
FIELD OF SCIENCE: Engineering and Technology

DISCIPLINE OF SCIENCE: Information and Communication Technology

DOCTORAL DISSERTATION

AI-assisted dimensioning methods for
Network Slicing in Next Generation Mobile
Networks

Dominik Dulas

Supervisor:

Prof. dr hab. inż. Krzysztof Walkowiak

October 2024

dominik.dulas@pwr.edu.pl




“The size of your dreams must always exceed your current capacity to achieve them.
If your dreams do not scare you, they are not big enough.”

This Child Will Be Great: Memoir of a Remarkable Life by Africa’s First Woman
President

by Ellen Johnson Sirleaf





Acknowledgements

I would like to start by extending my heartfelt appreciation to my supervisor, Prof.

Krzysztof Walkowiak, for his guidance and unwavering support throughout my Ph.D.

studies over the past four years. His vast knowledge, which he generously shared, was

instrumental in the completion of this thesis and other publications. I am grateful for

his trust, patience, motivation, understanding, and insightful feedback.

I am truly grateful to Prof. Agnieszka Wyłomańska, PhD candidates Justyna Witul-

ska and Katarzyna Maraj-Zygmąt from the University of Science and Technology in

Wroclaw, Poland, and to Prof. Ireneusz Jabłoński from the Brandenburg University of

Technology and Fraunhofer Institute for Photonic Microsystems, Cottbus, Germany for

the opportunity to collaborate on our research and co-author multiple papers together.

I would like to express my genuine gratitude to the Network and Performance Engineering

department at Nokia, with particular recognition to the Leadership Team headed by

Sebastian Lasek and my company patron for the Industrial PhD, Marcin Grygiel, for

fostering an excellent and cooperative work environment.

I would like to sincerely thank my Telco Data Science team, technically lead by PhD can-

didates Michał Panek and Jakub Mazguła for a wonderful team spirit, great competences

and outstanding collaboration.

Lastly, I extend my heartfelt gratitude to my wife Małgosia and daughter Basia for the

love, support, and joy you continuously provide.

The research presented in this dissertation has been supported by funding from the

Polish Ministry of Education and Science via the Industrial PhD program "Doktorat

wdrożeniowy II - sztuczna inteligencja" as a part of the project: DWD/4/2/2020.

i





Abbreviations
ACF Autocorrelation Function

ADF Augmented Dickey-Fuller

AI Artificial Intelligence

AIC Akaike Information Criterion

AR Augmented Reality

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integrated Moving Average

BH Busy Hour

BIC Bayesian Information Criterion

BiLSTM Bidirectional Long Short-Term Memory

BLER Block Error Rate

BTS Base Transceiver Station

CapEx Capital Expenditures

CDF Cumulative Distribution Function

Cloud-RAN Cloud Radio Access Network

CNN Convolutional Neural Network

CNN-BiLSTM Convolutional Neural Network-Bidirectional Long Short-Term

Memory

CPU Central Processing Unit

CQI Channel Quality Indicator

CSP Communication Service Provider

CSPs Communication Service Providers

CU Centralized Unit

DNN Deep Neural Network

DWT Discrete Wavelet Transform

DT Digital Twin

DTW Dynamic Time Warping

DU Distributed Unit

DV Data Volume

eMBB Enhanced Mobile Broadband



FTP File Transfer Protocol

FTSM Foundation Time Series Model

GP Gaussian Process

HQIC Hannan-Quinn Information Criterion

HW Hardware

IAB Integrated Access and Backhaul

KPI Key Performance Indicator

LLM Large Language Model

LSTM Long Short-Term Memory

LTE Long-Term Evolution

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MG Multiplexing Gain

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MLE Maximum Likelihood Estimation

mMTC massive Machine Type Communications

MNOs Mobile Network Operators

MSE Mean Squared Error

NFV Network Functions Virtualization

NFVI Network Functions Virtualization Infrastructure

NGMN Next Generation Mobile Networks

nMAE normalized Mean Absolute Error

NPN Non-Public Network

NS Network Slicing

PCA Principal Component Analysis

PNF Physical Network Functions

PRB Physical Resource Block

QoS Quality of Service

RAN Radio Access Network

RMSE Root Mean Square Error



RNN Recurrent Neural Network

RU Radio Unit

SARIMA Seasonal AutoRegressive Integrated Moving Average

SLA Service Level Agreements

SVM Support Vector Machines

SW Software

TES Thresholded Exponential Smoothing

TM Traffic Model

TSC Time-Sensitive Communication

TTI Transmission Time Interval

UEs User Equipments

URLLC Ultra-Reliable, Low-Latency Communications

VARMA Vector Autoregressive Moving-Average

VARMAX Vector Autoregressive Moving Average with eXogenous regressors

model

VNF Virtual Network Functions

VR Virtual Reality





Abstract

This doctoral dissertation explores the dimensioning of 5G mobile network technology,

with a specific focus on incorporating the impacts of network slicing. The research carried

out in the context of this dissertation contributes to the advancement of techniques for

dimensioning 5G networks. It is believed that as the complexity of the 5G architecture

rises, the manual tasks performed by technical experts will no longer suffice for input

preparation, such as traffic modeling, making it essential to develop AI-based methods.

As a result of the research, a new methodology and framework was developed that

considers the:

1. key performance indicators selection,

2. performance forecasting,

3. predictive modeling for regression of seledcted outputs (e.g. throughput and delay),

4. indirect estimation of link capacity,

which will be used in Nokia’s network planning and dimensioning processes. The use of

real network data to develop and verify the models and algorithms created adds to this

innovation.

Forecasting throughput and delay is an important component of the framework that al-

lows indirect dimensioning of 5G BTS capacity. As part of the research, the use of mul-

tivariate predictive models was performed to forecast slice level throughput and delay as

a data-driven approach to dimension 5G capacity. After comprehensive comparison, the

VARMAX model, a vector autoregressive moving average model with additional exoge-

nous inputs, was selected as the best model to forecast throughput and delay. The results

indicate that this model is equally effective for short- and long-term predictions with com-

mendable accuracy. Additionally, incorporating configurational knowledge, such as the

frequency band, into the model’s training process enhances its accuracy. The evalua-

tion of one-dimensional models for the forecasting of environmental variables was also

1



Abstract 2

performed as a supporting element for the multivariate model. For this problem a Lag-

Llama model, which is a foundational time series model, was selected after a thorough

evaluation. All validations and comparisons were made with normalized mean absolute

error and mean absolute percentage error metrics.

In addition, this work presents an original technique, using system-level traffic data, to

estimate the statistical multiplexing gain of aggregated 5G transport links. The algo-

rithm enables the scalability of the simulation outcomes. This approach reduces the

computational time from days to seconds, which is crucial for network planning recom-

mendations, and ultimately improves the efficiency and flexibility of services provided

to telecommunication operators. Two case studies have been presented, demonstrating

the alignment of the estimations with measured values from microwave links in mobile

networks and highlighting their relevance to cloud BTS dimensioning.

Finally, a data-centric framework is introduced for forecasting and dimensioning, inte-

grating the digital twin concept. This model can autonomously serve as a forecasting tool

for (sliced) network dimensioning and traffic management, or it can act as a key com-

ponent of a comprehensive digital twin. In addition, it illustrates the feasibility of how

interconnected methods investigated in this work deliver the necessary output. To verify

the validity of the framework and evaluate its applicability and ability to maintain the

physical context, experiments were performed on the actual data. The results show that

the proposed framework can effectively elucidate and quantify these phenomena through

data-driven simulations of sliced wireless networks. Implementing the framework will

reliably assist Nokia processes by automatically recommending capacity expansions or

configuring parameters for slice planning based on the real data.





Streszczenie

Niniejsza rozprawa doktorska bada wymiarowanie sieci komórkowej 5G, ze szczegól-

nym uwzględnieniem wpływu plastrowania sieci (ang. Network Slicing). Raportowane

analizy oraz ich wyniki przyczyniają się do rozwoju technik wymiarowania sieci 5G.

Uważa się, że wraz ze wzrostem złożoności architektury 5G, ręczne zadania wykonywane

przez ekspertów technicznych nie będą już wystarczające do przygotowania danych we-

jściowych, takich jak modelowanie ruchu, co czyni koniecznym opracowanie metod opar-

tych na sztucznej inteligencji.

W wyniku badań opracowano nowe, kompleksowe rozwiązanie (ang. framework), które

uwzględnia:

1. wybór kluczowych wskaźników wydajności,

2. prognozowanie wydajności,

3. modelowanie predykcyjne do regresji wybranych wyników (np. przepustowości i

opóźnienia),

4. pośrednie oszacowanie przepustowości łącza,

które będzie wykorzystywane w procesach planowania i wymiarowania sieci Nokii. Zas-

tosowanie rzeczywistych danych sieciowych do opracowania i zweryfikowania stworzonych

modeli i algorytmów zwiększa innowacyjność pracy.

Prognozowanie przepustowości i opóźnienia jest ważnym elementem opracowanego rozwiąza-

nia, które umożliwia pośrednie wymiarowanie pojemności stacji bazowej 5G (ang. BTS).

W ramach badań zastosowano wielowymiarowe modele predykcyjne do prognozowania

przepustowości i opóźnienia na poziomie plastra sieci jako podejście oparte na danych do

wymiarowania pojemności 5G. Po kompleksowym porównaniu model VARMAX, czyli

wektorowy model autoregresyjny średniej ruchomej z dodatkowymi zmiennymi egzo-

genicznymi, został wybrany jako najlepszy. Wyniki wskazują, że ten model jest równie
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skuteczny w przypadku prognoz krótkoterminowych i długoterminowych z dobrą dokład-

nością. Ponadto włączenie wiedzy konfiguracyjnej, takiej jak pasmo częstotliwości, do

procesu uczenia się modelu zwiększyło jego dokładność. Ocena jednowymiarowych mod-

eli do prognozowania zmiennych środowiskowych została również przeprowadzona jako

element wspierający dla modelu wielowymiarowego. Do tego problemu po dokładnej oce-

nie wybrano model Lag-Llama, który jest podstawowym modelem szeregów czasowych

(ang. Foundational Time Series Model). Wszystkie walidacje i porównania przeprowad-

zono przy użyciu znormalizowanych metryk średniego błędu bezwzględnego i średniego

procentowego błędu bezwzględnego.

Dodatkowo praca przedstawia oryginalną technikę wykorzystującą dane o ruchu na poziomie

systemu do oszacowania statystycznego zysku multipleksowania agregowanych łączy trans-

portowych 5G. Algorytm umożliwia skalowanie wyników symulacji. To podejście skraca

czas obliczeń z dni do sekund, co ma kluczowe znaczenie dla rekomendacji dotyczących

planowania sieci i ostatecznie zwiększa efektywność i elastyczność usług świadczonych

operatorom telekomunikacyjnym. Zaprezentowano dwa studia przypadków, demonstru-

jąc zgodność oszacowań z wartościami zmierzonymi z łączy mikrofalowych w sieciach

komórkowych i podkreślając ich znaczenie dla wymiarowania BTS w chmurze.

Wreszcie, wprowadzono oparte na danych rozwiązanie do prognozowania i wymiarowania,

integrując koncepcję cyfrowego bliźniaka. Rozwiązanie to może autonomicznie służyć

jako narzędzie prognostyczne do wymiarowania (plastrów) sieci i zarządzania ruchem,

lub może działać jako kluczowy element kompleksowego cyfrowego bliźniaka. Ponadto

ilustruje wykonalność tego, jak wzajemnie powiązane metody badane w tej pracy dostar-

czają niezbędne dane wyjściowe. Aby zweryfikować dokładność rozwiązania i ocenić jego

przydatność, przeprowadzono eksperymenty na rzeczywistych danych. Wyniki pokazują,

że proponowane rozwiązanie może skutecznie wyjaśnić i zmierzyć te zjawiska poprzez

symulacje oparte na danych z plastrów sieci bezprzewodowych. Wdrożenie rozwiąza-

nia będzie niezawodnie wspierać procesy Nokii poprzez automatyczne rekomendowanie

rozszerzeń pojemności lub konfigurowanie parametrów planowania podziału na podstawie

rzeczywistych danych.
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Chapter 1

Introduction

1.1 Motivation

The fifth generation of mobile technology introduces new service categories, of which

the Enhanced Mobile Broadband (eMBB) represents an evolutional advancement of the

Next Generation Mobile Networks (NGMN). However, 5G encompasses more than just

increased speeds and capacity. The 5G architecture, characterized by reduced latency and

improved availability, opens opportunities for the establishment of Ultra-Reliable, Low-

Latency Communications (URLLC) and eMBB for critical applications [1], [2]. These

applications introduce a range of new services that have the potential to revolutionize

industries and improve our daily lives. However, these applications present a diverse set

of requirements for 5G networks that must be addressed simultaneously.

5G technology is the latest generation of mobile networks available on the commercial

market since 2019. This technology is groundbreaking in many ways and raises research

challenges. The implementation of a Cloud Radio Access Network (Cloud-RAN) and

the possibility of separating the radio protocol layers (functional splits) enable the intro-

duction of the concept of distributed processing of radio signals (so far, the base station

processing radio signals has been generally implemented in one physical device). This

approach enables significant gains in the cost of network construction and maintenance

for mobile network operators, thanks to traffic balancing and the use of "cheaper", shared

computing resources in data centers for functions requiring greater computational com-

plexity. However, the separation of radio protocol layers creates new requirements in

the transport network between the elements of the distributed base station (fronthaul).

That is, radio signals that were previously processed in one physical device must now be

sent between separated elements in a limited time and with an increased transmission

speed (than that resulting from the requirements of services provided to end users).

11
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Network Slicing (NS) that was available in limited fashion in 4G is gaining momentum

and full capabilities in 5G and emerging as a solution to meet the new range of needs. NS

serves as a virtualization technique for the network that is parallel to the cloudification

of the network function [3]. Each slice functions as a logical network built on top of the

physical network and is equipped with the necessary resources to meet the specific de-

mands of connected applications and users. The allocation of physical network resources

to the slices can be shared or dedicated, and the dynamic assignment of slice resources

enhances network efficiency and scalability. However, while NS offers numerous benefits,

it also poses additional management challenges. Nokia Bell Labs estimates that the in-

creased complexity of manual NS implementation could raise the total cost of ownership

by 30 percent compared to traditional networks [4]. In contrast, the same research states

that complete automation of NS could result in a 32% cost reduction.

The duties of Communication Service Providers (CSPs) engaged in the development

and operation of NGMN include efficiently organizing, implementing and overseeing net-

works comprising multiple Base Transceiver Station (BTS). As networks grow, CSPs

need to continuously evaluate and enhance their capacity. In cases of decreasing ca-

pacity, they initiate a network (re)planning process involving capacity dimensioning [2].

Typically, this sizing process is carried out using tools specific to the vendor, leveraging

product capabilities and internal knowledge. The Nokia department called Network and

Performance Engineering, the host of the author of this dissertation, is responsible for

establishing the method and tools for this process. Therefore, the research carried out in

the context of this doctoral dissertation contributes to the advancement of techniques for

dimensioning 5G networks, with a specific focus on incorporating the impacts of Network

Slicing (NS).

The increased challenge of sizing 5G networks compared to 4G and previous technologies

stems from various factors associated with this innovative technology, as outlined below.

5G technology enables new services that have not been possible before. Nokia forecasts

that the requirements for the 5G network that will enable the offering of these services

will be 100 times higher than the current requirements for the 4G network [5], i.e. delays

of 1 ms, peak rates of 10 Gbps, number of connected devices 100+ billion (where the

current requirements for the 4G network are respectively, 100 ms, 100 Mbps, 10 billion).

In addition to the challenges associated with the dimensioning itself, there is a fundamen-

tal issue concerning its inputs. In order to accurately determine the necessary capacity,

it is essential for the Communication Service Provider (CSP) or vendor to have detailed

information on the expected traffic patterns, including the various services, their data

volumes and the specific Quality of Service (QoS) requirements at a particular point
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in the future, ranging from a few weeks to several months, depending on the deploy-

ment schedule. While CSPs market penetration plans may suffice for long-term planning

purposes, they may not be adequate for short-term forecasts or for scenarios involving

time-varying wireless networks at specific locations [1]. The precision of the forecasts is

related to the granularity of the product (which may differ per vendor). The capacity

of the BTS increases incrementally with the addition of new hardware, each step ex-

panding the capacity by several dozen percent up to an order of magnitude. The goal of

dimensioning is to achieve accuracy below the smallest step, which ranges from a few to

a dozen percent.

1.2 5G Technology Introduction

5G offers substantial enhancements in network capacity, connectivity, latency, and re-

liability. As illustrated in Fig. 1.1, this advancement enables a multitude of new ser-

vices. The eMBB, which builds on existing mobile data services by greatly improving

performance for high bandwidth requirements. It facilitates new business services and

applications, as well as the booming use of multimedia and collaborative work environ-

ments, including Augmented Reality (AR)/Virtual Reality (VR) and various forms of

video content. These frequent, collaborative and interactive communications occur not

only between people, but also between smart devices, generating thousands of terabytes

of data each day. The growing volume of mobile traffic generated by consumers de-

mands greater capacity and reduced latency. With 5G, an anticipated peak data rate

exceeding 10 Gbps will be achievable, a significant increase from the 450 Mbps provided

by Long-Term Evolution (LTE). Furthermore, 5G aims for nearly zero latency, under

1 ms, ensuring that the radio interface remains efficient even for the most demanding

applications.

The impressive connectivity and scalability provided by 5G enables the development of

smart homes, smart cities, and smart factories, each equipped with billions of sensors that

need a flexible and scalable infrastructure known as massive Machine Type Communica-

tions (mMTC). URLLC refer to crucial machine communications requiring exceptional

reliability and minimal delay. The second phase of 5G, known as Rel-16 and standard-

ized since 2020, emphasizes comprehensive support for the Industrial Internet of Things

(IIoT) within Industry 4.0. This includes advanced URLLC and Time-Sensitive Com-

munication (TSC), support for Non-Public Networks (NPNs), operation in unlicensed

spectrum, and deployment improvements through Integrated Access and Backhaul (IAB)

operation, focusing primarily on mmWave networks. From the viewpoint of the 5G Sys-

tem Architecture, Rel-17 and subsequent releases offer (among other things) improved
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Figure 1.1: Evolution of 5G from Rel-15 to Rel-17 (source: [6]).

support for IIoT, augmented support for NPN, better support for the convergence of

wireless and wireline networks, multicast and broadcast architecture support, proxim-

ity services, enhanced multi-access edge computing, and increased support for network

automation.

NS is a solution to accommodate described wide range of demanding requirements for

latency, throughput, capacity, and availability. NS creates comprehensive logical net-

works that possess isolated properties and operate independently. As new services are

added to the network, a cloud-native core is capable of generating an instance, or slice,

of a complete network virtually. This slice is thoroughly tailored with network resources

(dedicated if necessary) assigned by use case, subscriber type, or application from a uni-

fied infrastructure. NS provides an efficient method to satisfy the needs of numerous

services and applications over a shared network infrastructure, including smartphones,

tablets, VR, personal health devices, essential remote control equipment, and automotive

connectivity.

1.3 Important Challenges for 5G Network Dimensioning

The dimensioning process is commonly carried out using vendor-specific tools that make

use of the capabilities of the product and the internal expertise. Historically, this has
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been a manual process that is heavily based on spreadsheets. Furthermore, the approach

typically follows standard linear or queueing models [7], which are refined and confirmed

through network simulations or laboratory experiments. Incorporation of product im-

provements, such as new functionalities or expansions, is included in the model as an

extra linear element, which can result in inaccurate results in intricate deployments or

with the introduction of NS due to multicollinearity issues [8].

1.3.1 One-Fits-All Process

One component of the Radio Access Network (RAN) planning procedure involves ca-

pacity dimensioning [2]. The purpose is to calculate the amount of resources needed

to provide a service for a particular traffic volume while maintaining appropriate QoS.

Typically, this process comprises the stages illustrated in Fig. 1.2, which can be carried

out sequentially or concurrently.

Figure 1.2: General BTS dimensioning process flow.

Initially, it is necessary to perform an air interface dimensioning to roughly estimate

site volumes during the implementation of a radio network. Following this, transport

dimensioning is carried out to project the necessary capacities on the access network

interfaces [9]. Lastly, Hardware (HW) resources dimensioning is performed to determine

the quantity of physical resources needed, which are measured in modules (such as radio

or system) for traditional bare metal installations and in Central Processing Unit (CPU)

for cloud-based deployments.

All these phases necessitate the specification of common inputs, such as network configu-

ration (e.g., cell bandwidth, Multiple-Input Multiple-Output (MIMO) mode, functional

split) and traffic model (e.g., number of subscribers, data volume), which are contingent



Chapter 1. Introduction 16

on the CSP requirements (derived from the technology vision). The dimensioning pro-

cess is typically performed using vendor-specific tools, as the specific constraints of the

equipment are proprietary to the vendor. Currently, this process often relies on spread-

sheets and lacks a more advanced method [8]. In addition, planning engineers must

have experience performing traffic forecasting and performance estimation. Manual or

so-called "spreadsheet" planning complicates the dimensioning of the entire network with

diverse configurations and varied traffic models and services, making it challenging or

even unachievable. This method is inefficient and promotes a "one-rule-fits-all" approach

that assumes uniformity across all cells. In addition, manual planning is susceptible to

human errors, which can lead to inaccuracies.

The distinction between two scenarios is important for dimensioning. A long-term sce-

nario is necessary when a CSP is considering Capital Expenditures (CapEx) investments

(typically for 1-2 years) and is in the process of selecting a vendor(s) to supply equip-

ment for network deployment. In this situation, the tools used should forecast adequate

resource planning for future requirements. On the other hand, a short-term scenario is

required for the daily operation of the network with slicing, as all the slices compete for

the limited resources (previously estimated in the long-term scenario) based on imme-

diate needs. Although both scenarios produce the same outputs (site capacities), they

may require different approaches due to the varying time scales involved.

1.3.2 A Priori Defined Traffic Model

The dimensioning process involves gathering input data that describe the operating

conditions of the network and the services that it is expected to provide. The Traffic

Model (TM) serves as a numerical representation of this. Forecasts of traffic data are

used to establish the TM for a future period when the network is scheduled to be oper-

ational [10]. CSP supplies estimates of the number of subscribers it anticipates having

on its network over the next few years. Information on the types of services and the

demand for each service per subscriber is also given, typically derived from a generic sta-

tistical model that is linearly extrapolated over time. Although this approach may suffice

for long-term planning, it may not offer precise results for specific site requirements or

short-term forecasts in dynamic wireless networks (particularly in high-mobility network

slices) [1]. Even with highly accurate dimensioning tools, the accuracy of the results is

dependent on the quality of the TM [1]. Hence, it is crucial to enhance the dimensioning

process by incorporating traffic forecasting techniques based on actual network data or

by designing the network without relying on the TM [11].
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1.3.3 Linear Models

Dimensioning models for mobile networks are typically developed through network sim-

ulations during the product development phase and are refined with test results upon

completion. Due to time and resource constraints, simulations and tests are generally

conducted for only a subset of potential scenarios that involve various network configu-

rations, new functionality activations, and traffic mixes. Consequently, standard linear

or queueing models are formulated to align with the simulated and tested scenarios [7].

Any unexplored or untested scenario, particularly those with intricate configurations and

feature combinations, can compromise the accuracy of the dimensioning model. The in-

troduction of network slicing further complicates the process by multiplying the traffic

mix and associated service requirements for each specific scenario. The impacts of in-

dividual product features are incorporated into the model as an additional linear model

or coefficient. It is important to note that not all features act independently, and they

often influence each other’s performance. Consequently, the concept of "feature bundles"

needs to be either simulated or tested, which adds complexity to the development of the

dimensioning model.

Simply adding coefficients or using feature-specific linear models may lead to inaccu-

rate results due to multicollinearity issues [8]. Although using standard linear models

in the dimensioning process can provide precise results for specific scenarios, the relia-

bility of the process decreases as the number of configurations and features increases.

These insights have prompted investigations of nonlinear modeling approaches, includ-

ing Artificial Intelligence (AI) driven techniques. Furthermore, employing traditional

model-based iterative dimensioning methods may not be suitable, as the computational

complexity increases significantly with the scale of the network [1].

