
, (4.16)

where E(α)
(x−log u) is the expectation with respect to P(α)

(x−log u) and ηαu (x) := ηu(x) − ψ(α). From
(4.10) we know that

E(α)
(x−log u)

[
e−

∫ σ−0
0 ηαu (Xw)dw;σ−0 <∞

]
= Z(ηαu )

α (x− log u)− cZ(ηα)
α /W(ηα)

α
W(ηαu )
α (x− log u).

Moreover, observe that (4.15) can be written as

E(x−log u)

[
e
−

∫ σ−0
0 ηu(Xw)dw+αXσ−0 ;σ−0 <∞

]
= E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;Xσ−

0
= 0

]

+ E(x−log u)

[
e
−

∫ σ−0
0 ηu(Xw)dw+αXσ−0 ;Xσ−

0
< 0

]
.

Taking the limit α→ ∞ and using (4.16), we derive

lim
α→∞

eα(x−log u)E(α)
(x−log u)

[
e−

∫ σ−0
0 ηαu (Xw)dw;σ−0 <∞

]
= E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;Xσ−

0
= 0

]
(4.17)

and, therefore, we have

E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;Xσ−

0
= 0

]
= lim

α→∞
eα(x−log u)

(
Z(ηαu )
α (x− log u)− cZ(ηα)

α /W(ηα)
α

W(ηαu )
α (x− log u)

)
.

(4.18)

Furthermore, the second component of (4.12) is equal to

Es
[
e−

∫ τl,u
0 ω(Sw)dw(K − Sτl,u); τ

−
u = τ−l

]
= E(x)

[
e−

∫ σlog l,log u
0 η(Xw)dw(K − eXσlog l,log u );σ−log u = σ−log l

]
= E(x)

[
e−

∫ σlog l,log u
0 η(Xw)dw(K − eXσlog l,log u );Xσ−

log u
< log l

]
= E(x)

[
e−

∫ σ−log u
0 η(Xw)dwE

[
e−

∫ σlog l,log u
0 η(Xw)dw(K − eXσlog l,log u );Xσ−

log u
< log l

]]

=

∫ ∞

log u−log l
E

[
e−

∫ σ−0
0 ηu(Xw)dwE(log u−y)

[
e−

∫ σ+log l
0 ηu(Xw)dw(K − e

X
σ+
log l )

]
;−Xσ−

0
∈ dy

]

=

∫ ∞

log u−log l

H(ηu)(log u− y)

H(ηu)(log l)
(K − l)E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;−Xσ−

0
∈ dy

]
.

(4.19)
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Now we have to express all the generalised scale functions in terms of St as defined in (1.14)–(1.17)
with x = log s and using (1.18). Finally, using (4.12) together with (4.13), (4.14), (4.17) and
(4.19) completes the proof of the first part of the theorem. If l∗ = 0, then we can proceed as
before, except that we do not need identity (4.11), and hence condition (2.8) is indeed superfluous.

The special cases of Theorem 3, that is Theorem 4 and Theorem 5, along with the proofs,
are provided below.

Theorem 4. Assume that ω is a bounded from below, concave and non-decreasing function. For
the Black-Scholes model with Xt given in (2.9), the function vωAPut(s, l, u) defined in (3) is given
by

vωAPut(s, l, u) =
h(s)

h(l)
(K − l)1{s<l} + (K − s)1{s∈[l,u]}

+
h(s)

h(u)
(K − u)1{s>u},

where h(s) is a solution to

σ2s2

2
h′′(s) + rsh′(s)− ω(s)h(s) = 0, (2.10)

which satisfies {
h(s) = K − s, s ∈ [l∗, u∗],

lim
s→∞

h(s) = const.
(2.11)

Proof of Theorem 4. We prove that for the function h satisfying (2.10), we have

Es
[
h(Sτl,u)

h(s)
e−

∫ τl,u
0 ω(Sw)dw

]
= 1. (4.20)

Since the process St is continuous in the Black-Scholes model, Sτl,u equals l or u, depending on
the initial state of St. We can distinguish three possible scenarios:

1. s < l: As the process St is a continuous process and starts below the interval [l, u], then
τl,u = τ+l and Sτl,u = l. Thus, we get

vωAPut(s, l, u) = Es
[
e−

∫ τ+
l

0 ω(Sw)dw;Sτ+l
= l

]
(K − l)

=
h(s)

h(l)
(K − l).