1.3.4 Cloud Architecture Impact on Transport Dimensioning

The primary advantage of Network Functions Virtualization (NFV) is its ability to facil-

itate faster resource scaling compared to traditional Physical Network Functions (PNF).

In PNF setups, the procurement, commissioning, and connection of HW were necessary

before making it available for the deployment of a new network application. Virtual

Network Functions (VNF) are then implemented as software applications on top of

a Network Functions Virtualization Infrastructure (NFVI) to deliver telco services on

the operator’s premises [1]. Cloud-RAN allows for the division of the BTS into Radio

Unit (RU), Distributed Unit (DU), and Centralized Unit (CU) that can be deployed at

different locations (Fig. 1.3), to allow resource sharing. In contrast, in traditional setups,

fronthaul and midhaul connections are typically established using physical point-to-point
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links, since all components are co-located. This requires that CSP take into account ca-

pacity planning for fronthaul and midhaul links in addition to backhaul. In classical

RAN deployments, the final stage of the capacity planning process (Fig. 1.2) is uncom-

plicated because the Software (SW) is closely tied to the HW, making the capacities of

SW+HW known throughout all planning stages. However, for cloud-based planning, an

extra step is required to map virtual resources to physical hardware resources.

1.3.5 Access Transport Aggregation

The data carried over the radio interface are transmitted through the access transport

network to and from the components of the core network, establishing aggregation points

(Fig. 1.3). Transport connections must have adequate capacity and QoS to support

the necessary radio operations. As a result, a key aspect of RAN planning involves

estimating the capacity of individual BTS interfaces and aggregation points within the

access domain. It is important to note that the variability in packet traffic presents an

opportunity for cost savings through statistical Multiplexing Gain (MG) [9].

Figure 1.3: 5G cloudified gNB with transport interfaces and network slices.

Once again, to understand the QoS needs (e.g. temporal throughput values) of the radio

interface and traffic profile patterns for specific scenarios, it is necessary to conduct sim-

ulations at the system or network level following the traditional dimensioning approach.

These activities form the basis for creating linear models for each scenario, assuming a

uniform network configuration and traffic demands. This presents an opportunity for

potential improvements. Furthermore, cloudification and division of BTS functions im-

pact transport, particularly fronthaul, depending on the functional split between RU and

DU [12]. In the current phase of 5G deployment, the capacity of the fronthaul link is

determined by the split in a static manner. In the subsequent phase, as the fronthaul
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functionalities evolve and the need to reduce its capacity arises, it will rely on the traffic

it transmits.

Transport planning plays a crucial role in the comprehensive planning of the RAN since

optimizing the costs of the transport network can result in general cost savings in the

deployment of the mobile network. It is essential that transport connections offer ad-

equate capacity and maintain a high QoS to support the necessary radio performance,

which is typically included in the service agreements and marketing strategies of CSP.

Consequently, while there is a need to reduce costs in the transport network, this should

not compromise the performance of the radio interface.

1.3.6 Network Slicing

The introduction of network slicing adds an additional layer of complexity to the chal-

lenges mentioned above. Since each slice may have unique requirements such as Traffic

Management and QoS, and the network resources are shared, all these requirements must

be considered when planning. The network slice, which is divided into RAN slice, core

slice, and transport slices [12] (refer to Fig. 1.3), further complicates the dimension-

ing process. Although slice requirements are specified end-to-end (Fig. 1.4), each slice

component is evaluated separately due to the specific characteristics of the underlying

resources, such as radio, transport, and core. Consequently, each slice component may

require a dedicated model.

Figure 1.4: 5G Network Slicing conceptual architecture.

Another area that raises many questions in the domain of network dimensioning is the

new distributed architecture of the access network based on cloud solutions. Moving

from the previously monolithic (apart from the antennas themselves) construction of

base stations to several geographically separated elements creates the need to replan the
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transport network. Additionally, the implementation of virtual network slices will com-

plicate this process because it will add an additional dimension (several logical networks

within one physical one). The above changes generate the following research questions:

• What is the impact of different functional splits on the requirements in the trans-

port network (fronthaul)?

• What are the benefits of aggregating multiple radio signal processing elements in

one place/cloud in terms of transport network capacity?

• Is it possible to dimension one 5G base station (as it was in 4G), or does it have

to be done for the entire part of the access network that is aggregated in the same

cloud?

• What is the impact of virtual network slices on the transport network?

The current method for dimensioning the 4G transport network focuses on the part

between the base station and the elements of the backbone network. It is assumed that

due to the increase in the complexity of the architecture for 5G, it will be necessary to

develop a new method for dimensioning the transport network, which will have to take

into account its multidimensionality (new services, distributed base station in the cloud,

virtual slices).

1.4 Contributions

The research hypothesis of the doctoral dissertation is as follows.

It is possible to improve the best-in-practice 5G network dimensioning procedure using

data-driven modeling of the forecasted throughput and delay in network slices.

In order to prove the research hypothesis, the following goals are formulated:

• Collection and analysis of 5G BTS network data.

• Selection of methods and their parameters for verification.

• Development and verification of one-dimensional method for short- and long-term

environmental variables forecasting.

• Development and verification of multi-dimensional method for short- and long-term

throughput and delay forecasting.

• Development and verification of method for multi-cell traffic MG estimation.
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• Development of network slicing dimensioning framework enabling simulating "what-

if" scenarios.

• Verification of developed methods in industrial use cases.

AI methods, particularly Machine Learning (ML), help to leverage a wider range of input

data to improve the accuracy of traffic model forecasts, which is a key input condition

for dimensioning. Additionally, created methods enable the sizing of multi-access mobile

network slices, optimizing the use of network resources. Moreover, thanks to the limita-

tion of human input, this research contributes to enabling data-driven decision-making

and improves the reliability of the dimensioning procedure.

The results of the doctoral dissertation and associated research contribute to the ad-

vancement of the 5G network and will be utilized in Nokia’s network planning and di-

mensioning processes. Specifically, the NS dimensioning framework will be incorporated

into the 5G network dimensioning tool used in the aforementioned processes. A portion

of the work has already been completed, as detailed in the corresponding sections. It

is believed that the previous, simplified dimensioning procedure, which considered man-

ually prepared traffic model, resulted in the over-allocation of network resources. The

new data-driven framework that considers the slice-level requirements will limit that.

As part of the research, ML methods are employed to address the issues encountered

during the dimensioning of the 5G mobile network technology, its functionalities (NS),

and the services it offers. Numerous computer experiments were conducted using a va-

riety of datasets (e.g. live commercial networks and simulators) to identify suitable ML

algorithms and determine their parameters (tuning the methods to the problem). This

approach is deemed appropriate due to the increased complexity of the 5G network (e.g.,

virtual slices, Cloud-RAN), which heightens the difficulty of solving the dimensioning

problem, potentially rendering current methods inadequate. Furthermore, this approach

is innovative as it is not yet utilized in the scientific literature. The use of real network

data to develop and verify the methodologies and algorithms created adds to this inno-

vation. Additionally, since the network dimensioning process consists of multiple steps,

research will require careful selection or adaptation of statistical and artificial intelligence

methods for each step. For example, preparing input data that describe network traffic

(planned services provided) is one such step. These data must be inferred from current

information or forecasted for the future. Statistical tools can be used for this purpose,

but it can be challenging to account for all factors affecting traffic (e.g., seasonality, daily

traffic variations, growth in the number of 5G devices and users). Thus, research and

data analysis will require the selection of appropriate methods to address problems at

each step of the overall process.
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1.5 Dissertation Structure

Chapter 2 covers the evolution of 5G networks, offering a summary of 5G traffic pre-

diction, NS dimensioning, and the current methods for estimating transport aggregation

MG. Furthermore, it introduces the notion of Digital Twin (DT), which serves as the

foundation for this research. Chapter 3 describes the essential characteristics of the

real 5G network data utilized in this study, highlighting the key aspects. In addition, it

discusses the challenges encountered when dealing with this type of data. A thorough lit-

erature review led to the identification of the methods that are evaluated in this doctoral

dissertation, detailed in Chapter 4. Chapter 5 discusses the selection process and the

criteria for the models used in forecasting environmental variables. Subsequently, Chap-

ters 6 and 7 address the comparison of models for short-term and long-term forecasting,

respectively. They also provide results and discussion of the selection of models for the

final solution. Chapter 8 discusses the statistical aggregation gain seen in RAN and the

algorithm designed to estimate it. Chapter 9 illustrates the interconnections of all the

models, methods, and algorithms introduced earlier, forming the 5G NS dimensioning

framework. Furthermore, it explains its application in scenario simulations that integrate

the DT concept. Chapter 10 wraps up the study and outlines future perspectives.
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Related Works

This chapter outlines the current advancements, concentrating on the primary research

challenges tackled in this dissertation, such as NS dimensioning, 5G traffic forecasting,

estimation of benefits of transport aggregation, and development of a DT.

2.1 Network Slicing Dimensioning

In terms of research work related to network slice planning, the following publications are

worth mentioning. A description of the 5G network cell planning process, the challenges

it faces, and an overview of current approaches to solving them is included in [13]. In

[14], the authors try to solve the problem of maximizing the profit of a 5G Cloud-RAN

operator by appropriately accepting requests to create new network slices. The scope of

work includes two main services of the 5G network: eMBB and URLLC. The allocation

of spectrum and other base station resources to network slices is the subject of the

solution developed in [15]. Another important aspect of network dimensioning is the

development of a TM. In [16], the authors describe the challenges for planning and

dimensioning 5G networks with NS, the solution of which will require the use of AI

techniques. One of the significant problems described in this work is the need to move

away from predefined TM to methods that allow its forecasting. A solution for predicting

4G network traffic using Markov chains is described in [17]. In [18], the authors describe

a method to forecast several network performance parameters using ML. In [10], the

authors deal with the problem of forecasting the telecommunications traffic measures in

the next time window, based on previous observations, using neural networks. However,

the proposed model is designed to be used for short time windows, that is, a few seconds,

so this method can be used for traffic balancing purposes, but not for forecasting for

dimensioning purposes (where the time window is months). In [19], the authors developed

23
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a neural network architecture that can accurately forecast traffic 10 hours in advance

based on network data. [20] presents an algorithm that utilizes the alternating direction

method of multipliers to distribute processing and bandwidth resources across slices.

In [2], the authors developed a model to dimension various services in the 5G network

using real network data based on heuristics. The purpose of the model is to estimate

the network resources that implement the radio interface in terms of capacity and range

while ensuring the defined QoS. In [21], the researchers proposed a model to dimension

the fronthaul of the 5G network to guarantee minimal delays for URLLC. They used

the G/G/1 queueing model. A similar approach to structure the transport network

(specifically LTE) using a queueing model was discussed in [22], where they used a

Poisson model with Markov modulation MMPP(2)/D/1.

Extensive research has been conducted on the utilization of AI-based solutions for NS

management, which can be applied in all stages of network management (preparation,

planning and operation) [7]. These solutions also show promise in addressing complex

decision-making challenges within dynamic network settings, such as optimizing trans-

mission power in cellular networks and managing resource allocation in network slices.

In [1], the authors demonstrate that ML algorithms facilitate the modeling of individual

cells according to their unique characteristics, allowing the planning of heterogeneous

networks while taking into account local requirements. Another example involves uti-

lizing game theory for the allocation of slices in the RAN planning process [23]. A

supervised deep neural network is suggested for the allocation of spectrum, with the goal

of reducing costs, optimizing the utilization of radio resources, and ensuring the fulfill-

ment of desired service level agreements as described in [24]. In [25], a dynamic slice

reconfiguration framework is introduced. This framework facilitates vertical and hori-

zontal scaling operations to manage time-varying loads. The proposed solution utilizes

a mixed integer quadratically constrained programming method and has been validated

through simulations.

Current research is devoid of studies that illustrate how to distribute network capacity

based on actual network data to meet slice QoS requirements.

2.2 5G Traffic Forecasting

Network traffic forecasting can be performed using offline or online methods [26]. Offline

approaches gather data on the entire time series before making forecasts, while online

methods focus on specific data segments and update model parameters sequentially based

on new information. Currently, numerous studies on 5G network dimensioning leverage
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ML techniques. Among these, neural networks with Long Short-Term Memory (LSTM)

units are widely used [26, 27].

The study carried out by the authors in [28] validates that LSTM exceeds the perfor-

mance of alternative methods via the Diebold and Mariano test. This test evaluates if

the prediction quality of the i-th method is inferior compared to the j-th method. The

N-Beats model [29] is a multi-branch neural network framework designed for forecasting

time series data, especially effective with multidimensional datasets, and is applied for

aggregated traffic prediction in [30]. An alternative instance where fundamental neural

network architectures, such as Convolutional Neural Network (CNN), dense, and LSTM

networks, are used for the prediction of network traffic is documented in [31], focusing

on a 24-hour forecast. The dataset encompasses not only traffic data but also weather,

electricity consumption statistics and location, which is a unique feature of this study.

The authors emphasize the significance of runtime as a critical aspect in algorithm eval-

uation, as it is prudent to consider this when assessing models. This is because time can

be a decisive element for the practical applicability of a method.

When training a neural network or any ML model, selecting an appropriate loss function

is crucial. In [32], the authors introduce the DeepCog method, a deep learning strat-

egy utilizing an encoder-decoder architecture paired with an asymmetric loss function.

DeepCog translates any type of traffic described within the network slice into a tensor

form. Its encoder-decoder framework facilitates the prediction of future throughput.

The loss function proposed addresses the challenge of balancing the over-allocation of

resources with maintaining service level agreements. Due to its universal framework,

DeepCog can be employed to manage various levels of traffic aggregation. When em-

ploying LSTM-based neural networks, numerous researchers opt for one-step-ahead fore-

casting, which is not universally appropriate. A comparison of one-step versus multiple-

step-ahead predictions is detailed in [33–35]. While neural networks are a powerful tool

across various applications, developing an effective framework and training them for time

series prediction presents considerable challenges.

One limitation of neural network approaches is their inability to provide probabilistic

uncertainty quantification [36]. In contrast, statistical methods offer a different scenario.

The concept of predicting traffic through time series has been effectively applied for

years, including with earlier telecommunications network generations.

Among the widely favored models for forecasting network traffic using univariate time-

series are the Autoregressive Integrated Moving Average (ARIMA) models [37–40] and

Exponential Smoothing methods, including their advanced variants [40–42]. Several

studies deploying these time-series models focus exclusively on the univariate scenario,
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although some do acknowledge the potential for analogous analyses involving multivariate

datasets.

Several articles also explore methods for refining exponential smoothing techniques and

their advanced formulations [41]. Another approach discussed in [42] involves comparing

the outcomes of ARIMA and exponential smoothing models. One study demonstrates

that the ARIMA model is less precise for predicting single-cell throughput. However,

ARIMA performs better for forecasting throughput on weekdays when considering an

entire region within an LTE network. It is important to note that most studies em-

ploying time series models focus exclusively on univariate cases. Some of these studies

suggest the potential for conducting similar analyses with multivariate data. Multidi-

mensional models are rarely utilized due to the complexity of selecting suitable predictor

variables for traffic forecasting or due to challenges in accessing authentic multivariate

data. In [36], the authors compare the performance of seasonal ARIMA with a Gaussian

Process (GP) approach using real 4G BTS data. Additionally, they introduced a fea-

ture embedding kernel specifically designed for a GP model to predict traffic demand,

enhancing peak-trough accuracy compared to overall accuracy.

Various studies have assessed the precision of intelligent techniques in conjunction with

time series models [28, 43]. For example, the work in [44] presents a comparative analysis

of several methods including ARIMA, Support Vector Machines (SVM), the historical

average model, Fusion Prior Knowledge Network (FPK-Net), LSTM, Transformer, and

a newly proposed neural network architecture (incorporating an LSTM block, a con-

volution layer, and an Attention module). Researchers often opt to combine time se-

ries and deep learning techniques to take advantage of both. The study in [45] details

a technique that employs Thresholded Exponential Smoothing (TES) and Recurrent

Neural Network (RNN) for predicting allocation of network resources and mobile traf-

fic anomalies. It highlights the benefits of imposing penalties related to Service Level

Agreements (SLA) breaches. It is also effective for anomaly detection, offering a speed

advantage over Bayesian methods. However, its limitation lies in the effectiveness of

exponential smoothing primarily for one-dimensional data. Another example of integrat-

ing AI with time series analysis for traffic forecasting is outlined in [46], where Discrete

Wavelet Transform (DWT) is used for time series decomposition, followed by modeling

a linear component with ARIMA and predicting a non-linear component with LSTM.

Researchers employ various techniques to predict network traffic, such as classification

approaches, methods based on information theory, (hidden) Markov models, Gaussian

processes, and Poisson models [27, 32, 36? ]. In the academic works, there are also stud-

ies that utilize supervised techniques for network traffic prediction [26, 47–49]. These
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approaches encompass support vector machines, k-nearest neighbors, decision trees, lin-

ear regression, AdaBoost, and random forest. A drawback of these techniques is the need

to manually pre-process the dataset to indicate weekly patterns. However, incorporating

numerous shifted values for each variable can lead to a curse of dimensionality, meaning

that increased dimensionality leads to data sparsity. It is important to consider periodic-

ity at both the daily and weekly levels, as network congestion exhibits a seasonal pattern.

For instance, thesis [27] illustrates how average traffic values fluctuate at different times

of the day. In addition, the author highlights the variation in intraday traffic volatility

between weekend data and weekday data. Recognizing these patterns can improve the

accuracy of the forecast.

The use of advanced statistical or ML models that take advantage of data allows detailed

modeling of individual cells or groups of cells with similar configurations or performance

traits, tailored to their distinct features [1], [50]. Models that incorporate multiple vari-

ables take into account a variety of factors to forecast traffic growth for each cell. This

method results in precise and diverse resource planning for networks, addressing specific

local needs rather than using a uniform approach. The traffic model is essential for di-

mensioning. Recent studies show that AI methods such as Deep Neural Network (DNN),

LSTM, and RNN can accurately forecast traffic load specific to services [1].

The use of real network data allows for the application of forecasting techniques to

accurately predict future resource requirements. This challenge can be divided into

short- and long-term forecasts. Short-term forecasts improve operational management

and can be advantageous in network management, where continuous predictions are used

to optimize specific processes (e.g., capacity allocation per slice). Short-term forecasting

is particularly useful in environments with high variability. An example of a short-term

prediction for 5G data is a power forecast for 5G photovoltaic base stations [51]. In this

scenario, the aim is to achieve more accurate energy allocation and management. The

authors state that short-term energy fluctuations are affected by low latency, high data

transmission rates, and the diversity of connected devices specific to 5G. The benefit

of long-term forecasts is the ability to plan future strategies over an extended period.

However, their limitation observed in systems is the chaotic dynamics of these systems

[52].

Recent advances in generative AI models have significantly impacted the field of time

series forecasting, prompting extensive research into how these models can be utilized.

Foundation Time Series Models (FTSMs) are a category of ML models trained through

self-supervised learning (the model learns to identify patterns and relationships within

the data without needing explicit instructions or labeled data) on vast and diverse

datasets. These models can then be fine-tuned for numerous downstream tasks. The
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concept of pre-training models on initial tasks and subsequently fine-tuning them for

specialized tasks is referred to as transfer learning. The aim of transfer learning is to

leverage the knowledge obtained from pre-training on a broad dataset to improve the

performance of a similar or the same model on a distinct, more specific task, or on a

smaller dataset. Recent progress in this field has transformed the approach to model

design in time series analysis, improving various downstream applications [53–58].

Among the diverse range of models, the following are identified as having the highest po-

tential to address certain challenges in this doctoral dissertation. The Lag-Llama model

stands out as a foundational model for univariate probabilistic time series forecasting,

founded on a straightforward decoder-only transformer architecture [59]. Lag-Llama is

designed to generate a probability distribution for each predicted timestep. Although it

demonstrates strong zero-shot capabilities (to perform predictions on fresh time series

data without the need for retraining or adjusting the architecture’s weights), its perfor-

mance improves significantly with fine-tuning [60]. Performance enhancement is directly

proportional to the amount of data used for fine-tuning. The Chronos model utilizes a

method in which a time series is converted into a series of tokens through scaling and

quantization. These tokens are then used to train a language model with the cross-

entropy loss function. After training, probabilistic forecasts are generated by sampling

several potential future paths based on historical data [61]. The Chronos model has

been trained on an extensive dataset of publicly available time series and synthetic data

created with Gaussian processes. TimesFM is a forecasting model, initially trained on an

extensive time series dataset comprising 100 billion real-world time points, showcasing

remarkable zero-shot performance across diverse public benchmarks spanning multiple

domains and levels of detail. This model is specifically a decoder-only foundation model

tailored for time series forecasting. Compared to the most recent Large Language Mod-

els (LLMs) (e.g. GPT-3.5’s architecture comprising of 175 billion parameters), TimesFM

is significantly smaller, with only 200 million parameters [57].

Despite extensive research, there is no publicly accessible application that demonstrates

the use of FTSM in the telecommunications sector.

This doctoral dissertation aims to propose a comprehensive framework for network traffic

forecasting that takes into account seasonal data variations. Specifically, the framework

should integrate the interplay between Key Performance Indicators (KPIs), e.g. through-

put and delay throughout all the network sections considered. A review of the current

literature highlights the potential for further research in this field.
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2.3 Estimation of Transport Aggregation Gain

To address the demanding requirements of the fronthaul network, numerous research

studies have been conducted. The findings of the study in [62] demonstrate significant

bandwidth conservation for variable bit rate systems due to statistical MG. The publi-

cation in [63] explores various optical transport network structures and technologies that

can be used to construct an effective fronthaul network for 5G. Using queueing theory

and spatial traffic models, the research in [64] calculates the statistical MG achieved by

adjusting the number of user streams, demonstrating a substantial reduction in fron-

thaul capacity required based on traffic demand and statistical characteristics. In [65],

the authors introduced an accessible model to quantitatively assess the statistical MG of

the fronthaul. They achieved this by deriving the probability of user blocking resulting

from the restricted fronthaul capacity, as well as calculating its upper and lower bounds.

Subsequently, a large limit analysis was employed to derive the closed-form expression

of the fronthaul statistical MG, facilitating the quantification of the gain for substantial

cluster sizes.

The use of the statistical MG is leveraged in [66] to distribute surplus resources from

over-served slices to under-served slices, taking into account the actual channel conditions

of the associated user equipments. An assessment of computational and power savings

facilitated by Cloud-RAN is presented in [67] through a quantitative analysis considering

various RAN functional splits and using a multidimensional Markov model. Likewise, a

multidimensional Markov model is employed in [68] to assess the statistical MG of virtual

base station pools. Another study [69] focuses on offering recommendations for network

deployment. The authors introduce an equation that computes MG by integrating the

spatial distribution of the data traffic, which is verified by simulations.

While it is a widely-studied subject within the transport network field, there is no work

that demonstrates how the MG is influenced by traffic type and volume, nor how simu-

lations or real network data can be utilized for scaling and estimation purposes.

2.4 Digital Twin

To promote the development of more efficient network management and tools for modern

communication networks, the concept of DT was proposed. These tools encompass

troubleshooting, traffic engineering, "what-if" scenarios, network planning, and anomaly

detection, as depicted in Fig. 2.1 from [70]. The study also highlighted how advancements

in ML facilitate the creation of crucial components of network DT through data-driven

network models that can operate in real-time, such as routing optimization within a
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QoS-aware context. [71] introduced a novel framework for a DT manager designed to

handle conflicting network applications and devised a DT model for "what if" analyses

to optimize the border gateway protocol. Furthermore, [72] went into softwarization and

intelligentization of 5G/6G networks, underlining the importance of the DT architecture

for network autonomy. The authors foresee that a service layer in 6G networks will

emerge, aligning with DT technology and incorporating proactive analytics, including

generative intelligence features.

Figure 2.1: General network digital twin architecture (Source: [70]).
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5G Network Data

3.1 Dataset

The study used a dataset comprising hourly averaged time series data from thirty three

5G BTS operating in a live network deployment. Data were collected from each BTS and

its configured cells over the course of March 2023 for short-term and June 2023-February

2024 for long-term forecasting. The entire dataset has been divided into excerpts for both

short-term and long-term forecasting based on the necessary model training duration.