(4.21)

2. s ∈ [l, u]: If the process St starts within the interval [l, u], which is the optimal stopping
region, we decide to exercise our option immediately, that is τl,u = 0. Therefore, we have

vωAPut(s, l, u) = K − s. (4.22)

3. s > u: Similarly to the case where s < l, the process St can enter [l, u] only through u,
and thus τl,u = τ−u and Sτl,u = u. Hence, we obtain

vωAPut(s, l, u) = Es
[
e−

∫ τ−u
0 ω(Sw)dw;Sτ−u = u

]
(K − u)

=
h(s)

h(u)
(K − u).

(4.23)
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Identities (4.21), (4.22) and (4.23) give the first part of the assertion of the theorem. Note that
boundary condition (2.11) follows straightforwardly from the definition of the value function of
the American put option.

We are left with the proof of (4.20). Therefore, we consider the strictly positive function
h ∈ C2(R+) ⊂ D(A) that is bounded by some positive constant C. Then by [119, Proposition
3.2, p. 771] the process

Eh(t) :=
h(St)

h(s)
e
−

∫ t
0

(Ah)(Sw)
h(Sw)

dw

is a mean-one local martingale, whereas in the case of the Black-Scholes model, we have

Ah(s) = σ2s2

2
h′′(s) + rsh′(s). (4.24)

Observe that (4.24) is equivalent to (2.10) for

ω(s) =
Ah(s)
h(s)

.

Let
τMl,u := τl,u ∧M

for some fixed M > 0.
Applying the optional stopping theorem for a bounded stopping time, we derive

Es

[
h(SτMl,u

)

h(s)
e−

∫ τMl,u
0 ω(Sw)dw

]
= 1. (4.25)

We rewrite the left side of (4.25) as the sum of the following two components

I1 := Es

[
h(SτMl,u

)

h(s)
e−

∫ τMl,u
0 ω(Sw)dw; τl,u > M

]
,

I2 := Es

[
h(SτMl,u

)

h(s)
e−

∫ τMl,u
0 ω(Sw)dw; τl,u ≤M

]
.

We now prove that limM→∞ I1 = 0 and limM→∞ I2 ∈ (0,∞). Let us define the last time the
value function (3) is positive by

τlast(K) := sup{t ≥ 0 : St ≤ K}.

It is easy to see that Ps
(
τMl,u ≤ τlast(K)

)
= 1. Then, from the boundedness of h, the lower

boundedness of ω and the Cauchy-Schwarz inequality, we obtain the following

I1 ≤
C

h(s)
Es
[
e−ω¯

τlast(K); τl,u > M
]
=

C

h(s)
Es
[
e−ω¯

τlast(K)1{τl,u>M}

]
≤ C

h(s)

√
Es
[
e−2ω

¯
τlast(K)

]
Ps (τl,u > M),

where ω
¯
:= mins∈R+ ω(s). By [17, Theorem 2, p. 546] we note that

√
Es
[
e−2ω

¯
τlast(K)

]
< ∞.

Thus, limM→∞ I1 = 0. Moreover,

0 < I2 ≤
C

h(s)
Es
[
e−ω¯

τlast(K); τl,u < M
]
.
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Therefore, by (4.25) and the dominated convergence theorem, we get (4.20) as long as h is
positive and bounded. Finally, since Sτl,u equals l or u, the boundedness assumption could be
skipped. This completes the proof.