Whenever specific BTS or cell data is presented, it’s IDs are given, e.g. BTS-1, CELL-1.

Each cell is characterized by various configuration parameters (such as cell duplex mode,

channel bandwidth, etc.) and performance metrics (KPIs such as throughput). KPIs are

calculated from counters, which provide detailed information on network events at a low

level (e.g., the total downlink Radio Link Control delay in gNodeB DU per slice) [73].

Subscribers within this network cluster have been segmented into four distinct groups:

• Slice A - mobile subscribers with high priority

• Slice B - mobile subscribers with medium priority

• Slice C - mobile subscribers with low priority

• Slice D - fixed wireless access subscribers with lowest priority

Due to confidentiality and legal obligations, the data from the commercial networks

presented in this dissertation have been anonymized and normalized. Normalization is

performed by subtracting the minimum value and dividing by the range per each cell and

slice separately. This approach was taken in a way that preserves the data’s informational

31
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value and is referenced whenever relevant. Furthermore, details of the analyzed BTSs,

including location, configuration specifics, operator, etc., cannot be shared.

Table 3.1: The variables utilized in the modeling process.

Abbreviation Full name Unit Description

#UEs Number of user equipments #
The average number of user equipments

which have buffered data in downlink direction

CQI Channel Quality Indicator #
This indicates the average level of modulation

and coding the UE could operate

PRB utilization 5G PRB utilization for PDSCH % Utilization of PRBs for physical downlink shared channel (PDSCH)

BLER Block Error Rate %
A ratio of the number of erroneous blocks

to the total number of transmitted blocks

DV Data Volume kbit Amount of data send per particular network slice

TPut Throughput kbit/ms
Average downlink throughput volume

at PDCP SDU level for a given network slice

- Delay microsecond
Calculated as time difference between the reception of the RLC SDU

from PDCP layer and when first RLC SDU is sent over the air interface

3.2 Model Feature Selection

The KPIs used to assess the performance of 5G BTS have been carefully chosen based

on the author’s expertise in telecom network data, past analytical projects, and the

evaluation of KPIs dependencies described in section 3.4. These selected KPIs are core

performance indicators found in any vendor’s radio equipment, facilitating the creation

of multivariate models that incorporate both traffic load and radio environment metrics

[74], which directly affect throughput and delay, as discussed in the following subsection.

The characteristics used in the modeling process are depicted in Fig. 3.1. Detailed

information including the complete name, description, and unit for each variable can be

found in Tab. 3.1.

The variables were divided in two areas:

• traffic conditions: #User Equipments (UEs) , Data Volume (DV), Physical Re-

source Block (PRB) utilization,

• environmental conditions: Channel Quality Indicator (CQI) and Block Error Rate

(BLER).

The metrics indicated in Fig. 3.1 as Total are computed for all slices, while the metrics

identified as Slice are computed individually for each slice. Exogenous and endogenous

variables have been determined on the basis of the domain knowledge of the subject.
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Figure 3.1: Diagram of the model for predicting throughput and delay.

UEs, CQI are identified as metrics determined externally from the model, while PRB

utilization, BLER and DV are recognized as metrics influenced by the model.

3.3 Configuration Changes

Initial trajectory analyzes have indicated that certain time series exhibit alterations in

their structure (Figs. 3.2 - 3.5) with three periods marking different signal characteris-

tic. These changes are often attributed to adjustments made by the network operator.

Consequently, it is crucial to gather configuration data that detail software modifications

and feature activations. This information enables the identification of segments within

the data that remain consistent. The study involves examining the dates of significant

configuration modifications in the network to isolate unchanged segments that are later

utilized for modeling.
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Figure 3.2: Example trajectory of normalized throughput for Slice A.

Figure 3.3: Example trajectory of normalized throughput for Slice B.

Figure 3.4: Example trajectory of normalized throughput for Slice C.

The configuration of a 5G BTS involves thousands of parameters. To comprehend the

capabilities at the cell level, particularly concerning available resources, the most infor-

mative parameters are band and bandwidth. The band specifies the range of available
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Figure 3.5: Example trajectory of normalized throughput for Slice D.

frequencies that significantly affects the propagation of radio signals, influencing its qual-

ity (e.g., CQI, BLER) and coverage. The channel frequency bandwidth refers to the

width of frequency space allocated for a specific communication channel, e.g. per cell,

determining the possible throughput for each user (a wider channel bandwidth allows for

more data to be transmitted simultaneously). The combinations of band and bandwidth

deployed in the analyzed network cluster are shown in Tab. 3.2.

Table 3.2: Frequency bands and channel bandwidth settings in the dataset.

Frequency

band [Mhz]

Channel

bandwidth [Mhz]

BAND-1 2500(B41) 80, 100

BAND-2 600(B71) 15, 20

3.4 The Dependencies of Features

The examination of the dependencies between the characteristics was conducted by uti-

lizing the Spearman correlation matrices [75] as well as the Pearson correlation coefficient

displayed in Fig. 3.6 [76]. In order to maintain that the data accurately represent the

situation and that the interdependencies among variables remain relatively stable despite

configuration alterations, the dataset was divided based on before and after configuration

modification. This study uncovers numerous linear associations between variable pairs,

particularly highlighting pronounced correlations for certain pairs of delays and through-

puts in different network slices. Thus, it is essential to develop an expansive model that

includes the interrelationships among all the slices.
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Figure 3.6: Pearson correlation matrix of the analyzed features [77].

3.5 Information About Weekday

Taking information about the day of the week into account facilitates the examination

of variations in network traffic patterns between weekdays and weekends. This point

was also highlighted by other researchers [31]. Fig. 3.7 shows box plots that illustrate

normalized throughput for weekdays and weekends, which is calculated by aggregating

data from all BTS and cells in the dataset.

The variation between days becomes clear when looking at the data for each individual

cell as depicted in Fig. 3.8. Despite the fact that all the traffic of the slices is routed

through a single cell, each slice has distinct characteristics, indicating that they cater to

different services.
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Figure 3.7: Boxplots showing the normalized throughput for each network slice and per weekday and
weekend (all cells) [77].

Figure 3.8: Boxplots showing the normalized throughput by network slice and per each day of the week
- 1 stands for Monday (BTS-24, CELL-1) [77].
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Furthermore, weekly patterns may vary between different cells as illustrated in Figs.

3.9 - 3.12. As an example, for Slice D (Fig. 3.12) there is a weekly cycle evident for

individual days of the week. Specifically, the observations on the 4th and 11th correspond

to Sundays, showing higher throughput values across whole week only for CELL-1.

Figure 3.9: Normalized throughput for Slice A in two specific cells (CELL-1, CELL-2). Orange points
mark Sundays.

Figure 3.10: Normalized throughput for Slice B in two specific cells (CELL-1, CELL-2). Orange points
mark Sundays.

Figure 3.11: Normalized throughput for Slice C in two specific cells (CELL-1, CELL-2). Orange points
mark Sundays.
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Figure 3.12: Normalized throughput for Slice D in two specific cells (CELL-1, CELL-2). Orange points
mark Sundays [77].

The conclusion from the impact of daily seasonality on throughput and delay is that

daily seasonality and unique attributes per cell must be considered when choosing a

forecasting model.

3.6 Selection of Busy Hour

When making forecasts that span several months, it is crucial to take special care during

the selection and preparation of the dataset. To predict peak future capacity require-

ments, the analysis of delay and throughput has been limited to the busiest hour of each

day (Busy Hour (BH)), for the following reasons:

• CSPs require dimensioning results for the periods of highest network activity - BH,

as network capacity must handle these loads,

• hourly patterns within a day may introduce unnecessary details that are not per-

tinent to long-term capacity planning,

• the computational complexity for training and selecting model hyperparameters is

too high for data before aggregation.

Thus, the BH for each day has been identified, excluding data from less busy hours

for model training and testing. The BH was determined based on the highest PRB

utilization per day and cell, which indicates the peak load at the radio interface.

Furthermore, additional data selection was performed on cells with the highest load

to understand their impact on the accuracy of the forecast. High-loaded cells (HL) are

characterized by high PRB utilization, specifically the 0.95 quantile with PRB utilization
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exceeding 80%. These cells have been examined separately as they reflect BTS behavior

during peak times.



Chapter 4

Methodology

This chapter elaborates on the methodologies employed in this doctoral dissertation to

forecast slice-level throughput and delay as a data-driven approach to dimension 5G BTS

capacity with the consideration of QoS. The goal is to identify a model that is both accu-

rate and computationally efficient and performs well for both short-term and long-term

forecasts. Using a multivariate approach, cell-specific radio and traffic conditions can be

integrated to provide precise forecasts for each cell, representing the highest level of con-

figurational granularity. However, this approach requires preprocessing multiple inputs

and forecasting of exogenous variables. Consequently, there is an additional requirement

to choose a one-dimensional model.

Therefore, research for this problem resolution has been split into two phases:

1. selection of one-dimensional models for exogenous variables forecasting: #UEs,

QCI,

2. selection of multidimensional models for throughput and delay forecasting.

4.1 One-Dimensional Models

The primary objective of multivariate forecasting can be achieved employing multidi-

mensional models. However, these models require exogenous variables as input. Hence,

it is necessary to investigate one-dimensional models. As outlined in Sec. 3.5, telecom-

munications network traffic exhibits seasonal patterns (hourly and weekly seasonality),

which must be taken into account in the modeling.

The method frequently employed by researchers (Sec. 2.2) is ARIMA, a technique ef-

fective for stationary signals or decomposed signals. There is also an enhanced version

41
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incorporating signal seasonality known as Seasonal AutoRegressive Integrated Moving

Average (SARIMA).

Another approach worth exploring is the modular regression model known as Prophet.

The reason for choosing Prophet is its ability to account for seasonality [78]. This model

performs effectively for signals that show a consistent trend and simple seasonality. More-

over, it can automatically find a good set of hyperparameters for the model for efficient

forecasting contrary to ARIMA, which requires manual tuning of the hyperparameters.

The most recent research method involves the latest FTSM, which are asserted to be

more precise than statistical models due to being free of assumptions (no presuppositions

about structures and forms). Among the many models available in the literature [53–55],

Lag-Llama has been chosen.

4.1.1 SARIMA

SARIMA, or Seasonal Autoregressive Integrated Moving Average, is a flexible and pop-

ular model for time series forecasting [79, 80]. An enhancement of the non-seasonal

ARIMA model, it is tailored for datasets with seasonal trends. SARIMA adeptly cap-

tures both short-term and long-term dependencies in data, which makes it a strong

forecasting tool. It merges the principles of autoregressive (AR), integrated (I), and

moving average (MA) models, incorporating seasonal elements.

The SARIMA model is represented as:

(1)Φ(BS)ϕ(B)(xt − µ) = Θ(BS)θ(B)ωt (4.1)

The non-seasonal components are:

• Autoregressive (AR) component represented by

ϕ(B) = 1− ϕ1B − ...− ϕpB
p

describes the relationship between the current observation and a certain number

of lagged observations (previous values in the time series).

• Moving Average (MA) component represented by

θ(B) = 1 + θ1B + ...+ θqB
q

describes the relationship between the current observation and the residual errors

of a moving average model applied to lagged observations.
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The seasonal components are:

• Seasonal Autoregressive (SAR) component represented by

Φ(BS) = 1− Φ1B
S − ...− ΦPB

PS

describes the relationship between the current observation and a certain number

of lagged observations at seasonal intervals.

• Seasonal Moving Average (SMA) component represented by

Θ(BS) = 1 + Θ1B
S + ...+ΘQB

QS

describes the relationship between the current observation and the residual errors

from a moving average model applied to lagged observations at seasonal intervals.

4.1.2 Prophet

The Prophet forecasting approach excels particularly with datasets that display clear

seasonal trends and efficiently handles missing data and anomalies in its use [78]. It

integrates holiday impacts and various seasonalities (annually, weekly, and daily). Con-

sequently, non-linear trends are addressed by incorporating these factors.

Formulated as a decomposable time series model, the Prophet model is represented as:

Xt = g(t) + s(t) + h(t) + Zt, (4.2)

where

• g(t) denotes the trend,

• s(t) signifies periodic variations,

• h(t) indicates holiday impacts,

• Zt captures stochastic behavior.

The model facilitates the incorporation of seasonality in two ways: either additively or

multiplicatively, with the latter requiring a transformation of the data using logarithms.

In the simplest setup, time is usually the only regressor. Nonetheless, one can include

additional regressors as long as their future values are available. In practical terms,

forecasts are individually made for each regressor’s future values before integrating them



Chapter 4. Methodology 44

Table 4.1: Evaluated hyperparameters for Lag-Llama band level forecasting.

Hyperparameter name Hyperparameter values

Context length 32, 64, 128

Input size 1 (default)

Max context length 2048 (default)

Number of layers 1 (default)

Number of emb. per head. 32 (default)

Number head. 4 (default)

Scaling mean (default)

Distribution output Student’s t - distribution (default)

Time features False (default)

Dropout None (default)

Aug. prob. 0.1 (default)

Lags sequence ["Q", "M", "W", "D", "H", "T", "S"] (default)

into a multivariate model. For optimizing the model fitting, the Prophet model employs

the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [81].

4.1.3 FTSM

For FTSM modeling two approaches have been verified:

• zero-shot prediction - an initial offline training session on synthetic data enables

the model to perform predictions on fresh time series data without the need for

retraining or adjusting the architecture’s weights.

• fine-tuned prediction - a typical forecasting scenario in which a model is trained

on numerous data points from a time series and then tested on a future segment

of that same series.

Following a detailed literature review, a set of hyperparameters was chosen for zero-shot

and post-tuning predictions using Lag-Llama. The band-level forecasts were performed

exclusively with the zero-shot approach (Tab. 4.1), while cell-level forecasting was carried

out using both methodologies (Tab. 4.2). Moreover, the results of one-shot predictions

for Lag-Llama were evaluated with context lengths of 64 and 128. Employing longer

context lengths is not recommended due to the usual length of the stable period.
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The procedure for Lag-Llama model tuning for short-term forecasting is as follows:

1. set hyperparameters (Tab. 4.2)

2. take all observations without the last 24h for each cell for tuning the model

3. make predictions for the last 24h for each cell (test set)

Table 4.2: Evaluated hyperparameters for Lag-Llama cell level forecasting (when there are more values
than two, bolded values were taken for model tuning).

Hyperparameter name Hyperparameter values

Context length 60

Input size 1 (default)

Max context length 2048 (default)

Number of layers 8

Number of emb. per head. 16, 32 (default)

Number_head’ 4 (default), 9

Scaling mean (default), robust

Distribution output Student’s t - distribution

Number of parallel samples 100

Time features False (default), True

Dropout None (default)

Aug. prob. 0, 0.1 (default)

Learning rate 0.001 (default), 0.0005

Batch size 32

Number of the parallel samples 100

Max number of epochs 50 (default)

Shuffle buffer length 1000

Lags sequence

[0, 7, 8, 10, 11, 12, 13, 14, 19, 20, 21,

22, 23, 24, 26, 27, 28, 29, 30, 34, 35, 36,

46, 47, 48, 50, 51, 52, 55, 57, 58, 59, 60,

61, 70, 71, 72, 83, 94, 95, 96, 102, 103, 104,

117, 118, 119, 120, 121, 142, 143, 144, 154, 155, 156,

166, 167, 168, 177, 178, 179, 180, 181, 334, 335, 336,

362, 363, 364, 502, 503, 504, 670, 671, 672, 718, 719,

720, 726, 727, 728, 1090, 1091, 1092]
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4.2 Multidimensional Models

Various multivariate predictive models have been validated to forecast throughput and

delay. According to the latest literature in the domain described in Sec. 2.2, the main op-

tions have been narrowed down to multivariate Autoregressive Moving Average (ARMA)

models and neural networks.

Vector Autoregressive Moving Average with eXogenous regressors model (VARMAX) has

been selected because of following advantages:

• ability to include multiple input variables,

• ability to forecast multiple variables,

• ability to understand the temporal relationship between variables,

• is an extension to well known one-dimensional models (ARMA),

• requires less data than neural networks.

There are also some assumptions that create problems during implementation:

• requires complete and weakly stationary data that creates a need for data prepro-

cessing (decomposition), which can lead to information loss,

• requires complete and evenly time distributed data, which creates a need of data

selection or gap filling.

Neural networks (LSTM) have been selected because of the following advantages:

• ability to include multiple input variables,

• ability to forecast multiple variables,

• based on recurrencial structures and considers seasonality,

• prevents the vanishing gradient problem.

4.2.1 VARMAX

A time series {Xt} is a m-variate ARMA(p, q) process (called also vector ARMA, Vector

Autoregressive Moving-Average (VARMA)) formulated in the following way [82]:

Φ(B)Xt = Θ(B)Zt, (4.1)
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where {Xt} is a stationary solution of difference equations (4.1), where

• Φ(z) := I − Φ1z − ...− Φpz
p, where Φ1, ...,Φp are m×m matrices,

• Θ(z) := I −Θ1z − ...−Θqz
q, where Θ1, ...,Θq are m×m matrices.

Moreover:

• I is m×m identity matrix,

• B is the backward shift operator,

• {Zt} is multivariate white noise sequence.

Prior to employing the VARMAX model, it is essential to decompose the variables to

ensure that the data align with the model requirements. The complete procedure flow

chart used to decompose the data and create the VARMAX model is shown in Fig. 4.1.

Figure 4.1: Diagram of the method employing the VARMAX model.

The first step after loading the data ("Normalize data and make PCA" - red box) is

not necessary from a modeling point of view, however, it brings some benefits. Overall,

Principal Component Analysis (PCA) serves as a method for dimensionality reduction

[83], aiming to determine whether the model’s number of parameters can be minimized.

During the research (results provided in Chapter 6) it was verified that it is beneficial be-

cause reducing the number of variables makes the estimation of parameters of VARMAX

faster. Moreover, in this case, the quality of the prediction is not significantly different.

In addition, PCA allows to counteract the so-called curse of dimensionality.

The VARMA model requires that the inputs are stationary, which can be verified by

performing the Dickey-Fuller augmented test [84]. As the network data are seasonal, the

necessary step is to remove the seasonality component and verify afterwards.
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The procedure based on Maximum Likelihood Estimation (MLE) is utilized to determine

the coefficients of the model for the appropriate orders (p, q). Various combinations of

(p, q) are assessed and the one that minimizes the information criteria is chosen. The

information criteria taken into account include the Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), and the Hannan-Quinn Information Criterion

(HQIC) [85]. Subsequently, the VARMAX(p, q) model is applied for the selected values

of p and q.

4.2.2 LSTM

This section focuses on evaluating various neural network structures with different layers

and units. Previous research indicates that there is no universally accepted method

for determining the number of training epochs [86]. Thus, following preliminary tests,

the maximum number of training epochs has been set to 1000, with a provision to halt

training if loss does not decrease over 20 consecutive epochs. Prior to training the neural

networks, the data are normalized and subjected to seasonal decomposition, a process

similar to that used in VARMAX (Sec. 4.2.1).

RNN are commonly applied in time series prediction tasks [27, 31, 87–89]. However, when

dealing with long sequences, there is an issue known as the gradient-vanishing problem

[27, 87, 90, 91], which arises from the small values of partial derivatives calculated for

weights, preventing them from being updated [92]. In the context of recursive networks,

a long time horizon T implies that the initial observation x1 and the final observation

xT are distant from each other. To mitigate the vanishing gradient problem, the LSTM

unit can be used [93], which represent a variation of the traditional RNN.

The neural network architectures discussed in this section are based exclusively on LSTM

units and dense layers. The particular set of hyperparameters that was evaluated is

detailed in Tab. 4.3. During preliminary tests, it has been determined to evaluate

networks with a maximum of three layers. The choice of shallow structures is supported

by the reduced training time of the model and their potential for further development in

the case of inefficiency (e.g., high loss).

4.2.3 CNN-BiLSTM

The next architecture explored combines convolutional layers and Bidirectional Long

Short-Term Memory (BiLSTM). In a CNN, neurons are exclusively linked to a filter,
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Table 4.3: Evaluated hyperparameters for LSTM block structures [77].

Hyperparameter name Hyperparameter values

LSTM-number of layers 1, 2, 3

LSTM-units [50], [50, 50], [50, 50, 20]

LSTM-dropout rate 0.2

LSTM-activation tangent

LSTM-recurrent activation sigmoid

Learning rate 0.01, 0.001

Optimizer SGD, Adam

Batch size 24

Loss MAE, MSE

which represents a specific area in the preceding layer, unlike the traditional fully con-

nected neural network [89, 94]. Similarly to the previous section, various combinations

of parameters have been tested (Tab. 4.4).

Table 4.4: Verified hyperparameters for the CNN-BiLSTM architecture.

Hyperparameter name Hyperparameter value

CONV1 (filters, kernel size) (128, 4), (256, 4)

CONV2 (filters, kernel size) (64, 2), (128, 4)

CONV-activation relu, tanh

Pooling size 2

BiLSTM-number of layers 1

BiLSTM-units 100

BiLSTM-activation relu

BiLSTM-recurrent activation relu

Dropout rate None, 0.1

Batch size 24

Learning rate 0.001, 0.0001

Optimizer Adam, SGD

Loss MSE, MAE
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4.3 Research Environment and Tools

The research and development described in this doctoral dissertation were carried out

using Python 3.10 with Jupyter Notebooks. A variety of publicly available libraries have

been utilized (minimal library version is listed if required):

• Data normalization, regression models, statistical metrics (e.g. MAE): sklearn,

xgboost,

• Data processing and vizualization: matplotlib v. 3.8.4, numpy v. 1.26.4, pandas

v. 2.2.1, plotly v. 5.20.0, scikit-learn v. 1.4.1, scipy v. 1.13.0, seaborn v. 0.13.2,

• ARIMA: pmdarima v. 2.0.4,

• PROPHET: prophet,

• VARMAX, SARIMA and ACF testing: statsmodels v. 0.14.1,

• Parameter optimization: optuna v. 3.6.1,

• Neural networks: tensorflow v. 2.16.1, keras v. 3.3.3,

• FTSM predictions: gluonts, autogluon, torch v. 2.0.0, wandb, huggingfacehub,

• CUDA Toolkit v. 12.4 development environment for GPU usage.

Moreover, the hardware unit that has been used in the research included:

• 16 CPU: Intel(R) Core(TM) i7-7820X 3.60GHz,

• 64 GB RAM memory,

• 1 GPU NVIDIA GeForce GTX 1080 card with 8GB RAM memory.



Chapter 5

Environmental Variables Forecasting

The variables selected for the input to a delay and throughput forecasting model (Tab.

3.1) need to be preprocessed and in the case of exogenous variables also forecasted. To be

specific, it is necessary to forecast #UEs, CQI with the use of a one-dimensional model

as input for multidimensional forecasting models. These two KPIs are measured only at

the cell level; therefore, this analysis is not available for slice-based granularity.

After literature research (Sec. 2.2), several models have been selected for initial studies

as described in Sec. 4.1. In this chapter, an evaluation of these models is presented, and

the best is selected for the overall dimensioning framework presented in this doctoral

dissertation.

5.1 Selection of Models for Fine-grained Comparison

Initial model comparison has been done for data aggregated in the following way:

• all cells (that have enough data for modeling),

• high-loaded cells (Sec. 3.6).

The data is also aggregated from the cell level to a band level (Tab. 3.2) by calculating

the mean value over all timeseries over time. This approach enabled evaluating each

model on most of the data gathered and selecting models for further cell-level analysis.

Exemplary results per band for each model have been presented for UEs forecasting

in Figs. (BAND-1) 5.1 - 5.4, (BAND-2) 5.9 - 5.12 and for CQI forecasting in Figs.

(BAND-1) 5.5 - 5.8, (BAND-2) 5.13 - 5.16.
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Figure 5.1: Forecast of #UEs for Band-1 with SARIMA.

Figure 5.2: Forecast of #UEs for Band-1 with Prophet.

Figure 5.3: Forecast of #UEs for Band-1 with Chronos.

Figure 5.4: Forecast of #UEs for Band-1 with Lag-Llama.
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Figure 5.5: Forecast of CQI for Band-1 with SARIMA.

Figure 5.6: Forecast of CQI for Band-1 with Prophet.

Figure 5.7: Forecast of CQI for Band-1 with Chronos.