Theorem 5. Assume that ω is a non-negative, concave and non-decreasing function. For the
exponential Lévy model with Xt given in (2.12), we have l = 0. Furthermore,
(i) if σ = 0 and λ > 0 then

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
, (2.14)

(ii) if σ > 0 and λ = 0 then

vωAPut(s, 0, u) = (K − u)
(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))
, (2.15)

(iii) if σ > 0 and λ > 0 then

vωAPut(s, 0, u) =

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
+ (K − u)

(
lim
α→∞

( s
u

)α (
Z (ωαu )
α

( s
u

)
− c

Z
(ωα)
α /W

(ωα)
α

W (ωαu )
α

( s
u

)))
,

(2.16)

where

cZ (ω)/W (ω) = lim
z→∞

Z (ω)(z)

W (ω)(z)
and c

Z
(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)
α (z)

W
(ωα)
α (z)

. (2.17)

The optimal boundary u∗ in (2.15) and (2.16) can be determined by the smooth fit condition

(vωAPut)
′(u∗, 0, u∗) = −1,

while the optimal boundary u∗ in (2.14) can be determined by the continuous fit condition

vωAPut(u
∗, 0, u∗) = K − u∗.

Proof of Theorem 5. From Theorem 1 and Remark 3 it follows that the optimal exercise time
is the first entry into the interval [l, u] and by Theorem 2 the value function V ω

APut(s) is equal to
the maximum over l and u of vωAPut(s, l, u) defined in (3). We recall the observation that if the
discount function ω is non-negative, it is never optimal to wait to exercise the option for small
asset prices, that is always l∗ = 0 in this case, and the stopping region is one-sided. Now we find
the function vωAPut(s, l, u) in the case of (i) and (ii).

If σ = 0, due to the lack of memory of exponential random variable and using a similar
analysis to that used in the proof of Theorem 3, we have

vωAPut(s, 0, u) = E
(
K − elog u−Y

)+
Es
[
e−

∫ τ−u
0 ω(Sw)dw; τ−u <∞

]
=

(
K − uρ

ρ+ 1

)
E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;σ−0 <∞

]
=

(
K − uρ

ρ+ 1

)(
Z(ηu)(x− log u)− cZ(η)/W(η)W(ηu)(x− log u)

)
=

(
K − uρ

ρ+ 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W (ωu)

( s
u

))
.
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It completes the proof of part (i).
If σ > 0, then

vωAPut(s, 0, u) = E
(
K − elog u−Y

)+
E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;σ−0 <∞;Xσ−

0
< 0

]
+ (K − u)E(x−log u)

[
e−

∫ σ−0
0 ηu(Xw)dw;σ−0 <∞;Xσ−

0
= 0

]
.

The first increment can be analysed as in the case of σ = 0. The expression for the second
component follows from (4.18).

Finally, the smooth fit condition follows from Theorem 7.

Theorem 6. We assume that the function ξ is continuously differentiable. For the exponential
Lévy model with Xt given in (2.12) we have
(i) If σ = 0 and λ > 0 or λ = 0 and σ > 0, then W(ξ)(x) solves

W(ξ)′′(x) = ((Υ1 +Υ2)ξ(x) + γ2)W(ξ)′(x) +
(
(Υ1 +Υ2)ξ

′(x)− γ2Υ1ξ(x)
)
W(ξ)(x) (2.20)

with {
W(ξ)(0) = Υ1 +Υ2,

W(ξ)′(0) = (Υ1 +Υ2)
2ξ(0) + Υ2γ2.

(2.21)

Moreover, the function Z(ξ)(x) solves the same equation (2.20) with{
Z(ξ)(0) = 1,

Z(ξ)′(0) = (Υ1 +Υ2)ξ(0).
(2.22)

(ii) If σ > 0 and λ > 0, then the function W(ξ)(x) solves

W(ξ)′′′(x) = (γ2 + γ3)W(ξ)′′(x)

+ (Υ2(γ2 − γ3)ξ(x)− γ2γ3 − γ3Υ1ξ(x))W(ξ)′(x)

+
(
Υ2(γ2 − γ3)ξ

′(x) + γ2γ3Υ1ξ(x)− γ3Υ1ξ
′(x)

)
W(ξ)(x)

(2.23)

with 
W(ξ)(0) = 0,

W(ξ)′(0) = Υ2γ2 +Υ3γ3,

W(ξ)′′(0) = Υ2γ2
2 +Υ3γ3

2.

(2.24)

Moreover, the function Z(ξ)(x) solves the same equation (2.23) with
Z(ξ)(0) = 1,

Z(ξ)′(0) = 0,

Z(ξ)′′(0) = Υ2(γ2 − γ3)ξ(0)− γ3Υ1ξ(0).

(2.25)

Proof of Theorem 6. Assume first that σ = 0. Then

W (x) = Υ1e
γ1x +Υ2e

γ2x (4.26)
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with γ1 = 0. To produce the ordinary differential equation for W(ξ)(x) we start from equation
(1.14). Putting (4.26) there gives

W(ξ)(x) = Υ1 +Υ2e
γ2x +Υ1

∫ x

0
ξ(y)W(ξ)(y)dy +Υ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy. (4.27)

Taking the derivative of both sides gives

W(ξ)′(x) = Υ2γ2e
γ2x +Υ1ξ(x)W(ξ)(x) + Υ2

(
ξ(x)W(ξ)(x) + γ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy

)
.

(4.28)
From (4.27) we have∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy =

1

Υ2

(
W(ξ)(x)−Υ1 −Υ2e

γ2x −Υ1

∫ x

0
ξ(y)W(ξ)(y)dy

)
.

We put it in (4.28) and derive

W(ξ)′(x) = ((Υ1 +Υ2)ξ(x) + γ2)W(ξ)(x)− γ2Υ1 − γ2Υ1

∫ x

0
ξ(y)W(ξ)(y)dy.

We again take the derivative of both sides to get (2.20). From (1.14), (4.26) and (4.28) we derive
both initial conditions (2.21).

Similar analysis can be performed for the function Z(ξ)(x) that produces equation (2.20) and
its initial conditions (2.22). It completes the proof of case (i).

In the case where σ > 0, observe that

W (x) = Υ1e
γ1x +Υ2e

γ2x +Υ3e
γ3x (4.29)

with γ1 = 0. Thus, from (1.14) W(ξ)(x) satisfies the following equation

W(ξ)(x) = Υ1 +Υ2e
γ2x +Υ3e

γ3x +

∫ x

0
(Υ1 +Υ2e

γ2(x−y) +Υ3e
γ3(x−y))ξ(y)W(ξ)(y)dy.

We simplify it by deriving

W(ξ)(x) = Υ1 +Υ2e
γ2x +Υ3e

γ3x +Υ1

∫ x

0
ξ(y)W(ξ)(y)dy

+Υ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy +Υ3

∫ x

0
eγ3(x−y)ξ(y)W(ξ)(y)dy.

(4.30)

In the next step, we take the derivative of both sides to get

W(ξ)′(x) = Υ2γ2e
γ2x +Υ3γ3e

γ3x +Υ1ξ(x)W(ξ)(x) + Υ2

(
ξ(x)W(ξ)(x)

+ γ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy

)
+Υ3

(
ξ(x)W(ξ)(x)

+ γ3

∫ x

0
eγ3(x−y)ξ(y)W(ξ)(y)dy

)
.

(4.31)

From (4.30), we have∫ x

0
eγ3(x−y)ξ(y)W(ξ)(y)dy =

1

Υ3

(
W(ξ)(x)−Υ1 −Υ2e

γ2x −Υ3e
γ3x

−Υ1

∫ x

0
ξ(y)W(ξ)(y)dy −Υ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy

)
.
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We put it in (4.31) deriving

W(ξ)′(x) = Υ2(γ2 − γ3)e
γ2x + (Υ1 +Υ2 +Υ3)ξ(x)W(ξ)(x)

+ Υ2(γ2 − γ3)

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy + γ3W(ξ)(x)− γ3Υ1

− γ3Υ1

∫ x

0
ξ(y)W(ξ)(y)dy.

(4.32)

Taking again the derivative of both sides, we obtain

W(ξ)′′(x) = Υ2(γ2 − γ3)γ2e
γ2x + (Υ1 +Υ2 +Υ3)(ξ

′(x)W(ξ)(x) + ξ(x)W(ξ)′(x))

+ Υ2(γ2 − γ3)

(
ξ(x)W(ξ)(x) + γ2

∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy

)
+ γ3W(ξ)′(x)

− γ3Υ1ξ(x)W(ξ)(x).