Figure 5.8: Forecast of CQI for Band-1 with Lag-Llama.
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Figure 5.9: Forecast of #UEs for Band-2 with SARIMA.

Figure 5.10: Forecast of #UEs for Band-2 with Prophet.

Figure 5.11: Forecast of #UEs for Band-2 with Chronos.

Figure 5.12: Forecast of #UEs for Band-2 with Lag-Llama.
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Figure 5.13: Forecast of CQI for Band-2 with SARIMA.

Figure 5.14: Forecast of CQI for Band-2 with Prophet.

Figure 5.15: Forecast of CQI for Band-2 with Chronos.

Figure 5.16: Forecast of CQI for Band-2 with Lag-Llama.
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Analyzing the plots of the actual and forecasted values, it is clear that SARIMA produces

the least accurate results because it fails to capture the seasonality of the signal, resulting

in values near the average signal levels. In contrast, the other three models successfully

align with seasonal patterns. To quantitatively assess the accuracy of the predictions, all

models were evaluated using the normalized Mean Absolute Error (nMAE) and Mean

Absolute Percentage Error (MAPE) metrics (Tabs. 5.1, 5.2).

Table 5.1: Comparative analysis of nMAE for one-dimensional models in long-term UEs and CQI
forecasting across all cells averaged by band.

Band KPI SARIMA Prophet Chronos Lag-Llama

BAND-1
UEs 0.252 0.163 0.181 0.256

CQI 0.627 0.529 0.444 0.368

BAND-2
UEs 0.059 0.079 0.072 0.052

CQI 0.213 0.356 0.295 0.250

Table 5.2: Comparative analysis of MAPE for one-dimensional models in long-term UEs and CQI
forecasting across all cells averaged by band.

Band KPI SARIMA Prophet Chronos Lag-Llama

BAND-1
UEs 0.166 0.154 0.172 0.173

CQI 0.028 0.039 0.033 0.027

BAND-2
UEs 0.211 0.775 0.688 0.374

CQI 0.047 0.058 0.048 0.041

Examining nMAE and MAPE indicates that Lag-Llama demonstrates the highest accu-

racy in most scenarios, making it the preferred model for fine-grained analysis. SARIMA

had already been ruled out because it did not adhere to the seasonality pattern. Although

Chronos yields more precise results in more cases compared to Prophet, the differences

are marginal. Given that Chronos belongs to the same category of models as Lag-Llama,

Prophet is chosen for further comparison to include a model of a different type.

5.2 Comparison of One-dimensional Short-term Forecast

In both cases of #UEs and CQI, it can be observed that the median normalized MAE

(nMAE) for the one-shot Lag-Llama model is higher and the ranges are wider than for the

Prophet model (Fig. 5.17 and Fig. 5.18). Consequently, Prophet outperforms the one-

shot Lag-Llama. This conclusion is supported by the figures that depict the nMAE for

various models, including a breakdown by cells (Fig. 5.19 and Fig. 5.20). However, after
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parameter tuning (Sec. 4.1.3), the Lag-Llama model demonstrates a slight improvement

in forecasting #UEs compared to Prophet, as shown by a lower median nMAE.

Figure 5.17: The comparison nMAE for short-term UEs forecasting: Lag-Llama vs Prophet.

Figure 5.18: The comparison nMAE for short-term CQI forecasting: Lag-Llama vs Prophet.
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Further investigation of cell-level data shows that the evaluation metrics are similar for

Prophet and Lag-Llama when there are no complicated trends and seasonality is highly

visible in the data (Figs. 5.21 - 5.24).

Figure 5.21: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-6, CELL-3).

Figure 5.22: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-5, CELL-303).
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Figure 5.23: Illustrative example of Prophet and Lag-Llama CQI forecast (BTS-19, CELL-2).

Figure 5.24: Illustrative example of Prophet and Lag-Llama CQI forecast (BTS-19, CELL-301).
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However, there are examples with significant differences between Lag-Llama and Prophet,

shown and discussed below.

5.2.1 Results where Prophet is Outperforming Lag-Llama

For forecasting the number of UEs, Prophet outperformed Lag-Llama significantly in the

specific instance illustrated in Fig. 5.25 and for CQI as depicted in Fig. 5.26. The data

exhibit a clear linear and seasonal trend, making the optimization problem for Prophet

straightforward to solve, yielding reliable results.

Figure 5.25: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-22, CELL-301).

Figure 5.26: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-33, CELL-301).
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5.2.2 Results where Lag-Llama is Outperforming Prophet

In cases of unusual data characteristics, Lag-Llama outperforms Prophet, since Prophet

excels with recurring trends and clear seasonality. From the observations, Prophet strug-

gles with nonmonotonic trends. For example, for any signals with a minimum values

close to zero, Prophet has a higher risk of forecasting negative values. This issue does

not arise with the tuned Lag-Llama, as it is calibrated with actual data and understands

the characteristics and patterns. Moreover, for any signals exhibiting a significant pat-

tern change, Prophet may be ineffective since it attempts to fit the model to the entire

trajectory, while Lag-Llama adjusts the weights to prioritize the "recent past" over the

"distant past". Exemplary results for UE forecasting are illustrated in Figs. 5.27 - 5.29

and for CQI in Figs. 5.30 - 5.32.

Figure 5.27: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-31, CELL-2).

Figure 5.28: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-33, CELL-303).
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Figure 5.29: Illustrative example of Prophet and Lag-Llama UEs forecast (BTS-31, CELL-301).

Figure 5.30: Illustrative example of Prophet and Lag-Llama CQI forecast (BTS-20, CELL-22).

Figure 5.31: Illustrative example of Prophet and Lag-Llama CQI forecast (BTS-22, CELL-22).
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Figure 5.32: Illustrative example of Prophet and Lag-Llama CQI forecast (BTS-19, CELL-302).

5.3 Comparison of One-dimensional Long-term Forecast

As shown in Sec. 5.2, Lag-Llama results are more accurate for #UEs and CQI forecasts

after tuning than for one shot. For that reason, one-shot forecasts for long-term cell-level

modeling have been excluded from further research.

The fine tuning procedure is as follows, with two approaches for data tuning that have

been tested (difference between both approaches is step 3 (a) and (b)):

1. split the data for training set (for tuning: SET-T ) and test set (for forecasting:

SET-F ) for each band

2. set hyperparameters (analyzed ranges where given in Tab. 4.2)

3. take

(a) 158 first observations for each cell from SET-T for tuning the model

(b) all observations for each cell from SET-T for tuning the model. The observa-

tions from test set to exclude cases that we have the cells from the same BTS

in training set and test set have been filtered.

4. make forecasts for SET-F.

To evaluate the models, nMAE and MAPE were calculated for each cell. The initial

comparison of forecast accuracy is presented as the percentage of cells where the #UEs

and CQI forecasts are more accurate with Lag-Llama compared to Prophet (nMAE in

Figs. 5.33 and 5.34 and MAPE on Figs. 5.35 and 5.36).
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Figure 5.33: The percentage of cells where the UEs forecasts for Lag-Llama are better than for Prophet
calculated with nMAE (Lag-Llama without limited time range for model tuning).

Figure 5.34: The percentage of cells where the CQI forecasts for Lag-Llama are better than for Prophet
calculated with nMAE (Lag-Llama without limited time range for model tuning).

Figure 5.35: The percentage of cells where the UEs forecasts for Lag-Llama are better than for Prophet
calculated with MAPE (Lag-Llama without limited time range for model tuning).

These results show that for most of the 5G cells the Lag-Llama gives more accurate

results. Next, an in-depth analysis, with a cell-by-cell comparison, is presented in Figs.

5.37 - 5.44.

Finally, the results have been summarized on boxplots (Figs. 5.45 - 5.48).
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Figure 5.36: The percentage of cells where the CQI forecasts for Lag-Llama are better than for Prophet
calculated with MAPE (Lag-Llama without limited time range for model tuning).

Figure 5.37: The comparison of the Lag-Llama and Prophet models accuracy (nMAE) for UEs long-
term forecasting per cell (BAND-1).

Figure 5.38: The comparison of the Lag-Llama and Prophet models accuracy (nMAE) for UEs long-
term forecasting per cell (BAND-2).

Figure 5.39: The comparison of the Lag-Llama and Prophet models accuracy (MAPE) for UEs long-
term forecasting per cell (BAND-1).



Chapter 5. Environmental Variables Forecasting 67

Figure 5.40: The comparison of the Lag-Llama and Prophet models accuracy (MAPE) for UEs long-
term forecasting per cell (BAND-2).

Figure 5.41: The comparison of the Lag-Llama and Prophet models accuracy (nMAE) for CQI long-
term forecasting per cell (BAND-1).

Figure 5.42: The comparison of the Lag-Llama and Prophet models accuracy (nMAE) for CQI long-
term forecasting per cell (BAND-2).

Figure 5.43: The comparison of the Lag-Llama and Prophet models accuracy (MAPE) for CQI long-
term forecasting per cell (BAND-1).

Figure 5.44: The comparison of the Lag-Llama and Prophet models accuracy (MAPE) for CQI long-
term forecasting per cell (BAND-2).
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Figure 5.45: The box plots of the Lag-Llama and Prophet models accuracy (nMAE) for UEs long-term
forecasting.

Figure 5.46: The box plots of the Lag-Llama and Prophet models accuracy (nMAE) for CQI long-term
forecasting.

Figure 5.47: The box plots of the Lag-Llama and Prophet models accuracy (MAPE) for UEs long-term
forecasting.
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Figure 5.48: The box plots of the Lag-Llama and Prophet models accuracy (MAPE) for CQI long-term
forecasting.

5.4 Summary

In the initial selection of models, SARIMA and Chronos have been ruled out from further

research, and fine-grained analysis has been done for Lag-Llama and Prophet. Although

zero-shot forecasts using Lag-Llama are notably less accurate than those with Prophet,

the results for tuned versions of both Lag-Llama and Prophet are quite similar. In par-

ticular for CQI, both models deliver comparable outcomes and can be used interchange-

ably. However, for #UEs forecasting, Prophet provides more precise results for BAND-1,

whereas Lag-Llama performs better for BAND-2. This indicates that signal characteris-

tics play a crucial role (BAND-1 exhibits a stronger seasonal component). Both models

perform similarly when trends are straightforward and seasonality is marked. However,

for signals that exhibit more irregularities, a fine-tuned Lag-Llama outperforms.

Prophet stands out for its simplicity and ease of implementation, which is a significant

advantage, but Lag-Llama offers great potential for fine-tuning, as it can leverage more

data for learning (the training set used for long-term forecasting was limited and should

be expanded in the future). Considering all these factors, it was decided to continue with

Lag-Llama for further research involving multidimensional models.



Chapter 6

5G Short-Term Forecasting

This chapter assesses various data-driven models for short-term forecasting of slice-level

throughput and delay. Using a multivariate approach, it integrates cell-specific radio and

traffic conditions to offer accurate forecasts for each cell, achieving the highest level of

detail in configuration. This approach will be applied during the dimensioning and plan-

ning stages of natural network evolution, thus eliminating the necessity for a predefined

traffic model.

For short-term forecasting, a multistep method was devised in which forecasts for the next

24 hours are based on the preceding 24 hours of data. The evaluation dataset consists

of the last 48 hours of data, divided equally into two segments. The first segment serves

as input for the forecast, while the second segment is used to validate its accuracy.

6.1 Unit Models per Network Slice

Initially, research was focused on creating a method to model throughput and delay

individually for each network slice to reduce the complexity of the problem, called in this

dissertation unit models. The structure of the model for each network slice is illustrated

in Fig. 3.1.

6.1.1 Results of Forecasting with VARMAX

The entire process that includes the preparation and modeling of data with VARMAX

detailed in Sec. 4.2.1 is presented here with exemplary results per cell. VARMAX model

requires complete and weakly stationary data. Each element of a multidimensional time

series is broken down using a straightforward method based on the moving average with

70
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a 24-hour period. The decomposition process for an illustrative delay trajectory for slice

A is shown in Fig. 6.1.

Figure 6.1: Seasonal decomposition of delay for Slice A (BTS-10, CELL-303).

Fig. 6.2 illustrates the Autocorrelation Function (ACF) for the same samples. Before

decomposition, the data clearly exhibit seasonal patterns (Fig. 6.2A). After decomposi-

tion, these seasonal patterns in the ACF are no longer present (refer to Fig. 6.2B). This

indicates that the decomposition process was effective.

Figure 6.2: Analysis of autocorrelation for delay (Slice A) for A: data before seasonal decomposition,
B: data after seasonal decomposition (BTS-10, CELL-303).
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The next step following seasonal decomposition is to verify stationarity. If the time series

is nonstationary, it should be differenced and this process should be repeated until sta-

tionarity is achieved. Stationarity is assessed using an Augmented Dickey-Fuller (ADF)

test. Tab. 6.1 shows the results of the ADF test for an illustrative multidimensional

time series corresponding to Slice A. As observed, the p-value for each variable is 0,

indicating that the time series is stationary after seasonal decomposition. Hence, further

differencing is unnecessary. However, it is important to note that differencing may be

required for other cells.

Table 6.1: Augmented Dickey-Fuller test (Slice A, BTS-10, CELL-303).

Name Statistic p-value

TPut -10.758 0

delay -8.084 0

PRB utilization -7.852 0

BLER -6.838 0

DV -10.223 0

CQI -5.625 0

#UEs -7.895 0

To select the range of VARMAX model orders, one-dimensional modeling experiments

have been performed. ARMA model has been adjusted to each variable with orders from

0 to 12. The best orders for the univariate model are selected using the AIC, BIC and

HQIC (Tab. 6.2). Because none of the orders of the univariate models exceeds 3 (for both

moving average and autoregressive parts), the following orders have been selected for the

VARMAX modeling: (p, q) = (i, j), where i, j ∈ {0, 1, 2, 3} and (i, j) ̸= (0, 0). The

findings reveal that the lowest values of all the criteria are associated with (p, q) = (1, 0).

Therefore, this model was selected to forecast the delay and throughput of Slice A in

this particular cell.

The prediction accuracy within the test set shows satisfactory results for both delay

and throughput (Fig. 6.3 and Fig. 6.4). This is also the case for other network slices,

indicated by the minimal normalized error values (Tab. 6.3). In this instance, the model

order remains consistent across different network slices, though it may vary with other

cells and slices.
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Table 6.2: Order selection of VARMAX(p, q) for Slice A, BTS-10, CELL-303.

(p, q) AIC BIC HQIC

(1, 0) 11667.00 11842.27 11738.13

(2, 0) 11671.36 11924.88 11774.25

(3, 0) 11675.53 12007.30 11810.17

(1, 1) 11712.78 11966.30 11815.66

(2, 1) 11716.06 12047.83 11850.70

(3, 1) 11726.56 12136.58 11892.95

(0, 1) 11731.12 11906.39 11802.25

(2, 2) 15797.14 16207.15 15963.53

(0, 2) 18737.30 18990.82 18840.18

(1, 2) 19383.97 19715.74 19518.61

(2, 3) 21171.69 21659.95 21369.84

Figure 6.3: The forecasted normalized delay for Slice A (BTS-10, CELL-303) utilizing the VARMAX
model(1,0).
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Figure 6.4: The forecasted normalized throughput for Slice A (BTS-10, CELL-303) utilizing the VAR-
MAX model(1,0).

Table 6.3: Evaluation metrics for example cell (BTS-10, CELL-303).

Variable QoS (p,q) nMAE nRMSE Comp. Time (s) Range

Delay

A (1, 0) 0.081 0.110 4.876 11076.877

B (1, 0) 0.096 0.141 5.119 20109.857

C (1, 0) 0.180 0.206 5.455 15097.226

D (1, 0) 0.129 0.162 6.090 13055.410

TPut

A (1, 0) 0.044 0.070 4.876 55.596

B (1, 0) 0.100 0.186 5.119 35.686

C (1, 0) 0.118 0.181 5.455 129.242

D (1, 0) 0.069 0.091 6.090 127.936
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The results presented until now are for data that are seasonally decomposed and differ-

entiated (if necessary). As was mentioned before, reducing the number of variables can

be beneficial, because it could make estimation of parameters faster. Therefore, both

options for input data preparation for VARMAX modeling have been considered - with

and without PCA (Tab. 6.4). Fig. 6.5 shows the comparison of time for both options.

It is evident that the execution time for option VARMAX with PCA, which takes into

account performing PCA, modeling and forecasting, is shorter for all slices.

Table 6.4: VARMAX modeling options [77].

Option PCA Endogenous Exogenous

1 False

throughput, delay,

data_volume, BLER,

PRB utilization

#UEs, CQI

2 True
throughput, delay,

PCA_1, PCA_2
#UEs, CQI

Figure 6.5: Comparison of execution time between VARMAX and VARMAX PCA [77].

In addition, the values of nMAE calculated for all cells are similar for both options (for

both throughput and delay). This can be seen in the boxplots of nMAE presented in

Sec. 6.1.3 that is discussing the comparative results in more detail. Therefore, employing

the algorithm with PCA could be beneficial for practical purposes because of its rapid

computational speed, yet its reduced interpretability must be considered.

6.1.2 Results of Forecasting with Neural Networks

For neural networks, the data is partitioned similarly to the VARMAX model. The

selection of hyperparameters (i.e., configurations detailed in Sec. 4.2.2) is determined

through supplementary testing. At first, an extensive range of hyperparameters is ex-

amined, although with smaller datasets. Of the original 24 different combinations (Tab.
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6.5), the list was narrowed to 6 combinations, chosen as the best set of hyperparameters

for further investigation: 1, 3, 5, 7, 9, 11.

Table 6.5: LSTM unit configurations for all combinations of hyperparameter values [95].

Model units Learning rate Optimizer Loss

1 [50] 0.01 adam mse

2 [50] 0.01 sgd mse

3 [50] 0.01 adam mae

4 [50] 0.01 sgd mae

5 [50] 0.001 adam mse

6 [50] 0.001 sgd mse

7 [50] 0.001 adam mae

8 [50] 0.001 sgd mae

9 [50, 50] 0.01 adam mse

10 [50, 50] 0.01 sgd mse

11 [50, 50] 0.01 adam mae

12 [50, 50] 0.01 sgd mae

13 [50, 50] 0.001 adam mse

14 [50, 50] 0.001 sgd mse

15 [50, 50] 0.001 adam mae

16 [50, 50] 0.001 sgd mae

17 [50, 50, 20] 0.01 adam mse

18 [50, 50, 20] 0.01 sgd mse

19 [50, 50, 20] 0.01 adam mae

20 [50, 50, 20] 0.01 sgd mae

21 [50, 50, 20] 0.001 adam mse

22 [50, 50, 20] 0.001 sgd mse

23 [50, 50, 20] 0.001 adam mae

24 [50, 50, 20] 0.001 sgd mae

After further research on the limited number of models for the same exemplary cell as

discussed in Sec. 6.1.1, Model 3 demonstrates superior performance by achieving the

lowest values for nMAE, normalized Root Mean Square Error (RMSE) (Tab. 6.6) and

sum of the training and forecasting times. The forecasts for throughput and delay for

Slice A are illustrated in Fig. 6.6 and Fig. 6.7.
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Table 6.6: Comparison of various neural network structures based on LSTM units. Evaluation metrics
calculated for Slice A (BTS-10, CELL-303).

Variable Range Model nMAE nRMSE Comp. Time (s)

Delay 55.60

1 0.085 0.118 199.985

3 0.076 0.115 280.170

5 0.087 0.106 128.451

7 0.055 0.078 115.143

9 0.066 0.084 424.796

11 0.069 0.112 205.252

TPut 11076.88

1 0.110 0.151 199.985

3 0.106 0.143 280.170

5 0.110 0.138 128.451

7 0.103 0.129 115.143

9 0.092 0.122 424.796

11 0.096 0.137 205.252

Figure 6.6: Throughput forecast for Slice A (BTS-10, CELL-303) using Model 3.
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Figure 6.7: Delay forecast for Slice A (BTS-10, CELL-303) using Model 3.

The best model comprises a single hidden layer (Fig. 6.8), utilizing Adam as the optimizer

[96, 97], Mean Absolute Error (MAE) as the loss function, and a learning rate set at 0.01

(Tab. 6.7). This configuration is selected as the most precise due to the fact that the

MAE and Mean Squared Error (MSE) values are the smallest in most of the samples.

Figure 6.8: The architecture of the neural network incorporating LSTM units [77]. The values given
in the brackets describe input shape. None means arbitrary number.
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Table 6.7: Selected hyperparameters for LSTM block structures [77].

Hyperparameter name The best structure

LSTM-number of layers 1

LSTM-units [50]

LSTM-dropout rate 0.2

LSTM-activation tangent

LSTM-recurrent activation sigmoid

Learning rate 0.01

Optimizer Adam

Batch size 24

Loss MAE

A similar analysis has been performed with the same steps has been conducted for

Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM).

All the considered hyperparameter combinations are listed in Tab. 6.8. An additional

combination has been tested for Model 1 with dropout rate 0, because this model pre-

sented the best accuracy.

Comparison of this model with other analogs is presented in the next section.
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Table 6.8: CNN-BiLSTM unit configurations for all combinations of hyperparameter values. Values for
CONV1 and CONV2 represent (filters, kernel size) for first and second convolutional layer. *Dropout
rate for Model 2: 0, for others 0.1.

Model CONV1, CONV2 CONV-act. Optimizer Learning rate Loss

1 [(128, 4), (64, 2)] relu adam 0.001 mae

2* [(128, 4), (64, 2)] relu adam 0.001 mae

3 [(128, 4), (64, 2)] relu adam 0.001 mse

4 [(128, 4), (64, 2)] relu sgd 0.001 mae

5 [(128, 4), (64, 2)] relu sgd 0.001 mse

6 [(128, 4), (64, 2)] relu adam 0.0001 mae

7 [(128, 4), (64, 2)] relu adam 0.0001 mse

8 [(128, 4), (64, 2)] relu sgd 0.0001 mae

9 [(128, 4), (64, 2)] relu sgd 0.0001 mse

10 [(128, 4), (64, 2)] tanh adam 0.001 mae

11 [(128, 4), (64, 2)] tanh adam 0.001 mse

12 [(128, 4), (64, 2)] tanh sgd 0.001 mae

13 [(128, 4), (64, 2)] tanh sgd 0.001 mse

14 [(128, 4), (64, 2)] tanh adam 0.0001 mae

15 [(128, 4), (64, 2)] tanh adam 0.0001 mse

16 [(128, 4), (64, 2)] tanh sgd 0.0001 mae

17 [(128, 4), (64, 2)] tanh sgd 0.0001 mse

18 [(256, 4), (128, 4)] relu adam 0.001 mae

19 [(256, 4), (128, 4)] relu adam 0.001 mse

20 [(256, 4), (128, 4)] relu sgd 0.001 mae

21 [(256, 4), (128, 4)] relu sgd 0.001 mse

22 [(256, 4), (128, 4)] relu adam 0.0001 mae

23 [(256, 4), (128, 4)] relu adam 0.0001 mse

24 [(256, 4), (128, 4)] relu sgd 0.0001 mae

25 [(256, 4), (128, 4)] relu sgd 0.0001 mse

26 [(256, 4), (128, 4)] tanh adam 0.001 mae

27 [(256, 4), (128, 4)] tanh adam 0.001 mse

28 [(256, 4), (128, 4)] tanh sgd 0.001 mae

29 [(256, 4), (128, 4)] tanh sgd 0.001 mse

30 [(256, 4), (128, 4)] tanh adam 0.0001 mae

31 [(256, 4), (128, 4)] tanh adam 0.0001 mse

32 [(256, 4), (128, 4)] tanh sgd 0.0001 mae

33 [(256, 4), (128, 4)] tanh sgd 0.0001 mse
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The best parameter setting for the CNN-BiLSTM architecture is shown in Fig. 6.9 and

summarized in Tab. 6.9.

Figure 6.9: The architecture of the neural network incorporating CNN-BiLSTM units [77]. The values
given in the brackets describe input shape. None means arbitrary number.