(4.33)

From (4.32) we have∫ x

0
eγ2(x−y)ξ(y)W(ξ)(y)dy =

1

Υ2(γ2 − γ3)

(
W(ξ)′(x)−Υ2(γ2 − γ3)e

γ2x

− (Υ1 +Υ2 +Υ3)ξ(x)W(ξ)(x)− γ3W(ξ)(x) + γ3Υ1

+γ3Υ1

∫ x

0
ξ(y)W(ξ)(y)dy

)
.

We put it in (4.33) to get

W(ξ)′′(x) = (Υ1 +Υ2 +Υ3)(ξ
′(x)W(ξ)(x) + ξ(x)W(ξ)′(x))

+ Υ2(γ2 − γ3)ξ(x)W(ξ)(x)

+ γ2

(
W(ξ)′(x)− (Υ1 +Υ2 +Υ3)ξ(x)W(ξ)(x)− γ3W(ξ)(x)

+γ3Υ1 + γ3Υ1

∫ x

0
ξ(y)W(ξ)(y)dy

)
+ γ3W(ξ)′(x)− γ3Υ1ξ(x)W(ξ)(x).

Taking again the derivative and simplifying, we have the following

W(ξ)′′′(x) =

(
(Υ1 +Υ2 +Υ3)ξ(x) + γ2 + γ3

)
W(ξ)′′(x)

+

(
2(Υ1 +Υ2 +Υ3)ξ

′(x) + Υ2(γ2 − γ3)ξ(x)− (Υ1 +Υ2 +Υ3)γ2ξ(x)− γ2γ3

− γ3Υ1ξ(x)

)
W(ξ)′(x) +

(
(Υ1 +Υ2 +Υ3)ξ

′′(x) + Υ2(γ2 − γ3)ξ
′(x)

− γ2(Υ1 +Υ2 +Υ3)ξ
′(x) + γ2γ3Υ1ξ(x)− γ3Υ1ξ

′(x)

)
W(ξ)(x).

Ultimately, taking into account the fact that W (0) = 0, we conclude that Υ1 +Υ2 +Υ3 = 0.
Therefore, we obtain the equation we wanted to prove. From (4.29) and (1.14) we have

W(ξ)(0) = Υ1 +Υ2 +Υ3 = 0.
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From (4.32) it follows that

W(ξ)′(0) = Υ2γ2 +Υ3γ3 + (Υ1 +Υ2 +Υ3)
2ξ(0) = Υ2γ2 +Υ3γ3.

Finally, from (4.33) we have

W(ξ)′′(0) = Υ2γ2(γ2 − γ3) + (Υ1 +Υ2 +Υ3)(ξ
′(0)W(ξ)(0) + ξ(0)W(ξ)′(0))

+ Υ2(γ2 − γ3)ξ(0)W(ξ)(0) + γ3W(ξ)′(0)− γ3Υ1ξ(0)W(ξ)(0)

= Υ2γ2
2 +Υ3γ3

2.

The analysis of Z(ξ)(x) can be done in the same way. It completes the proof.

Theorem 7. Assume that the asset price is a spectrally negative exponential Lévy process (2.7).
Let ω be a concave function bounded from below with the opposite monotonicity to the payoff
function g. Assume that V ω

A (s) ∈ D(A) and g(s) ∈ C1(R+). Then V ω
A (s) uniquely solves the

following HJB system {
AV ω

A (s)− ω(s)V ω
A (s) = 0, s /∈ [l∗, u∗],

V ω
A (s) = g(s), s ∈ [l∗, u∗].

(2.26)

Moreover, if 1 is regular for (0, 1) and for the process St, then there is a smooth fit at the right
end of the stopping region

(V ω
A )′(u∗) = g′(u∗).

Similarly, if 1 is regular for (1,∞) and for the process St then there is a smooth fit at the left
end of the stopping region

(V ω
A )′(l∗) = g′(l∗).

Proof of Theorem 7. From the fact that V ω
A (s) ∈ D(A) and that the Lévy process Xt is right-

continuous and left-continuous over stopping times, we can conclude, using classical arguments,
that V ω

A (s) solves uniquely equation (2.26), see [120, Theorem 2.4, p. 37] and [52] for details.
More formally, our function as a convex function is continuous in a whole domain. Since our
boundary is sufficiently regular, we know that the Dirichlet/Poisson problem can be solved
uniquely in D(A). This solution can then be identified with the value function V ω

A (s) itself using
stochastic calculus or infinitesimal generator techniques in the continuation set; see [120, p. 131]
for further details. Similar considerations have been made only for a local operator A in [137,
Theorem 1, p. 1022]. Note that we can handle the non-local case of A only due to proving
the convexity of the value function first. We are left with the proof of the smoothness at the
boundary of the stopping set. We prove this at u∗. The proof at the lower end l∗ follows exactly
in the same way. We choose to follow the idea given in [102], although one can also apply [52]
or arguments similar to those given in [53].

Suppose then that 1 is regular for (0, 1). Since V ω
A (s) ≥ g(s) and V ω

A (u∗) = g(u∗), we have

V ω
A (u∗ + h)− V ω

A (u∗)

h
≥ g(u∗ + h)− g(u∗)

h
.

Hence

lim inf
h→0+

V ω
A (u∗ + h)− V ω

A (u∗)

h
≥ g′(u∗).
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To get the opposite inequality, we introduce

τh := inf{t ≥ 0 : St ∈ [l∗, u∗]|S0 = u∗ + h}.

From the assumed regularity, we have τh → 0 a.s. as h → 0+. Furthermore, from the Markov
property, we have

V ω
A (u∗) ≥ Eu∗

[
e−

∫ τh
0 ω(Sw)dwg (Sτh)

]
Then by (A6) and the space homogeneity of logSt,

V ω
A (u∗ + h)− V ω

A (u∗)

h
≤

Eu∗+h
[
e−

∫ τh
0 ω(Sw)dwg (Sτh)

]
− Eu∗

[
e−

∫ τ
0 ω(Sw)dwg (Sτ )

]
h

≤
E1

[
e−

∫ τh
0 ω(Sw)dwg ((u∗ + h)Sτh)

]
− E1

[
e−

∫ τ
0 ω(Sw)dwg (u∗Sτ )

]
h

and

lim sup
h→0+

V ω
A (u∗ + h)− V ω

A (u∗)

h
≤ g′(u∗),

where we use the fact that g is continuously differentiable at u∗ in the last step. This completes
the proof.

Theorem 8. Assume that ψ(1) <∞. Let 0 ≤ l ≤ u ≤ K. Then we have the following

vωACall(s,K, ζ, σ,Π, l, u) = vϑ
(1)

APut

(
K, s,−ζ, σ, Π̂, lK

s
,
uK

s

)
, (2.27)

where

Π̂(dx) = e−xΠ(−dx), (2.28)

ϑ(1)(·) = ω

(
1

·
s

K

)
− ψ(1).

Moreover, if the assumptions of Theorem 1 hold for the function ϑ(1) then the American call
option admits a double continuation region with optimal stopping boundaries l∗c and u∗c such that

l∗

l∗c
=
u∗

u∗c
=
K

s
, (2.29)

where l∗ and u∗ are the stopping limits for the put option.

Proof of Theorem 8. We recall that

vωACall(s,K, ζ, σ,Π, l, u) = Es
[
e−

∫ τl,u
0 ω(Sw)dw(Sτl,u −K)+

]
= E(x)

[
e−

∫ σlog l,log u
0 η(Xw)dw(eXσlog l,log u −K)+

]
,

where x = log s and σlog l,log u = inf{t ≥ 0 : Xt ∈ [log l, log u]}.
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By our assumption for the general Lévy process Xt, we can define a new measure P(1)
(0) via

dP(1)
(0)

dP(0)

∣∣∣∣∣∣
Ft

= eXt−ψ(1)t,

see (1.3). Then

E(x)

[
e−

∫ σlog l,log u
0 η(Xw)dw(eXσlog l,log u −K)+

]
= E(x)

[
e−

∫ σlog l,log u
0 (η(Xw)−ψ(1))dweXσlog l,log u−ψ(1)σlog l,log u(1−Ke−Xσlog l,log u )+

]
= E(1)

(0)

[
e−

∫ σlog l−x,log u−x
0 (η(Xw+x)−ψ(1))dw(ex −Ke−Xσlog l−x,log u−x )+

]
= E(1)

K

[
e
−

∫ τ lK
s , uKs

0

(
ω( s

ŜwK
−ψ(1)