6.1.3 Comparative Study of Unit Models

After selecting the best setting of hyperparameters for each model, the comparative study

of all unit models is done. For the example cell (BTS-10, CELL-303), the duration of

processing and normalized errors for the best architectures of LSTM and CNN-BiLSTM

were evaluated (Fig. 6.10 and 6.11). The processing duration is analyzed by summing

up the learning and forecasting times, as learning must be performed individually for

each cell, making it a significant component of the total processing time. It is evident

that, for most of the network slices, the LSTM-based network requires the most training

time, and VARMAX the least. The comparison of accuracy does not present such clear

conclusions which may be due to the specifics of this singular analyzed cell.
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Table 6.9: Best hyperparameters for the CNN-BiLSTM architecture [77].

Hyperparameter name The best structure

CONV1 (filters, kernel size) (128, 4)

CONV2 (filters, kernel size) (64, 2)

CONV-activation relu

Pooling size 2

BiLSTM-number of layers 1

BiLSTM-units 100

BiLSTM-activation relu

BiLSTM-recurrent activation relu

Dropout rate None

Batch size 24

Learning rate 0.001

Optimizer Adam

Loss MSE

Figure 6.10: Sum of learning and forecasting times compared for evaluated slice models (BTS-10,
CELL-303).
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Figure 6.11: Comparison of nRMSE per network slice (BTS-10, CELL-303).

Figure 6.12: The top panel shows the normalized Mean Absolute Error (MAE) for delay, while the
bottom panel displays it for throughput across different network slices [77].



Chapter 6. 5G Short-Term Forecasting 84

The results obtained may vary according to the specific multivariate time series chosen,

therefore, the evaluation metrics and duration of the modeling are examined for the

remaining samples (and for each network slice) (Fig. 6.12 and Fig. 6.13).

Figure 6.13: Sum of learning and forecasting times compared for evaluated slice models (all cells) [77].

The results presented in this section indicate that the VARMAX model (with or without

PCA) may serve as a superior predictor with the best accuracy for most of the network

slices and the shortest computational time. The forecast provided by the more intricate

CNN-BiLSTM network is less precise. Furthermore, CNN-BiLSTM exhibits the longest

duration for both modeling and forecasting.
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6.2 General Model for All Network Slices

Considering the necessity to evaluate the effect of altering individual variables on traffic,

a general model has been developed. This model encompasses data for all network slices

within a particular cell. Although one method could involve combining unit models, a

general model (incorporating variables for all network slices) is more straightforward to

interpret. The schematic of the general model is shown in Fig. 6.14.

Figure 6.14: Diagram of the general model with KPIs per each network slice.

The time series decomposition and order selection process for the VARMAX model fol-

lows the same procedure as in Sec. 6.1. The method for selecting the best model remains

unchanged; it aims to reduce the forecast error and, if desired, the computational time.

Fig. 6.15 illustrates the count of "wins" for specific structures, which means the number
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of cells where certain models perform the best. The most precise LSTM-based neural

network is Model 11, while the CNN-BiLSTM-based one is Model 2.

Figure 6.15: The number of cells for which a specific structure yields the best performance.

For a general model based on neural networks, the same structures as in Sec. 6.1 are

evaluated. The lowest error for LSTM-based neural network is achieved by Model 11 and

for the CNN-BiLSTM-based neural network by Model 2. The analysis of computational

time for general model fitting and forecasting yields the same results as for unit models:

VARMAX is the quickest, and the CNN-BiLSTM-based neural network is the slowest

(Fig. 6.16).

Figure 6.16: Sum of learning and forecasting times compared for evaluated models (all slices and cells).

Fig. 6.17 shows boxplots of normalized RMSE errors. The disparities between the

general VARMAX model (G) and the unit model (U) are minimal for each network slice.

However, this is not the case for LSTM-based models.
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Figure 6.17: Comparison of normalized RMSE for each slice. (G) represents the general model, and
(U) represents the unit model.

It is important to note that the best structures for unit and general models differ in

their parameter sets (Model 3 is the best for unit, while Model 11 yields the best results

for general models). Furthermore, the random selection of initial weights can influence

network training. Typically, the lowest error is observed in various VARMAX models

or LSTM-based networks. General models can effectively replace their individual coun-

terparts. Moreover, in certain cases, VARMAX combined with PCA can produce the

best forecasts. However, when dimensionality reduction is applied during modeling, the

results become less interpretable. Depending on the desired functionality, one might

consider whether to include PCA in the model.

It is not feasible to determine solely on visual inspection whether the differences in

forecast errors between different models are statistically significant. To address this,

the Friedman test and the Nemenyi post hoc test were conducted to determine when

forecast errors differ significantly. In the field of statistics, the Nemenyi test serves as a

post-hoc analysis to identify data groups that exhibit significant differences after a global

test such as the Friedman test has rejected the null hypothesis, which asserts that the

performance across data groups is similar. Essentially, if the p-value from the Friedman
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test falls below the predetermined significance threshold, it indicates that certain groups

significantly differ, thereby justifying the use of the Nemenyi test [98]. The statistics and

p-values for the Friedman test are shown in Tab. 6.10.

Table 6.10: The Friedmann test to check if some groups differ significantly.

Variable Slice Statistic p-value

Throughput

A 78.35 7.81E-15

B 73.17 9.15E-14

C 56.93 1.88E-10

D 41.38 2.43E-07

Delay

A 96.78 1.18E-18

B 40.88 3.06E-07

C 73.24 8.84E-14

D 66.33 2.31E-12

The P-value is nearly 0 for every network slice, indicating that the null hypothesis can

be dismissed. Consequently, for each network slice, there is a significant difference in at

least one model’s nMAE.

To verify the differences between pairs, the Nemenyi post hoc test is conducted. The

findings for all slices are shown in Tab. 6.11 - 6.18. A p-value below 0.05 indicates a

significant difference between the two algorithms at the 0.05 significance level. Otherwise,

no statistically significant differences are found. The results for the other slices are

similar, including for delay. General and unit models created by the same methods

show no significant differences in any case. The most frequent differences are observed

between CNN-BiLSTM (both U and G) and other methods. The forecast errors for

the VARMAX model and the LSTM-based network are significantly different only for

throughput in Slice A. For throughput and delay in Slice C the general LSTM model

differs from VARMAX.
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Table 6.11: P-values from the Nemenyi post-hoc test. Variable: throughput, Slice A.
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LSTM (G) 1.000 0.018 0.001 0.001 0.008 0.001 0.009

LSTM (U) 0.018 1.000 0.248 0.001 0.900 0.900 0.900

CNN-BiLSTM (G) 0.001 0.248 1.000 0.064 0.387 0.900 0.361

CNN-BiLSTM (U) 0.001 0.001 0.064 1.000 0.001 0.001 0.001

VARMAX (G) 0.008 0.900 0.387 0.001 1.000 0.900 0.900

VARMAX (U) 0.001 0.900 0.900 0.001 0.900 1.000 0.900

VARMAX+PCA(U) 0.009 0.900 0.361 0.001 0.900 0.900 1.000

Table 6.12: P-values from the Nemenyi post-hoc test. Variable: delay, Slice A.
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LSTM (G) 1.000 0.900 0.001 0.001 0.900 0.900 0.541

LSTM (U) 0.900 1.000 0.001 0.001 0.781 0.900 0.045

CNN-BiLSTM (G) 0.001 0.001 1.000 0.900 0.001 0.001 0.001

CNN-BiLSTM (U) 0.001 0.001 0.900 1.000 0.001 0.001 0.001

VARMAX (G) 0.900 0.781 0.001 0.001 1.000 0.900 0.661

VARMAX (U) 0.900 0.900 0.001 0.001 0.900 1.000 0.361

VARMAX+PCA(U) 0.541 0.045 0.001 0.001 0.661 0.361 1.000
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Table 6.13: P-values from the Nemenyi post-hoc test. Variable: throughput, Slice B.
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LSTM (G) 1.000 0.900 0.001 0.001 0.132 0.109 0.011

LSTM (U) 0.900 1.000 0.001 0.001 0.709 0.661 0.210

CNN-BiLSTM (G) 0.001 0.001 1.000 0.900 0.002 0.003 0.040

CNN-BiLSTM (U) 0.001 0.001 0.900 1.000 0.002 0.003 0.045

VARMAX (G) 0.132 0.709 0.002 0.002 1.000 0.900 0.900

VARMAX (U) 0.109 0.661 0.003 0.003 0.900 1.000 0.900

VARMAX+PCA(U) 0.011 0.210 0.040 0.045 0.900 0.900 1.000

Table 6.14: P-values from the Nemenyi post-hoc test. Variable: delay, Slice B.
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LSTM (G) 1.000 0.806 0.001 0.016 0.878 0.854 0.900

LSTM (U) 0.806 1.000 0.007 0.440 0.900 0.900 0.613

CNN-BiLSTM (G) 0.001 0.007 1.000 0.661 0.004 0.005 0.001

CNN-BiLSTM (U) 0.016 0.440 0.661 1.000 0.361 0.387 0.045

VARMAX (G) 0.878 0.900 0.004 0.361 1.000 0.900 0.685

VARMAX (U) 0.854 0.900 0.005 0.387 0.900 1.000 0.661

VARMAX+PCA(U) 0.900 0.613 0.001 0.005 0.685 0.661 1.000
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Table 6.15: P-values from the Nemenyi post-hoc test. Variable: throughput, Slice C.
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LSTM (G) 1.000 0.098 0.001 0.001 0.071 0.021 0.001

LSTM (U) 0.098 1.000 0.001 0.088 0.900 0.900 0.709

CNN-BiLSTM (G) 0.001 0.001 1.000 0.806 0.001 0.007 0.132

CNN-BiLSTM (U) 0.001 0.088 0.806 1.000 0.121 0.290 0.878

VARMAX (G) 0.071 0.900 0.001 0.121 1.000 0.900 0.781

VARMAX (U) 0.021 0.900 0.007 0.290 0.900 1.000 0.900

VARMAX+PCA(U) 0.001 0.709 0.132 0.878 0.781 0.900 1.000

Table 6.16: P-values from the Nemenyi post-hoc test. Variable: delay, Slice C.
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LSTM (G) 1.000 0.541 0.001 0.001 0.004 0.008 0.002

LSTM (U) 0.541 1.000 0.001 0.001 0.492 0.589 0.361

CNN-BiLSTM (G) 0.001 0.001 1.000 0.806 0.004 0.002 0.008

CNN-BiLSTM (U) 0.001 0.001 0.806 1.000 0.210 0.146 0.313

VARMAX (G) 0.004 0.492 0.004 0.210 1.000 0.900 0.900

VARMAX (U) 0.008 0.589 0.002 0.146 0.900 1.000 0.900

VARMAX+PCA(U) 0.002 0.361 0.008 0.313 0.900 0.900 1.000
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Table 6.17: P-values from the Nemenyi post-hoc test. Variable: throughput, Slice D.
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LSTM (G) 1.000 0.781 0.001 0.002 0.900 0.900 0.900

LSTM (U) 0.781 1.000 0.079 0.161 0.900 0.661 0.806

CNN-BiLSTM (G) 0.001 0.079 1.000 0.900 0.011 0.001 0.001

CNN-BiLSTM (U) 0.002 0.161 0.900 1.000 0.027 0.001 0.002

VARMAX (G) 0.900 0.900 0.011 0.027 1.000 0.900 0.900

VARMAX (U) 0.900 0.661 0.001 0.001 0.900 1.000 0.900

VARMAX+PCA(U) 0.900 0.806 0.001 0.002 0.900 0.900 1.000

Table 6.18: P-values from the Nemenyi post-hoc test. Variable: delay, Slice D.
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LSTM (G) 1.000 0.661 0.004 0.007 0.900 0.900 0.071

LSTM (U) 0.661 1.000 0.361 0.440 0.781 0.210 0.001

CNN-BiLSTM (G) 0.004 0.361 1.000 0.900 0.009 0.001 0.001

CNN-BiLSTM (U) 0.007 0.440 0.900 1.000 0.014 0.001 0.001

VARMAX (G) 0.900 0.781 0.009 0.014 1.000 0.900 0.040

VARMAX (U) 0.900 0.210 0.001 0.001 0.900 1.000 0.387

VARMAX+PCA(U) 0.071 0.001 0.001 0.001 0.040 0.387 1.000
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6.3 Summary

This chapter illustrates the effectiveness of the multidimensional VARMAX model in fore-

casting telecommunication data at various aggregation levels. It has been benchmarked

against other forecasting techniques, such as LSTM, which exhibit high accuracy and

efficient computational times. Improvements in previous short-term forecasting models

have extended their applicability to forecasts to up to three months. Furthermore, train-

ing the model on data from all cells within a band, rather than just individual cells, has

improved forecast accuracy. The findings indicate promising applications for the plan-

ning and scaling of 5G networks. Empirical evaluations using actual commercial network

data have validated the practicality and reproducibility of the forecasting models and

methodologies developed for long-term network slicing planning. Finally, this method

has been integrated into the company’s tools.



Chapter 7

5G Long-Term Forecasting

7.1 Long-Term Dataset Selection

For the purpose of long-term forecasting, the dataset utilized in Sec. 3.1 was reused.

However, due to the requirement for extended periods of high-quality data (free of missing

intervals, significant configuration changes, and with a non-zero traffic volume), it was

further filtered. Consequently, the data, sourced from 33 active 5G BTS within a live

network environment, were prepared and cleaned. The models were trained and tested

using data that lasted 158 and 92 days, respectively. Subscribers in this network cluster

were divided into three categories (one less than in the whole dataset due to low sporadic

traffic in this slice):

• Slice A - mobile subscribers with high priority,

• Slice B - mobile subscribers with low priority,

• Slice C - fixed wireless access subscribers with lowest priority.

7.2 Forecasting Method

In Chapter 6, it was shown that the VARMAX model is an efficient method for short-

term forecasting. This chapter extends the investigation to its long-term forecasting

abilities. The VARMAX model, a vector ARMA model with additional exogenous inputs,

is utilized.

The same procedure of hyperparameter selection has been used as in short-term fore-

casting, but with a longer dataset and at the BH level (Sec. 7.1, 3.6):

94
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1. Data preprocessing with seasonal decomposition to ensure stationarity.

2. The determination of the model coefficients for the optimal order (p, q) with the

MLE-based method.

3. Testing of various (p, q) pairs.

4. Selection of the one that minimizes the information criteria. The information cri-

teria evaluated include the Akaike Information Criterion, the Bayesian Information

Criterion, and the Hannan-Quinn Information Criterion.

7.3 Model per Cell

As discussed in Sec. 3.6, emphasis for long-term forecasting is on BH. Fig. 7.1 and

Fig. 7.2 illustrate an example of delay and throughput forecasts for Slice C. It is evident

that the model forecasts remain accurate, despite the complete transformation in signal

characteristics (e.g., by smoothing seasonal trends during aggregation to BH).

Figure 7.1: The long-term forecast of normalized delay for Slice C utilizing VARMAX(1,0) for a
representative cell(BTS-20, CELL-2).

Tab. 7.1 displays the average normalized MAE for forecasts across the 185 analyzed cells,

including those under high load conditions (Sec. 3.6). The high accuracy of the results

for each slice indicates that this method is effective in forecasting delay and throughput,

which are critical for slice QoS, over an extended period of around 3 months.
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Figure 7.2: The long-term forecast for normalized throughput for Slice C utilizing VARMAX(1,0) for
a representative cell.

Table 7.1: The mean of nMAE (± standard deviation) for the long-term forecasts made for all and
high-loaded cells.

Variable Cells Slice A Slice B Slice C

Throughput
All 0.109 ± 0.045 0.112 ± 0.041 0.097 ± 0.036

HL 0.127 ± 0.053 0.116 ± 0.041 0.073 ± 0.027

Delay
All 0.100 ± 0.043 0.094 ± 0.043 0.010 ± 0.046

HL 0.098 ± 0.054 0.087 ± 0.040 0.087 ± 0.047

7.4 Model per Frequency Band

Training a model with historical data for each cell individually will result in a model

that can accurately forecast its future values. However, if the data history is short or

the cell traffic is not saturated, the data may be inadequate, leading to higher forecast

errors. Consequently, a method for generalizing the model by training it on a larger

set of cells has been explored. Based on expert domain knowledge, the frequency band

and bandwidth have been selected as criteria to group cells for a unified model, as

these criteria reflect the general conditions of the radio interface in terms of propagation

characteristics and spectrum availability. The configuration combinations present in the

dataset are shown in Tab. 3.2.
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Building on the model developed for a single cell (Sec. 6.2), it was tested whether training

the model on collected data from multiple cells within the same frequency band would

yield a comparable forecast accuracy. The modeling procedure for the individual band

is carried out as follows:

1. Take the cells that correspond to the particular band.

2. For each exogenous and endogenous variable, calculate the average value over time.

3. Fit the model to the trajectory obtained.

Figure 7.3: The long-term forecast for normalized delay for Slice C using VARMAX(1,0) for BAND-1.

As noted previously, cells with high PRB utilization are of particular interest. Forecasts

for sample bands (where only heavily loaded cells were included in the modeling) are

shown in Fig. 7.3 - 7.8. The forecasting model proves to be effective in both scenarios,

despite the different data characteristics. Furthermore, it should be noted that band 1

(Fig. 7.3, Fig. 7.4) corresponds to the cell depicted in Fig. 7.1.
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Figure 7.4: The long-term forecast for normalized throughput for Slice C using VARMAX(1,0) for
BAND-1.

Figure 7.5: The long-term forecast for normalized delay for Slice C using VARMAX(1,0) for BAND-2.



Chapter 7. 5G Long-Term Forecasting 99

Figure 7.6: The long-term forecast for normalized throughput for Slice C using VARMAX(1,0) for
BAND-2.

Figure 7.7: The long-term forecast for normalized delay for Slice C using VARMAX(1,0) for all high-
loaded cells in the network.



Chapter 7. 5G Long-Term Forecasting 100

Figure 7.8: The long-term forecast for normalized throughput for Slice C using VARMAX(1,0) for all
high-loaded cells in the network.

Table 7.2: The nMAE corresponding to the long-term forecasts made with a model trained for each
band and all cells.

Variable Cells Slice A Slice B Slice C

Throughput

Band-1 0.209 0.141 0.073

Band-2 0.122 0.093 0.114

All 0.116 0.104 0.071

Delay

Band-1 0.097 0.085 0.075

Band-2 0.088 0.053 0.050

All 0.121 0.073 0.088

Tab. 7.2 presents the nMAE values for each slice and band. The error values vary slightly

between bands, but the nMAE remain small and are generally lower than those of the

per cell model and the model for all cells. Furthermore, it is important to note that the

delay errors are smaller because the KPI that determines throughput is noisier, affecting

the quality of model fitting.

7.5 Industrial Applications

The long-term throughput and delay forecasting model presented in this chapter has

been integrated into a dashboard used for capacity analysis and dimensioning tasks at
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Nokia. The method has been crafted using Microsoft Power BI [99]. The models are

trained using data from all cells sharing the same band configuration as outlined in Sec.

7.4. The main objective of this dashboard is to evaluate the volume of traffic within the

network cluster and to forecast when each cell will reach its capacity.

At the moment of writing, the dashboard is in the testing and fine tuning phase, conse-

quently, there are no case studies that have been developed from it yet.

Figure 7.9: Dashboard implementing long-term forecasts for real network data.

7.6 Summary

The results detailed in this chapter indicate that the model chosen for short-term through-

put and delay forecasting (Chapter 6) is equally effective for long-term predictions with

commendable accuracy. After slight adjustments, specifically the transition from hourly

time series to BH, the metrics demonstrate that the VARMAX model can accurately

forecast 2-3 months into the future when trained on a 5-month dataset. Additionally,

incorporating configurational knowledge, such as the frequency band, into the model’s

training process enhances its accuracy.
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Traffic Multiplexing Gain

Estimation

The responsibility of Mobile Network Operators (MNOs) is to effectively plan, deploy,

and maintain networks comprising numerous radio BTS. With the emergence of 5G

and cloud network architecture, the complexity and number of interfaces that need to

be planned are on the rise. Particularly in the domain of transport networks that in-

terconnect all network components, MNOs must carefully address the requirements of

fronthaul and midhaul links. In the era of 2G, 3G and 4G, the planning of fronthaul and

midhaul links was not a major concern, as they were typically established as direct cable

links connecting two network elements situated in close proximity, such as on the same

site as a roof or an antenna mast (Sec. 1.3.5). Previous technologies mainly emphasized

backhaul considerations. Transport planning plays a crucial role in the overall RAN

planning since optimizing the cost of the transport network can result in reducing the

overall expenses of deploying the mobile network. However, it is essential for transport

links to offer adequate capacity and ensure QoS to support the required radio perfor-

mance, which is typically included in the service commitments and marketing strategies

of MNOs. Hence, there is a demand for cost reduction in the transport network, but not

at the expense of compromising radio interface performance.

An aspect of the RAN planning process involves capacity dimensioning, which aims to

estimate the resources needed to provide services to specific traffic while maintaining QoS.

In the context of transport network dimensioning, this primarily involves estimating link

capacities. Cloud-RAN technology divides the BTS into RU, DU, and CU, which can be

physically separated to facilitate resource sharing. This requires MNOs to address both

fronthaul and backhaul link capacity dimensioning. In the initial phase of 5G deployment,

fronthaul link capacity is determined by the functional split between RU and DU in a

102
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consistent manner. In the subsequent phase, the fronthaul capacity will be influenced by

the volume of traffic transmitted. Conversely, midhaul links handle packet-based traffic,

and their capacity is only dictated by the traffic profile requirements. Moreover, the

midhaul network can aggregate traffic from multiple cells in the network (Fig. 1.3, thus

expanding the need for midhaul dimensioning on both the CU and DU ends. On the CU

side, the midhaul link consolidates traffic flows from various DUs and offers potential

cost savings through statistical MG, which is achievable due to the intermittent nature

of packet traffic.

8.1 Statistical Multiplexing Gain

MG represents a measure of gain that can be obtained by sharing a transportation

connection [100]. In the context of mobile transport networks, MG illustrates the variance

in capacity needed for all cells combined at a specific location and the total traffic of

these cells. In other words, it indicates the extent to which capacity at the aggregation

point CapAgg. can be decreased compared to the capacities required at each individual

cell link Cap1, . . . , CapN (where N denotes the number of cells). In practice, the sum

of individual link capacities (estimated separately) is greater than the capacity of the

aggregation link [67],[100] – refer to Equation 8.1. The corner case is when they are

equal (which happens when there is no traffic or there is so-called full buffer traffic and

all links are utilized in 100%) and MG = 0 .

MGP [%] =

(
1−

CapAgg.
P∑

CapNP

)
× 100% (8.1)

The primary factors influencing the gain in statistical multiplexing include the traffic

pattern (such as the variability in traffic intensity) and the maximum data rates sup-

ported by the radio interface (Fig. 8.1). The variability in traffic intensity is determined

by the traffic profile, which indicates the frequency and amount of data transfers needed

by the UEs and the radio capacity available at that time. Hence, it is essential to ex-

amine various traffic profiles in conjunction with potential 5G radio setup elements to

comprehend the MG in the midhaul.

Dimensioning is typically carried out on the basis of the peak resource demands, which

occur during the BH (as was explained in Sec. 3.6). In addition to this, various factors

influence the capacity at the aggregation point, such as the distribution of peak hours

throughout the day and across different cells, as well as the movement of users within

the network (which is not addressed in this research).
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Figure 8.1: Multiplexing gain concept.

In this chapter, the instantaneous rates achievable under real system conditions at the

radio interface are examined, as this provides an accurate benchmark of system perfor-

mance and capabilities. The Cumulative Distribution Function (CDF) offers a range of

possible throughputs for each link. The capacity of a link is determined by the CDF

percentile (P) of achievable throughputs on that link. When P = 1, the transport ca-

pacity will be equal to the maximum rate or the sum of the maximum rates for fronthaul

and midhaul links, respectively. A similar method was used in [21], where high delay

percentiles were used as the main design metric instead of the more commonly used av-

erage delays in the existing literature. To minimize network expenses, CSPs can opt to

restrict investments in the transport network in favor of the radio component. However,

this cost reduction may affect radio performance, and the percentile indicates the extent

of this impact. Consequently, each Capn and MG are determined as functions of P.

8.2 Simulation Setup

In order to analyze the QoS requirements (instantaneous data rates) of the wireless inter-

face and traffic profile trends, a proprietary Nokia system level simulator has been used.

That is, a fully dynamic system-level simulator implemented to simulate user plane per-

formance, including throughputs and delays, using provided radio resource management

features and algorithm variants. This tool allows for the assessment of different paths for

the evolution of radio networks through performance and capacity simulations, consider-

ing specific scenarios with varying network setups, traffic loads, and signal propagation

conditions. The network setup encompasses a detailed configuration of the physical layer

and Radio Resource Management functionalities, including the generation of traffic pat-

terns for multiple scenarios with user movement. Ultimately, it calculates the quality of

the radio interface for users in the granularity of the Transmission Time Interval (TTI).

The simulation configuration included 21 identical 5G cells that form a compact network,

representing a typical deployment scenario in 5G networks:
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• 7 BTSs, 3-sector each (21 cells in total),

• Time Division Duplex (TDD),

• Inter-Site Distance: 200m,

• Operating band: 3500 MHz,

• Cell bandwidth: 100 MHz.

Various traffic profiles have been chosen to examine services with varying levels of bursti-

ness (Tab. 8.1). The streaming service exhibits minimal burstiness since traffic is sent

according to the codec rate. An File Transfer Protocol (FTP) service with reading times

following an exponential distribution is used to represent typical Internet traffic. Lastly,

FTP service with zero reading time is utilized to mimic what is known as full buffer

traffic, where users wish to download data continuously at the highest possible speeds.

Alongside the service types, a specific number of users have been randomly simulated,

each generating a specified service demand.

Table 8.1: Simulation Scenarios

Scenario ID Duplex mode Service Data Rate/Volume Reading time [s] Avg nb of users

1 TDD Streaming 1.152 Mbps, speech activity 50% n/a 1, 3, 5, 10, 20, 30

2 TDD FTP 8.152 MB per call 10 (exponential) 10, 20, 30, 40

3 TDD FTP 0.721 MB per call 0 1, 10

The simulator generates a table of instantaneous throughput values, along with trajec-

tories per TTI (Fig. 8.2), which are configured to 0.5 milliseconds. According to the

analysis, the simulator takes around 30 seconds to stabilize, during which all users initiate

their first calls, followed by randomized reading times with an exponential distribution.

This stabilization period with the specified TTI results in 60000 samples for further

analysis. However, a drawback of such a sophisticated system-level simulator is the

substantial computational power and time it demands to produce results; for instance,

simulating 30 seconds for 21 cells requires several days (from 2 to 6, which depends on

the bandwidth and number of UEs) of computation on a single processor. Alternatively,

similar outcomes can be obtained from live network measurements, enabling the method

to be applied to other simulated or real network configurations in the future.
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Figure 8.2: Cell trajectories per scenario from simulator (all cells).

8.3 Multiplexing Gain Algorithm

8.3.1 Overview

As mentioned in the previous chapter, a critical drawback of the described system-level

simulator is its computational complexity and the time required to generate cell trajec-

tories. Consequently, this is a key challenge. Another potential source of such data could

be a real live telecommunications network. However, what if we wanted to generate such

data cheaply, quickly, and without relying on measurements from a live network? Sta-

tistically, we would like to be able to reproduce, generate, while preserving probabilistic

properties—cell trajectories similar to those produced by our simulator. One possible

solution could involve fitting a reliable statistical model (e.g., a time series) to the data

simulated by our simulator. Subsequently, we could generate trajectories from this fitted

statistical model. However, in the telecommunications problem under consideration, we

have a large number of variables influencing throughput trajectories, such as specific sce-

narios with varying network setups, traffic loads, and signal propagation conditions. Due
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to this, the space of possible statistical models that can be reliably fitted and validated

seems to be very rich.

The second solution, which was applied in this study, was to apply the bootstrap sta-

tistical method. The bootstrap method is a statistical technique that has revolutionized

the way researchers approach problems of estimation and statistical inference. Its origin

is related to Bradley Efron, an American statistician who, in the 1970s, published a se-

ries of papers presenting the basic concepts and applications of this method [101], [102].

Bootstrap is a resampling technique that involves repeatedly sampling with replacement

from the original dataset. Technically, sampling with replacement allows some observa-

tions to appear multiple times in the new samples, while others may not appear at all.

This provides a more representative picture of the data’s variability and avoids situations

where each sample is identical to the original. In this way, many new artificial samples,

called bootstrap samples, are created from the original dataset. These are then used for

further statistical and domain-specific analyses. This allows us to obtain probabilistic

copies of our original dataset (in our case, throughput trajectories) without making any

strong assumptions and without the need for a reliable statistical model fitting process.

The main advantage of the bootstrap method is its versatility; it can be applied to a

wide range of data. The method is also easy to understand, interpret, and implement.

It does not rely on any strong assumptions and works very quickly [103].

The traditional bootstrap method is not suitable for data with dependencies, such as cell

trajectories that exhibit a time series with a dependent structure. Therefore, drawing

from the literature [104], [105], [106] the focus was on using the block bootstrap approach,

which preserves the dependency structure during resampling. This technique involves

partitioning the data into blocks to maintain interobservation dependencies, followed

by shuffling these blocks to generate random samples. Various methods, including Block

Bootstrap, Moving Block Bootstrap, Circular Block Bootstrap and Stationary Bootstrap,

leverage block resampling [64]. Among these, the Stationary Bootstrap was selected as

it aligns well with the characteristics of the simulation data in this experiment.

8.3.2 Selection of Block Size

In the Stationary Bootstrap method, blocks with exponentially distributed lengths

are used, introducing randomness in block sizes while requiring a specified average

block size. The key question then arises: How to determine the optimal average

block size? The solution algorithm for this challenge is detailed in [107], with an

improved version presented in [108]. The ideal average block length depends on the
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trajectory length and sample autocorrelations. To implement the resampling process,

the arch.bootstrap.StationaryBootstrap class from the "arch" package [109] was used.

The theoretical structure of the 5G radio data, called the TDD frame structure, is shown

in Fig. 8.3. This frame comprises a total of 40 slots with an equal DL/UL ratio of

4:1. Notably, slots 21 and 22 out of every 160 slots are designated as tracking slots

instead of Downlink slots. Consequently, the complete repetitive pattern encompasses

160 slots. As traffic in the Downlink direction has the highest achievable throughputs, it

was decided to focus on these slots. Therefore, the SSB, Uplink, tracking, and PRACH

slots do not transmit traffic and exibit zero values. The values for the Special slot are

lower than those for the Downlink slots as the throughput has to be reduced to limit

interference between different slot types. Adjusting the MG algorithm is imperative to

maintain the signal characteristic and ensure consistency across all slot types within each

trajectory. This necessitates the adoption of a fixed window size that is a multiple of

160. Initially, the MG algorithm computes the best average block length, followed by

identifying the nearest multiple of 160. Subsequently, utilizing this best window size, 1000

bootstrap trajectories are simulated for each cell configuration. These trajectories are

then categorized into three groups on the basis of their indices: Uplink slots, Downlink

slots, and the remaining slots.

Figure 8.3: TDD Frame Structure pattern.

Finally, data were simulated for 21 cells, each configuration serving as input. A random

selection of 200 replacement indices was made from the 21 available cells and the best

average block size was computed for each cell. Subsequently, data for 200 cells, mimicking

the distribution and properties of the initial cells, were generated using a Bootstrap-based

generator (Fig. 8.4).

8.3.3 Validation

Initially, a visual inspection was performed to ensure the functionality of the MG algo-

rithm. In Fig. 8.5, an illustration was shown comparing a typical normalized original

trajectory with a bootstrap trajectory produced by the MG algorithm. It is evident that

the pattern was accurately replicated and the relationship between the data points is ap-

parent, although there are discrepancies between the two trajectories, which aligns with

the initial expectations for the computational study. Subsequently, the results obtained

were analytically validated using quantile lines.
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Figure 8.4: Sample momentary throughput from bootstrap simulations.

Figure 8.5: Comparison of normalized original and bootstrap trajectories.

Quantile lines Q(0.05) and Q(0.95) are calculated separately for the uplink and downlink

slots. The illustrative results are presented in Figs. 8.6 and 8.7. It is evident that only

a small number of individual slots deviate from the quantile lines, typically accounting

for approximately 5% of slots in all cells after numerical verification.
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Figure 8.6: Quantile lines and sample trajectories for Downlink slots.

Figure 8.7: Quantile lines and sample trajectories for Special slots.

8.4 Results Analysis

8.4.1 Traffic Type Impact on Multiplexing Gain

Fig. 8.8 illustrates the dependency of MG to number of aggregated cells for three sce-

narios. The most significant improvements are observed for Scenario 2, then Scenario

1 and the least improvement (but still significant) can be observed for Scenario 3. The

reasoning behind such behavior is related to the type of service and the characteristics

of the traffic. Scenario 2 was configured with bursty FTP traffic, where UEs request

data transmission with random reading time (Tab. 8.1. After each request, depending

on the radio link quality and other data tranmission in the same cell, UE often gets high

throughput rates and the data are transmitted over a short period of time. This short

transmission times with high rates decrease the probability that any other traffic will be

transmitted in the same slots, which eventually increases the MG. On the other hand,

Scenarios 1 and 3 were configured with static traffic, that is, streaming with constant
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data rate and FTP with zero reading time (meaning that new data transmission requests

are generated just after received last data from previous request), respectively.

Figure 8.8: Multiplexing Gain as a function of aggregated cells number for three scenarios.

8.4.2 Number of Users Impact on Multiplexing Gain

The quantity of users (UEs) is another factor that influences the MG level. As the

number of users increases alongside the consistent traffic assumptions per user, the total

traffic within each cell also increases. Consequently, as traffic escalates, the MG level

diminishes due to reduced multiplexing capacity. This trend is observable in all scenarios,

such as those illustrated in Fig. 8.9 and Fig. 8.10.

Figure 8.9: Multiplexing Gain as a function of aggregated cells number for Scenario 1 and P=0.9.

8.4.3 Percentile Impact on Multiplexing Gain

The choice of link capacity based on the percentile of throughput achieved on the link

also affects the MG. As the percentile increases, the MG also increases. Fig. 8.11
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Figure 8.10: Multiplexing Gain as a function of aggregated cells number for Scenario 2 and P=0.9.

illustrates that the MG grows linearly from P=0.7 to P=0.9. When P=1, the capacity

reaches the peak rate, which could be significantly higher than the other, more typical,

throughput values. Consequently, the findings indicate that the MG at P=1 deviates

from the linear trend and stands out from the lower percentiles.

Figure 8.11: Multiplexing Gain as a function of aggregated cells number for Scenario 3 and UE=10.

8.4.4 Number of Cells Impact on Multiplexing Gain

From the data presented in this section (Figs. 8.8 - 8.11), it is evident that the MG

increases as more cells are aggregated. The growth function is not linear, with the most

significant gains observed when aggregating a small number of cells, typically between

2 and 20. Although adding another cell at any stage results in additional MG, the

incremental gain decreases compared to aggregating multiple cells due to traffic flow

saturation. Once a certain volume of traffic is aggregated, there is limited capacity to

accommodate additional traffic. Consequently, the subsequent increase in traffic leads to

minimal statistical gains. This saturation effect is similar to a "knee point" indicating
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the number of cells that contribute the majority of the MG. Factors such as the number

of users, traffic patterns and the selected percentile influence the MG, causing the "knee

point" to shift. However, when examining the horizontal axis that denotes the number

of cells, this critical point typically falls within the range of 20-40 cells. Understanding

this behavior is essential for effective transport network planning. From a capacity

standpoint, it is more advantageous to position aggregation points for every 20-40 cells

rather than consolidating a larger number of cells.

8.5 Industrial Applications

Dimensioning and planning processes that are established in Nokia are supported by a

proprietary tool developed by the Network and Performance Engineering department,

the host of the author of this dissertation. This tool, with 4G origins, is able to estimate

required BTS baseband and link capacities. Furthermore, it is used for midhaul and

backhaul aggregation point capacity estimation. Therefore, once the MG algorithm was

created and validated, it has been developed in the tool to improve the precision of ag-

gregation point link capacity estimation. To simplify tool usage (transport dimensioning

settings highlighted with green color in Fig. 8.12), possible scenarios have been limited

to "Low bursty load" and "High uniform load" (Scenario ID 2 and 3 from Tab. 8.1),

which are most often required for, respectively, new 5G deployments and existing high

traffic deployments.

The industrial application of the methods, algorithms and results in commercial tools and

processes is highly important in the context of this doctoral dissertation being developed

in the industrial doctorate program. Therefore, two further case studies described in the

following sections present validation and usage of these results as a part of dimensioning

process in Nokia.

8.5.1 Case Study - Microwave Link Capacity

For microwave transmission design, which is often used to interconnect radio access

network, it is typically necessary to select link capacity for a location with multiple base

stations collocated (alternatively, for multi-RAT BTS with, e.g., several 4G/5G frequency

layers) - this results in the presence of aggregation points that comprise 3-18 cells. In

the dimensioning process, the transport capacity for each individual cell is calculated

first. Second, aggregated capacity is estimated according to the MG algorithm with two

"extreme" values considered depending on the required trade-off between bandwidth

savings and delay/congestion probability: low bursty and high uniform load.
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Figure 8.12: Dimensioning tool implementing Multiplexing Gain algorithm.

The analysis of results for two network Operators is presented below. Each configuration

of a site consisting of one to many BTSs with multiple cells is given in Tab. 8.2. Each such

site is connected by microwave link to the network. Thanks to the link measurements,

each momentary value has been collected, whereas the peak values are given in the Tab.

8.3. Finally, the capacity for every site configuration has been calculated using the MG

algorithm.

Table 8.2: Site configurations for Operator 1.

RAN technology 4G 4G 4G 4G 4G 5G 5G

Band L700 L800 L1800 L1800 L2100 2600 3500

Spectrum [MHz] 5 15 15 20 15 100 2x100

No cells per BTS 3 3 3 3 3 3 3

Config 1 x x x x x x

Config 2 x x x x x

Config 3 x x x x

Config 4 x x x

For configuration 4, the peak throughput value is between the two estimated values,

which shows a good fit of the MG algorithm to the real data. This means that the traffic
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Table 8.3: Measured throughput and estimated aggregated DL link capacity per site configurations for
Operator 1.

[Gbps] Config 1 Config 2 Config 3 Config 4

Max measured throughput 0.977 0.868 1.566 1.332

Estimated capacity with MG algorithm

for high uniform load
1.362 0.763 1.390 1.588

Estimated capacity with MG algorithm

for low bursty load
1.041 0.588 1.084 1.257

transmitted over these sites is moderate (between low and high). For configuration 1,

the peak value is below the estimated capacity for low bursty load, which shows that

the traffic over this site is small (this is the smallest site of the exercise with only three

cells). For configurations 2 and 3, the peak value exceeds the estimated capacity for high

load. This behavior has been further investigated. Figs. 8.13 and 8.14 present a detailed

analysis of the measured throughput values with its distribution.

The conclusion is that the maximum values observed in the network for these two site

configurations were observed only once over four months. Such isolated traffic surges are

effectively managed by transport QoS mechanisms that restrict instantaneous throughput

and queue traffic. This limitation is contingent on the dimensioning and Committed Info

Rate configurations. From a service point of view, it can be entirely transparent. Thus,

the method is also effective for these two configurations (2 and 3), indicating that the

MG algorithm can, in general, offer a reasonable estimation of the necessary capacity.

Configurations deployed in Operator 2 network are given in Tab. 8.4. The measured

throughput and estimated aggregated DL link capacity per site configurations are given

in Tab. 8.5. In this case the same analysis has been done as for Operator 1 and it shows

that the MG algorithm estimates well required capacity, the peak throughput values are

below estimated capacity.

Table 8.4: Site configurations for Operator 2.

RAN technology 4G 4G 4G 4G 5G 5G

Band L800 L1800 L2100 L2600 L2600 3500

Spectrum [MHz] 10 20 20 20 80 100

No cells per BTS 3 3 3 3 3 3

Config 1 x x x x x

Config 2 x x x x x x
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Figure 8.13: Throughput probability distribution of Operator 1’s microwave link for configuration 2.
Red circle marks the maximal value.

Figure 8.14: Throughput probability distribution of Operator 1’s microwave link for configuration 3.
Red circle marks the maximal value.
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Table 8.5: Measured throughput and estimated aggregated DL link capacity per site configurations for
Operator 2.

[Gbps] Config 1 Config 4

Max measured throughput 0.652 0.888

Estimated capacity with MG

for high uniform load
0.804 1.606

Estimated capacity with MG

for low bursty load
0.619 1.227

8.5.2 Case Study - Cloud BTS Transport Capacity

As outlined in Sec. 1.3.4, the shift to cloud-based BTS architecture complicates the

process of dimensioning the capacities of the transport links. Fig. 8.15 presents a recent

case study that illustrates the transport topology used to connect DU with CU. The

backbone network links the DUs and the core network with a site solution for the CU,

which includes two routers and two switches. The objective was to estimate the link

capacity for network points marked with arrows and capital letters.

Figure 8.15: Cloud BTS architecture from real case study.
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The study findings are presented in Table 8.6. Two scenarios are analyzed: one with and

one without MG estimation. The variation between these estimations spans from 17%

to 34%, indicating a significant decrease in link capacity with consideration of statistical

MG. Moreover, these results prove the need to include this factor in the dimensioning

process.

Table 8.6: Estimated link capacities for cloud BTS case study.

Link No multiplexing gain [Gbps] With multiplexing gain [Gbps]

A - vDU to vCU 0.921 0.762

B - vCU to vDU 0.168 0.140

D - vCU to Core 0.945 0.618

C - Core to vCU 0.175 0.114

A+C - vCU Ingress 1.114 0.885

B+D - vCU Egress 1.114 0.787

8.6 Summary

This chapter presents an original technique, using system-level traffic data, for estimat-

ing statistical MG of aggregated 5G transport links. The MG algorithm can use actual

data from a simulator or live network, improving its practical applicability and readiness

for integration into RAN planning and dimensioning systems for commercial use. The

key benefit of this proposed approach lies in its utilization of real-world measurements,

focusing on actual radio performance rather than theoretical values. The proposed MG

algorithm enables the scalability of the simulation outcomes, extending from a 21-cell

network to 200 or more cells. Moreover, the MG algorithm does not rely on a specific

model for dimensioning BTS transport interface capacity, serving as a complementary

tool to enhance existing aggregation point methods. In this context, it enhances the

method for forecasting throughput and delay for each NS. Different slices may utilize

varied transport paths, which must be taken into account during the planning and di-

mensioning of the transport link. The total capacity of individual transport links can

consist of the same type or different types of slices. Nonetheless, the transport planning

MG algorithm can be used to accurately estimate the aggregated capacity.

As a verification, a comparison was made between the trajectories produced by the

bootstrap method (Fig. 8.4) and the simulated data using quantile lines (Fig. 8.6 and

Fig. 8.7). The analysis indicated a good fit, with 90% of the generated data samples

falling within the quantile lines 5% and 95% of the original signal (simulated).
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The results indicate that the MG increases as the number of combined cell traffic flows

over a single midhaul link rises. This increase follows a logarithmic pattern and the

"knee point" varies depending on factors such as gNB setup, traffic characteristics, and

selected percentile. In scenarios with high traffic and peak loads, the identified "knee

point" usually falls between 20 and 40 cells, resulting in gains of 25-45% [68]. In sum-

mary, the best placement for an aggregation point between DU and CU is where it can

consolidate traffic from 20-40 cells. Going beyond this range is unlikely to produce sig-

nificant changes in the practical MG. In addition, the proposed approach reduces the

computational time from days to seconds, which is crucial for network planning recom-

mendations and ultimately improves the efficiency and flexibility of services provided to

telecommunication Operators.

Finally, the MG algorithm was integrated into a professional Nokia tool and applied in

various case studies. Two of these studies have been presented, demonstrating the align-

ment of the estimations with measured values from microwave links in mobile networks

and highlighting its relevance to cloud BTS dimensioning.



Chapter 9

5G Network Slicing Dimensioning

Framework

The research covered in this doctoral dissertation thus far complements one another,

forming a comprehensive 5G Network Slicing Dimensioning Framework, referred to in

this chapter simply as the framework. All verified, tested, and developed methods,

models, and procedures are integrated.

9.1 Description of Framework Elements

In light of emerging ideas, a framework for forecasting and dimensioning is proposed

(Fig. 9.1), which is a data-centric model that incorporates the concept of the DT as

outlined in [70]. Essentially, the proposed framework can function autonomously as a

forecasting and scenario analysis tool applicable to (sliced) network dimensioning and

traffic management, or it can operate as a fundamental element of a versatile DT. This

structure has been modularly designed to facilitate easy validation, administration, and

adaptation to particular scenarios.

120
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It is important to note that conducting DT-based simulations necessitates linking with

the data platform [110] in order to update the model when the relationship between

inputs and outputs changes (such as configuration adjustments or software upgrades) or

differs (such as configurations not present in the training data). Hence, consideration

must be taken to ensure the continuity of the link between physical and digital networks.

The intention is to integrate this process into a continuous delivery cluster similar to

that outlined in [73].

9.1.1 Dataset Module

The dimensioning process involves collecting input data that detail the network’s op-

erational conditions and the services it is anticipated to offer. In this study, a dataset

comprising hourly averaged time series data from 5G BTS in a live network deployment

has been used (Sec. 3.1). Data have been collected at both the cell and network slice

levels, facilitating the forecasting and subsequent dimensioning of capacity for each slice

and the entire cell.

Furthermore, to investigate the QoS demands (instantaneous data rates) of the wireless

interface and the evolving traffic profiles of multiple cells simultaneously, a specialized

Nokia system-level simulator has been utilized. This comprehensive dynamic system-level

simulator is designed to emulate user plane performance, encompassing throughputs and

delays, using the provided radio resource management features and algorithm options

(Sec. 8.2).

Using real network data and occasionally system-level simulations, the framework can

address the issue of a priori defined TM discussed in Sec. 1.3.2.

9.1.2 Environmental Variables Forecasting Module

The variables chosen for the input of a multidimensional delay and throughput forecast-

ing model (Tab. 3.1) require preprocessing, and for exogenous variables, forecasting is

also needed. Specifically, forecasting #UEs and CQI using a one-dimensional model is

essential as input for multidimensional forecasting models.

In Chapter 5, several one-dimensional models, namely SARIMA, Prophet, Chronos, and

Lag-Llama, were examined and compared to accurately predict #UEs and CQI (individ-

ually). Among the validated models, both Prophet and Lag-Llama delivered the most

precise results, which were generally comparable. Ultimately, Lag-Llama was selected

because of its extensive potential for fine-tuning, as it can utilize more data for training,

which will be thoroughly investigated in future research.
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For endogenous variables, the following approach has been taken. DV per slice and

BLER are forecasted by VARMAX, although DV can be manipulated by the framework

user to simulate "what-if" scenarios (Sec. 9.2). PRB utilization is changed automatically

using the function based on the DV values, as both features show a high correlation in

the research (Sec. 3.4).

To establish the initial state for endogenous variables, the following method is used.

When there is no change to the DV at time T − 1, the endogenous variables forecast

at time T is performed using the VARMAX model, and the initial state is simply the

complete dataset at time T − 1. This can be considered the initial reference state. If the

user wishes to simulate a scenario where the DV for a specific slice changes by x%, the

initial state is set as (100+x)% · y, where y is the forecasted value of DV at time T (the

reference state). For BLER, the initial state is equal to its reference state.

Once the initial values of DV are computed, the PRB utilization can be determined. It

has been noted that PRB utilization can be expressed as a function of data volumes.

Several methods for forecasting PRB utilization have been explored, such as forecasting

using functional dependencies (polynomials, exponential functions, logarithms) or ran-

dom forest models, multiple linear regression, ridge, and lasso (Figs. 9.2 - 9.4). For

further information on these models, see [89].

Figure 9.2: The comparison of nMAE for PRB utilization short-term forecasting.

The selected methods are straightforward models that are computationally efficient.

KPIs are interrelated, and forecasting the dependent variable is not a complex task

(hence a simple solution is preferred). The best results were achieved using a random

forest, which takes as input the DV in each Slice, BLER, CQI, and #UEs.
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Figure 9.3: The comparison of nMAE for PRB utilization long-term forecasting.