)
dw

(s− Ŝτ lK
s , uKs

)+

]

= vϑ
(1)

APut

(
K, s,−ζ, σ, Π̂, lK

s
,
uK

s

)
,

(4.34)

where Ŝt = eX̂t and X̂t = −Xt is the dual process for Xt and from [53, 74, 119] it follows that
under P(1)

(0) it is again the Lévy process with the triple (−ζ, σ, Π̂) for Π̂ defined in (2.28). It
completes the proof of identity (2.27). From general stopping theory, we know that the optimal
stopping region for the call option is of the form τc = inf{t ≥ 0 : St ∈ Dc} for some stopping
set Dc, see [120, Theorem 2.4, p. 37]. Performing the same transformation as in (4.34) with τc
instead of τl,u, we can conclude that the optimal stopping time for the call option is the same
as the stopping time τ∗ = inf{t ≥ 0 : Ŝt ∈ D} for the put option (replacing τ lK

s
,uK
s

in this

transformation on the right side), where D = {xKs and x ∈ Dc}. However, from Theorem 2,
we know that the optimal stopping time for the put option is the first entry time to some optimal
interval. Thus, from the above considerations, it follows that the stopping region for the call
option is of the same type as for the put option. Therefore, (2.29) is a consequence of (2.27).



Conclusions

In this thesis, we provided an analysis of a perpetual American option with asset-dependent
discounting. We focused mainly on the put option and derived several results related to this
instrument. Our findings extend results known from the classical theory of option pricing. The
foundation of our work is the assumption of a robust and functional dependence between the
discount rate and the asset price. The optimal stopping problem considered in our research
could provide a field of application in many branches of mathematics and other sciences, not
only related to financial applications.

Our main goal of this dissertation was to derive a closed-form expression of the value function
for the option analysed in the case where the asset price is modelled by a spectrally negative
exponential Lévy process. To this end, we proved a number of auxiliary theorems and lemmas,
starting with the convexity theorem of the value function. Thanks to the assumptions on the
payoff function and the discount function, the convexity of the value function is satisfied, which
allowed us to infer the form of the optimal stopping time in our problem. This key step enabled
us to obtain the closed-form of the function vωAPut(s, l, u), whose maximisation with respect to
the parameters l and u leads us to the value function we are looking for, denoted as V ω

APut(s).
In the second part of the work, we obtained specific cases for the value function in the case of
the Black-Scholes model and the exponential Lévy process with downward exponential jumps.
The final theoretical results in the dissertation are those related to the Hamilton-Jacobi-Bellman
system and the put-call parity.

Lastly, we presented several examples in which we analytically or numerically determine the
value function V ω

APut(s) for different discount functions. For the Black-Scholes model, we consid-
ered the interesting case of a negative discount function. This scenario generates an untypical
double continuation region. In turn, for the exponential Lévy process with downward exponential
jumps, we took into account a few positive discount functions and presented analytical formulas
of the value function together with its figures. These cases required solving differential equations
to obtain generalised scale functions, which are contained in the formula for the value function.
Due to the complexity of these equations, we presented two approaches to solving them, analytic
and numerical. We verified that they return the same expected figures.

The results of this dissertation open up many directions for the future research. We would like
to highlight here the most prospective or expansive ones. It is tempting to analyse other discount
functions, for example, when ω is a random function or just a random variable dependent on
the asset process St. One can take other processes as a discount rate where the dependence
is introduced not only via correlation between Gaussian components but via a common jump
structure. This jump dependence is crucial, since crashes in the market affect a large portion
of business at the same time, see e.g. [38]. Another direction to extend our problem is to take
a Poisson version of American options, where exercise is possible only at independent Poisson
epochs. The first attempt at classical perpetual American options has been already made in
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[118]. We believe that the present analysis can be generalised to this set-up. Moreover, it would
be good to work out details for different payoff functions, hence for various options, like barrier,
Russian, Israeli or Swing options. Another concept for research is to take into account Markov
switching markets and to use omega scale matrices introduced in [49]. We expect that in this
setting the optimal exercise time is also the first entrance time to the interval which ends depend
on the governing Markov chain.
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