Figure 9.4: The comparison of nMAE for PRB utilization long-term forecasting (zoom on the lowest
values).

9.1.3 Multivariate Forecasting Module

The core of this module revolves around the forecasting model, which is trained using

actual traffic and environmental data. This comprehensive model forecasts both through-

put and delay at a detailed cell and slice level. When applied in the dimensioning process,

it eliminates the need for a predefined TM (Sec. 1.3.2). Various techniques have been

tested, and VARMAX has shown the best and most accurate forecasting results. By

utilizing a pre-trained model, users can conduct "what-if" scenario simulations. By ad-

justing historical model inputs based on scenario requirements, future estimates can be

made for slice throughput and delay. Given that some input features are interrelated (as
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discussed in Section 3.4), any modifications to the inputs must take into account their

connections (as discussed in the previous section).

A multidimensional model was created to predict throughput and delay based on envi-

ronmental KPIs because it is necessary to investigate the relationship between DV and

the various factors involved in modeling throughput and delay. If DV increases in the

simulations, other environmental variables must also be taken into account, as changes in

DV would affect them. It is inaccurate to assume that DV changes alone, such as with-

out changes in PRB utilization, for a realistic simulation of a 5G network. The model

takes past values of endogenous variables (including throughput and delay) and current

values of exogenous variables as input (Fig. 9.1). Thus, forecasting requires knowing the

future values of exogenous variables. Therefore, one-dimensional models are devised to

forecast these variables (in the Environmental Variables Forecasting Module), and their

forecasting results are then utilized in the main model.

In this section, throughput and delay metrics are predicted for each configured slice

within a cell. Consequently, to dimension at the BTS level, this procedure must be

repeated for all cells associated with this BTS.

9.1.4 BTS Capacity Estimation Module

Utilizing actual data from pre-trained cellular models in the dimensioning process results

in precise traffic forecasting and facilitates capacity estimation for future network devel-

opment. Upon assuming that service usage will continue to increase at the current rate,

the model can be used to forecast future capacity. To determine the necessary capacity

and infrastructure, throughput and delay are forecasted for each slice.

Subsequently, for each cell configuration and slice, it is assessed when the slice capacity

or slice QoS delay requirements will be met. Identifying the time when capacity limits

will be reached, proactive system configuration adjustments can be made to enhance

slice capacity. This method can also be applied to long-term dimensioning (planned

for future research), where the forecasted time to reach the delay limit will indicate

when network expansion is required, and the forecast capacity at the end will indicate

the extent of infrastructure expansion needed. By incorporating a "what-if" analysis, it

becomes possible to conduct capacity dimensioning for simulated scenarios that consider

various potential changes in the evolution of network traffic demand. For example, there

could be a significant increase in demand for a specific slice due to a new planned offering

from the CSP.
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In this module, a crucial component involves calculating the cell and BTS capacity,

which is related to understanding the capabilities and limitations of the product. Nokia

has already created a database containing such information and a calculator to choose

suitable product versions based on QoS requirements. This solution can determine the

number of hardware or cloud resources needed. This is the only part of the framework

that was not developed in the research associated with this doctoral dissertation. Fur-

thermore, the results of this step cannot be publicly shared as the product limitations

are company-confidential.

9.1.5 Link Capacity Estimation Module

An element of the RAN planning process is capacity dimensioning, which seeks to de-

termine the resources necessary to provide services to particular traffic volumes while

preserving QoS as outlined in the previous subsection. Within the realm of transport

network dimensioning, this primarily entails estimating the capacities of links. This step

is generally performed at the BTS level, since traditionally, each BTS had a single link

connection to the mobile core network. In contrast, in the case of Cloud-RAN, each

RU connects to the DU and later to the CU via the transport network (as detailed in

Chapter 8). Traffic from multiple cells is consolidated at some point (with the location

of this point depending on the specific topology planning process) within the transport

network. In the link capacity estimation module, an algorithm is used to evaluate the

statistical transport MG to determine the final link capacity.

9.2 Scenario Simulations with the Framework

This framework can be used for conducting "what-if" analyzes, e.g., for scenarios in-

volving substantial traffic growth, such as when a CSP intends to enhance the usage of

specific services or implement new service offerings. By adjusting the amount of traffic

in the input while keeping environmental conditions changing according to the forecasts,

we can make valid statements regarding the throughput and delay processes observed in

actual systems. Fig. 9.5, presents this concept. The framework can be used to forecast

when the capacity limit will be reached without any changes to the characteristics of

environmental conditions - Scenario 1. It can also be used to predict what will happen

once the conditions will change, e.g. the expected DV will increase or decrease as shown

in Scenario 2 (Slice A traffic increased by 10%) and Scenario 3 (Slice B traffic decreased

by 5%). This shows the concept of how the framework can effectively elucidate and

quantify these phenomena through data-driven simulations of sliced wireless networks.
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Figure 9.5: The concept of simulated scenarios (with artificial data).

In general, this framework represents an initial stage in implementing the DT idea for

communication networks. As defined in the literature [111], DT serves as a digital model

of a cell of the actual 5G base station. By training the DT using authentic data collected

from individual cells, unique twins are generated, adapted to tasks such as forecasting

cell traffic and delays, as well as performing hypothetical scenarios. Furthermore, it can

support optimization systems to suggest capacity expansions or configure parameters for

slice planning.

9.2.1 Evaluation with Real Data

To verify the validity of the simulator and evaluate its applicability and ability to main-

tain the physical context, experiments were performed on the actual data. Initially, the

moments when the DV increased were identified from the data. Two types of changes

are observed during these moments: a single peak and a change in the DV, after which

the DV remains elevated. Both types were marked accordingly. An illustrative example

of a single jump in DV-B is shown in Fig. 9.6.

The complete procedure is as follows:

1. fit model for data before DV change (blue part),

2. set initial state for simulation by taking true values of data volumes for each slice

and PRB utilization (red part). The input values for BLER are forecasted by the

standard procedure described in Sec. 4.2.1,

3. forecast next 24 hours (green part).
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Figure 9.6: The example trajectories for data volumes across each network slice.

The simulations utilize the VARMAX(1,0) model (Chapter 6).

Details regarding the actual PRB utilization value are provided in the initial state. This

is because alterations in DV lead to corresponding changes in the use of radio resources.

A simulation considering only DV changes would not accurately represent reality. An

example forecast based on real data is shown in Fig. 9.7. In this scenario: DV_A

increases by 267.2%, DV_B increases by 7.98%, DV_D increases by 13.7%, and PRB

utilization increases by 80.75%. It should be noted that a large increase in DV in Slice

A is associated with a significant increase in PRB utilization.

Table 9.1 shows the information criteria and evaluation statistics for a sample from Fig.

9.7. It is evident that the errors are minimal and the R2 value is high.

To evaluate the results of all samples, two metrics are utilized: MAE and the RdR score

as presented in [112]. The RdR score is a standardized metric derived from Dynamic

Time Warping (DTW) and RMSE, showing whether the forecast of the evaluated model
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Figure 9.7: Predicted throughput for Slice A employing VARMAX.

Table 9.1: The information criteria values and evaluation metrics for a sample depicted in Fig. 9.7.

AIC BIC HQIC MAE RMSE R2

-6001.57 -5195.14 -5678.26 4.13 5.25 0.77

exceeds the results of other methods. With slight modifications, an alternative version

of the RdR score was considered, which evaluates whether the model outperforms its

univariate equivalent (ARMA for seasonally decomposed data). In general, the revised

RdR score can be represented as follows:

RdRscore =
RMSEscore +DTWscore

2
, (9.1)

where

RMSEscore = 1− normalized(RMSE),

DTWscore = 1− normalized(DTW ).

The normalized RMSE is calculated by first determining the RMSE of the model, then

subtracting the minimum reference value, and finally dividing this result by the reference

range. Reference boundaries are defined by the RMSE values of an ARMA. Similarly,

the normalized DTW is defined in the same way. The MAE is normalized by dividing it

by the range to ensure comparability between all samples.
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Figure 9.8: nMAE of throughput and delay per slice.

The nMAE values are illustrated in Fig. 9.8. It is evident that the forecasts exhibit a low

nMAE. The model errors for the delay in Slice D are slightly higher than the others, but

the median error remains low. These box plots suggest that a simulation that reflects

reality can be achieved using VARMAX. Furthermore, it was examined whether the

VARMAX model outperforms the univariate ARMA approach in simulation. For this

purpose, RdR is recalculated as follows: max(0, RdR ·100%). The results for all samples

are shown in Fig. 9.9. Comparing the results of the VARMAX simulation with its

one-dimensional ARMA counterpart reveals significant improvements in both delay and

throughput for Slice A and Slice D, with negligible improvement for Slice B.

9.2.2 Simulated Scenarios

Evaluating the model allowed for the determination of its effectiveness for the specified

problem. The subsequent step involves conducting simulations where the DV values are

adjusted by the user. The scenarios under consideration are shown in Tab. 9.2.
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Figure 9.9: Adjusted RdR score for all chosen samples comparing the results of the VARMAX with
ARMA.

Table 9.2: Simulation scenarios.

Variables % of DV’s change

DV (A), PRB utilization 50, 100, 150, 200

DV (B), PRB utilization 50, 100, 150, 200

DV (A, B, C), PRB utilization 50, 100

9.3 Summary

This chapter presents the entire 5G Network Slicing dimensioning framework. It describes

also the concept of simulated scenarios and the realization of the DT. The description

of each module is followed by a presentation of a single simulated scenario. Fig. 9.10

illustrates normalized throughputs and delays: comparing the last 24 hours of the train-

ing set with the forecasted values. The results pertain to the scenario where DV-A and

DV-D increase by 100%. The forecast values indicate that Slices A and D have a higher
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Figure 9.10: Comparison of the histograms of normalized throughputs and delays: forecasts (simulated
scenario) vs. training set (the last 24h).

TPut and delay, in alignment with the increased DV. Slice B experiences a slight de-

lay increase due to shared underlying resources. Additionally, the delay distribution for

Slice D has widened (more samples with higher delays), attributed to its lowest priority

status and the impact of all traffic. Ultimately, these findings are consistent with the

understanding of this scenario in the telecommunications industry, further validating the

approach.
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Conclusions and Future Works

10.1 Achievements and Contributions

The main achievements and contributions of this doctoral dissertation are as follows:

1. The collection and analysis of a dataset comprising hourly averaged time series data

from thirty three 5G BTS operating in a live network deployment. The dataset

was collected over the course of March 2023 for short-term and June 2023-February

2024 for long-term forecasting. These selected KPIs are fundamental performance

indicators found in any vendor’s radio equipment, facilitating the creation of mul-

tivariate models that incorporate both traffic load and radio environment metrics,

which directly affect throughput and delay. The Spearman and Pearson correlation

matrices revealed that many pairs of variables exhibit strongly monotonic relation-

ships, and a strong correlation is evident for specific pairs of delays and throughputs

across various network slices. The analysis concluded that seasonality and unique

attributes per cell must be taken into account when choosing a forecasting model.

2. A quantitative assessment of one-dimensional models for UEs and CQI forecasting,

resulting in the selection of the most accurate model. Among the models initially

considered—SARIMA, Chronos, Prophet, and Lag-Llama—the last two have been

selected for fine-grained comparison. The models were evaluated using MAPE and

nMAE metrics, and in most scenarios, the Lag-Llama forecasting model proved

to be the most precise. Furthermore, its capacity for fine-tuning positions it as a

potential subject for future research.

3. A quantitative assessment of multi-variate models for slice throughput and delay

short- and long-term forecasting, resulting in the selection of the most accurate

one. Among the evaluated models, namely VARMAX, LSTM, CNN-BiLSTM, the

133
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first one demonstrated best accuarcy and computational efficiency, across vary-

ing aggregation levels. Enhancements in previous short-term forecasting models

have extended their applicability to forecasts of up to three months. Additionally,

training the model on data from all cells within a band, as opposed to individual

cells, has increased forecast accuracy. Empirical assessments using real commercial

network data have validated the practicality and reproducibility of the developed

forecasting models and methodologies for long-term network slicing planning.

4. Original technique, using system-level traffic data, for estimating statistical MG of

aggregated 5G transport links. The proposed approach enables the scalability of

the simulation outcomes, extending from a 21-cell network to 200 or more cells.

The MG algorithm can use real-world measurements, focusing on actual radio

performance rather than theoretical values. In addition, the proposed approach

reduces the computational time from days to seconds, which is crucial for network

planning recommendations and ultimately improves the efficiency and flexibility

of services provided to telecommunication operators. Two case studies have been

presented, demonstrating the alignment of the estimations with measured values

from microwave links in mobile networks and highlighting its relevance to cloud

BTS dimensioning.

5. A framework for forecasting and dimensioning, which is a data-centric model that

incorporates the concept of the DT. Specifically, the framework can function au-

tonomously as a forecasting tool applicable to (sliced) network dimensioning and

traffic management, or it can operate as an integral element of a versatile DT.

The framework can also be used to provide traffic forecasting based on actual net-

work data or to support optimization systems to suggest capacity expansions or

configure parameters for slice planning. Furthermore, it can be used for simu-

lated scenarios that consider various potential changes ("what-if" scenarios) in the

evolution of network traffic demand. To verify the validity of the framework and

evaluate its applicability and ability to maintain the physical context, experiments

were performed on the actual data.

6. Ultimately, this framework with selected models and developed algorithms has

been incorporated into the company’s tools to support dimensioning and planning

processes.

10.2 Publications

Some ideas, achievements, considerations, figures, and tables presented in this doctoral

dissertation have appeared in previously published journal articles and conference papers.
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The list of all publications corresponding to the topic of the thesis is presented below in

chronological order.

1. D. Dulas, K. Maraj-Zygmat, K. Walkowiak, "Method of 5G TDD Midhaul

Multiplexing Gain Estimation based on System-Level Traffic Measurements",

2022 International Conference on Software, Telecommunications and Computer

Networks (SoftCOM), Split, Croatia, 2022, pp. 1-6, doi: 10.23919/Soft-

COM55329.2022.9911430.

2. D. Dulas, K. Walkowiak, „AI-Assisted Dimensioning of 5G Network Slices – Review

and Perspectives”, „Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne”,

4/2023, doi: 10.15199/59.2023.4.43

3. D. Dulas, J. Witulska, A. Wyłomańska, I. Jabłoński, K. Walkowiak, "Data-Driven

Model for Sliced 5G Network Dimensioning and Planning, Featured with Fore-

cast and “what-if” Analysis", IEEE Access, vol. 12, pp. 50067-50082, 2024, doi:

10.1109/ACCESS.2024.3383324.

4. D. Dulas, J. Witulska, A. Wyłomańska, K. Walkowiak, „Data-driven model for long-

term forecasting of 5G throughput and delay per network slice with the context

of cell configuration”, „Przegląd Telekomunikacyjny i Wiadomości Telekomunika-

cyjne”, 4/2024, doi: 10.15199/59.2024.4.93

10.3 Future Works

For future work, the following research directions are proposed:

• Assess the framework and chosen models for long-term forecasts extending beyond

three months, which necessitates a dataset spanning a longer time period.

• Assess the accuracy of the one-dimensional model in forecasting environmental

variables (e.g., #UEs, CQI) using Lag-Llama after fine-tuning with a larger dataset,

which requires data collection from a larger network cluster.

• Investigate the generalizability of the models, potentially by incorporating config-

urational parameters as model features.

• Expand the initial framework version with DT for throughput and delay forecast-

ing as a part of a project: "Development of an automatized, supervised process

and system, enabling new 5G/5G+ Nokia features performance impact evaluation

and recommending contextually optimal parameter settings, thanks to integration
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of digitalized and synthetized expert knowledge with digital twin-based simulation

model", which was submitted in call for proposals: "FENG.01.01-IP.01-005/23 –

Ścieżka SMART – Projekty realizowane w konsorcjach", supervised by The Na-

tional Centre for Research and Development (NCBR) and is waiting for the accep-

tance.



Bibliography

[1] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines. 5g

network slicing using sdn and nfv: A survey of taxonomy, architectures and future

challenges. Computer Networks, 167:106984, 2020. ISSN 1389-1286. doi: https://

doi.org/10.1016/j.comnet.2019.106984. URL https://www.sciencedirect.com/

science/article/pii/S1389128619304773.

[2] M. Umar Khan, A. García-Armada, and J. J. Escudero-Garzás. Service-based net-

work dimensioning for 5g networks assisted by real data. IEEE Access, 8:129193–

129212, 2020. doi: 10.1109/ACCESS.2020.3009127.

[3] Xuemin Shen, Jie Gao, Wen Wu, Mushu Li, Conghao Zhou, and Weihua Zhuang.

Holistic network virtualization and pervasive network intelligence for 6g. IEEE

Communications Surveys & Tutorials, 24(1):1–30, 2022. doi: 10.1109/COMST.

2021.3135829.

[4] Prakash Subramanian et al. Future x network cost economics - a network operator’s

tco journey through virtualization, automation, and network slicing. Bell Labs

Consulting, 2019.

[5] Nokia Technology Strategy 2030. Global network traffic 2030 report, 2024. URL

https://www.nokia.com/technology-strategy/.

[6] Amitabha Ghosh, Andreas Maeder, Matthew Baker, and Devaki Chandramouli. 5g

evolution: A view on 5g cellular technology beyond 3gpp release 15. IEEE Access,

7:127639–127651, 2019. doi: 10.1109/ACCESS.2019.2939938.

[7] Wen Wu, Conghao Zhou, Mushu Li, Huaqing Wu, Haibo Zhou, Ning Zhang,

Xuemin Sherman Shen, and Weihua Zhuang. Ai-native network slicing for 6g net-

works. IEEE Wireless Communications, 29(1):96–103, 2022. doi: 10.1109/MWC.

001.2100338.

[8] Marcial Gutierrez et al. Ericsson’s next-gen ai-driven network dimensioning

solution. https://www.ericsson.com/en/blog/2022/3/next-gen-ai-driven-network-

dimensioning-solution, 2022. Updated: 2022-03-23.

137

https://www.sciencedirect.com/science/article/pii/S1389128619304773
https://www.sciencedirect.com/science/article/pii/S1389128619304773
https://www.nokia.com/technology-strategy/


Bibliography 138

[9] Dominik Dulas, Katarzyna Maraj-Zygmat, and Krzysztof Walkowiak. Method

of 5g tdd midhaul multiplexing gain estimation based on system-level traffic mea-

surements. In 2022 International Conference on Software, Telecommunications and

Computer Networks (SoftCOM), pages 1–6, 2022. doi: 10.23919/SoftCOM55329.

2022.9911430.

[10] Anil Kirmaz, Diomidis S. Michalopoulos, Irina Balan, and Wolfgang Gerstacker.

Mobile network traffic forecasting using artificial neural networks. In 2020 28th

International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS), pages 1–7, 2020. doi: 10.1109/

MASCOTS50786.2020.9285949.

[11] Caner Bektas, Stefan Böcker, and Christian Wietfeld. The cost of uncertainty:

Impact of overprovisioning on the dimensioning of machine learning-based network

slicing. In 2022 IEEE Future Networks World Forum (FNWF), pages 652–657,

2022. doi: 10.1109/FNWF55208.2022.00120.

[12] Hadjer Touati, Hind Castel-Taleb, Badii Jouaber, and Sara Akbarzadeh. Split

analysis and fronthaul dimensioning in 5g c-ran to guarantee ultra low latency.

In 2020 IEEE 17th Annual Consumer Communications & Networking Conference

(CCNC), pages 1–4, 2020. doi: 10.1109/CCNC46108.2020.9045398.

[13] Azar Taufique, Mona Jaber, Ali Imran, Zaher Dawy, and Elias Yacoub. Planning

wireless cellular networks of future: Outlook, challenges and opportunities. IEEE

Access, 5:4821–4845, 2017. doi: 10.1109/ACCESS.2017.2680318.

[14] Jianhua Tang, Byonghyo Shim, and Tony Q. S. Quek. Service multiplexing and

revenue maximization in sliced c-ran incorporated with urllc and multicast embb.

IEEE Journal on Selected Areas in Communications, 37(4):881–895, 2019. doi:

10.1109/JSAC.2019.2898745.

[15] Qiang Ye, Weihua Zhuang, Shan Zhang, A-Long Jin, Xuemin Shen, and Xu Li.

Dynamic radio resource slicing for a two-tier heterogeneous wireless network. IEEE

Transactions on Vehicular Technology, 67(10):9896–9910, 2018. doi: 10.1109/TVT.

2018.2859740.

[16] Xuemin Shen, Jie Gao, Wen Wu, Kangjia Lyu, Mushu Li, Weihua Zhuang, Xu Li,

and Jaya Rao. Ai-assisted network-slicing based next-generation wireless networks.

IEEE Open Journal of Vehicular Technology, 1:45–66, 2020. doi: 10.1109/OJVT.

2020.2965100.

[17] Hoang Duy Trinh, Nicola Bui, Joerg Widmer, Lorenza Giupponi, and Paolo Dini.

Analysis and modeling of mobile traffic using real traces. In 2017 IEEE 28th Annual



Bibliography 139

International Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), pages 1–6, 2017. doi: 10.1109/PIMRC.2017.8292200.

[18] Jessica Moysen, Furqan Ahmed, Mario García-Lozano, and Jarno Niemelä. Big

data-driven automated anomaly detection and performance forecasting in mobile

networks. In 2020 IEEE Globecom Workshops (GC Wkshps, pages 1–5, 2020. doi:

10.1109/GCWkshps50303.2020.9367579.

[19] Chaoyun Zhang and Paul Patras. Long-term mobile traffic forecasting using deep

spatio-temporal neural networks, 2017.

[20] Mathieu Leconte, Georgios S. Paschos, Panayotis Mertikopoulos, and Ulaş C.

Kozat. A resource allocation framework for network slicing. In IEEE INFOCOM

2018 - IEEE Conference on Computer Communications, pages 2177–2185, 2018.

doi: 10.1109/INFOCOM.2018.8486303.

[21] Gabriel Otero Pérez, José Alberto Hernández, and David Larrabeiti. Fronthaul

network modeling and dimensioning meeting ultra-low latency requirements for

5g. Journal of Optical Communications and Networking, 10(6):573–581, 2018. doi:

10.1364/JOCN.10.000573.

[22] Amanpreet Singh, Xi Li, Indika Abeywickrama, Andreas Könsgen, Carmelita Görg,

Phuong Nga Tran, and Andreas Timm-Giel. Qoe-based access network dimension-

ing. In 2014 16th International Telecommunications Network Strategy and Planning

Symposium (Networks), pages 1–6, 2014. doi: 10.1109/NETWKS.2014.6959271.

[23] Oscar Adamuz-Hinojosa, Pablo Muñoz, Pablo Ameigeiras, and Juan M. Lopez-

Soler. Potential-game-based 5g ran slice planning for gbr services. IEEE Access,

11:4763–4780, 2023. doi: 10.1109/ACCESS.2023.3236103.

[24] Raouf Abozariba, Muhammad Kamran Naeem, Md Asaduzzaman, and Moham-

mad Patwary. Uncertainty-aware ran slicing via machine learning predictions in

next-generation networks. In 2020 IEEE 92nd Vehicular Technology Conference

(VTC2020-Fall), pages 1–6, 2020. doi: 10.1109/VTC2020-Fall49728.2020.9348736.

[25] Haotong Cao, Zhi Lin, Kai Sun, Chenjing Tian, Kang An, and Hongbo Zhu. Effi-

cient slice reconfiguration for 6g networks with guaranteed qos and reduced opex. In

2024 IEEE/CIC International Conference on Communications in China (ICCC),

pages 473–478, 2024. doi: 10.1109/ICCC62479.2024.10681774.

[26] Aleksandra Knapińska, Piotr Lechowicz, Weronika Węgier, and Krzysztof

Walkowiak. Long-term prediction of multiple types of time-varying network traffic

using chunk-based ensemble learning. Applied Soft Computing, 130:109694, 2022.



Bibliography 140

[27] H.D. Trinh and Universitat Politècnica de Catalunya. Departament d’Enginyeria

Telemàtica. Data Analytics for Mobile Traffic in 5G Networks Using Machine

Learning Techniques. Universitat Politècnica de Catalunya, 2020. URL https:

//books.google.pl/books?id=Bc0TzgEACAAJ.

[28] Sonali Shankar, P Vigneswara Ilavarasan, Sushil Punia, and Surya Prakash Singh.

Forecasting container throughput with long short-term memory networks. Indus-

trial management & data systems, 120(3):425–441, 2020.

[29] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-

beats: Neural basis expansion analysis for interpretable time series forecasting.

arXiv preprint arXiv:1905.10437, 2019.

[30] Ufuk Uyan, M Tugberk Isyapar, and Mahiye Uluyagmur Ozturk. 5g long-term and

large-scale mobile traffic forecasting. arXiv preprint arXiv:2212.10869, 2022.

[31] Maryam Mohseni, Soodeh Nikan, and Abdallah Shami. Ai-based traffic forecasting

in 5g network. In 2022 IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), pages 188–192. IEEE, 2022.

[32] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-

Perez. Deepcog: Cognitive network management in sliced 5g networks with deep

learning. In IEEE INFOCOM 2019-IEEE conference on computer communications,

pages 280–288. IEEE, 2019.

[33] Saurabh Suradhaniwar, Soumyashree Kar, Surya S Durbha, and Adinarayana Ja-

garlapudi. Time series forecasting of univariate agrometeorological data: a compar-

ative performance evaluation via one-step and multi-step ahead forecasting strate-

gies. Sensors, 21(7):2430, 2021.

[34] Massimiliano Marcellino, James H Stock, and Mark W Watson. A comparison

of direct and iterated multistep ar methods for forecasting macroeconomic time

series. Journal of econometrics, 135(1-2):499–526, 2006.

[35] Arash Andalib and Farid Atry. Multi-step ahead forecasts for electricity prices

using narx: a new approach, a critical analysis of one-step ahead forecasts. Energy

Conversion and Management, 50(3):739–747, 2009.

[36] Schyler C Sun and Weisi Guo. Forecasting wireless demand with extreme val-

ues using feature embedding in gaussian processes. In 2021 IEEE 93rd Vehicular

Technology Conference (VTC2021-Spring), pages 1–6. IEEE, 2021.

[37] Ajib Setyo Arifin and Muhammad Idham Habibie. The prediction of mobile data

traffic based on the arima model and disruptive formula in industry 4.0: A case

https://books.google.pl/books?id=Bc0TzgEACAAJ
https://books.google.pl/books?id=Bc0TzgEACAAJ


Bibliography 141

study in jakarta, indonesia. TELKOMNIKA (Telecommunication Computing Elec-

tronics and Control), 18(2):907–918, 2020.

[38] T Tatarnikova, B Sovetov, and V Chehanovsky. Autoregressive models of network

traffic prediction. In Journal of Physics: Conference Series, volume 1864, page

012099. IOP Publishing, 2021.

[39] Jin Wang. A process level network traffic prediction algorithm based on arima

model in smart substation. In 2013 IEEE International Conference on Signal

Processing, Communication and Computing (ICSPCC 2013), pages 1–5. IEEE,

2013.

[40] Fengli Xu, Yuyun Lin, Jiaxin Huang, Di Wu, Hongzhi Shi, Jeungeun Song, and

Yong Li. Big data driven mobile traffic understanding and forecasting: A time

series approach. IEEE transactions on services computing, 9(5):796–805, 2016.

[41] Jorge Martín-Pérez, Koteswararao Kondepu, Danny De Vleeschauwer,

Venkatarami Reddy, Carlos Guimarães, Andrea Sgambelluri, Luca Valcarenghi,

Chrysa Papagianni, and Carlos J Bernardos. Dimensioning v2n services in 5g

networks through forecast-based scaling. IEEE Access, 10:9587–9602, 2022.

[42] Xin Dong, Wentao Fan, and Jun Gu. Predicting lte throughput using traffic time

series. ZTE communications, 13(4):61–64, 2015.

[43] Amin Azari, Panagiotis Papapetrou, Stojan Denic, and Gunnar Peters. Cellular

traffic prediction and classification: A comparative evaluation of lstm and arima.

In Discovery Science: 22nd International Conference, DS 2019, Split, Croatia,

October 28–30, 2019, Proceedings 22, pages 129–144. Springer, 2019.

[44] Chengsheng Pan, Yuyue Wang, Huaifeng Shi, Jianfeng Shi, and Ren Cai. Network

traffic prediction incorporating prior knowledge for an intelligent network. Sensors,

22(7):2674, 2022.

[45] Leonardo Lo Schiavo, Marco Fiore, Marco Gramaglia, Albert Banchs, and Xavier

Costa-Perez. Forecasting for network management with joint statistical modelling

and machine learning. In 2022 IEEE 23rd International Symposium on a World

of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 60–69. IEEE,

2022.

[46] Tejas Shelatkar, Stephen Tondale, Swaraj Yadav, and Sheetal Ahir. Web traffic

time series forecasting using arima and lstm rnn. In ITM Web of Conferences,

volume 32, page 03017. EDP Sciences, 2020.



Bibliography 142

[47] Xianmin Wei. Supporting vector-machine prediction of network traffic. In 2011

International Conference on Electrical and Control Engineering, pages 3203–3206.

IEEE, 2011.

[48] Jessica Moysen, Lorenza Giupponi, and Josep Mangues-Bafalluy. A mobile network

planning tool based on data analytics. Mobile Information Systems, 2017, 2017.

[49] Aleksandra Knapińska, Katarzyna Półtorak, Dominika Poręba, Jan Miszczyk, Ma-

teusz Daniluk, and Krzysztof Walkowiak. On feature selection in short-term pre-

diction of backbone optical network traffic. In 2022 International Conference on

Optical Network Design and Modeling (ONDM), pages 1–6. IEEE, 2022.

[50] M Panek, I Jabłoński, and M Woźniak. Modeling configuration-performance rela-

tion in a mobile network: a data-driven approach. IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications, 2–5 September 2024, Va-

lencia, Spain (Accepted).

[51] Jinbao Huang, Wenhao Guo, Rui Wei, Ming Yan, Yongle Hu, and Tuanfa Qin.

Short-term power forecasting method for 5g photovoltaic base stations on non-

sunny days based on sdn-integrated ingo-bp and rgan. IET Renewable Power

Generation, 2024.

[52] Yair Neuman, Yochai Cohen, and Boaz Tamir. Short-term prediction through

ordinal patterns. Royal Society Open Science, 8(1):201011, 2021.

[53] Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song,

Shirui Pan, and Qingsong Wen. Foundation models for time series analysis: A

tutorial and survey. In Proceedings of the 30th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, volume 619 of KDD ’24, page 6555–6565.

ACM, August 2024. doi: 10.1145/3637528.3671451. URL http://dx.doi.org/

10.1145/3637528.3671451.

[54] Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. Large

language models for time series: A survey, 2024. URL https://arxiv.org/abs/

2402.01801.

[55] Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang,

James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li, Shirui Pan, Vincent S. Tseng,

Yu Zheng, Lei Chen, and Hui Xiong. Large models for time series and spatio-

temporal data: A survey and outlook, 2023. URL https://arxiv.org/abs/2310.

10196.

[56] Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jin-

dong Wang, Shirui Pan, and Qingsong Wen. Position: What can large language

http://dx.doi.org/10.1145/3637528.3671451
http://dx.doi.org/10.1145/3637528.3671451
https://arxiv.org/abs/2402.01801
https://arxiv.org/abs/2402.01801
https://arxiv.org/abs/2310.10196
https://arxiv.org/abs/2310.10196


Bibliography 143

models tell us about time series analysis, 2024. URL https://arxiv.org/abs/

2402.02713.

[57] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only

foundation model for time-series forecasting, 2024. URL https://arxiv.org/

abs/2310.10688.

[58] Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai,

Leisheng Yu, Sirui Ding, Chia yuan Chang, Qiaoyu Tan, Daochen Zha, and Xia

Hu. Understanding different design choices in training large time series mod-

els. ArXiv, abs/2406.14045, 2024. URL https://api.semanticscholar.org/

CorpusID:270620043.

[59] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhag-

watkar, Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopou-

los, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil Garg, Anderson Schneider,

Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka,

and Irina Rish. Lag-llama: Towards foundation models for probabilistic time se-

ries forecasting, 2024. URL https://arxiv.org/abs/2310.08278.

[60] Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language

models are zero-shot time series forecasters. In A. Oh, T. Naumann, A. Glober-

son, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Informa-

tion Processing Systems, volume 36, pages 19622–19635. Curran Associates, Inc.,

2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/

3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf.

[61] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro

Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebas-

tian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix,

Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael

Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language of time

series, 2024. URL https://arxiv.org/abs/2403.07815.

[62] Hassan Halabian and Peter Ashwood-Smith. Capacity planning for 5g packet-based

front-haul. In 2018 IEEE Wireless Communications and Networking Conference

(WCNC), pages 1–6, 2018. doi: 10.1109/WCNC.2018.8377215.

[63] Chathurika Ranaweera, Elaine Wong, Ampalavanapillai Nirmalathas, Chamil Jaya-

sundara, and Christina Lim. 5g c-ran with optical fronthaul: An analysis from a

deployment perspective. Journal of Lightwave Technology, 36(11):2059–2068, 2018.

doi: 10.1109/JLT.2017.2782822.

https://arxiv.org/abs/2402.02713
https://arxiv.org/abs/2402.02713
https://arxiv.org/abs/2310.10688
https://arxiv.org/abs/2310.10688
https://api.semanticscholar.org/CorpusID:270620043
https://api.semanticscholar.org/CorpusID:270620043
https://arxiv.org/abs/2310.08278
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3eb7ca52e8207697361b2c0fb3926511-Paper-Conference.pdf
https://arxiv.org/abs/2403.07815


Bibliography 144

[64] Jay Kant Chaudhary, Jens Bartelt, and Gerhard Fettweis. Statistical multiplexing

in fronthaul-constrained massive mimo. In 2017 European Conference on Net-

works and Communications (EuCNC), pages 1–6, 2017. doi: 10.1109/EuCNC.

2017.7980774.

[65] Liumeng Wang and Sheng Zhou. On the fronthaul statistical multiplexing gain.

IEEE Communications Letters, 21(5):1099–1102, 2017. doi: 10.1109/LCOMM.

2017.2653120.

[66] Shubhajeet Chatterjee, Mohammad J. Abdel-Rahman, and Allen B. MacKenzie.

On optimal orchestration of virtualized cellular networks with statistical multiplex-

ing. IEEE Transactions on Wireless Communications, 21(1):310–325, 2022. doi:

10.1109/TWC.2021.3095231.

[67] Mohamed Shehata, Ahmed Elbanna, Francesco Musumeci, and Massimo Torna-

tore. Multiplexing gain and processing savings of 5g radio-access-network func-

tional splits. IEEE Transactions on Green Communications and Networking, 2(4):

982–991, 2018. doi: 10.1109/TGCN.2018.2869294.

[68] Jingchu Liu, Sheng Zhou, Jie Gong, Zhisheng Niu, and Shugong Xu. Statistical

multiplexing gain analysis of heterogeneous virtual base station pools in cloud

radio access networks. IEEE Transactions on Wireless Communications, 15(8):

5681–5694, 2016. doi: 10.1109/TWC.2016.2567383.

[69] Xusheng Tong, Lin Tian, Zongshuai Zhang, Qian Sun, and Yuanyuan Wang. Statis-

tical multiplexing gain analysis for c-ran based on processing resource utilization.

In 2020 IEEE 6th International Conference on Computer and Communications

(ICCC), pages 206–211, 2020. doi: 10.1109/ICCC51575.2020.9344898.

[70] Paul Almasan, Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-Varela, Diego

Perino, Diego López, Antonio Agustin Pastor Perales, Paul Harvey, Laurent

Ciavaglia, Leon Wong, Vishnu Ram, Shihan Xiao, Xiang Shi, Xiangle Cheng,

Albert Cabellos-Aparicio, and Pere Barlet-Ros. Network digital twin: Context,

enabling technologies, and opportunities. IEEE Communications Magazine, 60

(11):22–27, 2022. doi: 10.1109/MCOM.001.2200012.

[71] Marco Polverini, Francesco G. Lavacca, Jaime Galán-Jiménez, Davide Aureli, An-

tonio Cianfrani, and Marco Listanti. Digital twin manager: A novel framework

to handle conflicting network applications. In 2022 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-SDN), pages 85–88,

2022. doi: 10.1109/NFV-SDN56302.2022.9974809.



Bibliography 145

[72] Mean Shu, Wanfei Sun, Jing Zhang, Xiaoyan Duan, and Ming Ai. Digital-twin-

enabled 6g network autonomy and generative intelligence: Architecture, technolo-

gies and applications. Digital Twin, 2(16), 2022. URL https://doi.org/10.

12688/digitaltwin.17720.1.

[73] Michał Panek, Adam Pomykała, Ireneusz Jabłoński, and Michał Woźniak. 5g/5g+

network management employing ai-based continuous deployment. Applied Soft

Computing, 134:109984, 2023.

[74] Swati Roy, David Applegate, Zihui Ge, Ajay Mahimkar, Shomik Pathak, and Sarat

Puthenpura. Quantifying the service performance impact of self-organizing network

actions. In 2016 12th International Conference on Network and Service Manage-

ment (CNSM), pages 37–45, 2016. doi: 10.1109/CNSM.2016.7818398.

[75] Yuan Su, Haoyuan Cheng, Zhe Wang, Junwei Yan, Ziyu Miao, and Aruhan Gong.

Analysis and prediction of carbon emission in the large green commercial building:

A case study in dalian, china. Journal of Building Engineering, 68:106147, 2023.

doi: https://doi.org/10.1016/j.jobe.2023.106147.

[76] Jacek Koronacki and Jan Mielniczuk. Statystyka: dla studentów kierunków tech-

nicznych i przyrodniczych. Wydawnictwa Naukowo-Techniczne, 2001.

[77] Dominik Dulas, Justyna Witulska, Agnieszka Wyłomańska, Ireneusz Jabłoński,

and Krzysztof Walkowiak. Data-driven model for sliced 5g network dimensioning

and planning, featured with forecast and" what-if" analysis. IEEE Access, 12:

50067 – 50082, 2024.

[78] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statis-

tician, 72(1):37–45, 2018.

[79] Alexander Zlotnik, Juan Manuel Montero-Martínez, and Ascensión Gallardo-

Antolín. A comparison of multivariate sarima and svm models for emergency

department admission prediction. In International Conference on Health Infor-

matics, 2013. URL https://api.semanticscholar.org/CorpusID:28080256.

[80] Stylianos I. Vagropoulos, G. I. Chouliaras, E. G. Kardakos, C. K. Simoglou, and

A. G. Bakirtzis. Comparison of sarimax, sarima, modified sarima and ann-based

models for short-term pv generation forecasting. In 2016 IEEE International En-

ergy Conference (ENERGYCON), pages 1–6, 2016. doi: 10.1109/ENERGYCON.

2016.7514029.

[81] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,

Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.

https://doi.org/10.12688/digitaltwin.17720.1
https://doi.org/10.12688/digitaltwin.17720.1
https://api.semanticscholar.org/CorpusID:28080256


Bibliography 146

Stan : A probabilistic programming language. Journal of Statistical Software, 76,

01 2017. doi: 10.18637/jss.v076.i01.

[82] Peter J Brockwell and Davis. Time series: theory and methods. Springer Series in

Statistics, 1991.

[83] Ian T Jolliffe. Principal component analysis for special types of data. Springer,

2002.

[84] James Douglas Hamilton. Time series analysis. Princeton university press, 1994.

[85] Matt Chapman. A Meta-Analysis of Metrics for Change Point Detection Algo-

rithms. Spring, 2017.

[86] Slawek Smyl. Cognitive toolkit helps win 2016 cif inter-

national time series competition, Oct 2016. URL https:

//learn.microsoft.com/pl-pl/archive/blogs/machinelearning/

cognitive-toolkit-helps-win-2016-cif-international-time-series-competition.

[87] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6(02):107–116, 1998.

[88] Yu Hen Hu and Jenq-Neng Hwang. Handbook of neural network signal processing.

CRC press, 2018.

[89] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. An intro-

duction to statistical learning, volume 112. Springer, 2013.

[90] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[91] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In International conference on machine learning, pages

1310–1318. Pmlr, 2013.

[92] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplification:

An efficient way to train deep neural networks. Big Data Mining and Analytics, 3

(3):196–207, 2020.

[93] Roberto Cahuantzi, Xinye Chen, and Stefan Güttel. A comparison of lstm and gru

networks for learning symbolic sequences. arXiv preprint arXiv:2107.02248, 2021.

[94] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.

IEEE transactions on Signal Processing, 45(11):2673–2681, 1997.

https://learn.microsoft.com/pl-pl/archive/blogs/machinelearning/cognitive-toolkit-helps-win-2016-cif-international-time-series-competition
https://learn.microsoft.com/pl-pl/archive/blogs/machinelearning/cognitive-toolkit-helps-win-2016-cif-international-time-series-competition
https://learn.microsoft.com/pl-pl/archive/blogs/machinelearning/cognitive-toolkit-helps-win-2016-cif-international-time-series-competition


Bibliography 147

[95] Justyna Witulska. Multidimensional predictive modeling for 5g network dimen-

sioning. Master’s thesis, Wrocław University of Technology, 2023.

[96] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint

arXiv:1912.08957, 2019.

[97] Chitra Desai. Comparative analysis of optimizers in deep neural networks. Inter-

national Journal of Innovative Science and Research Technology, 5(10):959–962,

2020.

[98] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine learning research, 7:1–30, 2006.

[99] Devin Knight, Erin Ostrowsky, Mitchell Pearson, and Bradley Schacht. 2022.

[100] Amanpreet Singh, Indika Abeywickrama, Andreas Könsgen, Xi Li, and Carmelita

Goerg. Statistical analysis of traffic aggregation in lte access networks. In 6th Joint

IFIP Wireless and Mobile Networking Conference (WMNC), pages 1–4, 2013. doi:

10.1109/WMNC.2013.6548996.

[101] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of

Statistics, 7(1):1 – 26, 1979. doi: 10.1214/aos/1176344552. URL https://doi.

org/10.1214/aos/1176344552.

[102] Bradley Efron. The Jackknife, the Bootstrap and Other Resampling Plans. Society

for Industrial and Applied Mathematics, 1982. doi: 10.1137/1.9781611970319.

URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970319.

[103] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.

ISBN 9780412042317. URL https://books.google.pl/books?id=gLlpIUxRntoC.

[104] S. N. Lahiri. Resampling Methods for Dependent Data. Springer Series in Statistics,

2003.

[105] Dimitris N. Politis and Joseph P. Romano. The stationary bootstrap. Journal

of the American Statistical Association, 89(428):1303–1313, 1994. doi: 10.1080/

01621459.1994.10476870.

[106] Anthony Christopher Davison and D. V. Hinkley. Boostrap methods and their

applications. Cambridge University Press, New York, 1997. ISBN 0521574714

9780521574716 0521573912 9780521573917. URL http://www.amazon.com/

Bootstrap-Application-Statistical-Probabilistic-Mathematics/dp/

0521574714.

https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://epubs.siam.org/doi/abs/10.1137/1.9781611970319
https://books.google.pl/books?id=gLlpIUxRntoC
http://www.amazon.com/Bootstrap-Application-Statistical-Probabilistic-Mathematics/dp/0521574714
http://www.amazon.com/Bootstrap-Application-Statistical-Probabilistic-Mathematics/dp/0521574714
http://www.amazon.com/Bootstrap-Application-Statistical-Probabilistic-Mathematics/dp/0521574714


Bibliography 148

[107] Halbert White and Dimitris Politis. Automatic block-length selection for the

dependent bootstrap. Econometric Reviews, 23:53–70, 12 2004. doi: 10.1081/

ETC-120028836.

[108] Andrew Patton, Halbert White, and Dimitris Politis. Correction to “automatic

block-length selection for the dependent bootstrap” by d. politis and h. white.

Econometric Reviews, 28:372–375, 01 2009. doi: 10.1080/07474930802459016.

[109] K. Sheppard. bashtage/arch: Release 4.18 (version v4.18).

https://doi.org/10.5281/zenodo.593254, 2021.

[110] Harvard Business R. Enhancing innovation in telecom with digital

twins. https://hbr.org/sponsored/2022/03/enhancing-innovation-in-telecom-with-

digital-twins, 2022. Updated: 2022-03-23.

[111] Yiwen Wu, Ke Zhang, and Yan Zhang. Digital twin networks: A survey. IEEE

Internet of Things Journal, 8(18):13789–13804, 2021. doi: 10.1109/JIOT.2021.

3079510.

[112] Dave Cote. Rdr score, 2020. URL blog/RdRscoreatmasterÂůCoteDave/

blogÂůGitHub.

blog/RdR score at master · CoteDave/blog · GitHub
blog/RdR score at master · CoteDave/blog · GitHub

	Acknowledgements
	Abstract
	Streszczenie
	1 Introduction
	1.1 Motivation
	1.2 5G Technology Introduction
	1.3 Important Challenges for 5G Network Dimensioning
	1.3.1 One-Fits-All Process
	1.3.2 A Priori Defined Traffic Model
	1.3.3 Linear Models
	1.3.4 Cloud Architecture Impact on Transport Dimensioning
	1.3.5 Access Transport Aggregation
	1.3.6 Network Slicing

	1.4 Contributions
	1.5 Dissertation Structure

	2 Related Works
	2.1 Network Slicing Dimensioning
	2.2 5G Traffic Forecasting
	2.3 Estimation of Transport Aggregation Gain
	2.4 Digital Twin

	3 5G Network Data
	3.1 Dataset
	3.2 Model Feature Selection
	3.3 Configuration Changes
	3.4 The Dependencies of Features
	3.5 Information About Weekday
	3.6 Selection of Busy Hour

	4 Methodology
	4.1 One-Dimensional Models
	4.1.1 SARIMA
	4.1.2 Prophet
	4.1.3 FTSM

	4.2 Multidimensional Models
	4.2.1 VARMAX
	4.2.2 LSTM
	4.2.3 CNN-BiLSTM

	4.3 Research Environment and Tools

	5 Environmental Variables Forecasting
	5.1 Selection of Models for Fine-grained Comparison
	5.2 Comparison of One-dimensional Short-term Forecast
	5.2.1 Results where Prophet is Outperforming Lag-Llama
	5.2.2 Results where Lag-Llama is Outperforming Prophet

	5.3 Comparison of One-dimensional Long-term Forecast
	5.4 Summary

	6 5G Short-Term Forecasting
	6.1 Unit Models per Network Slice
	6.1.1 Results of Forecasting with VARMAX
	6.1.2 Results of Forecasting with Neural Networks
	6.1.3 Comparative Study of Unit Models

	6.2 General Model for All Network Slices
	6.3 Summary

	7 5G Long-Term Forecasting
	7.1 Long-Term Dataset Selection
	7.2 Forecasting Method
	7.3 Model per Cell
	7.4 Model per Frequency Band
	7.5 Industrial Applications
	7.6 Summary

	8 Traffic Multiplexing Gain Estimation
	8.1 Statistical Multiplexing Gain
	8.2 Simulation Setup
	8.3 Multiplexing Gain Algorithm
	8.3.1 Overview
	8.3.2 Selection of Block Size
	8.3.3 Validation

	8.4 Results Analysis
	8.4.1 Traffic Type Impact on Multiplexing Gain
	8.4.2 Number of Users Impact on Multiplexing Gain
	8.4.3 Percentile Impact on Multiplexing Gain
	8.4.4 Number of Cells Impact on Multiplexing Gain

	8.5 Industrial Applications
	8.5.1 Case Study - Microwave Link Capacity
	8.5.2 Case Study - Cloud BTS Transport Capacity

	8.6 Summary

	9 5G Network Slicing Dimensioning Framework
	9.1 Description of Framework Elements
	9.1.1 Dataset Module
	9.1.2 Environmental Variables Forecasting Module
	9.1.3 Multivariate Forecasting Module
	9.1.4 BTS Capacity Estimation Module
	9.1.5 Link Capacity Estimation Module

	9.2 Scenario Simulations with the Framework
	9.2.1 Evaluation with Real Data
	9.2.2 Simulated Scenarios

	9.3 Summary

	10 Conclusions and Future Works
	10.1 Achievements and Contributions
	10.2 Publications
	10.3 Future Works

	Bibliography

